
MCUXpresso SDK Documentation
Release 25.06.00

NXP
Jun 26, 2025

Table of contents

1 MCXW23-EVK 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK GitHub . 3

1.2.1 Getting Started with MCUXpresso SDK Repository 4
1.2.2 How to determine COM Port . 16
1.2.3 Updating debugger firmware . 17

1.3 Release Notes . 18
1.3.1 MCUXpresso SDK Release Notes . 18

1.4 ChangeLog . 24
1.4.1 MCUXpresso SDK Changelog . 24

1.5 Driver API Reference Manual . 67
1.6 Middleware Documentation . 67

1.6.1 Wireless Bluetooth LE host stack and applications 67
1.6.2 Wireless Connectivity Framework . 67
1.6.3 FreeRTOS . 129

2 MCXW236B 131
2.1 ANACTRL: Analog Control Driver . 131
2.2 CASPER: The Cryptographic Accelerator and Signal Processing Engine with RAM

sharing . 136
2.3 casper_driver . 136
2.4 casper_driver_pkha . 139
2.5 CDOG . 142
2.6 CRC: Cyclic Redundancy Check Driver . 146
2.7 CTIMER: Standard counter/timers . 149
2.8 DMA: Direct Memory Access Controller Driver . 158
2.9 FLEXCOMM: FLEXCOMM Driver . 175
2.10 FLEXCOMM Driver . 175
2.11 GINT: Group GPIO Input Interrupt Driver . 176
2.12 Hashcrypt: The Cryptographic Accelerator . 179
2.13 Hashcrypt Background HASH . 179
2.14 Hashcrypt common functions . 180
2.15 Hashcrypt AES . 182
2.16 Hashcrypt HASH . 187
2.17 I2C: Inter-Integrated Circuit Driver . 188
2.18 I2C DMA Driver . 188
2.19 I2C Driver . 190
2.20 I2C Master Driver . 194
2.21 I2C Slave Driver . 203
2.22 INPUTMUX: Input Multiplexing Driver . 212
2.23 Common Driver . 213
2.24 GPIO: General Purpose I/O . 225
2.25 IOCON: I/O pin configuration . 227
2.26 Mailbox . 228
2.27 MRT: Multi-Rate Timer . 229
2.28 OSTIMER: OS Event Timer Driver . 234

i

2.29 PINT: Pin Interrupt and Pattern Match Driver . 237
2.30 PLU: Programmable Logic Unit . 245
2.31 PUF: Physical Unclonable Function . 255
2.32 RTC: Real Time Clock . 257
2.33 SCTimer: SCTimer/PWM (SCT) . 263
2.34 SPI: Serial Peripheral Interface Driver . 280
2.35 SPI DMA Driver . 280
2.36 SPI Driver . 283
2.37 SPIFI: SPIFI flash interface driver . 292
2.38 SPIFI DMA Driver . 301
2.39 SPIFI Driver . 301
2.40 TRNG: True Random Number Generator . 301
2.41 USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver 305
2.42 USART DMA Driver . 305
2.43 USART Driver . 308
2.44 UTICK: MictoTick Timer Driver . 324
2.45 WWDT: Windowed Watchdog Timer Driver . 325

3 Middleware 329
3.1 Wireless . 329

3.1.1 NXP Wireless Framework and Stacks . 329

4 RTOS 331
4.1 FreeRTOS . 331

4.1.1 FreeRTOS kernel . 331
4.1.2 FreeRTOS drivers . 331
4.1.3 backoffalgorithm . 331
4.1.4 corehttp . 331
4.1.5 corejson . 331
4.1.6 coremqtt . 332
4.1.7 coremqtt-agent . 332
4.1.8 corepkcs11 . 332
4.1.9 freertos-plus-tcp . 332

ii

MCUXpresso SDK Documentation, Release 25.06.00

This documentation contains information specific to the mcxw23evk board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.06.00

2 Table of contents

Chapter 1

MCXW23-EVK

1.1 Overview

The NXP MCXW23-EVK is a development board for the MCXW23 32 MHz Arm Cortex-M33 mi-
crocontroller.

MCU device and part on board is shown below:

• Device: MCXW236B

• PartNumber: MCXW236BIHNAR

1.2 Getting Started with MCUXpresso SDK GitHub

3

MCUXpresso SDK Documentation, Release 25.06.00

1.2.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

4 Chapter 1. MCXW23-EVK

https://git-scm.com/

MCUXpresso SDK Documentation, Release 25.06.00

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system package manager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

1.2. Getting Started with MCUXpresso SDK GitHub 5

https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.06.00

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

6 Chapter 1. MCXW23-EVK

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.06.00

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

1.2. Getting Started with MCUXpresso SDK GitHub 7

MCUXpresso SDK Documentation, Release 25.06.00

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

8 Chapter 1. MCXW23-EVK

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.06.00

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers run west manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

1.2. Getting Started with MCUXpresso SDK GitHub 9

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.06.00

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name> which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configure MCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these
steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

10 Chapter 1. MCXW23-EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.06.00

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.

4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

1.2. Getting Started with MCUXpresso SDK GitHub 11

MCUXpresso SDK Documentation, Release 25.06.00

The integrated terminal will open at the bottom and will display the build output.

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

12 Chapter 1. MCXW23-EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.06.00

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

1.2. Getting Started with MCUXpresso SDK GitHub 13

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains and build targets for an example are decided by the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Use west build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

14 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

1.2. Getting Started with MCUXpresso SDK GitHub 15

MCUXpresso SDK Documentation, Release 25.06.00

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated in mcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.2.2 How to determine COM Port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform. All NXP boards ship with a factory programmed, on-board
debug interface MCU-LINK.

1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

16 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

2. In the DeviceManager, expand the Ports (COM&LPT) section to view the available ports.

1.2.3 Updating debugger firmware

The MCXW23-EVK board comes with a CMSIS-DAP-compatible debug interface (known as MCU-
Link). This firmware in this debug interface may be updated using the host computer scripts.
This typically used when switching between the default debugger protocol (CMSIS-DAP) to SEG-
GER J-Link, or for updating this firmware with new releases of these. This section contains the
steps to re-program the debug probe firmware.

1.2. Getting Started with MCUXpresso SDK GitHub 17

MCUXpresso SDK Documentation, Release 25.06.00

NXP provides the MCU-Link utility, which is the recommended tool for programming
the latest versions of CMSIS-DAP and J-Link firmware onto MCU-Link. The utility
can be downloaded from https://www.nxp.com/design/microcontrollers-developer-resources/
mcu-link-debug-probe:MCU-LINK.

These steps show how to update the debugger firmware on your board for Windows op-
erating system. For Linux OS, follow the instructions described in MCU-Link user guide,
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/
mcu-link-debug-probe:MCU-LINK.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Install the jumper on J32.

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory, <MCU-Link install dir>.*

1. To program CMSIS-DAP debug firmware: <MCU-Link install
dir>/scripts/program_CMSIS.

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK.

6. Remove the jumper on J32.

7. Re-power the board by removing the USB cable and plugging it in again.

1.3 Release Notes

This is an Ready For Production Release (RFP) for MCXW23-EVK development board.

1.3.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and

18 Chapter 1. MCXW23-EVK

https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.06.00

middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso for VS Code v25.06

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development
boards

MCU devices

MCXW23-
EVK

MCXW235BIHNAR, MCXW235BIUKAR, MCXW236AIHNAR,
MCXW236AIUKAR, MCXW236BIHNAR, MCXW236BIUKAR

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

1.3. Release Notes 19

MCUXpresso SDK Documentation, Release 25.06.00

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

TF-M Trusted Firmware - M Library

PSA Test Suite Arm Platform Security Architecture Test Suite

Wireless Bluetooth LE host stack and applications The Bluetooth LE Host Stack component
provides an implementation for a Bluetooth LE mandatory and some optional, proprietary, and
experimental features. The Bluetooth LE Host Stack component provides application examples,
services, and profiles.

Main features supported:

• Automotive Compliance

• MISRA Compliance

• HIS CCM <= 20

• Advanced Secure Mode

• Enhanced ATT

• GATT Caching

• Bluetooth LE Host GCC Libraries

• Bluetooth LE Host IAR Libraries

• Bluetooth LE Host Peripheral Libraries

• Bluetooth LE Central Libraries

• Bluetooth LE Host Full Host Features Libraries

• Bluetooth LE Host Optional Features Libraries

• Bluetooth LE Host Mandatory Features Libraries

• Bare-metal and FreeRTOS Support

• Bluetooth LE Privacy Support

• CCC Sample Applications

• Enhanced Notifications

• Dynamic Database

• OTA Support - Sample Applications

20 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• Decision based Advertising Filtering (DBAF) - Experimental feature

• Advertising Coding Selection (ACS) - Experimental feature

• Channel Sounding - Experimental feature with controlled access (contact your NXP repre-
sentative for access)

• Bluetooth LE Controller main and experimental features and capabilities described below
are supported by the Bluetooth LE Host.

Note: For evaluating DBAF and ACS experimental features, replace the Bluetooth LE
Host default example projects libraries with the libraries from the SDK folder ..\middle-
ware\wireless\bluetooth\host\lib_exp and enable the features in the application. The Radio
Subsystem (NBU) Firmware with experimental features is required.

Wireless Connectivity Framework The Connectivity Framework is a software component
that provides hardware abstraction modules to the upper layer connectivity stacks and com-
ponents. It also provides a list of services and APIs, such as, Low power, Over the Air (OTA)
Firmware update, File System, Security, Sensors, Serial Connectivity Interface (FSCI), and oth-
ers. The Connectivity Framework modules are located in the middleware\wireless\framework
SDK folder.

Bluetooth Synopsys Controller
• Main features supported:

– All roles that the Bluetooth specification specifies:

* Broadcaster

* Observer

* Peripheral

* Central

– Up to 4 simultaneous connections supported

– Bluetooth Low Energy features:

* Device privacy and network privacy modes (version 5.0)

* Advertising extension PDUs (version 5.0)

* Anonymous device address type (version 5.0)

* Up to 2 Mbps data rate (version 5.0)

* Long range (version 5.0)

* High-duty cycle, nonconnectable advertising (version 5.0)

* Channel selection algorithm #2 (version 5.0)

* High output power (version 5.0)

* Advertising channel index (version 5.1)

* Periodic advertising sync transfer (PAST) (version 5.1)

* Supports LE power control feature (version 5.2)

– Device filtering through programmable size white lists

– Direct test mode

– RF antenna: 50 Ω single-ended

– RF receiver characteristics:

1.3. Release Notes 21

MCUXpresso SDK Documentation, Release 25.06.00

* Sensitivity �94 dBm in Bluetooth Low Energy 2 Mbps

* Sensitivity �97 dBm in Bluetooth Low Energy 1 Mbps

* Sensitivity �100 dBm in Bluetooth Low Energy 500 kbps

* Sensitivity �102 dBm in Bluetooth Low Energy 125 kbps

* Accurate RSSI measurement with ±3 dB accuracy

– Flexible RF transmitter level configurability:

* TX mode 1 (TXM1): Range from �31 dBm to +2 dBm when VDD_RF exceeds 1.1 V

* TX mode 2 (TXM2): Range from �28 dBm to +6 dBm when VDD_RF exceeds 1.7 V

LittleFS LittleFS filesystem stack

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

What is new

The following changes have been implemented compared to the previous SDK release version
(25.03.00).

• Bluetooth Synopsys controller

Added

– Initial version of Synopsys link layer added to enable Bluetooth use cases for the
MCXW23 family.

– Support for HCI black box application added.

• Health Care Iot Reference design applications

22 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

Added

– Initial version of Low Power Health Care Iot Peripheral application added.

– Initial version of Health Care Iot Central application added.

• Bluetooth LE host stack and applications

Added

– Support for Wireless UART application added.

– Support for Firmware Over The Air applications added (using ATT and L2CAP).

Known issues

This section lists the known issues, limitations, and/or workarounds.

Limitations when creating a new FreeRTOS-based C/C++ project

Due to the missing component dependencies definition, there are several limitations when creat-
ing a new FreeRTOS-based C/C++ project in MCUXpresso IDE. When the FreeRTOS kernel com-
ponent is selected (under Operating Systems/RTOS/Core menu), you must manually select the
FreeRTOS cm33 non trustzone port component (under Middleware/RTOS menu) for projects
without TrustZone. For FreeRTOS TrustZone projects creation, the support is not ready.

Wireless UART application – Bluetooth Low Energy advertising and connection loss issue

When using the Wireless UART application with default settings, functionality is as expected.
However, the following issue occurs when the Bluetooth Low Energy advertising interval is set to
20 milliseconds and the connection interval is set to 7.5 milliseconds: After two devices establish
a connection, the central device fails to start advertising to a third device after a button press.
The HCI command to start advertising returns success, but the device does not transmit any
advertising packets. Additionally, the supervision timeout causes the existing connection to drop
unexpectedly.

Bluetooth Synopsys Controller

• Stability observation during extended testing The llhwc_set_adv_param function shows un-
expected behavior during extended sequences of link layer tests, typically after 1.5 hours
of continuous execution without a hardware reset.

– This rare behavior occurs only under specific test conditions.

– The behavior relates to the extended advertising feature.

– This behavior does not impact regular usage scenarios.

• Faulty passive channel assessment behavior

– Connection establishment fails when channel assessment finds only one suitable chan-
nel. However, the failure occurs rarely.

– Channel assessment fails on connections with slave latency greater than zero.

1.3. Release Notes 23

MCUXpresso SDK Documentation, Release 25.06.00

1.4 ChangeLog

1.4.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

ANACTRL

[2.4.0]
• Improvements

– Added some interrupt flags for devices containing BOD1 and BOD2 interrupt controls.

– Added a control macro to enable/disable the 32MHz Crystal oscillator code in current
driver.

– Added a feature macro for bit field ENA_96MHZCLK in FRO192M_CTRL.

– Added a feature macro for bit field BODCORE_INT_ENABLE in BOD_DCDC_INT_CTRL.

[2.3.1]
• Bug Fixes

– Added casts to prevent overflow caused by capturing large target clock.

[2.3.0]
• Improvements

– Added AUX_BIAS control APIs.

24 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.0]
• Improvements

– Added some macros to separate the scenes that some bit fields are reserved for some
devices.

– Optimized the comments.

– Optimized the code implementation inside some functions.

[2.1.2]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.3 and rule 17.7.

[2.1.1]
• Bug Fixes

– Removed AnalogTestBus configuration to align with new header.

[2.1.0]
• Improvements

– Updates for LPC55xx A1.

* Removed the control of bitfield FRO192M_CTRL_ENA_48MHZCLK,
XO32M_CTRL_ACBUF_PASS_ENABLE.

* Removed status bits in ANACTRL_STATUS: PMU_ID OSC_ID FI-
NAL_TEST_DONE_VECT.

* Removed API ANACTRL_EnableAdcVBATDivider() and APIs which operate the
RingOSC registers.

* Removed the configurations of 32 MHz Crystal oscillator voltage source supply con-
trol register.

* Added API ANACTRL_ClearInterrupts().

[2.0.0]
• Initial version.

CASSPER

[2.2.4]
• Fix MISRA-C 2012 issue.

