
JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities
User Guide
Rev. 3.0 — 28 January 2025 User guide

Document information
Information Content

Keywords JNUG3133, ZigBee, JN518x and K32W041/K32W061/K32W148-EVK/FRDM-MCXW71/FRDM-
MCXW72/MCX-W71-EVK/MCX-W72-EVK, Core Utilities (JCU), JCU modules, Wireless network
applications

Abstract This document provides details for implementing the stack on NXP hardware platforms-
K32W148-EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-W72-EVK. These
platforms belong to NXP provided K32W041, K32W061, K32W1, MCXW71, MCXW72, and
JN518x family of wireless microcontrollers.

https://www.nxp.com

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

About this manual

This manual provides a single point of reference for information relating to the Core Utilities (JCU), for use with
the NXP hardware platforms: K32W148-EVK, FRDM-MCXW71, FRDM-MCXW72, MCX-W71-EVK, and MCX-
W72-EVK. These platforms belong to NXP provided K32W041, K32W061, K32W1, MCXW71, MCXW72, and
JN518x family of wireless microcontrollers. The manual provides both conceptual and practical information
concerning the JCU, and provides guidance on use of the JCU Application Programming Interfaces (APIs). The
API resources (functions and structures) are fully detailed.

The Core Utilities described in this user guide are legacy modules still supported on K32W041, K32W061,
K32W1, MCXW71, MCXW72, and JN518x devices for users transitioning from previous JN devices or SDKs to
provide a level of backward compatibility.

For new developments, users must consider the modules described in the Connectivity Framework Reference
Manual.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
2 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Organization
This manual is divided into two parts:

• Part I: Concept and Operational Information consists of five chapters:
– Chapter 1 introduces the Core Utilities and associated APIs.
– Chapter 2 describes how to use the Flash-based PDM.
– Chapter 3 describes how to use the Power Manager (PWRM).
– Chapter 4 describes how to use the Protocol Data Unit Manager (PDUM).
– Chapter 5 describes how to use the Debug (DBG) module.

• Part II: Reference Information consists of five chapters:
– Chapter 6 describes the functions of the PDM API for EEPROM.
– Chapter 7 describes the functions of the PWRM API.
– Chapter 8 describes the functions of the PDUM API.
– Chapter 9 describes the functions of the DBG API.
– Chapter 10 details the structures used by the JCU.
– Chapter 11 lists the revisions made to this document.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
3 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Conventions
The below conventions are used in this document:

• Files, folders, functions, and parameter types are represented in bold type.
• Function parameters are represented in italics type.
• Code fragments are represented in the Courier New font.

Note: This convention is a Note. It highlights important additional information.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
4 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Acronyms and abbreviations

Acronym Description

API Application Programming Interface

CCA Clear Channel Assessment

FCF Frame Control Field

FCS Frame Check Sequence

GP Green Power

GPD Green Power Device

MAC Medium Access Control

PAN Personal Area Network

PIB PAN Information Base

SDK Software Developer’s Kit

ZGPD ZigBee Green Power Device

ZGPP ZigBee Green Power Proxy

ZGPS ZigBee Green Power Sink

Table 1. Acronyms and abbreviations

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
5 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Related documents
1. MCUXSDKJN5189APIRM (MCUXpresso SDK API Reference Manual_JN518x)
2. MCUXSDKK32W041APIRM (SDK API Reference Manual_K32W061/K32W041)
3. JN-UG-3130 (ZigBee 3.0 Stack User Guide)
4. JN-UG-3131 (ZigBee 3.0 Devices User Guide)
5. JN-UG-3132 (ZigBee Cluster Library (for ZigBee 3.0) User Guide)
6. JN-UG-3134 (ZigBee Green Power User Guide)
7. JN518x Data Sheet (JN518x Datasheet)
8. K32W061/41 Data Sheet (K32W041/K32W061 Data Sheet)
9. K32W1480 Data Sheet (K32W1480 Data Sheet)

10. MCXW71 Data sheet (MCXW71 Data Sheet)
11. CONNFWRM (Connectivity Framework Reference Manual)

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
6 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Support resources
To access online support resources such as SDKs, Application Notes, and User Guides, visit the Wireless
Connectivity area of the NXP website:

www.nxp.com/products/interface-and-connectivity/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address, unless otherwise stated.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
7 / 60

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Trademarks
All trademarks are the property of their respective owners.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
8 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Chip compatibility
The software described in this manual can currently be used on the NXP K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x family of wireless microcontrollers.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
9 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Part I: Concept and operational information

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
10 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

1 Introduction

The device Core Utilities (JCU) are designed for use in wireless network applications for the NXP K32W041,
K32W061, K32W148-EVK/FRDM-MCXW71/FRDM-MCXW72/MCX-W71-EVK/MCX-W72-EVK, and JN518x
devices. These utilities provide an interface which simplifies the programming of a range of operations that are
not specific to wireless networking.

1.1 Modules and architecture
The Core Utilities consist of four utilities/modules, each with a dedicated Application Programming Interface
(API) to facilitate easy interaction between the application and the corresponding JCU module. API of each
module consists of a set of C functions and associated resources.

1.1.1 JCU modules

The JCU modules are briefly described below:

• Persistent Data Manager (PDM): This module handles the storage of context and application data in Non-
Volatile Memory (NVM), and the retrieval of this data. It provides a mechanism by which the device can
resume operation without loss of continuity following a power loss. For the K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x devices, this NVM uses internal flash memory. The PDM module is
described in Chapter 2.

• Power Manager (PWRM): This module manages the transitions of the device into and out of low-power
modes, such as Sleep mode. The PWRM module is described in Chapter 3.

• Protocol Data Unit Manager (PDUM): This module is concerned with managing memory and inserting data
into messages to be transmitted and extracting data from messages that have been received. The PDUM
module is described in Chapter 4.

• Debug (DBG): This module allows diagnostic messages to be output when the application runs, as an aid to
debugging the application code. The DBG module is described in Chapter 5.

Note:

1. The JCU modules are supplied in the NXP Software Developer’s Kit (SDK) for the wireless networking
protocols. Not all the JCU modules are provided in every SDK - for details of the supplied modules, refer to
the Release Notes of your SDK.

2. Not all the supplied JCU modules must be used in an application. Enable the modules individually for use by
the application. For details, refer to the chapters for the modules.

1.1.2 Software architecture

On a node in a wireless network, the JCU interacts with the following software blocks:

• User application (through use of the JCU APIs in the application code)
• Wireless networking stack (for example, the ZigBee PRO stack)
• SDK peripheral APIs

The JCU can be envisaged as sitting alongside the wireless networking stack and the SDK peripheral API, as
depicted in Figure 1.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
11 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Figure 1. Basic software architecture

2 Persistent data manager

This chapter describes the Persistent Data Manager (PDM) module which handles the storage of stack context
data and application data in Non-Volatile Memory (NVM). For the K32W041, K32W061, K32W1, MCXW71,
MCXW72, and JN518x devices this memory is implemented in the internal flash memory. This chapter refers to
this memory as NVM.

Note: The PDM functions mentioned in this chapter are detailed in Chapter 6.

Tip: In this chapter, a cold start refers to either a first-time start or a restart without memory (RAM) held. A
warm start refers to a restart with memory held (for example following sleep with memory held).

2.1 Overview
If the operational data of the network node is solely stored in on-chip RAM, the node only keeps this data while
it is powered. However, if the power supply is interrupted, it loses the data (for example, power failure or battery
replacement). This data includes context data for the network stack and application data.

To recover the node from a power interruption with continuity of service, provision must be made for storing
essential operational data in Non-Volatile Memory (NVM), which is held in flash memory. This data can then be
recovered during a reboot following power loss, allowing the node to resume its role in the network.

The storage and recovery of operational data in NVM can be handled using the PDM module described in this
chapter and covers the following topics:

• Initializing the PDM module; see Section 2.2
• Managing data in NVM; see Section 2.3
• Storing counters in NVM; see Section 2.4
• PDM features including mutexes, NVM wear counts, and event handling; see Section 2.4

The PDM can be used with ZigBee PRO and IEEE802.15.4 wireless networking protocols.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
12 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

2.2 Initializing the PDM and building a file system
The application must initialize the PDM module after a cold or warm start, irrespective of the PDM functionality
used. For example, context data storage or counter implementation. PDM initialization is performed using the
function PDM_eInitialise().

This function requires specifying the number of Flash segments and the first segment allocated for PDM use.

Once the PDM_eInitialise() function is called, the PDM module builds a file system in RAM containing
information about the segments that it manages in Flash. The PDM reads the header data from each NVM
segment and builds the file system.

The file system allows the PDM to do the following functions:

• Perform efficient searches when operating on data
• Track the occupation of all the segments in the NVM
• Count the number of segments available for data allocation at any time

It also helps to even out the wear across NVM segments - for more information on NVM segment wear, refer to
Section 2.4.4.

2.2.1 Building applications that use PDM

To use the PDM in applications developed, the flag PDM_NO_RTOS must be defined in the makefile, as
follows:

CFLAGS+=-DPDM_NO_RTOS

This means that the application does not need to define a mutex for the PDM to function and the relevant
parameter is removed from the PDM_eInitialise() function.

2.3 Managing data in non-volatile memory
This section describes the use of the PDM module to persist data in NVM to provide continuity of service when
the device resumes operation after a cold start or a warm start without memory held.

Data is stored in NVM in terms of ‘records’. A record occupies at least one NVM segment but may be larger
than a segment and occupy multiple segments. Any number of records of different lengths can be created,
ensuring that they do not exceed the NVM capacity. The records are created automatically for stack context
data and by the application (as indicated in Section 2.3.1) for application data. A unique 16-bit value is assigned
to each record to identify it when the record is created - for application data, this identifier is user-defined.

The stack context data which is stored in NVM includes the following:

• Application layer data:
– AIB members, such as the EPID and ZDO state
– Group Address table
– Binding table
– Application key-pair descriptor
– Trust Centre device table

• Network layer data:
– NIB members, such as PAN ID and radio channel
– Neighbor table
– Network keys
– Address Map table

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
13 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

On performing a device cold start or warm start without RAM held, the PDM must be initialized in the application
as described in Section 2.2.

• If it is the first ever cold start, there is no stack context data or application data preserved in the NVM.
• If it is a cold or warm start following previous use (such as after a reset), there must be stack context data and

application data preserved in the NVM.

On startup, the PDM builds a file system in RAM and scans the NVM for valid data. If any data is found, it is
incorporated in the file system.

The PDM saves a Cyclic Redundancy Code (CRC) for each segment of a record. Any failure results in the data
being unrecoverable and the record becoming invalid.

Saving, recovering, and deleting application data in NVM are described in the following subsections.

2.3.1 Saving data to non-volatile memory sectors

Application data and stack context data are saved from RAM to Non-Volatile Memory (NVM) as described in this
section.

Note: If the NVM must be defragmented and purged during a data save, it is done automatically, resulting all
records to be resaved.

Application data

Save application data to NVM when important changes have been made to the data in RAM. Use the function
PDM_eSaveRecordData() to save Application data in RAM to an individual record in NVM. A buffer of data in
RAM is saved to a single record in NVM (a record may span multiple NVM segments).

The first time that a record is saved using PDM_eSaveRecordData(), the record is created. The data is written
in its entirety, provided there is enough free space to hold the data. It is recommended to first find out how many
segments are available using the function PDM_u8GetSegmentCapacity(). When a record is first created,
the application must assign a unique 16-bit identifier to the record. This identifier is then used to reference the
record. The value used must not clash with the ones used by the NXP libraries - the ZigBee PRO stack libraries
use values above 0x8000.

Then, in performing resave to the same record (specified by its 16-bit identifier), the original NVM segments
associated with the record is over-written but only one or more segments containing data changes is altered.
If no data has changed, no write is performed. This method of only making incremental saves, improves the
occupancy level of the size-restricted NVM.

If a save fails, the function PDM_eSaveRecordData() returns the code PDM_E_STATUS_NOT_SAVED.
Alternatively, the callback event E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED can
be used to notify the application of a save failure. For this, you should register a PDM callback
function during the initialization of the PDM using the function PDM_eInitialise() or the function
PDM_vRegisterSystemCallback(), as described in Section 2.4.2.

