
MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP
Rev. 2.15.00.0 — 10 January 2024 User guide

Document information
Information Content

Keywords EVK-MCIMX7ULP, MCIMX7ULP, 7ULP, EVKMCIMX7ULP, Getting Started,
MCUXSDKIMX7ULPGSUG

Abstract This document describes the steps to get started with MCUXpresso SDK for EVK-MCIMX7ULP.

https://www.nxp.com

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

1 Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed to optimize,
ease, and help accelerate embedded system development of applications based on general purpose,
crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK includes a flexible set of
peripheral drivers designed to speed up and simplify development of embedded applications which can
be used standalone or collaboratively with the A cores running another Operating System (such as Linux
OS Kernel). Along with the peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of
example applications covering everything from basic peripheral use case examples to demo applications. The
MCUXpresso SDK also contains optional RTOS integrations such as FreeRTOS and Azure RTOS, device
stack, and various other middleware to support rapid development.

For supported toolchain versions, see the MCUXpresso SDK Release Notes Supporting i.MX 7ULP Derivatives
(document MCUXSDKIMX7ULPRN)

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for MCUXpresso.

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral Drivers
Real Time Kernel

(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK Board Support Folders

MCUXpresso SDK provides example applications for development and evaluation boards. Board support
packages are found inside of the top level <board_name> folder, and each supported board has its own folder
(an MCUXpresso SDK package can support multiple boards). Within each <board_name> folder there are
various subfolders for each example that they contain. These include (but are not limited to):

• demo_apps: Applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDKs
peripheral drivers for a single use case. These applications typically only use a single peripheral, but there are
cases where multiple are used.

• rtos_examples: Basic FreeRTOS examples showcasing the use of various RTOS objects (semaphores,
queues, and so on) and interfacing with the MCUXpresso SDK RTOS drivers

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
2 / 18

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

• multicore_examples: Simple applications intended to concisely illustrate how to use middleware/multicore
stack.

• mmcau_examples: Simple applications intended to concisely illustrate how to use middleware/mmcau stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the
MCUXpresso SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder
structure, see MCUXpresso SDK API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant
to that specific piece of hardware. Although we use the hello_world example (part of the demo_apps folder),
the same general rules apply to any type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example
to start developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, various source files are referenced.
The MCUXpresso SDK devices folder is the central component to all example applications. It means that the
examples reference the same source files and, if one of these files is modified, it could potentially impact the
behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other
files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU
MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
3 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table
definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of the
example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential impacts on other
projects that depend on that file.

Note: The RPMsg-Lite library is located in the <install_dir>/middleware/multicore/rpmsg-lite folder. For detailed
information about the RPMsg-Lite, to see the RPMsg-Lite User’s Guide, open the index.html located in the
<install_dir>/middleware/multicore/rpmsg_lite/doc folder.

3 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the
MCUXpresso SDK. The hello_world demo application targeted for the MCIMX7ULP-EVK hardware platform
is used as an example, although these steps can be applied to any example application in the MCUXpresso
SDK.

3.1 Build an example application

Do the following steps to build the hello_world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located
using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the MCIMX7ULP-EVK hardware platform as an example, the hello_world workspace is located in;

<install_dir>/boards/evkmcimx7ulp/demo_apps/hello_world/iar/hello_world.eww

Other example applications may have additional folders in their path.
2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

Figure 3. Demo build target selection
3. To build the demo application, click Make, highlighted in red in Figure 4.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
4 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 4. Build the demo application
4. The build completes without errors.

3.2 Run an example application

To download and run the application, perform these steps:

1. This board supports the J-Link debug probe. Before using it, install SEGGER J-Link software, which can be
downloaded from www.segger.com.