[2.2.3]
• Added macro into CASPER_Init and CASPER_Deinit to support devices without clock and

reset control.

1.4. ChangeLog 25

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.2]
• Enable hardware interleaving to RAMX0 and RAMX1 for CASPER by feature macro

FSL_FEATURE_CASPER_RAM_HW_INTERLEAVE

[2.2.1]
• Fix MISRA C-2012 issue.

[2.2.0]
• Rework driver to support multiple curves at once.

[2.1.0]
• Add ECC NIST P-521 elliptic curve.

[2.0.10]
• Fix MISRA C-2012 issue.

[2.0.9]
• Remove unused function Jac_oncurve().

• Fix ECC384 build.

[2.0.8]
• Add feature macro for CASPER_RAM_OFFSET.

[2.0.7]
• Fix MISRA C-2012 issue.

[2.0.6]
• Bug Fixes

– Fix IAR Pa082 warning

[2.0.5]
• Bug Fixes

– Fix sign-compare warning

[2.0.4]
• For GCC compiler, enforce O1 optimize level, specifically to remove strict-aliasing option.

This driver is very specific and requires -fno-strict-aliasing.

26 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.3]
• Bug Fixes

– Fixed the bug for KPSDK-28107 RSUB, FILL and ZERO operations not implemented in
enum _casper_operation.

[2.0.2]
• Bug Fixes

– Fixed KPSDK-25015 CASPER_MEMCPY hard-fault on LPC55xx when both source and
destination buffers are outside of CASPER_RAM.

[2.0.1]
• Bug Fixes

– Fixed the bug that KPSDK-24531 double_scalar_multiplication() result may be all ze-
roes for some specific input.

[2.0.0]
• Initial version.

CDOG

[2.1.3]
• Re-design multiple instance IRQs and Clocks

• Add fix for RESTART command errata

[2.1.2]
• Support multiple IRQs

• Fix default CONTROL values

[2.1.1]
• Remove bit CONTROL[CONTROL_CTRL].

[2.1.0]
• Rename CWT to CDOG.

[2.0.2]
• Fix MISRA-2012 issues.

[2.0.1]
• Fix doxygen issues.

1.4. ChangeLog 27

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]
• Initial version.

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

28 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

1.4. ChangeLog 29

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

30 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

CRC

[2.1.1]
• Fix MISRA issue.

[2.1.0]
• Add CRC_WriteSeed function.

[2.0.2]
• Fix MISRA issue.

[2.0.1]
• Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for

time.

[2.0.0]
• Initial version.

1.4. ChangeLog 31

MCUXpresso SDK Documentation, Release 25.06.00

CTIMER

[2.3.3]
• Bug Fixes

– Fix CERT INT30-C INT31-C issue.

– Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.

[2.3.2]
• Bug Fixes

– Clear unexpected DMA request generated by RESET_PeripheralReset in API
CTIMER_Init to avoid trigger DMA by mistake.

[2.3.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.7 and 12.2.

[2.3.0]
• Improvements

– Added the CTIMER_SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.

[2.2.2]
• Bug Fixes

– Fixed SetupPwm() API only can use match 3 as period channel issue.

[2.2.1]
• Bug Fixes

– Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.

– Fixed Coverity Out-of-bounds issue.

[2.2.0]
• Improvements

– Updated three API Interface to support Users to flexibly configure the PWM period and
PWM output.

• Bug Fixes

– MISRA C-2012 issue fixed: rule 8.4.

32 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
• Improvements

– Added the CTIMER_GetOutputMatchStatus() API Interface.

– Added feature macro for FSL_FEATURE_CTIMER_HAS_NO_CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.

[2.0.2]
• New Features

– Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

– Added a new feature macro to update the API of CTimer driver for lpc8n04.

[2.0.1]
• Improvements

– API Interface Change

* Changed API interface by adding CTIMER_SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]
• Initial version.

LPC_DMA

[2.5.3]
• Improvements

– Add assert in DMA_SetChannelXferConfig to prevent XFERCOUNT value overflow.

[2.5.2]
• Bug Fixes

– Use separate “SET” and “CLR” registers to modify shared registers for all channels, in
case of thread-safe issue.

[2.5.1]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 11.6.

1.4. ChangeLog 33

MCUXpresso SDK Documentation, Release 25.06.00

[2.5.0]
• Improvements

– Added a new api DMA_SetChannelXferConfig to set DMA xfer config.

[2.4.4]
• Bug Fixes

– Fixed the issue that DMA_IRQHandle might generate redundant callbacks.

– Fixed the issue that DMA driver cannot support channel bigger then 32.

– Fixed violation of the MISRA C-2012 rule 13.5.

[2.4.3]
• Improvements

– Added features FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZEn/FSL_FEATURE_DMA0_DESCRIPTOR_ALIGN_SIZE/FSL_FEATURE_DMA1_DESCRIPTOR_ALIGN_SIZE
to support the descriptor align size not constant in the two instances.

[2.4.2]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 8.4.

[2.4.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.7, 8.3.

[2.4.0]
• Improvements

– Added new APIs DMA_LoadChannelDescriptor/DMA_ChannelIsBusy to support polling
transfer case.

• Bug Fixes

– Added address alignment check for descriptor source and destination address.

– Added DMA_ALLOCATE_DATA_TRANSFER_BUFFER for application buffer allocation.

– Fixed the sign-compare warning.

– Fixed violations of the MISRA C-2012 rules 18.1, 10.4, 11.6, 10.7, 14.4, 16.3, 20.7, 10.8,
16.1, 17.7, 10.3, 3.1, 18.1.

[2.3.0]
• Bug Fixes

– Removed DMA_HandleIRQ prototype definition from header file.

– Added DMA_IRQHandle prototype definition in header file.

34 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.5]
• Improvements

– Added new API DMA_SetupChannelDescriptor to support configuring wrap descriptor.

– Added wrap support in function DMA_SubmitChannelTransfer.

[2.2.4]
• Bug Fixes

– Fixed the issue that macro DMA_CHANNEL_CFER used wrong parameter to calculate
DSTINC.

[2.2.3]
• Bug Fixes

– Improved DMA driver Deinit function for correct logic order.

• Improvements

– Added API DMA_SubmitChannelTransferParameter to support creating head descrip-
tor directly.

– Added API DMA_SubmitChannelDescriptor to support ping pong transfer.

– Added macro DMA_ALLOCATE_HEAD_DESCRIPTOR/DMA_ALLOCATE_LINK_DESCRIPTOR
to simplify DMA descriptor allocation.

[2.2.2]
• Bug Fixes

– Do not use software trigger when hardware trigger is enabled.

[2.2.1]
• Bug Fixes

– Fixed Coverity issue.

[2.2.0]
• Improvements

– Changed API DMA_SetupDMADescriptor to non-static.

– Marked APIs below as deprecated.

* DMA_PrepareTransfer.

* DMA_Submit transfer.

– Added new APIs as below:

* DMA_SetChannelConfig.

* DMA_PrepareChannelTransfer.

* DMA_InstallDescriptorMemory.

* DMA_SubmitChannelTransfer.

* DMA_SetChannelConfigValid.

1.4. ChangeLog 35

MCUXpresso SDK Documentation, Release 25.06.00

* DMA_DoChannelSoftwareTrigger.

* DMA_LoadChannelTransferConfig.

[2.0.1]
• Improvements

– Added volatile for DMA descriptor member xfercfg to avoid optimization.

[2.0.0]
• Initial version.

FLEXCOMM

[2.0.2]
• Bug Fixes

– Fixed typos in FLEXCOMM15_DriverIRQHandler().

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• Improvements

– Added instance calculation in FLEXCOMM16_DriverIRQHandler() to align with Flex-
comm 14 and 15.

[2.0.1]
• Improvements

– Added more IRQHandler code in drivers to adapt new devices.

[2.0.0]
• Initial version.

GINT

[2.1.1]
• Improvements

– Added support for platforms with PORT_POL and PORT_ENA registers without arrays.

[2.1.0]
• Improvements

– Updated for platforms which only has one port.

36 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.8.

[2.0.2]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 17.7.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

GPIO

[2.1.7]
• Improvements

– Enhanced GPIO_PinInit to enable clock internally.

[2.1.6]
• Bug Fixes

– Clear bit before set it within GPIO_SetPinInterruptConfig() API.

[2.1.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
• Improvements

– Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.

– Corrected typos in header file.

[2.1.3]
• Improvements

– Updated “GPIO_PinInit” API. If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

1.4. ChangeLog 37

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.2]
• Improvements

– Removed deprecated APIs.

[2.1.1]
• Improvements

– API interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

[2.1.0]
• New Features

– Added GPIO initialize API.

[2.0.0]
• Initial version.

HASHCRYPT

[2.0.0]
• Initial version.

[2.0.1]
• Supported loading AES key from unaligned address.

[2.0.2]
• Supported loading AES key from unaligned address for different compiler and core vari-

ants.

[2.0.3]
• Remove SHA512 and AES ICB algorithm definitions

[2.0.4]
• Add SHA context switch support

[2.1.0]
• Update the register name and macro to align with new header.

• Fixed the sign-compare warning in hashcrypt_load_data.

38 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.1]
• Fix MISRA C-2012.

[2.1.2]
• Support loading AES input data from unaligned address.

[2.1.3]
• Fix MISRA C-2012.

[2.1.4]
• Fix context switch cannot work when switching from AES.

[2.1.5]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to prevent

possible optimization issue.

[2.2.0]
• Add AES-OFB and AES-CFB mixed IP/SW modes.

[2.2.1]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() prevent com-

piler from reordering memory write when -O2 or higher is used.

[2.2.2]
• Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to fix opti-

mization issue

[2.2.3]
• Added check for size in hashcrypt_aes_one_block to prevent overflowing COUNT field in

MEMCTRL register, if its bigger than COUNT field do a multiple runs.

[2.2.4]
• In all HASHCRYPT_AES_xx functions have been added setting CTRL_MODE bitfield to 0 after

processing data, which decreases power consumption.

[2.2.5]
• Add data synchronization barrier and instruction synchronization barrier inside

hashcrypt_sha_process_message_data() to fix optimization issue

1.4. ChangeLog 39

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.6]
• Add data synchronization barrier inside HASHCRYPT_SHA_Update() and

hashcrypt_get_data() function to fix optimization issue on MDK and ARMGCC release
targets

[2.2.7]
• Add data synchronization barrier inside HASHCRYPT_SHA_Update() to fix optimization is-

sue on MCUX IDE release target

[2.2.8]
• Unify hashcrypt hashing behavior between aligned and unaligned input data

[2.2.9]
• Add handling of set ERROR bit in the STATUS register

[2.2.10]
• Fix missing error statement in hashcrypt_save_running_hash()

[2.2.11]
• Fix incorrect SHA-256 calculation for long messages with reload

[2.2.12]
• Fix hardfault issue on the Keil compiler due to unaligned memcpy() input on some opti-

mization levels

[2.2.13]
• Added function hashcrypt_seed_prng() which loading random number into PRNG_SEED

register before AES operation for SCA protection

[2.2.14]
• Modify function hashcrypt_get_data() to prevent issue with unaligned access

[2.2.15]
• Add wait on DIGEST BIT inside hashcrypt_sha_one_block() to fix issues with some optimiza-

tion flags

[2.2.16]
• Add DSB instruction inside hashcrypt_sha_ldm_stm_16_words() to fix issues with some op-

timization flags

40 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

I2C

[2.3.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1.

– Fixed issue that if master only sends address without data during I2C interrupt trans-
fer, address nack cannot be detected.

[2.3.2]
• Improvement

– Enable or disable timeout option according to enableTimeout.

• Bug Fixes

– Fixed timeout value calculation error.

– Fixed bug that the interrupt transfer cannot recover from the timeout error.

[2.3.1]
• Improvement

– Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

• Bug Fixes

– Fixed bug in I2C_SlaveEnable that the slave enable/disable should not affect the other
register bits.

[2.3.0]
• Improvement

– Added new return codes kStatus_I2C_EventTimeout and kStatus_I2C_SclLowTimeout,
and added the check for event timeout and SCL timeout in I2C master transfer.

– Fixed bug in slave transfer that the address match event should be invoked before not
after slave transmit/receive event.

[2.2.0]
• New Features

– Added enumeration _i2c_status_flags to include all previous master and slave status
flags, and added missing status flags.

– Modified I2C_GetStatusFlags to get all I2C flags.

– Added API I2C_ClearStatusFlags to clear all clearable flags not just master flags.

– Modified master transactional APIs to enable bus event timeout interrupt during trans-
fer, to avoid glitch on bus causing transfer hangs indefinitely.

• Bug Fixes

– Fixed bug that status flags and interrupt enable masks share the same enumerations by
adding enumeration _i2c_interrupt_enable for all master and slave interrupt sources.

1.4. ChangeLog 41

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.0]
• Bug Fixes

– Fixed bug that during master transfer, when master is nacked during slave probing
or sending subaddress, the return status should be kStatus_I2C_Addr_Nak rather than
kStatus_I2C_Nak.

• Bug Fixes

– Fixed MISRA issues.

* Fixed rules 10.1, 10.4, 13.5.

• New Features

– Added macro I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK, so that user can config-
ure whether to ignore the last byte being nacked by slave during master transfer.

[2.0.8]
• Bug Fixes

– Fixed I2C_MasterSetBaudRate issue that MSTSCLLOW and MSTSCLHIGH are incorrect
when MSTTIME is odd.

[2.0.7]
• Bug Fixes

– Two dividers, CLKDIV and MSTTIME are used to configure baudrate. According to
reference manual, in order to generate 400kHz baudrate, the clock frequency after
CLKDIV must be less than 2mHz. Fixed the bug that, the clock frequency after CLKDIV
may be larger than 2mHz using the previous calculation method.

– Fixed MISRA 10.1 issues.

– Fixed wrong baudrate calculation when feature FSL_FEATURE_I2C_PREPCLKFRG_8MHZ
is enabled.

[2.0.6]
• New Features

– Added master timeout self-recovery support for feature
FSL_FEATURE_I2C_TIMEOUT_RECOVERY.

• Bug Fixes

– Eliminated IAR Pa082 warning.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.0.5]
• Bug Fixes

– Fixed wrong assignment for datasize in I2C_InitTransferStateMachineDMA.

– Fixed wrong working flow in I2C_RunTransferStateMachineDMA to ensure master can
work in no start flag and no stop flag mode.

42 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

– Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

• Improvements

– Rounded up the calculated divider value in I2C_MasterSetBaudRate.

[2.0.4]
• Improvements

– Updated the I2C_WATI_TIMEOUT macro to unified name I2C_RETRY_TIMES

– Updated the “I2C_MasterSetBaudRate” API to support baudrate configuration for fea-
ture QN9090.

• Bug Fixes

– Fixed build warnning caused by uninitialized variable.

– Fixed COVERITY issue of unchecked return value in I2C_RTOS_Transfer.

[2.0.3]
• Improvements

– Unified the component full name to FLEXCOMM I2C(DMA/FREERTOS) driver.

[2.0.2]
• Improvements

– In slave IRQ:

1. Changed slave receive process to first set the I2C_SLVCTL_SLVCONTINUE_MASK to
acknowledge the received data, then do data receive.