Stack context data

The NXP ZigBee PRO stack automatically saves its own context data from RAM to NVM when certain data
items change. This data is not encrypted.

2.3.2 Recovering data from NVM

Application data and stack context data are loaded from the NVM to RAM as described in this section.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
14 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Application data

Application reads the data records in NVM using the function PDM_eReadDataFromRecord(). The record to
be read is specified using its 16-bit identifier. Also, specify a data buffer in RAM in which the read data is stored.

Before calling PDM_eReadDataFromRecord(), it may be useful to call the function PDM_bDoesDataExist() to
determine whether a record with the specified identifier exists in the NVM and, if it does, to obtain its size and
therefore the length of the required RAM buffer.

Once the PDM module has been initialized (see Section 2.2) during a cold start or a warm start without
memory held, PDM_eReadDataFromRecord() must be called. This function must be called for each record of
application data in NVM that must be copied to RAM.

Stack Context Data

The function PDM_eReadDataFromRecord(), described above, is not used for records of stack context data.
Stack automatically handles loading of this data from the NVM to RAM, ensuring that the PDM has been
initialized.

2.3.3 Deleting data in NVM

An individual record of application data in the NVM can be deleted using the function
PDM_vDeleteDataRecord. The record to be deleted is specified using its 16-bit identifier. Alternatively,
all records (application data and stack context data) in the NVM can be deleted using the function
PDM_vDeleteAllDataRecords().

CAUTION: You are not recommended to delete records of ZigBee PRO stack context data by calling
PDM_vDeleteAllDataRecords() before rejoining the same secured network. If these records are deleted, the
destination node rejects the data sent by the node after rejoining since the frame counter has been reset on the
source node. For more information and advice, refer to the "Application Design Notes" appendix in the ZigBee
3.0 Stack User Guide (JN-UG-3130).

2.4 PDM features

2.4.1 Mutex in PDM

PDM functions are not re-entrant and a mutex is implemented within the PDM to enforce this. It works by
disabling interrupts during any critical operations.

2.4.2 PDM event and error handler

The internal PDM library allows a handler to be called to alert the application of events and error conditions in
the devices internal NVM. This callback function is registered either during the initialization of the PDM using the
function PDM_eInitialise() or by calling the function PDM_vRegisterSystemCallback(). The PDM events/error
conditions are listed and described in Section 10.1.3.

An application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE and E_PDM_SYSTEM_
EVENT_DESCRIPTOR_SAVE_FAILED callback errors during testing. The ZigBee PRO stack uses multiple
records. Once an ‘out of space’ error has occurred, the records would be in an inconsistent state. The software
must be altered to use smaller record sizes or an external SPI Flash device, or more space is allocated at PDM
initialization (if available). The PDM record sizes for the ZigBee PRO stack are dependent on table sizes set in
the ZPS Configuration Editor.

The registered callback function may also be designed to handle a Wear Count event E_PDM_SYSTEM_
EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED, which indicates that the Wear Count for an NVM
segment has reached the configured trigger level (see Section 2.4.4).
JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
15 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

2.4.3 NVM capacity

The NVM consists of 512 byte segments. The number of segments allotted to NVM is application-dependent.
It depends on the number of records to be saved and their size as well as its value. The call to PDM_eInitialize
sets its value, which is up to 110. A typical value of 63 is sufficient.

63 segments are used in ZigBee 3.0 applications. This allocation is set in the application code so that the user
has control of it. The segments allotted to NVM must be balanced with the firmware size and possibly another
firmware image if OTA is enabled.

The internal PDM library can store no more than one data record in each segment, although a large record may
be stored across multiple segments. The PDM library must store some system information in each segment, so
in practice each segment can hold only up to 502 bytes of record data. This means that a PDM record that has
a single byte of information requires the same space as a 502 byte record and a 503 byte record requires two
segments (the same as a 1004 byte record).

The function PDM_u8GetSegmentCapacity() returns the number of segments that are free for PDM. The
function PDM_u8GetSegmentOccupancy() returns the number of segments that are in use. One of these
functions may be called after all the records have been created and saved (including records in the ZigBee PRO
stack). When updating a record, the PDM saves the new data before deleting the old data (to ensure that data
is retained over any unexpected power cycles). Therefore, there must be sufficient capacity in the NVM to store
another copy of a record before the old copy is deleted. To allow for the worst-case scenario, the value returned
by PDM_u8GetSegmentCapacity() must be greater than the number of segments required to store the largest
record.

2.4.4 NVM wear count

An NVM device supports a limited number of data writes to each byte before the storage medium begins to fail.
For the K32W041, K32W061K32W041, K32W061, K32W1, MCXW71, MCXW72, or JN518x Flash, at least
100000 writes are guaranteed and a million writes must be possible. See the devices data sheet. For each NVM
segment, a record of the number of writes made to the segment so far is kept. This is the ‘Wear Count’, which
is stored and maintained in the segment header. The PDM manages the use of NVM segments in a way that
minimizes wear and attempts to spread the wear evenly across the segments.

The function PDM_eGetSegmentWearCount() allows the current value of the Wear Count of a particular
segment to be obtained. It is also possible to set up the generation of an event when the Wear Count of any
segment reaches a certain trigger level. This trigger level can be configured (for all segments) using the function
PDM_vSetWearCountTriggerLevel(). The Wear Count event is E_PDM_SYSTEM_EVENT_WEAR_COUNT_
TRIGGER_VALUE_REACHED and the user-defined PDM callback function (see Section 2.4.2) must be
designed to process this Wear Count event.

2.4.5 Ensuring consistency of PDM records

The data in the PDM may differ in structure from what the application anticipates. The structures stored by the
ZigBee PRO libraries can change due to altering table sizes in the ZPS Configuration Editor, as well as between
releases of the ZigBee PRO stack libraries. Inconsistency can occur under the following circumstances:

• The internal NVM used by the PDM on a device is not erased when programming an application with the
devices Production Flash Programmer. If multiple applications are run on the same hardware, it is unlikely that
the structures are consistent between the applications.

• When a ZigBee Over-The-Air (OTA) software update is performed, the PDM data is not erased. This update
is normally a benefit because it allows the application to rejoin the network. However, if any of the PDM
structures change, a factory reset must be performed by calling PDM_vDeleteAllDataRecords().

Applications normally contain a way to perform a factory reset of the PDM module. For example, by calling
PDM_vDeleteAllDataRecords(), if a button is held down during reset.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
16 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

The application can automatically check for PDM consistency by storing an application-specific ‘magic number’
in a record. A new magic number should be used if the application software or ZigBee PRO libraries PDM
usage is inconsistent with the previous version of the software. Immediately after calling PDM_eInitialise(), the
application should call PDM_eReadDataFromRecord(). If the magic number does not match, the application
should call PDM_vDeleteAllDataRecords() to erase all records before attempting to start the ZigBee
PRO stack. If the call to PDM_eReadDataFromRecord() indicates that the record has not been found, the
application should also call PDM_vDeleteAllDataRecords(). This function must be called because another
application might be running that does not use the same record ID but has written inconsistent ZigBee PRO
records to the PDM module.

3 Power Manager

This chapter describes the Power Manager (PWRM) module, which manages the transitions of the device into
and out of low-power modes.

PWRM module uses wake up timer 1 for activity scheduling, the application shall not use wake up timer 1
directly. If the application must use the second wake-up timer (wake up timer 0) independently of the PWRM,
the WTIMER APIs should be used. WTIMER APIs allow the PWRM to enable a wake from wake-up timer 0
prior to entering Sleep mode.

Low-power modes are used to prolong the battery life of a node by reducing the power consumption of the
device during periods when the node does not need to receive, transmit, or perform any other activities.
Therefore, low-power modes only apply to End Devices, as the Coordinator and Routers must always remain
fully alert for routing purposes.

3.1 Low-Power modes
A number of low-power modes are available on the device. In descending order of power consumption, the
modes are:

• Doze mode
• Sleep modes:

– Sleep with memory held
– Sleep with memory held, 32 kHz Oscillator running
– Sleep with memory held, 32 kHz Oscillator not running

– Sleep without memory held, 32 kHz Oscillator running
• Deep Sleep mode without memory held, 32 kHz Oscillator not running

When the node is inactive, the Power Manager puts the device into the lowest power mode possible.

The above low-power modes are described in the subsections below. For further information on the low-power
modes of a device, refer to the relevant device data sheet.

3.1.1 Doze Mode

In Doze mode, the CPU of the chip pauses (the CPU clock is stopped) but all other parts of the device continue
to run. Any interrupt causes Doze mode to terminate and the application program continues running from the
next instruction. To prevent the Watchdog firing when in Doze mode, the application must ensure that a timer is
running at a higher frequency than the Watchdog expiry period.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
17 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

3.1.2 Sleep mode with memory held

During Sleep mode with memory held, the contents of on-chip RAM are maintained, including stack context
data and application data. Therefore, on waking, the device can recover from sleep very quickly to continue
normal operation from the next instruction.

In this mode, all power domains are powered down except the ones for the on-chip RAM, LDO always ON, and
LDO MEM supplies. In addition, the 32 kHz on-chip oscillator can optionally be left running, which allows the
device to be woken from sleep using Wake Up Timers. Otherwise, the device can only be woken by changes on
the DIO pins replace by, or NTAG FD (field detect (JN518xT or K32W061 only)) or comparator.

Although memory contents are retained, it is still necessary to reconfigure the IEEE 802.15.4 stack layers and
re-initialize most of the on-chip peripherals upon waking. Wake callback functions can be registered for this
purpose:

• Do not re-initialize the DIOs, Wake Up Timers.
• Re-initialize everything else, including all other on-chip peripherals, the IEEE 802.15.4 MAC layer. If using

callbacks, the Programmable Interrupt Controller (PIC), the callback functions must be re-registered.
• Reconfigure any DIOs that were reconfigured prior to going to sleep in order to minimize current drain. This

reconfiguration may include setting the IO mux and pull-up/pull-down settings for those DIOs.

3.1.3 Sleep mode without memory held

During Sleep mode without memory held, on-chip RAM is powered down, and therefore stack context data and
application data are not preserved on-chip. Normally, this data must be saved to NVM before the chip enters
Sleep mode, and then recovered from NVM on waking (see Chapter 2).

On waking, the application program must be reloaded from flash memory before the node can resume
operation. All variables and peripherals must be reinitialized, except the ones used as wake sources and the
DIO lines.

3.1.4 Deep Sleep mode

In Deep Sleep mode, all switchable power domains are powered down and the 32 kHz oscillator is stopped. The
device can be woken from deep sleep either via a hardware reset (RESETN pin), a DIO line change, the NTAG
Field Detect (JN518xT or K32W061 only), or the analog comparator event.

On waking, the application program must be reloaded from flash memory before the node can resume
operation. All variables and peripherals must be reinitialized, including the DIO lines.

3.2 Wake-up source from Low-Power modes
Wake up source is selected both by the requested low-power mode when calling PWRM_vInit() and
PWRM_vWakeUpConfig() API.

3.2.1 Timer wake-up

In Doze mode, the CPU is in WFI, all interrupt sources are sources of wake-up provided the interrupt line is
activated.

In sleep modes, there are limited sources of wake-up.

If the 32 kHz oscillator remains active during low-power mode, the chip can wake up from low-power mode on a
scheduled activity timer or wake-up Timer 0. For further information, see PWRM_eScheduleActivity() API.

Note:

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
18 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

The Wake Up Timer 1 is reserved for PWRM). It is the application responsibility to program the Wake Up Timer
0 correctly and enable the interrupt for wake-up as done during active. If no timer is programmed, the PWRM
does not enter low-power mode while 32 kHz oscillator is kept ON in low-power mode. It switches to Doze mode
instead.

If the 32 kHz oscillator is switched OFF during low-power mode, no wake-up by Timer from low-power mode is
possible.

3.2.2 DIO wake-up

DIO wake-up is allowed in all sleep modes even in deep Sleep mode. PWRM_vWakeUpConfig() configures the
DIO wake-up. This API should be called after PWRM_vInit().

Note: PWRM_vWakeUpConfig() deprecates PWRM_vWakeUpIO().

3.2.3 NTAG FD wake-up

TAG Field detect wake-up is allowed in all sleep modes even in deep Sleep mode. PWRM_vWakeUpConfig()
configures it. This API should be called after PWRM_vInit().

