
VITIUG
Voice Intelligent Technology Wake Word and Voice Command Integration

User's Guide
Rev. 5 — 18 October 2023 User guide

Document Information

Information Content

Keywords Voice Intelligent Technology (VIT), VIT Wake Word Engine (VIT WWE), VIT Voice Command

Engine (VIT VCE)

Abstract The Voice Intelligent Technology (VIT) product provides voice services aiming to wake up and

control the IoT devices. This guide describes integration of the VIT Wake Word Engine and the

VIT Voice Command Engine.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

2 / 25

Wake Word Text File Commands Text File

'Hey NXP'
Play Music

Stop

Next

Text to Model Text to Model

WWE

Model

Voice

Command

Model

~ 3 Meters VoiceSeeker

(no AEC)

Wake Word

Engine

Voice Commands

Engine

Action

Control

Up to 3 Microphone Array
VIT

NXP MCU/MPU

Figure 1. VIT overview

1 Introduction

The Voice Intelligent Technology (VIT) product provides voice services aiming to wake up and control the

IoT devices. This guide describes integration of the VIT Wake Word Engine (VIT WWE) and the VIT Voice

Command Engine (VIT VCE).

The current version of VIT WWE and VCE supports a low-power VAD (Voice Activity Detection), a Wake Word

Text to Model, and Voice Command Text to Model functionalities, see Figure 1.

The Wake Word model and the Voice Command model are built from a Text to Model approach, which does not

require any audio dataset.

VIT WWE can support the detection of up to 3 wake words in parallel.

The VIT WWE and VCE library has multiple models (each for a different supported language). The model files

are named VIT_Model_xx.h, where xx represents the two-letter language code. The wake words and voice

commands supported by a specific model are listed at the beginning of each model file. Depending on the
platform and resources, the application may support switching the model in runtime or by selecting a proper one
in application configuration files.

New models of Wake Word and Voice commands can be generated via the VIT online tool.

The role of the low-power VAD is to limit CPU load with minimizing Wake Word / Voice Command processing in

silence conditions.

The enablement of the different features of VIT WWE and VCE can be controlled via VIT_OperatingMode,

see the VIT.h file.

Scenario supported by the VIT library (English model example):

• wake word detection only: “Hey NXP”.

• wake word + voice commands detection. For example, “Hey NXP – Play Music” - “Hey NXP – Next”.

https://vit.nxp.com/#/

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

3 / 25

• wake word followed by multi commands Voice Command recognition. For example, “Hey NXP – Play Music –

Volume Up”(see Multiturn Voice Command feature description in section Section 4.5)

The voice command must be pronounced in a fix time span that must be adapted to the maximum command
length. This time span is controlled via VIT_ControlParams. See Section 4.2.1.4 and Section 8 for further

details.

VIT VCE returns an the “UNKOWN” command if the audio captured after the wake word does not correspond to

any targeted command.

The VIT WWE and VCE library is processing 10-ms and 30-ms audio frame @16 kHz - 16-bit data mono.

The VIT WWE and VCE library has been ported on 6 cores:

• The Cortex-M7 core and validated on the i.MX RT1050, i.MX RT1060, i.MX RT1160, and i.MX RT1170

platforms.

• The Cortex-33 core and validated on the LPC55S69 platform.

• The HIFI4 core and validated on the i.MX RT600 platform.

• The FUSIONF1 core and validated on the i.MX RT500 platform.

• The Cortex-A53 core and validated on the i.MX 8M Mini, i.MX 8M Nano and i.MX 8M Plus platforms.

• The Cortex-A55 core and validated on the i.MX 93 platform.

Note: Enabling the LPVAD can impact the first keyword detection, it is dependent on the ambient conditions

(silence / noise).

The LPVAD decision is maintained during a hangover time of 15 s after the latest burst detection.

2 Acronyms and abbreviations

Table 1. Acronyms and abbreviations

Acronym Definition

AFE Audio Front End

VAD Voice Activity Detection

VCE Voice Commands Engine

VIT Voice Intelligent Technology

WWE Wake Word Engine

3 Release description

The VIT WWE and VCE release includes the following files:

• lib/libVIT_PLATFORM_VERSION.a; PLATFORM can be either HIFI4, FUSIONF1, Cortex-M4, Cortex-M7,

Cortex-A53, or Cortex-A55.

• The lib/VIT.h file describes VIT WWE and VCE public API.

• The lib/VIT_Model.h file contains the VIT WWE and VCE model description for the Wake Word and Voice

Command Engine, also this file lists the supported commands.

• The lib/Inc folder integrates additional VIT WWE and VCE public interface definitions.

