
UG10184
Bluetooth Low Energy Application Developer’s Guide
Rev. 1.0 — 26 November 2024 User guide

Document information
Information Content

Keywords UG10184, NXP Bluetooth Low Energy Host Stack, Application Programming Interface (API),
BLE host stack APIs, initialization, Generic Access Profile (GAP) Layer, Generic Attribute Profile
(GATT) Layer

Abstract This document explains how to integrate the NXP Bluetooth Low Energy Host Stack in an
application. It also describes the most commonly used APIs and provides code examples. These
examples are applicable to NXP hardware platforms using KW45, KW47, MCXW71, MCXW72,
and K32W1 family of devices.

https://www.nxp.com

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

1 Introduction

This document explains how to integrate the NXP Bluetooth Low Energy Host Stack in an application and
provides detailed explanation of the most commonly used APIs and code examples.

• Section 1 "Introduction": This section outlines the document structure.
• Section 2 "Prerequisites": The document sets out the prerequisites.
• Section 3 "Bluetooth LE Host Stack Initialization and APIs": This section describes the Bluetooth Low Energy

Host Stack initialization. It also presents the APIs categorized according to the layer and by application role.
• Section 4 "Generic Access Profile (GAP) Layer": The Generic Access Profile (GAP) layer is divided into two

sections according to the GAP role of the device: Central and Peripheral. The basic setup of two such devices
is explained with code examples, such as how to prepare the devices for connections, how to connect them
together, and pairing and bonding processes.

• Section 5 "Generic Attribute Profile (GATT) Layer": This section describes the Generic Attribute Profile (GATT)
layer and introduces the APIs required for data transfer between the two connected devices. This section is
divided into two subsections according to the GATT role of the device: Client and Server.

• Section 6 "GATT database application interface": The document further describes the usage of the GATT
database APIs that allow the application to manipulate data stored in the GATT Server database.

• Section 7 "Creating GATT database": This section describes a user-friendly method to build a GATT database
statically. The method involves the use of a predefined set of macros that the application can include to build
the database at application compile time.

• Section 8 "Creating a Custom Profile": This section contains instructions on how to build a custom profile.
• Section 9 "Application Structure": The section describes the structure of the typical application.
• Section 10 "Low-Power Management": This section describes low-power management and how an

application can use the low-power modes of the hardware and software.
• Section 11 "Over the Air Programming (OTAP)": This section describes the Over The Air Programming

(OTAP) capabilities that the Host Stack offers via a dedicated Service/Profile. The section also describes how
to use the OTAP capabilities in an application and also contains a detailed description of the SDK components
involved in the OTAP process.

• Section 12 "Creating a Bluetooth LE application when the Host Stack runs on another processor": This section
describes how to build a Bluetooth Low Energy application when the Host Stack is running on a separate
processor.

• Section 13 "References": This section lists the documents that can be referred to for more information.
• Section 14 "Acronyms and abbreviations": This section lists the acronyms used in this document.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
2 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

2 Prerequisites

The Bluetooth Low Energy Host Stack library contains several external references that the application must
define to enable full functionality.

Attention: Application developers must ensure to define these references to prevent linkage errors when trying
to build the application binary.

2.1 Task and event queues
The task queues are declared in the ble_host_tasks.h as follows:

/*! App to Host message queue for the Host Task */
 extern messaging_t gApp2Host_TaskQueue;
/*! HCI to Host message queue for the Host Task */
 extern messaging_t gHci2Host_TaskQueue;
/*! Event for the Host Task Queue */
 extern OSA_EVENT_HANDLE_DEFINE(gHost_TaskEvent);

See Section 3.1 "Initialization" for more details about the RTOS tasks required by the Bluetooth LE Host Stack.

2.2 GATT database
The application must define and populate the database according to its requirements and constraints either
statically, at application compile time, or dynamically.

Regardless of how the application creates the GATT database, the following two external references from
gatt_database.h must be defined:

/*! The number of attributes in the GATT Database. */
extern uint16_t gGattDbAttributeCount_c;
/*! Reference to the GATT database */
extern gattDbAttribute_t* gattDatabase;

The attribute template is defined as shown here:

typedef struct {
 uint16_t handle ;
/*!< Attribute handle - cannot be 0x0000; attribute handles need not be
 consecutive, but must be strictly increasing. */
 uint16_t permissions ;
/*!< Attribute permissions as defined by ATT. */
 uint32_t uuid ;
/*!< The UUID should be read according to the gattDbAttribute_t.uuidType member:
 for 2-byte and 4-byte UUIDs, this contains the value of the UUID; for 16-byte
 UUIDs, this is a pointer to the allocated 16-byte array containing the UUID. */
 uint8_t * pValue ;
/*!< Pointer to allocated value array. */
 uint16_t valueLength ;
/*!< Size of the value array. */
 uint16_t uuidType : 2;
/*!< Identifies the length of the UUID; the 2-bit values are interpreted
 according to the bleUuidType_t enumeration. */
 uint16_t maxVariableValueLength : 10;
/*!< Maximum length of the attribute value array; if this is set to 0, then the
 attribute's length (valueLength) is fixed and cannot be changed. */

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
3 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

} gattDbAttribute_t ;

2.3 Non-Volatile Memory (NVM) access
The Bluetooth LE Host Stack implements an internal module responsible for managing device information. This
module relies on accessing a Non-Volatile Memory module for storing and loading bonded devices data.

The application developers determine the NVM access mechanism through the definition of three functions and
one variable. The functions must first pre-process the information and then perform standard NVM operations
(erase, write, read). The declarations are as follows:

 bleResult_t App_NvmErase
(
 uint8_t mEntryIdx
);
bleResult_t App_NvmRead
(
 uint8_t mEntryIdx,
 void* pBondHeader,
 void* pBondDataDynamic,
 void* pBondDataStatic,
 void* pBondDataLegacy,
 void* pBondDataDeviceInfo,
 void* pBondDataDescriptor,
 uint8_t mDescriptorIndex
);
bleResult_t App_NvmWrite
(
 uint8_t mEntryIdx,
 void* pBondHeader,
 void* pBondDataDynamic,
 void* pBondDataStatic,
 void* pBondDataLegacy,
 void* pBondDataDeviceInfo,
 void* pBondDataDescriptor,
 uint8_t mDescriptorIndex
);

The device information is divided into several components to ensure that even software wear leveling
mechanisms can be used optimally. The components sizes are fixed (defined in ble_constants.h) and have the
following meaning:

API pointer to bond component Component size (ble_constants.
h)

Description

pBondHeader: points to a bleBondIdentity
HeaderBlob_t element

gBleBondIdentityHeaderSize_c Bonding information which is sufficient to
identify a bonded device.

pBondDataDynamic: points to a bleBond
DataDynamicBlob_t element

gBleBondDataDynamicSize_c Bonding information that might change
frequently.

pBondDataStatic: points to a bleBond
DataStaticBlob_t element

gBleBondDataStaticSize_c Bonding information that is unlikely to
change frequently.

pBondDataLegacy: points to a bleBond
DataLegacyBlob_t element

gBleBondDataLegacySize_c Stores legacy pairing and Connection
Signature Resolving Key (CSRK) bond
information.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
4 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

API pointer to bond component Component size (ble_constants.
h)

Description

pBondDataDeviceInfo: points to a ble
BondDataDeviceInfoBlob_t element

gBleBondDataDeviceInfoSize_c Additional bonding information that can
be accessed using the host stack API.

pBondDataDescriptor: points to a ble
BondDataDescriptorBlob_t element

gBleBondDataDescriptorSize_c Bonding information used to store one
Client Characteristic Configuration
Descriptor (CCCD).

The Bluetooth LE Host Stack handles the format of the bonding information. Therefore, application developers
need not to take care of this aspect.

Each bonding data slot must contain one bonding header blob, one dynamic data blob, one static
data blob, one data legacy blob, one device information blob, and an array of descriptor blobs equal to
gcGapMaximumSavedCccds_c.

Note: The application must define the gcGapMaximumSavedCccds_c. macro according to its requirement. The
default value can be found in the ble_constants.h file.)

A slot is uniquely identified by the mEntryIdx parameter.

A descriptor is uniquely identified by the pair mEntryIdx - mDescriptorIndex.

If one or more pointers passed as parameters are NULL, the read from or write to the corresponding blob of the
bonding slot must be ignored. The erase function must clear the entire bonding data slot specified by the entry
index.

Note:

When Advanced Secure Mode is chosen (gAppSecureMode_d is defined as 1 in app_preinclude.h), two
additional application NVM functions are defined to handle local keys encrypted blob storage. Their declaration
is:

bleResult_t App_NvmWriteLocalKeys
(
 uint8_t mEntryIdx,
 void* pLocalKey
)
bleResult_t App_NvmReadLocalKeys
(
 uint8_t mEntryIdx,
 void* pLocalKey
)

The functions write/read a structure of type bleLocalKeysBlob_t into/from NVM using a dedicated data set.
The parameter mEntryIdx can be 0 (local IRK is handled) or 1 (local CSRK is handled).

The format of the local keys blob nor about the generation and storage of the local keys is automatically
handled in BLE Connection Manager (BleConnManager_GenericEvent). Therefore the application developer
need not manage this aspect.

The current implementation of the aforementioned functions uses either the framework NVM module or a
RAM buffer. Additional details about the NVM configuration and functionality can be found in the Connectivity
Framework Reference Manual. See Section 13 "References".

To enable the NVM mechanism, ensure the following points:

• gAppUseNvm_d (in app_preinclude.h) is set to 1 and
• gUseNVMLink_d is set to 1 in the linker options of the toolchain.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
5 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Note:

• If gAppUseNvm_d is set to 0, then all bonding data is stored in the RAM and is accessible until reset or power
cycle.

• If gAppUseNvm_d is set to 1, the default NVM module configurations are applied in the app_preinclude.h file.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
6 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

3 Bluetooth LE Host Stack Initialization and APIs

3.1 Initialization
The application developer is required to configure the Host Task as part of the Host Stack requirement. The task
is the context for running all the Host layers (GAP, GATT, ATT, L2CAP, SM, GATTDB)

The prototype of the task function is located in the ble_host_tasks.h file:

void Host_TaskHandler(void * args);

It should be called with NULL as an argument in the task code from the application.

Application developers are required to define task events and queues as explained in RTOS Task Queues and
Events.

If the Controller software runs on the same chip as the Host, the Controller task always has a higher priority
than the Host task. The priority value of the Host Task can be configured through the gHost_TaskPriority_c
define (by default set in ble_host_task_config.h). Note that changing this value can have a significant impact on
the Bluetooth Low Energy stack.

3.2 Main function to initialize the Bluetooth LE Host Stack
Figure 1 provides an overview of Bluetooth Low Energy Host Stack. When using the existing application
common files, the startup task uses BluetoothLEHost_AppInit(), which is defined in app_conn.h. The function
initializes all components related to the Bluetooth Low Energy application. It has the following prototype:

void BluetoothLEHost_AppInit(void);

The BluetoothLEHost_AppInit() function must be implemented by each application. It should register its generic
event callback using BluetoothLEHost_SetGenericCallback() and initialize the Bluetooth LE Host Stack layer by
calling BluetoothLEHost_Init(). The prototype for the BluetoothLEHost_Init() function is found in app_conn.h and
is implemented in app_conn.c.

void BluetoothLEHost_Init
(
 appBluetoothLEInitCompleteCallback_t pCallback
);

BluetoothLEHost_Init takes as parameter a function to be called at the end of Bluetooth LE Host Stack
initialization. In this callback, the application can register its callbacks with the Host layer, allocate timers, start
services, and perform similar tasks. The callback should have a prototype as follows:

static void BluetoothLEHost_Initialized(void);

BluetoothLEHost_Init() is responsible for initializing the Host.

Initialize the Bluetooth LE Host Stack after platform setup is complete and all RTOS tasks have been started.
The function that should be called for this purpose is located in the ble_general.h file and has the following
prototype:

bleResult_t Ble_HostInitialize
(
 gapGenericCallback_t genericCallback,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
7 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 hciHostToControllerInterface_t hostToControllerInterface
);

Figure 1. Bluetooth Low Energy Host Stack overview

3.3 HCI entry and exit points
The HCI entry point of the Host Stack is the second function located in the ble_general.h file:

void Ble_HciRecv
(
 hciPacketType_t packetType,
 void* pHciPacket,
 uint16_t packetSize
);

This is the function that the application must call to insert an HCI message into the Host.

An equivalent exists, to be used in ISR context:

bleResult_t Ble_HciRecvFromIsr
(
 hciPacketType_t packetType,
 void* pHciPacket,
 uint16_t packetSize
);

Therefore, the Ble_HciRecv function and the hostToControllerInterface parameter of the Ble_HostInitialize
function represent the two points that need to be connected to the LE Controller (see Figure 1), either directly (if
the Controller software runs on the same chip as the Host) or through a physical interface (for example, UART).

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
8 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

3.4 Bluetooth LE Host Stack libraries and API availability
All the APIs referenced in this document are available in the Central and Peripheral libraries. The support for
Bluetooth 5.3 optional features such as Advertising, Advertising Extensions, GATT Caching, and EATT are
provided in separate host libraries. They are distributed in a similar process as the legacy ones using GAP/
GATT role support, which is described as follows.

For example, below are listed the full-featured libraries with complete support for both Central and Peripheral
APIs, at GAP level.

• lib_ble_OPT_host_cm33_iar.a (for IAR projects)
• lib_ble_OPT_host_cm33_gcc.a (for MCUX projects)

These libraries include optional features implemented by the Bluetooth LE Host. For applications that
need to use only the mandatory 5.3 Bluetooth LE and below features, the lib_ble_host_cm33_iar.a or
lib_ble_host_cm33_gcc.a libraries can be used instead.

However, some applications may be targeted to memory-constrained devices and do not need the full support.
In the interest of reducing code size and RAM utilization, optimized libraries are provided:

• lib_ble_host_peripheral_cm33_iar.a/ lib_ble_host_peripheral_cm33_gcc.a and
• lib_ble_OPT_host_peripheral_cm33_iar.a / lib_ble_OPT_host_peripheral_cm33_gcc.a.

– Support only APIs for the GAP Peripheral and GAP Broadcaster roles
– Support only APIs for the GATT Server role

• lib_ble_host_central_cm33_iar.a and lib_ble_OPT_host_central_cm33_iar.a
• lib_ble_host_central_cm33_gcc.a and lib_ble_OPT_host_central_cm33_gcc.a

– Support only APIs for the GAP Central and GAP Observer roles
– Support only APIs for the GATT Client role

If one attempts to use an API that is not supported (for instance, calling Gap_Connect with the
lib_ble_host_peripheral_cm33_iar.a and lib_ble_host_peripheral_cm33_gcc.a), then the API returns the
gBleFeatureNotSupported_c error code.

Similarly, if the API for OPT is used with a host library that does not have support for optional features, then
gBleFeatureNotSupported_c is returned. For instance, calling Gap_SetExtAdvertising parameters with
the lib_ble_host_peripheral_cm33_iar.a and lib_ble_host_peripheral_cm33_gcc.a) returns the exit code
gBleFeatureNotSupported_c.

Note: See the Bluetooth Low Energy Host Stack API Reference Manual for explicit information regarding API
support. Each function documentation contains this information in the Remarks section.

3.5 Synchronous and asynchronous functions
The vast majority of the GAP and GATT APIs are executed asynchronously. Calling these functions generates
a message and places it in the Host Task message queue.

Therefore, the actual result of these APIs is signaled in events triggered by specific callbacks installed by the
application. See the Bluetooth Low Energy Host Stack API Reference Manual for specific information about the
events that are triggered by each API.

However, there are a few APIs which are executed immediately (synchronously). This is explicitly mentioned
in the Bluetooth Low Energy Host Stack API Reference Manual in the Remarks section of each function
documentation.

If nothing is mentioned, then the API is asynchronous.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
9 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

3.6 Radio TX Power level
The controller interface includes APIs that can be used to set the Radio TX Power to a different level than the
default one.

The power level can be set differently for advertising and connection channels by calling the
function Controller_SetTxPowerLevelDbm() with the channel parameter set to gAdvTxChannel_c or
gConnTxChannel_c.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
10 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4 Generic Access Profile (GAP) Layer

The GAP layer manages connections, security, and bonded devices.

The GAP layer APIs are built on top of the Host-Controller Interface (HCI), the Security Manager Protocol
(SMP), and the Device database.

GAP defines four possible roles that a Bluetooth Low Energy device may have in a Bluetooth Low Energy
system:

• Central
– Scans for advertisers (Peripherals and Broadcasters)
– Initiates connection to Peripherals; Central at Link Layer (LL) level
– Usually acts as a GATT Client, but can also contain a GATT Database itself

• Peripheral
– Advertises and accepts connection requests from Central devices; LL Peripheral
– Usually contains a GATT Database and acts as a GATT Server, but may also be a Client

• Observer
– Scans for advertisers, but does not initiate connections; Transmit is optional

• Broadcaster
– Advertises, but does not accept connection requests from Central devices; Receive is optional

Figure 2. GAP topology

Figure 2 illustrates the generic GAP topology.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
11 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.1 Peripheral setup
The Peripheral starts advertising and waits for scan and connection requests from other Central devices.

4.1.1 Advertising

Before starting advertising, the advertising parameters should be configured. Otherwise, the following defaults
are used.

#define gGapDefaultAdvertisingParameters_d \
{ \
 /* minInterval */ gGapAdvertisingIntervalDefault_c, \
 /* maxInterval */ gGapAdvertisingIntervalDefault_c, \
 /* advertisingType */ gConnectableUndirectedAdv_c, \
 /* addressType */ gBleAddrTypePublic_c, \
 /* peerAddressType */ gBleAddrTypePublic_c, \
 /* peerAddress */ {0U, 0U, 0U, 0U, 0U, 0U}, \
 /* channelMap */

 (gapAdvertisingChannelMapFlags_t)gGapAdvertisingChannelMapDefault_c, \
 /* filterPolicy */ gProcessAll_c \
}

To set different advertising parameters, a gapAdvertisingParameters_t structure should be allocated and
initialized with defaults. Then, the necessary fields may be modified.

After that, the following function should be called:

bleResult_t Gap_SetAdvertisingParameters
(
 const gapAdvertisingParameters_t * pAdvertisingParameters
);

The application should listen to the gAdvertisingParametersSetupComplete_c generic event.

Next, the advertising data should be configured and, if the advertising type supports active scanning, the scan
response data should also be configured. If either of these is not configured, they are defaulted to empty data.

The function used to configure the advertising and/or scan response data is shown here:

bleResult_t Gap_SetAdvertisingData
(
 const gapAdvertisingData_t * pAdvertisingData,
 const gapScanResponseData_t * pScanResponseData
);

Either of the two pointers may be NULL, in which case they are ignored (the corresponding data is left as it was
previously configured, or empty if it has never been set), but not both at the same time.

The application should listen to the gAdvertisingDataSetupComplete_c generic event.

After all the necessary setup is done, advertising may be started with this function:

bleResult_t Gap_StartAdvertising
(
 gapAdvertisingCallback_t advertisingCallback,
 gapConnectionCallback_t connectionCallback
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
12 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The advertising callback is used to receive advertising events (advertising state changed or advertising
command failed), while the connection callback is only used if a connection is established during advertising.

The connection callback is the same as the callback used by the Central when calling the Gap_Connect
function.

When using the common application structure, the application can use the following API defined in app_conn.h:

bleResult_t BluetoothLEHost_StartAdvertising
(
 appAdvertisingParams_t *pAdvParams,
 gapAdvertisingCallback_t pfAdvertisingCallback,
 gapConnectionCallback_t pfConnectionCallback
);

The API goes through the steps of setting the advertising data and parameters. Events from the Host task
are treated in the App_AdvertiserHandler() function, implemented in app_advertiser.c. To set the advertising
parameters and data BluetoothLEHost_StartAdvertising requires a parameter of the following type:

typedef struct appAdvertisingParams_tag { gapAdvertisingParameters_t
 pGapAdvParams; /!< Pointer to the GAP advertising parameters */ const
 gapAdvertisingData_t *pGapAdvData; /*!< Pointer to the GAP advertising data
 */ const gapScanResponseData_t *pScanResponseData; /*!< Pointer to the scan
 response data */ } appAdvertisingParams_t;

If a Central initiates a connection to this Peripheral, the gConnEvtConnected_c connection event is triggered.

To stop advertising while the Peripheral has not yet received any connection requests, use this function:

bleResult_t Gap_StopAdvertising (void);

This function should not be called after the Peripheral enters a connection, as the advertising automatically
stops in this case.

4.1.2 Pairing and bonding (peripheral)

After a connection has been established to a Central, the Peripheral’s role regarding security is a passive one. It
is the responsibility of the Central device to start the pairing process. In case, the devices have already bonded
in the past, the Central encrypts the link using the shared LTK.

The Peripheral sends error responses (at ATT level) with proper error code if the Central attempts to access
sensitive data without authenticating. Examples of such error responses are: Insufficient Authentication,
Insufficient Encryption, Insufficient Authorization, and so on. Therefore, it indicates to the Central that it needs to
perform security procedures.

All security checks are performed internally by the GAP module and the security error responses are sent
automatically. All the application developer needs to do is register the security requirements.

First, when building the GATT Database (see Section 7 "Creating GATT database"), the sensitive attributes
should have the security built into their access permissions (for example, read-only / read with authentication /
write with authentication / write with authorization, and so on.).

Second, if the GATT Database requires additional security besides that already specified in attribute
permissions (for example, certain services require higher security in certain situations), the following function
must be called:

bleResult_t Gap_RegisterDeviceSecurityRequirements
(

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
13 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 const gapDeviceSecurityRequirements_t * pSecurity
);

The parameter is a pointer to a structure which contains a “device security setting” and service-specific security
settings. All these security requirements are pointers to gapSecurityRequirements_t structures. The
pointers that are to be ignored should be set to NULL.

Although the Peripheral does not initiate any kind of security procedure, it can inform the Central about its
security requirements. This is usually done immediately after the connection to avoid exchanging useless
packets for requests that might be denied because of insufficient security.

The informing is performed through the Peripheral Security Request packet at SMP level. To use it, the following
GAP API is provided:

bleResult_t Gap_SendPeripheralSecurityRequest
(
 deviceId_t deviceId,
 const gapPairingParameters_t* pPairingParameters
);

The gapPairingParameters_t structure includes two important fields. The withBonding field indicates to
the Central whether this Peripheral can bond and the securityModeAndLevel field informs about the required
security mode and level that the Central should pair for. See Section 4.2.3 "Pairing and bonding (Central)" for an
explanation about security modes and levels, as defined by the GAP module.

This request expects no reply, nor any immediate action from the Central. The Central may easily choose to
ignore the Peripheral Security Request.

If the two devices have bonded in the past, the Central proceeds directly to encrypting the link.
If the bond was not made using LE Secure Connections, the Peripheral expects to receive a
gConnEvtLongTermKeyRequest_c connection event. If the bond was made using LE Secure Connections,
the Host provides the LTK automatically to the LE Controller.

When the devices have been previously pairing without using LE Secure Connections, along with the
Peripheral’s LTK, the EDIV (2 bytes) and RAND (8 bytes) values were also sent (their meaning is defined by
the SMP). Therefore, before providing the key to the Controller, the application should check that the two values
match with those received in the gConnEvtLongTermKeyRequest_c event. If they do, the application should
reply with:

bleResult_t Gap_ProvideLongTermKey
(
 deviceId_t deviceId,
 const uint8_t aLtk,
 uint8_t ltkSize
);

The LTK size cannot exceed the maximum value of 16.

If the EDIV and RAND values do not match, or if the Peripheral does not recognize the bond, it can reject the
encryption request with:

bleResult_t Gap_DenyLongTermKey
(
 deviceId_t deviceId
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
14 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

If LE SC Pairing was used then the LTK is generated internally by the Bluetooth LE Host Stack and it is not
requested from the application during post-bonding link encryption. In this scenario, the application is only
notified of the link encryption through the gConnEvtEncryptionChanged_c connection event.

If the devices are not bonded, the Peripheral should expect to receive the gConnEvtPairingRequest_c,
indicating that the Central has initiated pairing.

If the application agrees with the pairing parameters (see Section 4.2.3 "Pairing and bonding (Central)" for
detailed explanations), it can reply with:

bleResult_t Gap_AcceptPairingRequest
(
 deviceId_t deviceId,
 const gapPairingParameters_t * pPairingParameters
);

This time, the Peripheral sends its own pairing parameters, as defined by the SMP.

After sending this response, the application should expect to receive the same pairing events as the Central
(see Section 4.2.3 "Pairing and bonding (Central)"), with one exception: the gConnEvtPasskeyRequest_c
event is not called if the application sets the Passkey (PIN) for pairing before the connection by calling the API:

bleResult_t Gap_SetLocalPasskey
(
 uint32_t passkey
);

This is done because, usually, the Peripheral has a static secret PIN that it distributes only to trusted devices.
If, for any reason, the Peripheral must dynamically change the PIN, it can call the aforementioned function
every time it wants to, before the pairing starts (for example, right before sending the pairing response with
Gap_AcceptPairingRequest).

If the Peripheral application never calls Gap_SetLocalPasskey, then the gConnEvtPasskeyRequest_c
event is sent to the application as usual.

The Peripheral can use the following API to reject the pairing process:

bleResult_t Gap_RejectPairing
(
deviceId_t deviceId,
gapAuthenticationRejectReason_t reason
);

The reason should indicate why the application rejects the pairing. The value gLinkEncryptionFailed_c
is reserved for the gConnEvtAuthenticationRejected_c connection event to indicate the link encryption
failure rather than pairing failures. Therefore, it is not meant as a pairing reject reason.

The Gap_RejectPairing function may be called not only after the Pairing Request was received, but also
during the pairing process. For example, when handling pairing events or asynchronously, if for any reason the
Peripheral decides to abort the pairing, this function can be called. This also holds true for the Central. Figure 3
illustrates the Peripheral pairing flow and lists the main APIs and events. Gap_RejectPairing can be called
on any pairing event.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
15 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 3. Peripheral pairing flow – APIs and events

For both the Central and the Peripheral, bonding is performed internally and is not the application’s concern.
The gConnEvtPairingComplete_c event parameters inform the application if bonding has occurred.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
16 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.2 Central setup
Usually, a Central must start scanning to find Peripherals. When the Central has scanned a Peripheral it wants
to connect to, it stops scanning and initiates a connection to that Peripheral. After the connection has been
established, it may start pairing, if the Peripheral requires it, or directly encrypt the link, if the two devices have
already bonded in the past.

4.2.1 Scanning

The most basic setup for a Central device begins with scanning, which is performed by the following function
from gap_interface.h:

bleResult_t Gap_StartScanning
(
 const gapScanningParameters_t* pScanningParameters,
 gapScanningCallback_t scanningCallback,
 gapFilterDuplicates_t enableFilterDuplicates,
 uint16_t duration,
 uint16_t period
);

If the pScanningParameters pointer is NULL, the currently set parameters are used. If no parameters have been
set after a device power-up, the standard default values are used:

#define gGapDefaultScanningParameters_d \
{ \
 /* type */ gGapScanTypePassive_c, \
 /* interval */ gGapScanIntervalDefault_d, \
 /* window */ gGapScanWindowDefault_d, \
 /* ownAddressType */ gBleAddrTypePublic_c, \
 /* filterPolicy */ gScanAll_c \
 /* scanning PHY */ gLePhylMFlag_c\
}

The easiest way to define non-default scanning parameters is to initialize a gapScanningParameters_t structure
with the above default and change only the required fields.

For example, to perform active scanning and only scan for devices in the Filter Accept List, the following code
can be used:

gapScanningParameters_t scanningParameters = gGapDefaultScanningParameters_d;
scanningParameters.type = gGapScanTypeActive_c;
scanningParameters.filterPolicy = gScanWithFilterAcceptList_c;
Gap_StartScanning(&scanningParamters, scanningCallback, enableFilterDuplicates,
 duration, period);

When using the common application structure, the application can use the following API defined in app_conn.h:

bleResult_t BluetoothLEHost_StartScanning
(
 appScanningParams_t *pAppScanParams,
 gapScanningCallback_t pfCallback
);

The API uses the appScanningParams_t structures, which is defined as follows:

typedef struct appScanningParams_tag

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
17 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

{
 gapScanningParameters_t *pHostScanParams; /*!< Pointer to host scan
 structure */
 gapFilterDuplicates_t enableDuplicateFiltering; /*!< Duplicate filtering
 mode */
 uint16_t duration; /*!< scan duration */
 uint16_t period; /*!< scan period */
} appScanningParams_t;

The scanningCallback is triggered by the GAP layer to signal events related to scanning.

The most important event is the gDeviceScanned_c event, which is triggered each time an advertising device is
scanned. This event data contains information about the advertiser:

typedef struct
{
 bleAddressType_t addressType ;
 bleDeviceAddress_t aAddress ;
 int8_t rssi ;
 uint8_t dataLength ;
 uint8_t* data ;
 bleAdvertisingReportEventType_t advEventType ;
 bool_t directRpaUsed;
 bleDeviceAddress_t directRpa;
 bool_t advertisingAddressResolved;
} gapScannedDevice_t;

If this information signals a known Peripheral that the Central wants to connect to, the latter must stop scanning
and connect to the Peripheral.

To stop scanning, call this function:

bleResult_t Gap_StopScanning (void);

By default, the GAP layer is configured to report all scanned devices to the application using the
gDeviceScanned_c event type. However, some use cases might require to perform specific GAP Discovery
Procedures. In such use cases the advertising reports might require the filtering of Flags AD value from the
advertising data. Other use cases require the Bluetooth LE Host Stack to automatically initiate a connection
when a specific device has been scanned.

To enable filtering based on the Flags AD value or to set device addresses for automatic connections, the
following function must be called before the scanning is started:

bleResult_t Gap_SetScanMode
(
 gapScanMode_t scanMode,
 gapAutoConnectParams_t* pAutoConnectParams,
 gapConnectionCallback_t connCallback
);

The default value for the scan mode is gDefaultScan_c, which reports all packets regardless of their content
and does not perform any automatic connection.

To enable Limited Discovery, the gLimitedDiscovery_c value must be used, while the gGeneralDiscovery_c
value activates General Discovery.

To enable automatic connection when specific devices are scanned, the gAutoConnect_c value must be set,
in which case the pAutoConnectParams parameter must point to the structure that holds the target device
addresses and the connection parameters to be used by the Host for these devices.
UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
18 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

If scanMode is set to gAutoConnect_c, connCallback must be set and is triggered by GAP to send the events
related to the connection.

4.2.2 Initiating and closing a connection

To connect to a scanned Peripheral, extract its address and address type from the gDeviceScanned_c event
data, stop scanning, and call the following function:

bleResult_t Gap_Connect
(
const gapConnectionRequestParameters_t * pParameters,
gapConnectionCallback_t connCallback
);

When using the common application structure, the application can also use the following API defined in
app_conn.h:

bleResult_t BluetoothLEHost_Connect
(
 gapConnectionRequestParameters_t* pParameters,
 gapConnectionCallback_t connCallback
);

An easy way to create the connection parameter structure is to initialize it with the defaults, then change only
the necessary fields. The default structure is defined as shown here:

#define gGapDefaultConnectionRequestParameters_d \
{ \
 /* scanInterval */ gGapScanIntervalDefault_d, \
 /* scanWindow */ gGapScanWindowDefault_d, \
 /* filterPolicy */ gUseDeviceAddress_c, \
 /* ownAddressType */ gBleAddrTypePublic_c, \
 /* peerAddressType */ gBleAddrTypePublic_c, \
 /* peerAddress */ { 0, 0, 0, 0, 0, 0 }, \
 /* connIntervalMin */ gGapDefaultMinConnectionInterval_d, \
 /* connIntervalMax */ gGapDefaultMaxConnectionInterval_d, \
 /* connLatency */ gGapDefaultConnectionLatency_d, \
 /* supervisionTimeout */ gGapDefaultSupervisionTimeout_d, \
 /* connEventLengthMin */ gGapConnEventLengthMin_d, \
 /* connEventLengthMax */ gGapConnEventLengthMax_d \
 /* initiatingPHYs */ gLePhylMFlag_c \
}

In the following example, Central scans for a specific Heart Rate Sensor with a known address. When it finds it,
it immediately connects to it.

static void BleApp_ScanningCallback
(
 gapScanningEvent_t *pScanningEvent
)
{
 switch (pScanningEvent->eventType)
 {
 case gDeviceScanned_c:
 {
 if (BleApp_CheckScanEvent(&pScanningEvent->eventData.scannedDevice))
 {

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
19 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 gConnReqParams.peerAddressType = pScanningEvent-
>eventData.scannedDevice.addressType;
 FLib_MemCpy(gConnReqParams.peerAddress,
 pScanningEvent->eventData.scannedDevice.aAddress,
 sizeof(bleDeviceAddress_t));
 (void)Gap_StopScanning();
#if gAppUsePrivacy_d
 gConnReqParams.usePeerIdentityAddress = pScanningEvent-
>eventData.scannedDevice.advertisingAddressResolved;
#endif
 (void)BluetoothLEHost_Connect(&gConnReqParams,
 BleApp_ConnectionCallback);
 }
 }
 break;
}

The connCallback is triggered by GAP to send all events related to the active connection. It has the following
prototype:

typedef void (* gapConnectionCallback_t)
(
 deviceId_t deviceId,
 gapConnectionEvent_t * pConnectionEvent
);

The very first event that should be listened inside this callback is the gConnEvtConnected_c event. If the
application decides to drop the connection establishment before this event is generated, it should call the
following macro:

#define Gap_CancelInitiatingConnection()\
 Gap_Disconnect(gCancelOngoingInitiatingConnection_d)

This is useful, for instance, when the application chooses to use an expiration timer for the connection request.

Upon receiving the gConnEvtConnected_c event, the application may proceed to extract the necessary
parameters from the event data (pConnectionEvent->event.connectedEvent). The most important parameter to
be saved is the deviceId.

The deviceId is a unique 8-bit, unsigned integer, used to identify an active connection for subsequent GAP
and GATT API calls. All functions related to a certain connection require a deviceId parameter. For example, to
disconnect, call this function:

bleResult_t Gap_Disconnect
(
 deviceId_t deviceId
);

4.2.3 Pairing and bonding (Central)

After the user has connected to a Peripheral, use the following function to check whether this device has
bonded in the past:

bleResult_t Gap_CheckIfBonded
(
 deviceId_t deviceId,
 bool_t * pOutIsBonded

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
20 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 uint8_t* pOutNvmIndex
);

If it has, link encryption can be requested with:

bleResult_t Gap_EncryptLink
(
 deviceId_t deviceId
);

If the link encryption is successful, the gConnEvtEncryptionChanged_c connection event is triggered.
Otherwise, a gConnEvtAuthenticationRejected_c event is received with the rejectReason event data parameter
set to gLinkEncryptionFailed_c.

On the other hand, if this is a new device (not bonded), pairing may be started as shown here:

bleResult_t Gap_Pair
(
 deviceId_t deviceId,
 const gapPairingParameters_t * pPairingParameters
);

The pairing parameters are shown here:

typedef struct gapPairingParameters_tag {
 bool_t withBonding ;
 gapSecurityModeAndLevel_t securityModeAndLevel ;
 uint8_t maxEncryptionKeySize ;
 gapIoCapabilities_t localIoCapabilities ;
 bool_t oobAvailable ;
 gapSmpKeyFlags_t centralKeys ;
 gapSmpKeyFlags_t peripheralKeys ;
 bool_t leSecureConnectionSupported ;
 bool_t useKeypressNotifications ;
} gapPairingParameters_t;

The names of the parameters are self-explanatory. The withBonding flag should be set to TRUE if the Central
must/wants to bond.

When Advanced Secure Mode is enabled, (gAppSecureMode_d id defined as 1 in app_preinclude.h), the
security mode and level for pairing is automatically enforced as Mode 1 Level 4, and LE Secure Connection
Supported is automatically enforced TRUE. Legacy pairing is not supported in this mode.

For the Security Mode and Level, the GAP layer defines them as follows:

• Security Mode 1 Level 1 stands for no security requirements.
• Except for Level 1 (which is only used with Mode 1), Security Mode 1 requires encryption, while Security

Mode 2 requires data signing.
• Mode 1 Level 2 and Mode 2 Level 1 do not require authentication (in other words, they allow Just Works

pairing, which has no MITM protection). Mode 1 Level 3 and Mode 2 Level 2 require authentication (must pair
with PIN or OOB data, which provide MITM protection).

• Starting with Bluetooth specification 4.2, OOB pairing offers MITM protection only in certain conditions. The
application must inform the stack if the OOB data exchange capabilities offer MITM protection via a dedicated
API.