2. Improved slave transmit process to set the I2C_SLVCTL_SLVCONTINUE_MASK im-
mediately after writing the data.

[2.0.1]
• Improvements

– Added I2C_WATI_TIMEOUT macro to allow users to specify the timeout times for wait-
ing flags in functional API and blocking transfer API.

[2.0.0]
• Initial version.

1.4. ChangeLog 43

MCUXpresso SDK Documentation, Release 25.06.00

INPUTMUX

[2.0.9]
• Improvements

– Use INPUTMUX_CLOCKS to initialize the inputmux module clock to adapt to multiple
inputmux instances.

– Modify the API base type from INPUTMUX_Type to void.

[2.0.8]
• Improvements

– Updated a feature macro usage for function INPUTMUX_EnableSignal.

[2.0.7]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.6]
• Bug Fixes

– Fixed the documentation wrong in API INPUTMUX_AttachSignal.

[2.0.5]
• Bug Fixes

– Fixed build error because some devices has no sct.

[2.0.4]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rule 10.4, 12.2 in INPUTMUX_EnableSignal() func-
tion.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 10.7, 12.2.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4, 12.2.

[2.0.1]
• Support channel mux setting in INPUTMUX_EnableSignal().

44 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]
• Initial version.

IOCON

[2.2.0]
• Improvements

– Removed duplicate macro defintions.

– Renamed ‘IOCON_I2C_SLEW’ macro to ‘IOCON_I2C_MODE’ to match its companion ‘IO-
CON_GPIO_MODE’. The original is kept as a deprecated symbol.

[2.1.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.1.1]
• Updated left shift format with mask value instead of a constant value to automatically adapt

to all platforms.

[2.1.0]
• Added a new IOCON_PinMuxSet() function with a feature IOCON_ONE_DIMENSION for

LPC845MAX board.

[2.0.0]
• Initial version.

MAILBOX

[2.3.2]
• Improvements

– Added support for the MCXN946 and MCXN546 series

[2.3.1]
• Improvements

– Added support for the LPC55S66 series.

[2.3.0]
• Improvements

– Added support for the MCXNx4x series with new value for kMAILBOX_CM33_Core0 or
kMAILBOX_CM33_Core1.

1.4. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.0]
• Improvements

– Fixed missing conditional defines for the LPC5411x series.

[2.1.0]
• Improvements

– Added support for the LPC55S69 series. cpu_id parameter can be newly assigned to
kMAILBOX_CM33_Core0 or kMAILBOX_CM33_Core1.

[2.0.0]
• Initial version.

MRT

[2.0.5]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.4]
• Improvements

– Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

– Fixed the wrong count value assertion in MRT_StartTimer API.

[2.0.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

46 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

OSTIMER

[2.2.4]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.2.3]
• Improvements

– Disable and clear pending interrupts before disabling the OSTIMER clock to avoid in-
terrupts being executed when the clock is already disabled.

[2.2.2]
• Improvements

– Support devices with different OSTIMER instance name.

[2.2.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.0]
• Improvements

– Move the PMC operation out of the OSTIMER driver to board specific files.

– Added low level APIs to control OSTIMER MATCH and interrupt.

[2.1.2]
• Bug Fixes

– Fixed MISRA-2012 rule 10.8.

[2.1.1]
• Bug Fixes

– removes the suffix ‘n’ for some register names and bit fields’ names

• Improvements

– Added HW CODE GRAY feature supported by CODE GRAY in SYSCTRL register group.

[2.1.0]
• Bug Fixes

– Added a workaround to fix the issue that no interrupt was reported when user set
smaller period.

– Fixed violation of MISRA C-2012 rule 10.3 and 11.9.

• Improvements

1.4. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.06.00

– Added return value for the two APIs to set match value.

* OSTIMER_SetMatchRawValue

* OSTIMER_SetMatchValue

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 10.3, 14.4, 17.7.

[2.0.2]
• Improvements

– Added support for OSTIMER0

[2.0.1]
• Improvements

– Removed the software reset function out of the initialization API.

– Enabled interrupt directly instead of enabling deep sleep interrupt. Users need to en-
able the deep sleep interrupt in application code if needed.

[2.0.0]
• Initial version.

PINT

[2.2.0]
• Fixed

– Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.

• Changed

– Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.

[2.1.13]
• Improvements

– Added instance array for PINT to adapt more devices.

– Used release reset instead of reset PINT which may clear other related registers out of
PINT.

[2.1.12]
• Bug Fixes

– Fixed coverity issue.

48 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.11]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
• New Features

– Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
• Bug Fixes

– Fixed MISRA-2012 rule 8.4.

[2.1.8]
• Bug Fixes

– Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

[2.1.7]
• Improvements

– Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
• Bug Fixes

– Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

– Changed interrupt init order to make pin interrupt configuration more reasonable.

[2.1.4]
• Improvements

– Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT_Init and PINT_Deinit API.

– Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

– Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

1.4. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.3]
• Bug fix:

– Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

– Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitive mode
and will switch the active level for this pin in level-sensitive mode.

– Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

– Added FSL_FEATURE_SECPINT_NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

– Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
• Improvement:

– Improved way of initialization for SECPINT/PINT in PINT_Init API.

[2.1.1]
• Improvement:

– Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]
• Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable

callback by index.

[2.0.2]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
• Bug fix:

– Updated PINT driver to clear interrupt only in Edge sensitive.

[2.0.0]
• Initial version.

PLU

[2.2.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.3 and rule 17.7.

50 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.2.0]
• Bug Fixes

– Fixed wrong parameter of the PLU_EnableWakeIntRequest function.

[2.1.0]
• New Features

– Added 4 new APIs to support Niobe4’s wake-up/interrupt control feature, including
PLU_GetDefaultWakeIntConfig() PLU_EnableWakeIntRequest(), PLU_LatchInterrupt()
and PLU_ClearLatchedInterrupt().

• Other Changes

– Changed the register name LUT_INP to LUT_INP_MUX due to register map update.

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

PUF

[2.2.0]
• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

[2.1.6]
• Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with

shorter time. If this shorter time will also fail, initialization will be tried with worst case
time as before.

[2.1.5]
• Use common SDK delay in puf_wait_usec().

[2.1.4]
• Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to

prevent optimization out delay loop.

[2.1.3]
• Fix MISRA C-2012 issue.

1.4. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.2]
• Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to

secret hardware bus (PUF key index 0).

[2.1.1]
• Fix ARMGCC build warning .

[2.1.0]
• Align driver with PUF SRAM controller registers on LPCXpresso55s16.

• Update initizalition logic .

[2.0.3]
• Fix MISRA C-2012 issue.

[2.0.2]
• New feature:

– Add PUF configuration structure and support for PUF SRAM controller.

• Improvements:

– Remove magic constants.

[2.0.1]
• Bug Fixes:

– Fixed puf_wait_usec function optimization issue.

[2.0.0]
• Initial version.

RTC

[2.2.0]
• New Features

– Created new APIs for the RTC driver.

* RTC_EnableSubsecCounter

* RTC_GetSubsecValue

[2.1.3]
• Bug Fixes

– Fixed issue that RTC_GetWakeupCount may return wrong value.

52 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.4 and 10.7.

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3 and 11.9.

[2.1.0]
• Bug Fixes

– Created new APIs for the RTC driver.

* RTC_EnableTimer

* RTC_EnableWakeUpTimerInterruptFromDPD

* RTC_EnableAlarmTimerInterruptFromDPD

* RTC_EnableWakeupTimer

* RTC_GetEnabledWakeupTimer

* RTC_SetSecondsTimerMatch

* RTC_GetSecondsTimerMatch

* RTC_SetSecondsTimerCount

* RTC_GetSecondsTimerCount

– deprecated legacy APIs for the RTC driver.

* RTC_StartTimer

* RTC_StopTimer

* RTC_EnableInterrupts

* RTC_DisableInterrupts

* RTC_GetEnabledInterrupts

[2.0.0]
• Initial version.

SCTIMER

[2.5.1]
• Bug Fixes

– Fixed bug in SCTIMER_SetupCaptureAction: When kSCTIMER_Counter_H is selected,
events 12-15 and capture registers 12-15 CAPn_H field can’t be used.

1.4. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.06.00

[2.5.0]
• Improvements

– Add SCTIMER_GetCaptureValue API to get capture value in capture registers.

[2.4.9]
• Improvements

– Supported platforms which don’t have system level SCTIMER reset.

[2.4.8]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t writes MATCH_H bit
and RELOADn_H.

[2.4.7]
• Bug Fixes

– Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t configure 100% duty
cycle PWM.

[2.4.6]
• Bug Fixes

– Fixed the issue where the H register was not written as a word along with the L register.

– Fixed the issue that the SCTIMER_SetCOUNTValue() is not configured with high 16 bits
in unify mode.

[2.4.5]
• Bug Fixes

– Fix SCT_EV_STATE_STATEMSKn macro build error.

[2.4.4]
• Bug Fixes

– Fix MISRA C-2012 issue 10.8.

[2.4.3]
• Bug Fixes

– Fixed the wrong way of writing CAPCTRL and REGMODE registers in SC-
TIMER_SetupCaptureAction.

[2.4.2]
• Bug Fixes

– Fixed SCTIMER_SetupPwm 100% duty cycle issue.

54 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.4.1]
• Bug Fixes

– Fixed the issue that MATCHn_H bit and RELOADn_H bit could not be written.

[2.4.0]

[2.3.0]
• Bug Fixes

– Fixed the potential overflow issue of pulseperiod variable in SC-
TIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle API.

– Fixed the issue of SCTIMER_CreateAndScheduleEvent API does not correctly work with
32 bit unified counter.

– Fixed the issue of position of clear counter operation in SCTIMER_Init API.

• Improvements

– Update SCTIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle to support generate 0%
and 100% PWM signal.

– Add SCTIMER_SetupEventActiveDirection API to configure event activity direction.

– Update SCTIMER_StartTimer/SCTIMER_StopTimer API to support start/stop low
counter and high counter at the same time.

– Add SCTIMER_SetCounterState/SCTIMER_GetCounterState API to write/read counter
current state value.

– Update APIs to make it meaningful.

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

* SCTIMER_GetEventInState

[2.2.0]
• Improvements

– Updated for 16-bit register access.

[2.1.3]
• Bug Fixes

– Fixed the issue of uninitialized variables in SCTIMER_SetupPwm.

– Fixed the issue that the Low 16-bit and high 16-bit work independently in SCTIMER
driver.

• Improvements

– Added an enumerable macro of unify counter for user.

* kSCTIMER_Counter_U

– Created new APIs for the RTC driver.

* SCTIMER_SetupStateLdMethodAction

* SCTIMER_SetupNextStateActionwithLdMethod

1.4. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.06.00

* SCTIMER_SetCOUNTValue

* SCTIMER_GetCOUNTValue

* SCTIMER_SetEventInState

* SCTIMER_ClearEventInState

* SCTIMER_GetEventInState

– Deprecated legacy APIs for the RTC driver.

* SCTIMER_SetupNextStateAction

[2.1.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7, 11.9, 14.2 and 15.5.

[2.1.1]
• Improvements

– Updated the register and macro names to align with the header of devices.

[2.1.0]
• Bug Fixes

– Fixed issue where SCT application level Interrupt handler function is occupied by SCT
driver.

– Fixed issue where wrong value for INSYNC field inside SCTIMER_Init function.

– Fixed issue to change Default value for INSYNC field inside SCTIMER_GetDefaultConfig.

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

SPI

[2.3.2]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

[2.3.1]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

56 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.3.0]
• Update version.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules.

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 10.4 issue.

– Added code to clear FIFOs before transfer using DMA.

[2.2.0]
• Bug Fixes

– Fixed bug that slave gets stuck during interrupt transfer.

[2.1.1]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1, 5.7 issues.

[2.1.0]
• Bug Fixes

– Fixed Coverity issue of incrementing null pointer in SPI_TransferHandleIRQInternal.

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

• New Features

– Modified the definition of SPI_SSELPOL_MASK to support the socs that have only 3
SSEL pins.

[2.0.4]
• Bug Fixes

– Fixed the bug of using read only mode in DMA transfer. In DMA transfer mode, if
transfer->txData is NULL, code attempts to read data from the address of 0x0 for con-
figuring the last frame.

– Fixed wrong assignment of handle->state. During transfer handle->state should be
kSPI_Busy rather than kStatus_SPI_Busy.

• Improvements

– Rounded up the calculated divider value in SPI_MasterSetBaud.

1.4. ChangeLog 57

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.3]
• Improvements

– Added “SPI_FIFO_DEPTH(base)” with more definition.

[2.0.2]
• Improvements

– Unified the component full name to FLEXCOMM SPI(DMA/FREERTOS) driver.

[2.0.1]
• Changed the data buffer from uint32_t to uint8_t which matches the real applications for

SPI DMA driver.

• Added dummy data setup API to allow users to configure the dummy data to be transferred.

• Added new APIs for half-duplex transfer function. Users can not only send and receive
data by one API in polling/interrupt/DMA way, but choose either to transmit first or to re-
ceive first. Besides, the PCS pin can be configured as assert status in transmission (between
transmit and receive) by setting the isPcsAssertInTransfer to true.

[2.0.0]
• Initial version.

SPI_DMA

[2.2.1]
• Bug Fixes

– Fixed MISRA 2012 11.6 issue..

[2.2.0]
• Improvements

– Supported dataSize larger than 1024 data transmit.

SPI Flash Interface

[2.0.3]
• Bug Fixes

• MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.

[2.0.2]
• Bug Fixes

– Fixed the command function set issue. After the command being set, there will be no
wait for the CMD flag, as it may have been cleared by CS deassert.

58 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.1]
• New Features

– Added an API to read/write 1/2 Bytes data from/to SPIFI. This interface is useful for
flash command, which only needs 1/2 Bytes data. The previous driver needed users
to make sure of the minimum length being 4, which might cause issues in some flash
commands.

[2.0.0]
• Initial version.

TRNG

[2.0.18]
• Bug fix:

– TRNG health checks now done in software on RT5xx and RT6xx.

[2.0.17]
• New features:

– Add support for RT700.

[2.0.16]
• Improvements:

– Added support for Dual oscillator mode.

[2.0.15]
• Other changes:

– Changed TRNG_USER_CONFIG_DEFAULT_XXX values according to latest reccomended
by design team.

[2.0.14]
• New features:

– Add support for RW610 and RW612.

[2.0.13]
• Bug fix:

– After deepsleep it might return error, added clearing bits in TRNG_GetRandomData()
and generating new entropy.

– Modified reloading entropy in TRNG_GetRandomData(), for some data length it doesn’t
reloading entropy correctly.

1.4. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.12]
• Bug fix:

– For KW34A4_SERIES, KW35A4_SERIES, KW36A4_SERIES set
TRNG_USER_CONFIG_DEFAULT_OSC_DIV to kTRNG_RingOscDiv8.

[2.0.11]
• Bug fix:

– Add clearing pending errors in TRNG_Init().

[2.0.10]
• Bug Fix:

– Fixed doxygen issues.

[2.0.9]
• Bug Fix:

– Fix HIS_CCM metrics issues.