The application ensures that the NTAG Field detect interrupt is properly configured before going to Sleep mode.

3.2.4 Analog Comparator wake-up

Analog Comparator wake-up is allowed in all sleep modes except deep Sleep mode. PWRM_vWakeUpConfig()
configures it. The application ensures that the Analog comparator is correctly set up and interrupt is enabled
properly before going to Sleep mode.

3.3 Callback functions for Power Manager
If you intend to use the Power Manager, a number of callback functions must be available for the Power
Manager to call in order to:

• Start the application (see Section 3.3.1)
• Perform housekeeping tasks when entering and leaving low-power mode (see Section 3.3.2)
• Handle interrupts from Wake Up Timer 1 (see Section "7.2.4 PWRM_vWakeInterruptCallback").

3.3.1 Essential callback function

For cold start (Sleep modes without RAM held), call AppColdStart() from hardware_init() function after the
BOARD_InitHardware() initializes peripherals. An example of the hardware_init() function looks as shown
below:

void hardware_init(void)
{
BOARD_InitHardware();
AppColdStart();
}

Note: If the OSAbstraction component is integrated, then the application code is implemented from
main_start() function.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
19 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

For Warm start (Sleep modes with RAM held), implement int WarmMain (void). The AppWarmStart() function
should be called after the BOARD_InitHardware() initializes the peripherals.

intWarmMain(void)
{
BOARD_InitHardware();
AppWarmStart();
}

3.3.1.1 PWRM initialization

PWRM_vInit()

Initialization should be done on cold start (Sleep without RAM held) only. It is safe to call PWRM_vInit() after
AppColdStart() have been called. There is no need to call on Warm start since the PWRM context is held. The
only exception is for recalibrating the 32 kHz oscillator that is performed in the PWRM_vInit() function.

See Section 3.4, "Initializing and Starting the Power Manager".

3.3.2 Pre-sleep and post-sleep callback functions

To implement low-power modes, you must provide the Power Manager with user-defined callback functions
to perform housekeeping tasks when the node enters and leaves low-power mode. Registration functions
are provided for these callback functions, where the registration functions must be called in the user-defined
callback function vAppRegisterPWRMCallbacks().

• The pre-sleep callback function is called by the Power Manager just before putting the device
into low-power mode. This callback function is registered in your code through the API function
PWRM_vRegisterPreSleepCallback().

• The post-sleep callback function is called by the Power Manager just after the device leaves low-power mode
(irrespective of how the device was woken from sleep). This callback function is registered in your code
through the API function PWRM_vRegisterWakeupCallback().

• If not done in the Board_InitHardware() function, typical use is to restore the DIO lines to its primary function
before sleep, or to restore some power domains, radio, Zigbee Power domain.

Note: Note: If a post-sleep function is registered in the Board_InitHardware() function before AppColdStart(),
the registered callback is called by AppColdStart() when executed.

vAppRegisterPWRMCallbacks() is called by the application as part of a cold start.

The pre-sleep and post-sleep callback function themselves must each be declared in the code using the macro:

PWRM_CALLBACK(fn_name) where fn_name is the name of the callback function.

Each of these callback functions must also have a descriptor. This structure is used in the above registering
functions to specify the callback function to register.

The callback descriptor must be declared using the macro:

PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name) where desc_name is the descriptor
name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vPreSleepCB1);
PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc,vPreSleepCB1);

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
20 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

3.4 Initializing and starting the Power Manager
The Power Manager is initialized and started using the function PWRM_vInit(). This function requires one of
five possible low-power configurations to be specified:

• Sleep with 32 kHz oscillator running and memory held.
• Sleep with 32 kHz oscillator running and memory not held.
• Sleep with 32 kHz oscillator not running and memory held.
• Sleep with 32 kHz oscillator not running and memory not held. This mode is also called deep-sleep mode.

The specified configuration is the low-power mode in which the Power Manager attempts to put the device
during inactive periods.

Note: Doze mode cannot be explicitly specified. However, the Power Manager may put the device into Doze
mode at times when the specified mode cannot be entered (see Section 3.9.1).

The criteria for selecting a Sleep mode are as follows:

• Oscillator setting:
– If the 32 kHz (chip-dependent) oscillator is left running during sleep, a wake point can be scheduled using

PWRM_vScheduleActivity() - see Section 3.7.
– Otherwise, an external event can also be used to wake the device.

• Memory setting:
– If memory is held during sleep, stack context data and application data are preserved in memory. This

setting allows the device to resume operation quickly through a warm restart following sleep.
– Sleep without memory held provides a greater power saving. However, stack context data and application

data must be saved to the file system before entering Sleep mode. Also, ensure to restore stack context
data and application data into on-chip memory during a cold restart on exiting sleep (see Chapter 2).

3.5 Enabling Power-Saving
To enable the Power Manager to put the device into low-power mode at appropriate times, you must call the
function PWRM_vManagePower(), normally from an idle loop. When possible, the Power Manager puts the
device into the Sleep mode specified through PWRM_vInit() once this function is called (or, alternatively, into
Doze mode - see Section 3.9.1).

3.6 Non-interruptible activities
In order to enter Sleep mode, no activity must be running that must not be interrupted by sleep. This condition
for entering Sleep mode is monitored using an activity counter - Sleep mode can only be entered when this
counter is zero. The application is responsible for maintaining the activity counter, as follows:

• Whenever an activity is started that must not be interrupted by sleep, the application must notify the Power
Manager using the function PWRM_eStartActivity(), which increments the activity counter.

• Whenever such an activity is completed, the application must notify the Power Manager using the function
PWRM_eFinishActivity(), which decrements the activity counter.

CAUTION: Application must only call the PWRM_eFinishActivity() following a matching call
to PWRM_eStartActivity(). The ZigBee PRO stack also uses the activity counter, so calling
PWRM_eFinishActivity() inappropriately can leave the ZigBee PRO stack in an inconsistent state.

You can obtain the current value of the activity counter using the function PWRM_u16GetActivityCount().

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
21 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

3.7 Scheduling wake events
Note: This section is only applicable to the Sleep mode in which the 32 kHz oscillator is left running and
memory is held.

• For wake from DIO events, the application checks the SDK API POWER_GetIoWakeStatus() API to establish
the DIO responsible for the wake-up event.

• For wake-up from the analogue comparator or NTAG Field Detect (JN518xT or K32W061 only) the application
checks the interrupt lines in the CPU Interrupt Controller (NVIC).

In PWRM_vInit(), if you have selected the Sleep mode with the 32 kHz oscillator running and memory held,
you can schedule wake events, which ensure that the device is awoken at certain times. This implies that if
the device is sleeping, it is woken at the scheduled time. This scheduling uses Wake Up Timer 1 of the device,
which operates at 32 kHz.

A wake event can be scheduled using the function PWRM_eScheduleActivity(). This function requires you to
specify the number of mSec of the Wake Up Timer until the wake event. Also ensure to specify the user-defined
callback function that must be called when the wake event occurs.

When the Wake Up Timer expires for a scheduled wake event, an interrupt is generated. The interrupt
handler of the application then calls the pre-defined callback function PWRM_WakeInterruptCallback().
This function maintains the list of scheduled wake events and, if necessary, restarts the Wake Up Timer for
the next scheduled wake event. The function also calls the user-defined callback function specified through
PWRM_eScheduleActivity().

Note: In addition, when the device wakes from sleep, the user-defined callback function registered through
PWRM_vRegisterWakeupCallback() is also called. However, this function is a general-purpose wake-up
function which is called irrespective of how the device has been woken. (It is called not only for scheduled wake
events, but also called for external wake events.)

3.8 Terminating Low-Power mode
Low-power modes can be terminated in a number of ways:

• Any Interrupt: When in Doze mode, any interrupt can wake the device.
• Wake Up Timer: When in Sleep mode in which the 32 kHz oscillator runs, a scheduled wake event configured

using the function PWRM_vScheduleActivity() can wake the device. For more information on scheduled
wake events, refer to Section 3.9.

• External Wake Event: The following external wake events are available:
– DIO: When in Sleep and Deep Sleep modes, a change of state of a DIO line can wake the device.
– NTAG Field detect from the internal NTAG (JN518xT or K32W061 only).
– Analog comparator event.

The functions of the SDK API can control the above external wake events.

The valid wake sources for the different low-power modes are summarized in Table 2 below.

On leaving low-power mode, the Power Manager calls the user-defined callback function that has been
registered using PWRM_vRegisterWakeupCallback().

Wake Source
Low-Power Mode

Any Interrupt Wake Up
Timer DIO Hardware

Reset NTAG FD Analog
Comparator

Doze mode Yes Yes Yes Yes Yes Yes

Table 2. Valid wake sources for Low-Power modes

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
22 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Wake Source
Low-Power Mode

Any Interrupt Wake Up
Timer DIO Hardware

Reset NTAG FD Analog
Comparator

Sleep mode with oscillator
running

No Yes Yes Yes Yes Yes

Sleep mode without
oscillator running (deep-
sleep mode)

No No Yes Yes Yes Yes

Table 2. Valid wake sources for Low-Power modes...continued

3.9 Doze mode
Doze mode is a lighter power-saving mode than the sleep modes, as all elements of the device remain powered
but the CPU is paused. CPU clock is stopped.

This low-power mode cannot be explicitly selected in PWRM_vInit(). The Power Manager puts the device into
Doze mode only in certain circumstances, described in Section 3.9.1 below. However, to enter Doze mode, the
Power Manager must have been initialized using PWRM_vInit() and the power-saving modes must have been
enabled using PWRM_vManagePower().

3.9.1 Circumstances that lead to Doze mode

Although Sleep and Deep Sleep modes cannot be entered while there are activities running that must not be
interrupted by sleep (see Section 3.6), the Power Manager can put the device into Doze mode while the activity
counter is non-zero.

Even when the activity counter is zero, if a Sleep mode has been configured with the 32 kHz oscillator running
(see Section 3.4) but no wake event has been scheduled (see Section 3.7), the Power Manager puts the device
into Doze mode instead of Sleep mode.

The decision to put a device into a Sleep mode or Doze mode is illustrated in the flowchart in Figure 2.

Figure 2. Flowchart of decision to enter Doze mode

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
23 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

3.9.2 Doze mode monitoring during development

Depending on the circumstances described in Section 3.9.1, the device may spend a significant proportion of
its time in Doze mode. Power Manager API provides a function that allows you to investigate the fraction of time
that the device spends in Doze mode for a given application. The function provides a doze monitoring output on
the DIO1 pin of the device. This functionality can be used when the application is running in Debug mode.

The function PWRM_vSetupDozeMonitor() must be called to start a monitoring session. The state of the DIO1
pin then reflects the doze state of the device, allowing you to make doze state measurements using external
equipment. The fraction of time that the device spends in Doze mode can then be estimated as: Total time in
Doze mode during session / Elapsed time of session, shown in Figure 3

Figure 3. Doze monitoring

To obtain sensible results, doze monitoring should be allowed to run for a significant time.

4 Protocol Data Unit Manager

Communication between nodes in a wireless network is implemented using messages which contain application
data. The part of a message which contains this data is called the Application Protocol Data Unit (APDU). The
Protocol Data Unit Manager (PDUM) is concerned with the following:

• APDU memory management.
• Assembling and disassembling APDUs, that is, inserting data into APDUs to be transmitted and extracting

data from received APDUs.

The PDUM is intended for use with ZigBee PRO applications.

4.1 Message assembly and disassembly
A message travels over a wireless network as a packet (usually an 802.15.4 packet). This message contains
application data surrounded by header and footer information relating to the different layers of the protocol
stack.

A message to be sent is prepared at the application level, at the top of the protocol stack, by creating an APDU
containing the application data to be included in the message. This APDU is then passed down the layers of the
stack, with each layer adding its own protocol information to the header and footer. On reaching the ‘physical’
layer at the bottom of the stack, the message is complete and ready to be transmitted.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
24 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

For transmission, the message is converted to a Network Protocol Data Unit (NPDU). If the length of the
message is greater than the packet size used in network communication (for example, 802.15.4 packet size),
the message is divided up and transmitted in multiple NPDUs. You must be aware of this when using a sniffer to
detect transmitted packets.

Note: Data is stored in memory in the device in big-endian byte order but is transmitted over the network in
little-endian byte order.