2. Connect the development platform to your PC via USB cable between the USB-UART MICRO USB
connector and the PC USB connector, then connect 5 V power supply and J-Link Plus to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port
(to determine the COM port number, see Appendix A). Configure the terminal with these settings:
a. 115200 baud rate
b. No parity
c. 8 data bits
d. 1 stop bit

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
5 / 18

www.segger.com

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 5. Terminal (PuTTY) configuration
4. In IAR, click the "Download and Debug" button to download the application to the target.

Figure 6. Download and Debug button

5. The application is then downloaded to the target and automatically runs to the main() function.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
6 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 7. Stop at main() when running debugging

6. Run the code by clicking the "Go" button to start the application.

Figure 8. Go button

7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true,
check your terminal settings and connections.

Figure 9. Text display of the hello_world demo

3.3 Debug QSPI FLASH XIP Application

Most demo applications use the RAM linker file by default. If users want to use the flash linker file for QSPI
XIP debugging, the linker file for QSPI FLASH must be changed from the project default RAM linker file to the
FLASH linker file.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
7 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

1. Open the hello_world project and select the hello_world top-level project as shown below. Once highlighted,
one way to open the options is using 'Alt-F7'. This opens the option window. Then, select “Linker”. The
“Config” tab is shown by default. Enable Override default and enter the location: C:\nxp\SDK_2.3_EVK_
MCIMX7ULP\devices\MCIMX7U5\iar\MCIMX7U5xxx08_flash.icf.

Figure 10. Options for node "hello_world"

Clean the project once the linker control has been configured. Use the key combo 'Alt-P' to clean. Then,
make project using the 'F7' key.

2. Select the "Use macro files" and the "Use flashloader" as shown in the following pictures, and start
debugging in IAR.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
8 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 11. "Use macro files" selection

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
9 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 12. "Use flashloader " selection

4 Running an application from QSPI flash

This section describes the steps to write a bootable SDK image to QSPI flash with the prebuilt U-Boot image for
the i.MX processor. The following steps describe how to use the U-Boot:

1. Connect the “DEBUG UART” slot on the board to your PC through the USB cable. The Windows OS installs
the USB driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find “USB serial Port” in “Ports (COM and LPT)”. Assume that
the ports are COM9 and COM10. One port is for the debug message from the Cortex-A7 and the other is for
the Cortex-M4. The port number is allocated randomly, so opening both is beneficial for development. On
Ubuntu OS, find the TTY device with name /dev/ttyUSB* to determine your debug port. Similar to Windows
OS, opening both is beneficial for development.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
10 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 13. Determining the COM port of target board
3. Build the application (for example, hello_world) and copy the built binary (sdk20-app.bin file) to the <install_

dir>/tools/imgutil/evkmcimx7ulp folder.
4. In the <install_dir>/tools/imgutil/evkmcimx7ulpp folder, run mkimg.sh in mingw32 shell to get bootable image

file sdk20- app.img.
• If the image is built with RAM link file, use "mkimg.sh ram" to create the bootable image.
• If the image is built with flash link file, use "mkimg.sh flash" to create the bootable XIP.

5. Prepare an SD card with the prebuilt U-Boot image and copy the sdk20-app.img generated into the SD card
(as shown in Step 4). Then, insert the SD card to the target board. Make sure to use the default boot SD
slot and check the DIP switch configuration.

6. Open your preferred serial terminals for the serial devices, setting the speed to 115200 bit/s, 8 data bits, 1
stop bit (115200, 8N1), no parity, then power on the board.

7. Power on the board and hit any key to stop autoboot in the terminals, then enter to U-Boot command-line
mode. You can then write the image and run it from QSPI Flash with the following commands (Assume
that image size is less than 0x20000, otherwise the sf erase and write command size parameter must be
enlarged. If the image size is bigger than 0x20000 (128 kB), change 0x20000 to a number larger or equal to
the image size.):
• sf probe.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
11 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

• sf erase 0x0 0x20000.
• fatload mmc 0:1 0x62000000 sdk20-app.img.
• sf write 0x62000000 0x0 0x20000.