• ExApp/VIT_ExApp.c or ExApp/VIT_alsa_test_app.c: VIT WWE and VCE integration example.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

4 / 25

4 Public interfaces description

This chapter provides the details of the public interfaces.

4.1 Header files

This section gives the description of the header files.

4.1.1 VIT.h

VIT.h describes all the definitions required for VIT WWE and VCE configuration and usage:

• operating mode to enable VIT WWE and VCE features

• detection status enumerator

• instance parameters structure

• control parameters structure

• status parameters structure

• all VIT WWE and VCE public functions.

4.1.2 VIT_Model.h

VIT_Model.h contains the model array.

The VIT_Model array can be stored in fast or slow memory.

• If the model is stored in slow memory (for example, external flash), library makes the necessary memory

reservation to copy part of the model in RAM before using it; current Cortex-M7 case.

• If the model is stored in fast memory (for example, external RAM), library uses the model directly from its

original memory location; HIFI4 and FusionF1 cases.

4.1.3 PL_platformTypes_CortexM.h

PL_platformTypes_CortexM.h describes the dedicated platform definition for the VIT WWE and VCE

library.

4.1.4 PL_platformTypes_HIFI4_FUSIONF1.h

PL_platformTypes_HIFI4_FUSIONF1.h describes the dedicated platform definition for the VIT WWE and

VCE library.

4.1.5 PL_platformTypes_CortexA.h

PL_platformTypes_CortexA.h describes the dedicated platform definition for VIT WWE and VCE.

4.1.6 PL_memoryRegion.h

PL_memoryRegion.h describes all the memories definition dedicated to the VIT WWE and VCE handle

allocation.

4.2 Public APIs

The VIT library presents different public functions to control and exercise the library:

• VIT_SetModel

• VIT_GetMemoryTable

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

5 / 25

VIT_ReturnStatus_en VIT_GetMemoryTable(VIT_Handle_t phInstance,

PL_MemoryTable_st *pMemoryTable,

VIT_InstanceParams_st *pInstanceParams);

•

• VIT_GetInstanceHandle

• VIT_SetControlParameters

• VIT_Process

• VIT_GetVoiceCommandFound

• VIT_GetWakeWordFound

• VIT_GetLibInfo (subsidiary interface)

• VIT_GetModelInfo (subsidiary interface)

• VIT_ResetInstance (subsidiary interface)

• VIT_GetControlParameters (subsidiary interface)

• VIT_GetStatusParameters (subsidiary interface)

For detailed description of the different APIs (Parameters, return values, and usage), see Section 4.1.1..

4.2.1 Main APIs

The main VIT WWE and VCE APIs must be called (in the right sequence) to instantiate, control, and exercise

algorithms.

4.2.1.1 VIT_SetModel

To set the model location: VIT_ReturnStatus_en VIT_SetModel (PL_UINT8* pVITModelGroup,

VIT_Model_Location_en).

4.2.1.1.1 Goal

Save the address of the VIT WWE and VCE model and check whether the model provided is supported by the

library.

4.2.1.1.2 Input parameters

To set the input parameters:

• The address of the model in memory

• The location of the model is in fast or slow memory

4.2.1.1.3 Output parameters

The output parameter is: none.

4.2.1.1.4 Return value

A value of type is PL_ReturnStatus_en. If PL_SUCCESS is returned, then:

• The model address is saved.

• The model is supported by the library.

4.2.1.2 VIT_GetMemoryTable

4.2.1.2.1 Goal

The goal is to inform the software application about the required memory needed by the library.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

6 / 25

VIT_ReturnStatus_en VIT_GetInstanceHandle(

VIT_Handle_t *phInstance,

PL_MemoryTable_st *pMemoryTable,

VIT_InstanceParams_st *pInstanceParams);

There are 4 kinds of memory:

• Fast data

• Slow data

• Fast coefficient

• Temporary or scratch

4.2.1.2.2 Input parameters

The input parameters are:

1. A pointer to an instance of VIT WWE and VCE. It must be a null pointer as the instance is not reserved yet.

2. A pointer to a memory table structure

3. The instance parameter of the VIT WWE and VCE library

4.2.1.2.3 Output parameters

The memory table structure is filled. It informs about the memory size required for each memory type.

4.2.1.2.4 Return value

A value of type PL_ReturnStatus_en. If PL_SUCCESS is returned, VIT is succeeding to get memory

requirement of:

• Each submodule.

• The model.

4.2.1.3 VIT_GetInstanceHandle

4.2.1.3.1 Goal

The goal is to set and initialize the instance of VIT before processing the call.