A received message is passed up the protocol stack, with each stack layer stripping out the corresponding
protocol information from the header and footer. On reaching the application level, only the APDU remains. The
application data can then be extracted from this APDU.

The assembly and disassembly of a message, described above, are illustrated in Figure 4 n which the lower
stack layers (MAC and Physical) are provided by the IEEE 802.15.4 protocol.

Figure 4. Message assembly and disassembly

4.2 Preparing the PDU Manager
In order to use the PDU Manager:

• Ensure to define the required APDUs statically using the ZPS Configuration Editor (described in the ZigBee
3.0 Stack User Guide (JN-UG-3130)). Each APDU is given a unique handle. While the data payload of an
APDU can be of arbitrary length, a maximum length is set for an APDU.

• Before calling any other PDUM functions in your code, you must call the function PDUM_vInit() to initialize the
PDU Manager.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
25 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

4.3 Inserting data into outgoing message
When sending a message to another node, you must first create an APDU containing the application data to be
sent. First allocate an APDU instance by calling the function PDUM_hAPduAllocateAPduInstance() and then
populate the APDU instance with data using PDUM_u16APduInstanceWriteNBO(), in which you must specify:

• The handle of the APDU instance in which data is to be inserted (PDUM_hAPduAllocateAPduInstance()
returns this handle).

• The starting position of the data in the APDU - that is, the position of the least significant data byte.
• The format of the data payload - the data can be made up of a sequence of data values of different types.
• The data values to be inserted in the data payload.

Alternatively, the function PDUM_u16APduInstanceWriteStrNBO() can be used to populate the APDU
instance - this function allows a data structure to be inserted into the APDU.

Then, ensure to use the relevant ZigBee PRO API function to send the message. Refer to the ZigBee 3.0 Stack
User Guide (JN-UG-3130) for details. Once the message has been sent, the ZigBee PRO stack automatically
de-allocates the memory-space used for the APDU instance.

Note: PDUM_u16APduInstanceWriteNBO() performs the necessary data conversion from big-endian byte
order to little-endian byte order for transmission.

Alternatively, you can produce your own code to insert data into the payload of an APDU. To help you, two
functions are provided:

• PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the start of the payload section of
the APDU instance.

• PDUM_eAPduInstanceSetPayloadSize(): This function sets the size, in bytes, of the data payload. This
function is needed to provide the data size to the APDU instance, after having populated the APDU instance
with data.

CAUTION: Data must be stored in memory in big-endian order but is transmitted over the network in little-
endian byte order. Therefore, if you use your own code to insert data into an APDU, you must reverse the
byte order of the data before inserting it. Failure to change the endianness of the data results in an alignment
exception.

4.4 Extracting data from incoming message
The function PDUM_u16APduInstanceReadNBO() provides an easy way of extracting the data payload
from an incoming message. The PDUM_u16APduInstanceReadNBO() function requires the following to be
specified:

• The handle of the APDU instance containing the data to be extracted (this handle is contained in the
ZPS_EVENT_APS_DATA_INDICATION stack event that notified the application of the arrival of the data
message).

• The starting position of the data in the APDU - that is, the position of the least significant data byte.
• The format of the data payload - the data can be made up of a sequence of data values of different types.
• A pointer to a structure in which the extracted data is stored.

Once the data has been extracted, you should de-allocate the memory space used for the APDU instance by
calling the function PDUM_eAPduFreeAPduInstance().

Note: PDUM_u16APduInstanceReadNBO() performs the necessary data conversion from little-endian byte
order to big-endian byte order for storage.

Alternatively, you can produce your own code to extract the payload data from an APDU. To help you, two
functions are provided:

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
26 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

• PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the start of the payload data in the
APDU instance.

• PDUM_u16APduInstanceGetPayloadSize(): This function returns the size, in bytes, of the data payload.

CAUTION: Data is received from the network in little-endian byte order, but must be stored in memory in
big-endian order. Therefore, if you use your own code to extract data from an APDU, you must reverse the
byte order of the data before storing it. Failure to change the endianness of the data results in an alignment
exception.

5 Debug (DBG) Module

This chapter describes the Debug (DBG) module which allows application code to be debugged with diagnostic
messages that are output to a display device.

5.1 Overview
The Debug module comprises an API containing diagnostic functions that can be embedded in your application
code. Application debugging using the Debug module requires the device to be connected to a display device
(such as a PC) via an IO interface, such as one of the on-chip UARTs. The display device must provide a dumb
terminal through which output from the device can be viewed. A typical implementation is illustrated in Figure 5.

Figure 5. Typical hardware set-up for debugging

The API provides the essential printf- and assert-style debug functions, which can be strategically placed in your
code:

• DBG_vPrintf() is used to output formatted strings and data values at an appropriate point during program
execution, in order to indicate progress.

• DBG_vAssert() is used to test a logical condition, and to stop program execution when the test fails
(condition is FALSE).

User-specified callback functions are used by the Debug module to control the IO interface (see Section 5.3).

The terminal on the PC can also supply input to the devices UART. The application uses the function
DBG_iGetChar() to obtain a character from this input source. The application then handles this input.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
27 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

5.2 Enabling the Debug module
The Debug module API is defined in the header file DBG.h, which must be included in your code.

The functions DBG_vPrintf() and DBG_vAssert(), each include a Boolean parameter that can be used to
enable/disable individual instances of these functions. Two or more instances of these functions can be grouped
to form a ‘stream’ for which this Boolean parameter is a common constant used to enable/disable the whole
function group. This constant can be set at build time (see Section 5.4).

The Debug Module is built upon the SDK Debug Console functionality. See the SDK Reference Manual for
further information on this.

5.3 Initializing and Configuring the Debug Module
The Debug Module does not require specific configuration. However, the SDK Debug Console must be
initialized by calling DbgConsole_Init(). See the SDK Reference Manual for further information on this.

• If a device UART is to be used for output, the required initialization/configuration is as described in Section
5.3.1. This option is taken by most users.

• If any other serial IO interface is to be used for output, the required initialization/configuration is as described
in Section 5.3.2.

Flags are provided in the global variable DBG_u32Flags for configuring certain aspects of the Debug module.

5.3.1 Using UART Input/Output

When the devices UART is to be used for the input/output of debug information, the configuration and
initialization of the Debug module is accomplished with a single call to the function DBG_vUartInit(), which
allows selection of the UART (0 or 1) and the baud-rate to be used. This function is used both during a cold start
of the device and during a warm start (where the latter is a device re-start with memory contents retained).

5.3.2 Using Alternative Serial Output

When an alternative to an on-chip UART is to be used for the output of debug information, the required IO
interface must first be configured and enabled (using the relevant functions from the JN51xx Integrated
Peripherals API).

The Debug module must then be initialized using the function DBG_vInit(). This function is used both during
a cold start of the device and during a warm start (where the latter is a device re-start with memory contents
retained). The function takes as input a structure which contains pointers to four callback functions needed for
debugging:

typedef struct
{
 void (*prInitHardwareCb)(void);
 void (*prPutchCb) (char c);
 void (*prFlushCb) (void);
 void (*prFailedAssertCb)(void);
} tsDBG_FunctionTbl;

The callback functions are user-defined and are described in the table below.

Pointer Callback Function

*prInitHardwareCb Function which re-initializes the IO interface after a warm start, e.g. when device wakes
from sleep.

Table 3. Callback Functions Specified in DBG_vInit()

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
28 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Pointer Callback Function

*prPutchCb Function used by DBG_vPrintf() to output a single character to the IO interface.

*prFlushCb Function used by DBG_vPrintf() to flush the IO interface buffer to allow buffered output
characters to be displayed. If the output is unbuffered, this function should do nothing or
wait for the last character output using the putch() function to be made available. Note
that the function should not append a newline character, as this should be handled by
the format-ting string passed to DBG_vPrintf().

*prFailedAssertCb Function which is called when DBG_vAssert() fails. The function should stop execution
and may reset the device.

Table 3. Callback Functions Specified in DBG_vInit()...continued

5.4 Example Diagnostic Code
The following code fragment illustrates use of the Debug module API. The devices UART 0 is used. Two debug
‘streams’ (1 and 2) are used to separately enable/disable two groups of debug lines.

#include <jendefs.h>
#include "app.h"
#include "dbg.h"
#ifndef DBG_STREAM_1
#define DBG_STREAM_1 FALSE
#endif
#ifndef DBG_STREAM_2
#define DBG_STREAM_2 FALSE
#endif
 int main(void)
 {
 int i = 0;
 /* Standard board pin, clock, debug console init (calls DbgConsole_Init)
 */
 BOARD_InitHardware();
 /* Now we can use DBG_vPrintf() and DBG_vAssert() to output characters
 to the UART device */
 DBG_vPrintf(DBG_STREAM_1, "Printing to stream 1\n");
 DBG_vPrintf(DBG_STREAM_2, "Printing an integer %i to stream 2\n", 10);
 DBG_vAssert(DBG_STREAM_1, i == 1);
}

When building this application, you have the following options:

• Debug disabled (the default)
• Debug enabled only for stream 1 - build with:

-DDBG_ENABLE-DDBG_STREAM_1=TRUE

• Debug enabled only for stream 2 - build with:

-DDBG_ENABLE-DDBG_STREAM_2=TRUE

• DBG enabled for both streams - build with:

-DDBG_ENABLE-DDBG_STREAM_1=TRUE-DDBG_STREAM_2=TRUE

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
29 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Part II: Reference information

6 Persistent Data Manager API

This chapter details the functions of the Persistent Data Manager (PDM) API that supports context data and
application data. The data is saved in Non-Volatile Memory (NVM) on the K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x device, which is held in the flash.

The API is defined in the header file pdm.h and is divided into the following categories:

• Internal NVM functions - see Section 6.1.
• Internal NVM PDM miscellaneous functions - see Section 6.2.

Note: For more information on how to use the functions described in this chapter, refer to Chapter 2.

6.1 Internal NVM PDM functions
The PDM functions are listed below:

1. PDM_eInitialise
2. PDM_eSaveRecordData
3. PDM_eReadDataFromRecord
4. PDM_eDeleteData
5. PDM_eDeleteAllData
6. PDM_u8GetSegmentCapacity
7. PDM_u8GetSegmentOccupancy
8. PDM_bDoesDataExist

Note: For the description of how to use these functions, refer to Section 2.3.

6.1.1 PDM_eInitialise

PDM_teStatusPDM_eInitialise(
 uint16 u16StartSegment,
 uint8 u8NumberOfSegments,
PDM_tpfvSystemEventCallback
fpvPDM_SystemEventCallback;

Note: The function prototype in the header file includes two additional parameters as conditional build options.
These are not present in the library as provided in the SDK.

Description

This function initializes the PDM module and registers the required PDM functions. It must be called during both
a warm start and a cold start.

The function initializes the PDM environment and builds the underlying Flash file system. A RAM-based file
system is created to allow the PDM to map data to/from the Flash. The Flash sectors are scanned for evidence
of any valid user data, which is mapped into the RAM file system. This routine handles any write errors that may
have occurred if the Flash was powered down whilst data was being written to the PDM system. Once the file
system has been constructed, you can then write data to and read data from the Flash via PDM.

The region of flash to use for the PDM is specified by u16StartSegment and u8NumberOfSegments. A segment
is 512 bytes. The PDM can operate within any number of Flash segments, as specified through the parameter

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
30 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

u8NumberOfSegments. A zero value results in an error code of PDM_E_STATUS_INVLD_PARAM being
returned. For the device SDK, there is no need for the application to specify a mutex to control access to the
PDM. The mutex is implemented within the PDM itself. However, it is necessary for the application build process
to define the build token PDM_NO_RTOS so that the PDM header file is parsed correctly.

Parameters

• u16StartSegment: First segment in flash to use for PDM data storage
• u8NumberOfSegments: Number of contiguous Flash sectors to be managed.
• fpvPDM_SystemEventCallback : Function in the application to be called when a PDM system event has

occurred. This function can also be set or changed by calling PDM_vRegisterSystemCallback (see Section
6.2).

Returns

PDM_E_STATUS_INVLD_PARAM

6.1.2 PDM_eSaveRecordData

PDM_teStatusPDM_eSaveRecordData(
 uint16 u16IdValue,
 uint8 *pu8DataBuffer,
 uint16 u16Datalength);

Description

This function saves the specified application data from RAM to the specified record in NVM. The record is
identified by means of a 16-bit user-defined value.