• Security Mode 1 Level 4 is reserved for authenticated pairing (with MITM protection) using a LE Secure
Connections pairing method.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
21 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• If a pairing method is used but it does not offer MITM protection, then the pairing parameters must
use Security Mode 1 level 2. If the requested pairing parameters are incompatible (for example,
Security Mode 1 Level 4 without LE Secure Connections enabled), a gBleInvalidParameter_c
status is returned by the security API functions: Gap_SetDefaultPairingParameters,
Gap_SendPeripheralSecurityRequest, Gap_Pair and Gap_AcceptPairingRequest.

— No security No MITM protection Legacy MITM
protection

LE secure
connections with
MITM protection

Mode 1 (encryption)
distributed LTK (EDIV
+RAND) or generated LTK

Level 1 no
security

Level 2 unauthenticated
encryption

Level 3 authenticated
encryption

Level 4 LE SC
authenticated
encryption

Mode 2 (data signing)
distributed CSRK

— Level 1 unauthenticated
data signing

Level 2 authenticated
data signing

—

Table 1. GAP Security Modes and Levels

The centralKeys should have the flags set for all the keys that are available in the application. The IRK is
mandatory if the Central is using a Private Resolvable Address, while the CSRK is necessary if the Central
wants to use data signing. The LTK is provided by the Peripheral and should only be included if the Central
intends on becoming a Peripheral in future reconnections (GAP role change).

The peripheralKeys should follow the same guidelines. The LTK is mandatory if encryption is to be performed,
while the peer’s IRK should be requested if the Peripheral is using Private Resolvable Addresses.

See Table 2 for detailed guidelines regarding key distribution.

The first three rows are both guidelines for Pairing Parameters (centralKeys and peripheralKeys) and for
distribution of keys with Gap_SendSmpKeys.

If LE Secure Connections Pairing is performed (Bluetooth Low Energy 4.2 and above), then the LTK is
generated internally, so the corresponding bits in the key distribution fields from the pairing parameters are
ignored by the devices.

The Identity Address is distributed if the IRK is also distributed (its flag has been set in the Pairing Parameters).
Therefore, it can be “asked” only by asking for IRK (it does not have a separate flag in a gapSmpKeyFlags_t
structure). Therefore, it is N/A.

The negotiation of the distributed keys is as follows:

• In the SMP Pairing Request (started by Gap_Pair), the Central sets the flags for the keys it wants to distribute
(centralKeys) and receive (peripheralKeys).

CENTRAL PERIPHERAL

Central keys Peripheral keys Peripheral keys Central keys

Long Term Key (LTK)
+EDIV +RAND

If it wants to be a
peripheral in a future
reconnection

If it wants encryption If it wants encryption If it wants to become
a central in a future
reconnection

Identity Resolving
Key (IRK)

If it uses or intends to
use private resolvable
addresses

If a peripheral is using
a private resolvable
address

If it uses or intends to
use private resolvable
addresses

If a central is using
a private resolvable
address

Connection Signature
Resolving Key
(CSRK)

If it wants to sign data
as GATT Client

If it wants the
peripheral to sign data
as GATT Client

If it wants to sign data
as GATT Client

If it wants the Central
to sign data as GATT
Client

Identity address If it distributes the IRK N/A If it distributes the IRK N/A

Table 2. Key Distribution guidelines

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
22 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• The Peripheral examines the two distributions and must send an SMP Pairing Response (started by the
Gap_AcceptPairingRequest) after performing any changes it deems necessary. The Peripheral is only allowed
to set to 0 some flags that are set to 1 by the Central, but not the other way around. For example, it cannot
request/distribute keys that were not offered/requested by the Central. If the Peripheral is adverse to the
Central’s distributions, it can reject the pairing by using the Gap_RejectPairing function.

• The Central examines the updated distributions from the Pairing Response. If it is adverse to the changes
made by the Peripheral, it can reject the pairing (Gap_RejectPairing). Otherwise, the pairing continues and,
during the key distribution phase (the gConnEvtKeyExchangeRequest_c event) only the final negotiated keys
are included in the key structure sent with Gap_SendSmpKeys.

• For LE Secure Connections (both devices set the SC bit in the AuthReq field of the Pairing Request and
Pairing Response packets), the LTK is not distributed. It is generated and the corresponding bit in the Initiator
Key Distribution and Responder Key Distribution fields of the Pairing Response packet are set to 0.

If LE Secure Connections Pairing (Bluetooth LE 4.2 and above) is used, and OOB data needs to be exchanged,
the application must obtain the local LE SC OOB Data from the Bluetooth LE Host Stack by calling the
Gap_LeScGetLocalOobData function. The data is contained by the generic gLeScLocalOobData_c event.

The local LE SC OOB Data is refreshed in the following situations:

• The Gap_LeScRegeneratePublicKey function is called (the gLeScPublicKeyRegenerated_c generic event is
also generated as a result of this API).

• The device is reset (which also causes the Public Key to be regenerated).

If the pairing continues, the following connection events may occur:

• Request events
– gConnEvtPasskeyRequest_c: a PIN is required for pairing; the application must respond with the

Gap_EnterPasskey(deviceId, passkey).
– gConnEvtOobRequest_c: if the pairing started with the oobAvailable set to TRUE by both sides; the

application must respond with the Gap_ProvideOob(deviceId, oob).
– gConnEvtKeyExchangeRequest_c: the pairing has reached the key exchange phase; the application must

respond with the Gap_SendSmpKeys(deviceId, smpKeys).
– gConnEvtLeScOobDataRequest_c: the stack requests the LE SC OOB Data received from the peer (r, Cr

and Addr); the application must respond with Gap_LeScSetPeerOobData(deviceId, leScOobData).
– gConnEvtLeScDisplayNumericValue_c: the stack requests the display and confirmation of the LE SC

Numeric Comparison Value; the application must respond with Gap_LeScValidateNumericValue(deviceId,
ncvValidated).

• Informational events
– gConnEvtKeysReceived_c: the key exchange phase is complete; keys are automatically saved in the

internal device database and are also provided to the application for immediate inspection; application does
not have to save the keys in NVM storage because this is done internally if withBonding was set to TRUE by
both sides.

– gConnEvtAuthenticationRejected_c: the peer device rejected the pairing; the rejectReason parameter of the
event data indicates the reason that the Peripheral does not agree with the pairing parameters (it cannot be
gLinkEncryptionFailed_c because that reason is reserved for the link encryption failure).

– gConnEvtPairingComplete_c: the pairing process is complete, either successfully, or an error
may have occurred during the SMP packet exchanges; note that this is different from the
gConnEvtKeyExchangeRequest_c event; the latter signals that the pairing was rejected by the peer, while
the former is used for failures due to the SMP packet exchanges.

– gConnEvtLeScKeypressNotification_c: the stack informs the application that a remote SMP Keypress
Notification has been received during Passkey Entry Pairing Method.

After the link encryption or pairing is completed successfully, the Central may immediately start exchanging data
using the GATT APIs.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
23 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 4. Central pairing flow – APIs and events. Gap_RejectPairing may be called on any pairing event

4.3 LE data packet length extension
This new feature extends the maximum data channel payload length from 27 to 251 octets.

The length management is done automatically by the link layer immediately after the connection is established.
The stack passes the default values for maximum transmission number of payload octets and maximum packet
transmission time that the application configures at compilation time in ble_config.h:

#ifndef gBleDefaultTxOctets_c
#define gBleDefaultTxOctets_c 0x00FB
#endif

#ifndef gBleDefaultTxTime_c
#define gBleDefaultTxTime_c 0x0848
#endif

The device can update the data length anytime, while in connection. The function that triggers this mechanism
is the following:

bleResult_t Gap_UpdateLeDataLength
(
 deviceId_t deviceId,
 uint16_t txOctets,
 uint16_t txTime
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
24 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

After the procedure executes, a gConnEvtLeDataLengthChanged_c connection event is triggered with the
maximum values for number of payload octets and time to transmit and receive a link layer data channel PDU.
The event is send event if the remote device initiates the procedure. This procedure is shown in Figure 5.

Figure 5. Data Length Update Procedure

4.4 Privacy feature

4.4.1 Introduction

Starting with Bluetooth 4.2, Privacy can be enabled either in the Host or in the Controller:

• Host Privacy consists of two use cases that are described in detail in the following sections. These are:
– Random address generation - Periodically regenerating a random address (Resolvable or Non-Resolvable

Private Address) inside the Host and then applying it into the Controller.
– Random address resolution - Trying to resolve incoming RPAs using the IRKs stored in the bonded

devices list. The address resolution is performed when a connection is established with a device or for the
autoconnect scan. The advertising packets that have an RPA are not resolved automatically due to the high
MCU processing that is required.
The random address resolution is performed by default by the Host whenever the Controller is not
able to resolve an RPA. The Host performs random address generation only when Host Privacy is
requested to be enabled. During random address generation, the advertising and scan operations, if
active, are stopped and restarted. If errors occur during this process and the scan or advertising cannot be
started, the application is notified through the corresponding event (gAdvertisingStateChanged_c,
gExtAdvertisingStateChanged_c or gScanStateChanged_c)

• Controller Privacy, introduced by Bluetooth 4.2, consists of writing the local IRK in the Controller, together
with all known peer IRKs, and letting the Controller perform hardware, fully automatic RPA generation
and resolution. The Controller uses a Resolving List to store these entries. The size of the list is platform
dependent and determined by gMaxResolvingListSize_c. For RPA resolution, the entries that do not fit in
this list are processed by the Host to be resolved using the IRKs from Bonded Devices list.

Either Host Privacy or Controller Privacy can be enabled at any time. Trying to enable one while the other is
in progress generates a gBleInvalidState_c error. The same error is returned when trying to enable the same
privacy type twice, or when trying to disable privacy when it is not enabled.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
25 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The recommended way of using Privacy is the Controller Privacy. However, enabling Controller Privacy requires
at least a pair of local IRK and peer IRK, so this can only be enabled only after a pairing is performed with
a peer and the IRKs are exchanged during the Key Distribution phase. When a device starts, if Privacy is
required, the workflow is the following:

1. Enable Host Privacy using the local IRK.
2. Connect to a peer and perform pairing and bonding to exchange IRKs.
3. Disable Host Privacy.
4. Enable Controller Privacy using the local IRK and the peer IRK and peer identity address.

After enabling Host Privacy or Controller Privacy, the application must wait for the
gHostPrivacyStateChanged_c or gControllerPrivacyStateChanged_c generic event and verify
that privacy has been successfully enabled. Only then it is safe to proceed with setting advertising parameters
(via the Gap_SetAdvertisingParameters or Gap_SetExtAdvertisingParameters APIs) or starting
scanning (via the Gap_StartScanning API). Failure to do so could result in unwanted behavior, such as the
device advertising or scanning with a public address.

4.4.1.1 Resolvable private addresses

A Resolvable Private Address (RPA) is a random address generated using an Identity Resolving Key (IRK). This
address appears completely random to an outside observer, so a device may periodically regenerate its RPA to
maintain privacy, as there is no correlation between any two different RPAs generated using the same IRK.

On the other hand, an IRK can also be used to resolve an RPA, in other words, to check if this RPA has been
generated with this IRK. This process is called “resolving the identity of a device”. Whoever has the IRK of a
device can always try to resolve its identity against an RPA.

For example, assume device A frequently changes its RPA using IRKA. At some point, A bonds with B. A must
give B a way to recognize it in a subsequent connection when it (A) has a different address. To achieve this
purpose, A distributes the IRKA during the Key Distribution phase of the pairing process. B stores the IRKA it
received from A.

Later, B connects to a device X that uses RPAX. This address appears completely random, but B can try to
resolve RPAX using IRKA. If the resolving operation is successful, it means that IRKA was used to generate
RPAX, and since IRKA belongs to device A, it means that X is A. So B was able to recognize the identity of
device X, but nobody else can do that since they do not have IRKA.

4.4.1.2 Non-resolvable private addresses

A Non-Resolvable Private Address (NRPA) is a completely random address that has no generation pattern and
therefore cannot be resolved by a peer.

A device that uses an NRPA that is changed frequently is impossible to track because each new address
appears to belong to a new device.

4.4.1.3 Multiple identity resolving keys

If a device bonds with multiple peers, all of which are using RPAs, it needs to store the IRK of each in order to
be able to recognize them later (see previous section).

This means that whenever the device connects to a peer that uses an unknown RPA, it needs to try and resolve
the RPA with each of the stored IRKs. If the number of IRKs is large, then this introduces a lot of computation.

Performing all these resolving operations in the Host can be costly. It is much more efficient to take advantage
of hardware acceleration and enable the Controller Privacy.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
26 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.4.2 Host privacy

To enable or disable Host Privacy, the following API may be used:

bleResult_t Gap_EnableHostPrivacy
(
 bool_t enable,
 const uint8_t * aIrk
);

When enable is set to TRUE, the aIrk parameter defines which type of Private Address to generate. If aIrk is
NULL, then a new NRPA is generated periodically and written into the Controller. Otherwise, an IRK is copied
internally from the aIrk address and it is used to periodically generate a new RPA.

The lifetime of the Private Address (NRPA or RPA) is a number of seconds contained by the
gGapHostPrivacyTimeout external constant, which is defined in the ble_config.c source file. The default value
for this is 900 (15 minutes).

When Host Privacy is enabled, the Host ignores the ownAddressType value for the advertising, scanning or
connect parameters. It will always use the random address type in order to use the RPA configured in the
Controller in the packets sent over the air.

As mentioned in the Introduction section, call this API for random address generation. For random address
resolution there is no need to do so, it is performed by default against the bonded devices list.

4.4.3 Controller privacy

To enable or disable Controller Privacy, the following API may be used:

bleResult_t Gap_EnableControllerPrivacy
(
 bool_t enable,
 const uint8_t * aOwnIrk,
 uint8_t peerIdCount,
 const gapIdentityInformation_t* aPeerIdentities
);

When enable is set to TRUE, aOwnIrk parameter shall not be NULL, peerIdCount shall not be zero or greater
than gMaxResolvingListSize_c, and aPeerIdentities shall not be NULL.

The IRK defined by aOwnIrk is used by the Controller to periodically generate a new Resolvable Private
Address (RPA). The lifetime of the RPA is a number of seconds contained by the gGapControllerPrivacyTimeout
external constant, which is defined in the ble_config.c source file. The default value for this is 900 (15 minutes).

The aPeerIdentities is an array of identity information for each bonded device. The identity information contains
the device’s identity address (public or random static address) and the device’s IRK. This array can be obtained
from the Host with the Gap_GetBondedDevicesIdentityInformation API.

Enabling Controller Privacy involves a quick sequence of commands to the Controller. When the sequence is
complete, the gControllerPrivacyStateChanged_c generic event is triggered.

4.4.3.1 Privacy mode

In Bluetooth LE 5.0, the privacy mode has been introduced as an optional feature and is part of the GAP identity
structure together with the address and address type. There are two modes: Network Privacy Mode (default)
and Device Privacy Mode. These are valid only for Controller Privacy.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
27 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

A device in network privacy mode only accepts packets from peers using private addresses.

A device in device privacy mode also accepts packets from peers using identity addresses, even if the peer had
previously distributed the IRK. Private addresses are also accepted.

The privacy mode of a device is stored in NVM together with the IRK with a default value of Network. If the
application wants to change this value it can extract the peer identities, modify the privacy mode from network to
device and then enable Controller Privacy with the value.

To change the privacy mode of a device and make the change persistent, the user must call the following API:

bleResult_t Gap_SetPrivacyMode
(
 uint8_t nvmIndex,
 blePrivacyMode_t privacyMode
);

4.4.3.2 Scanning and initiating

When a Central device is scanning while Controller Privacy is enabled, the Controller actively tries to resolve
any RPA contained in the Advertising Address field of advertising packets. If any match is found against the
peer IRK list, then the advertisingAddressResolved parameter from the scanned device structure is set to
TRUE.

In this case, the addressType and aAddress fields no longer contain the actual Advertising Address as
seen over the air, but instead they contain the identity address of the device whose IRK was able to
resolve the Advertising Address. In order to connect to this device, these fields shall be used to complete
the peerAddressType and peerAddress fields of the connection request parameter structure, and the
usePeerIdentityAddress field shall be set to TRUE.

If advertisingAddressResolved is equal to FALSE, then the advertiser is using a Public or Random Static
Address, an NRPA, or a RPA that could not be resolved. Therefore, the connection to this device is initiated as if
Controller Privacy was not enabled, by setting usePeerIdentityAddress to FALSE.

4.4.3.3 Advertising

When a Peripheral starts advertising while Controller Privacy is enabled, the ownAddressType field of the
advertising parameter structure is unused. Instead, the Controller always generates an RPA and advertises with
it as Advertising Address.

If directed advertising is used, the Host only allows advertising to a device in the resolving list in order to be able
to generate RPAs.

4.4.3.4 Connected

When a device connects while Controller Privacy is enabled, the gConnEvtConnected_c connection event
parameter structure contains more relevant fields than without Controller Privacy.

The peerRpaResolved field equals TRUE if the peer was using an RPA that was resolved using an IRK from
the list. In that case, the peerAddressType and peerAddress fields contain the identity address of the resolved
device, and the actual RPA used to create the connection (the RPA that a Central used when initiating the
connection, or the RPA that the Peripheral advertised with) is contained by the peerRpa field.

The localRpaUsed field equals TRUE if the local Controller was automatically generating an RPA when the
connection was created, and the actual RPA is contained by the localRpa field.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
28 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.5 Setting PHY mode in a connection
In Bluetooth LE 5.0, the user is able to change the PHY mode in a connection through the Link Layer PHY
Update Procedure and choose between default 1 Mbit/s, 2 Mbit/s high data rate or the coded S2 or S8 PHYs
with 500 Kbps or 125 Kbps for longer range.

To set the PHY, the user can call:

bleResult_t Gap_LeSetPhy
(
 bool_t defaultMode,
 deviceId_t deviceId,
 uint8_t allPhys,
 uint8_t txPhys,
 uint8_t rxPhys,
 uint16_t phyOptions
);

There are two modes to use this API:

1. If defaultMode is set to TRUE, the user can call this function without being in a connection, i.e. provide a
device ID. The PHY option is used by the Link Layer in the PHY response when a connection is created and
the peer device initiates the PHY Update Procedure. The application should listen for gLePhyEvent_c with
the gPhySetDefaultComplete_c sub event type for the confirmation of the operation.

2. If defaultMode is set to FALSE, the user must also provide a valid device ID. The Host asks the Link Layer
to initiate the PHY Update Procedure with the peer device using the provided parameters.

The application should listen for gLePhyEvent_c with the gPhyUpdateComplete_c sub event type for the
confirmation of the update procedure to have ended. The result of the operation populates in the txPhy and
rxPhy of the event. The result is from the negotiation of the local parameters and the peer PHY preferences.

To read the current PHY on a connection, call the following API:

bleResult_t Gap_LeReadPhy
(
 deviceId_t deviceId
);

The application should listen for gLePhyEvent_c with the gPhyRead_c sub event type for the confirmation of the
operation. The txPhy and rxPhy indicate the current modes used in the connection.

4.6 Data management of bonded devices
The Host handles the management of the bonding data without requiring application intervention. The
application must provide the NVM write, read, and erase functions presented in Section 2.3 "Non-Volatile
Memory (NVM) access ". The Host creates bonds if bonding is required after the pairing.

The bonded data structure is presented below, together with the GAP APIs that access it, for most APIs require
a connection to be established with the device in the bonded list, the others can be accessed any time using the
NVM index.

1. Bond Header – identity address and address type that uniquely identify a device together with the IRK and
privacy mode.
• Gap_GetBondedDevicesIdentityInformation – for all bonds

2. Bond Data Dynamic - security counters for signed operations – managed by the stack
3. Bond Data Static – LTK, CSRK, Rand, EDIV, security information for read and write authorizations

• Gap_SaveKeys – NVM index

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
29 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• Gap_LoadKeys – NVM index
• Gap_LoadEncryptionInformation - deviceId
• Gap_Authorize – deviceId - GATT Server only

4. Bond Data Legacy - Legacy pair information and CSRK
• Gap_LoadEncryptionInformation - deviceId

5. Bond Data Device Info - custom peer information (service discovery data) and device name
• Gap_SaveCustomPeerInformation - deviceId
• Gap_LoadCustomPeerInformation - deviceId
• Gap_SaveDeviceName - deviceId
• Gap_GetBondedDeviceName – NVM index

6. Bond Data Descriptor List - configuration of indications and notifications for CCCD handles – GATT Server
only
• Gap_CheckNotificationStatus - deviceId
• Gap_CheckIndicationStatus - deviceId

However, there may be some cases when an application wants to manage this data to read data from a bonded
device created by the Host, create a bond obtained out-of-band or update an existing bond. For this use case,
two GAP APIs and a GAP event have been added.

1. Load the Keys of a bonded device.
The user can call the following function to read the keys exchanged during pairing and stored by the
Bluetooth LE Host Stack in the bond area when the pairing is complete.
The application is informed of the NVM index through the gBondCreatedEvent_c sent by the stack
immediately after the bond creation. The application is responsible for passing the memory in the
pOutKeys OUT parameter to fill in the keys, if any of the keys are set to NULL, the stack does not fill that
information. The pOutKeyFlags OUT parameter indicates to the application which of the keys were stored
by the stack as not all of them may have been distributed during pairing.
The pOutLeSc indicates if Bluetooth LE 4.2 LE Secure Connections Pairing was used, while the
pOutAuth indicates if the peer device is authenticated for MITM protection. All these OUT parameters are
recommended to be retrieved from the bond and added if later passed as input parameters for the save
keys API.
This function executes synchronously.

bleResult_t Gap_LoadKeys
(
 uint8_t nvmIndex,
 gapSmpKeys_t* pOutKeys,
 gapSmpKeyFlags_t* pOutKeyFlags,
 bool_t* pOutLeSc,
 bool_t* pOutAuth);
);

The gapSmpKeys_t is the structure used during the key distribution phase, as well as in the
gConnEvtKeysReceived_c event and is as follows. The difference is that the Bluetooth LE device
address cannot be set to NULL neither when loading a bond or when creating one as it identifies the
bonded device together with the NVM index.

Event Data Data type Data Description

cLtkSize uint8_t Encryption Key Size filled by the stack. If aLtk is NULL, this is ignored.
In Advanced Secure Mode, this should be the size of the LTK encrypted blob
of 40 bytes.

aLtk uint8_t* Long Term (Encryption) Key

Table 3. 'gapSmpKeys_t' structure

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
30 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Event Data Data type Data Description
or LTK encrypted blob if Advanced Secure Mode is enabled. NULL if LTK is
not distributed, else size is given by cLtkSize
.

aIrk uint8_t* Identity Resolving Key. NULL if aIrk is not distributed.

aCsrk uint8_t* Connection Signature Resolving Key. NULL if aCsrk is not distributed.

cRandSize uint8_t Size of RAND filled by the stack; usually equal to gcSmpMaxRandSize_c. If
aLtk is NULL, this is ignored.

aRand uint8_t* RAND value used to identify the LTK. If aLtk is NULL, this is ignored.

ediv uint16_t EDIV value used to identify the LTK. If aLtk is NULL, this is ignored.

addressType bleAddress
Type_t

Public or Random address.

aAddress uint8_t* Device Address. It cannot be NULL.

Table 3. 'gapSmpKeys_t' structure...continued

The structure for the GAP SMP Key Flags is the following:

Flag Type Description

gNoKeys_c No key is available.

gLtk_c Long-Term Key is available.

gIrk_c Identity Resolving Key is available.

gCsrk_c Connection Signature Resolving Key is available.

Table 4. GAP SMP Key Flags

2. Save the Keys to create a bond or update an existing bonded device.
The user can call the following function to create a bond on a device based on information obtained Out of
Band. For instance, one can use the output of Gap_LoadKeys from the previous section. This can be useful
in transferring a bond created by the stack after a pairing procedure or if the application wants to manipulate
bonding data. The behavior of the stack remains the same, if the bonding is required after a pairing, the
stack stores the bonding information if possible. In this case, the NVM index is passed to the application
through gBondCreatedEvent_c.
This function executes asynchronously, as the stack can create a bond during the execution. The
application should listen for the previous mentioned event gBondCreatedEvent_c. The result of the
function call is passed synchronously. However, if an asynchronous error has occurred during the actual
save, it is passed to the application through the gInternalError_c event with a gSaveKeys_c error
source.
The stack creates a bond if the NVM index is free or update the keys from an NVM index if it stores a valid
entry.
The address from the GAP SMP Keys structure must not be NULL. If other members of the structure are
NULL, they are ignored.
LE SC flag indicates if Bluetooth LE 4.2 Secure Connections was used during pairing and Auth specifies if
the peer is authenticated for MITM protection.

bleResult_t Gap_SaveKeys
(
 uint8_t nvmIndex,
 gapSmpKeys_t* pKeys,
 bool_t leSc,
 bool_t auth

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
31 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

);

3. Bond created event.
A GAP event is added to the Bluetooth LE Generic Callback to inform the application of the NVM index
whenever the stack creates a bond or when a Gap_SaveKeys request succeeds. The event is also
generated if the NVM index was a valid occupied entry and only some of the keys in the bonded information
have been updated.
The NVM index is then used in the GAP APIs to save or load information from the bond.

Event Data Data type Data Description

nvmIndex uint8_t NVM index for the new created bond

addressType bleAddressType_t Public or Random (static) address of the bond

address bleDeviceAddress_t Address of the bond

4.6.1 Application removal of bonded devices data

The application can remove a bonded device from NVM. The bonded device cannot be deleted if it is in an
active connection. The application can remove one or all bonds by calling the following synchronous GAP APIs:

• Gap_RemoveBond(uint8_t nvmIndex) – nvmIndex can be obtained via the Gap_CheckIfBonded API.
• Gap_RemoveAllBonds() - no connections should be active otherwise the call fails.

Removing a bonded device does not affect the controller address resolution state nor the contents of either the
Controller Filter Accept List or the Controller Resolving List. If Controller Privacy is enabled, it remains so until it
is disabled or the device is reset.

In a scenario where the user wants to remove a bonded device and all its effects on device behavior (Controller
Filter Accept List, Controller Resolving List), the following operations should be executed:

• Gap_ClearFilterAcceptList or Gap_RemoveDeviceFromFilterAcceptList
– Clear Controller Filter Accept List or clear a device from Filter Accept List.

• Gap_RemoveAllBonds or Gap_RemoveBond
– All bonded devices are removed or one bonded device is removed from NVM.

• BleConnManager_DisablePrivacy
– Controller Privacy is disabled, Controller Resolving List is cleared and address resolution is disabled. The

device should not be advertising or scanning, otherwise this call fails.
• BleConnManager_EnablePrivacy

– Called after the gControllerPrivacyStateChanged_c event is received, confirming Controller Privacy
has been disabled. If not all bonds have been deleted, Controller Privacy is reenabled. In the absence of
bonds, Host Privacy is enabled.

4.7 Controller enhanced notifications
This section describes how the application can configure and monitor the notifications generated by the
Bluetooth Controller when advertising, scan, or connection events occur. This feature is proprietary to NXP that
is available on selected Controllers.

The user can choose between two options:

1. Enable notifications from the GAP layer and monitor GAP events in the GAP Generic Callback. The
controller issues HCI vendor-specific events processed by the Bluetooth LE Host and presented to the
application in the GAP Generic Callback.

2. Enable notifications from the Controller interface and monitor controller events in a user-defined Application
Callback.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
32 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

3. Combination of the above two options: configure feature at GAP layer and install an Application Callback
through the Controller interface. After setting the callback, the HCI vendor-specific events are not issued
and implicitly the GAP events. Instead, the user receives the notifications in the installed callback until
setting the callback to NULL again if it wants to revert to GAP events.

• GAP configuration:
The user should call the following function to enable various events from the mask or use Event None to
disable the feature. The Device ID is valid only for connection events.

bleResult_t Gap_ControllerEnhancedNotification
(uint16_t eventType,
 deviceId_t deviceId
);

The event type is a bitmask having the following options:

Event Type Event Description

gNotifEventNone_c No enhanced notification event enabled

gNotifConnEventOver_c Connection event over

gNotifConnRxPdu_c Connection RX PDU

gNotifAdvEventOver_c Advertising event over

gNotifAdvTx_c Advertising ADV transmitted

gNotifAdvScanReqRx_c Advertising SCAN REQ RX

gNotifAdvConnReqRx_c Advertising CONN REQ RX

gNotifScanEventOver_c Scanning event over

gNotifScanAdvPktRx_c Scanning ADV PKT RX

gNotifScanRspRx_c Scanning SCAN RSP RX

gNotifScanReqTx_c Scanning SCAN REQ TX

gNotifConnCreated_c Connection created

gNotifChannelMatrix_c Enable channel status monitoring

gNotifPhyReq_c Phy Req Pdu ack received

gNotifConnChannelMapUpdate_c Channel map update

gNotifConnInd_c Connect indication

gNotifPhyUpdateInd_c Phy update indication

Table 5. Event types and their description

After enabling events, the user should wait for a gControllerNotificationEvent_c GAP
Generic Event in the GAP Generic Callback. The first event received should have the event type set to
gNotifEventNone_c with a status of success confirming the selected event mask has been enabled.
The same event types apply for both the GAP command and the GAP event. The structure for the Controller
Notification event is the following:

Event Data Data type Data Description

eventType bleNotificationEvent_t Enhanced notification event type

deviceId deviceId_t Device id of the peer, valid for connection events

rssi int8_t RSSI, valid for RX event types

Table 6. Controller Notification Event structure

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
33 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Event Data Data type Data Description

channel uint8_t Channel, valid for connection event over or Rx/Tx events

ce_counter uint16_t Connection event counter, valid for connection events only

status bleResult_t Status of the request to select which events to be enabled/disabled

timestamp uint16_t Timestamp in 625 μs slots, valid for Conn RX event and Conn
Created event

adv_handle uint8_t Advertising Handle, valid for advertising events, if multiple ADV sets
supported

Table 6. Controller Notification Event structure...continued

• Controller configuration:
The user should call the following function to enable various events from the mask or use Event None to
disable the feature. The same event types apply as the GAP layer types. The connection handle is valid only
for connection events.

bleResult_t Controller_ConfigureEnhancedNotification
(
 uint16_t eventType,
 uint16_t conn_handle
);

The event monitoring is done in a user-installed callback by calling:

bleResult_t Controller_RegisterEnhancedEventCallback
(
 bleCtrlNotificationCallback_t notificationCallback
);

Where the types are the following:

typedef struct bleCtrlNotificationEvent_tag
{
 uint16_t event_type; /*! bleNotificationEventType_t */
 uint16_t conn_handle;
 uint8_t rssi;
 uint8_t channel_index;
 uint16_t conn_ev_counter;
 uint16_t timestamp;
 uint8_t adv_handle;
} bleCtrlNotificationEvent_t;
typedef void (*bleCtrlNotificationCallback_t)
(
 bleCtrlNotificationEvent_t *pNotificationEvent
);

The event structure is nearly identical as the GAP one, except there is no status as the function call executes
synchronously.

Event Data Data type Data Description

event_type bleNotificationEvent_t Enhanced notification event type

conn_handle uint16_t Connection handle of the peer, valid for connection events

rssi int8_t RSSI, valid for RX event types

channel_index uint8_t Channel, valid for connection event over or Rx/Tx events

conn_ev_counter uint16_t Connection event counter, valid for connection events only

Table 7. 'bleCtrlNotificationEvent_tag' Event structure

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
34 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Event Data Data type Data Description

timestamp uint16_t Timestamp in 625 μs slots, valid for Conn RX event and Conn
Created event

adv_handle uint8_t Advertising Handle, valid for advertising events, if multiple
ADV sets supported

Table 7. 'bleCtrlNotificationEvent_tag' Event structure ...continued

4.8 Extended advertising
Starting with Bluetooth 5, the advertising channels are separated in primary advertising channels and secondary
advertising channels:

1. Primary advertising channels
• Use 3 legacy advertising channels 37, 38, and 39.
• Can use either legacy 1M PHY or new LE Coded PHY.
• PHY payload can vary from 6 to 37 bytes.
• Packets on these channels are part of the advertising events.

2. Secondary advertising channels
• Use 37 channels, with the same channel index as the data channels.
• Can use any LE PHY, but the same PHY during an Extended Advertising Event.
• PHY payload can vary from 0 to 255 bytes.
• Auxiliary packets on these channels are part of the Extended Advertising Event that begins at the same

time with the advertising event on primary channel and ends with the last packet on the secondary
channel.

Figure 6. Extended advertising

Figure 7. Extended advertising – Multiple chains

An advertising data set is represented by advertising PDUs belonging together in an advertising event. Each
set has different advertising parameters: PDU type, advertising interval, and PHY mode. The advertising data
sets are identified by the Advertising SID (Set ID) field from the ADI – Advertising Data Info. Advertising data or

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
35 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Scan response data can be changed for each adverting data set and the random value of DID (Data ID) field is
updated to differentiate between them.

Refer to Figure 6 and Figure 7.

4.8.1 Peripheral setup

This section describes the extended advertising GAP API. The application should not use both the extended
and legacy API (described in section 4.2.1). If this requirement cannot be met, the application should at least
wait for the generated events in the Advertising Callback prior to using the other API. That is, it is advisable to
call legacy functions only after the event pertaining to an extended API is received, and vice versa. This GAP
constraint can be considered an extension of the HCI constraint from the Bluetooth 5 specification: "A Host
should not issue legacy commands to a Controller that supports the LE Feature (Extended Advertising)".

The application configures extended advertising by going through the following states:

1. Set the extended advertising parameters by calling:

bleResult_t Gap_SetExtAdvertisingParameters
(
gapExtAdvertisingParameters_t* pAdvertisingParameters
);

It may use the default set of parameters gGapDefaultExtAdvertisingParameters_d. The application should
wait for a gExtAdvertisingParametersSetupComplete_c event in the Generic Callback. Only one advertising
set can be configured at a time. Comparing with the legacy Gap_SetAdvertisingParameters command, the
new set of parameters is as follows.

Parameter Description

SID Value of the Advertising SID subfield in the ADI field of the PDU.

handle Used to identify an advertising set. Possible values are 0x00 or 0x01 since the
current implementation supports two advertising sets.

extAdvProperties BIT0 - Connectable advertising
BIT1 - Scannable advertising
BIT2 - Directed advertising
BIT3 - High Duty Cycle Directed Connectable advertising (≤3.75 ms Advertising
Interval)
BIT4 - Use legacy advertising PDUs
BIT5 - Omit advertiser's address from all PDUs
("anonymous advertising")
BIT6 - Include TxPower in the extended header of the advertising PDU.
If legacy advertising PDU types are being used (BIT4 = 1),
permitted properties values are presented in the next table. If the advertising set
already contains data, the type shall be one that supports advertising data and
the amount of data shall not exceed 31 octets.
If extended advertising PDU types are being used (BIT4 =0), then the
advertisement shall not be both connectable and scannable. While high duty
cycle directed connectable advertising (≤ 3.75 ms advertising interval) shall not
be used (BIT3 = 0).

txPower Maximum power level at which the advertising packets are to be transmitted, the
Controller can choose any power level <= txPower. Value 127 to be used if Host
has no preference.

primaryPHY PHY for ADV_EXT_IND: LE 1 M or LE Coded

Table 8. New extended advertising parameters

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
36 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Parameter Description

secondaryPHY PHY for AUX_ADV_IND and periodic advertising: LE 1 M, LE 2 M or LE Coded.
Ignored for legacy advertising

secondaryAdvMaxSkip Maximum advertising events that the Controller can skip before sending the
AUX_ADV_IND packets on the secondary advertising channel. Higher values
may result in lower power consumption. Ignored for legacy advertising

enableScanReqNotification Whether to enable notifications when scanning PDUs (SCAN_REQ, AUX_
SCAN_REQ) are received. If enabled, the application is notified upon scan
requests by gExtScanNotification_c events in the Advertising Callback

Table 8. New extended advertising parameters...continued

When using LE Coded PHY for advertising, the default coding scheme chosen by link layer is S=8 (125 kb/s
data rate). To change the default coding scheme, the user has two options:
• At compile time by defining mLongRangeAdvCodingScheme_c, or
• At run time by calling the API Controller_ConfigureAdvCodingScheme().
In both cases, the value of the define or the parameter of the API has to be an appropriate value for primary
and secondary PHYs as defined by the enumeration advCodingScheme_tag found in controller_interface.h.

EventType PDU Type Advertising Event Properties

Connectable and scannable undirected ADV_IND 00010011b

Connectable directed (low duty cycle) ADV_DIRECT_IND 00010101b

Connectable directed (high duty cycle) ADV_DIRECT_IND 00011101b

Scannable undirected ADV_SCAN_IND 00010010b

Non-connectable and
Nonscannable undirected

ADV_NONCONN_IND 00010000b

2. Set the advertising data and/or scan response data by calling:

bleResult_t Gap_SetExtAdvertisingData
(
uint8_t handle,
gapAdvertisingData_t* pAdvertisingData,
gapScanResponseData_t* pScanResponseData
);

Either of the pAdvertisingData or pScanResponseData parameters can be NULL, but not both. For
extended advertising (BIT4 = 0) only one must be different than NULL – the scannable advertising bit
(BIT1) indicates whether pAdvertisingData (BIT1 = 0) orpScanResponseData (BIT1 = 1) is accepted.
The total amount of Advertising Data shall not exceed 1650 bytes. Application should wait for a
gExtAdvertisingDataSetupComplete_c event in the Generic Callback.