All memory is mapped to the required buffer of each submodule.

4.2.1.3.2 Input parameters

The Input parameters are:

1. A pointer to the future instance of VIT.

2. A pointer to the memory table structure. The memory allocation must be done and memory address per

memory type has been saved in the table.

3. The instance parameter of the library.

Depending on the value of the instance parameter, the submodule initialization is different.

4.2.1.3.3 Output parameters

The address of the VIT instance is set.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

7 / 25

VIT_ReturnStatus_en VIT_SetControlParameters(

VIT_Handle_t phInstance,

const VIT_ControlParams_st *const pNewParams);

VIT_ReturnStatus_en VIT_Process (VIT_Handle_t phInstance,

void *pVIT_InputBuffers,

VIT_DetectionStatus_en *pVIT_DetectionResults

);

4.2.1.3.4 Return value

A value of type is PL_ReturnStatus_en. If PL_SUCCESS is returned, then:

• The VIT instance has been set and initialized correctly.

• The VIT model layers are copied in the dedicated memory.

4.2.1.4 VIT_SetControlParameters

4.2.1.4.1 Goal

The goal is to set or modify the control parameter of the VIT instance.

New parameters are not set immediately. Indeed, to avoid processing artifact due to the new parameters

themselves the update sequence is under internal processing condition and occurs as soon as possible.

4.2.1.4.2 Input parameters

The Input parameters are:

1. VIT handle

2. A pointer to a control parameter structure: VIT_ControlParams_st

• Operating mode: control enablement of different VIT WWE and VCE features (VAD, AFE, Voice

Command modules)

• Command_Time_Span: voice command recognition time span (in seconds)

• Voice command recognition time span must be adapted to the maximum command length targeted.

For operating mode supported, see VIT.h.

4.2.1.4.3 Output parameters

The output parameter is: none.

4.2.1.4.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, the control parameter structure has been

considered and it has to be effective soon.

4.2.1.5 VIT_Process

4.2.1.5.1 Goal

To detect a “Hot Word” or a voice command, analyze the audio flow.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

8 / 25

VIT_ReturnStatus_en VIT_GetVoiceCommandFound (

VIT_Handle_t pVIT_Instance,

VIT_VoiceCommands_t *pVoiceCommand);

4.2.1.5.2 Input parameters

The input parameters are:

1. VIT handle

2. Temporal audio samples (160 or 480 samples @16 kHz – 16-bit data).

4.2.1.5.3 Output parameters

The detection status can have 3 different states:

• VIT_NO_DETECTION: no detection.

• VIT_WW_DETECTED: the wake word has been detected.

• VIT_VC_DETECTED: a voice command has been detected.

When VIT_WW_DETECTED is returned; VIT switches in the voice commands detection phase for a duration

controlled by the Command_Time_Span.

When VIT_VC_DETECTED is returned; VIT_GetVoiceCommandFound() must be called to know which

command has been detected.

VIT_VC_DETECTED is also indicating the end of the voice command research period and the switch to a wake

word detection phase until the wake word is detected again. For further details, see Section 7.

4.2.1.5.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, the process of the new audio frame has

successfully been done.

4.2.1.6 VIT_GetVoiceCommandFound

4.2.1.6.1 Goal

The goal is to retrieve the command ID and name (when present) detected by VIT WWE and VCE.

The function must be called only when VIT_Process() informs that a voice command has been detected (*p

VIT_DetectionResults==VIT_VC_DETECTED).

4.2.1.6.2 Input parameters

The Input parameters are:

1. VIT handle

2. a pointer to a voice commands struct type.

4.2.1.6.3 Output parameters

pVoiceCommand must be filled with the ID and name of the command detected.

The UNKNOWN command is returned if VIT WWE and VCE does not identify any targeted command during the

voice command detection phase.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

9 / 25

VIT_ReturnStatus_en VIT_GetWakeWordFound (VIT_Handle_t pVIT_Instance,

VIT_WakeWord_st *pWakeWord);

VIT_ReturnStatus_en VIT_GetLibInfo (VIT_LibInfo_t *pLibInfo);

4.2.1.6.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, pVoiceCommand can be considered.

4.2.1.7 VIT_GetWakeWordFound

4.2.1.7.1 Goal

Retrieve the Wake Word ID and name (when present) detected by VIT WWE.

The function must be called only when VIT_Process() informs that a Wake Word has been detected (*p

VIT_DetectionResults==VIT_WW_DETECTED)

4.2.1.7.2 Input parameters

The Input parameters are:

1. VIT Handle

2. A pointer to a Wake Word struct type.

4.2.1.7.3 Output parameters

pWakeWord is filled with the ID and name of the command are detected.