CAUTION: The application software must not use record identifier values that would clash with those used by
the NXP libraries used with the application. The ZigBee PRO stack libraries use values above 0x8000.

When a data record is saved to the NVM for the first time, the data is written provided there are enough NVM
segments available to hold the data. Upon subsequent save requests, if there was a change between the RAM-
based and NVM-based data buffers, then the PDM attempts to re-save only the segments that have changed.
Consequently, if no data has changed, no save is performed. This is advantageous due to the restricted size of
the NVM and the constraint that old data must be preserved while saving changed data to the NVM.

Provided that you have registered a callback function with the PDM (see Section 6.2), the callback mechanism
signals when a save has failed. Upon failure, the callback function is invoked and passes the event E_PDM_
SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED to the application.

Parameters

• u16IdValue: User-defined ID of the record to be saved (see Caution above)
• *pu8DataBuffer: Pointer to data buffer to be saved in the record in NVM
• u16Datalength: Length of data to be saved, in bytes

Returns

• PDM_E_STATUS_OK (success)
• PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)
• PDM_E_STATUS_NOT_SAVED (save to NVM failed)

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
31 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

6.1.3 PDM_eReadDataFromRecord

PDM_teStatusPDM_eReadDataFromRecord(
 uint16 u16IdValue,
 void *pvDataBuffer,
 uint16 u16DataBufferLength,
 uint16* pu16DataBytesRead);

Description

This function reads the specified record of application data from the NVM and stores the read data in the
supplied data buffer in RAM. The record is specified using its unique 16-bit identifier.

Before calling this function, it may be useful to call PDM_bDoesDataExist() in order to determine whether a
record with the specified identifier exists in the NVM and, if it does, to obtain its size.

Parameters

• u16IdValue: User-defined ID of the record to be read
• *pvDataBuffer: Pointer to the data buffer in RAM where the read data is to be stored
• u16DataBufferLength: Length of the data buffer, in bytes
• *pu16DataBytesRead: Pointer to a location to receive the number of data bytes read

Returns

• PDM_E_STATUS_OK (success)
• PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

6.1.4 PDM_eDeleteData

PDM_vDeleteAllDataRecords(uint16 u16IdValue);

Description

This function deletes the specified record of application data in NVM.

Alternatively, all records in NVM can be deleted using the function PDM_vDeleteAllDataRecords().

Parameters

u16IdValue: User-defined ID of the record to be deleted

Returns

None

6.1.5 PDM_eDeleteAllData

void PDM_vDeleteAllDataRecords(void);

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
32 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Description

This function deletes all records in NVM, including both application data and stack context data, resulting in an
empty PDM file system. The NVM segment Wear Count values are preserved (and incremented) throughout
this function call.

CAUTION: It is not recommended to delete records of stack context data before a rejoin of the same secured
network. If these records are deleted, data sent by the node after the rejoin will be rejected by the destination
node since the frame counter has been reset on the source node. For more details, refer to "Application Design
Notes" Appendix in the ZigBee 3.0 Stack User Guide (JN-UG-3130).

Alternatively, an individual record of application data can be deleted using the function
PDM_vDeleteDataRecord().

Parameters

None

Returns

None

6.1.6 PDM_u8GetSegmentCapacity

uint8 PDM_u8GetSegmentCapacity(void);

Description

This function returns the number of unused segments that remain in the NVM.

Parameters

None

Returns

Number of PDM NVM segments free

6.1.7 PDM_u8GetSegmentOccupancy

uint8 PDM_u8GetSegmentOccupancy(void);

Description

This function returns the number of used segments in the NVM.

Parameters

None

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
33 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Returns

Number of NVM segments used

6.1.8 PDM_bDoesDataExist

bool_t PDM_bDoesDataExist(uint16 u16IdValue,
 uint16 *pu16DataLength);

Description

This function checks whether data associated with the specified record ID exists in the NVM. If the data record
exists, the function returns the data length, in bytes, in a location to which a pointer must be provided.

Parameters

• u16IdValue: User-defined ID of the record to be found
• *pu16DataLength: Pointer to location to receive length, in bytes, of data record (if any) associated with

specified record ID

Returns

TRUE if data record found, FALSE otherwise.

6.2 Internal NVM PDM Miscellaneous Functions
The PDM miscellaneous functions include a function for registering a user-defined PDM system callback
function and functions related to the Wear Counts of NVM segments. The functions are listed below:

1. PDM_vRegisterSystemCallback
2. PDM_vSetWearCountTriggerLevel
3. PDM_eGetSegmentWearCount

Note: For a description of how to use these functions, refer to Section 2.4.2 and Section 2.4.4.

6.2.1 PDM_vRegisterSystemCallback

void PDM_vRegisterSystemCallback(
 PDM_tpfvSystemEventCallback
 fpvPDM_SystemEventCallback);

Description

This function registers a user-defined callback function to handle PDM events and errors.

Parameters

fpvPDM_SystemEventCallback: Pointer to the application callback function. The function type
PDM_tpfvSystemEventCallback is documented in Section 10.1.1. The events generated by the PDM
library are documented in Section 10.1.3.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
34 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Returns

None

6.2.2 PDM_vSetWearCountTriggerLevel

void PDM_vSetWearCountTriggerLevel(
 uint32 u32WearCountTriggerLevel);

Description

This function sets the Wear Count value of an NVM segment at which a Wear Count event is triggered and the
PDM callback function is activated. The invoked callback function is user-defined and is registered using the
function PDM_vRegisterSystemCallback().

The callback function is invoked only once for a particular segment, when the specified Wear Count value
occurs. It is not invoked for every occurrence afterwards, when the segment Wear Count exceeds the trigger
value).

Parameters

u32WearCountTriggerLevel: Wear Count value that triggers a Wear Count event

Returns

None

6.2.3 PDM_eGetSegmentWearCount

PDM_teStatusPDM_eGetSegmentWearCount(
 uint8 u8SegmentIndex,
 uint32 *pu32WearCount);

Description

This function obtains the current Wear Count value of the specified NVM segment.

Parameters

• u8SegmentIndex: Index of Flash segment for which Wear Count needed
• *pu32WearCount: Pointer to location to receive obtained Wear Count value

Returns

• PDM_E_STATUS_OK (success)
• PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

7 PWRM API

This chapter describes the functions of the Power Manager (PWRM) API. The API is defined in the header file
pwrm.h.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
35 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

CAUTION: The Power Manager uses Wake Up Timer 1 of the device if scheduled wake events are configured.
In this case, do not use this Wake Up Timer for any other purpose in your application.

The PWRM API functions are divided into the following categories:

• ‘Core’ functions, described in Section 7.1.
• ‘Callback Set-up’ functions, described in Section 7.2.

Note: For more information on the API, refer to the pwrm.h file.

7.1 Core Functions
The PWRM core functions are listed below:

1. PWRM_vColdStart
2. PWRM_vInit
3. PWRM_eStartActivity
4. PWRM_eFinishActivity
5. PWRM_u16GetActivityCount
6. PWRM_eScheduleActivity
7. PWRM_vManagePower
8. PWRM_vWakeUpConfig
9. PWRM_GetFro32KCalibrationValue

7.1.1 PWRM_vColdStart

void PWRM_vColdStart(void);

Description

This function should be called from hardware_init() after the hardware is initialized by
APP_vSetUpHardware(). PWRM_vColdStart() does the following actions:

• call vAppRegisterPWRMCallbacks
• reset the Wake Up Timer IP if the reset cause if different from the power down reset
• Stop the PWRM timer if the reset cause is the power down reset
• call the post wake-up callbacks

PWRM_vColdStart() does not call the PWRM_eScheduleActivity() callback since the RAM is OFF

7.1.1.1

Parameters

None

Returns

None

7.1.2 PWRM_vInit

void PWRM_vInit(PWRM_tePowerMode ePowerMode);

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
36 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Description

This function is used to initialize the Power Manager and specify the low-power mode in which the device
should be put when inactive.

There are five possible low-power modes that can be specified:

• Sleep with 32-kHz oscillator running and memory held
• Sleep with 32-kHz oscillator running and memory not held
• Sleep with 32-kHz oscillator not running and memory held
• Sleep with 32-kHz oscillator not running and memory not held
• Deep Sleep (32-kHz oscillator not running and memory not held)

The enumerations for the above power modes are listed below and described in Section 10.2.1. For further
information on these low-power modes and how to wake from them, refer to Section 3.1.

Note that if the Power Manager is unable to put the device into the specified low-power mode, it will put the
device into Doze mode instead - see description of PWRM_vManagePower().

If the 32-kHz oscillator is run, the device’s Wake Up Timer 1 is calibrated and made available (and then must
not be used for any other purpose).

Parameters

ePowerMode: The power mode to be used during sleep, one of:

• E_AHI_SLEEP_OSCON_RAMON
• E_AHI_SLEEP_OSCON_RAMOFF
• E_AHI_SLEEP_OSCOFF_RAMON
• E_AHI_SLEEP_OSCOFF_RAMOFF
• E_AHI_SLEEP_DEEP

Returns

• PWRM_E_OK
• PWRM_E_MODE_INVALID

7.1.3 PWRM_eStartActivity

PWRM_teStatus PWRM_eStartActivity(void);

Description

This function is used to notify the Power Manager that an activity has been started which must not be
interrupted by sleep. Thus, while such an activity is running, the device does not enter sleep mode.

The function PWRM_eFinishActivity() must then be called when the activity has completed. However, if
PWRM_eStartActivity() has also been called for other activities that have not yet finished, the device will not
be able to enter sleep mode until PWRM_eFinishActivity() has been called for all such activities.

The activity for which PWRM_eStartActivity() is called does not need to be identified, since the function simply
increments a counter of running activities that must not be interrupted by sleep.

There is an upper limit of 64K to the value of this counter. If this limit is exceeded, an overflow error is returned.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
37 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Parameters

None

Returns

• PWRM_E_OK (success)
• PWRM_E_ACTIVITY_OVERFLOW (activity counter limit exceeded)

7.1.4 PWRM_eFinishActivity

PWRM_teStatus PWRM_eFinishActivity(void);

Description

This function is used to notify the Power Manager that an activity has completed which was not to be interrupted
by sleep.

The function call must be paired with a previous call to PWRM_eStartActivity(). Sleep mode cannot be entered
until PWRM_eFinishActivity() has been called for all activities for which PWRM_eStartActivity() has been
previously called.

The activity for which PWRM_eFinishActivity() is called does not need to be identified, since the function
simply decrements a counter of running activities that must not be interrupted by sleep. Sleep mode must not be
entered until this counter reaches zero. If this function is called when the counter is already zero, an underflow
error is returned.

Parameters

None

Returns

PWRM_E_OK (success)
PWRM_E_ACTIVITY_UNDERFLOW (activity counter already zero)

7.1.5 PWRM_u16GetActivityCount

uint16 PWRM_u16GetActivityCount(void);

Description

This function obtains the current value of the activity counter which indicates the number of activities currently
running that must not be interrupted by sleep. Sleep mode cannot be entered until the value of this counter is
zero.

Parameters

None

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
38 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Returns

Current value of activity counter

7.1.6 PWRM_eScheduleActivity

PWRM_teStatus PWRM_eScheduleActivity(
 pwrm_tsWakeTimerEvent *psWake,
 uint32 u32Ticks,
 void (*prCallbackfn)(void));

Description

This function can be used to add a wake point and associated callback function to a list of scheduled wake
points and callbacks. The new wake point is linked to an exclusive 32-kHz software Wake Up Timer, through the
specified structure.

The function takes as input the number of ticks of the Wake Up Timer until the scheduled wake point. When the
Wake Up Timer expires, the device will be woken from sleep and the specified callback function will be called.

To use this function, the Power Manager must be configured through PWRM_vInit() to implement a low-power
mode in which the 32-kHz oscillator is running and memory is held. If this is not ensured, the list of scheduled
wake points will be lost when the device enters sleep mode.

The function returns an error (see below) if the 32-kHz oscillator has not been configured to run during sleep or
the software Wake Up Timer is already running for another wake point.