[2.0.8]
• Bug fix:

– For K32L2A41A_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
kTRNG_RingOscDiv4.

[2.0.7]
• Bug fix:

– Fix MISRA 2004 issue rule 12.5.

[2.0.6]
• Bug fix:

– For KW35Z4_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
kTRNG_RingOscDiv8.

[2.0.5]
• Improvements:

– For FRQMIN, FRQMAX and OSCDIV, add possibility to use device specific preprocessor
macro to define default value in TRNG user configuration structure.

[2.0.4]
• Bug Fix:

– Fix MISRA-2012 issues.

* Rule 10.1, rule 10.3, rule 13.5, rule 16.1.

60 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.3]
• Improvements:

– update TRNG_Init to restart new entropy generation.

[2.0.2]
• Improvements:

– fix MISRA issues

* Rule 14.4.

[2.0.1]
• New features:

– Set default OSCDIV for Kinetis devices KL8x and KL28Z.

• Other changes:

– Changed default OSCDIV for K81 to divide by 2.

[2.0.0]
• Initial version.

USART

[2.8.5]
• Bug Fixes

– Fixed race condition during call of USART_EnableTxDMA and USART_EnableRxDMA.

[2.8.4]
• Bug Fixes

– Fixed exclusive access in USART_TransferReceiveNonBlocking and US-
ART_TransferSendNonBlocking.

[2.8.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 11.8.

[2.8.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.2.

1.4. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.06.00

[2.8.1]
• Bug Fixes

– Fixed the Baud Rate Generator(BRG) configuration in 32kHz mode.

[2.8.0]
• New Features

– Added the rx timeout interrupts and status flags of bus status.

– Added new rx timeout configuration item in usart_config_t.

– Added API USART_SetRxTimeoutConfig for rx timeout configuration.

• Improvements

– When the calculated baudrate cannot meet user’s configuration, lower OSR value is
allewed to use.

[2.7.0]
• New Features

– Added the missing interrupts and status flags of bus status.

– Added the check of tx error, noise error framing error and parity error in interrupt
handler.

[2.6.0]
• Improvements

– Used separate data for TX and RX in usart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

• New Features

– Added missing API USART_TransferGetSendCountDMA get send count using DMA.

[2.5.0]
• New Features

– Added APIs USART_GetRxFifoCount/USART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs USART_SetRxFifoWatermark/USART_SetTxFifoWatermark to set rx/tx FIFO
water mark.

• Bug Fixes

– Fixed DMA transfer blocking issue by enabling tx idle interrupt after DMA transmis-
sion finishes.

62 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.4.0]
• New Features

– Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

• Bug Fixes

– Fixed MISRA 10.4 violation.

[2.3.1]
• Bug Fixes

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

• Improvements

– Added check for baud rate’s accuracy that returns kSta-
tus_USART_BaudrateNotSupport when the best achieved baud rate is not within
3% error of configured baud rate.

[2.3.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

– Modified USART_TransferReceiveNonBlocking and USART_TransferHandleIRQ to use
9-bit mode in multi-slave system.

[2.2.0]
• New Features

– Added the feature of supporting USART working at 32 kHz clocking mode.

• Improvements

– Modified USART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified USART_TransferGetSendCount so that this API returns the real byte count
that USART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.1 issues.

– Fixed bug that operation on INTENSET, INTENCLR, FIFOINTENSET and FIFOINTENCLR
should use bitwise operation not ‘or’ operation.

– Fixed bug that if rx interrupt occurrs before TX interrupt is enabled and after txData-
Size is configured, the data will be sent early by mistake, thus TX interrupt will be
enabled after data is sent out.

1.4. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.1]
• Improvements

– Added check for transmitter idle in USART_TransferHandleIRQ and US-
ART_TransferSendDMACallback to ensure all the data would be sent out to bus.

– Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

• Bug Fixes

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 11.6, 11.8, 11.9, 13.5.

[2.1.0]
• New Features

– Added features to allow users to configure the USART to synchronous transfer(master
and slave) mode.

• Bug Fixes

– Modified USART_SetBaudRate to get more acurate configuration.

[2.0.3]
• New Features

– Added new APIs to allow users to enable the CTS which determines whether CTS is
used for flow control.

[2.0.2]
• Bug Fixes

– Fixed the bug where transfer abort APIs could not disable the interrupts. The FIFOIN-
TENSET register should not be used to disable the interrupts, so use the FIFOINTENCLR
register instead.

[2.0.1]
• Improvements

– Unified the component full name to FLEXCOMM USART (DMA/FREERTOS) driver.

[2.0.0]
• Initial version.

USART_DMA

[2.6.0]
• Refer USART driver change log 2.0.1 to 2.6.0

64 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

UTICK

[2.0.5]
• Improvements

– Improved for SOC RW610.

[2.0.4]
• Bug Fixes

– Fixed compile fail issue of no-supporting PD configuration in utick driver.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 8.4, 14.4, 17.7

[2.0.2]
• Added new feature definition macro to enable/disable power control in drivers for some

devices have no power control function.

[2.0.1]
• Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

WWDT

[2.1.9]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 10.4.

[2.1.8]
• Improvements

– Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0xFF (reset value) after WWDT_Init function returns.

1.4. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.06.00

[2.1.7]
• Bug Fixes

– Fixed the issue that the watchdog reset event affected the system from PMC.

– Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.

– Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.

[2.1.5]
• Bug Fixes

– deprecated a unusable API in WWWDT driver.

* WWDT_Disable

[2.1.4]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WWDT_Init

[2.1.3]
• Bug Fixes

– Fixed legacy issue when initializing the MOD register.

[2.1.2]
• Improvements

– Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API to match
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
• New Features

– Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

– Implemented delay/retry in WWDT driver.

[2.1.0]
• Improvements

– Added new parameter in configuration when initializing WWDT module. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

66 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

[2.0.0]
• Initial version.

1.5 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MCXW236B

1.6 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.6.1 Wireless Bluetooth LE host stack and applications

examples__wireless_examples__bluetooth_docs

1.6.2 Wireless Connectivity Framework

Wireless Framework

Wireless Connectivity Framework Connectivity Framework repository provides both con-
nectivity platform enablement with hardware abstraction layer and a set of Services for NXP
connectivity stacks : BLE, Zigbee, OpenThread, Matter.

The connectivity framework repository consists of:

• Common folder to common header files for minimal type definition to be used in the repo

• Platform folder used for platform enablement with Hardware abstraction:

– platform/include: common API header files used by several platforms

– platform/common: common code for several platforms

– specifics platform folders , See below the supported platform list

– platform/../configs folder: configuration files for framework repository and other mid-
dlewares (rpmsg, mbedTls, etc.._)

• Services folder

• Zephyr folder for zephyr modules integrated in mcux SDK

• clang formatting script and script folder to format appropriately the source files of the repo

1.5. Driver API Reference Manual 67

MCUXpresso SDK Documentation, Release 25.06.00

Supported platforms The following devices/platforms are supported in platform folder for
connectivity applications:

• kw45x, k32w1x, mcxw71x, under wireless_mcu, kw45_k32w1_mcxw71 folders.

• kw47x, mcxw72x families under wireless_mcu, kw47_mcxw72, kw47_mcxw72_nbu fold-
ers.

• rw61x

• RT1060 and RT1170 for Matter

• Other RT devices such as i.MX RT595s

Supported services The supported services are provided for connectivity stacks and their
demo application, and are usually dependent on PLATFORM API implementation:

• DBG: Light Debug Module, currently a stubbed header file

• FSCI: Framework Serial Communication Interface between BLE host stack and upper layer
located on an other core/device

• FunctionLib: wrapper to toolchain memory manipulation functions (memcpy, memcmp,
etc) or use its own implementation for code size reduction

• HWParameters: Store Factory hardware parameters and Application parameters in Flash
or IFR

• LowPower: wrapper of SDK power manager for connectivity applications

• ModuleInfo: Store and handle connectivity component versions

• NVM: NXP proprietary File System used for KW45, KW47 automotive devices and
RT1060/RT1170 platform for Matter

• OtaSupport: Handle OTA binary writes into internal or external flash.

• SecLib and RNG: Crypto and Random Number generator functions. It supports several
ports:

– Software algorithms

– Secure subsystem interface to an HW enclave

– MbedTls 2.x interface

• Sensors: Provides service for Battery and temperature measurements

• SFC: Smart Frequency Calibration to be run from KW47/MCXW71 from NBU core. Matter
related modules:

• OTW: Over The Wire module for External Transceiver firmware update from RT platforms

• FactoryDataProvider to be used for Matter

Supported Zephyr modules integration in mcux SDK Connectivity framework provides in-
tegration and port layers to the following Zephyr Modules located into zephyr/subsys:

• NVS: Zephyr File System used by Matter and Zigbee

• Settings: Over layer module that allows to store keys into NVS File System used by Matter
Port layer and required libraries for these zephyr modules are located in port and lib folder
in zephyr directory

Connectivity framework CHANGELOG

68 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

7.0.2 RFP mcux SDK 25.06.00

Major Changes
• [wireless_mcu][wireless_nbu] Introduced PLATFORM_Get32KTimeStamp() API, available

on platforms that support it.

• [RNG] Switched to using a workqueue for scheduling seed generation tasks.

• [Sensors] Integrated workqueue to trigger temperature readings on periodic timer expira-
tions.

• [wireless_nbu] Removed outdated configuration files from wireless_nbu/configs.

• [SecLib_RNG][PSA] Added a PSA-compliant implementation for SecLib_RNG. � This is an
experimental feature and should be used with caution.

• [wireless_mcu][wireless_nbu] Implemented PLATFORM_SendNBUXtal32MTrim() API to
transmit XTAL32M trimming values to the NBU.

Minor Changes (bug fixes)
• [MWS] Migrated the Mobile Wireless Standard (MWS) service to the public repository. This

service manages coexistence between connectivity protocols such as BLE, 802.15.4, and
GenFSK.

• [HWParameter][NVM][SecLib_RNG][Sensors] Addressed various MISRA compliance issues
across multiple modules.

• [Sensors] Applied a filtering mechanism to temperature data measured by the application
core before forwarding it to the NBU, improving data reliability.

• [Common] Relocated the GetPowerOfTwoShift() function to a shared module for broader
accessibility across components.

• [RNG] Resolved inconsistencies in RNG behavior when using the fsl_adapter_rng HAL by
aligning it with other API implementations.

• [SecLib] Updated the AES CMAC block counter in AES_128_CMAC() and
AES_128_CMAC_LsbFirstInput() to support data segments larger than 4KB.

• [SecLib] Utilized sss_sscp_key_object_free() with kSSS_keyObjFree_KeysStoreDefragment to
avoid key allocation failures.

• [MCXW23] Removed redundant NVIC_SetPriority() call for the ctimer IRQ in the platform
file, as it’s already handled by the driver.

• [WorkQ] Increased workqueue stack size to accommodate RNG usage with mbedtls.

• [wireless_mcu][ot] Suppressed chip revision transmission when operating with nbu_15_4.

• [platform][mflash] Ensured proper address alignment for external flash reads in PLAT-
FORM_ReadExternalFlash() when required by platform constraints.

• [RNG] Corrected reseed flag behavior inRNG_GetPseudoRandomData() after reaching gRng-
MaxRequests_d threshold.

• [platform][mflash] Fixed uninitialized variable issue in PLATFORM_ReadExternalFlash().

• [platform][wireless_nbu] Fixed an issue on KW47 where PLATFORM_InitFro192M incor-
rectly reads IFR1 from a hardcoded flash address (0x48000), leading to unstable FRO192M
trimming. The function is now conditionally compiled for KW45 only.

7.0.2 revB mcux SDK 25.06.00

1.6. Middleware Documentation 69

MCUXpresso SDK Documentation, Release 25.06.00

Major Changes
• [RNG][wireless_mcu][wireless_nbu] Rework RNG seeding on NBU request

• [wireless_mcu] [LowPower] Add gPlatformEnableFro6MCalLowpower_d macro to enable
FRO6M frequency verification on exit of Low Power

– addPLATFORM_StartFro6MCalibration() andPLATFORM_EndFro6MCalibration()new
function for FRO6M calibration (6MHz or 2Mhz) on wake-up from low power mode.

– Enabled by default in fwk_config.h

• [wireless_nbu][LowPower] Clear pending interrupt status of the systick before going in low-
power - Reduce NBU active time

• [wireless_nbu] Fix impossibility to go to WFI in combo mode (15.4/BLE)

• [wireless_mcu] Implement XTAL32M temperature compensation mechanism. 2 new APIs:

– PLATFORM_RegisterXtal32MTempCompLut(): register the temperature compensation
table for XTAL32M.

– PLATFORM_CalibrateXtal32M(): apply XTAL32M temperature compensation depend-
ing on current temperature.

• [Sensors][wireless_mcu] Add support for periodic temperature measurement. new API:

– SENSORS_TriggerTemperatureMeasurementUnsafe(): to be called from Interrupt masked
critical section, from ISR or when scheduler is stopped

• [SFC] Change default maximal ppm target of the SFC algorithm from 200 to 360ppm. Impact
the SFC algorith of kw45 and mcxw71 platforms, 360ppm was already the default setting
for kw47 and mcxw72 platforms

Minor Changes (bug fixes)
• [DBG] Fix FWK_DBG_PERF_DWT_CYCLE_CNT_STOP macro

• [wireless_nbu] Add gPlatformIsNbu_d compile Macro set to 1

• [wireless_nbu][ics] gFwkSrvHostChipRevision_c can be processed in the system workqueue

• [kw45_mcxw71][kw47_mcxw72]

– Remove LTC dependency from platform in kconfig

– gPlatformShutdownEccRamInLowPower moved from fwk_platform_definition.h to
fwk_confg.h as this is a configuration flag.

• [wireless_mcu][sensors] Rework and remove unnecessary ADC APIs

• [wireless_nbu] Add PLATFORM_GetMCUUid() function from Chip UID

• [SecLib] Change AES_MMO_BlockUpdate() function from private to public for zigbee.

7.0.2 revA mcux SDK 25.06.00 Supported platforms:
• Same as 25.03.00 release

Major Changes
• [KW45/MCXW71] HW parameters placement now located in IFR section. Flash storage is

not longer used:

– Compilation: Macro gHwParamsProdDataPlacement_c changed from gHwParamsProd-
DataMainFlash2IfrMode_c to gHwParamsProdDataIfrMode_c

70 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• [KW47] NBU: Add new fwk_platform_dcdc.[ch] files to allow DCDC stepping by using SPC
high power mode. This requires new API in board_dcdc.c files. Please refer to new compi-
lation MACROs gBoardDcdcRampTrim_c and gBoardDcdcEnableHighPowerModeOnNbu_d in
board_platform.h files located in kw47evk, kw47loc, frdmmcxw72 board folders.