4.2.1.7.4 Return value

A value of type PL_ReturnStatus_en. If PL_SUCCESS, pWakeWord can be considered.

4.2.2 Secondary APIs

The secondary VIT WWE and VCE APIs are not mandatory for good usage of the algorithms. They can be

used to reset VIT WWE and VCE in case of discontinuity in the audio recording flow, (see VIT_ResetInstance

description), get information on the VIT WWE and VCE library, model, and on the internal state.

4.2.2.1 VIT_GetLibInfo

4.2.2.1.1 Goal

This function returns different information of the VIT WWE and VCE library.

4.2.2.1.2 Input parameters

The input parameter is a pointer to the VIT_LibInfo structure.

4.2.2.1.3 Output parameters

VIT_LibInfo must be filled with the details on VIT WWE and VCE library, see VIT.h.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

10 / 25

VIT_ReturnStatus_en VIT_GetModelInfo (VIT_ModelInfo_t *pModel_Info);

VIT_ReturnStatus_en VIT_ResetInstance(VIT_Handle_t phInstance);

4.2.2.1.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, *pLibInfo can be considered.

4.2.2.2 VIT_GetModelInfo

4.2.2.2.1 Goal

This function returns different information of the model registered within VIT WWE and VCE library. The function
must be called only when VIT_SetModel() is informing that the model is correct (ReturnStatus ==

VIT_SUCCESS).

4.2.2.2.2 Input parameters

The input parameter is a pointer to the VIT_Model_Info structure.

4.2.2.2.3 Output parameters

VIT_Model_Info must be filled with the details on VIT_Model, see Section 4.1.1.

4.2.2.2.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, *pModel_Info can be considered.

4.2.2.3 VIT_ResetInstance

4.2.2.3.1 Goal

Reset the instance of VIT WWE and VCE with instance parameters saved while VIT_GetInstanceHandle is

called. The reset does not take effect immediately. Indeed, to avoid processing artifact due to the reset itself the
reset sequence is under internal processing condition and occurs as soon as possible.

The VIT_ResetInstance function must be called whenever there is a discontinuity in the input audio stream.

A discontinuity means that the current block of samples is not contiguous with the previous block of samples.

Examples are:

• Calling the VIT process function after a period of inactivity.

• Buffer underrun or overflow in the audio driver.

After resetting VIT instance, VIT must be reconfigured (call to VIT_SetControlParameters()) before

continuing the VIT detection process (i.e VIT_Process()).

4.2.2.3.2 Input parameters

The input parameter is VIT handle.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

11 / 25

VIT_ReturnStatus_en VIT_GetControlParameters(

VIT_Handle_t *phInstance,

VIT_ControlParams_st *pControlParams);

VIT_ReturnStatus_en VIT_GetStatusParameters(

VIT_Handle_t phInstance,

VIT_StatusParams_st *pStatusParams);

4.2.2.3.3 Output parameters

The output parameter is: none.

4.2.2.3.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, the reset has been considered and must be

effective as soon as possible.

4.2.2.4 VIT_GetControlParameters

4.2.2.4.1 Goal

Get the current control parameter of the VIT instance.

4.2.2.4.2 Input parameters

The input parameters are:

1. VIT handle

2. A pointer to a control parameter structure.

4.2.2.4.3 Output parameters

The output parameter structure is updated.

4.2.2.4.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, then parameter structure must be updated

correctly.

4.2.2.5 GET_StatusParameters

4.2.2.5.1 Goal

Get the status parameters of the library.

4.2.2.5.2 Input parameters

The input parameters are:

1. VIT handle

2. A pointer to a status parameter buffer.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

12 / 25

VIT_ReturnStatus_enVIT_SetModelUpdate (

VIT_Handle_t* phInstance,

PL_UINT8* pVITModel, VIT_Model_Location_en);

4.2.2.5.3 Output parameters

Fill the status parameter structure.

4.2.2.5.4 Return value

A value of type is PL_ReturnStatus_en. If it is PL_SUCCESS, the status parameters are valid and can be

considered.

4.2.2.6 VIT_SetModelUpdate

The model location:

4.2.2.6.1 Goal

This function is used to update the VIT Model. It has several restrictions:

• The new model must be located in the same memory region as the original model (registered via

VIT_SetModel())

• The new model must address same language as the original model.

• The new model must be smaller (with a shorter command list) than the original model.

4.2.2.6.2 Input parameters

The input parameters are:

• VIT Handle.

• The address of the model in the memory.

• The location of the model is in the fast or slow memory.