3. Enable extended advertising by calling:

bleResult_t Gap_StartExtAdvertising
(
gapAdvertisingCallback_t advertisingCallback,
gapConnectionCallback_t connectionCallback,
uint8_t handle,
uint16_t duration,
uint8_t maxExtAdvEvents
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
37 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

When using the common application structure, the application can use the following API defined in
app_conn.h:

bleResult_t BluetoothLEHost_StartExtAdvertising
(
 appExtAdvertisingParams_t *pExtAdvParams,
 gapAdvertisingCallback_t pfAdvertisingCallback,
 gapConnectionCallback_t pfConnectionCallback
);

The API goes through the steps of setting the advertising data and parameters. Events from the Host task
are treated in the App_AdvertiserHandler() function, implemented in app_advertiser.c. To set the extended
advertising parameters and data BluetoothLEHost_StartExtAdvertising a parameter of the following type:

typedef struct appExtAdvertisingParams_tag
{
 gapExtAdvertisingParameters_t *pGapExtAdvParams;
 gapAdvertisingData_t *pGapAdvData;
 gapScanResponseData_t *pScanResponseData;
 uint8_t handle;
 uint16_t duration;
 uint8_t maxExtAdvEvents;
} appExtAdvertisingParams_t;

Advertising may be enabled for each previously configured advertising set, identified by the handle
parameter. If duration is set to 0, advertising continues until the Host disables it, otherwise advertising
is only enabled for this period (multiple of 10 ms). maxExtAdvEvents represent the maximum number
of extended advertising events the Controller shall attempt to send prior to terminating the extended
advertising, ignored if set to 0. Application should wait for a gExtAdvertisingStateChanged_c or a
gAdvertisingCommandFailed_c event in the Advertising Callback.

4. Disable advertising by calling:

bleResult_t Gap_StopExtAdvertising
(
uint8_t handle
);

Application should wait for a gExtAdvertisingStateChanged_c or a gAdvertisingCommandFailed_c event in
the Advertising Callback.

5. Remove the advertising set by calling:

bleResult_t Gap_RemoveAdvSet
(
uint8_t handle
);

Application should wait for a gExtAdvertisingSetRemoveComplete_c event in the Generic Callback.

4.8.2 Central setup

The application configures the extended scanning by going through the following states:

1. Start scanning by calling:

bleResult_t Gap_StartScanning
(
const gapScanningParameters_t* pScanningParameters,
gapScanningCallback_t scanningCallback,
gapFilterDuplicates_t enableFilterDuplicates,
uint16_t duration,
uint16_t period

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
38 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

)

When using the common application structure, the application can use the following API defined in
app_conn.h:

bleResult_t BluetoothLEHost_StartScanning
(
 appScanningParams_t *pAppScanParams,
 gapScanningCallback_t pfCallback
);

The API starts scanning using the given parameters, which must have the following structure:

typedef struct appScanningParams_tag
{
 gapScanningParameters_t *pHostScanParams; /*!< Pointer to host
 scan structure */
 gapFilterDuplicates_t enableDuplicateFiltering; /*!< Duplicate
 filtering mode */
 uint16_t duration;
 /*!< scan duration */
 uint16_t period;
 /*!< scan period */
} appScanningParams_t;

Application may use the default set of parameters gGapDefaultExtScanningParameters_d. If the
pScanningParameters pointer is NULL, the latest set of parameters are used. The scanningPHYs
parameter indicates the PHYs on which the advertising packets should be received on the primary
advertising channel. As a result, permitted values for the parameter are 0x01 (scan LE 1M), 0x04 (scan LE
Coded) and 0x05 (scan both LE 1M and LE Coded). There are no strict timing rules for scanning, yet if both
PHYs are enabled for scanning, the scan interval value must be large enough to accommodate two scan
windows (interval >= 2 * window).
If the advertiser uses legacy advertising PDUs, the device may actively scan by sending a SCAN_REQ
PDU to the advertiser on the LE 1M primary advertising channel (no secondary channel in legacy
advertising). Respectively, if the advertiser uses extended advertising PDUs, the active scan operation
takes place on the secondary advertising channel. After the device receives a scannable ADV_EXT_IND
PDU on the primary advertising channel (PHY LE 1M or Coded), it starts listening for the AUX_ADV_IND
PDU on the secondary advertising channel (PHY 1M, 2M or Coded). Once received, the device sends an
AUX_SCAN_REQ to the advertiser. Next, an AUX_SCAN_RSP PDU should be received, containing the
scan response data. Application should wait for a gScanStateChanged_c or a gScanCommandFailed_cin
the Scanning Callback.

2. Collect information by waiting for gDeviceScanned_c (legacy advertising PDUs) or gExtDeviceScanned_c
(extended advertising PDUs) event in the Scanning Callback. The gExtDeviceScanned_c event contains
additional information pertaining to the extended received PDU, such as: primary PHY, secondary PHY,
advertising SID, interval of the periodic advertising if enabled in the set.
When using the common application structure, the application can use the following API defined in
app_conn.h, to search the contents from pData in an advertising element:

bool_t BluetoothLEHost_MatchDataInAdvElementList
(
 gapAdStructure_t *pElement,
 void *pData,
 uint8_t iDataLen
);

3. Stop scanning by calling the function below:

bleResult_t Gap_StopScanning(void);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
39 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Application should wait for a gScanStateChanged_c or a gScanCommandFailed_c in the Scanning
Callback.

4. Connect to a device by calling the function below:

bleResult_t Gap_Connect
(
const gapConnectionRequestParameters_t* pParameters,
gapConnectionCallback_t connCallback
);

When using the common application structure, the following API can be used:

bleResult_t BluetoothLEHost_Connect
(
 gapConnectionRequestParameters_t* pParameters,
 gapConnectionCallback_t connCallback
);

The initiatingPHYs parameter indicates the PHYs on which the advertising packets should be received on
the primary advertising channel and the PHYs for which connection parameters have been specified. The
parameter is a bitmask of PHYs: BIT0 = LE 1M, BIT1 = LE 2M and BIT2 = LE Coded. The Host may enable
one or more initiating PHYs, but it must at least set one bit for a PHY allowed for scanning on the primary
advertising channel, i.e., BIT0 for LE 1M PHY or BIT2 for LE Coded PHY.
If the advertiser uses legacy advertising PDUs, the device may connect by sending a CONNECT_IND PDU
to the advertiser on the LE 1M primary advertising channel (no secondary channel in legacy advertising).
On the other hand, if the advertiser uses extended advertising PDUs, the extended connect operation
takes place on the secondary advertising channel. After the device receives a connectable ADV_EXT_IND
PDU on the primary advertising channel (PHY LE 1M or Coded), it starts listening for the connectable
AUX_ADV_IND PDU on the secondary advertising channel (PHY 1M, 2M or Coded). Once received, the
device sends an AUX_CONNECT_REQ to the advertiser. Next, if AUX_CONNECT_RSP PDU is received,
the device enters the Connection State in the Central role on the secondary advertising channel PHY.
Application should wait for a gConnEvtConnected_c event in the Connection Callback. If the channel
selection algorithm #2 is used for this connection, then a gConnEvtChanSelectionAlgorithm2_c event is also
generated.
After the connection is successfully established, the application may choose to read the connection PHY by
calling the Gap_LeReadPhy API. It may also opt to change the PHY of the connection by triggering a PHY
Update Procedure using the Gap_LeSetPhy API. However, the Controller might not be able to perform the
change if, in case the peer does not support the new requested PHY.

4.9 Periodic Advertising
Periodic channels are used for periodic broadcast between unconnected devices. A periodic channel is
represented by a channel map and a set of hopping and timing parameters.

The set of channels is represented by the 37 data channels. A packet sent by an advertiser can also have a
payload of up to 255 bytes and it can be sent on any LE PHY. Figure 8 and Figure 9.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
40 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 8. Extended Advertising and Periodic Advertising combined

Figure 9. Periodic Advertising – Multiple chains

4.9.1 Peripheral Setup

1. First set the extended advertising parameters using Gap_SetExtAdvertisingParameters. The extended
advertising type must be set to non-connectable and non-scannable.

2. Set the periodic advertising parameters using the same handle as in the previous command.

bleResult_t Gap_SetPeriodicAdvParameters
(
 gapPeriodicAdvParameters_t* pAdvertisingParameters
);

Wait for a gPeriodicAdvParamSetupComplete_cevent in the generic callback.
3. Next, set the periodic advertising data by calling:

bleResult_t Gap_SetPeriodicAdvertisingData
(
 uint8_t handle,
 gapAdvertisingData_t* pAdvertisingData,
 bool_t bUpdateDID
);

pAdvertisingData cannot be NULL. If periodic advertising data must be empty, set cNumAdStructures to 0.
Wait for a gPeriodicAdvDataSetupComplete_c event in the generic callback.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
41 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4. Start extended advertising using Gap_StartExtAdvertising.
5. Last, enable Periodic Advertising. Periodic advertising starts only after extended advertising is started.

bleResult_t Gap_StartPeriodicAdvertising
(
 uint8_t handle,
 bool_t bIncludeADI
);

Wait for a gPeriodicAdvertisingStateChanged_c event in the advertising callback.

4.9.2 Central Setup

The application may decide to listen to periodic advertising by going through the following states:

1. [Optional] Add a known periodic advertiser to the periodic advertiser list held in the Controller by calling:

bleResult_t Gap_UpdatePeriodicAdvList
(
 gapPeriodicAdvListOperation_t operation,
 bleAddressType_t addrType,
 uint8_t* pAddr,
 uint8_t SID
);

Wait for the gPeriodicAdvListUpdateComplete_c event in the Generic Callback.
2. Synchronize with a periodic advertiser by calling:

bleResult_t Gap_PeriodicAdvCreateSync
(
 gapPeriodicAdvSyncReq_t* pReq,
);

pReq parameter filterPolicy can be set to gUseCommandParameters_c to synchronize with the given peer,
or to gUsePeriodicAdvList_c to start synchronizing with all the devices in the previously populated periodic
advertiser list.
Wait for the gPeriodicAdvSyncEstablished_c event and check the status. If scanning is not enabled at
the time this command is sent, synchronization occurs after scanning is started. Synchronization remains
pending until gPeriodicAdvSyncEstablished_c event is received. If synchronization was successful, the
syncHandle is returned in this event.

3. Terminate the synchronization with the periodic advertiser by calling:

bleResult_t Gap_PeriodicAdvTerminateSync
(
 uint16_t syncHandle
);

To cancel a pending synchronization, the application should call Gap_PeriodicAdvTerminateSync
with syncHandle set to the reserved value gBlePeriodicAdvOngoingSyncCancelHandle and wait for
gPeriodicAdvCreateSyncCancelled_c event.
Otherwise, to terminate an already established sync with an advertiser, use the syncHandle value from the
gPeriodicAdvSyncEstablished_c event and wait for a gPeriodicAdvSyncTerminated_c event.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
42 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.10 Periodic Advertising with Responses (PAwR)
This section describes the Central and Peripheral setup for Periodic Advertising with Responses (PAwR).

4.10.1 Central Setup

1. Start scanning using Gap_StartScanning. Wait for gPeriodicDeviceScannedV2_c events in the
scanning callback.

2. Synchronize with a periodic advertiser by calling Gap_PeriodicAdvCreateSync. Wait for the
gPeriodicAdvSyncEstablished_c event in the scanning callback. When PAwR is involved, this event
includes additional information such as number of subevents, subevent interval, response slot delay and
spacing,

3. Synchronize to a PAwR subevent by calling Gap_SetPeriodicSyncSubevent. This API instructs the
Controller to sync with a subset of the subevents within a PAwR train identified by syncHandle (obtained
after synchronizing with the PAwR train in the previous step).

bleResult_t Gap_SetPeriodicSyncSubevent (uint16_t syncHandle, const
 gapPeriodicSyncSubeventParameters_t* pParams);

Wait for the gPeriodicSyncSubeventComplete_c event.
4. Use Gap_SetPeriodicAdvResponseData to set data in the AD format which would be sent as a

Periodic Advertising Response to the broadcaster.

bleResult_t Gap_SetPeriodicAdvResponseData (uint16_t syncHandle, const
 gapPeriodicAdvertisingResponseData_t* pData);

5. Optionally, the periodic advertiser may initiate a connection. If no connection callback was set on the
scanner via APIs such as Gap_Connect or Gap_StartAdvertising/Gap_StartExtAdvertising,
one must be explicitly set. This is achieved by calling BluetoothLEHost_SetConnectionCallback
(defined in app_conn.h), which in turn calls Gap_SetConnectionCallback.

void Gap_SetConnectionCallback (gapConnectionCallback_t
 pfConnectionCallback);

4.10.2 Peripheral Setup

1. First set the extended advertising parameters using Gap_SetExtAdvertisingParameters. The extended
advertising type must be set to non-connectable and non-scannable.

2. Set the periodic advertising parameters with the same handle as in the previous command. Use the
Gap_SetPeriodicAdvParametersV2 command. Compared to Gap_SetPeriodicAdvParameters, this
command also configures parameters relevant to PAwR, such as the number of subevents and response slots
as well as timing information.

bleResult_t Gap_SetPeriodicAdvParametersV2
 (gapPeriodicAdvParametersV2_t* pAdvertisingParameters);

Wait for a gPeriodicAdvParamSetupComplete_c event in the generic callback.

3. Start extended advertising using Gap_StartExtAdvertising.

4. Start periodic advertising using Gap_StartPeriodicAdvertising.

5. Wait for gPerAdvSubeventDataRequest_c events. These events are used by the Controller to indicate
that it is ready to transmit one or more subevents and it is requesting the advertising data for these subevents.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
43 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Upon receiving an event, use Gap_SetPeriodicAdvSubeventData to set the advertising data for specific
subevents.

bleResult_t Gap_SetPeriodicAdvSubeventData
 (uint8_t advHandle, const gapPeriodicAdvertisingSubeventData_t* pData);

Wait for the gPeriodicAdvSetSubeventDataComplete_c event in the generic callback.

6. Wait for gPerAdvResponse_c events. These events contain responses sent by devices who are
synchronized to the periodic advertising. They include data in the AD format.

7. Optionally, PAwR allows the advertising device to initiate a connection to one of the synchronized scanners.
The connection can be initiated by calling Gap_ConnectFromPawr.

bleResult_t Gap_ConnectFromPawr
 (const gapConnectionFromPawrParameters_t* pParameters,
 gapConnectionCallback_t connCallback);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
44 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.11 Encrypted Advertising Data
This section describes the Central and Peripheral setup for encrypted advertising data.

4.11.1 Central Setup

Use the Gap_DecryptAdvertisingData API to decrypt the contents of “Encrypted Advertising Data” (0x31)
AD types included in scanned data.

bleResult_t Gap_DecryptAdvertisingData
 (uint8_t *pData, uint16_t dataLength, const uint8_t *pKey, const uint8_t
 *pIV, uint8_t *pOutput)

4.11.2 Peripheral Setup

Use the Gap_EncryptAdvertisingData API to obtain the encrypted advertising data, which can then be
placed inside the “Encrypted Advertising Data” (0x31) AD type.

bleResult_t Gap_EncryptAdvertisingData
 (const gapAdvertisingData_t *pAdvertisingData, const uint8_t *pKey, const
 uint8_t *pIV, uint8_t *pOutput)

4.12 L2CAP credit-based channels
The L2CAP layer, which is responsible for protocol multiplexing, segmentation, and reassembly operations,
allows devices to communicate via connection-oriented channels. These channels use credit-based flow
control, in which a device grants each peer a number of credits which the peer can use to send packets. The
number of credits is decremented with every sent packet. A device can grant more credits to its peers over the
duration of the connection.

Unlike the fixed L2CAP CIDs used by protocols such as ATT and SMP, credit-based channels use dynamically
allocated CIDS (in the 0x0040-0xFFFF range). The CIDs are automatically allocated by the Bluetooth LE Host
Stack.

The Bluetooth LE Host Stack supports both the Credit-based Flow Control Mode and the Enhanced Credit-
based Flow Control Mode. In the Enhanced Credit-based Flow Control Mode, devices can open up to five
channels in a single connect request/response exchange. Additionally, these channels can be later reconfigured
with new MTU and MPS values. In the Credit-based Flow Control Mode, reconfiguration is not possible.

The first thing an application must do is register the control and data callbacks:

bleResult_t L2ca_RegisterLeCbCallbacks
(
 l2caLeCbDataCallback_t pCallback,
 l2caLeCbControlCallback_t pCtrlCallback
);

The control callback receives events related to channel management such as connection, disconnection,
received credits, reconfiguration, and so on.

The data callback receives the data which is being exchanged on the channel.

To use L2CAP credit-based channels, the application must register a PSM. The PSM is analogous to a TCP/
UDP port. It is an identifier used to determine the upper layer protocol which is making use of the L2CAP
channel. The dynamic PSM range is 0x0080-0x00FF. The number of PSMs supported by an application can be

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
45 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

configured at compile time via the gL2caMaxLePsmSupported_c define. The following API must be called in
order to register a PSM:

bleResult_t L2ca_RegisterLePsm
(
 uint16_t lePsm,
 uint16_t lePsmMtu
);

The MTU configured via this API is used by every channel opened under the PSM, if the Credit-based Flow
Control Mode is used. The minimum MTU is 23 and the maximum MTU is 65535.

When the Enhanced Credit-based Flow Control Mode is used, the MTU is specified at each connection request.
In this mode, the minimum MTU is 64 and the maximum MTU is 65535.

The local MPS is not configurable by the application. It is set automatically by the Host Stack based on
Controller capabilities. Usually, it will be 247.

A previously registered PSM can be deregistered:

bleResult_t L2ca_DeregisterLePsm
(
 uint16_t lePsm
);

The number of credit-based channels that can be opened is configurable by the application via the
gL2caMaxLeCbChannels_c define. This is the total number for all peers. To open a channel, the following API
must be called:

bleResult_t L2ca_ConnectLePsm
(
 uint16_t lePsm,
 deviceId_t deviceId,
 uint16_t initialCredits
);

To open up to five channels using Enhanced Credit-based Flow Control Mode, use this API:

bleResult_t L2ca_EnhancedConnectLePsm
(
 uint16_t lePsm,
 deviceId_t deviceId,
 uint16_t mtu,
 uint16_t initialCredits,
 uint16_t initialCredits,
 uint16_t *aCids
);

The connect APIs must be called by both the initiator and the responder (upon receiving the
gL2ca_LePsmConnectRequest_c or gL2ca_LePsmEnhancedConnectRequest_c events in the
application).

If the responder does not wish to accept the connection request, it can use the following APIs:

 bleResult_t L2ca_CancelConnection
 (
 uint16_t lePsm,
 deviceId_t deviceId,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
46 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 l2caLeCbConnectionRequestResult_t refuseReason
);
 bleResult_t L2ca_EnhancedCancelConnection
 (
 uint16_t lePsm,
 deviceId_t deviceId,
 l2caLeCbConnectionRequestResult_t refuseReason,
 uint8_t noOfChannels,
 uint16_t *aCids
);

When a channel has been successfully established, the gL2ca_LePsmConnectionComplete_c or gL2ca_
LePsmEnhancedConnectionComplete_c events are received in the application.

To send data on a channel:

 bleResult_t L2ca_SendLeCbData
(
 deviceId_t deviceId,
 uint16_t channelId,
 const uint8_t* pPacket,
 uint16_t packetLength
);

The Host Stack keeps track of the credits granted to peers for each channel and decrements them accordingly.
When a peer’s credit count reaches zero, the application is notified through the gL2ca_NoPeerCredits_c
event and it can decide to send more credits to the peer for that channel:

 bleResult_t L2ca_SendLeCredit
 (
 deviceId_t deviceId,
 uint16_t channelId,
 uint16_t credits
);

The application can also choose to be notified when the number of credits allocated to a peer for a certain
channel is nearing 0, by setting the gL2caLowPeerCreditsThreshold_c macro to a non-zero value. When
this limit is reached, the gL2ca_LowPeerCredits_c event is received and the application can choose to send
more credits.

Similarly, when a device receives credits from a peer, the application is notified through the
gL2ca_LocalCreditsNotification_c event. When the local device has used its last credit, it receives the
same gL2ca_LocalCreditsNotification_c event with the localCredits field set to 0. The packet that
could not be sent due to exhausting the credits remains queued in the Host Stack and it is sent automatically
when the local device receives credits from the peer.

To improve application flow control, two notification-type events are implemented by the Host Stack:

• gL2ca_ChannelStatusChannelBusy_c
• gL2ca_ChannelStatusChannelIdle_c

When the application sends a packet using L2ca_SendLeCbData, it receives a
gL2ca_ChannelStatusChannelBusy_c event in the L2CAP control callback when the Host Stack begins
sending the packet. When the Host Stack has sent the packet, a gL2ca_ChannelStatusChannelIdle_c
event is received. The application can choose to use this event as a signal that it is safe to send the next
packet.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
47 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

To disconnect a channel:

bleResult_t L2ca_DisconnectLeCbChannel
(
 deviceId_t deviceId,
 uint16_t channelId
);

As mentioned previously, channels which use the Enhanced Credit-based Flow Control Mode can be
reconfigured. This is achieved via the API:

bleResult_t L2ca_EnhancedChannelReconfigure
(
 deviceId_t deviceId,
 uint16_t newMtu,
 uint16_t newMps,
 uint8_t noOfChannels,
 uint16_t *aCids
);

The reconfiguration request is automatically accepted by the Host Stack if parameters are valid (as per
the Bluetooth Core Spec v5.3, MTU cannot be lowered and MPS cannot be lowered for more than one
channel). On the responder, the gL2ca_EnhancedReconfigureRequest_c is received by the application
in case of a successful reconfiguration, informing it of the new channel parameters. On the initiator, the
gL2ca_EnhancedReconfigureResponse_c is received, informing the application about the received
response or a timeout.

4.13 Enhanced ATT
The Enhanced ATT protocol allows concurrent transactions to be handled by the stack. The sequential
transaction rule still exists when EATT is used, but its scope is now defined as being per instance of the
Enhanced ATT Bearer. EATT transactions might execute in parallel if they are supported by distinct L2CAP
channels, which use the Enhanced Credit Based Flow Control Mode (that is, distinct Enhanced ATT Bearers).

When using an Enhanced ATT Bearer, ATT MTU and L2CAP MTU are independently configurable and may
be reconfigured during a connection. An increase to the MTU is allowed but reducing its size is not. Allowing
MTU to be increased without needing to reestablish the connection has an advantage. It eliminates the risk of
a second application using the stack, being unable to continue, due to the previously negotiated MTU being too
small.

Enhanced ATT bearers are identified through Bearer Ids. Enhanced ATT Bearer Ids are assigned internally and
have a valid range between 1 and 251. The Unenhanced ATT bearer is always available for a connected peer
device and has the BearerId 0.

4.13.1 EATT Credits management

Credits for the L2CAP channels used by Enhanced ATT bearers may be managed internally if
the autoCreditsMgmt parameter is set to TRUE in the Gap_EattConnectionRequest or
Gap_EattConnectionAccept function call. Otherwise, the application is responsible for credits management.

If the application chooses to manage the credits of the L2CAP channels used as Enhanced ATT bearers, it
should use the following function to send credits for a specified bearer to a peer device:

bleResult_t Gap_EattSendCredits
(
 deviceId_t deviceId,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
48 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 bearerId_t bearerId,
 uint16_t credits
);

If the local credits or peer credits of the L2CAP channel used by an Enhanced ATT bearer reaches 0, a gConn
EvtEattBearerStatusNotification_c connection event is updated with a status value of gEnhanced
BearerSuspendedNoLocalCredits_c, or gEnhancedBearerNoPeerCredits_c respectively.

4.13.2 EATT Connection establishment

In order to take advantage of the Enhanced ATT features, first a number of Enhanced Bearers should be
opened for a connected peer device. For this, the function below may be used to create up to five Enhanced
ATT bearers at a time:

bleResult_t Gap_EattConnectionRequest
(
 deviceId_t deviceId,
 uint16_t mtu,
 uint8_t cBearers,
 uint16_t initialCredits,
 bool_t autoCreditsMgmt
);

The mtu parameter specifies the MTU for all the bearers to be established.

The cBearers parameter is used to specify the number of Enhanced ATT bearers to be opened, and should
have a value between 1 and 5. The initialCredits parameter specifies the initial number of credits of the
L2CAP credit based channels used as Enhanced ATT bearers.

The autoCreditsMgmt parameter is used to tell the Bluetooth LE Host Stack if it should manage L2CAP
channel credits automatically. If set to TRUE the Bluetooth LE Host Stack automatically sends credits to a peer
device when exhausted in chunks of initialCredits.

For example, to establish two Enhanced ATT bearers with a peer device the application may call the
Gap_EattConnectionRequest as shown below:

bleResult_t result = Gap_EattConnectionRequest(peerDeviceId,
 64U,
 2U,
 3U,
 TRUE);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

If an EATT Connection Request is received from a peer device it would be signaled through the
gConnEvtEattConnectionRequest_c connection event of type gapEattConnectionRequest_t sent to
the connection callback. The application should handle this event by calling Gap_EattConnectionAccept.
The example below shows how an application may accept an incoming EATT Connection Request with the
same MTU as requested by the peer device.

case gConnEvtEattConnectionRequest_c:
{
 gapEattConnectionRequest_t *pEattConnectionReq = &pConnectionEvent-
>eventData.eattConnectionRequest;

 bleResult_t result = Gap_EattConnectionAccept(peerDeviceId,
 TRUE,
 pEattConnectionReq->mtu,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
49 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 3U,
 TRUE);

 if (gBleSuccess_c != result)
 {
 /* Treat error */
 }
}
break;

In case the localMtu specified when accepting a connection differs from the MTU requested by the peer
device, the minimum of the two would become the MTU of the Enhanced Bearers.

After the Gap_EattConnectionRequest or Gap_EattConnectionAccept is called, for the result
the application should wait for the gConnEvtEattConnectionComplete_c connection event of type
gapEattConnectionComplete_t shown below:

typedef struct {
 l2caLeCbConnectionRequestResult_t status;
 uint16_t mtu;
 uint8_t cBearers;
 bearerId_t aBearerIds[gGapEattMaxBearers];
} gapEattConnectionComplete_t;

If successful, the aBearerIds array contains the bearer ids, for the Enhanced ATT bearers established.
These ids may be used with the GATT Enhanced APIs in order to trigger GATT procedures over Enhanced ATT
bearers.

4.13.3 EATT Bearer reconfiguration

One of the advantages of Enhanced ATT bearers over the Unenhanced ATT bearer is the ability to increase
the MTU multiple times. To reconfigure the MTU and/or MPS of existing Enhanced ATT bearers, the
Gap_EattReconfigureRequest should be used. If a mps value of 0 is given, the maximum available MPS
value for that channel is used.

For example, in order to reconfigure the MTU of two bearers from 64 to 128 the application may call
Gap_EattReconfigureRequest as shown below:

bleResult_t result = gBleSuccess_c;
bearerId_t aBearerIds[2] = {1U, 2U};
result = Gap_EattReconfigureRequest(peerDeviceId,
 128U,
 0U,
 2U,
 aBearerIds);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

The application should monitor the gConnEvtEattChannelReconfigureResponse_c connection event of
type gapEattReconfigureResponse_t for the result.

The procedure triggered by Gap_EattReconfigureRequest updates only the local MTU. The ATT_MTU for
Enhanced ATT bearers is the minimum of the MTU values of the two devices.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
50 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

4.13.4 EATT Bearer disconnection

Individual Enhanced ATT bearers can be disconnected by calling the Gap_EattDisconnect API as shown
below:

bleResult_t result = gBleSuccess_c;
result = Gap_EattDisconnect(peerDeviceId, bearerId);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

The application should look for a connection event of type gEnhancedBearerDisconnected_c in the
connection callback.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
51 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

5 Generic Attribute Profile (GATT) Layer

The GATT layer contains the APIs for discovering services and characteristics and transferring data between
devices and is built on top of the Attribute Protocol (ATT).

The Attribute Protocol (ATT) transfers data between Bluetooth Low Energy devices on a dedicated L2CAP
channel (channel ID 0x04).

As soon as a connection is established between devices, the GATT APIs are readily available. No initialization
is required because the L2CAP channel is automatically created.

To identify the GATT peer instance, the same deviceId value from the GAP layer (obtained in the
gConnEvtConnected_cconnection event) is used.

There are two GATT roles that define the two devices exchanging data over ATT:

• GATT Server – the device that contains a GATT Database, which is a collection of services and
characteristics exposing meaningful data. Usually, the Server responds to requests and commands sent by
the Client. However, it can be configured to send data on its own through notifications and indications.

• GATT Client – the “active” device that usually sends requests and commands to the Server to discover
Services and Characteristics on the Server’s Database and to exchange data.

There is no fixed rule deciding which device is the Client and which one is the Server. Any device may initiate
a request at any moment. Therefore, it temporarily acts as a Client, at which the peer device may respond,
provided it has the Server support and a GATT Database.

Often, a GAP Central acts as a GATT Client to discover Services and Characteristics and obtain data from the
GAP Peripheral, which usually has a GATT database. Many standard Bluetooth Low Energy profiles assume
that the Peripheral has a database and must act as a Server. However, this is by no means a general rule.

5.1 Client APIs
A Client can configure the ATT MTU, discover Services and Characteristics, and initiate data exchanges.

All the functions have the same first parameter: a deviceId which identifies the connected device whose GATT
Server is targeted in the GATT procedure. This is necessary because a Client may be connected to multiple
Servers at the same time.

First, however, the application must install the necessary callbacks.

5.1.1 Installing client callbacks

There are three callbacks that the Client application must install.

5.1.1.1 Client procedure callback

All the procedures initiated by a Client are asynchronous. They rely on exchanging ATT packets over the air.

To be informed of the procedure completion, the application must install a callback with the following signature:

typedef void (* gattClientProcedureCallback_t)
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
52 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

For EATT, the following signature should be used:

typedef void (*gattClientEnhancedProcedureCallback_t)
(
 deviceId_t deviceId,
 bearerId_t bearerId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
);

To install this callback, the following function must be called:

bleResult_t GattClient_RegisterProcedureCallback
(
 gattClientProcedureCallback_t callback
);

The EATT procedure callback should be installed using the following API:

bleResult_t GattClient_RegisterEnhancedProcedureCallback
(
 gattClientEnhancedProcedureCallback_t callback
);

The procedureType parameter can be used to identify the procedure that was started and has reached
completion. Only one procedure would be active at a given moment. Trying to start another procedure while a
procedure is already in progress returns the error gGattAnotherProcedureInProgress_c.

The procedureResult parameter indicates whether the procedure completes successfully or an error occurs. In
the latter case, the error parameter contains the error code.

void gatt ClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 }
}
GattClient_RegisterProcedureCallback(gattClientProcedureCallback);

5.1.1.2 Notification and indication callbacks

When the Client receives a notification from the Server, it triggers a callback with the following prototype:

typedef void (* gattClientNotificationCallback_t)
(
 deviceId_t deviceId,
 uint16_t characteristicValueHandle,
 uint8_t * aValue,
 uint16_t valueLength

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
53 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

);

The deviceId identifies the Server connection (for multiple connections at the same time). The
characteristicValueHandle is the attribute handle of the Characteristic Value declaration in the GATT Database.
The Client must have discovered it previously to be able recognize it.

For EATT, the following signature should be used:

typedef void (*gattClientEnhancedNotificationCallback_t)
 (deviceId_t deviceId,
 bearerId_t bearerId,
 uint16_t characteristicValueHandle,
 uint8_t* aValue,
 uint16_t valueLength);

The callback must be installed with:

bleResult_t GattClient_RegisterNotificationCallback
(
 gattClientNotificationCallback_t callback
);

Very similar definitions exist for indications.

The EATT notification callback should be installed using the following API:

bleResult_t GattClient_RegisterEnhancedNotificationCallback
(
 gattClientEnhancedNotificationCallback_t callback
)

When receiving a notification or indication, the Client uses the characteristicValueHandle to identify which
Characteristic was notified. The Client must be aware of the possible Characteristic Value handles that can be
notified/indicated at any time, because it has previously activated them by writing its CCCD (see Section 5.1.5
"Reading and writing characteristic descriptors").

When the Client receives a multiple value notification from the Server, it triggers a callback with the following
prototype:

typedef void (*gattClientMultipleValueNotificationCallback_t)
(
 deviceId_t deviceId,
 /*!< Device ID identifying the active connection. */
 uint8_t* aHandleLenValue,
 /*!< The array of handle, value length, value tuples. */
 uint16_t totalLength
 /*!< Value array size. */
);

The callback must be installed with:

bleResult_t GattClient_RegisterMultipleValueNotificationCallback
(
 gattClientMultipleValueNotificationCallback_t callback
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
54 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

When using EATT, the following callback prototype and registration APIs should be used:

typedef void (*gattClientEnhancedMultipleValueNotificationCallback_t)
(deviceId_t deviceId,
 /*!< Device ID identifying the active connection. */
 bearerId_t bearerId,
 /*!< Bearer ID identifing the Enhanced ATT bearer used. */
 uint8_t* aHandleLenValue,
 /*!< The array of handle, value length, value tuples. */
uint16_t totalLength /*!< Value array size. */
);

5.1.2 MTU exchange

A radio packet sent over the Bluetooth Low Energy contains a maximum of 27 bytes of data for the L2CAP
layer. The L2CAP header is 4 bytes long, including the Channel ID. Therefore, all layers above L2CAP,
including ATT and GATT, can only send 23 bytes of data in a radio packet (as per Bluetooth 4.1 Specification for
Bluetooth Low Energy). This specification also sets the default length of an ATT packet (also called ATT_MTU)
to 23. The ATT packet length is set to this value to maintain a logical mapping between radio packets and ATT
packets.

Note: This number is fixed and cannot be increased in Bluetooth Low Energy 4.1.

Therefore, any ATT request fits in a single radio packet. If the layer above ATT wishes to send more than 23
bytes of data, the data must be fragmented into smaller packets and multiple ATT requests issued.

Despite this setting, the ATT protocol allows devices to increase the ATT_MTU, only if both can support it.
Increasing the ATT_MTU has only one effect: the application does not have to fragment long data. However, it
can send more than 23 bytes in a single transaction. The fragmentation is moved on to the L2CAP layer. Over
the air though, there would still be more than one radio packet sent.

If the GATT Client supports a larger than default MTU, it must start an MTU exchange as soon as it connects
to any server. During the MTU exchange, both devices would send their maximum MTU to the other, and the
minimum of the two is chosen as the new MTU.

Consider an example where the Client supports a maximum ATT_MTU of 250, and the server supports a
maximum value of 120 for the same attribute. For this case, after MTU exchange, both devices must set the
new ATT_MTU value equal to 120.

To initiate the MTU exchange, call the following function from gatt_client_interface.h:

bleResult_t result = GattClient_ExchangeMtu(deviceId, mtu);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

When having the role of a GATT Client, the value of the maximum supported ATT_MTU of the local device
is given as a parameter to the GattClient_ExchangeMtu API. On the GATT Server side, the application
configures this value via the gcGattServerMtu_c variable that exists in the file ble_globals.c. The
minimum of these two values is chosen as the new MTU for the connection.

When the exchange is complete, the gGattProcExchangeMtu_c procedure type triggers the Client callback.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
55 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcExchangeMtu_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* To obtain the new MTU */
 uint16_t newMtu;
 bleResult_t result = Gatt_GetMtu(deviceId, &newMtu);
 if (gBleSuccess_c == result)
 {
 /* Use the value of the new MTU */
 (void) newMtu;
 }
 }
 else
 {
 /* Handle error */
 }
 break;
 /* ... */
 }
}

Note: The Exchange MTU procedure is only available for the unenhanced/legacy bearer. For procedures sent
on enhanced bearers, the upper layer must use provided L2CAP APIs to create dedicated L2CAP channels.
Each channel has its own MTU value specified upon creation, which can also be reconfigured later.

5.1.3 Service and characteristic discovery

There are multiple APIs that can be used for Discovery. The application may use any of them, according to its
necessities.

All of the following APIs have an enhanced counterpart of the form GattClient_Enhanced[procedure]. A bearerId
parameter was added to specify on which bearer the transaction should take place. A value of 0 for the bearer
Id identifies the Unenhanced ATT bearer. Values higher than 0 are used to identify the Enhanced ATT bearer
used for the ATT procedure.