• [KW45/MCXW71/KW47/MCXW72] Trigger an interrupt each time App core calls PLAT-
FORM_RemoteActiveReq() to access NBU power domain in order to restart NBU core for
domain low power process

Minor Changes (bug fixes)

Services
• [SecLib_RNG]

– Rename mSecLibMutexId mutex to mSecLibSssMutexId in SecLib_sss.c

– Remove MEM_TRACKING flag from RNG.c

– Implement port to fsl_adapter_rng.h API using gRngUseRngAdapter_c compil Macro
from RNG.c

– Add support for BLE debug Keys in SecLi and SecLin_sss.c with gSecLibUseBleDe-
bugKeys_d - for Debug only

• [FSCI] Add queue mechanism to prevent corruption of FSCI global variableAllow the ap-
plication to override the trig sample number parameter when gFsciOverRpmsg_c is set to
1

• [DBG][btsnoop] Add a mechanism to dump raw HCI data via UART using SBT-
SNOOP_MODE_RAW

• [OTA]

– OtaInternalFlash.c: Take into account chunks smaller than a flash phrase worth

– fwk_platform_ot.c: dependencies and include files to gpio, port, pin_mux removed

Platform specific
• [kw45_mcxw71][kw47_mcxw72]

– fwk_platform_reset.h : add compil Macro gUseResetByLvdForce_c and gUseResetBy-
DeepPowerDown_c to avoid compile the code if not supported on some platforms

– New compile Flag gPlatformHasNbu_d

– Rework FRO32K notification service for MISRA fix

7.0.1 RFP mcux SDK 25.03.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

• MCXW23

Minor Changes (bug fixes)
• [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, SecLib and

platform files

1.6. Middleware Documentation 71

MCUXpresso SDK Documentation, Release 25.06.00

Services
• [SecLib_RNG] fix return status from RNG_GetTrueRandomNumber() function: return cor-

rectly gRngSuccess_d when RNG_entropy_func() function is successful

• [SFC] Allow the application to override the trig sample number parameter

• [Settings] Re-define the framework settings API name to avoid double definition when gSet-
tingsRedefineApiName_c flag is defined

Platform specific
• [wireless_mcu] fwk_platform_sensors update :

– Enable temperature measurement over ADC ISR

– Enable temperature handling requested by NBU

• [wireless_mcu] fwk_platform_lcl coex config update for KW45

• [kw47_mcxw72] Change the default ppm_target of SFC algorithm from 200 to 360ppm

7.0.1 revB mcux SDK 25.03.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

• MCXW23

Minor Changes (bug fixes)

General
• [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, FunctionLib

and platform files

Services
• [SecLib_RNG] AES-CBC evolution:

– added AES_CBC_Decrypt() API for sw, SSS and mbedtls variants.

– Made AES-CBC SW implementation reentrant avoiding use of static storage of AES
block.

– fixed SSS version to update Initialization Vector within SecLib, simplifying caller’s im-
plementation.

– modified AES_128_CBC_Encrypt_And_Pad() so as to avoid the constraint mandating
that 16 byte headroom be available at end of input buffer.

• [SecLib_RNG] RNG modifications:

– RNG_GetPseudoRandomData() could return 0 in some error cases where caller ex-
pected a negative status.

* Explicited RNG error codes

* Added argument checks for all APIs and return gRngBadArguments_d (-2) when
wrong

72 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

* added checks of RNG initalization and return gRngNotInitialized_d (-3) when not
done

* fixed correcteness of RNG_GetPrngFunc() and RNG_GetPrngContext() relative to
API description.

* Added RNG_DeInit() function mostly for test and coverage purposes.

* Improved RNG description in README.md

* Unified the APIs behaviour between mbedtls and non mbedtls variants.

– RNG/mbedtls : PreventRNG_Init() from corrupting RNG entropy context if called more
than once.

– RNG/mbedtls: fixed RNG_GetTrueRandomNumber() to return a proper
mbedtls_entropy_func() result.

– [SecLib_RNG] Use defragmetation option when freeing key object in SecLib_sss to
avoid leak in S200 memory

– [SecLib_RNG] Add new API ECP256_IsKeyValid() to check whether a public key is valid

– [OtaSupport] Update return status to OTA_Flash_Success when success at the end of
InternalFlash_WriteData() and InternalFlash_FlushWriteBuffer() APIs

– [WorQ] Implementing a simple workqueue service to the framework

– [SFC] Keep using immediate measurement for some measurement before switching to
configuration trig to confirm the calibration made

– [DBG] Adding modules to framework DBG :

* sbtsnoop

* SWO

– [Common] Fix HAL_CTZ and HAL_RBIT IAR versions

– [LowPower] Fix wrong tick error calculation in case of infinite timeout

– [Settings] Add new macro gSettingsRedefineApiName_c to avoid multiple definition of
settings API when using connectivity framework repo

Platform specific
• [KW47/MCXW72] Change xtal cload default value from 4 to 8 in order to increase the pre-

cision of the link layer timebase in NBU

• [wireless_mcu] [wireless_nbu] Use new WorkQ service to process framework intercore
messages

• [rw61x] Fix HCI message sending failure in some corner case by releasing controller wakes
up after that the host has send its HCI message

• [MCXW23] Adding the initial support of MCXW23 into the framework

7.0.0 mcux SDK 24.12.00 Supported platforms:
• KW45x, KW47x, MCXW71, MCXW72, K32W1x

• RW61x

• RT595, RT1060, RT1170

Minor Changes (bug fixes)

1.6. Middleware Documentation 73

MCUXpresso SDK Documentation, Release 25.06.00

Platform specific
• [RW61X]

– Add MCUX_COMPONENT_middleware.wireless.framework.platform.rng to the plat-
form to fix a warning at generation

– Retrieve IEEE 64 bits address from OTP memory

• [KW45x, MCXW71x, KW47x, MCXW72x]

– Ignore the secure bit from RAM addresses when comparing used ram bank in bank
retention mechanism

– Add gPlatformNbuDebugGpioDAccessEnabled_d Compile Macro (enabled by default).
Can be used to disable the NBU debug capability using IOs in case Trustzone is enabled
(“PLATFORM_InitNbu()‘ code executed from unsecure world).

– Fix in NBU firmware when sending ICS messages gFwkSrvNbuApiRequest_c (from con-
troller_api.h API functions)

Services
• [OTA]

– Add choice name to OtaSupport flash selection in Kconfig

• [NVM]

– Add gNvmErasePartitionWhenFlashing_c feature support to gcc toolchain

• [SecLib_RNG]

– Misra fixes

7.0.0 revB mcux SDK 24.12.00 Supported platforms: KW45x, KW47x, MCXW71, MCXW72,
K32W1x, RW61x, RT595, RT1060, RT1170

Major Changes (User Applications may be impacted)
• mcux github support with cmake/Kconfig from sdk3 user shall now use CmakeLists.txt and

Kconfig files from root folder. Compilation should be done using west build command. In
order to see the Framework Kconfig, use command >west build -t guiconfig

• Board files and linker scripts moved to examples repository

Bugfixes
• [platform lowpower]

– Entering Deep down power mode will no longer call PLATFORM_EnterPowerDown().
This API is now called only when going to Power down mode

Platform specific
• [KW47/MCXW72]: Early access release only

– Deep sleep power mode not fully tested. User can experiment deep sleep and deep
down modes using low power reference design applications

– XTAL32K-less support using FRO32K not tested

• [KW45/MCXW71/K32W148]

74 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– Deep sleep mode is supported. Power down mode is supported in low power reference
design applications as experimental only

– XTAL32K-less support using FRO32K is experimental - FRO32K notifications callback is
debug only and should not be used for mass production firmware builds

Minor Changes (no impact on application)
• Overall folder restructuring for SDK3

– [Platform]:

* Rename platform_family from connected_mcu/nbu to wireless_mcu/nbu

* platform family have now a dedicated fwk_config.h, rpmsg_config.h and Se-
cLib_mbedtls_config.h

– [Services]

* Move all framework services in a common directory “services/”

7.0.0 revA: KW45/KW47/MCXW71/MCXW72/K32W148

Experimental Features only
• Power down on application power domain: Some tests have shown some failure. Power

consumption higher than Deep Sleep. => This feature is not fully supported in this release

• XTAL32K less board with FRO32K support: Some additional stress tests are under progress.

• FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

Main Changes
• Cmake/Kconfig support for SDK3.0

• [Sensors] API renaming:

– SENSORS_InitAdc() renamed to SENSORS_Init()

– SENSORS_DeinitAdc() remamed to SENSORS_Deinit()

• [HWparams]

– Repair PROD_DATA sector in case of ECC error (implies loss of previous contents of
sector)

• [NVM] Linker script modification for armgcc whenever gNvTableKeptInRam_d option is
used:

– placement of NVM_TABLE_RW in data initialized section, providing start and end ad-
dress symbols. For details see NVM_Interface.h comments.

• [OtaSupport]

– OTA_Initialize(): now transitions the image state from RunCandidate to Permanent if
not done by the application. OTA module shall always be initialized on a Permanent
image, this change ensures it is the case.

– OTA_MakeHeadRoomForNextBlock(): now erases the OTA partition up to the image to-
tal size (rounded to the sector) if known.

1.6. Middleware Documentation 75

MCUXpresso SDK Documentation, Release 25.06.00

Minor changes
• [Platform]

– Updated macro values: -kw47: BOARD_32MHZ_XTAL_CDAC_VALUE
from 12U to 16U, BOARD_32MHZ_XTAL_ISEL_VALUE from 7U
to 11U, BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 4U,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT from 1U to 3U

* MCX W72 (low-power reference design applications
only): BOARD_32MHZ_XTAL_CDAC_VALUE from 12U to
10U, BOARD_32MHZ_XTAL_ISEL_VALUE from 7U to 11U,
BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 4U,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT from 1U to 3U

– New PLATFORM_RegisterNbuTemperatureRequestEventCb() API: register a function
callback when NBU request new temperature measurement. API provides the interval
request for the temperature measurement

– Update PLATFORM_IsNbuStarted() API to return true only if the NBU firmware has
been started.

• [platform lowpower]

– Move RAM layout values in fwk_platform_definition.h and update RAM retention API
for KW47/MCXW72

Bugfixes
• [OtaSupport]

– OTA_MakeHeadRoomForNextBlock(): fixed a case where the function could try to erase
outside the OTA partition range.

6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100 This release does not contain the changes
from 6.2.3 release.

This release contains changes from 6.2.2 release.

Main Change
• armgcc support for Cmake sdk2 support and VS code integration

Minor changes
• [NBU]

– Optimize some critical sections on nbu firmware

• [Platform]

– Optimize PLATFORM_RemoteActiveReq() execution time.

6.2.3: KW47 EAR1.0 Initial Connectivity Framework enablement for KW47 EAR1.0 support.

New features
• OpenNBU feature : nbu_ble project is available for modification and building

76 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

Supported features
• Deep sleep mode

Unsuported features
• Power down mode

• FRO32K support (XTAL32K less boards)

Main changes
• [NBU]

– LPTMR2 available and TimerManager initialization with Compile Macro: gPlatfor-
mUseLptmr_d

– NBU can now have access to GPIOD

– SW RNG and SW SecLib ported to NBU (Software implementation only)

• [RNG]

– Obsoleted API removed : FWK_RNG_DEPRECATED_API

– RNG can be built without SecLib for NBU, using gRngUseSecLib_d in fwk_config.h

– Some API updates:

* RNG_IsReseedneeded() renamed to RNG_IsReseedNeeded,

* RNG_TriggerReseed() renamed to RNG_NotifyReseedNeeded(),

* RNG_SetSeed() and RNG_SetExternalSeed() return status code.

– Optimized Linear Congruential modulus computation to reduce cycle count.

Minor changes
• [NVM]

– Optimize NvIsRecordErased() procedure for faster garbage collection

– MISRA fix : Remove externs and weaks from NVM module - Make RNG and timer man-
ager dependencies conditional

• [Platform]

– Allow the debugger to wakeup the KW47/MCXW72 target

6.2.2: KW45/K32W1 MR6 SDK 2.16.000 Experimental Features only:

• Power down on application power domain : Some tests have shown some failure. Power
consumption higher than Deep Sleep. => This feature is not fully supported in this release

• XTAL32K less board with FRO32K support : Some additional stress tests are under progress.

• FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

1.6. Middleware Documentation 77

MCUXpresso SDK Documentation, Release 25.06.00

Changes
• [Board] Support for freedom board FRDM-MCX W7X

• [HWparams]

– Support for location of HWParameters and Application Factory Data IFR in IFR1

– Default is still to use HWparams in Flash to keep backward compatibility

• [RNG]: API updates:

– New APIS RNG_IsReseedneeded(), RNG_SetSeed() to provide See to PRNG on NBU/App
core - See BluetoothLEHost_ProcessIdleTask() in app_conn.c

– New APIs RNG_SetExternalSeed() : User can provide external seed. Typically used on
NBU firmrware for App core to set a seed to RNG. RNG_TriggerReseed() : Not required
on App core. Used on NBU only.

• [NVS] Wear statistics counters added - Fix nvs_file_stat() function

• [NVM] fix Nv_Shutdown() API

• [SecLib] New feature AES MMO supported for Zigbee

6.2.2: RW61x RFP4 SDK 2.16.000
• [Platform] Support Zigbee stack

• [OTA] Add support for RW61x OTA with remap feature.

– Required modifications to prevent direct access to flash logical addresses when remap
is active.

– Image trailers expected at different offset with remap enabled (see gPlatformMcuBoo-
tUseRemap_d in fwk_config.h)

– fixed image state assessment procedure when in RunCandidate.