4.2.2.6.3 Output parameters

The output parameter is: none.

4.2.2.6.4 Return value

A value of type is PL_ReturnStatus_en. If PL_SUCCESS is returned, then:

• The model address is saved.

• The model is supported by the VIT library.

4.3 Programming sequence

See Figure 2 for programming sequence.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

13 / 25

Figure 2. Programming sequence

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

14 / 25

VIT_Handle_t VITHandle; // VIT handle pointer

VIT_InstanceParams_st VITInstParams; // VIT instance parameters structure

VIT_ControlParams_st VITControlParams; // VIT control parameters structure

PL_MemoryTable_st VITMemoryTable; // VIT memory table descriptor

PL_ReturnStatus_en Status; // status of the function

VIT_VoiceCommands_t VoiceCommand;

VIT_DetectionStatus_en VIT_DetectionResults = VIT_NO_DETECTION;

// VIT detection result

PL_INT16 *VIT_InputData;

VITInstParams.SampleRate_Hz = VIT_SAMPLE_RATE;

VITInstParams.SamplesPerFrame = VIT_SAMPLES_PER_FRAME;

VITInstParams.NumberOfChannel = _1CHAN;

VITInstParams.DeviceId = VIT_IMXRT600;

VITInstParams.APIVersion = VIT_API_VERSION;

Status = VIT_SetModel(VIT_Model, VIT_MODEL_IN_SLOW MEM);

// Pass the address of the VIT Model

Status = VIT_GetMemoryTable(PL_NULL,

&VITMemoryTable,

&VITInstParams);

#define MEMORY_ALIGNMENT 4

//Following pseudo code applied to MemType =

//PL_MEMREGION_PERSISTENT_SLOW_DATA, PL_MEMREGION_PERSISTENT_COEF and

//PL_MEMREGION_TEMPORARY

if (VITMemoryTable.Region[MemType].Size != 0)

{

pMemory = malloc_in_SLOW_MEMORY (VITMemoryTable.Region[MemType].Size +

MEMORY_ALIGNMENT);

VITMemoryTable.Region[MemType].pBaseAddress = (void *) pMemory;

4.4 Code sample

The code sample in this section is aimed to explain the configuration and usage of the main VIT WWE and VCE

interfaces. See ExApp.c (available as part of the SDK project) for details.

4.4.1 Initialization phase

The initialization sequence permits setting an instance of VIT. After the initialization sequence, VIT is ready to

process audio data. The initialization sequence is in the application code and must respect the following order:

1. Local variable declaration:

2. Set the instance parameters:

Software application code set the instance parameters of VIT function.

As an example:

3. Set model address:

4. Get memory size and location requirement:

5. Reserve memory space:

Based on the VITMemoryTable information, the software application reserve memory space in the

required memory type. The start address of each memory type is saved in VITMemoryTable structure.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

15 / 25

VITHandle = PL_NULL; // force to null address for correct initialization

Status = VIT_GetInstanceHandle(&VITHandle,

&VITMemoryTable,

&VITInstParams);

VITControlParams.OperatingMode = VIT_WAKEWORD_ENABLE | VIT_VOICECMD_ENABLE;

VITControlParams.Command_Time_Span = 3.0; // in second

Status = VIT_SetControlParameters(VITHandle,

&VITControlParams);

Status = VIT_Process (VITHandle,

(void*)VIT_InputData,

&VIT_DetectionResults

);

// temporal audio input data

if (VIT_DetectionResults == VIT_WW_DETECTED)

{

// a Wakeword detected – Retrieve information :

Status = VIT_GetWakeWordFound(VITHandle, &WakeWord);

printf("Wakeword : %d detected \n", WakeWord.WW_Id);

// Retrieve Wakeword name : OPTIONAL

// Check first if CMD string is present

if (WakeWord.WW_Name != PL_NULL)

{

printf(" %s\n", WakeWord.WW_Name);

}

}

else if (VIT_DetectionResults == VIT_VC_DETECTED)

{

// a Voice Command detected – Retrieve command information :

Status = VIT_GetVoiceCommandFound(VITHandle, &VoiceCommand);

6. Get instance of VIT:

7. Set control parameters:

Software application code set the new control parameters and call VIT_SetControlParameters:

4.4.2 Process phase

For each new input audio frame, VIT_Process is called by the application code.