5.1.3.1 Discover all primary services

The following API can be used to discover all the Primary Services in a Server’s database:

bleResult_t GattClient_DiscoverAllPrimaryServices
(
 deviceId_t deviceId,
 gattService_t * aOutPrimaryServices,
 uint8_t maxServiceCount,
 uint8_t * pOutDiscoveredCount
);

The aOutPrimaryServices parameter must point to an allocated array of services. The size of the array must be
equal to the value of the maxServiceCount parameter, which is passed to make sure the GATT module does not
attempt to write past the end of the array if more Services are discovered than expected.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
56 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The pOutDiscoveredCount parameter must point to a static variable because the GATT module uses it to
write the number of Services discovered at the end of the procedure. This number is less than or equal to the
maxServiceCount.

If there is equality, it is possible that the Server contains more than maxServiceCount Services, but they could
not be discovered as a result of the array size limitation. It is the application developer’s responsibility to allocate
a large enough number according to the expected contents of the Server’s database.

In the following example, the application expects to find no more than 10 Services on the Server.

#define mcMaxPrimaryServices_c 10
static gattService_t primaryServices[mcMaxPrimaryServices_c];
uint8_t mcPrimaryServices;
bleResult_t result = GattClient_DiscoverAllPrimaryServices
(
 deviceId,
 primaryServices,
 mcMaxPrimaryServices_c,
 &mcPrimaryServices
);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

The operation triggers the Client Procedure Callback when complete. The application may read the number of
discovered services and each service’s handle range and UUID.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcDiscoverAllPrimaryServices_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered services */
 PRINT(mcPrimaryServices);
 /* Read each service's handle range and UUID */
 for (int j = 0; j < mcPrimaryServices; j++)
 {
 PRINT(primaryServices[j]. startHandle);
 PRINT(primaryServices[j]. endHandle);
 PRINT(primaryServices[j]. uuidType);
 PRINT(primaryServices[j]. uuid);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
57 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 /* ... */
 }
}

5.1.3.2 Discover primary services by UUID

To discover only Primary Services of a known type (Service UUID), the following API can be used:

bleResult_t GattClient_DiscoverPrimaryServicesByUuid
(
 deviceId_t deviceId,
 bleUuidType_t uuidType,
 const bleUuid_t * pUuid,
 gattService_t * aOutPrimaryServices,
 uint8_t maxServiceCount,
 uint8_t * pOutDiscoveredCount
);

The procedure is very similar to the one described in Section 5.1.3.1 "Discover all primary services". The
only difference is this time we are filtering the search according to a Service UUID described by two extra
parameters: pUuid and uuidType.

This procedure is useful when the Client is only interested in a specific type of Services. Usually, it is performed
on Servers that are known to contain a certain Service, which is specific to a certain profile. Therefore, most
of the times the search is expected to find a single Service of the given type. As a result, only one structure is
usually allocated.

For example, when two devices implement the Heart Rate (HR) Profile, an HR Collector connects to an HR
Sensor and may only be interested in discovering the Heart Rate Service (HRS) to work with its Characteristics.
The following code example shows how to achieve this. Standard values for Service and Characteristic UUIDs,
as defined by the Bluetooth SIG, are located in the ble_sig_defines.h file.

static gattService_t heartRateService;
static uint8_t mcHrs;
bleResult_t result = GattClient_DiscoverPrimaryServicesByUuid
(
 deviceId,
 gBleUuidType16_c, /* Service UUID type */
 gBleSig_HeartRateService_d, /* Service UUID */
 &heartRateService, /* Only one HRS is expected to be found */
 1,
 &mcHrs
 /* Will be equal to 1 at the end of the procedure
 if the HRS is found, 0 otherwise */

);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

In the Client Procedure Callback, the application should check if any Service with the given UUID was found
and read its handle range (also perhaps proceed with Characteristic Discovery within that service range).

void gattClientProcedureCallback
(
 deviceId_t deviceId,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
58 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcDiscoverPrimaryServicesByUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 if (1 == mcHrs)
 {
 /* HRS found, read the handle range */
 PRINT(heartRateService. startHandle);
 PRINT(heartRateService. endHandle);
 }
 else
 {
 /* HRS not found! */
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.3 Discover included services

Section 5.1.3.1 "Discover all primary services" shows how to discover Primary Services. However, a Server may
also contain Secondary Services, which are not meant to be used standalone and are usually included in the
Primary Services. The inclusion means that all the Secondary Service’s Characteristics may be used by the
profile that requires the Primary Service.

Therefore, after a Primary Service has been discovered, the following procedure may be used to discover
services (usually Secondary Services) included in it:

bleResult_t GattClient_FindIncludedServices
(
 deviceId_t deviceId,
 gattService_t * pIoService,
 uint8_t maxServiceCount
);

The service structure that pIoService points to must have the aIncludedServices field linked to an allocated
array of services, of size maxServiceCount, chosen according to the expected number of included services to
be found. This is the application’s choice, usually following profile specifications.

Also, the service’s range must be set (the startHandle and endHandle fields), which may have already been
done by the previous Service Discovery procedure (as described in Section 5.1.3.1 "Discover all primary
services" and Section 5.1.3.2 "Discover primary services by UUID").

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
59 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The number of discovered included services is written by the GATT module in the cNumIncludedServices field
of the structure from pIoService. Obviously, a maximum of maxServiceCount included services is discovered.

The following example assumes the Heart Rate Service was discovered using the code provided in
Section 5.1.3.2 "Discover primary services by UUID".

/* Finding services included in the Heart Rate Primary Service */
gattService_t * pPrimaryService = &heartRateService;
#define mxMaxIncludedServices_c 3
static gattService_t includedServices[mxMaxIncludedServices_c];
/* Linking the array */
pPrimaryService-> aIncludedServices = includedServices;
bleResult_t result = GattClient_FindIncludedServices
(
 deviceId,
 pPrimaryService,
 mxMaxIncludedServices_c
);
if (gBleSuccess_c != result)
{
 /* Treat error */
}

When the Client Procedure Callback is triggered, if any included services are found, the application can read
their handle range and their UUIDs.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcFindIncludedServices_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read included services data */
 PRINT(pPrimaryService-> cNumIncludedServices);
 for (int j = 0; j < pPrimaryService-> cNumIncludedServices ; j+
+)
 {
 PRINT(pPrimaryService-> aIncludedServices [j].
 startHandle);
 PRINT(pPrimaryService-> aIncludedServices [j]. endHandle);
 PRINT(pPrimaryService-> aIncludedServices [j]. uuidType);
 PRINT(pPrimaryService-> aIncludedServices [j]. uuid);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
60 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 }
}

5.1.3.4 Discover all characteristics of a service

The main API for Characteristic Discovery has the following prototype:

bleResult_t GattClient_DiscoverAllCharacteristicsOfService
(
 deviceId_t deviceId,
 gattService_t * pIoService,
 uint8_t maxCharacteristicCount
);

All required information is contained in the service structure pointed to by pIoService, most importantly being the
service range (startHandle and endHandle) which is usually already filled out by a Service Discovery procedure.
If not, they need to be written manually.

Also, the service structure’s aCharacteristics field must be linked to an allocated characteristic array.

The following example discovers all Characteristics contained in the Heart Rate Service discovered in Section
Section 5.1.3.2 "Discover primary services by UUID".

gattService_t* pService = &heartRateService
#define mcMaxCharacteristics_c 10
static gattCharacteristic_t hrsCharacteristics[mcMaxCharacteristics_c];
pService->aCharacteristics = hrsCharacteristics;
bleResult_t result = GattClient_DiscoverAllCharacteristicsOfService
(
 deviceId,
 pService,
 mcMaxCharacteristics_c
);

The Client Procedure Callback is triggered when the procedure completes.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllCharacteristics_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered Characteristics */
 PRINT(pService-> cNumCharacteristics);
 /* Read discovered Characteristics data */
 for (uint8_t j = 0; j < pService-> cNumCharacteristics ; j++)
 {
 /* Characteristic UUID is found inside the value field
 to avoid duplication */
 PRINT(pService-> aCharacteristics [j]. value . uuidType);
 PRINT(pService-> aCharacteristics [j]. value . uuid);
 /* Characteristic Properties indicating the supported operations:

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
61 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 * - Read
 * - Write
 * - Write Without Response
 * - Notify
 * - Indicate
 */
 PRINT(pService-> aCharacteristics [j]. properties);
 /* Characteristic Value Handle is used to identify the
 Characteristic in future operations */
 PRINT(pService-> aCharacteristics [j]. value . handle);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.5 Discover characteristics by UUID

This procedure is useful when the Client intends to discover a specific Characteristic in a specific Service. The
API allows for multiple Characteristics of the same type to be discovered, but most often it is used when a single
Characteristic of the given type is expected to be found.

Continuing the example from Section 5.1.3.2 "Discover primary services by UUID", assume the Client wants to
discover the Heart Rate Control Point Characteristic inside the Heart Rate Service, as shown in the following
code.

gattService_t * pService = &heartRateService;
static gattCharacteristic_t hrcpCharacteristic;
static uint8_t mcHrcpChar;
bleResult_t result = GattClient_DiscoverCharacteristicOfServiceByUuid
(
 deviceId,
 gBleUuidType16_c,
 gBleSig_HrControlPoint_d,
 pService,
 &hrcpCharacteristic,
 1,
 &mcHrcpChar
);

This API can be used as in the previous examples, following a Service Discovery procedure. However, the
user may want to perform a Characteristic search with UUID over the entire database, skipping the Service
Discovery entirely. To do so, a dummy service structure must be defined and its range must be set to maximum,
as shown in the following example:

gatt Service_t dummyService;
dummyService. startHandle = 0x0001;
dummyService. endHandle = 0xFFFF;
static gattCharacteristic_t hrcpCharacteristic;
static uint8_t mcHrcpChar;
bleResult_t result = GattClient_DiscoverCharacteristicOfServiceByUuid
(
 deviceId,
 gBleUuidType16_c,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
62 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 gBleSig_HrControlPoint_d,
 &dummyService,
 &hrcpCharacteristic,
 1,
 &mcHrcpChar
);

In either case, the value of the mcHrcpChar variable should be checked in the procedure callback.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverCharacteristicByUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 if (1 == mcHrcpChar)
 {
 /* HRCP found, read discovered data */
 PRINT(hrcpCharacteristic. properties);
 PRINT(hrcpCharacteristic. value . handle);
 }
 else
 {
 /* HRCP not found! */
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.3.6 Discover characteristic descriptors

To discover all descriptors of a Characteristic, the following API is provided:

bleResult_t GattClient_DiscoverAllCharacteristicDescriptors
(
 deviceId_t deviceId,
 gattCharacteristic_t * pIoCharacteristic,
 uint16_t endingHandle,
 uint8_t maxDescriptorCount
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
63 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The pIoCharacteristic pointer must point to a Characteristic structure with the value.handle field set (either by a
discovery operation or by the application) and the aDescriptors field pointed to an allocated array of Descriptor
structures.

The endingHandle should be set to the handle of the next Characteristic or Service declaration in the database
to indicate when the search for descriptors must stop. The GATT Client module uses ATT Find Information
Requests to discover the descriptors, and it does so until it discovers a Characteristic or Service declaration
or until endingHandle is reached. Thus, by providing a correct ending handle, the search for descriptors is
optimized and the number of packets sent over the air is reduced.

If, however, the application does not know where the next declaration lies and cannot provide this optimization
hint, the endingHandle should be set to 0xFFFF.

Continuing the example from Section 5.1.3.5 "Discover characteristics by UUID", the following code assumes
that the Heart Rate Control Point Characteristic has no more than 5 descriptors and performs Descriptor
Discovery.

#define mcMaxDescriptors_c 5
static gattAttribute_t aDescriptors[mcMaxDescriptors_c];
hrcpCharacteristic. aDescriptors = aDescriptors;
bleResult_t result = GattClient_DiscoverAllCharacteristicDescriptors
(
 deviceId,
 &hrcpCharacteristic,
 0xFFFF, /* We do not know where the next Characterstic Service begins */
 mcMaxDescriptors_c
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered at the end of the procedure.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcDiscoverAllCharacteristicDescriptors_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read number of discovered descriptors */
 PRINT(hrcpCharacteristic. cNumDescriptors);
 /* Read descriptor data */
 for (uint8_t j = 0; j < hrcpCharacteristic. cNumDescriptors ; j
++)
 {
 PRINT(hrcpCharacteristic. aDescriptors [j]. handle);
 PRINT(hrcpCharacteristic. aDescriptors [j]. uuidType);
 PRINT(hrcpCharacteristic. aDescriptors [j]. uuid);
 }
 }

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
64 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.4 Reading and writing characteristics

All the APIs described in the following sections have an enhanced counterpart of the form
GattClient_Enhanced[procedure]. A bearer id parameter was added to specify on which bearer the transaction
should take place. A value of 0 for the bearer id identifies the Unenhanced ATT bearer. Values higher than 0 are
used to identify the Enhanced ATT bearer used for the ATT procedure.

5.1.4.1 Characteristic value read procedure

The main API for reading a Characteristic Value is shown here:

bleResult_t GattClient_ReadCharacteristicValue
(
 deviceId_t deviceId,
 gattCharacteristic_t * pIoCharacteristic,
 uint16_t maxReadBytes
);

This procedure assumes that the application knows the Characteristic Value Handle, usually from a
previous Characteristic Discovery procedure. Therefore, the value.handle field of the structure pointed by
pIoCharacteristic must be completed.

Also, the application must allocate a large enough array of bytes where the received value (from the ATT packet
exchange) is written. The maxReadBytes parameter is set to the size of this allocated array.

The GATT Client module takes care of long characteristics, whose values have a greater length than can fit in a
single ATT packet, by issuing repeated ATT Read Blob Requests when needed.

The following examples assume that the application knows the Characteristic Value Handle and that the value
length is variable, but limited to 50 bytes.

gattCharacteristic_t myCharacteristic;
myCharacteristic. value . handle = 0x10AB;
#define mcMaxValueLength_c 50
static uint8_t aValue[mcMaxValueLength_c];
myCharacteristic. value . paValue = aValue;
bleResult_t result = GattClient_ReadCharacteristicValue
(
 deviceId,
 &myCharacteristic,
 mcMaxValueLength_c
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
65 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Regardless of the value length, the Client Procedure Callback is triggered when the reading is complete. The
received value length is also filled in the value structure.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcReadCharacteristicValue_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read value length */
 PRINT(myCharacteristic. value . valueLength);
 /* Read data */
 for (uint16_t j = 0; j < myCharacteristic. value .
 valueLength ; j++)
 {
 PRINT(myCharacteristic. value . paValue [j]);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.4.2 Characteristic read by UUID procedure

This API for this procedure is shown here:

bleResult_t GattClient_ReadUsingCharacteristicUuid
(
 deviceId_t deviceId,
 bleUuidType_t uuidType,
 const bleUuid_t* pUuid,
 const gattHandleRange_t* pHandleRange,
 uint8_t* aOutBuffer,
 uint16_t maxReadBytes,
 uint16_t* pOutActualReadBytes
);

This provides support for an important optimization, which involves reading a Characteristic Value without
performing any Service or Characteristic Discovery.

For example, the following is the process to write an application that connects to any Server and wants to read
the device name.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
66 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The device name is contained in the Device Name Characteristic from the GAP Service. Therefore, the
necessary steps involve discovering all primary services, identifying the GAP Service by its UUID, discovering
all Characteristics of the GAP Service and identifying the Device Name Characteristic (alternatively, discovering
Characteristic by UUID inside GAP Service), and, finally, reading the device name by using the Characteristic
Read Procedure.

Instead, the Characteristic Read by UUID Procedure allows reading a Characteristic with a specified UUID,
assuming one exists on the Server, without knowing the Characteristic Value Handle.

The described example is implemented as follows:

#define mcMaxValueLength_c
/* First byte is for handle-value pair length. Next 2 bytes are the handle */
static uint8_t aValue[1 + 2 + mcMaxValueLength_c];
static uint16_t deviceNameLength;
bleUuid_t uuid = {
 .uuid16 = gBleSig_GapDeviceName_d
};
bleResult_t result = GattClient_ReadUsingCharacteristicUuid
(
 deviceId,
 gBleUuidType16_c,
 &uuid,
 &pHandleRange,
 aValue,
 1 + 2 + mcMaxValueLength_c,
 deviceNameLength
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered when the reading is complete. Because only one air packet is
exchanged during this procedure, it can only be used as a quick reading of Characteristic Values with length no
greater than ATT_MTU – 1.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcReadUsingCharacteristicUuid_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Read handle-value pair length */
 PRINT(aValue[0]);
 deviceNameLength -= 1;
 /* Read characteristic value handle */
 PRINT(aValue[1] | (aValue[2] << 8));
 deviceNameLength -= 2;
 /* Read value length */
 PRINT(deviceNameLength);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
67 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 /* Read data */
 for (uint8_t j = 0; j < deviceNameLength; j++)
 {
 PRINT(aValue[3 + j]);
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.4.3 Characteristic read multiple procedure

The API for this procedure is shown here:

bleResult_t GattClient_ReadMultipleCharacteristicValues
(
 deviceId_t deviceId,
 uint8_t cNumCharacteristics,
 gattCharacteristic_t * aIoCharacteristics
);

This procedure also allows an optimization for a specific situation, which occurs when multiple Characteristics,
whose values are of known, fixed-length, can be all read in one single ATT transaction (usually one single over-
the-air packet).

The application must know the value handle and value length of each Characteristic. It must also write the
value.handle and value.maxValueLength with the aforementioned values, respectively, and then link the
value.paValue field with an allocated array of size maxValueLength.

The following example involves reading three characteristics in a single packet.

#define mcNumCharacteristics_c 3
#define mcChar1Length_c 4
#define mcChar2Length_c 5
#define mcChar3Length_c 6
static uint8_t aValue1[mcChar1Length_c];
static uint8_t aValue2[mcChar2Length_c];
static uint8_t aValue3[mcChar3Length_c];
static gattCharacteristic_t myChars[mcNumCharacteristics_c];
myChars[0]. value . handle = 0x0015;
myChars[1]. value . handle = 0x0025;
myChars[2]. value . handle = 0x0035;
myChars[0]. value . maxValueLength = mcChar1Length_c;
myChars[1]. value . maxValueLength = mcChar2Length_c;
myChars[2]. value . maxValueLength = mcChar3Length_c;
myChars[0]. value . paValue = aValue1;
myChars[1]. value . paValue = aValue2;
myChars[2]. value . paValue = aValue3;
bleResult_t result = GattClient_ReadMultipleCharacteristicValues
(
 deviceId,
 mcNumCharacteristics_c,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
68 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 myChars
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

When the Client Procedure Callback is triggered, if no error occurs, each Characteristic’s value length should be
equal to the requested lengths.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t p rocedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcReadMultipleCharacteristicValues_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 for (uint8_t i = 0; i < mcNumCharacteristics_c; i++)
 {
 /* Read value length */
 PRINT(myChars[i]. value . valueLength);
 /* Read data */
 for (uint8_t j = 0; j < myChars[i]. value . valueLength ; j
++)
 {
 PRINT(myChars[i]. value . paValue [j]);
 }
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

If the server does not know the length of the characteristic values, then the Read Multiple Variable
Characteristic Values procedure can be used. This sub-procedure is used to read multiple characteristic values
of variable length from a server when the client knows the characteristic value handles. The response returns
the characteristic values and their corresponding lengths in the Length Value Tuple List parameter.

bleResult_t GattClient_ReadMultipleVariableCharacteristicValues
(
 deviceId_t deviceId,
 uint8_t cNumCharacteristics,
 gattCharacteristic_t* pIoCharacteristics
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
69 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The following example involves reading three characteristics of variable length in a single packet.

#define mcNumCharacteristics_c 3
#define mcCharLengthMax_c 10
static uint8_t aValue1[mcCharLengthMax _c];
static uint8_t aValue2[mcCharLengthMax _c];
static uint8_t aValue3[mcCharLengthMax _c];
static gattCharacteristic_t myChars[mcNumCharacteristics_c];
myChars[0].value .handle = 0x0015;
myChars[1].value .handle = 0x0025;
myChars[2].value .handle = 0x0035;
myChars[0].value .paValue = aValue1;
myChars[1].value .paValue = aValue2;
myChars[2].value .paValue = aValue3;
bleResult_t result = GattClient_ReadMultipleVariableCharacteristicValues
(
 deviceId,
 mcNumCharacteristics_c,
 pIoCharacteristics
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

The result of this procedure is sent to the application via the GATT procedure callback. The response includes
the characteristic value together with a handle, length pair corresponding to each characteristic.

static void BleApp_GattClientCallback
(
 deviceId_t serverDeviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureResult)
 {
 /* ... */
 case gGattProcReadMultipleVarLengthCharValues_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 for (uint8_t i = 0; i < mcNumCharacteristics_c; i++)
 {
 /* Print characteristic handle and length */
 PRINT(myChars[i].value.handle);
 PRINT(myChars[i].value.valueLength);
 for (uint8_t j = 0; j < myChars[i].value.maxValueLength; j++)
 {
 /* Print characteristic value */
 PRINT(myChars[i].value.paValue[j]);
 }
 }
 }
 else
 {
 /* Handle error */
 }
 break;
}

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
70 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

5.1.4.4 Characteristic write procedure

There is a general API that may be used for writing Characteristic Values:

bleResult_t GattClient_WriteCharacteristicValue
(
 deviceId_t deviceId,
 const gattCharacteristic_t * pCharacteristic,
 uint16_t valueLength,
 const uint8_t * aValue,
 bool_t withoutResponse,
 bool_t signedWrite,
 bool_t doReliableLongCharWrites,
 const uint8_t * aCsrk
);

It has many parameters to support different combinations of Characteristic Write Procedures.

The structure pointed to by the pCharacteristic is only used for the value.handle field which indicates the
Characteristic Value Handle. The value to be written is contained in the aValue array of size valueLength.

The withoutResponse parameter can be set to TRUE if the application wishes to perform a Write Without
Response Procedure, which translates into an ATT Write Command. If this value is selected, the signedWrite
parameter indicates whether data should be signed (Signed Write Procedure over ATT Signed Write
Command), in which case the aCsrk parameters must not be NULL and contains the CSRK to sign the data
with. Otherwise, both signedWrite and aCsrk are ignored.

Finally, doReliableLongCharWrites should be sent to TRUE if the application is writing a long Characteristic
Value (one that requires multiple air packets due to ATT_MTU limitations) and wants the Server to confirm each
part of the attribute that is sent over the air.

To simplify the application code, the following macros are defined:

#define GattClient_SimpleCharacteristicWrite(deviceId, pChar, valueLength,
 aValue) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, FALSE, FALSE, FALSE, NULL)

This is the simplest usage for writing a Characteristic. It sends an ATT Write Request if the value length
does not exceed the maximum space for an over-the-air packet (ATT_MTU – 3). Otherwise, it sends ATT
Prepare Write Requests with parts of the attribute, without checking the ATT Prepare Write Response data for
consistency, and in the end an ATT Execute Write Request.

#define GattClient_CharacteristicWriteWithoutResponse(deviceId, pChar,
 valueLength, aValue) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, TRUE, FALSE, FALSE, NULL)

This usage sends an ATT Write Command. Long Characteristic values are not allowed here and trigger a
gBleInvalidParameter_c error.

#define GattClient_CharacteristicSignedWrite(deviceId, pChar, valueLength,
 aValue, aCsrk) \
 GattClient_WriteCharacteristicValue\
 (deviceId, pChar, valueLength, aValue, TRUE, TRUE, FALSE, aCsrk)

This usage sends an ATT Signed Write Command. The CSRK used to sign data must be provided.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
71 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

This is a short example to write a 3-byte long Characteristic Value.

gattCharacteristic_t myChar;
myChar. value . handle = 0x00A0; /* Or maybe it was previously discovered? */
#define mcValueLength_c 3
uint8_t aValue[mcValueLength_c] = { 0x01, 0x02, 0x03 };
bleResult_t result = GattClient_SimpleCharacteristicWrite
(
 deviceId,
 &myChar,
 mcValueLength_c,
 aValue
);
if (gBleSuccess_c != result)
{
 /* Handle error */
}

The Client Procedure Callback is triggered when writing is complete.

void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 switch (procedureType)
 {
 /* ... */
 casegGattProcWriteCharacteristicValue_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Continue */
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 /* ... */
 }
}

5.1.5 Reading and writing characteristic descriptors

Two APIs are provided for these procedures which are very similar to Characteristic Read and Write.

The only difference is that the handle of the attribute to be read/written is provided through a pointer to an
gattAttribute_t structure (same type as the gattCharacteristic_t.value field).

All of the following APIs have an enhanced counterpart of the form GattClient_Enhanced[procedure]. A bearerId
parameter was added to specify on which bearer the transaction should take place. A value of 0 for the bearer

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
72 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Id identifies the Unenhanced ATT bearer. Values higher than 0 are used to identify the Enhanced ATT bearer
used for the ATT procedure.

bleResult_t GattClient_ReadCharacteristicDescriptor
(
 deviceId_t deviceId,
 gattAttribute_t * pIoDescriptor,
 uint16_t maxReadBytes
);

The pIoDescriptor->handle is required (it may have been discovered previously by GattClient_DiscoverAll
CharacteristicDescriptors). The GATT module fills the value that was read in the fields pIoDescriptor->aValue
(must be linked to an allocated array) and pIoDescriptor->valueLength (size of the array).

Writing a descriptor is also performed similarly with this function:

bleResult_t GattClient_WriteCharacteristicDescriptor
(
 deviceId_t deviceId,
 gattAttribute_t * pDescriptor,
 uint16_t valueLength,
 uint8_t * aValue
);

Only the pDescriptor->handle must be filled before calling the function.

One of the most frequently written descriptors is the Client Characteristic Configuration Descriptor (CCCD).
It has a well-defined UUID (gBleSig_CCCD_d) and a 2-byte long value that can be written to enable/disable
notifications and/or indications.

In the following example, a Characteristic’s descriptors are discovered and its CCCD written to activate
notifications.

static gattCharacteristic_t myChar;
myChar. value . handle = 0x00A0; /* Or maybe it was previously discovered? */
#define mcMaxDescriptors_c 5
static gattAttribute_t aDescriptors[mcMaxDescriptors_c];
myChar. aDescriptors = aDescriptors;
/* ... */
{
 bleResult_t result = GattClient_DiscoverAllCharacteristicDescriptors
 (
 deviceId,
 &myChar,
 0xFFFF,
 mcMaxDescriptors_c
);
 if (gBleSuccess_c != result)
 {
 /* Handle error */
 }
}
/* ... */
void gattClientProcedureCallback
(
 deviceId_t deviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
73 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

)
{
 switch (procedureType)
 {
 /* ... */
 case gGattProcDiscoverAllCharacteristicDescriptors_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Find CCCD */
 for (uint8_t j = 0; j < myChar. cNumDescriptors ; j++)
 {
 if (aDescriptors[j].uuidType && gBleSig_CCCD_d
 ==myChar.aDescriptors[j].uuid.uuid16))
 {
 uint8_t cccdValue[2];
 packTwoByteValue(gCccdNotification_c, cccdValue);
 bleResult_t result =
 GattClient_WriteCharacteristicDescriptor
 (
 deviceId,
 &myChar. aDescriptors [j],
 2,
 cccdValue
);
 if (gBleSuccess_c != result)
 {
 /* Handle error */
 }
 break;
 }
 }
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 break;
 case gGattProcWriteCharacteristicDescriptor_c:
 if (gGattProcSuccess_c == procedureResult)
 {
 /* Notification successfully activated */
 }
 else
 {
 /* Handle error */
 PRINT(error);
 }
 /* ... */
 }
}

5.1.6 Resetting procedures

To cancel an ongoing Client Procedure, the following API can be called:

bleResult_t GattClient_ResetProcedure (void);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
74 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

It resets the internal state of the GATT Client and new procedure may be started at any time.

5.2 Server APIs
Once the GATT Database has been created and the required security settings have been registered with Gap_
RegisterDeviceSecurityRequirements, all ATT Requests and Commands and attribute access security checks
are handled internally by the GATT Server module.

Besides this automatic functionality, the application may use GATT Server APIs to send Notifications and
Indication and, optionally, to intercept Clients’ attempts to write certain attributes.

5.2.1 Server callback

The first GATT Server call is the installation of the Server Callback, which has the following prototype:

typedef void (* gattServerCallback_t)
(
 deviceId_t deviceId, /*!< Device ID identifying the active
 connection. */
 gattServerEvent_t * pServerEvent /*!< Server event. */
);

For EATT, the following signature should be used:

typedef void (*gattServerEnhancedCallback_t) (deviceId_t deviceId, bearerId_t
 bearerId, gattServerEvent_t* pServerEvent);

The callback can be installed with:

bleResult_t GattServer_RegisterCallback
(
 gattServerCallback_t callback
);

The EATT server callback should be installed using the following API:

bleResult_t GattServer_RegisterEnhancedCallback
(
 gattServerEnhancedCallback_t callback
);

The first member of the gattServerEvent_t structure is the eventType, an enumeration type with the following
possible values:

• gEvtMtuChanged_c: Signals that the Client-initiated MTU Exchange Procedure has completed successfully
and the ATT_MTU has been increased. The event data contains the new value of the ATT_MTU. Is it
possible that the application flow depends on the value of the ATT_MTU, for example, there may be specific
optimizations for different ATT_MTU ranges. This event is not triggered if the ATT_MTU was not changed
during the procedure.

• gEvtHandleValueConfirmation_c: A Confirmation was received from the Client after an Indication was sent by
the Server.

• gEvtAttributeWritten_c, gEvtAttributeWrittenWithoutResponse_c: See Section 5.2.3 "Attribute write
notifications".

• gEvtCharacteristicCccdWritten_c: The Client has written a CCCD. The application should save the CCCD
value for bonded devices with Gap_SaveCccd.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
75 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• gEvtError_c: An error occurred during a Server-initiated procedure.
• gEvtLongCharacteristicWritten_c: A long characteristic was written.
• gEvtInvalidPduReceived_c: An invalid PDU was received from Client. Application decides if disconnection is

required.
• gEvtAttributeRead_c: An attribute registered with GattServer_RegisterHandlesForReadNotifi
cations is being read.

5.2.2 Sending notifications and indications

The APIs provided for these Server-initiated operations are very similar.

All of the following APIs have an enhanced counterpart of the form GattServer_Enhanced[procedure]. A
bearerId parameter was added to specify on which bearer the transaction should take place. A value of 0 for
the bearerId identifies the Unenhanced ATT bearer. Values higher than 0 are used to identify the Enhanced ATT
bearer used for the ATT procedure.

bleResult_t GattServer_SendNotification
(
 deviceId_t deviceId,
 uint16_t handle
);
bleResult_t GattServer_SendIndication
(
 deviceId_t deviceId,
 uint16_t handle
);

Only the attribute handle needs to be provided to these functions. The attribute value is automatically retrieved
from the GATT Database.

Note: It is the application developer’s responsibility to check if the Client designated by the deviceId has
previously activated Notifications/Indications by writing the corresponding CCCD value. To do that, the following
GAP APIs should be used:

bleResult_t Gap_CheckNotificationStatus
(
 deviceId_t deviceId,
 uint16_t handle,
 bool_t * pOutIsActive
);
bleResult_t Gap_CheckIndicationStatus
(
 deviceId_t deviceId,
 uint16_t handle,
 bool_t * pOutIsActive
);

Note: It is necessary to use these two functions with the Gap_SaveCccd only for bonded devices, because the
data is saved in NVM and reloaded at reconnection. For devices that do not bond, the application may also use
its own bookkeeping mechanism.

There is an important difference between sending Notifications and Indications:

• The latter can only be sent one at a time. In addition, the application must wait for the Client Confirmation
(signaled by the gEvtHandleValueConfirmation_c Server event, or by a gEvtError_c event with
gGattClientConfirmationTimeout_c error code) before sending a new Indication. Otherwise, a gEvtError_c
event with gGattIndicationAlreadyInProgress_c error code is triggered.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
76 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• The Notifications can be sent consecutively.

5.2.3 Attribute write notifications

When the GATT Client reads and writes values from/into the Server’s GATT Database, it uses ATT Requests.

The GATT Server module implementation manages these requests and, according to the database security
settings and the Client’s security status (authenticated, authorized, and so on), automatically sends the ATT
Responses without notifying the application.

There are however some situations where the application needs to be informed of ATT packet exchanges. For
example, a lot of standard profiles define, for certain Services, some, so-called, Control-Point Characteristics.
These are Characteristics whose values are only of immediate significance to the application. Writing these
Characteristics usually triggers specific actions.

For example, consider a fictitious Smart Lamp. It has Bluetooth Low Energy connectivity in the Peripheral
role and it contains a small GATT Database with a Lamp Service (among other Services). The Lamp Service
contains two Characteristics: the Lamp State Characteristic (LSC) and the Lamp Action Characteristic (LAC).

LSC is a “normal” Characteristic with Read and Write properties. Its value is either 0, lamp off, or 1, lamp on).
Writing the value sets the lamp in the desired state. Reading it provides its current state, which is only useful
when passing the information remotely.

The LAC has only one property, which is Write Without Response. The user can use the Write Without
Response procedure to write only the value 0x01 (all other values are invalid). Whenever the user writes 0x01
in LAC, the lamp switches its state.

The LAC is a good example of a Control-Point Characteristic for these reasons:

• Writing a certain value (in this case 0x01) triggers an action on the lamp.
• The value the user writes has immediate significance only (“0x01 switches the lamp”) and is never used again

in the future. For this reason, it does not need to be stored in the database.

Obviously, whenever a Control-Point Characteristic is written, the application must be notified to trigger some
application-specific action.

The GATT Server allows the application to register a set of attribute handles as “write-notifiable”, in other words,
the application wants to receive an event each time any of these attributes is written by the peer Client.

All Control-Point Characteristics in the GATT Database must have their Value handle registered. In fact, the
application may register any other handle for write notifications for its own purposes with the following API:

bleResult_t GattServer_RegisterHandlesForWriteNotifications
(
 uint8_t handleCount,
 const uint16_t * aAttributeHandles
);

The handleCount is the size of the aAttributeHandles array and it cannot exceed gcGattMaxHandleCountFor
WriteNotifications_c.

After an attribute handle has been registered with this function, whenever the Client attempts to write its value,
the GATT Server Callback is triggered with one of the following event types:

• gEvtAttributeWritten_c is triggered when the attribute is written with a Write procedure (ATT Write Request).
In this instance, the application has to decide whether the written value is valid and whether it must be written
in the database, and, if so, the application must write the value with the GattDb_WriteAttribute, see Chapter

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
77 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

6. At this point, the GATT Server module does not automatically send the ATT Write Response over the air.
Instead, it waits for the application to call this function:

bleResult_t GattServer_SendAttributeWrittenStatus
(
 deviceId_t deviceId,
 uint16_t attributeHandle,
 uint8_t status
);

This API also has an enhanced counterpart, which adds the bearerId parameter.

The value of the status parameter is interpreted as an ATT Error Code. It must be equal to the
gAttErrCodeNoError_c (0x00) if the value is valid and it is successfully processed by the application. Otherwise,
it must be equal to a profile-specific error code (in interval 0xE0-0xFF) or an application-specific error code (in
interval 0x80-0x9F).

• gEvtAttributeWrittenWithoutResponse_c is triggered when the attribute is written with a Write Without
Response procedure (ATT Write Command). Because this procedure expects no response, the application
may process it and, if necessary, write it in the database. Regardless of whether the value is valid or not, no
response is needed from the application.

• gEvtLongCharacteristicWritten_c is triggered when the Client has completed writing a Long Characteristic
value; the event data includes the handle of the Characteristic Value attribute and a pointer to its value in the
database.

Attributes can also be registered for read notifications using the followng API:

bleResult_t GattServer_RegisterHandlesForReadNotifications
(
 uint8_t handleCount,
 const uint16_t* aAttributeHandles
);

To unregister one or more handles from the list for either write or read, the following APIs can be used:

bleResult_t GattServer_UnregisterHandlesForWriteNotifications
(
 uint8_t handleCount,
 const uint16_t* aAttributeHandles
);

bleResult_t GattServer_UnregisterHandlesForReadNotifications
(
 uint8_t handleCount,
 const uint16_t* aAttributeHandles
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
78 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

6 GATT database application interface

For over-the-air packet exchanges between a Client and a Server, the GATT Server module automatically
retrieves data from the GATT database and responds to all ATT Requests from the peer Client, provided it
passes the security checks. This ensures that the Server application does not have to perform any kind of
searches over the database.

However, the application must have access to the database to write meaningful data into its characteristics.
For example, a temperature sensor must periodically write the temperature, which is measured by an external
thermometer, into the Temperature Characteristic.

For these kinds of situations, a few APIs are provided in the gatt_db_app_interface.h file.