• [NVS] Wear statistics counters added

• [SecLib] New feature AES MMO supported for Zigbee

• [Misra] various fixes

6.2.1: KW45/K32W1 MR5 SDK 2.15.000 Experimental Features only:

• Power down on application power domain : Some tests have shown some failure. This
feature is not fully supported in this release

• XTAL32K less board with FRO32K support : Some additional stress tests are under progress.
Timing variation of the timebase are being analyzed

Major changes
• [RNG]: API updates

– New compile flag to keep deprecated API: FWK_RNG_DEPRECATED_API

– change return error code to int type for RNG_Init(), RNG_ReInit()

– New APIs RNG_GetTrueRandomNumber(), RNG_GetPseudoRandomData()

• [Platform]

– fwk_platform_sensors

* Change default temperature value from -1 to 999999 when unknown

78 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– fwk_platform_genfsk

* rename from platform_genfsk.c/h to fwk_platform_genfsk.c/h

– platform family

* Rename the framework platform folder from kw45_k32w1 to connected_mcu to
support other platform from the same family

– fwk_platform_intflash

* Moved from fwk_platform files to the new fwk_platform_intflash files the internal
flash dependant API

• [NBU]

– BOARD_LL_32MHz_WAKEUP_ADVANCE_HSLOT changed from 2 to 3 by default

– BOARD_RADIO_DOMAIN_WAKE_UP_DELAY changed from 0x10 to 0x0F

• [gcc linker]

– Exclude k32w1_nbu_ble_15_4_dyn.bin from .data section

Minor Changes
• [Platform]

– PLATFORM_GetTimeStamp(0 has an important fix for reading the Timestamp in
TSTMR0

– New API PLATFORM_TerminateCrypto(), PLATFORM_ResetCrypto() called from SecLib
for lowpower exit

– Fix when enable fro debug callback on nbu

• [DBG]

– SWO

* Add new files fwk_debug_swo.c/h to use SWO for debug purpose

* Two new flags has been added:

· BOARD_DBG_SWO_CORE_FUNNEL to chose on which core you want to use
SWO

· BOARD_DBG_SWO_PIN_ENABLE to enable SWO on a pin

• [NVS]

– Add support of NVS and Settings in framework

• [NBU]

– Fix power down issues and reduce critical section on NBU side:

* new API PLATFORM_RemoteActiveReqWithoutDelay() called from NBU functions
where waiting delay is not required

* Increase delay needed in power down for OEM part to request the SOC to be active

* Remove unnecessary code to PLATFORM_RemoteActiveReqWithoutDelay() from
PLATFORM_HciRpmsgRxCallback()

* Improve nbu memory allocation failure debug messages

• [SDK]

– Multicore: remove critical section in HAL_RpmsgSendTimeout() (only required in
FPGA HDI mode)

– Flash drivers: update for ECC detection

1.6. Middleware Documentation 79

MCUXpresso SDK Documentation, Release 25.06.00

• [Platform]

– fwk_platform_sensors

* Fix temperature reporting to NBU

– fwk_platform_extflash

* Align .c and .h prototype of PLATFORM_ExternalFlashAreaIsBlank() function

• [NVM]

– Keep Mutex in NvModuleDeInit(). In Bare metal OS, Mutex can not be destroyed

– New API NvRegisterEccFaultNotificationCb() to register Notification callback when Ecc
error happens in FileSystem

• [MISRA] fixes

– SecLib_sss.c: ECDH_P256_ComputeDhKey()

– fwk_platform_extflash.c: PLATFORM_IsExternalFlashPageBlank()

– fwk_fs_abstraction.c: Various fixes

• [HWparams]

– Fix on if condition when gHwParamsProdDataPlacementLegacy2IfrMode_c mode is
selected

• [OTA]

– Enable gOtaCheckEccFaults_d by default to avoid bus in case of ECC error during OTA

– Fix OTA partition overflow during OTA stop and resume transfer

• [BOARD]

– Place code button or led specific under correct defines in board_comp.c/h

– Bring back MACROs BOARD_INITRFSWITCHCONTROLPINS in pin_mux header file of
the loc board

• [SecLib]

– Add some undefinition in SecLib_mbedtls_config as new dependency has been added
in mbedtls repo:

* MBEDTLS_SSL_CBC_RECORD_SPLITTING, MBEDTLS_SSL_PROTO_TLS1,
MBEDTLS_SSL_PROTO_TLS1_1

• [FRO32K]

– FRO32K notification callback PLATFORM_FroDebugCallback_t() has new parameter to
report he fro_trim value

– maxCalibrationIntervalMs value can be provided to NBU using PLAT-
FORM_FwkSrvSetRfSfcConfig()

• [Sensors]

– fix: PLATFORM_GetTemperatureValue() shall have NBU started to send temperature to
NBU

6.2.1: RW61x RFP3
• [NVS]

– Add support of NVS and Settings in framework

• [MISRA] fixes

– board_lp.c BOARD_UninitDebugConsole() and BOARD_ReinitDebugConsole()

80 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– fwk_platform_ble.c: Various fixes

• [OTA]

– Fix OTA partition overflow during OTA stop and resume transfer

6.2.0: RT1060/RT1170 SDK2.15 Major

6.1.8: KW45/K32W1 MR4
• [BOARD PLATFORM]

– Move gBoardUseFro32k_d to board_platform.h file

– Offer the possibility to change the source clock accuracy to gain in power consumption

• [BOARD LP]

– Move PLATFORM_SetRamBanksRetained() at end of BOARD_EnterLowPowerCb() in
case a memory allocation is done previously in this function

– fix low power, increase BOARD_RADIO_DOMAIN_WAKE_UP_DELAY from 0 to 0x10 -
Skip this delay when App requesting NBU wakeup

• [PLATFORM]

– fwk_platform_ble.c/h: New timestamp API that returns the difference between the cur-
rent value of the LL clock and the argument of the function

– fwk_platform.c/h:

* New PLATFORM_EnableEccFaultsAPI_d compile flag: Enable APIs for interception
of ECC Fault in bus fault handler

* New gInterceptEccBusFaults_d compile flag: Provide FaultRecovery() demo code
for bus fault handler to Intercept bus fault from Flash Ecc error

• [LOC]

– Incorrect behavior for set_dtest_page (DqTEST11 overridden)

– Fix SW1 button wake able on Localization board

– Fix yellow led not properly initialized

– Format localization pin_mux.c/h files

• [Inter Core]

– Affect values to enumeration giving the inter core service message ids

– Shared memory settings shared between both cores

– Add callback to register when NBU has unrecoverable Radio issue

• [NVM]

– Add NV_STORAGE_MAX_SECTORS, NV_STORAGE_SIZE as linker symbol for alignment
with other toolchain

– ECC detection and recovery. New gNvSalvageFromEccFault_d and gNvVerifyRead-
BackAfterProgram_d compile flags. Please refer to ECC Fault detection section in
README.md file located in NVM folder

• [OTA]

– Prevent bus fault in case of ECC error when reading back OTA_CFR update status (dis-
able by default)

• [SecLib]

1.6. Middleware Documentation 81

MCUXpresso SDK Documentation, Release 25.06.00

– Shared mutex for RNG and SecLib as they share same hardware resource

• [Key storage]

– Fix to ignore the garbage at the end of buffers

– Detect when buffers are too small in KS_AddKey() functions

• [FileCache]

– Fix deadlock in Filecache FC_Process()

• [SDK]

– Applications: remove definition of stack location and use default from linker script,
fix warmboot stack in freertos at 0x20004000

– Memory Manager Light:

* fix Null pointer harfault when MEM_STATISTICS_INTERNAL enable

* Fix MemReinitBank() on wakeup from lowpower when Ecc banks are turned off

6.1.7: KW45/K32W1 MR3
• [OTA]

– New API OTA_SetNewImageFlagWithOffset()

– Fix StorageBitmapSize calculation

– OTA clean up: Removed OTA_ValidateImage()

• [Low Power]

– New linker Symbol m_lowpower_flag_start in linker file.

* Flag is used to indicate NBU that Application domain goes to power down mode.
Keep this flag to 0 if only Deep sleep is supported

* This flag will be set to 1 if Application domain goes to power down mode

– Re-introduce PWR_AllowDeviceToSleep()/PWR_DisallowDeviceToSleep(),
PWR_IsDeviceAllowedToSleep() API

– Implement tick compensation mechanism for idle hook in a dedicated freertos utils
file fwk_freertos_utils.[ch], new functions: FWK_PreIdleHookTickCompensation() and
FWK_PostIdleHookTickCompensation

– Rework timestamping on K4W1

* PLATFORM_GetMaxTimeStamp() based on TSTMR

* Rename PLATFORM_GetTimestamp() to PLATFORM_GetTimeStamp()

* Update PLATFORM_Delay(): Rework to use TSTMR instead of LPTMR for plat-
form_delay

* Update PLATFORM_WaitTimeout(): Fixed a bug in PLATFORM_WaitTimeout() re-
lated to timer wrap

* Add PLATFORM_IsTimeoutExpired() API

– Fix race condition in PWR_EnterLowPower(), masking interrupts in case not done at
upper layer

– Low power timer split in new files fwk_platform_lowpower_timer.[ch]

– New PWR_systicks_bm.c file for bare metal usage: implement SysTick suspend/resume
functionality, New weak PWR_SysTicksLowPowerInit()

• [FRO32K]

82 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– Improve FRO32K calibration in NBU

– create PLATFORM_InitFro32K() to initialize FRO32K instead of XTAL32K (to be called
from hardware_init())

– update FRO32K README.md file in SFC module

– Debug:

– Add Notification callback feature for SFC module FRO32K

– Linker script update to support m_sfc_log_start in SMU2

• [SecLib]

– Remove gSecLibSssUseEncryptedKeys_d compile option, split Secure/Unsecure APIs

– RNG update to use same mutex than SecLib

– Fix AES_128_CBC_Encrypt_And_Pad length

– Implement RNG_ReInit() for lowpower

– Fix issue in ECDH_P256_GenerateKeys() when waking up from power down

– Call CRYPTO_ELEMU_reset() from SecLib_reInit() for power down support

• [BOARD]

– Create new board_platform.h file for all Board characteristics settings (32Mhz XTAL,
32KHZ XTAL, etc..)

– TM_EnterLowpower() TM_EnterLowpower() to be called from LP callbacks

– Support Localization boards, Only BUTTON0 supported

* New compile flag BOARD_LOCALIZATION_REVISION_SUPPORT

* New pin_mux.[ch] files

– Offer the possibility to override CDAC and ISEL 32MHz settings before the initialization
of the crystal in board_platform.h

* new BOARD_32MHZ_XTAL_CDAC_VALUE, BOARD_32MHZ_XTAL_ISEL_VALUE

* BOARD_32MHZ_XTAL_TRIM_DEFAULT obsoleted

• [NVM file system]

– Look ahead in pending save queue - Avoid consuming space to save outdated record

– Fix NVM gNvDualImageSupport feature in NvIsRecordCopied

• [Inter Core]

– Change PLATFORM_NbuApiReq() API return parameters granularity from uint32 to
uint8

– MAX_VARIANT_SZ change from 20 to 25

– Set lp wakeup delay to 0 to reduce time of execution on host side, NBU waits XTAL to
be ready before starting execution

– Update inter core config rpmsg_config.h

– Add timeout to while loops that relies on hardware in RemoteActiveReq(), Application
can register Callbacks when timeout

– Return non-0 status when calling PLATFORM_FwkSrvSendPacket when NBU non
started

– Let PLATFORM_GetNbuInfo return -10 if response not received on timeout - Doxygen
platform_ics APIs

• [HW params]

1.6. Middleware Documentation 83

MCUXpresso SDK Documentation, Release 25.06.00

– New compile Macro for HW params placement in IFR - Save 8K in FLash: gHwParam-
sProdDataPlacement_c . 3 modes:

– Legacy placement, move from legacy to IFR, IFR only placement

– New compile Macro for Application data to be stored with HW params (in shared flash
sector): gHwParamsAppFactoryDataExtension_d, New APIs:

* Nv_WriteAppFactoryData(), Nv_GetAppFactoryData()

– See HWParameter.h

• [Platform]

– Implement PLATFORM_GetIeee802_15_4Addr() API in fwk_platform_ot.c - New gPlat-
formUseUniqueDeviceIdFor15_4Addr_d compile Macro

– Wakeup NBU domain when reading RADIO_CTRL UID_LSB register in PLAT-
FORM_GenerateNewBDAddr()

• [Reset]

– New reset Implementations using Deep power down mode or LVD:

* new files fwk_platform_reset.[ch]

* new APIs: PLATFORM_ForceDeepPowerDownReset(), PLAT-
FORM_ForceLvdReset() + reset on ext pins

* new compile flags: gAppForceDeepPowerDownResetOnResetPinDet_d and gApp-
ForceLvdResetOnResetPinDet_d to reset on external pins

• [FSCI]

– fix when gFsciRxAck_c enabled

– integrate new reset APIs

6.1.4: RW610/RW612 RFP1
• [Low Power]

– Added support of low power for OpenThread stack.

– Added PWR_AllowDeviceToSleep/PWR_DisallowDeviceToSleep/PWR_IsDeviceAllowedToSleep
APIs.

• [platform]

– Added PLATFORM_GetMaxTimeStamp API.

– Fixed high impact Coverity.

• [FreeRTOS]

– Created a new utilities module for FreeRTOS: fwk_freertos_utils.c/h.

– Implemented a tick compensation mechanism to be used in FreeRTOS idle hook, likely
around flash operations. This mechanism aims to estimate the number of ticks missed
by FreeRTOS in case the interrupts are masked for a long time.

6.1.4: KW45/K32W1 MR2
• [Low power]

– Powerdown mode tested and enabled on Low Power Reference Design applications

– XTAL32K removal functionality using FRO32K, supported from NBU firmwares - limi-
tation: Application domain supports Deep Sleep only (not power down)

84 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– NBU low power improvement: low power entry sequence improvement and system
clock reduction to 16Mhz during WFI

– Wake up time from cold boot, reset, power switch greatly improved. Device starts on
FRO32K, switch to XTAL32K when ready if gBoardUseFro32k_d not set

– Bug fixes:

* Move PWR LowPower callback to PLATFORM layers

* Fix wrong compensation of SysTicks

* Reinit system clocks when exiting power down mode:
BOARD_ExitPowerDownCb(), restore 96MHz clock is set before going to low
power

* Call Timermanager lowpower entry exit callbacks from PLAT-
FORM_EnterLowPower()

* Update PLATFORM_ShutdownRadio() function to force NBU for Deep power down
mode

– K32W1:

* Support lowpower mode for 15.4 stacks

• [NVM]

– New Compilation MACRO gNvDualImageSupport to support multiple firmware image
with different register dataset

– Change default configuration gNvStorageIncluded_d to 1, gNvFragmenta-
tion_Enabled_d to 1, gUnmirroredFeatureSet_d to TRUE

– Some MISRA issues for this new configuration.

– Remove deprecated functionality gNvUseFlexNVM_d

• [SecLib]

– New NXP Ultrafast ecp256 security library:

* New optimized API for ecdh DhKey/ecp256 key pair computation:
Ecdh_ComputeDhKeyUltraFast(), ECP256_GenerateKeyPairUltraFast().

* New macro gSecLibUseDspExtension_d.

* Improved software version of Seclib with Ultrafast library for
ECP256_LePointValid()

– Bug fixes:

* Share same mutex between Seclib and RNG to prevent concurrent access to S200

* Optimized S200 re-initialization, restore ecdh key pair after power down

* Fixed race condition when power down low power entry is aborted

* Endianness function updates and clean up

• [OTA]

– OTASupport improvements:

* New API OTA_GetImgState(), OTA_UpdateImgState()

* OTASupport and fwk_platform_extflash API updates for external flash:
OTA_SelectExternalStoragePartition(), PLATFORM_IsExternalFlashSectorBlank(),
PLATFORM_IsExternalFlashPageBlank(), PLATFORM_OtaGetOtaPartitionConfig()

* Updated OtaExternalFlash.c, 2 new APIs in fwk_platform_extflash.c

1.6. Middleware Documentation 85

MCUXpresso SDK Documentation, Release 25.06.00

* Removed unused FLASH_op_type and FLASH_TransactionOpNode_t definitions
from public API

* Removed unused InternalFlash_EraseBlock() from OtaInternalFlash.c

• [NBU firmware]

– Mechanism to set frequency constraint to controller from the host PLAT-
FORM_SetNbuConstraintFrequency()

– NbuInfo has one more digit in versionBuildNo field

• [Board]

– Support Extflash low power mode, add BOARD_UninitExternalFlash(), PLAT-
FORM_UninitExternalFlash(), PLATFORM_ReinitExternalFlash()

– Support XTAL32K removal functionatity, use FRO32K instead by setting gBoardUse-
Fro32k_d to 1 in board.h file

– Support localization boards KW45B41Z-LOC Rev C

– Low power improvement: New BOARD_InitPins() and
BOARD_InitPinButtonBootConfig() called from hardware_init.c

– Removed KW45_A0_SUPPORT support (dcdc)

– Bug fixes:

* Fixed glitches on the serial manager RX when exiting from power down

* Fixed ADC not deinitialized in clock gated modes in BOARD_EnterLowPowerCb()

* Fixed UART output flush when going to low power: BOARD_UninitAppConsole()

• [platform]

– PLATFORM_InitBle(), PLATFORM_SendHci() can now block with timeout if NBU does
not answer. Application can register callback function to be notified when it occurs:
PLATFORM_RegisterBleErrorCallback()

– Added API to set and get 32Khz XTAL capacitance values: PLAT-
FORM_GetOscCap32KValue() and PLATFORM_SetOscCap32KValue()

– Added new Service FWK call gFwkSrvNbuMemFullIndication_c to get NBU mem full
indication, register with PLATFORM_RegisterNbuMemErrorCallback()

– Added support negative value in platform intercore service

• [linker script]

– Realigned gcc linker script with IAR linker script.