Check status of the detection:

}

}

//Following pseudo code applied to MemType =

//PL_MEMREGION_PERSISTENT_FAST_DATA

if (VITMemoryTable.Region[MemType].Size != 0)

{

pMemory = malloc_in_FAST_MEMORY (VITMemoryTable.Region[MemType].Size +

MEMORY_ALIGNMENT);

VITMemoryTable.Region[MemType].pBaseAddress = (void *) pMemory;

}

}

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

16 / 25

Status = VIT_GetMemoryTable(VITHandle,

&VITMemoryTable,

&VITInstParams);

// Free memory

for (i = 0; i<PL_NR_MEMORY_REGIONS; i++)

{

if (VITMemoryTable.Region[i].Size != 0)

{

free((PL_INT8 *)VITMemoryTable.Region[i].pBaseAddress);

}

}

VIT_StatusParams_st VIT_StatusParams_Buffer;

VIT_StatusParams_st* pVIT_StatusParam_Buffer =

(VIT_StatusParams_st*)&VIT_StatusParams_Buffer;

VIT_GetStatusParameters(VITHandle, pVIT_StatusParam_Buffer,

sizeof(VIT_StatusParams_Buffer));

printf("\nVIT Status Params\n");

printf(" VIT LIB Release = 0x%04x\n", pVIT_StatusParam_Buffer-

>VIT_LIB_Release);

printf(" VIT Model Release = 0x%04x\n", pVIT_StatusParam_Buffer-

>VIT_MODEL_Release);

printf(" VIT Features = 0x%04x\n", pVIT_StatusParam_Buffer-

>VIT_Features_Supported);

printf(" VIT Features Selected = 0x%04x\n", pVIT_StatusParam_Buffer-

>VIT_Features_Selected);

4.4.3 Delete phase

The framework can delete the environment process / task of VIT with stopping calling VIT_Process.

There are no specific VIT APIs to free VIT internal memory since the memory allocation is owned by the

framework itself (no internal memory allocation).

The framework has to free the memory associated with the different VIT memoryTables.

If the framework did not save the MemoryTables properties, VIT_GetMemoryTable can be called with

VITHandle to retrieve base addresses and size of different MemoryTables.

4.4.4 Additional code snippet (secondary APIs)

VIT_GetSatusParameters

printf("Voice Command : %d detected \n", VoiceCommand.Cmd_Id);

// Retrieve CMD name : OPTIONAL

// Check first if CMD string is present

if (VoiceCommand.Cmd_Name != PL_NULL)

{

printf(" %s\n", VoiceCommand.Cmd_Name);

}

}

else

{

// No specific action since VIT did not detect anything for this frame

}

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

17 / 25

Status = VIT_Process (VITHandle,

(void*)VIT_InputData,

&VIT_DetectionResults

);

// temporal audio input data

if (VIT_DetectionResults == VIT_WW_DETECTED)

{

// a Wakeword detected – Retrieve information :

Status = VIT_GetWakeWordFound(VITHandle, &WakeWord);

printf("Wakeword : %d detected \n", WakeWord.WW_Id);

// Retrieve Wakeword name : OPTIONAL

// Check first if CMD string is present

if (WakeWord.WW_Name != PL_NULL)

{

printf(" %s\n", WakeWord.WW_Name);

}

}

else if (VIT_DetectionResults == VIT_VC_DETECTED)

4.5 MultiTurn Voice command support

The example above (section Section 4.4) considers a wake-up word followed by recognition of a single voice

command.

VIT WWE and VCE library also supports the multi-turn voice command feature. It means that a wake-up word

can be followed by multiple recognizable commands.

The amount of time to detect each command is controlled via the VIT_SetControlParameters API, see

Section 4.2.1.4. The end of the multi-turn sequence (for example, from Voice Command back to wake-up word

detection) can be freely controlled by the integrator depending on the specific target use case. The end of the
multiturn mode can be based on the detection of a specific command (see the example below) or after a global

timeout.

Considering the stage of the process:

In this example, multiturn is re-enabled by default after each Voice Command is detected and disabled after a

specific command is recognized: "START" (VoiceCommand.Cmd_Id == START_CMD_ID)

See below the special code that controls the multi-turn sequence, consider the additional code in the gray area

at the step of defining the command:

For each new input audio frame, VIT_Process is called by the application code.