Figure 14. U-Boot command to run application on QSPI
8. Open another terminal application on the PC, such as PuTTY and connect to the debug COM port (to

determine the COM port number, see Appendix A). Configure the terminal with these settings:
• 115200
• No parity
• 8 data bits
• 1 stop bit

9. Power off and repower on the board.
10. The hello_world application is now running and a banner is displayed on the terminal. If this is not true,

check your terminal settings and connections.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
12 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 15. Hello world demo running on Cortex-M4 core

5 How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware
development platform.

1. Linux: The serial port can be determined by running the following command after the USB Serial is
connected to the host:

$ dmesg | grep "ttyUSB"
 [503175.307873] usb 3-12: cp210x converter now attached
 to ttyUSB0
 [503175.309372] usb 3-12: cp210x converter now attached
 to ttyUSB1

There are two ports, one is Cortex-A core debug console and the other is for Cortex M4.
2. Windows: To determine the COM port open Device Manager in the Windows operating system. Click the

Start menu and type Device Manager in the search bar.
3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port

names will be different for all the NXP boards.
a. USB-UART interface

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
13 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Figure 16. USB-UART interface

6 How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to override the default
IRQ handler. For example, to override the default PIT_IRQHandler define in startup_DEVICE.s,
application code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{
 // Your code
}

When application file is CPP file, like app.cpp, then extern "C" should be used to ensure the function
prototype alignment.

cpp
extern "C" {
 void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{
 // Your code
}

7 Revision history

This table summarizes revisions to this document.

Revision number Date Substantive changes

2.13.0 22 December 2022 Updated for MCUXpresso SDK v2.13.0

2.14.0 27 July 2023 Updated for MCUXpresso SDK v2.14.0

2.15.000 10 January 2024 Updated for MCUXpresso SDK v2.15.000

Table 1. Revision history

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
14 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
15 / 18

mailto:PSIRT@nxp.com

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
16 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Tables
Tab. 1. Revision history ...14

Figures
Fig. 1. MCUXpresso SDK layers2
Fig. 2. Application folder structure3
Fig. 3. Demo build target selection 4
Fig. 4. Build the demo application5
Fig. 5. Terminal (PuTTY) configuration6
Fig. 6. Download and Debug button6
Fig. 7. Stop at main() when running debugging 7
Fig. 8. Go button .. 7
Fig. 9. Text display of the hello_world demo 7

Fig. 10. Options for node "hello_world"8
Fig. 11. "Use macro files" selection 9
Fig. 12. "Use flashloader " selection 10
Fig. 13. Determining the COM port of target board 11
Fig. 14. U-Boot command to run application on

QSPI ..12
Fig. 15. Hello world demo running on Cortex-M4

core ... 13
Fig. 16. USB-UART interface 14

MCUXSDKIMX7ULPGSUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2.15.00.0 — 10 January 2024
17 / 18

NXP Semiconductors MCUXSDKIMX7ULPGSUG
Getting Started with MCUXpresso SDK for EVK-MCIMX7ULP

Contents
1 Overview ...2
2 MCUXpresso SDK Board Support

Folders ..2
2.1 Example application structure3
2.2 Locating example application source files 3
3 Run a demo application using IAR 4
3.1 Build an example application4
3.2 Run an example application 5
3.3 Debug QSPI FLASH XIP Application7
4 Running an application from QSPI flash 10
5 How to determine COM port13
6 How to define IRQ handler in CPP files 14
7 Revision history ...14

Legal information ...15

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 10 January 2024
Document identifier: MCUXSDKIMX7ULPGSUG

	1 Overview
	2 MCUXpresso SDK Board Support Folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo application using IAR
	3.1 Build an example application
	3.2 Run an example application
	3.3 Debug QSPI FLASH XIP Application

	4 Running an application from QSPI flash
	5 How to determine COM port
	6 How to define IRQ handler in CPP files
	7 Revision history
	Legal information
	Tables
	Figures
	Contents