– Added possibility to redefine cstack_start position

– Added Possibility to change gNvmSectors in gcc linker script

– Added dedicated reserved Section in shared memory for LL debugging

• [FreeRTOSConfig.h]

– Removed unused MACRO configFRTOS_MEMORY_SCHEME and configTO-
TAL_HEAP_SIZE

• [HW Param]

– Added xtalCap32K field to store XTAL32K triming value

• [fwk_hal_macros.h]

– Added MACRO for KB, MB and set, clear bits in bit fields

• [Debug]

86 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

– Added MACROs for performance measurement using DWT: DBG_PERF_MEAS

6.1.3 KW45 MR1 QP1
• [Initialization] Delay the switch to XTAL32K source clock until the BLE host stack is initial-

ized

• [lowpower] NBU wakeup from lowpower: configuration can now be programmed with
BOARD_NBU_WAKEUP_DELAY_LPO_CYCLE, BOARD_RADIO_DOMAIN_WAKE_UP_DELAY
in board.h file

• [NBU firmware] Major fix for NBU system clock accuracy

• [clock_config]

– Update SRAM margin and flash config when switching system frequency

– Trim FIRC in HSRUN case

• [XTAL 32K trim] XTAL 32K configuration can be tuned in board.h file with
BOARD_32MHZ_XTAL_TRIM_DEFAULT, BOARD_32KHZ_XTAL_CLOAD_DEFAULT,
BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT

• [MAC address] Add OUI field in PLATFORM_GenerateNewBDAddr() when using Unique De-
vice Id

6.1.2: RW610/RW612 PRC1
• [Low Power]

– Updates after SDK Power Manager files renaming.

– Moved PWR LowPower callback to PLATFORM layers.

– Bug fixes:

* Fixed wrong compensation of SysTicks during tickless idle.

* Reinit RTC bus clock after exit from PM3 (power down).

• [OTA]

– Initial support for OTA using the external flash.

• [platform]

– Implemented platform specific time stamp APIs over OSTIMER.

– Implemented platform specific APIs for OTA and external flash support.

– Removed PLATFORM_GetLowpowerMode API.

– Added support of CPU2 wake up over Spinel for OpenThread stack.

– Bug fixes:

* Fixed issues related to handling CPU2 power state.

• [board]

– Updated flash_config to support 64MB range.

• [linker script]

– Fixed wrong assert.

1.6. Middleware Documentation 87

MCUXpresso SDK Documentation, Release 25.06.00

6.1.1: KW45/K32W1 MR1
• [platform] Use new FLib_MemSet32Aligned() to write in ECC RAM bank to force ECC calcu-

lation in the MEM_ReinitRamBank() function

• [FunctionLib] Implement new API to set a word aligned

• [platform] Set coarse amplifier gain of the oscilattor 32k to 3

• [platform] Switch back to RNG for MAC Adress generation

• [SecLib] Get rid of the lowpower constraint of deep sleep in ECDH API

• [DCDC] Set DCDC output voltage to 1.35V in case LDO core is set to 1.1V to ensure a drop of
250mV between them

• [NVM] NvIdle() is now returning the number of operations that has been executed

• [documentation] Add markdown of each framework module by default on all package

• [LowPower] Add a delay advised by hardware team on exit of lowpower for SPC

• [SecLib] Rework of SecLib_mbedTLS ECDH functions

• [OTA] Make OTA_IsTransactionPending() public API

• [FunctionLib] Change prototype of FLib_MemCpyWord(), pDst is now a void* to permit
more flexibility

• [NVM] Add an API to know if there is a pending operation in the queue

• [FSCI] Fix wrong error case handling in FSCI_Monitor()

6.1.0: KW45/K32W1 RFP
• [LowPower] Do not call PLATFORM_StopWakeUpTimer() in PWR_EnterLowPower() if

PLATFORM_StartWakeUpTimer() was not previously called

• [boards] Add the possibility to wakeup on UART 0 even if it is not the default UART

• [boards] Add support for Hardware flow control for UART0, Enable with gBoard-
UseUart0HwFlowControl, Pin mux update with two additional API for RTS, CTS pins

• [Sensors] Improve ADC wakeup time from deep sleep state: use save and restore API for
ADC context before/after deep sleep state.

• [linker script] update SMU2 shared memory region layout with NBU: increase
sqram_btblebuf_size to support 24 connections. Shared memory region moved to the
end

• [SecLib] SecLib_DeriveBluetoothSKD() API update to support if EdgeLock key shall be re-
generated

6.0.11: KW45/K32W1 PRC3.1

FSCI: Framework Serial Communication Interface

Overview The Framework Serial Communication Interface (FSCI) is both a software module
and a protocol that allows monitoring and extensive testing of the protocol layers. It also allows
separation of the protocol stack between two protocol layers in a two processing entities setup,
the host processor (typically running the upper layers of a protocol stack) and the Black Box
application (typically containing the lower layers of the stack, serving as a modem). The Test Tool
software is an example of a host processor, which can interact with FSCI Black Boxes at various

88 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

layers. In this setup, the user can run numerous commands to test the Black Box application
services and interfaces.

The FSCI enables common service features for each device enables monitoring of specific inter-
faces and API calls. Additionally, the FSCI injects or calls specific events and commands into the
interfaces between layers.

An entity which needs to be interfaced to the FSCI module can use the API to register opcodes
to specific interfaces. After doing so, any packet coming from that interface with the same op-
code triggers a callback execution. Two or more entities cannot register the same opcode on the
same interface, but they can do so on different interfaces. For example, two MAC instances can
register the same opcodes, one over UARTA, and the other over UARTB. This way, Test Tool can
communicate with each MAC layer over two UART interfaces.

The FSCI module executes either in the context of the Serial Manager task or owns its dedicated
task if the compilation Macro gFsciUseDedicatedTask_c is set to 1.

FSCI packet structure The FSCI module sends and receives messages as shown in the figure
below. This structure is not specific to a serial interface and is designed to offer the best com-
munication reliability. The Black Box device expects messages in little-endian format. It also
responds with messages in little-endian format.

Below is an illustration of the FSCI packet structure when a virtual interface is used instead :

1.6. Middleware Documentation 89

MCUXpresso SDK Documentation, Release 25.06.00

NOTE : When virtual interfaces are used, the first checksum is decremented with the
ID of the interface. The second checksum is used for error detection.

constant definition The following Macro configurs the FSCI module

#define gFsciIncluded_c 0 /* Enable/Disable FSCI module */
#define gFsciUseDedicatedTask_c 1 /* Enable Fsci task to avoid recursivity in Fsci module (Misra␣
↪→compliant) */
#define gFsciMaxOpGroups_c 8
#define gFsciMaxInterfaces_c 1
#define gFsciMaxVirtualInterfaces_c 0
#define gFsciMaxPayloadLen_c 245 /* bytes */
#define gFsciTimestampSize_c 0 /* bytes */
#define gFsciLenHas2Bytes_c 0 /* boolean */
#define gFsciUseEscapeSeq_c 0 /* boolean */
#define gFsciUseFmtLog_c 0 /* boolean */
#define gFsciUseFileDataLog_c 0 /* boolean */
#define gFsciLoggingInterface_c 1 /* [0..gFsciMaxInterfaces_c) */
#define gFsciHostMacSupport_c 0 /* Host support at MAC layer */

The following provides the OpGroups values reserved by MAC, application, and FSCI.

FSCI Host FSCI Host is a functionality that allows separation at a certain stack layer between
two entities, usually two boards running separate layers of a stack.

Support is provided for functionality at the MAC layer, for example, MAC/PHY layers of a stack
are running as a Black Box on a board, and MAC higher layers are running on another. The
higher layers send and receive serial commands to and from the MAC Black Box using the FSCI
set of operation codes and groups.

The protocol of communication between the two is the same. The current level of support is
provided for:

• FSCI_MsgResetCPUReqFunc – sends a CPU reset request to black box

• FSCI_MsgWriteExtendedAdrReqFunc – configures MAC extended address to the Black Box

• FSCI_MsgReadExtendedAdrReqFunc – N/A

The approach on the Host interfacing a Black Box using synchronous primitives is by default
the polling of the FSCI_receivePacket function, until the response is received from the Black Box.
The calling task polls whenever the task is being scheduled. This is required because a stack
synchronous primitive requires that the response of that request is available in the context of
the caller right after the SAP call has been executed.

The other option, available for RTOS environments, is using an event mechanism. The calling
task blocks waiting for the event that is sent from the Serial Manager task when the response
is available from the Black Box. This option is disabled by default. The disadvantage of this
option is that the primitive cannot be received from another Black Box through a serial interface
because the blocked task is the Serial Manager task, which reaches a deadlock as cannot be
released again.

FSCI ACK ACK transmission is enabled through the gFsciTxAck_c macro definition. Each FSCI
valid packet received triggers an FSCI ACK packet transmission on the same FSCI interface that
the packet was received on. The serial write call is performed synchronously to send the ACK
packet before any other FSCI packet. Only then the registered handler is called to process the
received packet. The ACK is represented by the gFSCI_CnfOpcodeGroup_c and mFsciMsgAck_c
Opcode. An additional byte is left empty in the payload so that it can be used optionally as a
packet identifier to correlate packets and ACKs. ACK reception is the other component that is en-
abled through gFsciRxAck_c. The behavior is such that every FSCI packet sent through a serial

90 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

interface triggers an FSCI ACK packet reception on the same interface after the packet is sent. If
an ACK packet is received, the transmission is considered successful. Otherwise, the packet is re-
sent a number of times. The ACK wait period is configurable through mFsciRxAckTimeoutMs_c
and the number of transmission retries through mFsciTxRetryCnt_c. The ACK mechanism de-
scribed above can also be coupled with a FSCI packet reception timeout enabled through gFs-
ciRxTimeout_c and configurable through mFsciRxRestartTimeoutMs_c. Whenever there are no
more bytes to be read from a serial interface, a timeout is configured at the predefined value if no
other bytes are received. If new bytes are received, the timer is stopped and eventually canceled
at successful reception. However, if, for any reason, the timeout is triggered, the FSCI module
considers that the current packet is invalid, drops it, and searches for a new start marker.

FSCI usage example Detailed data types and APIs are described in ConnFWK API documenta-
tion.

Initialization
/* Configure the number of interfaces and virtual interfaces used */
#define gFsciMaxInterfaces_c 4
#define gFsciMaxVirtualInterfaces_c 2
….
/* Define the interfaces used */
static const gFsciSerialConfig_t myFsciSerials[] = {

/* Baudrate, interface type, channel No, virtual interface */ {gUARTBaudRate115200_c, gSerialMgrUart_
↪→c, 1, 0}, {gUARTBaudRate115200_c, gSerialMgrUart_c, 1, 1}, {0 , gSerialMgrIICSlave_c, 1, 0}, {0 ,␣
↪→gSerialMgrUSB_c, 0, 0},
};
….
/* Call init function to open all interfaces */
FSCI_Init((void*)mFsciSerials);

Registering operation groups
myOpGroup = 0x12; // Operation Group used
myParam = NULL; // pointer to a parameter to be passed to the handler function (myHandlerFunc)
myInterface = 1; // index of entry from myFsciSerials
…
FSCI_RegisterOpGroup(myOpGroup, gFsciMonitorMode_c, myHandlerFunc, myParam, myInterface);

Implementing handler function
void fsciMcpsReqHandler(void *pData, void* param, uint32_t interfaceId)
{

clientPacket_t *pClientPacket = ((clientPacket_t*)pData);
fsciLen_t myNewLen;
switch(pClientPacket->structured.header.opCode)
{

case 0x01:
{

/* Reuse packet received over the serial interface The OpCode remains the same. The length of the␣
↪→response must be <= that the length of the received packet */

pClientPacket->structured.header.opGroup = myResponseOpGroup;/* Process packet */
…
pClientPacket->structured.header. len = myNewLen;
FSCI_transmitFormatedPacket(pClientPacket, interfaceId);
return;

}
case 0x02:
{

(continues on next page)

1.6. Middleware Documentation 91

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
/* Alocate a new message for the response. The received packet is Freed */
clientPacket_t *pResponsePkt = MEM_BufferAlloc(sizeof(clientPacketHdr_t) + myPayloadSize_d␣

↪→+ sizeof(uint8_t) // CRC);
if(pResponsePkt)
{

/* Process received data and fill the response packet */ …
pResponsePkt->structured.header. len = myPayloadSize_d;
FSCI_transmitFormatedPacket(pClientPacket, interfaceId);

}
break;

}
default:

MEM_BufferFree(pData);
FSCI_Error(gFsciUnknownOpcode_c, interfaceId);
return;

}
/* Free message received over the serial interface */
MEM_BufferFree(pData);

}

Helper Functions Library

Overview This framework provides a collection of features commonly used in embedded soft-
ware centered on memory manipulation.

HWParameter: Hardware parameter

Production Data Storage Hardware parameters provide production data storage

Overview Different platforms/boards need board/network node-specific settings to function
according to the design. (Examples of such settings are IEEE® addresses and radio calibra-
tion values specific to the node.) For this purpose, the last flash sector is reserved and contains
hardware-specific parameters for production data storage. These parameters pertain to the net-
work node as a distinct entity. For example, a silicon mounted on a PCB in a specific configura-
tion, rather than to just the silicon itself. This sector is reserved by the linker file, through the
PROD_DATA section and it should be read/written only through the API described below.

Note : This sector is not erased/written at code download time and it is not updated
via over-the-air firmware update procedures to preserve the respective node-specific
data, regardless of the firmware running on it.

Constant Definitions Name :

extern uint32_t PROD_DATA_BASE_ADDR[];

Description :

This symbol is defined in the linker script. It specifies the start address of the PROD_DATA section.

Name :

static const uint8_t mProdDataIdentifier[10] = {”PROD_DATA:”};

92 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

Description :

The value of this constant is copied as identification word (header) at the beginning of the
PROD_DATA area and verified by the dedicated read function.

Note: the length of mProdDataIdentifier imposes the definition of PROD_DATA_ID_STRING_SZ
as 10. The legacy HW parameters structure provides headroom for future usage. There are
currently 63 bytes available.