Note: All functions provided by this interface are executed synchronously. The result of the operation is saved
in the return value and it generates no event.

6.1 Writing and reading attributes
These are the two functions to perform basic attribute operations from the application:

bleResult_t GattDb_WriteAttribute
(
 uint16_t handle,
 uint16_t valueLength,
 const uint8_t * aValue
);

The value length must be valid, as defined when the database is created. Otherwise, a
gGattInvalidValueLength_c error is returned.

Also, if the database is created statically, as explained in Section 7 "Creating GATT database", the handle may
be referenced through the enumeration member with a friendly name defined in the gatt_db.h.

bleResult_t GattDb_ReadAttribute
(
 uint16_t handle,
 uint16_t maxBytes,
 uint8_t * aOutValue,
 uint16_t * pOutValueLength
);

The aOutValue array must be allocated with the size equal to maxBytes.

6.2 Finding attribute handles
Although the application should be fully aware of the contents of the GATT Database, in certain situations it
might be useful to perform some dynamic searches of certain attribute handles.

To find the handle value for a Service for which only the UUID is know the following API can be used:

bleResult_t GattDb_FindServiceHandle
(
 uint16_t startHandle,
 bleUuidType_t serviceUuidType,
 const bleUuid_t* pServiceUuid,
 uint16_t* pOutServiceHandle
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
79 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

To find a specific Characteristic Value Handle in a Service whose declaration handle is known, the following API
is provided:

bleResult_t GattDb_FindCharValueHandleInService
(
 uint16_t serviceHandle,
 bleUuidType_t characteristicUuidType,
 const bleUuid_t * pCharacteristicUuid,
 uint16_t * pOutCharValueHandle
);

If the return value is gBleSuccess_c, the handle is written at pOutCharValueHandle. If the serviceHandle is
invalid or not a valid Service declaration, the gBleGattDbInvalidHandle_c is returned. Otherwise, the search is
performed starting with the serviceHandle+1. If no Characteristic of the given UUID is found, the function returns
the gBleGattDbCharacteristicNotFound_c value.

To find a Characteristic Descriptor of a given type in a Characteristic, when the Characteristic Value Handle is
known, the following API is provided:

bleResult_t GattDb_FindDescriptorHandleForCharValueHandle
(
 uint16_t charValueHandle,
 bleUuidType_t descriptorUuidType,
 const bleUuid_t * pDescriptorUuid,
 uint16_t * pOutDescriptorHandle
);

Similarly, the function returns gBleGattDbInvalidHandle_c is the handle is invalid. Otherwise, it starts searching
from the charValueHandle+1. Then, gBleGattDbDescriptorNotFound_c is returned if no Descriptor of the
specified type is found. Otherwise, its attribute handle is written at the pOutDescriptorHandle and the function
returns gBleSuccess_c.

One of the most commonly used Characteristic Descriptors is the Client Configuration Characteristic Descriptor
(CCCD), which has the UUID equal to gBleSig_CCCD_d. For this specific type, a special API is used as a
shortcut:

bleResult_t GattDb_FindCccdHandleForCharValueHandle
(
 uint16_t charValueHandle,
 uint16_t * pOutCccdHandle
);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
80 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

7 Creating GATT database

The GATT Database contains several GATT Services where each Service must contain at least one GATT
Characteristic.

The Attribute Database contains a collection of attributes. Each attribute has four fields:

• The attribute handle – a 2-byte database index, which starts from 0x0001 and increases with each new
attribute, not necessarily consecutive; maximum value is 0xFFFF.

• The attribute type or UUID – a 2-byte or 16-byte UUID.
• The attribute permissions – 1 byte containing access flags; this defines whether the attribute’s value can be

read or written and the security requirements for each operation type
• The attribute value – an array of maximum 512 bytes.

The ATT does not interpret the UUIDs and values contained in the database. It only deals with data transfer
based on the attributes’ handles.

The GATT gives meaning to the attributes based on their UUIDs and groups them into Characteristics and
Services.

There are two possible ways of defining the GATT database:

• At compile-time (statically) or
• At runtime (dynamically)

7.1 Creating static GATT database
To define a GATT Database at compile-time, several macros are provided by the GATT_DB API. These macros
expand in many different ways at compilation, generating the corresponding Attribute Database on which the
Attribute Protocol (ATT) may operate.

This is the default way of defining the database.

The GATT Database definition is written in two files that are required to be added to the application project
together with all macro expansion files:

• gatt_db.h - contains the actual declaration of Services and Characteristics.
• gat_uuid128.h – contains the declaration of Custom UUIDs (16-byte wide); these UUIDs are given a user-

friendly name that is used in gatt_db.h file instead of the entire 16-byte sequence.

7.1.1 Declaring custom 128-bit UUIDs

All Custom 128-bit UUIDs are declared in the required file gatt_uuid128.h.

Each line in this file contains a single UUID declaration. The declaration uses the following macro:

• UUID128 (name, byte1, byte2, …, byte16)

The name parameter is the user-friendly handle that references this UUID in the gatt_db.h file.

The 16 bytes are written in the LSB-first order each one using the 0xZZ format.

Note: On some occasions, it is desired to reuse an 128-bit UUID declared in gatt_uuid128.h. The 16 byte array
is available through its friendly name and be accessed by including gatt_db_handles.h in the application. It is
strongly advised to use it only in read-only operations. For example:

(gatt_uuid128.h)

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
81 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

UID128(uuid_service_wireless_uart, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1,
 0x5C, 0xEE, 0xF4, 0x5E, 0xBA, 0x00, 0x01, 0xFF, 0x01)
(app.c)
#include "gatt_db_handles.h"
........
/* Start Service Discovery*/
BleServDisc_FindService(peerDeviceId, gBleUuidType128_c, (bleUuid_t*)
 &uuid_service_wireless_uart);

7.1.2 Declaring a service

There are two types of Services:

• Primary Services
• Secondary Services - these are only to be included by other Primary or Secondary Services

The Service declaration attribute has one of these UUIDs, as defined by the Bluetooth SIG:

• 0x2800 a.k.a. <<Primary Service>> - for a Primary Service declaration
• 0x2801 a.k.a. <<Secondary Service>> - for a Secondary Service declaration

The Service declaration attribute permissions are read-only and no authentication required. The Service
declaration attribute value contains the Service UUID. The Service Range starts from the Service declaration
and ends at the next service declaration. All the Characteristics declared within the Service Range are
considered to belong to that Service. For a more comprehensive list of SIG defied UUID values, check
ble_sig_defines.h.

7.1.2.1 Service declaration macros

The following macros are to be used for declaring a Service:

• PRIMARY_SERVICE (name, uuid16)
– Most often used.
– The name parameter is common to all macros; it is a universal, user-friendly identifier for the generated

attribute.
– The uuid16 is a 2-byte SIG-defined UUID, written in 0xZZZZ format.

• PRIMARY_SERVICE_UUID32 (name, uuid32)
– This macro is used for a 4-byte, SIG-defined UUID, written in 0xZZZZZZZZ format.

• PRIMARY_SERVICE_UUID128 (name, uuid128)
– The uuid128 is the friendly name given to the custom UUID in the gatt_uuid128.h file.

• SECONDARY _SERVICE (name, uuid16)
• SECONDARY_SERVICE_UUID32 (name, uuid32)
• SECONDARY _SERVICE_UUID128 (name, uuid128)

– All three are similar to Primary Service declarations.

7.1.2.2 Include declaration macros

Secondary Services are meant to be included by other Services, usually by Primary Services. Primary Services
may also be included by other Primary Services. The inclusion is done using the Include declaration macro:

• INCLUDE (service_name)
– The service_name parameter is the friendly name used to declare the Secondary Service.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
82 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

– This macro is used only for Secondary Services with a SIG-defined, 2-byte, Service UUID.
• INCLUDE_CUSTOM (service_name)

– This macro is used for Secondary Services that have either a 4-byte UUID or a 16-byte UUID.

The effect of the service inclusion is that the including Service is considered to contain all the Characteristics of
the included Service.

7.1.3 Declaring a characteristic

A Characteristic must only be declared inside a Service. It belongs to the most recently declared Service, so the
GATT Database must always begin with a Service declaration.

The Characteristic declaration attribute has the following UUID, as defined by the Bluetooth SIG:

• 0x2803 a.k.a. <<Characteristic>>

The Characteristic declaration attribute value contains:

• the Characteristic UUID
• the Characteristic Value ’s declaration handle
• the Characteristic Properties – Read, Write, Notify, and so on. (1 byte of flags)

The Characteristic Range starts from the Characteristic declaration and ends before a new Characteristic or a
Service declaration.

After the Characteristic declaration these follow:

• A Characteristic Value declaration (mandatory; immediately after the Characteristic declaration).
• Zero or more Characteristic Descriptor declarations.

7.1.3.1 Characteristic declaration macros

The following macros are used to declare Characteristics:

• CHARACTERISTIC (name, uuid16, properties)
• CHARACTERISTIC_UUID32 (name, uuid32, properties)
• CHARACTERISTIC _UUID128 (name, uuid128, properties)

See Service declaration for uuidXXX parameter explanation.

The properties parameter is a bit mask. The flags are defined in the gattCharacteristicPropertiesBitFields_t.

7.1.3.2 Declaring characteristic values

The Characteristic Value declaration immediately follows the Characteristic declaration and uses one of the
following macros:

• VALUE (name, uuid16, permissions, valueLength, valueByte1, valueByte2, …)
• VALUE_UUID32 (name, uuid32, permissions, valueLength, valueByte1, valueByte2, …)
• VALUE _UUID128(name, uuid128, permissions, valueLength, valueByte1, valueByte2, …)

– See Section 7.1.2 "Declaring a service" for description of the uuidXXX parameter.
– The permissions parameter is a bit mask, whose flags are defined in gattAttributePermissionsBitFields_t .
– The valueLength is the number of bytes to be allocated for the Characteristic Value. After this parameter,

exactly [valueLength] bytes follow in 0xZZ format, representing the initial value of this Characteristic.

These macros are used to declare Characteristic Values of fixed lengths.

Some Characteristics have variable length values. For those, the following macros are used:
UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
83 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• VALUE_VARLEN (name, uuid16, permissions, maximumValueLength, initialValueLength, valueByte1,
valueByte2, …)

• VALUE_UUID32_VARLEN (name, uuid32, permissions, maximumValueLength, initialValueLength,
valueByte1, valueByte2, …)

• VALUE_UUID128_VARLEN (name, uuid128, permissions, maximumValueLength, initialValueLength,
valueByte1, valueByte2, …)
– The number of bytes allocated for this Characteristic Value is maximumValueLength.
– The number of valueByteXXX parameters shall be equal to initialValueLength.

Obviously, initialValueLength is, at most, equal to maximumValueLength.

7.1.3.3 Declaring characteristic descriptors

Characteristic’s Descriptors are declared after the Characteristic Value declaration and before the next
Characteristic declaration.

The macros used to declare Characteristic Descriptors are very similar to those used to declare fixed-length
Characteristic Values:

• DESCRIPTOR (name, uuid16, permissions, descriptorValueLength, descriptorValueByte1,
descriptorValueByte2, …)

• DESCRIPTOR_UUID32 (name, uuid32, permissions, descriptorValueLength, descriptorValueByte1,
descriptorValueByte2, …)

• DESCRIPTOR_UUID128(name, uuid128, permissions, descriptorValueLength, descriptorValueByte1,
descriptorValueByte2, …)

A special Characteristic Descriptor that is used very often is the Client Characteristic Configuration Descriptor
(CCCD). This is the descriptor where clients write some of the bits to activate Server notifications and/or
indications. It has a reserved, 2-byte, SIG-defined UUID (0x2902), and its attribute value consists of only 1 byte
(out of which 2 bits are used for configuration, the other 6 are reserved).

Because the CCCD appears very often in Characteristic definitions for standard Bluetooth Low Energy profiles,
a special macro is used for CCCD declaration:

• CCCD (name)

This simple macro is basically equivalent to the following Descriptor declaration:

 DESCRIPTOR (name,
 0x2902,
 (gGattAttPermAccessReadable_c
 | gGattAttPermAccessWritable_c),
 2, 0x00, 0x00)

7.1.4 Static GATT database definition examples

The GAP Service must be present on any GATT Database. It has the Service UUID equal to 0x1800,
<<GAP Service>>, and it contains three read-only Characteristics, no authentication required: Device Name,
Appearance, and Peripheral Preferred Connection Parameters. These also have well defined UUIDs in the SIG
documents.

Most of the demos also include the optional GATT Security Levels characteristic, which defines the highest
security requirements of the GATT server when operating in a LE connection.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
84 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The definition for this Service is shown here:

PRIMARY_SERVICE(service_gap, 0x1800)
 CHARACTERISTIC(char_device_name, 0x2A00, (gGattCharPropRead_c))
 VALUE(value_device_name, 0x2A00, (gGattAttPermAccessReadable_c), 6,
 “Sensor”)
 CHARACTERISTIC(char_appearance, 0x2A01, (gGattCharPropRead_c))
 VALUE(value_appearance, 0x2A01, (gGattAttPermAccessReadable_c), 2,
 0xC2, 0x03)
 CHARACTERISTIC(char_ppcp, 0x2A04, (gGattCharPropRead_c))
 VALUE(value_ppcp, 0x2A04, (gGattAttPermAccessReadable_c), 8, 0x0A,
 0x00, 0x10, 0x00, 0x64, 0x00, 0xE2, 0x04)
 CHARACTERISTIC(char_security_levels, gBleSig_GattSecurityLevels_d,
 (gGattCharPropRead_c))
 VALUE(value_security_levels, gBleSig_GattSecurityLevels_d,
 (gPermissionFlagReadable_c), 2, 0x01, 0x01)

Another often encountered Service is the Scan Parameters Service:

PRIMARY_SERVICE(service_scan_parameters, 0x1813)
 CHARACTERISTIC(char_scan_interval_window, 0x2A4F,
 (gGattCharPropWriteWithoutRsp_c))
 VALUE(value_scan_interval_window, 0x2A4F,
 (gGattAttPermAccessWritable), 4, 0x00, 0x00, 0x00, 0x00)
 CHARACTERISTIC(char_scan_refresh, 0x2A31, (gGattCharPropRead_c |
 gGattCharPropNotify_c))
 VALUE(value_scan_refresh, 0x2A31, (gGattAttPermAccessReadable_c), 1,
 0x00) CCCD(cccd_scan_refresh)

Note: All “user-friendly” names given in declarations are statically defined as enum members, numerically
equal to the attribute handle of the declaration. This means that one of those names can be used in code
wherever an attribute handle is required as a parameter of a function if gatt_db_handles.h is included in the
application source file. For example, to write the value of the Scan Refresh Characteristic from the application-
level code, use these instructions:

#include "gatt_db_handles.h"
...
uint8_t scan_refresh_value = 0x12;
GattDb_WriteAttribute(char_scan_refresh, 1, &scan_refresh_value);

For static database declarations, the 'attribute handle' is equal to the line number in the gatt_fb.h file, where
the attribute is defined.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
85 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

7.2 Creating a GATT database dynamically
To define a GATT Database at runtime, the gGattDbDynamic_d macro must be defined in app_preinclude.h with
the value equal to 1.

Then, the application must use the APIs provided by the gatt_db_dynamic.h interface to add and remove
Services and Characteristics as needed.

See Section 7.1 "Creating static GATT database" for a detailed description of Service and Characteristic
parameters.

7.2.1 Memory considerations

The GATT Dynamic database module internally manages the memory allocation for the database. If the
gMemManagerLightExtendHeapAreaUsage define is set to 1 in the desired application, the whole available
heap is used. In such as case, the user does not have to allocate space for the dynamic database. If this is
not done, the user only needs to make sure that the MinimalHeapSize_c define is set to a high enough
value considering all attributes and attribute values they want to add to the database, as well as other memory
requirements the application might have.

Internally, two buffers are used by the dynamic database module: an attribute buffer and a value buffer.
The attribute buffer size increases with the addition of each attribute to the database. The value buffer size
increases depending on the UUID type and value lengths required by the application. The two buffers start with
a minimum size and are reallocated whenever new requests to add entries are received and there is not enough
available memory left. If the user removes these entries from the database, the memory reserved for those
entries is not freed, but shifted, leaving room for new entries. Thus, an add operation after a remove operation
might not necessarily reallocate the buffer if the new entries fit. The two buffers used by the Dynamic database
module will not be available to the application until the user releases the database.

7.2.2 Initialization and release

Before anything can be added to the database, it must be initialized with an empty collection of attributes.

The GattDbDynamic_Init() API is automatically called by the GattDb_Init() implementation provided in the
gatt_database.c source file. Application-specific code does not need to call this API again, unless at some point
it destroys the database with GattDb_ReleaseDatabase().

7.2.3 Adding services

The APIs that can be used to add Services are self-explanatory:

• GattDbDynamic_AddPrimaryServiceDeclaration
– The Service UUID is specified as parameter.

Memory requirements: one entry in the attribute buffer and UUID size in value buffer.
• GattDbDynamic_AddSecondaryServiceDeclaration

– The Service UUID is specified as parameter.
Memory requirements: one entry in the attribute buffer and UUID size in value buffer.

• GattDbDynamic_AddIncludeDeclaration
– The Service UUID and handle range are specified as parameters.

Memory requirements: one entry in the attribute buffer and 6 bytes in value buffer.

The functions have an optional out parameter pOutHandle. If its value is not NULL, the execution writes a 16-bit
value in the pointed location representing the attribute handle of the added declaration. The application can use
this handle as parameter in few GattDbApp APIs or in the Service removal functions.

At least one Service must be added before any Characteristic.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
86 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

7.2.4 Adding characteristics and descriptors

The APIs for adding Characteristics and Descriptors are enumerated below:

• GattDbDynamic_AddCharacteristicDeclarationAndValue
– The Characteristic UUID, properties, access permissions, and initial value are specified as parameters.

• GattDbDynamic_AddCharacteristicDeclarationWithUniqueValue
– Multiple calls to this API allocate a unique 512-byte value buffer as an optimization for application that deal

with large value buffers that do not always need to be stored separately.
• GattDbDynamic_AddCharacteristicDescriptor

– The Descriptor UUID, access permissions and initial value are specified as parameters.
• GattDbDynamic_AddCccd

– Shortcut for a CCCD.

Characteristics and descriptors are automatically added at the end of the database. Thus, a service declaration
should be followed by all desired characteristic and descriptor definitions before adding a new service to the
database.

7.2.5 Removing services and characteristics

To remove a Service or a Characteristic, the following APIs may be used, both of which only require the
declaration handle as parameter:

• GattDbDynamic_RemoveService
• GattDbDynamic_RemoveCharacteristic

7.3 Gatt caching

7.3.1 Service change feature

The service changed feature applies to GATT servers and supports the service changed characteristic,
dynamic databases, and handle value indications. The GATT clients that require to be notified for structural
modifications on the database should write the CCCD of the Service Changed Characteristic on the server. The
value of the Service Changed characteristic is represented by 2 handle values for the handle range affected by
the modifications.

The changes that trigger a server database modification are represented by the following API calls:

• GattDbDynamic_AddPrimaryServiceDeclaration
• GattDbDynamic_AddSecondaryServiceDeclaration
• GattDbDynamic_AddIncludeDeclaration
• GattDbDynamic_AddCharacteristicDeclarationAndValue
• GattDbDynamic_AddCharDescriptor
• GattDbDynamic_AddCccd
• GattDbDynamic_RemoveService
• GattDbDynamic_RemoveCharacteristic

Those GATT server API calls update two internal handles to memorize the minimum and maximum range
affected by the change.

After the GATT server database update is done, the application must call the
GattDbDynamic_EndDatabaseUpdate() API. After this, a Service Changed indication is internally sent to
each connected peer that has enabled these indications. The indication contains the handle range affected by
the change.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
87 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

. For bonded devices with whom the server is not currently in an active connection, the changes are buffered on
the server and the peers are notified upon reconnection.

7.3.2 Robust caching

Robust caching is a feature where the server sends an error response to the client if the server does not
consider the client to be aware of a database structural change. A server supporting robust caching provides
the Client Supported Features, Database Hash, and Service Changed characteristics. To indicate support for
robust caching, clients should write the robust caching bit (bit 0) of the Client Supported Features characteristic
on the server. An example of the GAP service definition for a server with robust caching support is the following:

• PRIMARY_SERVICE(service_gatt, gBleSig_GenericAttributeProfile_d)
• CHARACTERISTIC(char_service_changed, gBleSig_GattServiceChanged_d, (gGattCharPropIndicate_c))
• VALUE(value_service_changed, gBleSig_GattServiceChanged_d, (gPermissionNone_c), 4, 0x01, 0x00,

0xFF, 0xFF)
• CCCD(cccd_service_changed)
• CHARACTERISTIC(char_client_supported_features, gBleSig_GattClientSupportedFeatures_d,

 (gGattCharPropRead_c | gGattCharPropWrite_c))
• VALUE(value_client_supported_features, gBleSig_GattClientSupportedFeatures_d,

 (gPermissionFlagReadable_c | gPermissionFlagWritable_c), 8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00)

• CHARACTERISTIC(char_database_hash, gBleSig_GattDatabaseHash_d, (gGattCharPropRead_c))
• VALUE(value_database_hash, gBleSig_GattDatabaseHash_d, (gPermissionFlagReadable_c), 16, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

The Client Supported Features characteristic should be declared as an array. The array size is equal to the
maximum number of connections, which can be active at one time, so that each possible peer can have its
own value. The Server Supported Features characteristic value is automatically written by the Host to indicate
robust caching support when appropriate. The Database Hash characteristic value is a 128-bit unsigned integer
number where the computed hash value is written.

In order to enable the Robust Caching feature, the gGattCaching_d define should be enabled in the file
app_preinclude.h. In order to enable automatic Host support for Robust Caching, the gGattAutomatic
RobustCachingSupport_d define should also be enabled. This includes writing the Client Supported Features
characteristic, writing the CCCD of the Service Changed characteristic, and reading the Database Hash after
reconnecting with a previously bonded peer to check for new changes. If this define is not enabled, then it is up
to the application to read and write all necessary characteristic for Robust Caching support.

The client state is kept on the server using the following enum:

typedef enum
{
gGattClientChangeUnaware_c = 0x00U, /*!< Gatt client state */
gGattClientStateChangePending_c = 0x01U, /*!< Gatt client state */
gGattClientChangeAware_c = 0x02U, /*!< Gatt client state */
} gattCachingClientState_c;

The initial state of a client without a trusted relationship is change-aware. The state of a client with a trusted
relationship remains unchanged from the previous connection. However, in cases where the database has been
updated since the last connection, the initial state is change-unaware. When a database update occurs, all
connected clients become change unaware.

If a change-unaware client sends an ATT command, the server ignores it. For ATT requests received
from a change-unaware client, the server sends an error response with the error code set to
gAttErrCodeDatabaseOutOfSync_c. The server should also not send indications and notifications to change

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
88 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

unaware clients, except for the Service Changed indication. The state of a client is verified by the GATT server
before executing each command, request or sending any notifications or indications.

The following PDU types are an exception to this rule and do not generate an
gAttErrCodeDatabaseOutOfSync_c error code:

• ATT_FIND_INFORMATION_REQ
• ATT_FIND_BY_TYPE_VALUE_REQ
• ATT_READ_BY_GROUP_TYPE_REQ
• ATT_EXECUTE_WRTIE

For a change unaware client to become change aware again, one of the following must happen:

• The client receives and confirms a Service Changed Indication.
• The server, upon receiving a request from a change unaware client, sends the client a response with the error

code set to Database Out Of Sync and then the server receives another ATT request from the client.
• The change unaware client reads the Database Hash characteristic and then the server receives another ATT

request from the client.

The function GattDb_ComputeDatabaseHash() is used by the server to compute the hash value and save its
value in the database. The computation is done when a read request for the database hash characteristic is first
received from a peer GATT client for dynamic databases.

For static databases, hash computation is disabled by default. If you have a static database and want
to compute the database hash, then declare the following define to TRUE in app_preinclude.h:
gGattDbComputeHash_d. By doing this, the hash value is computed during the host initialization. The value is
written directly to the database as characteristic and it can be viewed in the memory, as see in the image below.
Since static databases do not change in structure over time, this value remains constant, so it can be saved
separately and written manually to memory if needed. See Figure 10.

Figure 10. Memory view of the Database Hash characteristic

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
89 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

On the client side, the GattClient_GetDatabaseHash() function is used to read the hash value from a peer GATT
server. If the gGattAutomaticRobustCachingSupport_c define is enabled, then the following steps are executed
automatically:

• Writing the Client Supported Features characteristic value to indicate robust caching support – set BIT0 to 1.
• Write the CCCD of the Service Changed characteristic.
• Read the initial value of the Database Hash characteristic and store it locally.

Otherwise, just the read request for the Database Hash characteristic is sent to the peer.

The following arrays and variables are used for the implementations of the robust caching and service changed
features (declared in ble_globals.c):

/* Service changed indication buffer */
 gattHandleRange_t gServiceChangedIndicationStorage[gMaxBondedDevices_c];

/* client saved values for service changed characteristic and CCCD handles */
 uint16_t mActiveServiceChangedCharHandle[gAppMaxConnections_c] = {gGattDbInvalidHandle_d};
 uint16_t mServiceChangedCharHandle[gMaxBondedDevices_c] = {gGattDbInvalidHandle_d};
 uint16_t mActiveServiceChangedCCCDHandle[gAppMaxConnections_c] = {gGattDbInvalidHandle_d};

/* server values for its own service changed characteristic and CCCD handles */
 uint16_t mServerServiceChangedCharHandle;
 uint16_t mServerServiceChangedCCCDHandle;

/* client state information for bonded and active clients */
 gattCachingClientState_c gGattClientState[gMaxBondedDevices_c] = {gGattClientChangeAware_c};
 gattCachingClientState_c gGattActiveClientState[gAppMaxConnections_c] =
 {gGattClientChangeAware_c};

/* Database hash values - the client needs a hash value for each possible peer */
 uint8_t mGattActiveServerDatabaseHash[gGattDatabaseHashSize_c * gAppMaxConnections_c] = {0};
 uint8_t mGattServerDatabaseHash[gGattDatabaseHashSize_c * gMaxBondedDevices_c] = {0};

/* client supported features handles for active gatt servers */
 uint16_t gGattActiveClientSupportedFeaturesHandles[gAppMaxConnections_c] =
 {gGattDbInvalidHandle_d};

/* client supported features information for bonded gatt clients */
 uint8_t gGattClientSupportedFeatures[gMaxBondedDevices_c] = {0U};

/* index of the database hash characteristic in the database */
 uint32_t mServerDatabaseHashIndex = gGattDbInvalidHandleIndex_d;

/* index of the client supported features characteristic in the database */
 uint32_t mServerClientSupportedFeatureIndex = gGattDbInvalidHandleIndex_d;

It is up to the application to save a local copy of the information from the server’s database and to initiate
service discovery only on the first connection or when it is informed of a change by the peer using Service
Changed and Robust Caching.

If the gGattAutomaticRobustCachingSupport_c define is not set, it is up to the application to check the Server
Supported Features characteristic value on the peer, to write the Client Supported Features characteristic value
and to write the Service Changed CCCD.

Two new GATT procedures are introduced as part of the Robust Caching feature. Both should be treated
according to the application needs in the GATT procedure callback of the application.

• gGattProcSignalServiceDiscoveryComplete_c – informs the application that the service discovery procedure
has finished after reading the Database Hash value using the read using characteristic UUID procedure.
The application procedure callback should call BleServDisc_Finished() on this event when robust caching is
supported.

• gGattProcUpdateDatabaseCopy_c – informs the application that its database copy is no longer up to date
and service discovery should be reperformed. Used when the client received an error response with the

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
90 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

gAttErrCodeDatabaseOutOfSync_c opcode, when the local database hash value is found to be out of sync
with the one on the server, or when a service changed indication is received from the server.

If service discovery is performed using our ble_service_discovery module, then the application should wait
for the gDiscoveryFinished_c event before initiating its own GATT procedures. The application should also
make sure to not initiate a second GATT procedure which requires a response from the peer before receiving a
response to the first request it made.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
91 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

8 Creating a Custom Profile

This chapter describes how the user can create customizable functionality over the Bluetooth Low Energy Host
Stack by defining profiles and services. The Temperature Profile, used by the Temperature Sensor and Collector
applications, is used as a reference to explain the steps of building custom functionality.

8.1 Defining custom UUIDs
The first step when defining a new service included in a profile is to define the custom 128-bit UUID for the
service and the included characteristics. These values are defined in gatt_uuid128.h, which is located in the
application folder. For example, the Temperature Profile uses the following UUID for the service:

/* Temperature */
UUID128(uuid_service_temperature, 0xfb ,0x34 ,0x9b ,0x5f ,0x80 ,0x00
,0x00 ,0x80 ,0x00 ,0x10 ,0x00 ,0x02 ,0x00 ,0xfe ,0x00 ,0x00)

The definition of the services and characteristics are made in gattdb.h, as explained in Section 7 "Creating
GATT database". For more details on how to structure the database, see Section 9 "Application Structure".

8.2 Creating service functionality
All defined services in the SDK have a common template which helps the application to act accordingly.

The service locally stores the device identification for the connected client. This value is changed on
subscription and non-subscription events.

/*! Temperature Service - Subscribed Client*/
static deviceId_t mTms_SubscribedClientId;

The service is initialized and changed by the application through a service configuration structure. It usually
contains the service handle, initialization values for the service (for example, the initial temperature for the
Temperature Service) and in some cases user-specific structures that can store saved measurements (for
example, the Blood Pressure Service). Below is an example for the custom Temperature Service:

/*! Temperature Service - Configuration */
typedef struct tmsConfig_tag
{
 uint16_t serviceHandle ;
 int16_t initialTemperature ;
} tmsConfig_t ;

The initialization of the service is made by calling the start procedure. The function requires as input a pointer to
the service configuration structure. This function is usually called when the application is initialized. It resets the
static device identification for the subscribed client and initializes both dynamic and static characteristic values.
An example for the Temperature Service (TMS) is shown below:

bleResult_t Tms_Start (tmsConfig_t *pServiceConfig)
{
 mTms_SubscribedClientId = gInvalidDeviceId_c;
 return Tms_RecordTemperatureMeasurement (pServiceConfig-> serviceHandle ,
 pServiceConfig->
 initialTemperature);
}

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
92 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The service subscription is triggered when a device connects to the server. It requires the peer device
identification as an input parameter to update the local variable. On disconnect, the unsubscribe function is
called to reset the device identification. For the Temperature Service:

bleResult_t Tms_Subscribe (deviceId_t deviceId)
{
 mTms_SubscribedClientId = deviceId;
 return gBleSuccess_c;
}
bleResult_t Tms_Unsubscribe (void)
{
 mTms_SubscribedClientId = gInvalidDeviceId_c;
 return gBleSuccess_c;
}

Depending on the complexity of the service, the API implements additional functions. For the Temperature
Service, there is only a temperature characteristic that is notifiable by the server. The API implements the record
measurement function which saves the new measured value in the GATT database and send the notification
to the client device if possible. The function needs the service handle and the new temperature value as input
parameters:

bleResult_t Tms_RecordTemperatureMeasurement (uint16_t serviceHandle, int16_t
 temperature)
{
 uint16_t handle;
 bleResult_t result;
 bleUuid_t uuid = Uuid16(gBleSig_Temperature_d);
 /* Get handle of Temperature characteristic */
 result = GattDb_FindCharValueHandleInService(serviceHandle,
 gBleUuidType16_c, &uuid, &handle);
 if (result != gBleSuccess_c)
 return result;
 /* Update characteristic value */
 result = GattDb_WriteAttribute(handle, sizeof(uint16_t), (uint8_t
 *)&temperature);
 if (result != gBleSuccess_c)
 return result;
 Hts_SendTemperatureMeasurementNotification(handle);
 return gBleSuccess_c;
}

To accommodate some use cases where the service is reset, the stop function is called. The reset also implies
a service unsubscribe. Below is an example for the Temperature Service:

bleResult_t Tms_Stop (tmsConfig_t *pServiceConfig)
{
 return Tms_Unsubscribe();
}

8.3 GATT client interactions
The client side of the service, which includes the service discovery, notification configuration, attribute reads
and others are left to be handled by the application. The application calls the GATT client APIs and reacts
accordingly. The only exception for this rule is that the service interface declares the client configuration
structure. This structure usually contains the service handle and the handles of all the characteristic values and

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
93 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

descriptors discovered. Additionally it can contain values that the client can use to interact with the server. For
the Temperature Service client, the structure is as follows:

/*! Temperature Client - Configuration */
typedef struct tmcConfig_tag
{
 uint16_t hService;
 uint16_t hTemperature ;
 uint16_t hTempCccd ;
 uint16_t hTempDesc ;
 gattDbCharPresFormat_t tempFormat ;
} tmcConfig_t ;

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
94 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

9 Application Structure

This chapter describes the organization of the Bluetooth Low Energy demo applications that can be found in
the SDK. By familiarizing with the application structure, the user is able to quickly adapt its design to an existing
demo or create a new application.

The Temperature Sensor application is used as a reference to showcase the architecture.

9.1 Folder structure
The Figure 11 shows the application folder structure.

Figure 11. Application Folder structure in workspace

The app folder follows a specific structure which is recommended for any application developed using the
Bluetooth Low Energy Host Stack:

• The common group contains the application framework shared by all profiles and demo applications:
– Bluetooth Low Energy Connection Manager

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
95 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

– Bluetooth Service Discovery Manager
– Bluetooth Low Energy Stack and Task Initialization and Configuration
– GATT Database

• The source group contains code specific to the Temperature Sensor application
In the following examples, app.c is used as a placeholder for the main application source file. In the case of
Temperature Sensor, it is temperature_sensor.c.
The source group also contains files which aid with the handling of Host events and framework related
functionality. These are: app_con.c/app_con.h, app_advertiser.c, app_connection.c, app_scanner.c,
app_nvm.c, and app_lowpower.c. These files do not allow the application to implement its own state
machines, unless application-specific functionality is required. For example, the application is restricted from
setting advertising parameters and starting advertising, unless certain application-specific functionalities, such
as UI related updates are required.

The bluetooth folder/group contains:

• The controller/interface, host/interface, and host/config. These are public interfaces and configuration files
for the Controller and the Host. For the Host, functionality is included in the library located in the host/lib
subfolder. The folder is not shown in the IAR project structure, but added into the toolchain linker settings
under the library category.

• profiles contains profile-specific code; it is used by each demo application of standard profiles.

The framework and component folders/groups contain framework components used by the demo applications.
For additional information, see the Connectivity Framework Reference Manual.

The freertos folder contains sources for the supported operating system.

9.2 Application main framework
The Application Main module contains common code used by all the applications, such as:

• The Main Task
• Messaging framework between the Bluetooth LE Host Stack Task and the Application Task

9.2.1 Start task

The Start Task (start_task) is the first task created by the operating system and is also the one that initializes
the rest of the system. It initializes framework components (Memory Manager, Timers Manager etc.) and it
calls BluetoothLEHost_AppInit from app.c, which is used to initialize the Bluetooth LE Host Stack as well as
peripheral drivers specific to the implemented application.

The function calls BluetoothLEHost_HandleMessages, which represents the Application Task and is used to
process events and messages from the Host Stack.

The stack size and priority of the main task are defined in fsl_os_abstraction_config.h:

#ifndef gMainThreadStackSize_c
#define gMainThreadStackSize_c 1024
#endif
#ifndef gMainThreadPriority_c
#define gMainThreadPriority_c 7
#endif

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
96 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

9.2.2 Application messaging

The module contains a wrapper that is used to create messages for events generated by the Bluetooth LE Host
Stack in the Host Task context. The wrapper also sends them to be processed by the application in the context
of the Application Task.

For example, connection events generated by the Host are received by App_ConnectionCallback.
The function creates a message, places it in the Host to Application queue and signals the Application
with gAppEvtMsgFromHostStack_c. The Application Task de-queues the message and calls
App_HandleHostMessageInput, which calls the corresponding callback implemented the application-specific
code (app.c), in this example: BleApp_ConnectionCallback.

It is strongly recommended that the application developer uses the app.c module to add custom code on this
type of callbacks.

9.3 Bluetooth LE Connection Manager
The connection manager is a helper module that contains common application configurations and interactions
with the Bluetooth LE Host Stack. It implements the following events and methods:

• Host Stack GAP Generic Event
• Host Stack Connection Event on both GAP Peripheral and GAP Central configuration
• Host Stack configuration for GAP Peripheral or GAP Central

9.3.1 GAP generic event

The GAP Generic Event is triggered by the Bluetooth LE Host Stack and sent to the application via the generic
callback. Before any application-specific interactions, the Connection Manager callback is called to handle
common application events, such as device address storage.

void BleApp_GenericCallback (gapGenericEvent_t * pGenericEvent)
{
 /* Call Bluetooth Low Energy Conn Manager */
 BleConnManager_GenericEvent(pGenericEvent);
 switch (pGenericEvent-> eventType)
 {
 ...
 }
}

In the BleConnManager_GenericEvent function, the local keys are generated.