See below the special code that controls the multi-turn sequence, consider the additional code in bold at the

command detection phase:

printf(" Nb of channels supported = %d\n", pVIT_StatusParam_Buffer-

>NumberOfChannels_Supported);

printf(" Nb of channels selected = %d\n", pVIT_StatusParam_Buffer-

>NumberOfChannels_Selected);

printf(" Device Selected : device id = %d\n", pVIT_StatusParam_Buffer-

>Device_Selected);
if (pVIT_StatusParam_Buffer->WakeWord_In_Text2Model)

printf(" VIT WakeWord in Text2Model\n ");

else

printf(" VIT WakeWord in Audio2Model\n ");

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

18 / 25

{

// a Voice Command detected – Retrieve command information :

Status = VIT_GetVoiceCommandFound(VITHandle, &VoiceCommand);

printf("Voice Command : %d detected \n", VoiceCommand.Cmd_Id);

// Retrieve CMD name : OPTIONAL

// Check first if CMD string is present

if (VoiceCommand.Cmd_Name != PL_NULL)

{

printf(" %s\n", VoiceCommand.Cmd_Name);

}

//VIT is in command detection phase - we will switch back to WW detection only

// when START
// cmd is detected - otherwise we force to continue in CMD detection mode

if (VoiceCommand.Cmd_Id == START_CMD_ID) // we detect the START cmd here

{
// back to the default WW/Voice command detection sequence

VITControlParams.OperatingMode = VIT_WAKEWORD_ENABLE | VIT_VOICECMD_ENABLE;

VIT_Status = VIT_SetControlParameters(VITHandle, &VITControlParams);

}

else

{
// force command detection mode (Multiturn voice command mode)

VITControlParams.OperatingMode = VIT_VOICECMD_ENABLE;

VIT_Status = VIT_SetControlParameters(VITHandle, &VITControlParams);

}

}

else

{

// No specific action since VIT did not detect anything for this frame

}

5 VIT WWE and VCE library profiling

The profiling example for the English model supports 12 commands (with WW in Text to Model and voice

commands in Text to Model). The MHz figures are built from platform measurements.

• VIT WWE and VCE figures on RT1060:

Table 2. 1 MIC solution

MHz Code Data memory

Peak Avg 45 kB ROM model

storage

RAM persistent RAM scratch

240 156 325 kB 275 kB 47 kB

• VIT WWE and VCE figures on RT600:

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

19 / 25

Table 3. 1 MIC solution

MHz Code Data memory

Peak Avg 35 kB RAM model storage RAM

65 36 353 kB 190 kB

• VIT WWE and VCE figures on RT500:

Table 4. 1 MIC solution

MHz Code Data memory

Peak Avg 32 kB RAM model storage RAM

84 46 325 kB 167 kB

• VIT WWE and VCE figures on LPC55S69:

Table 5. 1 MIC solution

MHz Code Data memory

Peak Avg 36 kB ROM model storage RAM

92 83 325 kB 167 kB

• VIT WWE and VCE figures on Cortex-A53:

Table 6. 1 MIC solution

MHz Code Data memory

Peak Avg 40 kB RAM model storage RAM

60 50 325 kB 256 kB

VIT WWE and VCE stack usage < 2 kB

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

20 / 25

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

7 Revision history

Table 6 summarizes the changes done to this document since the initial release.

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

21 / 25

Revision history

Revision number Release date Description

5 18 October 2023 Update profiling section

4 31 July 2023 VIT_SetModelUpdate description is

added. Section 5 section is updated.

Language updates. The name of the

document is changed from Voice

Intelligent Technology Integration User's

Guide to Voice Intelligent Technology

Wake Word and Voice Command

Integration User's Guide

3 13 January 2023 VIT AFE description is removed, 30-ms

input frame support is added.

2 10 October 2022 Updated for the next version

1 19 May 2022 Updated the VIT profiling and platform

support list corresponding to VIT in

SDK2.11.

0 10 September 2021 Initial release

8 Appendix

For the details about examples presented in MCUXpresso SDK including steps for creation custom wake words

or voice commands with VIT online tool, see Getting Started with VIT for i.MX RT Devices.

The example shown in Figure 3 and Figure 4 illustrates the voice command research window: end of voice

command utterance shall occur in a ~3 s window from the wake word. (for more information on the window size

controlled via Command_Time_Span, see section 4.2.1.4)

Example 1:

The voice command utterance is ending 1.7 s after the wake word: Once the wake word is detected, VIT WWE

and VCE switches to the voice command research mode. It detects the voice command and switches back to

the wake word detection mode.

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

22 / 25

Example 2:

The voice command utterance is ending 3 s after the wake word: Once the wake word is detected, library

switches to the voice command research mode. Library would not be able to detect the voice command, since

the command is not fitting in the 3 s window. (for more information on the window size, see section 4.2.1.4)

At the end of the 3 s research window, VIT returns an “UNKNOWN” command and switch back to the wake

word detection mode.

Figure 3. Example 1

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

23 / 25

Figure 4. Example 2

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

VITIUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 4 — 31 July 2023

© 2023 NXP B.V. All rights reserved.