Parameters

• *psWake: Pointer to a structure to be populated with the wake point and callback function (see below).
• u32Ticks: The number of ticks of the 32-kHz Wake Up Timer until wake point.
• *prCallbackfn: Pointer to callback function associated with wake point.

Returns

• PWRM_E_OK (Wake Up Timer started successfully)
• PWRM_E_TIMER_RUNNING (Wake Up Timer already running for another wake point)
• PWRM_E_TIMER_INVALID (oscillator not configured to run during sleep)

7.1.7 PWRM_vManagePower

void PWRM_vManagePower(void);

Description

This function instructs the Power Manager to manage the power state of the device. The device must be idle
when this function is called, i.e. the function is typically called from the OS idle task.

Once this function has been called, whenever appropriate, the Power Manager will put the device into the low-
power mode specified through the function PWRM_vInit(). To allow the device to enter sleep mode:

• No activities that are uninterruptable by sleep must be running - that is, the activity counter must be zero.
• If the 32-kHz oscillator will run during sleep, a wake point must have been scheduled using

PWRM_vScheduleActivity() (this condition does not apply when the oscillator is not used)
JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
39 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

If the above two conditions are not satisfied, the function puts the device into Doze mode instead of sleep mode.
Doze mode simply pauses the on-chip CPU, leaving all components powered (example. radio), and requires an
interrupt to be configured to wake the device.

Before putting the device into sleep mode, this function calls any user-defined callback functions that have been
registered using the function PWRM_vRegisterPreSleepCallback().

Parameters

None

Returns

None

7.1.8 PWRM_vWakeUpConfig

PWRM_teStatus PWRM_vWakeUpConfig(uint32_tio_mask);

Description

This function instructs the power manager the wake-up event from sleep mode excluding the Timer event
(which is done byPWRM_eScheduleActivity) the wake-up event can be:

• any IO or set of IO
• NTAG field detect
• Analog Comparator

Parameters

In case of an IO wake-up is programmed, on Wakeup, the application shall check the IO status in the post
wake-up callback to see if the wake-up source is IO (POWER_GetIoWakeStatus() from fsl_power.h).
PWRM_vWakeUpConfig() does not apply for doze mode. To disable the wake-up sources list, set the
pwrm_config to 0.

Returns

• PWRM_E_OK if the bit field is valid
• PWRM_E_IO_INVALID if the pwrm_config is incorrect.

7.1.9 PWRM_GetFro32KCalibrationValue

uint32_tPWRM_GetFro32KCalibrationValue(void);

Description

This function get the 32KHz FRO clock frequency. If the calibration has already been done in PWRM_vInit(), the
function returns immediately with the calibration value. Otherwise, the calibration will be performed.

Parameters

The application shall enable the FRO32K prior calling this function. If FRO32K is disabled,

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
40 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

• Then the function does nothing and returns 0.
• If the XTAL32MHz is not enabled, the function enables it for FRO32K calibration.
• The XTAL32M is not disabled on the return of the function.

Returns

Number of FRO 32KHz cycles in one second / 32KHz frequency. Optimal value if FRO32KHz is accurate is
32768.

7.2 Callback Set-up Functions
The PWRM callback set-up functions are used to introduce user-defined callback functions that must be defined
when using the Power Manager.

The functions are listed below:

1. PWRM_vRegisterPreSleepCallback
2. PWRM_vRegisterWakeupCallback
3. vAppRegisterPWRMCallbacks
4. PWRM_vWakeInterruptCallback

7.2.1 PWRM_vRegisterPreSleepCallback

void PWRM_vRegisterPreSleepCallback(
 tsCallbackDescriptor *psCBDesc);

Description

This function is used to register a user-defined callback function that is called by the Power Manager before the
device enters sleep mode. You must specify a pointer to a structure containing a descriptor for your callback
function.

The callback function must have been declared using the macro PWRM_CALLBACK(fn_name), where
fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where desc_name is the descriptor
name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vPreSleepCB1);
PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc,vPreSleepCB1);

The callback function should perform any housekeeping tasks that are necessary before the device enters sleep
mode.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered during a cold start.

Parameters

In Pre-sleep call back, the Application shall turned OFF the clock it does not use in sleep mode, and configure
the pin muxing to avoid pad leakage. Also, if a debug console is used, it shall deinitialize the console before
going to sleep.
JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
41 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

*psCBDesc: Pointer to callback descriptor structure

Returns

None

7.2.2 PWRM_vRegisterWakeupCallback

void PWRM_vRegisterWakeupCallback(
 tsCallbackDescriptor *psCBDesc);

Description

This function is used to register a user-defined callback function that will be called by the Power Manager when
the device wakes from sleep (this may be due to a change on a DIO line or comparator input, or the expiry of a
Wake Up Timer). You must specify a pointer to a structure containing a descriptor for your callback function.

The callback function must have been declared using the macro PWRM_CALLBACK(fn_name), where
fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where desc_name is the descriptor
name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vWakeUpCB1);
PWRM_DECLARE_CALLBACK_DESCRIPTOR(wucb1_desc, vWakeUpCB1);

The callback function should perform any housekeeping tasks that are necessary after the device wakes from
sleep.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered during a cold start.

Parameters

In case of Warm Start, the application reconfigures all the Hardware peripherals in the wake-up call back (by
calling APP_vSetUpHardware()).

*psCBDesc: Pointer to callback descriptor structure

Returns

None

7.2.3 vAppRegisterPWRMCallbacks

void vAppRegisterPWRMCallbacks(void);

Description

This is a user-defined function to register pre-sleep and post-sleep callback functions, if required.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
42 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

The function definition must itself use PWRM_vRegisterPreSleepCallback() and
PWRM_vRegisterWakeupCallback() to register the required callbacks.

Parameters

None

Returns

None

7.2.4 PWRM_vWakeInterruptCallback

void PWRM_vWakeInterruptCallback(void);

Description

This function is a pre-defined callback function which must be called from the application’s interrupt handler to
deal with interrupts from Wake Up Timer 1 on the device.

The function is needed to maintain the scheduled wake points list, by restarting the Wake Up Timer for the
next wake-up event (if any) when the previous one has just completed. The function also calls the user-defined
callback function specified through PWRM_vScheduleActivity().

Parameters

None

Returns

None

8 PDUM API

This chapter describes the functions of the Protocol Data Unit Manager (PDUM) API. The API is defined in the
header file pdum.h.

The PDUM API functions are listed below:

1. PDUM_vInit
2. PDUM_hAPduAllocateAPduInstance
3. PDUM_eAPduFreeAPduInstance
4. PDUM_u16APduInstanceReadNBO
5. PDUM_u16APduInstanceWriteNBO
6. PDUM_u16APduInstanceWriteStrNBO
7. PDUM_u16SizeNBO
8. PDUM_u16APduGetSize
9. PDUM_pvAPduInstanceGetPayload

10. PDUM_u16APduInstanceGetPayloadSize
11. PDUM_eAPduInstanceSetPayloadSize
12. PDUM_vDBGPrintAPduInstance

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
43 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Note: In ZigBee PRO, the APDUs used by the application must be pre-defined (before building the application)
using the ZPS Configuration Editor. This tool is detailed in the ZigBee 3.0 Stack User Guide (JN-UG-3130).

8.1 PDUM_vInit

void PDUM_vInit();

Description

This function initializes the PDU Manager and must therefore be the first PDUM function called.

Parameters

None

Returns

None

8.2 PDUM_hAPduAllocateAPduInstance

PDUM_thAPduInstance
 PDUM_hAPduAllocateAPduInstance(
 PDUM_thAPdu hAPdu);

Description

This function allocates an instance of an Application Protocol Data Unit (APDU) - that is, memory space is
allocated to the APDU instance.

The available APDUs (types and their handles) are pre-defined using the ZPS Configuration Editor (refer to the
ZigBee 3.0 Stack User Guide (JN-UG-3130)).

The allocated APDU instance can subsequently be populated with data and sent to another node.

Parameters

hAPdu: Handle of APDU (type)

Returns

• Handle of allocated APDU instance.
• PDUM_INVALID_HANDLE if no APDU instances are free.

8.3 PDUM_eAPduFreeAPduInstance

PDUM_teStatusPDUM_eAPduFreeAPduInstance(
 PDUM_thAPduInstance hAPduInst);

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
44 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Description

This function de-allocates the specified APDU instance, thus freeing the associated memory space.

Parameters

hAPduInstance: Handle of APDU instance

Returns

PDUM_E_INTERNAL_ERROR

8.4 PDUM_u16APduInstanceReadNBO

uint16 PDUM_u16APduInstanceReadNBO(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16Pos,
 constchar *szFormat,
 void *pvStruct);

Description

This function reads data from the specified APDU instance and inserts the data into a C structure. The byte
position of the start (least significant byte) of the data in the APDU instance must be specified, as well as the
format of the data.

Data is read from the APDU instance in packed network byte order (little-endian) and translated into unpacked
host byte order for the C structure (big-endian).

Parameters

• hAPduInst: Handle of APDU instance to read the data from.
• u16Pos: The starting position (least significant byte) of the data within the APDU:

– *szFormat: Format string of the data:
– b: 8-bit byte
– h: 16-bit half-word (short integer)
– w: 32-bit word
– l: 64-bit long-word (long integer)
– a\xnn: nn (hex) bytes of data (array)
– p\xnn: nn (hex) bytes of packing

• *pvStruct: Pointer to C structure to receive the data.

Note: Please note that the compiler does not correctly interpret the format string "a\xnnb" for a data array
followed by a single byte, for example, "a\b". In this case, to ensure that the ‘b’ (for byte) is not interpreted as a
hex value, use the format "a\xnn" "b". For example, "a\x0a" "b".

Returns

• Total number of data bytes read from the APDU instance.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
45 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

8.5 PDUM_u16APduInstanceWriteNBO

uint16 PDUM_u16APduInstanceWriteNBO(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16Pos,
 constchar *szFormat,...);

Description

This function writes the specified data values into the specified APDU instance. The byte position of the start of
the data (least significant byte) in the APDU instance must be specified, as well as the format of the data.

The data values are written into the APDU instance at the specified position in packed network byte order (little-
endian). The input data values should be in host byte order (big-endian).

Parameters

• hAPduInst: Handle of the APDU instance to write the data into
• u16Pos: The starting position (least significant byte) of the data within the APDU instance:

– *szFormat: Format string of the data:
– b: 8-bit byte
– h: 16-bit half-word (short integer)
– w: 32-bit word
– l: 64-bit long-word (long integer)
– a\xnn: nn (hex) bytes of data (array)
– p\xnn: nn (hex) bytes of packing

• ...: Variable list of data values described by the format string

Note:

Please note that the compiler will not correctly interpret the format string "a\xnnb" for a data array followed by a
single byte, for example: "a\b".

• In this case, to ensure that the ‘b’ (for byte) is not interpreted as a hex value, use the format "a\xnn" "b",
such as "a\x0a" "b".

Returns

Total number of bytes written to the APDU instance.

8.6 PDUM_u16APduInstanceWriteStrNBO

uint16PDUM_u16APduInstanceWriteStrNBO(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16Pos,
 constchar *szFormat,
 void *pvStruct);

Description

This function writes data from the specified structure into the specified APDU instance. The byte position of
the start of the data (least significant byte) in the APDU instance must be specified, as well as the format of the
data.
JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
46 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

The data values are written into the APDU instance at the specified position in packed network byte order (little-
endian). The input data values should be in host byte order (big-endian).

Parameters

• hAPduInst: Handle of the APDU instance to write the data into
• u16Pos: The starting position (least significant byte) of the data within the APDU instance
• *szFormat: Format string of the data:

– b8-bit byte
– h16-bit half-word (short integer)
– w32-bit word
– l64-bit long-word (long integer)
– a\xnn: nn (hex) bytes of data (array)
– p\xnn: nn (hex) bytes of packing

• *pvStruct: Pointer to C structure to containing data

Note:

Please note that the compiler does not correctly interpret the format string "a\xnnb" for a data array followed by
a single byte (example: "a\b"). In this case, to ensure that the ‘b’ (for byte) is not interpreted as a hex value, use
the format "a\xnn" "b", for example: "a\x0a" "b".

Returns

Total number of bytes written to the APDU instance.

8.7 PDUM_u16SizeNBO

uint16 PDUM_u16SizeNBO(constchar *szFormat);

Description

This function obtains the size, in bytes, of an APDU data payload, given the format of the data.