• The local LTK, IRK, and CSRK as well as EDIV and RAND are obtained hashing over the board’s UID and
stored in RAM as plain-text every time the gInitializationComplete_c event is received.

• In Advanced Secure mode, local IRK and CSRK are generated using the EdgeLock Secure Enclave and
stored into a dedicated NVM data set as ELKE blobs (40 bytes blob encrypted using unique die key) on the
first gInitializationComplete_c event received.

The NBU Decryption key for IRK is generated and distributed to the NBU over the private key bus and the
EIRK blob (16 bytes blob which can be decrypted only by NBU hardware using NBU Decryption key for
IRK) is generated from the IRK ELKE blob and stored in RAM to be used for controller privacy on every
gInitializationComplete_c event received. For the host privacy the ELKE IRK blob is used instead. For
details, refer to the section "Advanced security capabilities".

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
97 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

9.3.2 GAP configuration

The GAP Central or Peripheral Configuration is used to create common configurations (such as setting
the public address, registering the security requirements, adding the addresses of bonded devices in the
Controller Filter Accept List), which can be customized by the application afterwards. It is called inside the
BluetoothLEHost_Initialized callback function, before any application-specific configuration, as shown in the
example code below.

static void BluetoothLEHost_Initialized()
{
 /* Set common GAP configuration */
 BleConnManager_GapCommonConfig();
 ...
}

9.3.3 GAP connection event

The GAP Connection Event is triggered by the Host Stack and sent to the application via the connection
callback. Before any application-specific interactions, the Connection Manager callback is called to handle
common application events, such as device connect, disconnect or pairing-related requests. It is called inside
the registered connection such as shown below:

static void BleApp_ConnectionCallback (deviceId_t peerDeviceId,
 gapConnectionEvent_t * pConnectionEvent)
{
 /* Connection Manager to handle Host Stack interactions */
 BleConnManager_GapPeripheralEvent(peerDeviceId, pConnectionEvent);
 switch (pConnectionEvent-> eventType)
 {
 ...
 }
}

It is strongly recommended that the application developer uses the app.c module to add custom code.

9.3.4 Privacy

To enable or disable Privacy, the following APIs may be used:

bleResult_t
 BleConnManager_EnablePrivacy(void);

bleResult_t
 BleConnManager_DisablePrivacy(void);

The function BleConnManager_EnablePrivacy calls BleConnManager_ManagePrivacyInternal after checking if
the privacy is enabled.

 static bleResult_t
 BleConnManager_ManagePrivacyInternal
 (bool_t bCheckNewBond);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
98 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

If the privacy feature is supported (gAppUsePrivacy_d = 1), the Connection Manager activates Controller
Privacy or Host Privacy depending on the board capabilities.

The bCheckNewBond is a boolean that tells the Manager whether it should check or not if a bond between the
devices already exists.

In order to update the identity information after a bond is added or removed privacy should be disabled and
enabled. For pairing with bonding this is done automatically in ble_conn_manager. In case the application adds
or removes a bond through the GAP API, it should also disable and enable privacy.

9.4 GATT database
The gatt_db contains a set of header files grouped in the macros subfolder. These macros are used for static
code generation for the GATT Database by expanding the contents of the gatt_db.h file in different ways.
Section 7 "Creating GATT database" explains how to write the gatt_db.h file using user-friendly macros that
define the GATT database.

At application compile time, the gatt_database.c file is populated with enumerations, structures, and initialization
code used to allocate and properly populate the GATT database. In this way, the gattDatabasearray and the
gGattDbAttributeCount_c variable (see Section 2.2 "GATT database") are created and properly initialized.

Note: Do not modify any of the files contained in the gatt_db folder and its subfolder.

To complete the GATT database initialization, this demo application includes the required gatt_db.h and
gatt_uuid128.h files in its specific application folder, along with other profile-specific configuration and code
files.

9.5 RTOS specifics

9.5.1 Operating system selection

The SDK offers different projects for each supported operating system (FreeRTOS OS) and for BareMetal
configuration. To switch between systems, the user needs to switch the workspace.

The RTOS source code is found in the SDK package and is linked in the workspace in the freertos virtual folder,
as shown in Figure 12:

Figure 12.  Location of FreeRTOS source code in workspace

9.5.2 Bluetooth LE Host task configuration

Application developers are provided with two files for RTOS task initialization:

• ble_host_task_config.h, and ble_host_tasks.c for the Host.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
99 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Reusing these files is recommended because they perform all the necessary RTOS-related work. The
application developer must only modify the macros from *_config.h files whenever tasks need a bigger stack
size or different priority settings. The new values should be overridden in the app_preinclude.h file.

9.6 Board configuration
The configuration files for the supported boards can be found in the board folder, as shown in Figure 13. The
files contain clock and pin configurations that are used by the drivers. The user can customize the board files by
modifying the configuration of the pins and clock source according to his design.

Figure 13. Board configuration files

9.7 Bluetooth Low Energy initialization
The ble_init.h and ble_init.c files contain the declaration and the implementation of the following function:

bleResult_t Ble_Initialize
(
 gapGenericCallback_t gapGenericCallback
)
{
#if defined(gUseHciTransportDownward_d) && gUseHciTransportDownward_d
 /* HCI Transport Init */
 if (gHciSuccess_c != Hcit_Init(Ble_HciRecvFromIsr))
 {
 return gHciTransportError_c;
 }
#if defined(KW45B41Z83_SERIES) || \
 defined(KW45B41Z82_SERIES) || \
 defined(K32W1480_SERIES)
 /*
 * Set BD Address in Controller. Must be done after HCI init
 * and before Host init.
 */
 Ble_SetBDAddr();
#endif /* KW45B41Z83_SERIES */
 /* Check for available memory storage */
 if (!Ble_CheckMemoryStorage())
 {
 return gBleOutOfMemory_c;
 }
 /* Bluetooth Low Energy Host Tasks Init */

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
100 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 if (KOSA_StatusSuccess != Ble_HostTaskInit())
 {
 return gBleOsError_c;
 }
 /* Bluetooth Low Energy Host Stack Init */
 return Ble_HostInitialize(gapGenericCallback, Hcit_SendPacket);
#elif defined(gUseHciTransportUpward_d) && gUseHciTransportUpward_d
#else /* gUseHciTransportUpward_d */
#endif /* gUseHciTransportUpward_d */
}

Note: This function should be used by your application because it correctly performs all the necessary
Bluetooth Low Energy initialization.

Step-by-step analysis is provided below:

1. First, the HCI interface is initialized by calling Hcit_Init. This initializes communication between the Host and
the Controller.

2. After setting the BD address into the Controller (Ble_SetBDAddr) and performing memory validation checks
(Ble_CheckMemoryStorage), the Host task is initialized by calling Ble_HostTaskInit.

3. Finally the Ble_HostInitialize function initializes the Host with the transport packet transmit function used as
the hciHostToControllerInterface_t parameter.

9.8 Bluetooth Low Energy Host Stack configuration
The Bluetooth LE Host Stack libraries are found in the middleware/wireless/bluetooth/host/lib
folder. The user should add the best matching library for its use case to the linker options of its project.

For example, the temperature sensor uses the Peripheral Host Stack library, as shown in Figure 14:

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
101 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 14. Linker configuration for Temperature Sensor

9.9 Profile configuration
The implemented profiles and services are located in middleware/wireless/bluetooth/profiles folder. The
application links every service source file and interface it needs to implement the profile. For example, for the
Temperature Sensor the tree looks as shown Figure 15:

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
102 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 15. Temperature Sensor profile-related files

The Temperature Profile implements the custom Temperature service, the Battery, and Device Information
services.

9.9.1 Application code

The application folder contains the following modules:

• app.c and app.h. This module stores the application-specific functionality (APIs for specific triggers, handling
of peripherals, callbacks from the stack, handling of low power, and so on).

Before initializing the Bluetooth LE Host Stack, the start task calls BluetoothLEHost_AppInit. This function
initializes application specific functionality before initializing the Bluetooth LE Host Stack by calling
BluetoothLEHost_Init.

After the stack is initialized, the BluetoothLEHost_Initialized callback is called. The function contains
configurations made to the Bluetooth LE Host Stack after the initialization. This includes registering callbacks,
setting security for services, starting services, allocating timers, adding devices to the Filter Accept List, and so
on. For example, the Temperature Sensor configures the following:

static void BluetoothLEHost_Initialized(void)
{
 /* Common GAP configuration */
 BleConnManager_GapCommonConfig();

 /* Register for callbacks*/
 (void)App_RegisterGattServerCallback(BleApp_GattServerCallback);

 mAdvState.advOn = FALSE;

 /* Start services */
 SENSORS_TriggerTemperatureMeasurement();
 (void)SENSORS_RefreshTemperatureValue();
 /* Multiply temperature value by 10. SENSORS_GetTemperature() reports
 temperature
 value in tenths of degrees Celsius. Temperature characteristic value is
 degrees
 Celsius with a resolution of 0.01 degrees Celsius (GATT Specification
 Supplement v6). */
 tmsServiceConfig.initialTemperature = (int16_t)(10 *
 SENSORS_GetTemperature());
 (void)Tms_Start(&tmsServiceConfig);

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
103 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 basServiceConfig.batteryLevel = SENSORS_GetBatteryLevel();
 (void)Bas_Start(&basServiceConfig);
 (void)Dis_Start(&disServiceConfig);

 /* Allocate application timer */
 (void)TM_Open(appTimerId);

 AppPrintString("\r\nTemperature sensor -> Press switch to start advertising.
\r\n");
}

To start the application functionality, BleApp_Start() function is called. This function usually contains code
to start advertising for sensor nodes or scanning for central devices. In the example of the Temperature Sensor,
the function is the following:

static void BleApp_Start(void)
{
 Led1On();

 if (mPeerDeviceId == gInvalidDeviceId_c)
 {
 /* Device is not connected and not advertising */
 if (!mAdvState.advOn)
 {
 /* Set advertising parameters, advertising to start on
 gAdvertisingParametersSetupComplete_c */
 BleApp_Advertise();
 }
 }
 else
 {
 /* Device is connected, send temperature value */
 BleApp_SendTemperature();
 }
}

• app_config.c. This file contains data structures that are used to configure the stack.

This includes advertising data, scanning data, connection parameters, advertising parameters, SMP keys,
security requirements, and so on.

• app_preinclude.h.

This header file contains macros to override the default configuration of any module in the application. It is
added as a preinclude file in the preprocessor command line in IAR, as shown in Figure 16:

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
104 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 16. Preinclude file

• gatt_db.h and gatt_uuid128.h. The two header files contain the definition of the GATT database and the
custom UUIDs used by the application. See Section 7 "Creating GATT database" for more information.

9.10 Multiple connections
Applications can be configured to support multiple connections. To allow multiple connections, the
gAppMaxConnections_c must be set to a value up to the maximum number of connections (this value is chip-
specific). Refer to the chip documentation for the supported number of connections.

The application can save information about the peer devices it connects to according to the value of
gAppMaxConnections_c. The Bluetooth Low Energy profile associated with the application use case must be
instantiated to support the use of its functionality for each peer device. When handling multiple connections,
the applications can behave as either the GAP central, GAP peripheral, or both at the same time. It is up to the
application code to decide whether to start the advertising or scanning before creating the next connection. The
supported combinations enable a device to connect as a peripheral to multiple centrals, as a central to multiple
peripherals, or for it to be a central for some peers and a peripheral to others. The demo applications provide
this functionality as an example of exercising multiple connection support. In such applications, the GAP role
can be changed from central to peripheral and the information is saved for each peer device.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
105 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

9.11 Bluetooth address generation
BD_ADDR is represented by 48 bits that uniquely identify a device and consist of a 24-bit OUI (Organizationally
Unique Identifier) and a 24-bit random part that varies between devices. There are multiple options of storing
and using the BD_ADDR. Depending on the chip, it may be read from a device specific register (if supported),
from the global hardware parameters stored in the flash, or generated randomly based on the processor-unique
identifier. The demo applications provide a combination of the last two options. The Ble_SetBDAddr function is
called during the initialization process, after initializing HCI and before initializing the Bluetooth LE Host Stack.
The global hardware parameters are read from the flash. If a useful value is found, it is used as the BD address.
If the found value is all 0xFFs, an address is generated by concatenating the OUI configured at compile time
with three randomly generated bytes. The result is stored in the hardware parameters for future use and then
set into the Controller. The Bluetooth LE Host Stack uses little-endian format to represent all addresses, in
compliance with the Bluetooth Core Specification.

9.12 Repeated attempts
Applications can be configured to enable protection against repeated Pairing Requests/Peripheral Security
Requests coming from the same device. This is to prevent an intruder from repeating the pairing process with a
large number of different keys in order to extract information about the local device’s private key. If this feature
is enabled, after a pairing procedure fails, another attempt to pair coming from the same device is allowed only
after a specific time period has passed. For each failure, the waiting period doubles up until a maximum period.

The following app_preinclude.h macros support this feature:

• gRepeatedAttempts_d
– Set to 1 to enable the feature. By default, it is disabled (0).

• gRepeatedAttemptsNoOfDevices_c
– Number of remote devices to keep track of. By default, the value is 4.
– If a new device needs to be added and the list is full, one of the oldest entries will be replaced.

• gRepeatedAttemptsTimeoutMin_c
– Minimum waiting period in seconds – default 10.

• gRepeatedAttemptsTimeoutMax_c
– Maximum waiting period in seconds – default 640. The waiting period doubles after each failed pairing with

the same device.

9.13 Advanced Secure Mode (kw45_k32w)
This section describes the advanced security capabilities of the Bluetooth LE Host Stack which are available on
the KW45/K32W1 platform via the EdgeLock Secure Enclave (ELKE).

The security capabilities are enabled at application, Host and Controller level by setting Advanced Secure Mode
to active. To do this, the user must set the gAppSecureMode_d macro to 1 in the project’s app_preinclude.h file.
This macro is defined by default as 0 in app_preinclude_common.h:

#if (gAppSecureMode_d == 1U)
#define gSecLibSssUseEncryptedKeys_d (1U)
#define gHostSecureMode_d (1U)
#else
#define gHostSecureMode_d (0U)
#endif

At application level, when Advanced Secure Mode is enabled, the security mode and level for pairing is
automatically enforced as Mode1 Level 4, ensuring LE Secure Connections pairing. Legacy pairing is not
supported in this mode.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
106 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

When enabled, the main benefit of Advanced Secure Mode is the secured storage and handling of Bluetooth LE
security keys. The EdgeLock Secure Enclave is capable of generating, importing, and exporting security keys
as plain text or as encrypted blobs. All encrypted blobs are created by the EdgeLock Secure Enclave using a
die unique key, which makes them impossible to decrypt by devices other than the one that created them. The
Bluetooth LE security keys are managed in Advanced Secure Mode as follows:

• IRK
– The peer IRKs received after pairing and bonding are no longer stored into NVM as plaintext, but as

encrypted blobs 40 bytes in length (or ELKE blobs). They can still be retrieved and converted to plaintext.
– The local IRK is no longer generated using the default method of hashing over the board’s UID at every

startup. It is instead generated once using the EdgeLock Secure Enclave and stored into a new NVM
dataset as an ELKE blob.

– Local and peer IRKs are no longer transmitted through HCI in plaintext but as EIRK (Encrypted IRK) blobs,
16 bytes in length, which can be decrypted by the Controller.

• LTK
– The LTK is no longer stored into NVM as plaintext, but as an ELKE blob. Furthermore, the plaintext of the

LTK is never available to the Host/application. Generating the LTK via the ECDH process and generating
the Session Key for individual connections is done via the EdgeLock Secure Enclave and custom vendor
HCI messages which are transparent to the application.

• CSRK
– The local CSRK is no longer generated using the default method of hashing over the board’s UID at every

startup. It is instead generated once using the EdgeLock Secure Enclave and stored into a new NVM
dataset as an ELKE blob.

At startup, Advanced Secure Mode for the Controller is enabled dynamically by calling:

#if (defined(gAppSecureMode_d) && (gAppSecureMode_d > 0U))
 (void) PLATFORM_EnableBleSecureKeyManagement();
#endif

This call can be found in BluetoothLEHost_Init, as part of the initialization sequence.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
107 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

10 Low-Power Management

10.1 System considerations
The KW45/K32W1 has a dual-core architecture and has two separated power domains:

• The main domain for the Cortex M33
• The Radio domain which comprises the Cortex M3 core and the NBU (Narrow Band Unit).

The two power domains can go into or exit independently different low-power modes, namely Wait for
instruction (WFI), Deep-sleep mode, Power-down mode, and Deep Power-down mode.

In Wait For Interrupt (WFI) mode, the CPU core is powered ON but is in an idle mode with the clock turned OFF.

In Deep Sleep mode, the fast clock is turned off, and the CPU along with the main power domain are placed into
a retention state, with the voltage being scaled down to support state retention only. As no high frequency clock
runs in this mode, the voltage applied on the power domain can be reduced to reduce leakage on the hardware
logic. This reduces the overall power consumption in the Deep Sleep mode. When waking up from Deep Sleep
mode, the core voltage is increased back to nominal voltage, the fast clock (FRO) is turned back on, and the
peripheral in this domain can be reused as normal.

In Power-down mode, both the clock, and power are shut off to the CPU and the main peripheral domain.
SRAM is retained, but register values are lost. The SDK power manager handles the restore of the processor
registers and dependencies such as interrupt controller and similar ones transparently from the application.

In Deep Power-down mode the SRAM is not retained. This is the lowest power mode available. It is exited
through the reset sequence.

10.2 When/how to enter low power
To enable low power at application level, the gAppLowpowerEnabled_d define should be set to 1 in
app_preinclude.h file.

The system should enter low power when the entire system is idle, and all software layers agree on that. The
device enters low power by calling the PWR_EnterLowPower function.

For FreeRTOS applications, the low-power entry point is placed in the FreeRTOS idle task, which has the
lowest priority in the system. From that task, the vPortSuppressTicksAndSleep function is called, which at
its turn, calls the PWR_EnterLowPower to enter low power.

For the BareMetal examples, the application low power entry point is placed in the main function and is called
when there are no messages to be processed by other tasks.

The wake-up sources that can be configured for the application are UART or button. Note that Low-power timer
wake-up source and wake-up from the Radio domain are directly enabled from the Connectivity framework.

Each software layer/entity running on the system can prevent it from entering low power by calling
PWR_LowPowerEnterCritical function. The system stays awake until all software layers that called
PWR_LowPowerEnterCritical call back PWR_LowPowerExitCritical and the system reaches the low-power
entry point.

When going to low power, the SDK Power Manager selects the best low-power mode that fits all the constraints.

The default low-power mode for each application is Deep-sleep mode. Users can change the behavior by
setting a new low-power constraint for the application.

For example, if the low power constraint set from the application is Deep-sleep mode, and no other constraint
is set, the SDK Power Manager selects Deep-sleep the next time the device enters low power. However, there

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
108 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

might be a case when a WFI constraint is set (PWR_SetLowPowerModeConstraint (PWR_WFI)) by another
component, such as the SecLib module that operates Hardware encryption. In such cases, the SDK Power
Manager selects this WFI mode until the constraint is released by the SecLib module (PWR_ReleaseLowPower
ModeConstraint(PWR_WFI)).

If it is required to change the mode from Deep-sleep to Power-down mode, the deep sleep constraint (PWR_
ReleaseLowPowerModeConstraint(PWR_DeepSleep)) must be released and the power-down constraint
(PWR_SetLowPowerModeConstraints(PWR_PowerDown)) must be set. The SDK Power Manager selects the
Power-down mode when the device enters low power.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
109 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11 Over the Air Programming (OTAP)

This chapter contains a detailed description of the Over The Air Programming capabilities of the Bluetooth Low
Energy Host Stack enabled by dedicated GATT Service/Profile and of the support modules needed for OTA
programming.

The image transfer is done using a dedicated protocol which is designed to run on both the Bluetooth Low
Energy transport and serial transport.

The container for the upgrade image is an image file which has a predefined format which is described in detail.
The image file format is independent of the protocol but must contain information specific to the image upgrade
infrastructure on an OTAP Client device. Detailed information on how to build an image file starting from a
generic format executable generated by an embedded cross-compiling toolchain is shown.

The demo applications implement a typical scenario where a new image is sent from a PC via serial interface to
a Bluetooth Low Energy OTAP Server and then over the air to an OTAP Client which is the target of the upgrade
image. There are 3 applications involved in the OTAP demo: 1 PC application which builds the image file and
serves it to the embedded OTAP Server and 2 embedded applications (OTAP Server and OTAP Client). This
chapter contains enough information for building Bluetooth Low Energy OTAP applications which implement
different image upgrade scenarios specific to other use cases.

11.1 General functionality
A Bluetooth Low Energy OTAP system consists of an OTAP Server and an OTAP Client which exchange
an image file over the air using the infrastructure provided by Bluetooth Low Energy (GAP, GATT, SM) via a
custom GATT Service and GATT Profile. Additionally, a third application may be used to serve an image to the
embedded OTAP Server.

The OTAP Server runs on the GATT Client via the Bluetooth Low Energy OTAP Profile and the OTAP Client
runs on the GATT Server via the Bluetooth Low Energy OTAP Service. For the moment the OTAP Server runs
on the GAP Central and the OTAP Client runs on the GAP Peripheral.

The Figure 17 shows a typical image upgrade scenario.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
110 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 17. Typical Bluetooth Low Energy OTAP Image Upgrade Scenario

11.2 Bluetooth Low Energy OTAP service-profile
The Bluetooth Low Energy OTAP Service is implemented using the GATT Server which runs on the OTAP
Client (GAP Peripheral).

The Bluetooth LE OTAP Service does not require any other Bluetooth LE services because it is a custom
service it has a 128-bit UUID. The service has 2 custom characteristics which also have 128-bit UUIDs.

The service must be included in the GATT database of the GATT Server as described in Section 7 "Creating
GATT database" of this document.

11.2.1 OTAP service and characteristics

The OTAP Service has a custom 128-bit UUID which is shown below. The UUID is based on a base 128-bit
UUID used for Bluetooth LE custom services and characteristics. These are shown in the tables below.

Service 128-bit UUID

Base Bluetooth Low Energy 00000000 -ba5e-f4ee-5ca1-eb1e5e4b1ce0

Table 9. Base Bluetooth LE 128-bit UUID

The OTAP Service custom 128-bit UUID is built using the base UUID by replacing the most significant 4 bytes
which are 0 with a value specific to the OTAP Service which is 01FF5550 in hexadecimal format.

Service UUID (128-bit)

Bluetooth LE OTAP Service 01ff5550 -ba5e-f4ee-5ca1-eb1e5e4b1ce0

Table 10. Bluetooth LE Service UUID

The Bluetooth LE OTAP Service Characteristics UUIDs are built the same as the Bluetooth LE OTAP Service
UUID starting from the base 128-bit UUID but using other values for the most significant 4 bytes.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
111 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Characteristic UUID (128-bit) Properties Descriptors

Bluetooth LE OTAP Control
Point

01ff5551 -ba5e-f4ee-5ca1-
eb1e5e4b1ce0

Write, Indicate CCC

Bluetooth LE OTAP Data 01ff5552 -ba5e-f4ee-5ca1-
eb1e5e4b1ce0

Write Without Response -

Table 11. Bluetooth LE OTAP Service Characteristics

Both characteristics are implemented as variable length characteristics.

The Bluetooth LE OTAP Control Point Characteristic is used for exchanging OTAP commands between
the OTAP Server and the OTAP Client. The OTAP Client sends commands to the OTAP Server using ATT
Notifications for this characteristic and the OTAP Server sends commands to the OTAP Client by making ATT
Write Requests to this characteristic. Both ATT Writes and ATT Notifications are acknowledged operations via
ATT Write Responses and ATT Confirmations.

The Bluetooth LE OTAP Data characteristic is used by the OTAP Server to send parts of the OTAP image file to
the OTAP Client when the ATT transfer method is chosen by the application. The ATT Write Commands (GATT
Write Without Response operation) is not an acknowledged operation.

The Bluetooth LE OTAP service and characteristics 128-bit UUIDs are defined in the gatt_uuid128.h just as
shown below.

UUID128(uuid_service_otap, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA,
 0x50, 0x55, 0xFF, 0x01)
UUID128(uuid_char_otap_control_point, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4,
 0x5E, 0xBA, 0x51, 0x55, 0xFF, 0x01)
UUID128(uuid_char_otap_data, 0xE0, 0x1C, 0x4B, 0x5E, 0x1E, 0xEB, 0xA1, 0x5C, 0xEE, 0xF4, 0x5E, 0xBA,
 0x52, 0x55, 0xFF, 0x01)

The service is included into the GATT database of the device. It is declared in the gatt_db.h file as shown below.

PRIMARY_SERVICE_UUID128(service_otap, uuid_service_otap)
CHARACTERISTIC_UUID128(char_otap_control_point, uuid_char_otap_control_point, (gGattCharPropWrite_c
 | gGattCharPropIndicate_c))
VALUE_UUID128_VARLEN(value_otap_control_point, uuid_char_otap_control_point,
 (gPermissionFlagWritable_c), 16, 16, 0x00)
CCCD(cccd_otap_control_point)
CHARACTERISTIC_UUID128(char_otap_data, uuid_char_otap_data, (gGattCharPropWriteWithoutRsp_c))
VALUE_UUID128_VARLEN(value_otap_data, uuid_char_otap_data, (gPermissionFlagWritable_c), gAttMaxMtu_c
 - 3, gAttMaxMtu_c - 3, 0x00)

The Bluetooth LE OTAP Control Point characteristic should be large enough for the longest command which
can be exchanged between the OTAP Server and The OTAP Client.

The Bluetooth LE OTAP Data characteristic should be large enough for the longest data chunk command
the OTAP Client expects from the OTAP Server to be sent via ATT. The maximum length of the OTAP Data
Characteristic value is ATT_MTU- 3. 1 byte is used for the ATT OpCode and 2 bytes are used for the Attribute
Handle when performing a Write Without Response, the only operation permitted for this characteristic value.

11.2.2 OTAP server and OTAP client interactions

The OTAP Server application scans for devices advertising the OTAP Service. When it finds one it connects to
that device and notifies it of the available image files or waits for requests regarding available image files. The
behavior is specific to each application which needs the OTAP functionality. The Bluetooth LE OTAP Protocol
described below details how to do this.

After an OTAP Server (GAP Central, GATT Client) connects to an OTAP Client (GAP Peripheral, GATT
Server) it scans the device database and identifies the handles of the OTAP Control Point and OTAP Data
characteristics and their descriptors. Then it writes the CCC Descriptor of the OTAP Control point to allow the

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
112 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

OTAP Client to send it commands via ATT Indications. It can send commands to the OTAP Client by using ATT
Write Commands to the OTAP Control Point characteristic.

After the connection is established, if the OTAP Client wants to use the L2CAP CoC transfer method it must
register a L2CAP PSM with the OTAP Server.

The OTAP Client only starts any image information request or image transfer request procedures only after the
OTAP Server writes the OTAP Control Point CCCD to ensure there is bidirectional communication between the
devices.

11.3 Bluetooth LE OTAP protocol
The protocol consists of a set of commands (messages) which allow the OTAP Client to request or be notified
about the available images on an OTAP Server and to request the transfer of parts of images from the OTAP
Server.

All commands with the exception of the image data transfer commands are exchanged through the OTAP
Control Point characteristic of the OTAP Service. The data transfer commands are sent only from the OTAP
Server to the OTAP Client either via the OTAP Data characteristic of the OTAP Service or via a dedicated Credit
Based Channel assigned to a L2CAP PSM.

11.3.1 Protocol design considerations

The OTAP Client is a GAP Peripheral device, and therefore has limited resources. This is why the OTAP
Protocol was designed in such a way that it is at the discretion of the OTAP Client if, when, how fast and how
much of an available upgrade image is transferred from the OTAP Server. The OTAP Client also decides
which is the image transfer method based on its capabilities. Two image transfer methods are supported at this
moment: the ATT Transfer Method and the L2CAP PSM CoC Transfer Method.

The ATT Transfer Method is supported by all devices which support Bluetooth LE but it has the disadvantage
of a small data payload size and a larger Bluetooth LE stack protocols overhead leading to a lower throughput.
This disadvantage has been somewhat reduced by the introduction of the Long Frames feature in the Bluetooth
LE specification 4.2 Link Layer which allows for a larger ATT_MTU value. The L2CAP PSM CoC Transfer
Method is an optional feature available for devices running a Bluetooth stack version 4.1 and later. The protocol
overhead is smaller and the data payload is higher leading to a high throughput. The L2CAP PSM Transfer
Method is the preferred transfer method and it is available on all Bluetooth LE Devices if the application requires
it.

Based on application requirements and device resources and capabilities the OTAP Clients can request blocks
of OTAP images divided into chunks. To minimize the protocol overhead and maximize throughput an OTAP
Client makes a data block request specifying the block size and the chunk size and the OTAP Server sends the
requested data chunks (which have a sequence number) without waiting for confirmation. The block size, chunk
size and number of chunks per block are limited and suitable values must be used based on application needs.

The OTAP Client can stop or restart an image block transfer at any time if the application requires it or a transfer
error occurs. The OTAP Server implementation can be almost completely stateless. The OTAP Server does not
need to remember what parts of an image have been transferred, this is the job of the OTAP Client which can
request any part of an image at any time. This allows it to download parts of the image whenever and how fast
its resources allow it. The OTAP Server simply sends image information and image parts on request.

The Bluetooth LE OTAP Protocol is designed to be used not only on Bluetooth LE transport medium but on any
transport medium, for example a serial communication interface or another type of wireless interface. This may
be useful when transferring an upgrade image from a PC or a mobile device to the OTAP Server to be sent
via Bluetooth LE to the OTAP Clients which require it. In the OTAP Demo Applications the embedded OTAP
Server relays OTAP commands between an OTAP Client and a PC via a serial interface and using a FSCI type
protocol. Effectively the OTAP Client downloads the upgrade image from the PC and not from the OTAP Server.
Other transfer methods may be used based on application needs.
UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
113 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11.3.2 Bluetooth Low Energy OTAP commands

The Bluetooth LE OTAP Commands general format is shown below. A command consists of two parts, a
Command ID, and a Command Payload as shown in the table below.

Field Name CmdId CmdPayload

Size (Bytes) 1 variable

Table 12. Bluetooth LE OTAP General Command Format

Commands are sent over the transport medium starting with the Command ID and continuing with the
Command Payload.

All multibyte command parameters in the Command Payload are sent in a least significant octet first order (little
endian).

A summary of the commands supported by the Bluetooth LE OTAP Protocol is shown in the table below. Each
of the commands is then detailed in its own section.

CmdId Command Name

0x01 New Image Notification

0x02 New Image Info Request

0x03 New Image Info Response

0x04 Image Block Request

0x05 Image Chunk

0x06 Image Transfer Complete

0x07 Error Notification

0x08 Stop Image Transfer

Table 13. Bluetooth LE OTAP Commands Summary

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
114 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11.3.2.1 New image notification command

This command can be sent by an OTAP Server to an OTAP Client, usually immediately after the first
connection, to notify the OTAP Client of the available images on the OTAP Server.

CmdId Name Dir Parameters Param
Size
(Bytes)

Description Total Size (CmdId
+Payload)

ImageId 2 Short image
identifier used
for transactions
between the OTAP
Server and OTAP
Client. Should be
unique for all images
on a server.

ImageVersion 8 Image file version.
Contains sufficient
information to
identify the target
hardware, stack
version and build
version.

0x01 New Image
Notification

S->C

ImageFileSize 4 Image file size in
bytes.

15

Table 14. New Image Notification Command Parameters

The ImageId parameter should not be '0x0000', which is the reserved value for the current running image or
0xFFFF, which is the reserved value for “no image available”.

11.3.2.2 New image info request command

This command can be sent by an OTAP Client to an OTAP Server to inquire about available upgrade images on
the OTAP Server.

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

CurrImageId 2 Id of the
currently
running image.
Should be
0x0000.

0x02 New Image Info
Request

C->S

CurrImageVer 8 Version of
the currently
running image.
A value of all
zeroes signals
that the client
is looking for
all images
available on an
OTAP Server.
A value of all

11

Table 15. New Image Info Request Command Parameters

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
115 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

zeroes requests
information
about all
images on the
server.

Table 15. New Image Info Request Command Parameters...continued

The CurrImageId parameter should be set to 0x0000 to signify the current running image.

The CurrImageVer parameter should contain sufficient information about the target device for the OTAP Server
to determine if it has an upgrade image available for the requesting OTAP Client.

A value of all zeroes for the CurrImageVer means that an OTAP Client is requesting information about all
available images on an OTAP Server and the OTAP Server should send a New Image Info Response for each
image.

11.3.2.3 New image info response command

This command is sent by the OTAP Server to the OTAP Client as a response to a New Image Information
Request Command.

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

ImageId 2 Image Id. Value
0xFFFF is
reserved as
“no image
available”

ImageVersion 8 Image file
version.

0x03 New Image Info
Response

S->C

ImageFileSize 4 Image file size.

15

Table 16. New Image Info Response Command Parameters

The ImageId parameter with a value of 0xFFFF is reserved for the situation where no upgrade image is
available for the requesting device.

11.3.2.4 Image block request command

This command is sent by the OTAP Client to the OTAP Server to request a part of the upgrade image after it
has determined the OTAP Server has an upgrade image available.

When an OTAP Server Receives this command it should stop any image file chunk transfer sequences in
progress.

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

0x04 Image Block
Request

C->S ImageId 2 Image Id 16

Table 17. Image Block Request Command Parameters

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
116 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

StartPosition 4 Start position
of the image
block to be
transferred.

BlockSize 4 Requested total
block size in
bytes.

ChunkSize 2 Should be
optimized to
the Transfer
Channel type.
The maximum
number of
chunks per
block is 256.
Value is in
bytes.

TransferMethod 1 0x00 - ATT
0x01 – L2CAP
PSM Credit
based channel

L2capChannel
OrPsm

2 0x0004 - ATT
Other values –
PSM for credit
based channels

Table 17. Image Block Request Command Parameters...continued

The ImageId parameter contains the ID of the upgrade image.

The StartPosition parameter specifies the location in the image upgrade file at which the requested block starts.

The BlockSize and ChunkSize parameters specify the size in bytes of the block to be transferred and the size
of the chunks into which a block is separated. The ChunkSize value must be chosen in such a way that the total
number of chunks can be represented by the SeqNumber parameter of the Image Chunk Command. At the
moment this parameter is 1 byte in size so there are a maximum of 256 chunks per block. The chunk sequence
number goes from 0 to 255 (0x00 to 0xFF). If this condition is not met or the requested block is not entirely into
the image file bounds an error is sent to the OTAP Client when the OTAP Server receives this misconfigured
Image Block Request Command.

The maximum value of the ChunkSize parameter depends on the maximum ATT_MTU and L2CAP_MTU
supported by the Bluetooth LE stack version and implementation.

The TransferMethod parameter is used to select the transfer method which can be ATT or L2CAP PSM CoC.
The L2capChannelOrPsm parameter must contain the value 0x0004 for the ATT transfer method and another
value representing the chosen PSM for the L2CAP PSM transfer method. The default PSM for the Bluetooth LE
OTAP demo applications is 0x004F for both the OTAP Server and the OTAP Client although the specification
allows different values at the 2 ends of the L2CAP PSM connection. The PSM must be in the range reserved by
the Bluetooth specification which is 0x0040 to 0x007F.

The optimal value of the ChunkSize parameter depends on the chosen transfer method and the Link Layer
payload size. Ideally it must be chosen in such a way that full packets are sent for every chunk in the block.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
117 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The default Link Layer payload is 27 bytes form which we subtract 4 for the L2CAP layer and 3 for the ATT layer
(1 for the ATT Cmd Opcode and 2 for the Handle) leaving us with a 20 byte OTAP protocol payload. From these
20 bytes we subtract 1 for the OTAP CmdId and 1 for the chunk sequence number leaving us with an optimum
chunk size of 18 for the ATT transfer method – which is the default in the demo applications. For the L2CAP
PSM transfer method the chosen default chunk size is 111. This was chosen so as a chunk fits exactly 5 link
layer packets. The default L2CAP payload of 23 (27 - 4) multiplied by 5 gives us 115 from which we subtract 2
bytes for the SDU Length (which is only sent in the first packet), 1 byte for the OTAP CmdId and 1 byte for the
chunk sequence number which leaves exactly 111 bytes for the actual payload.