24 / 25

9 Legal information

9.1 Definitions

Draft — A draft status on a document indicates that the content is still

under internal review and subject to formal approval, which may result

in modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included in a draft version of a document and shall have no

liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed

to be accurate and reliable. However, NXP Semiconductors does not give

any representations or warranties, expressed or implied, as to the accuracy

or completeness of such information and shall have no liability for the

consequences of use of such information. NXP Semiconductors takes no

responsibility for the content in this document if provided by an information

source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer’s own

risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their

applications and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by

customer’s third party customer(s). Customer is responsible for doing all

necessary testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications

and the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors

products are sold subject to the general terms and conditions of commercial

sale, as published at http://www.nxp.com/profile/terms, unless otherwise

agreed in a valid written individual agreement. In case an individual

agreement is concluded only the terms and conditions of the respective

agreement shall apply. NXP Semiconductors hereby expressly objects to

applying the customer’s general terms and conditions with regard to the

purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors

product is automotive qualified, the product is not suitable for automotive

use. It is neither qualified nor tested in accordance with automotive testing

or application requirements. NXP Semiconductors accepts no liability for

inclusion and/or use of non-automotive qualified products in automotive

equipment or applications.

In the event that customer uses the product for design-in and use in

automotive applications to automotive specifications and standards,

customer (a) shall use the product without NXP Semiconductors’ warranty

of the product for such automotive applications, use and specifications, and

(b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors’ specifications such use shall be solely at customer’s

own risk, and (c) customer fully indemnifies NXP Semiconductors for any

liability, damages or failed product claims resulting from customer design and

use of the product for automotive applications beyond NXP Semiconductors’

standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including

the legal information in that document, is for reference only. The English

version shall prevail in case of any discrepancy between the translated and

English versions.

Security — Customer understands that all NXP products may be subject to

unidentified vulnerabilities or may support established security standards or

specifications with known limitations. Customer is responsible for the design

and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or

proprietary technologies supported by NXP products for use in customer’s

applications. NXP accepts no liability for any vulnerability. Customer should

regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules,

regulations, and standards of the intended application and make the

ultimate design decisions regarding its products and is solely responsible

for compliance with all legal, regulatory, and security related requirements

concerning its products, regardless of any information or support that may be

provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable

at PSIRT@nxp.com) that manages the investigation, reporting, and solution

release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute

or sell products.

9.3 Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

http://www.nxp.com/profile/terms
mailto:PSIRT@nxp.com

VITIUG NXP Semiconductors

Voice Intelligent Technology Wake Word and Voice Command Integration User's Guide

Contents

1 Introduction .. 2

2 Acronyms and abbreviations 3

3 Release description .. 3

4 Public interfaces description 3

4.1 Header files .. 4

4.1.1 VIT.h .. 4

4.1.2 VIT_Model.h ... 4

4.1.3 PL_platformTypes_CortexM.h 4

4.1.4 PL_platformTypes_HIFI4_FUSIONF1.h 4

4.1.5 PL_platformTypes_CortexA.h 4

4.1.6 PL_memoryRegion.h ... 4

4.2 Public APIs ... 4

4.2.1 Main APIs ... 5

4.2.1.1 VIT_SetModel ... 5

4.2.1.2 VIT_GetMemoryTable ... 5

4.2.1.3 VIT_GetInstanceHandle .. 6

4.2.1.4 VIT_SetControlParameters 7

4.2.1.5 VIT_Process ... 7

4.2.1.6 VIT_GetVoiceCommandFound 8

4.2.1.7 VIT_GetWakeWordFound 9

4.2.2 Secondary APIs ... 9

4.2.2.1 VIT_GetLibInfo ... 9

4.2.2.2 VIT_GetModelInfo .. 10

4.2.2.3 VIT_ResetInstance .. 10

4.2.2.4 VIT_GetControlParameters 11

4.2.2.5 GET_StatusParameters .. 11

4.2.2.6 VIT_SetModelUpdate .. 12

4.3 Programming sequence .. 12

4.4 Code sample .. 14

4.4.1 Initialization phase ... 14

4.4.2 Process phase ... 15

4.4.3 Delete phase .. 16

4.4.4 Additional code snippet (secondary APIs) 16

4.5 MultiTurn Voice command support 17

5 VIT WWE and VCE library profiling..................... 18

6 Note about the source code in the

document .. 19

7 Revision history .. 19

8 Appendix ... 20

9 Legal information .. 23

Please be aware that important notices concerning this document and the product(s)

described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 31 July 2023

Document identifier: VITIUG

http://www.nxp.com/