Parameters

• *szFormatFormat string of the data:
– b8-bit byte
– h16-bit half-word (short integer)
– w32-bit word
– l64-bit long-word (long integer)
– a\xnn: nn (hex) bytes of data (array)
– p\xnn: nn (hex) bytes of packing

Note:

Please note that the compiler does not correctly interpret the format string "a\xnnb" for a data array followed by
a single byte, such as "a\b". In this case, to ensure that the ‘b’ (for byte) is not interpreted as a hex value, use
the format "a\xnn" "b". For example, "a\x0a".

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
47 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Returns

Number of bytes in data payload

8.8 PDUM_u16APduGetSize

uint16 PDUM_u16APduGetSize(PDUM_thAPdu hAPdu);

Description

This function obtains the maximum size, in bytes, of the specified APDU (type).

Parameters

hAPdu: Handle of APDU

Returns

Number of bytes in APDU

8.9 PDUM_pvAPduInstanceGetPayload

void *PDUM_pvAPduInstanceGetPayload(
 PDUM_thAPduInstance hAPduInst);

Description

This function obtains a pointer to the payload data of the specified APDU instance.

Parameters

hAPduInst: Handle of APDU instance to access

Returns

Pointer to data as an array of bytes.

8.10 PDUM_u16APduInstanceGetPayloadSize

uint16 PDUM_u16APduInstanceGetPayloadSize(
 PDUM_thAPduInstance hAPduInst);

Description

This function obtains the size, in bytes, of the payload data of the specified APDU instance.

Parameters

hAPduInst: Handle of APDU instance to access

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
48 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Returns

Size of the payload data, in bytes.

8.11 PDUM_eAPduInstanceSetPayloadSize

PDUM_teStatusPDUM_eAPduInstanceSetPayloadSize(
 PDUM_thAPduInstance hAPduInst,
 uint16 u16Size);

Description

This function sets the size, in bytes, of the payload of the specified APDU instance. This function is needed to
provide the data size to the APDU instance, after having populated the APDU instance with data.

Parameters

hAPduInst: Handle of APDU instance
u16Size: Size of payload to set, in bytes

Returns

• PDUM_OK.
• PDUM_E_APDU_INSTANCE_TOO_BIG.

8.12 PDUM_vDBGPrintAPduInstance

void PDUM_vDBGPrintAPduInstance(
 PDUM_thAPduInstance hAPduInst);

Description

This function can be used to output the specified APDU instance via the Debug (DBG) module.

For details of the DBG functions, refer to Chapter 9.

Parameters

hAPdu: Handle of APDU instance to output

Returns

None.

9 DBG API

The chapter describes the functions of the Debug (DBG) module API. The API is defined in the header file
dbg.h.

To use the Debug module, it must be enabled at build-time by defining DBG_ENABLE in the build. This can be
done, for example, by adding the -DDBG_ENABLE option to the compiler.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
49 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

By default, the Debug module just displays each line as passed. However, if DBG_VERBOSE is defined at build-
time, then each line displayed is prefixed with the file name and line number of the debug statement.

Note: Compiling with the DBG option results in a larger application size, requiring a lot more space in RAM.

The DBG API functions are listed below:

• DBG_vPrintf
• DBG_vAssert

9.1 DBG_vPrintf

void DBG_vPrintf(bool_t bStreamEnabled,
 constchar *pcFormat,...);

Description

This function is an adapted printf() function, allowing a formatted string to be output (for example, via the
UART) for display.

The function contains a parameter that allows the output of the string to be enabled or disabled. The value of
this Boolean parameter must be a literal. If disabled, the compiler optimizes out this function, but its parameters
are still evaluated.

The supported output formats are as follows:

Format Specifier Purpose

Flags

- Left align

0 Pad with zeroes

+ Sign with plus

‘ ‘ (space) Sign with space

Width

<integer> Field width

Length

l Long

ll Long long

h Short

Type

i Signed integer

d Signed integer

u Unsigned integer

x Unsigned integer as hexadecimal

p Pointer

c Character

s String

Table 4. Supported output formats of printf() function

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
50 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Format Specifier Purpose

Escape sequence

\n Newline/carriage return

Table 4. Supported output formats of printf() function...continued

Parameters

• bStreamEnabled: Boolean which determines whether string will be output:
– TRUE: Output string
– FALSE: Do not output string (compile out function)

• *pcFormat: Pointer to printf-style formatting string.
For supported output formats, see the above table.

Returns

None

9.2 DBG_vAssert

voidDBG_vAssert(bool_t bStreamEnabled,
 bool_t bAssertion);

Description

This function is an adapted assert() function, allowing a Boolean condition to be tested.

The function contains a parameter which allows the test to be enabled or disabled. The value of this Boolean
parameter must be a literal. If disabled, the compiler will optimize out this function.

The Boolean condition to be tested is specified as a parameter:

• If the condition is TRUE, program execution continues.
• If the condition is FALSE, an error message is output and execution is passed to a callback function, which

stops execution. This callback function is specified when DGB_vInit() is called for a cold start.

Parameters

• bStreamEnabled: Boolean which determines whether test will be performed:
– TRUE: Perform test.
– FALSE: Do not perform test.

• bAssertion: Boolean expression to be tested.

Returns

None.

10 JCU Structures

This chapter describes the structures (including enumerations) used by the JCU modules:

• PDM structures are detailed in Section 10.1
• PWRM structures are detailed in Section 10.2
JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
51 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

• DBG structures are detailed in Section 10.3

10.1 PDM Structures

10.1.1 PDM_tpfvSystemEventCallback

This type defines the callback function that receives PDM events.

typedef void (*PDM_tpfvSystemEventCallback) (
 uint32 u32eventNumber,
 PDM_eSystemEventCode eSystemEventCode);

where:

• u32eventNumber gives further information about the event depending on the event code, as detailed in
Section 10.1.3

• eSystemEventCode identifies the type of event that triggered the callback.

10.1.2 tsReg128

This is a constant structure which contains a 128-bit encryption key used by the PDM module - the key is
passed into the module via the PDM_vInit() function.

typedefstruct
{
 uint32u32register0;
 uint32u32register1;
 uint32u32register2;
 uint32u32register3;
} tsReg128;

In the above structure, u32register0 contains the 32 least significant bits and u32register3 contains the
32 most significant bits of the key.

10.1.3 PDM_eSystemEventCode

This structure contains enumerations for the events generated by the PDM library.

typedefenum
{
 E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED=0,
 E_PDM_SYSTEM_EVENT_SAVE_FAILED,
 E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE,
 E_PDM_SYSTEM_EVENT_LARGEST_RECORD_FULL_SAVE_NO_LONGER_POSSIBLE,
 E_PDM_SYSTEM_EVENT_SEGMENT_DATA_CHECKSUM_FAIL,
//Debug event codes
 E_PDM_SYSTEM_EVENT_NVM_SEGMENT_HEADER_REPAIRED,
 E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP,
 E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED,
 E_PDM_SYSTEM_EVENT_SYSTEM_ERROR,
} PDM_eSystemEventCode;

The events are outlined in Table 5 below.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
52 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Event Enumeration Description

E_PDM_SYSTEM_EVENT_WEAR_COUNT_
TRIGGER_VALUE_REACHED

An NVM segment has reached a set Wear Count (set by the user or
left at the manufacturer stated maximum value). u32EventNumber
carries the NVM segment number.

E_PDM_SYSTEM_EVENT_SAVE_FAILED A save has failed. u32eventNumber contains the u16IdValue of
the record that failed to save. This is a fatal error as the stack records
may be inconsistent. Test software should log this error and halt.
Production software may need to perform a factory reset.

E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_
SPACE

There is not enough space to hold all the PDM records. u32event
Number contains the u16IdValue of the record that was being
processed. This is a fatal error as the stack records may be
inconsistent. Test software should log this error and halt. Production
software may need to perform a factory reset.

E_PDM_SYSTEM_EVENT_LARGEST_RECORD_
FULL_SAVE_NO_LONGER_POSSIBLE

The NVM occupancy is such that the largest record in the PDM can
no longer be fully saved.
u32EventNumber carries the u16IdValue of the record that was
being processed.

E_PDM_SYSTEM_EVENT_SEGMENT_DATA_
CHECKSUM_FAIL

The calculated checksum for the data in an NVM segment does not
match the stored checksum value. u32EventNumber carries the
number of the segment.

E_PDM_SYSTEM_EVENT_NVM_ SEGMENT_
HEADER_REPAIRED

This code can be ignored by the application software and only needs
to be logged if requested by NXP Technical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_
BUFFER_WEAR_COUNT_SWAP

This code can be ignored by the application software and only needs
to be logged if requested by NXP Technical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
 DUPLICATE_FILE_SEGMENT_DETECTED

This code can be ignored by the application software and only needs
to be logged if requested by NXP Technical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_ERROR This code can be ignored by the application software and only needs
to be logged if requested by NXP Technical Support.

Table 5. PDM Event Codes (Flash)

10.1.4 PDM_teStatus

This structure contains enumerations for the status codes generated by the PDM.

typedefenum
{
 PDM_E_STATUS_OK,
 PDM_E_STATUS_INVLD_PARAM,
//NVM based PDM codes
 PDM_E_STATUS_PDM_FULL,
 PDM_E_STATUS_NOT_SAVED,
 PDM_E_STATUS_RECOVERED,
 PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED,
 PDM_E_STATUS_USER_BUFFER_SIZE,
 PDM_E_STATUS_BITMAP_SATURATED_NO_INCREMENT,
 PDM_E_STATUS_BITMAP_SATURATED_OK,
 PDM_E_STATUS_IMAGE_BITMAP_COMPLETE,
 PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE,
 PDM_E_STATUS_INTERNAL_ERROR
} PDM_teStatus;

The status codes are described in Table 6 below.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
53 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Event Enumeration Description

PDM_E_STATUS_OK The function completed without error.

PDM_E_STATUS_INVLD_PARAM An invalid parameter value was supplied.

PDM_E_STATUS_PDM_FULL There is no available Flash space for PDM.

PDM_E_STATUS_NOT_SAVED A PDM save to Flash failed.

PDM_E_STATUS_RECOVERED The record was recovered from a previous save to NVM.

PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED The record was not recovered from a previous save to NVM.

PDM_E_STATUS_USER_BUFFER_SIZE Not used.

PDM_E_STATUS_BITMAP_SATURATED_NO_INCREM
ENT

Counter increment not made because the NVM segment is
saturated.

PDM_E_STATUS_BITMAP_SATURATED_OK Counter increment made but the NVM segment is now
saturated.

PDM_E_STATUS_IMAGE_BITMAP_COMPLETE For internal use.

PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE For internal use.

PDM_E_STATUS_INTERNAL_ERROR An unspecified internal PDM error has occurred.

Table 6. PDM Status Codes

10.1.5 PDM_tsHwFncTable

This structure is used in the function PDM_vInit() to specify a set of user-defined functions used to interact with
a custom NVM device.

typedef struct
{
 /* This function is called after a cold or warm start */
 void (*prInitHwCb)(void);
 /* This function is called to erase the given sector */
 void (*prEraseCb) (uint8 u8Sector);
 /*This function is called to write data to an address
 * within a given sector. Address zero is the start of the
 * given sector */
 void (*prWriteCb) (uint8 u8Sector,
 uint16 u16Addr,
 uint16 u16Len,
 uint8 *pu8Data);
 /* This function is called to read data from an address
 * within a given sector. Address zero is the start of the
 * given sector */
 void (*prReadCb) (uint8 u8Sector,
 uint16 u16Addr,
 uint16 u16Len,
 uint8 *pu8Data);
} PDM_tsHwFncTable;

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
54 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

10.2 PWRM Structures

10.2.1 PWRM_teSleepMode

This structure contains the enumerations used to set the power mode of the device during sleep.

typedefenum
 {
 PWRM_E_SLEEP_OSCON_RAMON, /*32-kHzOsconandRAMon*/
 PWRM_E_SLEEP_OSCON_RAMOFF, /*32-kHzOsconandRAMoff*/
 PWRM_E_SLEEP_OSCOFF_RAMON, /*32-kHzOscoffandRAMon*/
 PWRM_E_SLEEP_OSCOFF_RAMOFF, /*32-kHzOscoffandRAMoff*/
 PWRM_E_SLEEP_DEEP, /*DeepSleep*/
 }
PWRM_teSleepMode;

10.3 DBG Structures

10.3.1 DBG_tsFunctionTbl

This structure contains callback functions used by the Debug (DBG) module to interact with the output interface.

typedefstruct
{
 void(*prInitHardwareCb)(void);
 void(*prPutchCb)(charc);
 void(*prFlushCb)(void);
 void(*prFailedAssertCb)(void);
} DBG_tsFunctionTbl;

For details of the callback functions, refer to the description of Section 9.