If the Link layer supports Long Frames feature then the chunk size should be set according to the negotiated
ATT MTU for the ATT transfer method. From the negotiated ATT MTU (att_mtu) subtract 3 bytes for the ATT
layer (1 for the ATT Cmd Opcode and 2 for the Handle) then subtract 2 bytes for the OTAP protocol (1 for the
CmdId and 1 for the chunk sequence number) to determine the optimum chunk size (optimum_att_chunk_size
= att_mtu – 3 – 2). For the L2CAP PSM transfer method the chunk size can be set based on the maximum
L2CAP SDU size (max_l2cap_sdu_size) from which 4 bytes should be subtracted, 2 for the SDU Length and 2
for the OTAP protocol (optimum_l2cap_chunk_size = max_l2cap_sdu_size – 3 – 2). In some particular cases
reducing the L2CAP chunk size could lead to better performance. If the L2CAP chunk size needs to be reduced
it should be reduced so it fits exactly a number of link layer packets. An example of how to compute an optimal
reduced L2CAP chunk size is given in the previous paragraph.

11.3.2.5 Image chunk command

One or more Image Chunk Commands are sent from the OTAP Server to the OTAP Client after an Image Block
Request is received by the former. The image chunks are sent via the ATT Write Without Response mechanism
if the ATT transfer method is chosen and directly via L2CAP if the L2CAP PSM CoC transfer method is chosen.

CmdId Name Dir Parameters Param
Size
(Bytes)

Description Total Size (CmdId
+Payload)

SeqNumber 1 In the range 0 -> BlockSize/
ChunkSize - calculated by
Server, checked by Client.
The command code is present
even when ATT is used.

0x05 Image Chunk S->C

Data variable Actual data

3 or more

Table 18. Image Chunk Command Parameters

The SeqNumber parameter is the chunk sequence number and it has incremental values from 0 to 255 (0x00 to
0x FF) for a maximum of 256 chunks per block.

The Data parameter is an array containing the actual image part being transferred starting from the
BlockStartPosition + SeqNumber * ChunkSize position in the image file and containing ChunkSize or less bytes
depending on the position in the block. Only the last chunk in a block can have less than ChunkSize bytes in the
Image Chunk Command data payload.

11.3.2.6 Image transfer complete command

This command is sent by the OTAP Client to the OTAP Server when an image file has been completely
transferred and its integrity has been checked.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
118 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

ImageId 2 Image Id0x06 Image Transfer
Complete

C->S

Status 1 Status of the
image transfer.
0x00 - Success

4

Table 19. Image Transfer Complete Command Parameters

The ImageId parameter contains the ID of the image file that was transferred.

The Status parameter is 0x00 (Success) if image integrity and possibly other checks have been successfully
made after the image is transferred and another value if integrity or other kind of errors have occurred.

If the status is 0x00 the OTAP Client can trigger the Bootloader to start flashing the new image. The image
flashing should take about 15 seconds for a 160 KB flash memory.

11.3.2.7 Error notification command

This command can be sent by both the OTAP Server and the OTAP Client when an error of any kind occurs.
When an OTAP Server Receives this command it should stop any image file chunk transfer sequences in
progress.

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size (CmdId
+Payload)

CmdId 1 Id of the command
which generated the
error.

0x07 Error Notification Bidir

ErrorStatus 1 Error Status:
Examples: out of
image bounds, chunk
too small, chunk
too large, image
verification failure,
bad command format,
image not available,
unknown command

3

Table 20. Error Notification Command Parameters

The CmdId parameter contains the ID of the command which caused the error (if applicable).

The ErrorStatus parameter contains the source of the error. All error statuses are defined in the otapStatus_t
enumerated type in the otap_interface.h file.

11.3.2.8 Stop image transfer command

This command is sent from the OTAP Client to the OTAP Server whenever the former wants to stop the transfer
of an image block which is currently in progress, or from OTAP Server to the OTAP Client when the image
transfer is stopped from application (Test Tool).

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
119 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

CmdId Name Dir Parameters Param Size
(Bytes)

Description Total Size
(CmdId
+Payload)

0x08 Stop Image
Transfer

C->S ImageId 2 Image Id 3

Table 21. Stop Image Transfer Command Parameters

The ImageId parameter contains the ID of the image being transferred.

11.3.3 OTAP client–server interactions

The interactions between the OTAP Server and OTAP Client start immediately after the connection, discovery of
the OTAP Service characteristics and writing of the OTAP Control Point CCC Descriptor by the OTAP Server.

The first command sent could be a New Image Notification sent by the OTAP Server to the OTAP Client
or a New Image Info Request sent by the OTAP Client. The OTAP Server can respond with a New Image
Info response if it has a new image for the device which sent the request (this can be determined from the
ImageVerison parameter). The best strategy depends on application requirements.

After the OTAP Client has determined that the OTAP Sever has a newer image it can start downloading the
image. This is done by Sending Image Block Request commands to retrieve parts of the image file. The OATP
Server answers to these requests with one or more Image Chunk Commands via the requested transfer method
or with an Error Notification if there are improper parameters in the Image Block Request. The OTAP Client
makes as many Image Block Requests as it is necessary to transfer the entire image file.

The OTAP Client decides how often Image Block Request Commands are sent and can even stop a block
transfer which is in progress via the Stop Image Transfer Command. The OTAP Client is in complete control of
the image download process and can stop it and restart it at any time based on its resources and application
requirements.

A typical Bluetooth LE OTAP Image Transfer scenario is shown in the message sequence chart Figure 18.

Figure 18. Typical Bluetooth LE OTAP Image Transfer Scenario Message Sequence Chart

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
120 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11.4 Bluetooth Low Energy OTAP image file format
The Bluetooth LE OTAP Image file has a binary file format. It is composed of a header followed by a number
of sub-elements. The header describes general information about the file. There are some predefined sub-
elements of a file but an end manufacturer could add manufacturer-specific sub-elements. The header does not
have details of the sub-elements. Each element is described by its type.

The general format of an image file is shown in the table below.

Image File Element Value Field Length
(bytes)

Description

Header Variable The header contains general information about the image file.

Upgrade Image Sub-element Variable This sub-element contains the actual binary executable image,
which is copied into the flash memory of the target device.
The maximum size of this sub-element depends on the target
hardware.

Image File CRC Sub-element 2 This is a 16-bit CCITT type CRC which is calculated over all
elements of the image file with the exception of the Image File
CRC sub-element itself. This must be the last sub-element in an
image file.

Table 22. Bluetooth LE OTAP Image File General Format

Each sub-element in a Bluetooth LE OTAP Image File has a Type-Length-Value (TLV) format. The type identifier
provides forward and backward compatibility as new sub-elements are introduced. Existing devices that do not
understand newer sub-elements may ignore the data.

The following table shows the general format of a Bluetooth LE Image File sub-element.

Subfield Size (Bytes) Format Description

Type 2 uint16 Type Identifier – determines the
format of the data contained in the
value field

Length 4 uint32 Length of the Value field of the sub-
element.

Value variable uint8[] Data payload

Table 23. Bluetooth LE OTAP Image File Sub-element Format

Some sub-element type identifiers are reserved while others are left for manufacturer-specific use. The table
below shows the reserved type identifiers and the manufacturer-specific ranges.

Type Identifiers Description

0x0000 Upgrade Image

0x0001 – 0xefff Reserved

0xf000 – 0xffff Manufacturer-Specific Use

Table 24. Sub-element Type Identifiers Ranges

The OTAP Demo applications use two of the manufacturer-specific sub-element type identifiers while the rest
remain free to use. The two are shown in the table below along with a short description.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
121 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Manufacturer-specific Type
Identifiers

Sub-element Name Notes

0xf000 Sector Bitmap Bitmap that signals the bootloader the sectors of the internal
flash, which should be overwritten and which should remain as is.

0xf100 Image File CRC 16-bit CRC that is computed over the image file with the
exception of the CRC sub-element itself.

Table 25. Manufacturer-specific Sub-element Type Identifiers Used by OTAP Demo Applications

11.4.1 Bluetooth Low Energy OTAP header

The format and fields of the Bluetooth Low Energy OTAP Header are summarized in the table below.

Octets Data Types Field Name Mandatory/Optional

4 Unsigned 32-bit integer Upgrade File Identifier M

2 Unsigned 16-bit integer Header Version M

2 Unsigned 16-bit integer Header Length M

2 Unsigned 16-bit integer Header Field Control M

2 Unsigned 16-bit integer Company Identifier M

2 Unsigned 16-bit integer Image ID M

8 8 byte array Image Version M

32 Character string Header String M

4 Unsigned 32-bit integer Total Image File Size
(including header)

M

Table 26. Bluetooth Low Energy OTAP Header Fields

The fields are shown in the order they are placed in memory from the first location to the last.

The total size of the header without the optional fields (if defined by the Header Field Control) is 58 bytes.

All the fields in the header have a little endian format with the exception of the Header String field which is an
ASCII character string.

A packed structure type definition for the contents of the Bluetooth LE OTAP Header can be found in the
otap_interface.h file.

11.4.1.1 Upgrade file identifier

Fixed value 4 byte field used to identify the file as being a Bluetooth LE OTAP Image File. The predefined value
is “0x0B1EF11E”.

11.4.1.2 Header version

This 2 byte field contains the major and minor version number. The high byte contains the major version and
the low byte contains the minor version. The current value is “0x0100” with the major version “01” and the minor
version “00”. A change to the minor version means the OTA upgrade file format is still backward compatible,
while a change to the major version suggests incompatibility.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
122 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11.4.1.3 Header length

Length of all the fields in the header including the Upgrade File Identifier field, Header Length field and all the
optional fields. The value insulates existing software against new fields that may be added to the header. If new
header fields added are not compatible with current running software, the implementations should process all
fields they understand and then skip over any remaining bytes in the header to process the image or CRC sub-
element. The value of the Header Length field depends on the value of the Header Field Control field, which
dictates which optional header fields are included.

11.4.1.4 Header field control

This is a 2-byte bit mask that specifies the optional fields present in the OTAP Header.

In case no optional fields are defined, this whole field is reserved and should be set to “0x0000”.

11.4.1.5 Company identifier

This is the company identifier assigned by the Bluetooth SIG. The Company Identifier used for the OTAP demo
applications is “0x01FF”.

11.4.1.6 Image ID

This is a unique short identifier for the image file. It is used to request parts of an image file. This number should
be unique for all images available on a Bluetooth LE OTAP Server.

• The value 0x0000 is reserved for the current running image.
• The value 0xFFFF is reserved as a “no image available” code for New Image Info Response commands.

This field value must be used in the ImageID field in the New Image Notification and New Image Info Response
commands.

11.4.1.7 Image version

This is the full identifier of the image file. It should allow a Bluetooth LE OTAP Client to identify the target
hardware, stack version, image file build version, and other parameters if necessary. The recommended format
of this field (which is used by the OTAP Demo applications) is shown below but an end device manufacturer
could choose different format. The subfields are shown in the order they are placed in memory from the first
location to the last. Each subfield has a little-endian format, if applicable. Refer Table 27

Subfield Size (bytes) Format Description

Build Version 3 uint8[] Image build version.

Stack Version 1 uint8 0x41 for example for Bluetooth Low Energy
Stack version 4.1.

Hardware ID 3 uint8[] Unique hardware identifier.

End Manufacturer Id 1 uint8 ID of the hardware–specific to the end
manufacturer

Table 27. Suggested Image Version Field Format

This field value must be used in the ImageVersion field in the New Image Notification and New Image Info
Response commands.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
123 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

11.4.1.8 Header string

This is a manufacturer-specific string that may be used to store other necessary information as seen fit by each
manufacturer. The idea is to have a human readable string that can prove helpful during the development cycle.
The string is defined to occupy 32 bytes of space in the OTAP Header. The default string used for the Bluetooth
LE OTAP demo application is “BLE OTAP Demo Image File”.

11.4.1.9 Total image file size

The value represents the total image size in bytes. This is the total of data in bytes that is transferred over-the-
air from the server to the client. In most cases, the total image size of an OTAP upgrade image file is the sum of
the sizes of the OTAP Header and all the other sub-elements on the file. If the image contains any integrity and/
or source identity verification fields then the Total Image File Size also includes the sizes of these fields.

11.5 Building Bluetooth Low Energy OTAP image file from SREC file
A SREC (Motorola S-record) file is an ASCII format file which contains binary information. Common file
extensions are: .srec, .s19, .s28, .s37 and others. Most modern compiler toolchains can generate an
SREC format executable.

The steps described in this section enable the creation of a SREC file for your embedded application in IAR
Embedded Workbench.

For this, open the target properties and go to the Output Converter tab. Activate the Generate additional
output checkbox and choose the Motorola option from the Output format drop down menu. From the same
pane you can also override the name of the output file. A screenshot of the described configuration is shown in
Figure 19.

Figure 19. Enabling Options for Node "otap_client_att_freertos" in IAR Embedded Workbench

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
124 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

In MCUXpresso IDE, go to Project properties -> Settings -> Build steps window and press the "Edit" button
for the Post-build steps. A Post-build steps window shows up in which the following command must be added:

arm-none-eabi-objcopy -v -O srec --only-section=.text --only-section=.data --only-
section=.ARM.exidx
"${BuildArtifactFileName}"
"${BuildArtifactFileBaseName}.srec"

A snapshot of this window is shown in the Figure 20.

Figure 20. Enabling SREC Output in IAR Embedded Workbench

The format of the SREC file is shown in Table 28. It contains lines of text called records which have a specific
format. An example of the contents of a SREC file is shown below.

 S02000006F7461705F636C69656E745F6174745F4672656552544F532E73726563A1
 S1130000F83F0020EB0500007506000075060000AF
 S113001075060000750600007506000075060000F0

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
125 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 S113002075060000750600007506000075060000E0
 S113003075060000750600007506000075060000D0
 S113004000000000000000000000000000000000AC
 S1130050000000000000000000000000000000009C

 S2140117900121380004F05FF8002866D12A003100E4
 S2140117A06846008804F022F8A689002E16D0002884
 S2140117B014D12569278801A868A11022F7F782FCB1
 S2140117C06B4601AA0121380004F045F800284CD1E7
 S2140117D02A0031006846008804F008F8A68A002E20

All records start with the ASCII letter ‘S’ followed by an ASCII digit from ‘0’ to ‘9’. These two characters from the
record type identify the format of the data field of the record.

The next 2 ASCII characters are 2 hex digits that indicate the number of bytes (hex digit pairs) which follow the
rest of the record (address, data, and checksum).

The address that follows next can have 4, 6, or 8 ASCII hex digits, depending on the record type.

The data field is placed after the address and it contains 2 * n ASCII hex digits for 'n' bytes of actual data.

The last element of the S record is the checksum, which comprises 2 ASCII hex digits. The checksum is
computed by adding all the bytes of the byte count, address, and data fields. Then the ones complement of the
least significant octet of the sum is computed to determine the checksum.

Field Record Type Count Address Data Checksum Line
Terminator

Format “Sn”, n=0..9 ASCII
hex digits

ASCII
hex digits

ASCII
hex digits

ASCII
hex digits

“\r\n”

Length
(characters)

2 2 4,6,8 Count
–len(Address) –
len(Checksum)

2 2

Table 28. Format of an S Record

More details about the SREC file format can be found at this location: en.wikipedia.org/wiki/SREC_(file_format).

We are only interested in records that contain actual data. These are S1, S2, and S3 records. The other types of
records can be ignored.

The S1, S2, and S3 records are used to build the Upgrade Image Sub-element of the image file simply by
placing the record data at the location specified by the record address in the Value field of the Sub-element. It is
recommended to fill all gaps in S record addresses with 0xFF.

To build an OTAP Image File from a SREC file, follow the procedure described below:

• Generate the SREC file by correctly configuring your toolchain to do so.
• Create the image file header.

– Set the Image ID field of the header to be unique on the OTAP Server.
– Leave the Total Image File Size Field blank for the moment.

• Create the Upgrade Image Sub-element
– Read the S1, S2, and S3 records from the SREC file and place the binary record data to the record

addresses in the Value filed of the sub-element. Fill all address gaps in the S records with 0xFF.
– Fill in the Length field of the sub-element with the length of the written Value field.

• Create the Sector Bitmap Sub-element
– A default working setting would be all byes 0xFF for the Value field of this sub-element.

• Create the Image File CRC Sub-element
– Compute the total image file size as the length of the header + the length of all 3 sub-elements and fill in the

appropriate filed in the header with this value.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
126 / 158

https://en.wikipedia.org/wiki/SREC_%28file_format%29
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

– Compute and write the Value field of this sub-element using the header and all sub-elements except this
one.

– The OTA_CrcCompute() function in the OtaSupport.c file can be used to incrementally compute the CRC.

If the Image ID is not available when the image file is created, then the CRC cannot be computed. It can be
computed later after the Image ID is established and written in the appropriate field in the header.

11.6 Building Bluetooth Low Energy OTAP image file from BIN file
A BIN file is an binary file which contains an executable image. The most common extension for this type of file
is .bin. Most modern compiler toolchains can output a BIN format executable.

To enable the creation of a BIN file for your embedded application in IAR Embedded Workbench open the target
properties and go to the Output Converter tab. Activate the “Generate additional output” checkbox and choose
the binary option from the “Output format” drop down menu. From the same pane you can also override the
name of the output file. The Figure 21 shows a screenshot of the described configuration.

Figure 21. Enabling BIN Output in IAR Embedded Workbench

In MCUXpresso IDE, go to Project properties -> Settings -> Build steps window and press the "Edit" button
for the Post-build steps. A Post-build steps window shows up in which the following command must be added:

arm-none-eabi-objcopy -v -O binary --only-section=.text --only-section=.data --
only-section=.ARM.exidx
 "${BuildArtifactFileName}"
 "${BuildArtifactFileBaseName}.bin"

The Figure 22 shows the Build steps and Post-build steps in Settings window.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
127 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 22. Enabling BIN output in MCUXpresso IDE Post-build steps

The format of the BIN file is very simple. It contains the executable image in binary format as is, starting from
address 0 and up to the highest address. This type of file does not have any explicit address information.

To build an OTAP Image File from a BIN file, follow the procedure below:

• Generate the BIN file by correctly configuring your toolchain to do so.
• Create the image file header

– Set the Image ID field of the header to be unique on the OTAP Server.
– Leave the Total Image File Size field blank for the moment.

• Create the Upgrade Image Sub-element
– Copy the entire contents of the BIN file as is into the Value filed of the sub-element.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
128 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

– Fill in the Length field of the sub-element with the length of the written Value filed.
• Create the Sector Bitmap Sub-element

– A default working setting would be all bytes 0xFF for the Value field of this sub-element.
• Create the Image File CRC Sub-element

– Compute the total image file size as the length of the header + the length of all 3 sub-elements and fill in the
appropriate filed in the header with this value.

– Compute and write the Value field of this sub-element using the header and all sub-elements except this
one.

– The OTA_CrcCompute() function in the OtaSupport.c file can be used to incrementally compute the CRC.

If the Image ID is not available when the image file is created, then the CRC cannot be computed. It can be
computed later after the Image ID is established and written in the appropriate field in the header.

11.7 Bluetooth Low Energy OTAP application integration
The Bluetooth Low Energy OTAP demo applications are standalone applications that only run the OTAP Server
and the OTAP Client. In practice, however the OTAP Server and OTAP Client are used alongside with other
functions. The OTAP functionality is used as a tool along with the main application on a device.

This section contains some guidelines on how to integrate OTAP functionality into other Bluetooth Low Energy
applications.

11.7.1 OTAP server

Before any OTAP transactions can be done the application which acts as an OTAP Server must connect to
a peer device and perform ATT service and characteristic discovery. Once the handles of the OTAP Service,
OTAP Control Point and OTAP Data characteristics and their descriptors are found then OTAP communication
can begin.

A good starting point for OTAP transactions for both the OTAP Server and The OTAP client is the moment the
Server writes the OTAP Control Point CCCD to receive ATT Indications from the OTAP Client. At that point the
Server can send a New Image Notification to the Client if it finds out what kind of device the client is through
other means than the OTAP server. How this can be done is entirely application-specific. If the OTAP Server
does not know exactly what kind of device is the OTAP Client it can wait for the Client to send a New Image Info
Request. Again, the best behavior depends on application requirements.

Once OTAP communication begins then the OTAP Server just has to wait for commands from the OTAP Client
and answer them. This behavior is almost completely stateless. An example state diagram for the OTAP Server
application is shown in Figure 23.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
129 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 23. OTAP Server Example State Diagram

The OTAP Server waits in an idle state until a valid Image Block Request command is received and then moves
to a pseudo-state and starts sending the requested block. The transfer can be interrupted by some commands
(Error Notification, Stop Image Transfer, and so on) or other events (disconnection, user interruption, and so
on).

The otap_interface.h file contains infrastructure for sending and receiving OTAP Commands and parsing OTAP
image files. Packed structure types are defined for all OTAP commands and type enumerations are defined
for command parameter values and some configuration values like the data payloads for the different transfer
methods.

To receive ATT Indications and ATT Write Confirmations from the OTAP Client the OTAP Server application
registers a set of callbacks in the stack. This is done in the BluetoothLEHost_Initialized function.

App_RegisterGattClientProcedureCallback (BleApp_GattClientCallback);
App_RegisterGattClientIndicationCallback (BleApp_GattIndicationCallback);

This BleApp_GattIndicationCallback() function is called when any attribute is indicated so the handle of the
indicated attribute must be checked against a list of expected handles. In our case, we are looking for the OTAP
Control Point handle that was obtained during the discovery procedure.

The BleApp_GattIndicationCallback() function from the demo calls an application-specific function called
BleApp_AttributeIndicated() in which the OTAP Commands are handled.

static void BleApp_AttributeIndicated
(
 deviceId_t deviceId,
 uint16_t handle,
 uint8_t* pValue,
 uint16_t length
)
{
 if (handle == mPeerInformation.customInfo.otapServerConfig.hControlPoint)
 {
 otapCommandVars.pValueTemp = pValue;
 otapCommand_t* pOtaCmd = otapCommandVars.otapCommandTemp;
 /* ... Missing code here ... */

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
130 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 /* If the OTAP Server does not have internal storage then all commands
 must be forwarded
 * via the serial interface. */
 FsciBleOtap_SendPkt (&(pOtaCmd->cmdId),
 (uint8_t*)(&(pOtaCmd->cmd)),
 length - gOtap_CmdIdFieldSize_c);
 }
 elseif (handle == otherHandle)
 {
 /* Handle other attribute indications here */
 /* ... Missing code here ... */
 }
 else
 {
 /*! A GATT Client is trying to GATT Indicate an unknown attribute value.
 * This should not happen. Disconnect the link. */
 Gap_Disconnect (deviceId);
 }
}

OTAP Server demo does not have internal storage, so all commands are forwarded via the serial interface.

To send OTAP Commands to the OTAP Client the application running the OTAP Server calls the OtapServer_
SendCommandToOtapClient() function, which performs an ATT Write operation on the OTAP Control Point
attribute.

static void OtapServer_SendCommandToOtapClient
 (deviceId_t otapClientDevId,
 void* pCommand,
 uint16_t cmdLength)
{
 /* GATT Characteristic to be written - OTAP Client Control Point */
 gattCharacteristic_t otapCtrlPointChar;
 bleResult_t bleResult;

 /* Only the value handle element of this structure is relevant for this operation. */
 otapCtrlPointChar.value.handle =
 mPeerInformation.customInfo.otapServerConfig.hControlPoint;
 otapCtrlPointChar.value.valueLength = 0;
 otapCtrlPointChar.cNumDescriptors = 0;
 otapCtrlPointChar.aDescriptors = NULL;

 bleResult = GattClient_SimpleCharacteristicWrite (mPeerInformation.deviceId,
 &otapCtrlPointChar,
 cmdLength,
 pCommand);

 if (gBleSuccess_c == bleResult)
 {
 otapServerData.lastCmdSentToOtapClient = (otapCmdIdt_t)
(((otapCommand_t*)pCommand)->cmdId);
 }
 else
 {
 /*! A Bluetooth Low Energy error has occurred - Disconnect */
 (void)Gap_Disconnect (otapClientDevId);
 }
}

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
131 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

The ATT Confirmation for the ATT Write is received in the BleApp_GattClientCallback() set up earlier which
receives a GATT procedure success message for a gGattProcWriteCharacteristicValue_c procedure type.

static void BleApp_GattClientCallback(
 deviceId_t serverDeviceId,
 gattProcedureType_t procedureType,
 gattProcedureResult_t procedureResult,
 bleResult_t error
)
{
 union
 {
 uint8_t errorTemp;
 attErrorCode_t attErrorCodeTemp;
 }attErrorCodeVars;

 if (procedureResult == gGattProcError_c)
 {
 attErrorCodeVars.errorTemp = (uint8_t)error & 0xFFU;
 attErrorCode_t attError = attErrorCodeVars.attErrorCodeTemp;
 if (attError == gAttErrCodeInsufficientEncryption_c ||
 attError == gAttErrCodeInsufficientAuthorization_c ||
 attError == gAttErrCodeInsufficientAuthentication_c)
 {
 #if gAppUsePairing_d
 /* Start Pairing Procedure */
 (void)Gap_Pair (serverDeviceId, &gPairingParameters);
 #endif
 }

 BleApp_StateMachineHandler (serverDeviceId, mAppEvt_GattProcError_c);
 }
 else if (procedureResult == gGattProcSuccess_c)
 {
 switch(procedureType)
 {
 /* ... Missing code here... */
 case gGattProcWriteCharacteristicValue_c:
 {
 BleApp_HandleValueWriteConfirmations (serverDeviceId);
 }
 break;

 default:
 ; /* For MISRA compliance */
 break;
 }

 BleApp_StateMachineHandler(serverDeviceId, mAppEvt_GattProcComplete_c);
 }
 else
 {
 ; /* For MISRA compliance */
 }
}

The BleApp_HandleValueWriteConfirmations() function deals with ATT Write Confirmations based on the
requirements of the application.

There are two possible transfer methods for Image Chunks, the ATT transfer method and the L2CAP transfer
method. The OTAP server is prepared to handle both, as requested by the OTAP Client.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
132 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

To be able to use the L2CAP transfer method, the OTAP Server application must register a L2CAP LE PSM
and 2 callbacks: a data callback and a control callback. This is done by using the BluetoothLEHost_Initialized()
function.

/* Register OTAP L2CAP PSM */
 L2ca_RegisterLePsm (gOtap_L2capLePsm_c,
 gOtapCmdImageChunkCocLength_c); /*!< The negotiated MTU
 must be higher than the biggest data chunk that is sent fragmented */
...
 App_RegisterLeCbCallbacks(BleApp_L2capPsmDataCallback,
 BleApp_L2capPsmControlCallback);

The data callback BleApp_L2capPsmDataCallback() is not used by the OTAP Server.

The control callback is used to handle L2CAP LE PSM connection requests from the OTAP Client and other
events: PSM disconnections, No peer credits, and so on. The OTAP Client must initiate the L2CAP PSM
connection if it wants to use the L2CAP transfer method.

static void BleApp_L2capPsmControlCallback(l2capControlMessageType_t messageType,
 void*
 pMessage)
{
 switch (messageType)
 {
 case gL2ca_LePsmConnectRequest_c:
 {
 l2caLeCbConnectionRequest_t *pConnReq = (l2caLeCbConnectionRequest_t *)pMessage;
 /* Respond to the peer L2CAP CB Connection request - send a connection response. */
 L2ca_ConnectLePsm (gOtap_L2capLePsm_c,
 pConnReq-> deviceId,
 mAppLeCbInitialCredits_c);
 break;
 }
 case gL2ca_LePsmConnectionComplete_c:
 {
 l2caLeCbConnectionComplete_t *pConnComplete = (l2caLeCbConnectionComplete_t *)pMessage;
 if (pConnComplete->result == gSuccessful_c)
 {
 /* Set the application L2CAP PSM Connection flag to TRUE because there is no
 gL2ca_LePsmConnectionComplete_c
 * event on the responder of the PSM connection. */
 otapServerData. l2capPsmConnected = TRUE;
 otapServerData. l2capPsmChannelId = pConnComplete->cId;
 }
 break;
 }
 case gL2ca_LePsmDisconnectNotification_c:
 {
 l2caLeCbDisconnection_t *pCbDisconnect = (l2caLeCbDisconnection_t *)pMessage;
 /* Call App State Machine */
 BleApp_StateMachineHandler (pCbDisconnect-> deviceId, mAppEvt_CbDisconnected_c);
 otapServerData. l2capPsmConnected = FALSE;
 break;
 }
 case gL2ca_NoPeerCredits_c:
 {
 l2caLeCbNoPeerCredits_t *pCbNoPeerCredits = (l2caLeCbNoPeerCredits_t *)pMessage;
 L2ca_SendLeCredit (pCbNoPeerCredits-> deviceId,
 otapServerData. l2capPsmChannelId,
 mAppLeCbInitialCredits_c);
 break;
 }
 case gL2ca_LocalCreditsNotification_c:
 {
 l2caLeCbLocalCreditsNotification_t *pMsg = (l2caLeCbLocalCreditsNotification_t
 *)pMessage;
 break;
 }
 default:

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
133 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 break;
 }
}

The ATT transfer method is supported by default but the L2CAP transfer method only works if the OTAP Client
opens an L2CAP PSM credit-oriented channel.

To send data chunks to the OTAP Client the OTAP Server application calls the OtapServer_SendCImgChunk
ToOtapClient() function which delivers the chunk via the selected transfer method. For the ATT transfer method
the chunk is sent via the GattClient_CharacteristicWriteWithoutResponse() function and for the L2CAP transfer
method the chunk is sent via the L2ca_SendLeCbData() function.

static void OtapServer_SendCImgChunkToOtapClient (deviceId_t otapClientDevId,
 void* pChunk,
 uint16_t chunkCmdLength)
{
 bleResult_t bleResult = gBleSuccess_c;
 if (otapServerData.transferMethod == gOtapTransferMethodAtt_c)
 {
 /* GATT Characteristic to be written without response - OTAP Client Data */
 gattCharacteristic_t otapDataChar;
 /* Only the value handle element of this structure is relevant for this operation. */
 otapDataChar.value.handle = mPeerInformation.customInfo.otapServerConfig.hData;
 bleResult = GattClient_CharacteristicWriteWithoutResponse
 (mPeerInformation.deviceId,
 &otapDataChar,
 chunkCmdLength,
 pChunk);
 }
 else if (otapServerData.transferMethod == gOtapTransferMethodL2capCoC_c)
 {
 bleResult = L2ca_SendLeCbData (mPeerInformation.deviceId,
 otapServerData.l2capPsmChannelId,
 pChunk,
 chunkCmdLength);
 }
 if (gBleSuccess_c != bleResult)
 {
 /*! A Bluetooth Low Energy error has occurred - Disconnect */
 Gap_Disconnect (otapClientDevId);
 }
}

The OTAP Server demo application relays all commands received from the OTAP Client to a PC through the
FSCI type protocol running over a serial interface. It also directly relays all responses from the PC back to the
OTAP Client.

Other implementations can bring the image to an external memory through other means of communication and
directly respond to the OTAP Client requests.

11.7.2 OTAP client

An application running an OTAP Client must wait for an OTAP Server to connect and perform service and
characteristic discovery before performing any OTAP-related operations. OTAP transactions can begin only
after the OTAP Server writes the OTAP Control point CCC Descriptor to receive ATT Notifications. After this is
done, bidirectional communication is established between the OTAP Server and Client and OTAP transactions
can begin.

The OTAP Client can advertise the OTAP Service via the demo application. Optionally, the OTAP Server
may already know the advertising device has an OTAP Service based on application-specific means. In both
situations, the OTAP Server must discover the handles of the OTAP Service and its characteristics.

In addition to the OTAP Service instantiated in the GATT Database, the OTAP Client needs to have some
storage capabilities for the downloaded image file.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
134 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

How to put the OTAP Service in the GATT Database is described in The OTAP Service and Characteristics.

The upgrade image storage capabilities in the demo OTAP Client applications are handled by the OtaSupport
module from the Framework, which contains support modules and drivers. The OtaSupport module has support
for both internal storage (a part of the internal flash memory is reserved for storing the upgrade image) and
external storage (a SPI flash memory chip).

The demo applications use internal storage by default. The internal storage is viable only if there is enough
space in the internal flash for the upgrade image – the flash in this case should be at least twice the size of
the largest application. The OtaSupport module also needs the Eeprom module from the Framework to work
correctly.

The OtaSupport module also includes functionality for configuring the OTACFG IFR sections after the image is
received in order to enable the ROM bootloader to perform the actual image update.

To use the OtaSupport module several configuration options must be set up in both the source files and the
linker options of the toolchain.

To use internal storage, set up the gUseInternalStorageLink_d=1 symbol in the linker configuration
window (Linker->Config tab in the IAR project properties) and set the gAppOtaExternalStorage_c value
to (0) in the app_preinclude.h file:

/*! Define as 1 to place OTA storage in external flash */
 #define gAppOtaExternalStorage_c (0)

The OTAP demo applications for the IAR EW IDE have some settings in the Linker options tab which must be
configured to use OtaSupport and the OTAP Bootloader. In the Project Target Options->Linker->Config tab,
3 symbols must be correctly defined. To use NVM storage, the gUseNVMLink_d symbol must be set to 1. The
gUseInternalStorageLink_d symbol must be set to 0 when OTAP external storage is used and to 1 when
the internal storage is used. The gEraseNVMLink_d must be set to 0.

An example linker configuration window for IAR is shown in Figure 24.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
135 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 24. Linker Config IAR EW IDE - OTAP Client External Storage and NVM Configuration

Note: The gEraseNVMLink_d=1 IAR linker flag places some dummy bytes into the NVM region to invalidate
the data and force the application to erase the entire NVM region. When generating an image for the OTA
upgrade, this flag must be set to 0. This results in a smaller image size being transferred and lower power
consumption. If the NVM region must be erased after the upgrade process, the "Preserve NVM" checkbox (from
the Over The Air programming tool) should be unchecked.

For MCUXpresso IDE, the linker settings required for OTAP applications can be set up from the “SDK Import
Wizard” or from the “Project Properties -> MCU settings”. Refer to Figure 25.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
136 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 25. MCUX memory

The demo applications use internal storage by default. To enable external storage support for MCUX, set the
gAppOtaExternalStorage_c value to (1) in the app_preinclude.h file. Also remove the INT_STORAGE
section (from Project Properties -> MCU settings) and extend the PROGRAM_FLASH section as shown in the
Figure 26.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
137 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Figure 26. Enabling external storage

Once the application starts and bidirectional OTAP communication is established via the OTAP Service, then
the OTAP Client must determine if the connected OTAP Server has a newer image than the one currently
present on the device. This can be done in two ways:

• The OTAP Server knows by some application-specific means that it has a newer image and sends a New
Image Notification to the OTAP Client or

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
138 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

• The OTAP Client sends a New Image Info Request to the OTAP Server and waits for a response. This
example application uses the second method.

The New Image Info Request contains enough information about the currently running image to allow the
OTAP Server to determine if it has a newer image for the requesting device. The New Image Info Response
contains enough information for the OTAP Client to determine if the "deadvertised” image is newer and it wants
to download it. The best method is entirely dependent on application requirements.

An example function that checks if an ImageVerison field from a New Image Notification or a New Image Info
Response corresponds to a newer image (based on the suggested format of this field) is provided in the OTAP
Client demo applications. The function is called OtapClient_IsRemoteImageNewer().

The OTAP Client application is a little more complicated than the OTAP Server application because more state
information needs to be handled (current image position, current chunk sequence number, image file parsing
information, and so on). An example state diagram for the OTAP Client is shown below. The Figure 27 briefly
lists the steps of the image download process. Note that some of the states may not be explicitly present in the
demo applications.

Figure 27. OTAP Client Example State Diagram

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
139 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

After the OTAP Client determines that the peer OTAP Server has a suitable upgrade image available, it can
start the download process. This is done by sending multiple Image Block Request messages and waiting for
the Image Chunks via the selected transfer method.

While receiving the image file blocks, the OTAP Client application parses the image file. In case any parameter
of an image file sub-element is invalid or the image file format is invalid, it sends an Error Notification to the
OTAP Server and tries to restart the download process from the beginning or a known good position.

When an Image Chunk is received, its sequence number is checked and its content is parsed in the context of
the image file format. If the sequence number is not as expected, then the block transfer is restarted from the
last known good position. When all chunks of an Image Block are received, the next block is requested, if there
are more blocks to download. When the last Image Block in an image file is received, then the image integrity is
checked (the received CRC from the Image File CRC sub-element is compared to the computed CRC).

The computed image integrity initialization and intermediary value must be reset to '0' before starting or
restarting an image download. If the image integrity check fails then the image download process is restarted
from the beginning. If the image integrity check is successful, then the Image Download Complete message
is sent to the OTAP Server, the OTACFG IFR is updated and the MCU is restarted. After the restart, the ROM
bootloader kicks in and writes the new image to the flash memory, afterwards giving CPU control to the newly
installed application.