11 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2018-2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
55 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

12 Revision History

Table 7 summarizes the revisions to this document.

Document ID Release date Description

JNUG3133 v.3.0 28 January 2025 • Updated the title of the document to "K32W041, K32W061,
K32W1, MCXW71, MCXW72, and JN518x Core Utilities User
Guide"

• Updated the document for K32W148-EVK/FRDM-MCXW71/
FRDM-MCXW72/MCX-W71-EVK/MCX-W72-EVK

• Updated the document for K32W041, K32W061, K32W1,
MCXW71, MCXW72, and JN518x devices

• Updated Section 1
• Added Section 11

JNUG3133 v.2.2 03 March 2023 Added support for K32W1 devices

JNUG3133 v.2.1 25 May 2022 Updated the document to the standard NXP template format and
other minor updates

JNUG3133 v.2.0 19 November 2019 Updated for K32W\JN5189

JNUG3133 v.1.0 12 June 2018 First release

Revision history

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
56 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
57 / 60

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Matter, Zigbee — are developed by the Connectivity Standards Alliance.
The Alliance's Brands and all goodwill associated therewith, are the
exclusive property of the Alliance.

NTAG — is a trademark of NXP B.V.

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
58 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

Contents
1 Introduction .. 11
1.1 Modules and architecture 11
1.1.1 JCU modules ... 11
1.1.2 Software architecture11
2 Persistent data manager12
2.1 Overview ..12
2.2 Initializing the PDM and building a file

system ..13
2.2.1 Building applications that use PDM 13
2.3 Managing data in non-volatile memory13
2.3.1 Saving data to non-volatile memory sectors 14
2.3.2 Recovering data from NVM 14
2.3.3 Deleting data in NVM 15
2.4 PDM features ...15
2.4.1 Mutex in PDM ..15
2.4.2 PDM event and error handler 15
2.4.3 NVM capacity .. 16
2.4.4 NVM wear count ..16
2.4.5 Ensuring consistency of PDM records16
3 Power Manager .. 17
3.1 Low-Power modes ...17
3.1.1 Doze Mode .. 17
3.1.2 Sleep mode with memory held 18
3.1.3 Sleep mode without memory held 18
3.1.4 Deep Sleep mode ..18
3.2 Wake-up source from Low-Power modes 18
3.2.1 Timer wake-up ... 18
3.2.2 DIO wake-up ..19
3.2.3 NTAG FD wake-up .. 19
3.2.4 Analog Comparator wake-up19
3.3 Callback functions for Power Manager 19
3.3.1 Essential callback function 19
3.3.1.1 PWRM initialization ..20
3.3.2 Pre-sleep and post-sleep callback functions20
3.4 Initializing and starting the Power Manager 21
3.5 Enabling Power-Saving 21
3.6 Non-interruptible activities 21
3.7 Scheduling wake events22
3.8 Terminating Low-Power mode 22
3.9 Doze mode .. 23
3.9.1 Circumstances that lead to Doze mode23
3.9.2 Doze mode monitoring during development 24
4 Protocol Data Unit Manager 24
4.1 Message assembly and disassembly 24
4.2 Preparing the PDU Manager 25
4.3 Inserting data into outgoing message26
4.4 Extracting data from incoming message26
5 Debug (DBG) Module 27
5.1 Overview ..27
5.2 Enabling the Debug module 28
5.3 Initializing and Configuring the Debug

Module ... 28
5.3.1 Using UART Input/Output28
5.3.2 Using Alternative Serial Output 28
5.4 Example Diagnostic Code 29
6 Persistent Data Manager API30

6.1 Internal NVM PDM functions 30
6.1.1 PDM_eInitialise .. 30
6.1.2 PDM_eSaveRecordData31
6.1.3 PDM_eReadDataFromRecord32
6.1.4 PDM_eDeleteData ... 32
6.1.5 PDM_eDeleteAllData 32
6.1.6 PDM_u8GetSegmentCapacity33
6.1.7 PDM_u8GetSegmentOccupancy33
6.1.8 PDM_bDoesDataExist 34
6.2 Internal NVM PDM Miscellaneous

Functions ... 34
6.2.1 PDM_vRegisterSystemCallback 34
6.2.2 PDM_vSetWearCountTriggerLevel35
6.2.3 PDM_eGetSegmentWearCount35
7 PWRM API .. 35
7.1 Core Functions .. 36
7.1.1 PWRM_vColdStart ...36
7.1.1.1 .. 36
7.1.2 PWRM_vInit ... 36
7.1.3 PWRM_eStartActivity37
7.1.4 PWRM_eFinishActivity38
7.1.5 PWRM_u16GetActivityCount38
7.1.6 PWRM_eScheduleActivity 39
7.1.7 PWRM_vManagePower39
7.1.8 PWRM_vWakeUpConfig40
7.1.9 PWRM_GetFro32KCalibrationValue 40
7.2 Callback Set-up Functions41
7.2.1 PWRM_vRegisterPreSleepCallback 41
7.2.2 PWRM_vRegisterWakeupCallback42
7.2.3 vAppRegisterPWRMCallbacks42
7.2.4 PWRM_vWakeInterruptCallback43
8 PDUM API ... 43
8.1 PDUM_vInit ..44
8.2 PDUM_hAPduAllocateAPduInstance44
8.3 PDUM_eAPduFreeAPduInstance44
8.4 PDUM_u16APduInstanceReadNBO45
8.5 PDUM_u16APduInstanceWriteNBO 46
8.6 PDUM_u16APduInstanceWriteStrNBO 46
8.7 PDUM_u16SizeNBO ..47
8.8 PDUM_u16APduGetSize48
8.9 PDUM_pvAPduInstanceGetPayload48
8.10 PDUM_u16APduInstanceGetPayloadSize 48
8.11 PDUM_eAPduInstanceSetPayloadSize49
8.12 PDUM_vDBGPrintAPduInstance 49
9 DBG API ..49
9.1 DBG_vPrintf ... 50
9.2 DBG_vAssert ... 51
10 JCU Structures .. 51
10.1 PDM Structures ... 52
10.1.1 PDM_tpfvSystemEventCallback 52
10.1.2 tsReg128 ..52
10.1.3 PDM_eSystemEventCode 52
10.1.4 PDM_teStatus ..53
10.1.5 PDM_tsHwFncTable .. 54
10.2 PWRM Structures ..55
10.2.1 PWRM_teSleepMode 55

JNUG3133 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 28 January 2025 Document feedback
59 / 60

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

NXP Semiconductors JNUG3133
K32W041, K32W061, K32W1, MCXW71, MCXW72, and JN518x Core Utilities User Guide

10.3 DBG Structures ... 55
10.3.1 DBG_tsFunctionTbl ..55
11 Note about the source code in the

document ..55
12 Revision History .. 56

Legal information ...57

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 January 2025
Document identifier: JNUG3133

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_JNUG3133

	1 Introduction
	1.1 Modules and architecture
	1.1.1 JCU modules
	1.1.2 Software architecture

	2 Persistent data manager
	2.1 Overview
	2.2 Initializing the PDM and building a file system
	2.2.1 Building applications that use PDM

	2.3 Managing data in non-volatile memory
	2.3.1 Saving data to non-volatile memory sectors
	2.3.2 Recovering data from NVM
	2.3.3 Deleting data in NVM

	2.4 PDM features
	2.4.1 Mutex in PDM
	2.4.2 PDM event and error handler
	2.4.3 NVM capacity
	2.4.4 NVM wear count
	2.4.5 Ensuring consistency of PDM records

	3 Power Manager
	3.1 Low-Power modes
	3.1.1 Doze Mode
	3.1.2 Sleep mode with memory held
	3.1.3 Sleep mode without memory held
	3.1.4 Deep Sleep mode

	3.2 Wake-up source from Low-Power modes
	3.2.1 Timer wake-up
	3.2.2 DIO wake-up
	3.2.3 NTAG FD wake-up
	3.2.4 Analog Comparator wake-up

	3.3 Callback functions for Power Manager
	3.3.1 Essential callback function
	3.3.1.1 PWRM initialization

	3.3.2 Pre-sleep and post-sleep callback functions

	3.4 Initializing and starting the Power Manager
	3.5 Enabling Power-Saving
	3.6 Non-interruptible activities
	3.7 Scheduling wake events
	3.8 Terminating Low-Power mode
	3.9 Doze mode
	3.9.1 Circumstances that lead to Doze mode
	3.9.2 Doze mode monitoring during development

	4 Protocol Data Unit Manager
	4.1 Message assembly and disassembly
	4.2 Preparing the PDU Manager
	4.3 Inserting data into outgoing message
	4.4 Extracting data from incoming message

	5 Debug (DBG) Module
	5.1 Overview
	5.2 Enabling the Debug module
	5.3 Initializing and Configuring the Debug Module
	5.3.1 Using UART Input/Output
	5.3.2 Using Alternative Serial Output

	5.4 Example Diagnostic Code

	6 Persistent Data Manager API
	6.1 Internal NVM PDM functions
	6.1.1 PDM_eInitialise
	6.1.2 PDM_eSaveRecordData
	6.1.3 PDM_eReadDataFromRecord
	6.1.4 PDM_eDeleteData
	6.1.5 PDM_eDeleteAllData
	6.1.6 PDM_u8GetSegmentCapacity
	6.1.7 PDM_u8GetSegmentOccupancy
	6.1.8 PDM_bDoesDataExist

	6.2 Internal NVM PDM Miscellaneous Functions
	6.2.1 PDM_vRegisterSystemCallback
	6.2.2 PDM_vSetWearCountTriggerLevel
	6.2.3 PDM_eGetSegmentWearCount

	7 PWRM API
	7.1 Core Functions
	7.1.1 PWRM_vColdStart
	7.1.1.1

	7.1.2 PWRM_vInit
	7.1.3 PWRM_eStartActivity
	7.1.4 PWRM_eFinishActivity
	7.1.5 PWRM_u16GetActivityCount
	7.1.6 PWRM_eScheduleActivity
	7.1.7 PWRM_vManagePower
	7.1.8 PWRM_vWakeUpConfig
	7.1.9 PWRM_GetFro32KCalibrationValue

	7.2 Callback Set-up Functions
	7.2.1 PWRM_vRegisterPreSleepCallback
	7.2.2 PWRM_vRegisterWakeupCallback
	7.2.3 vAppRegisterPWRMCallbacks
	7.2.4 PWRM_vWakeInterruptCallback

	8 PDUM API
	8.1 PDUM_vInit
	8.2 PDUM_hAPduAllocateAPduInstance
	8.3 PDUM_eAPduFreeAPduInstance
	8.4 PDUM_u16APduInstanceReadNBO
	8.5 PDUM_u16APduInstanceWriteNBO
	8.6 PDUM_u16APduInstanceWriteStrNBO
	8.7 PDUM_u16SizeNBO
	8.8 PDUM_u16APduGetSize
	8.9 PDUM_pvAPduInstanceGetPayload
	8.10 PDUM_u16APduInstanceGetPayloadSize
	8.11 PDUM_eAPduInstanceSetPayloadSize
	8.12 PDUM_vDBGPrintAPduInstance

	9 DBG API
	9.1 DBG_vPrintf
	9.2 DBG_vAssert

	10 JCU Structures
	10.1 PDM Structures
	10.1.1 PDM_tpfvSystemEventCallback
	10.1.2 tsReg128
	10.1.3 PDM_eSystemEventCode
	10.1.4 PDM_teStatus
	10.1.5 PDM_tsHwFncTable

	10.2 PWRM Structures
	10.2.1 PWRM_teSleepMode

	10.3 DBG Structures
	10.3.1 DBG_tsFunctionTbl

	11 Note about the source code in the document
	12 Revision History
	Legal information
	Contents