If at any time during the download process, a Link Layer disconnection occurs, then the image download
process is restarted from the last known good position when the link is re-established.

As noted earlier, the OTAP Client application needs to handle a lot of state information. In the demo application,
all this information is held in the otapClientData structure of the otapClientAppData_t type. The type is defined
and the structure is initialized in the otap_client.c file of the application. This structure is defined and initialized
differently for the OTAP Client ATT and L2CAP example applications. Mainly, the transferMethod member of
the structure is constant and has different values for the two example applications and the L2CAP application
structure has an extra member.

To receive write notifications when the OTAP Server writes the OTAP Control Point attribute and ATT
Confirmations when it indicates the OTAP Control Point attribute, the OTAP Client application must register a
GATT Server callback and enable write notifications for the OTAP Control Point attribute. This is done in the
BluetoothLEHost_Initialized() function in the otap_client_att.c/otap_client_l2cap_credit.c file.

static void BluetoothLEHost_Initialized(void)
{
 /* ... Missing code here ... */

 /* Register stack callbacks */
 (void)App_RegisterGattServerCallback (BleApp_GattServerCallback);

 /* ... Missing code here ... */
}

The BleApp_GattServerCallback() function handles all incoming communication from the OTAP Server.

static void BleApp_GattServerCallback (deviceId_t deviceId, gattServerEvent_t*
 pServerEvent)
{
 switch (pServerEvent->eventType)
 {
 /* ... Missing code here ... */

 case gEvtCharacteristicCccdWritten_c:
 {
 OtapClient_CccdWritten (deviceId,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
140 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 pServerEvent-
>eventData.charCccdWrittenEvent.handle,
 pServerEvent-
>eventData.charCccdWrittenEvent.newCccd);
 }
 break;

 case gEvtAttributeWritten_c:
 {
 OtapClient_AttributeWritten (deviceId,
 pServerEvent-
>eventData.attributeWrittenEvent.handle,
 pServerEvent-
>eventData.attributeWrittenEvent.cValueLength,
 pServerEvent-
>eventData.attributeWrittenEvent.aValue);
 }
 break;

 case gEvtAttributeWrittenWithoutResponse_c:
 {
 OtapClient_AttributeWrittenWithoutResponse (deviceId,
 pServerEvent-
>eventData.attributeWrittenEvent.handle,
 pServerEvent-
>eventData.attributeWrittenEvent.cValueLength,
 pServerEvent-
>eventData.attributeWrittenEvent.aValue);
 }
 break;

 case gEvtHandleValueConfirmation_c:
 {
 OtapClient_HandleValueConfirmation (deviceId);
 }
 break;

 /* ... Missing code here ... */

 default:
 ; /* For MISRA compliance */
 break;
 }
}

When the OTAP Server Writes a CCCD the BleApp_GattServerCallback() function calls the
OtapClient_CccdWritten() function which sends a New Image Info Request when the OTAP Control Point CCCD
is written it – this is the starting point of OTAP transactions in the demo applications.

When an ATT Write Request is made by the OTAP Server the the BleApp_GattServerCallback() function calls
the OtapClient_AttributeWritten() function which handles the data as an OTAP command. Only writes to the
OTAP Control Point are handled as OTAP commands. For each command received from the OTAP Server
there is a separate handler function which performs required OTAP operations. These are:

• OtapClient_HandleNewImageNotification()
• OtapClient_HandleNewImageInfoResponse()
• OtapClient_HandleErrorNotification()

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
141 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

When an ATT Write Command (GATT Write Without Response) is sent by the OTAP Server the
BleApp_GattServerCallback() function calls the OtapClient_AttributeWrittenWithoutResponse() function
which handles Data Chunks if the selected transfer method is ATT and returns an error if any problems are
encountered. Data chunks are handled by the OtapClient_HandleDataChunk() function.

static void BleApp_AttributeWrittenWithoutResponse (deviceId_t deviceId,
 uint16_t
 handle,
 uint16_t
 length,
 uint8_t*
 pValue)
{
 /* ... Missing code here ... */
 if (handle == value_otap_data)
 {
 /* ... Missing code here ... */
 if (otapClientData.transferMethod == gOtapTransferMethodAtt_c)
 {
 if (((otapCommand_t*)pValue)->cmdId == gOtapCmdIdImageChunk_c)
 {
 OtapClient_HandleDataChunk (deviceId,
 length,
 pValue);
 }
 }
 /* ... Missing code here ... */
 }
 /* ... Missing code here ... */
}

Finally, when an ATT Confirmation is received for a previously sent ATT Indication the
BleApp_GattServerCallback() function calls the OtapClient_HandleValueConfirmation() function, which performs
the necessary OTAP operations based on the last sent command to the OTAP Server. This is done using
separate confirmation handling functions for each command that is sent to the OTAP Server. These functions
are:

• OtapClient_HandleNewImageInfoRequestConfirmation()
• OtapClient_HandleImageBlockRequestConfirmation()
• OtapClient_HandleImageTransferCompleteConfirmation()
• OtapClient_HandleErrorNotificationConfirmation()
• OtapClient_HandleStopImageTransferConfirmation()

Outgoing communication from the OTAP Client to the OTAP Server is done using the
OtapCS_SendCommandToOtapServer() function. This function writes the value to be indicated to the OTAP
Control Point attribute in the GATT database and then calls the OtapCS_SendControlPointIndication() which
checks if indications are enabled for the target device and sends the actual ATT Indication. Both functions are
implemented in the otap_service.c file.

bleResult_t OtapCS_SendCommandToOtapServer (uint16_t serviceHandle,
 void* pCommand,
 uint16_t cmdLength)
{
 union
 {
 uint8_t* uuid_char_otap_control_pointTemp;
 bleUuid_t* bleUuidTemp;

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
142 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 }bleUuidVars;

 uint16_t handle;
 bleResult_t result;
 bleUuidVars.uuid_char_otap_control_pointTemp = uuid_char_otap_control_point;
 bleUuid_t* pUuid = bleUuidVars.bleUuidTemp;

 /* Get handle of OTAP Control Point characteristic */
 result = GattDb_FindCharValueHandleInService(serviceHandle,
 gBleUuidType128_c, pUuid,
 &handle);

 if (result == gBleSuccess_c)
 {
 /* Write characteristic value */
 result = GattDb_WriteAttribute(handle,
 cmdLength,
 (uint8_t*)pCommand);

 if (result == gBleSuccess_c)
 {
 /* Send Command to the OTAP Server via ATT Indication */
 result = OtapCS_SendControlPointIndication (handle);
 }
 }

 return result;
}

static bleResult_t OtapCS_SendControlPointIndication (uint16_t handle)
{
 uint16_t hCccd;
 bool_t isIndicationActive;
 /* Get handle of CCCD */
 GattDb_FindCccdHandleForCharValueHandle (handle, &hCccd);
 Gap_CheckIndicationStatus (...);
 return GattServer_SendIndication (...);
}

The otap_interface.h file contains all the necessary information for parsing and building OTAP commands
(packed command structures type definitions, command parameters enumerations, and so on).

For the two possible image transfer methods (ATT and L2CAP) there are two separate demo applications. To
be able to use the L2CAP transfer method the OATP Client application must register a L2CAP LE PSM and 2
callbacks: a data callback and a control callback. This is done in the OtapClient_Config() function.

/* Register OTAP L2CAP PSM */
L2ca_RegisterLePsm (gOtap_L2capLePsm_c,
gOtapCmdImageChunkCocLength_c); /*!< The negotiated MTU must be higher than the
 biggest data chunk that is sent fragmented */
...
App_RegisterLeCbCallbacks(BleApp_L2capPsmDataCallback,
 BleApp_L2capPsmControlCallback);

The control callback is used to handle L2CAP LE PSM-related events: PSM disconnections, PSM Connection
Complete, No peer credits, and so on.

static void BleApp_L2capPsmControlCallback
 (l2capControlMessageType_t messageType,

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
143 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 void* pMessage)
{
 switch (messageType)
 {
 case gL2ca_LePsmConnectRequest_c:
 {
 l2caLeCbConnectionRequest_t *pConnReq =
 (l2caLeCbConnectionRequest_t *)pMessage;
 /* This message is unexpected on the OTAP Client, the OTAP Client
 sends L2CAP
 * PSM connection requests and expects L2CAP PSM connection
 responses.
 * Disconnect the peer. */
 Gap_Disconnect (pConnReq->deviceId);
 break;
 }
 case gL2ca_LePsmConnectionComplete_c:
 {
 l2caLeCbConnectionComplete_t *pConnComplete =
 (l2caLeCbConnectionComplete_t *)pMessage;
 /* Call the application PSM connection complete handler. */
 OtapClient_HandlePsmConnectionComplete (pConnComplete);
 break;
 }
 case gL2ca_LePsmDisconnectNotification_c:
 {
 l2caLeCbDisconnection_t *pCbDisconnect = (l2caLeCbDisconnection_t
 *)pMessage;
 /* Call the application PSM disconnection handler. */
 OtapClient_HandlePsmDisconnection (pCbDisconnect);
 break;
 }
 case gL2ca_NoPeerCredits_c:
 {
 l2caLeCbNoPeerCredits_t *pCbNoPeerCredits =
 (l2caLeCbNoPeerCredits_t *)pMessage;
 L2ca_SendLeCredit (pCbNoPeerCredits->deviceId,
 otapClientData.l2capPsmChannelId,
 mAppLeCbInitialCredits_c);
 break;
 }
 /* ... Missing code here ... */
 case gL2ca_Error_c:
 {
 /* Handle error */
 break;
 }
 default:
 ; /* For MISRA compliance */
 break;
}

The OTAP Client must initiate the L2CAP PSM connection if it wants to use the L2CAP transfer method;
this can be done using the L2ca_ConnectLePsm() function. The L2ca_ConnectLePsm() function is called
by the OtapClient_ContinueImageDownload() if the transfer method is L2CAP and the PSM is found to be
disconnected.

static void OtapClient_ContinueImageDownload (deviceId_t deviceId)
{

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
144 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

 /* ... Missing code here ... */
 /* Check if the L2CAP OTAP PSM is connected and if not try to connect and
 exit immediately. */
 if ((otapClientData.l2capPsmConnected == FALSE) &&
 (otapClientData.state !=
 mOtapClientStateImageDownloadComplete_c))
 {
 L2ca_ConnectLePsm (gOtap_L2capLePsm_c,
 deviceId,
 mAppLeCbInitialCredits_c);
 bValidState = FALSE;;
 }
 /* ... Missing code here ... */
}

The PSM data callback BleApp_L2capPsmDataCallback() is used by the OTAP Client to handle incoming
image file parts from the OTAP Server.

static void BleApp_L2capPsmDataCallback (deviceId_t deviceId,
 uint8_t* pPacket,
 uint16_t uint16_t lePsm,
 uint16_t packetLengt
{
 OtapClient_HandleDataChunk (deviceId,
 packetLength,
 pPacket);
}

All data chunks regardless of their source (ATT or L2CAP) are handled by the OtapClient_HandleDataChunk()
function. This function checks the validity of Image Chunk messages, parses the image file, requests the
continuation or restart of the image download and triggers the bootloader when the image download is
complete.

static void OtapClient_HandleDataChunk (deviceId_t deviceId, uint16_t length,
 uint8_t* pData);

The Image File CRC Value is computed on the fly as the image chunks are received
using the OTA_CrcCompute() function from the OtaSupport module which is called by the
OtapClient_HandleDataChunk() function. The OTA_CrcCompute() function has a parameter for the intermediary
CRC value which must be initialized to 0 every time a new image download is started.

The actual write of the received image parts to the storage medium is also done in the
OtapClient_HandleDataChunk() function using the OtaSupport module. This is achieved using the following
functions:

• OTA_StartImage() – called before the start of writing a new image to the storage medium.
• OTA_CancelImage() – called whenever an error occurs and the image download process needs to be

stopped/restarted from the beginning.
• OTA_PushImageChunk() – called to write a received image chunk to the storage medium. Note that only the

Upgrade Image Sub-element of the image file is actually written to the storage medium.
• OTA_CommitImage() - called to set up what parts of the downloaded image are written to flash and other

information for the bootloader. The Value field of the Sector Bitmap Sub-element of the Image File is given as
a parameter to this function.

• OTA_SetNewImageFlag() - called to configure the OTACFG IFR when a new image has been successfully
received. When the MCU is reset, the ROM bootloader transfers the new image from the storage medium to
the program flash.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
145 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

To continue the image download process after a block is transferred or to restart it after an error has occurred
the OtapClient_ContinueImageDownload() function is called. This function is used in multiple situations during
the image download process.

To summarize, an outline of the steps required to perform the image download process is shown below:

• Wait for a connection from an OTAP Server
• Wait for the OTAP Server to write the OTAP Control Point CCCD
• Ask or wait for image information from the server
• If a new image is available on the server, start the download process using the

OtapClient_ContinueImageDownload() function.
– If the transfer method is L2CAP CoC, then initiate a PSM connection to the OTAP Server

• Repeat while image download is not complete.
– Wait for image chunks.
– Call the OtapClient_HandleDataChunk() function for all received image chunks regardless of the selected

transfer method.
– Check image file header integrity using the OtapClient_IsImageFileHeaderValid() function.
– Write the Upgrade Image Sub-element to the storage medium using OtaSupport module functions.
– When the download is complete, check image integrity.

– If the integrity check is successful, commit the image using the Sector Bitmap Sub-element and
trigger the bootloader

– If integrity check fails, restart the image download from the beginning
– If the download is not complete, ask for a new image chunk.

– If any error occurs during the processing of the image chunk, restart the download from the last known good
position.

• If an image was successfully downloaded and transferred to the storage medium and the bootloader
triggered, then reset the MCU to start the flashing process of the new image.

11.8 Secured OTAP
The security features of the KW45/K32W1 devices enable them to use secured OTAP, meaning the new images
can be authenticated and encrypted. The decryption/authentication keys are programmed into hardware fuses.
For information on how to prepare the board, refer to the accompanying document related to board provisioning.
For information on how to obtain the secured image, refer to the Bluetooth Low Energy Demo Applications
User’s Guide (BLEDAUG).

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
146 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

12 Creating a Bluetooth LE application when the Host Stack runs on
another processor

This section describes how to create a Bluetooth Low Energy application (host), when the Bluetooth Low
Energy Host Stack is running on another processor (blackbox). The section alsp provides sample code to
explain how to achieve this.

The supported serial interfaces between the two chips (application and the Bluetooth Low Energy Host Stack)
are UART, SPI, or USB.

Typical applications employing Bluetooth LE Host Stack blackboxes are host systems such as a PC tool or an
embedded system that has an application implementation. This chapter describes an embedded application.

For more information, refer to Bluetooth Low Energy Host Stack FSCI Reference Manual. This document
provides explicit information on exercising the Bluetooth Low Energy Host Stack functionality through a serial
communication interface to a host system.

12.1 Serial manager and FSCI configuration
For creating an embedded application that communicates with the Bluetooth Low Energy Host Stack using the
serial interface, the following steps must be done:

12.1.1 Serial manager initialization

The function that must be called for Serial Manager initialization is located in SerialManager.h:

/* Init serial manager */
SerialManager_Init();

12.1.2 FSCI configuration and initialization

By default, the FSCI module is disabled. It must be enabled by setting gFsciIncluded_c to 1. Also,
gFsciLenHas2Bytes_c must be set to 1 because Bluetooth Low Energy Host Stack interface commands and
events need serial packets bigger than 255 octets.

For more information on the following configuration parameters, refer to the FSCI chapter of the Connectivity
Framework Reference Manual.

To configure the FSCI module, the following parameters can be set on both the Bluetooth Low Energy
Application project and the Bluetooth Low Energy FSCI blackbox:

/* Enable/Disable FSCI */
#define gFsciIncluded_c 1

/* Enable/Disable FSCI Low Power Commands*/
#define gFSCI_IncludeLpmCommands_c 0

/* Defines FSCI length - set this to FALSE is FSCI length has 1 byte */
#define gFsciLenHas2Bytes_c 1

/* Defines FSCI maximum payload length */
#define gFsciMaxPayloadLen_c 1660

/* Enable/Disable Ack transmission */
#define gFsciTxAck_c 0

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
147 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

/* Enable/Disable Ack reception */
#define gFsciRxAck_c 0

/* Enable FSCI Rx restart with timeout */
#define gFsciRxTimeout_c 1
#define mFsciRxTimeoutUsePolling_c 1

/* Use Misra Compliant version of FSCI module */
#define gFsciUseDedicatedTask_c 1

/* FSCI task size */
#if defined(DEBUG)
#define gFsciTaskStackSize_c 4600
#else
#define gFsciTaskStackSize_c 2600
#endif

To perform the FSCI module initialization, the following code can be used:

/*Define fsci serial manager handle*/
#if defined(gFsciIncluded_c) && (gFsciIncluded_c > 0)
extern serial_handle_t g_fsciHandleList[gFsciIncluded_c];
#endif /*gFsciIncluded_c > 0*/

void BluetoothLEHost_AppInit(void)
{
 /* Init FSCI */
 FSCI_commInit(g_fsciHandleList);

 /* Register BLE handlers in FSCI */
 fsciBleRegister(0);
 ...
}

12.1.3 FSCI handlers (GAP, GATT, and GATTDB) registration

For receiving messages from all the Bluetooth Low Energy Host Stack serial interfacing layers (GAP, GATT, and
GATTDB), a function handler must be registered in FSCI for each layer:

fsciBleRegister(0);

12.2 Bluetooth Low Energy Host Stack initialization
The Bluetooth Low Energy Host Stack must be initialized when platform setup is complete and all RTOS tasks
have been started. This initialization is done by restarting the blackbox using a FSCI CPU Reset Request
command. This is performed automatically by the Ble_Initialize(App_GenericCallback) function.

/* Send FSCI CPU reset command to BlackBox */
FSCI_transmitPayload(gFSCI_ReqOpcodeGroup_c, mFsciMsgResetCPUReq_c, NULL, 0,
 fsciInterface);

The completion of the Bluetooth Low Energy Host Stack initialization is signaled by the reception of the GAP-
GenericEventInitializationComplete.Indication event (over the serial communication interface, in FSCI). The
Bluetooth Low Energy-HostInitialize.Request command is not required to be sent to the blackbox (the entire
initialization is performed by the blackbox, when it resets).

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
148 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

12.3 GATT database configuration
The GATT database always resides on the same processor as the entire Bluetooth Low Energy Host Stack, so
the attributes must be added by the host application using the serial communication interface.

To create a GATT database remotely, GATTDBDynamic commands must be used. The GATTDBDynamic API
is provided to the user that performs all the required memory allocations and sends the FSCI commands to
the blackbox. The result of the operation is returned, including optionally the service, characteristic, and 'cccd'
handles returned by the blackbox.

Current supported API for adding services is the following:

bleResult_t GattDbDynamic_AddGattService (gattServiceHandles_t*
 pOutServiceHandles);
bleResult_t GattDbDynamic_AddGapService (gapServiceHandles_t*
 pOutServiceHandles);
bleResult_t GattDbDynamic_AddIpssService (ipssServiceHandles_t*
 pOutServiceHandles);
bleResult_t GattDbDynamic_AddHeartRateService (heartRateServiceHandles_t*
 pOutServiceHandles);
bleResult_t GattDbDynamic_AddBatteryService (batteryServiceHandles_t*
 pOutServiceHandles);
bleResult_t GattDbDynamic_AddDeviceInformationService
 (deviceInfoServiceHandles_t* pOutServiceHandles);

The service handles are optional.

Also, a generic function is provided, so that the user can add any generic service to the database:

bleResult_t GattDbDynamic_AddServiceInDatabase (serviceInfo_t* pServiceInfo);

Usually, a Bluetooth Low Energy Application is ported from a single chip solution, where the Bluetooth Low
Energy Application and the Bluetooth Low Energy stack reside on the same processor and the GATT database
is populated statically. The user should remove all the attribute handles from any structure and replace
them with gGattDbInvalidHandle_d . The attribute handles should be populated after the services are added
dynamically to the database with the handles returned by the previous API.

12.4 FSCI host layer
The Bluetooth Low Energy GAP, GATT, GATTDB, and L2CAP APIs are included in the Bluetooth Low Energy
interface. When these APIs reside on a separate processor than the Bluetooth Low Energy stack, they are
implemented as an FSCI Host Layer that should be added to the Bluetooth Low Energy Application project.

This layer is responsible for serializing API to the corresponding FSCI commands. The layer also sends these
APIs to the blackbox, receives and deserializes FSCI statuses and events, presents them to the Bluetooth Low
Energy Application, and arbitrates access from multiple tasks to the serial interface.

All the GAP, GATT, GATTDB, and L2CAP APIs are executed asynchronously, so the user context blocks waiting
for the response from the blackbox. The response can be the status of the request or optionally an FSCI event,
which includes the output parameters of a synchronous function.

There are also functions without parameters that are not executed synchronously and they are provided
asynchronously through a later FSCI event. It is the responsibility of the FSCI Host layer to keep the application-
allocated memory between the time of the request and the completion of the event with the actual values of the
output parameters and populate them accordingly.

The Bluetooth Low Energy API execution inside the FSCI Host layer first waits for gaining access to the serial
interface through a mutex. Once the access is gained, the FSCI request is sent to the serial interface to the

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
149 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

blackbox. Then, by default, the serial interface response is received by polling until the whole FSCI packet is
received. The other option available is to block the user task to wait for an OS event that is set by the FSCI
module when the status is received. For more information on the FSCI module, see the Connectivity Framework
Reference Manual. See Section 13 "References".

The API can have output parameters that are to be received immediately after the status of the request. In such
as case, if the status of the request is 'success', the polling mechanism continues to receive the whole FSCI
packet of the Bluetooth Low Energy event. The output parameters are obtained and the values are filled in the
memory space provided by the application. After obtaining the status and optionally the event, the execution
of the request is considered completed, the mutex to the serial interface is unlocked, and the execution flow is
returned to the user calling context.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
150 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

13 References

For more information, refer to the following documents:

• Bluetooth Low Energy Demo Applications User’s Guide (KW45_K32W1_BLEDAUG)
• Bluetooth Low Energy Host Stack API Reference Manual (KW45_K32W1_BLEHSAPIRM)
• Bluetooth Low Energy Host Stack FSCI (Framework Serial Connectivity Interface) API Reference Manual

(KW45_K32W1_BLEHSFSCIAPIRM)
• Connectivity Framework Reference Manual (KW45_K32W1_CONNFWRM)
• Bluetooth Low Energy CCC Digital Key R3 Application Note (AN12791)

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
151 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

14 Acronyms and abbreviations

The following acronyms are used in this document.

Acronym Description

Bluetooth LE Bluetooth Low Energy

CCCD Client Characteristic Configuration Descriptor

CSRK Connection Signature Resolving Key

ELKE EdgeLock Secure Enclave

FSCI Framework Serial Connectivity Interface

GAP Generic Access Profile

GATT Generic Attribute Profile

GATTDB Generic Attribute Profile Database

HCI Host Controller Interface

IRK Identity Resolving Key

LTK Long Term Key

LL Link Layer

L2CAP Logical Link Control and Adaptation Protocol

MTU Maximum Transmission Unit

PDU Protocol Data Unit

PAwR Periodic Advertising with Responses

RPA Resolvable Private Address

RSSI Received Signal Strength Indicator

RTOS Real Time Operating System

RX Receiver

SDK Software Development Kit

TX Transmitter

WFI Wait For Interrupt

Table 29. Acronyms and abbreviations

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
152 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

15 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2022-2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
153 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

16 Revision history

This table summarizes revisions to this document.

Document ID Release date Description

UG10184 v.1.0 26 November 2024 Document is aligned to KW47 EAR 2.1 24.12.00-pvw2 release

Table 30. Revision history

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
154 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
155 / 158

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.
Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

EdgeLock — is a trademark of NXP B.V.
IAR — is a trademark of IAR Systems AB.

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
156 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

Contents
1 Introduction .. 2
2 Prerequisites .. 3
2.1 Task and event queues 3
2.2 GATT database ..3
2.3 Non-Volatile Memory (NVM) access4
3 Bluetooth LE Host Stack Initialization

and APIs ... 7
3.1 Initialization .. 7
3.2 Main function to initialize the Bluetooth LE

Host Stack ... 7
3.3 HCI entry and exit points8
3.4 Bluetooth LE Host Stack libraries and API

availability .. 9
3.5 Synchronous and asynchronous functions 9
3.6 Radio TX Power level10
4 Generic Access Profile (GAP) Layer 11
4.1 Peripheral setup .. 12
4.1.1 Advertising ... 12
4.1.2 Pairing and bonding (peripheral) 13
4.2 Central setup ... 17
4.2.1 Scanning ..17
4.2.2 Initiating and closing a connection19
4.2.3 Pairing and bonding (Central)20
4.3 LE data packet length extension 24
4.4 Privacy feature ...25
4.4.1 Introduction .. 25
4.4.2 Host privacy ...27
4.4.3 Controller privacy ...27
4.5 Setting PHY mode in a connection29
4.6 Data management of bonded devices 29
4.6.1 Application removal of bonded devices data32
4.7 Controller enhanced notifications 32
4.8 Extended advertising 35
4.8.1 Peripheral setup .. 36
4.8.2 Central setup ... 38
4.9 Periodic Advertising ...40
4.9.1 Peripheral Setup ..41
4.9.2 Central Setup ...42
4.10 Periodic Advertising with Responses

(PAwR) ...43
4.10.1 Central Setup ...43
4.10.2 Peripheral Setup ..43
4.11 Encrypted Advertising Data 45
4.11.1 Central Setup ...45
4.11.2 Peripheral Setup ..45
4.12 L2CAP credit-based channels 45
4.13 Enhanced ATT ...48
4.13.1 EATT Credits management 48
4.13.2 EATT Connection establishment49
4.13.3 EATT Bearer reconfiguration 50
4.13.4 EATT Bearer disconnection 51
5 Generic Attribute Profile (GATT) Layer 52
5.1 Client APIs ...52
5.1.1 Installing client callbacks 52
5.1.2 MTU exchange .. 55
5.1.3 Service and characteristic discovery 56

5.1.4 Reading and writing characteristics 65
5.1.5 Reading and writing characteristic

descriptors ... 72
5.1.6 Resetting procedures74
5.2 Server APIs ... 75
5.2.1 Server callback .. 75
5.2.2 Sending notifications and indications76
5.2.3 Attribute write notifications77
6 GATT database application interface79
6.1 Writing and reading attributes79
6.2 Finding attribute handles 79
7 Creating GATT database 81
7.1 Creating static GATT database81
7.1.1 Declaring custom 128-bit UUIDs 81
7.1.2 Declaring a service ..82
7.1.3 Declaring a characteristic 83
7.1.4 Static GATT database definition examples 84
7.2 Creating a GATT database dynamically 86
7.2.1 Memory considerations86
7.2.2 Initialization and release 86
7.2.3 Adding services ... 86
7.2.4 Adding characteristics and descriptors 87
7.2.5 Removing services and characteristics87
7.3 Gatt caching .. 87
7.3.1 Service change feature87
7.3.2 Robust caching ..88
8 Creating a Custom Profile 92
8.1 Defining custom UUIDs 92
8.2 Creating service functionality92
8.3 GATT client interactions 93
9 Application Structure 95
9.1 Folder structure ... 95
9.2 Application main framework96
9.2.1 Start task ... 96
9.2.2 Application messaging97
9.3 Bluetooth LE Connection Manager97
9.3.1 GAP generic event .. 97
9.3.2 GAP configuration ..98
9.3.3 GAP connection event98
9.3.4 Privacy ... 98
9.4 GATT database ..99
9.5 RTOS specifics .. 99
9.5.1 Operating system selection 99
9.5.2 Bluetooth LE Host task configuration99
9.6 Board configuration ..100
9.7 Bluetooth Low Energy initialization 100
9.8 Bluetooth Low Energy Host Stack

configuration .. 101
9.9 Profile configuration 102
9.9.1 Application code .. 103
9.10 Multiple connections 105
9.11 Bluetooth address generation106
9.12 Repeated attempts .. 106
9.13 Advanced Secure Mode (kw45_k32w) 106
10 Low-Power Management108
10.1 System considerations108

UG10184 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 26 November 2024 Document feedback
157 / 158

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

NXP Semiconductors UG10184
Bluetooth Low Energy Application Developer’s Guide

10.2 When/how to enter low power 108
11 Over the Air Programming (OTAP)110
11.1 General functionality 110
11.2 Bluetooth Low Energy OTAP service-profile .. 111
11.2.1 OTAP service and characteristics111
11.2.2 OTAP server and OTAP client interactions 112
11.3 Bluetooth LE OTAP protocol113
11.3.1 Protocol design considerations113
11.3.2 Bluetooth Low Energy OTAP commands114
11.3.3 OTAP client–server interactions120
11.4 Bluetooth Low Energy OTAP image file

format ...121
11.4.1 Bluetooth Low Energy OTAP header 122
11.5 Building Bluetooth Low Energy OTAP

image file from SREC file 124
11.6 Building Bluetooth Low Energy OTAP

image file from BIN file 127
11.7 Bluetooth Low Energy OTAP application

integration .. 129
11.7.1 OTAP server .. 129
11.7.2 OTAP client ..134
11.8 Secured OTAP ...146
12 Creating a Bluetooth LE application

when the Host Stack runs on another
processor ..147

12.1 Serial manager and FSCI configuration147
12.1.1 Serial manager initialization147
12.1.2 FSCI configuration and initialization147
12.1.3 FSCI handlers (GAP, GATT, and GATTDB)

registration ... 148
12.2 Bluetooth Low Energy Host Stack

initialization .. 148
12.3 GATT database configuration 149
12.4 FSCI host layer ..149
13 References ..151
14 Acronyms and abbreviations 152
15 Note about the source code in the

document ..153
16 Revision history ...154

Legal information ...155

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 26 November 2024
Document identifier: UG10184

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10184

	1 Introduction
	2 Prerequisites
	2.1 Task and event queues
	2.2 GATT database
	2.3 Non-Volatile Memory (NVM) access

	3 Bluetooth LE Host Stack Initialization and APIs
	3.1 Initialization
	3.2 Main function to initialize the Bluetooth LE Host Stack
	3.3 HCI entry and exit points
	3.4 Bluetooth LE Host Stack libraries and API availability
	3.5 Synchronous and asynchronous functions
	3.6 Radio TX Power level

	4 Generic Access Profile (GAP) Layer
	4.1 Peripheral setup
	4.1.1 Advertising
	4.1.2 Pairing and bonding (peripheral)

	4.2 Central setup
	4.2.1 Scanning
	4.2.2 Initiating and closing a connection
	4.2.3 Pairing and bonding (Central)

	4.3 LE data packet length extension
	4.4 Privacy feature
	4.4.1 Introduction
	4.4.1.1 Resolvable private addresses
	4.4.1.2 Non-resolvable private addresses
	4.4.1.3 Multiple identity resolving keys

	4.4.2 Host privacy
	4.4.3 Controller privacy
	4.4.3.1 Privacy mode
	4.4.3.2 Scanning and initiating
	4.4.3.3 Advertising
	4.4.3.4 Connected

	4.5 Setting PHY mode in a connection
	4.6 Data management of bonded devices
	4.6.1 Application removal of bonded devices data

	4.7 Controller enhanced notifications
	4.8 Extended advertising
	4.8.1 Peripheral setup
	4.8.2 Central setup

	4.9 Periodic Advertising
	4.9.1 Peripheral Setup
	4.9.2 Central Setup

	4.10 Periodic Advertising with Responses (PAwR)
	4.10.1 Central Setup
	4.10.2 Peripheral Setup

	4.11 Encrypted Advertising Data
	4.11.1 Central Setup
	4.11.2 Peripheral Setup

	4.12 L2CAP credit-based channels
	4.13 Enhanced ATT
	4.13.1 EATT Credits management
	4.13.2 EATT Connection establishment
	4.13.3 EATT Bearer reconfiguration
	4.13.4 EATT Bearer disconnection

	5 Generic Attribute Profile (GATT) Layer
	5.1 Client APIs
	5.1.1 Installing client callbacks
	5.1.1.1 Client procedure callback
	5.1.1.2 Notification and indication callbacks

	5.1.2 MTU exchange
	5.1.3 Service and characteristic discovery
	5.1.3.1 Discover all primary services
	5.1.3.2 Discover primary services by UUID
	5.1.3.3 Discover included services
	5.1.3.4 Discover all characteristics of a service
	5.1.3.5 Discover characteristics by UUID
	5.1.3.6 Discover characteristic descriptors

	5.1.4 Reading and writing characteristics
	5.1.4.1 Characteristic value read procedure
	5.1.4.2 Characteristic read by UUID procedure
	5.1.4.3 Characteristic read multiple procedure
	5.1.4.4 Characteristic write procedure

	5.1.5 Reading and writing characteristic descriptors
	5.1.6 Resetting procedures

	5.2 Server APIs
	5.2.1 Server callback
	5.2.2 Sending notifications and indications
	5.2.3 Attribute write notifications

	6 GATT database application interface
	6.1 Writing and reading attributes
	6.2 Finding attribute handles

	7 Creating GATT database
	7.1 Creating static GATT database
	7.1.1 Declaring custom 128-bit UUIDs
	7.1.2 Declaring a service
	7.1.2.1 Service declaration macros
	7.1.2.2 Include declaration macros

	7.1.3 Declaring a characteristic
	7.1.3.1 Characteristic declaration macros
	7.1.3.2 Declaring characteristic values
	7.1.3.3 Declaring characteristic descriptors

	7.1.4 Static GATT database definition examples

	7.2 Creating a GATT database dynamically
	7.2.1 Memory considerations
	7.2.2 Initialization and release
	7.2.3 Adding services
	7.2.4 Adding characteristics and descriptors
	7.2.5 Removing services and characteristics

	7.3 Gatt caching
	7.3.1 Service change feature
	7.3.2 Robust caching

	8 Creating a Custom Profile
	8.1 Defining custom UUIDs
	8.2 Creating service functionality
	8.3 GATT client interactions

	9 Application Structure
	9.1 Folder structure
	9.2 Application main framework
	9.2.1 Start task
	9.2.2 Application messaging

	9.3 Bluetooth LE Connection Manager
	9.3.1 GAP generic event
	9.3.2 GAP configuration
	9.3.3 GAP connection event
	9.3.4 Privacy

	9.4 GATT database
	9.5 RTOS specifics
	9.5.1 Operating system selection
	9.5.2 Bluetooth LE Host task configuration

	9.6 Board configuration
	9.7 Bluetooth Low Energy initialization
	9.8 Bluetooth Low Energy Host Stack configuration
	9.9 Profile configuration
	9.9.1 Application code

	9.10 Multiple connections
	9.11 Bluetooth address generation
	9.12 Repeated attempts
	9.13 Advanced Secure Mode (kw45_k32w)

	10 Low-Power Management
	10.1 System considerations
	10.2 When/how to enter low power

	11 Over the Air Programming (OTAP)
	11.1 General functionality
	11.2 Bluetooth Low Energy OTAP service-profile
	11.2.1 OTAP service and characteristics
	11.2.2 OTAP server and OTAP client interactions

	11.3 Bluetooth LE OTAP protocol
	11.3.1 Protocol design considerations
	11.3.2 Bluetooth Low Energy OTAP commands
	11.3.2.1 New image notification command
	11.3.2.2 New image info request command
	11.3.2.3 New image info response command
	11.3.2.4 Image block request command
	11.3.2.5 Image chunk command
	11.3.2.6 Image transfer complete command
	11.3.2.7 Error notification command
	11.3.2.8 Stop image transfer command

	11.3.3 OTAP client–server interactions

	11.4 Bluetooth Low Energy OTAP image file format
	11.4.1 Bluetooth Low Energy OTAP header
	11.4.1.1 Upgrade file identifier
	11.4.1.2 Header version
	11.4.1.3 Header length
	11.4.1.4 Header field control
	11.4.1.5 Company identifier
	11.4.1.6 Image ID
	11.4.1.7 Image version
	11.4.1.8 Header string
	11.4.1.9 Total image file size

	11.5 Building Bluetooth Low Energy OTAP image file from SREC file
	11.6 Building Bluetooth Low Energy OTAP image file from BIN file
	11.7 Bluetooth Low Energy OTAP application integration
	11.7.1 OTAP server
	11.7.2 OTAP client

	11.8 Secured OTAP

	12 Creating a Bluetooth LE application when the Host Stack runs on another processor
	12.1 Serial manager and FSCI configuration
	12.1.1 Serial manager initialization
	12.1.2 FSCI configuration and initialization
	12.1.3 FSCI handlers (GAP, GATT, and GATTDB) registration

	12.2 Bluetooth Low Energy Host Stack initialization
	12.3 GATT database configuration
	12.4 FSCI host layer

	13 References
	14 Acronyms and abbreviations
	15 Note about the source code in the document
	16 Revision history
	Legal information
	Contents