Data type definitions Name :

typedef PACKED_STRUCT HwParameters_tag
{

uint8_t identificationWord[PROD_DATA_ID_STRING_SZ]; /* internal usage only: valid data present */
/*@{*/
uint8_t bluetooth_address[BLE_MAC_ADDR_SZ]; /*!< Bluetooth address */
uint8_t ieee_802_15_4_address[IEEE_802_15_4_SZ]; /*!< IEEE 802.15.4 MAC address - K32W1 only␣

↪→*/
uint8_t xtalTrim; /*!< XTAL 32MHz Trim value */
uint8_t xtalCap32K; /*!< XTAL 32kHz capacitance value */
/* For forward compatibility additional fields may be added here

Existing data in flash will not be compatible after modifying the hardwareParameters_t typedef.
In this case the size of the padding has to be adjusted.

*/
uint8_t reserved[1];
/* first byte of padding : actual size if 63 for legacy HwParameters but
complement to 128 bytes in the new structure */

}
hardwareParameters_t;

Description:

Defines the structure of the hardware-dependent information.

Note : Some members of this structure may be ignored on a specific board/silicon con-
figuration. Also, new members may be added for implementation-specific purposes
and the backward compatibility must be maintained.

The CRC calculation starts from the reserved field of the hardwareParameters_t and ends before
the hardwareParamsCrc field. Additional members to this structure may be added using the
following method :

Add new fields before the reserved field. This method does not cause a CRC fail, but you must
keep in mind to subtract the total size of the new fields from the size of the reserved field. For
example, if a field of uint8_t size is added using this method, the size of the reserved field shall
be changed to 63.

Co-locating application factory data in HW Parameters flash sector. The sector containing
the Hardware parameter structure may be located in the internal flash, usually at its last sector.
The actual Hardware parameter structure has a size of 128 bytes - including padding reserved
for future use. Since there is plenty of room available in a flash sector (4kB or 8kB), co-locating
Application Factory Data in the same structure prevents from reserving another flash sector for
these data. The application designer may adopt this solution by defining gHwParamsAppFacto-
ryDataExtension_d as 1. A total of 2kB is alloted to this purpose.

If this option was chosen, whenever any of the Hardware parameter fields is modified, its CRC16
will change so the sector will need erasing. The gHwParamsAppFactoryDataPreserveOnHw-
ParamUpdate_d compilation option deals with restoring the contents of the App Factory Data.
Nonetheless this requires a temporary allocation a 2kB buffer to preserve the previous content
and restore then on completion of the Hw Parameter update.

1.6. Middleware Documentation 93

MCUXpresso SDK Documentation, Release 25.06.00

Special reserved area at start of IFR1 in range [0x02002000..0x02002600[On development
boards a 1536 byte area is reserved and the actual Hardware parameter area begins at offset
0x600. Preserving this area on a HW parameter update also requires a temporary 1.5kB dynamic
allocation (in addition to the App Factory 2kB allocation), to be able to restore on completion of
update operation.

HW Parameters Production Data placement options The placement of production data
(PROD_DATA) can be selected based on the definition of gHwParamsProdDataPlacement_c (see
fwk_config.h). The productions data seldom need update for final products, once calibration
data, MAC addresses or others have been programmed. Two cases exist, plus a transition mode :

1) gHwParamsProdDataMainFlashMode_c (0) :

• PROD_DATA are located at top of Main Flash. Hardware parameters section is placed
in the last sector of internal flash [0xfe000..0x100000[.

• The linker script must reserve this area explicitly so as to prevent placement of NVM
or text sections at that location by setting gUseProdInfoMainFlash_d.

2) gHwParamsProdDataMainFlash2IfrMode_c(1) : - PROD_DATA are located in IFR1, but Main-
Flash version still exists during interim period. - If the contents of the PROD_DATA section
in MainFlash is valid (not blank and correct CRC) but the IFR PROD_DATA is still blank, copy
the contents of MainFlash PROD_DATA to IFR location. - When done PROD_DATA in IFR are
used. Once the transition is done, an application using (2: gHwParamsProdDataPlacemen-
tIfrMode_c) may be programmed.

3) gHwParamsProdDataIfrMode_c (2) :

• PROD_DATA section dwells in the IFR1 sector [0x02002000..0x02004000[

• in development phase the area comprised between [0x02002000..0x02002600[must be
reserved for internal purposes.

• This allows to free up the top sector of Main Flash by linking with gUseProdInfoMain-
Flash_d unset.

LowPower

Low Power reference user guide This Readme file describes the connectivity software archi-
tecture and provides the general low power enablement user guide.

1- Connectivity Low Power SW architecture The connectivity low power software architec-
ture is composed of various components. These are described from the lower layer to the appli-
cation layer:

1. The SDK power manager in component/power_manager. This component provides the ba-
sic low power framework. It is not specific to the connectivity but generic across devices.
it covers:

• gather the low power constraints for upper layer and take the decision on the best
suitable low power state the device is allowed to go to fullfill the constraints.

• call the low power entry and exit function callbacks

• call the appropriate SW routines to switch the device into the suitable low power state

2. Connectivity Low power module in the connectivity framework. This module is composed
of:

94 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• The low power service called PWR inside framework/LowPower (this folder), This
module is generic to all connectivity devices.

• The platform lowpower: fwk_platform_lowpower.[ch] located in frame-
work\platform\<platform_name>. These files are a collection of low power routines
functions for the PWR module and upper layer. These are specific to the device.

Both PWR and platform lowpower files are detailed in section below.

3. Low power Application modules, it consists of 3 parts:

• Application initialization file app_services_init.c where the application initializes the
low power framework, see next section ‘Demo example for typical usage of low power
framework’

• Application Idle task from application to call the main low power entry function
PWR_EnterLowPower() to switch the device into lowpower. This function is applica-
tion specific, one example is given in the section 1.3.3

• Low power board files : board_lp.[ch] located in board/lowpower. These files imple-
ment the low power entry and exit functions related to the application and board.
Customers shall modify these files for their own needs. Example code is given for the
connectivity applications.

User guide is provided in section 1.3 below.

Note : Linker script may also be impacted for power down mode support in order to
provide an RAM area for ROM warm boot (depends on the platform) and application
warmboot stack

The Low power central and master reference design applications provide an example of Low
power implementation for BLE. Customer can also refer to the associated document ‘low power
connectivity reference design user guide’.

1.1 - SDK power manager This module provides the main low power functionalities such as:

• Decide the best low-power mode dependent on the constraints set by upper layers by using
PWR_SetLowPowerModeConstraints() API function.

• Handle the sequences to enter and exit low-power mode.

• Enable and configure wake up sources, call the application callbacks on low power en-
try/exit sequences.

The SDK power manager provides the capability for application and all components to receive
low power constraints to the power. The Application does not set the low-power mode the device
shall go into. When going to low power, the SDK power manager selects the best low-power mode
that fits all the constraints.

As an example, if the low power constraint set from Application is Power Down mode, and no
other constraint is set, the SDK power manager selects Power down mode, the next time the
device enters low power. However, if a new constraint is set by another component, such as
the SecLib module that operates Hardware encryption, the SecLib module would select WFI as
additional low power constraint. Also, the SDK power manager selects this last low-power mode
until the constraint is released by the SecLib module. It then reselects Power Down mode for
further low power entry modes.

1.2 - PWR Low power module The PWR module in the connectivity framework provides ad-
ditional services for the connectivity stacks and applications on top of the SDK power manager.

It also provides a simple API for Connectivity Stack and Connectivity applications.

However, more advanced features such as configuring the wake-up sources are only accessible
from the SDK Power Manager API.

1.6. Middleware Documentation 95

MCUXpresso SDK Documentation, Release 25.06.00

In addition to the SDK Power Manager, the PWR module uses the software resources from lower
level drivers but is independent of the platform used.

1.2.1 - Functional description Initialization of the PWR module should be done through
PWR_Init() function. This is mainly to initialize the SDK power manager and the platform for
low power. It also registers PWR low power entry/exit callback PWR_LowpowerCb() to the SDK
power manager. This function will be called back when entering and exiting low power to per-
form mandatory save/restore operations for connectivity stacks. The application can perform
extra optional save/restore operations in the board_lp file where it can register to the SDK Power
Manager its own callback. This is usually used to handle optional peripherals such as serial in-
terfaces, GPIOs, and so on.The main entry function is PWR_EnterLowPower(). It should be called
from Idle task when no SW activity is required. The maximum duration for lowpower is given as
argument timeoutUs in useconds. This function will check the next Hardware event in the con-
nectivity stack, typically the next Radio activity. A wakeup timer is programmed if the timeoutUs
value is shorter than the next radio event timing. Passing a timeout of 0us will be interpreted as
no timeout on the application side.

On device wakeup from low power state, the function will return the time duration the device
has been in low power state.

Two APi are provided to set and release low power state constraints :
PWR_SetLowPowerModeConstraint() and PWR_ReleaseLowPowerModeConstraint(). These
are helper functions. User can use directly the SDK power manager if needed.

The PWR module also provides some API to be set as callbacks into other components to prevent
from going to low power state. It can be used in following examples :

1. If a DMA is running, the module in charge of the DMA would need to set a constraint to
avoid the system from going to a low power state when the RAM and system bus are no
longer available.

2. If transfer is going on a peripheral, the drivers shall set a constraint to forbid low power
mode.

3. If encryption is on going through an Hardware accelerator, the HW accelerator and the
required ressources (clocks, etc), shall be kept active also by setting a constraints.

1.2.2 - Tickless mode support This module also provides some routines functions
PWR_SysticksPreProcess() and PWR_SysticksPostProcess() from PWR_systicks.c in order to sup-
port the tickless mode when using FreeRTOS. The tickless mode is the capability to suspend
the periodic system ticks from FreeRTOS and keep timebase tracking using another low power
counter. In this implementation, the Timer Manager and time_stamp component are used for
this purpose.

Idle task shall call these functions PWR_SysticksPreProcess() and PWR_SysticksPostProcess() be-
fore and after the call to the main low power entry function PWR_EnterLowPower().

Refer to framework/LowPower/PWR_systicks.c file or section 2.1 below for more information.

1.3 - Low power platform submodule Low power platform module file
fwk_platform_lowpower.c provides the necessary helper functions to support low power
device initialization, device entry, and exit routines. These are platform and device specific.
Typically, the PWR module uses the low power platform submodule for all low power specific
routines.

The low power platform submodule is documented in the Connectivity Framework Reference
Manual document and in the Connectivity Framework API document.

96 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

1.4 - Low power board files Low power board files board_lp.[ch] are both application and
board specific. Users should update this file to add new functions to include new used periph-
erals that require low power support. In the current SDK package, only Serial Manager over
UART and button (IO toggle wake up source) are supported and demonstrated in the Bluetooth
LE demo application.

Other peripherals that require specific action on low power entry and restore on low power exit
should be added to low power board files. For more details, refer to section Low power board
file update

2 - Lowpower Application user guide This section provides a user guide to enable Low power
on a connectivity application, It gives example of typical implementation for the initialization,
Idle task function and low power entry/exit functions.

2.1 - Application Project updates It is recommended to reuse the low-power periph-
eral/central reference design application projects as a start. This ensures that everything is in
place for the low-power optimization feature. Then, application files may be added to one of the
two projects.

However, users can start directly from the application project and implement low power in it,
by performing the steps described in the following sections.

2.1.1 - SDK Power Manager Most of the Low power functionality is implemented in the SDK
Power Manager. The files to add into the project SDK power_manager module are listed in the
figure below:

You need to use the files located in the folder that match your device.

2.1.2 - PWR connectivity framework module PWR.c PWR_Interface.h shall be added to your
application projects :

1.6. Middleware Documentation 97

MCUXpresso SDK Documentation, Release 25.06.00

Optionally, in order to support Systick less mode, PWR_systicks.c or PWR_systicks_bm.c could
also be added.

The include path to add is: middleware/wireless/framework/LowPower

2.1.3 -Low power platform submodule Low power platform files can be found in the ‘Plat-
form’ module in the connectivity framework:

98 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

2.1.4 - Low power board files These files are located in the same folder that the other board
files board.[ch]. Hence, it is not required to add any new include path at compiler command line.

1.6. Middleware Documentation 99

MCUXpresso SDK Documentation, Release 25.06.00

2.1.5 - Application RTOS Idle hook and tickeless hook functions See section 2.4.3 Idle task
implementation example

2.2 - Low power and wake up sources Initialization Low power initialization and
configuration are performed in APP_ServiceInitLowpower()function. This is called from
APP_InitServices() function called from the main() function so all is already set up when calling
the main application entry point, typically BluetoothLEHost_AppInit() function in the Bluetooth
LE demo applications.

The default Low Power mode configured in APP_InitServices() is Deep Sleep mode. In Bluetooth

100 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

LE, (or any other stack technology), Deep Sleep mode fits for all use cases. For instance, for
Bluetooth LE states: Advertising, Connected, Scanning states. This mode already performs a
very good level of power saving and likely, this is not required to optimize more if the device is
powered from external supply.

APP_ServiceInitLowpower() function performs the following initialization and configuration:

• Initialize the Connectivity framework Low power module PWR_Init(), this function initial-
ized the SDK power manager.

• Configure the wakeup sources such as serial manager wake up source for UART, or button
for IO wake up configuration. These are typical wakeup sources used in the connectivity
application. Developer may want to add additional wake up sources here specific for the
application.

Note : The low power timer wakeup source and wakeup from Radio domain
are directly enabled from the Connectivity framework Low power module PWR
as it is mandatory for the connectivity stack. If your application supports other
peripherals (such as i2c, spi, and others) that require wake sources from low
power, developer should add additional wake up sources setting in this func-
tion APP_ServiceInitLowpower(). The complete list of wakeup sources are avail-
able from the SDK power manager component, see file fsl_pm_board.h in compo-
nent/boards/<device_name>/.

• Initialize and register the Low power board file used to register and implement low
power entry and exit callback function used for peripheral. This is done by calling the
BOARD_LowPowerInit() function.

• Register low power Enter and exit critical function to driver component to enable / disable
low power when the Hardware is active. Example is given for serial manager that needs to
disable low power when the TX ring buffer contains data so the device does not enter low
power until the buffer is empty.

Finally, APP_ServiceInitLowpower() function configures the Deep Sleep mode as the default low
power constraint for the application. It is recommended to keep this level of low power con-
straint during all the connectivity stack initialization.

Example of low power framework initialization can be found in app_services_init.c file. Below
is some code example for initializing the low power framework and wake up sources:

static void APP_ServiceInitLowpower(void)
{

PWR_ReturnStatus_t status = PWR_Success;

/* It is required to initialize PWR module so the application
* can call PWR API during its init (wake up sources...) */
PWR_Init();

/* Initialize board_lp module, likely to register the enter/exit
* low power callback to Power Manager */
BOARD_LowPowerInit();

/* Set Deep Sleep constraint by default (works for All application)
* Application will be allowed to release the Deep Sleep constraint
* and set a deepest lowpower mode constraint such as Power down if it needs
* more optimization */
status = PWR_SetLowPowerModeConstraint(PWR_DeepSleep);
assert(status == PWR_Success);

#if (defined(gAppButtonCnt_c) && (gAppButtonCnt_c > 0))

/* Init and enable button0 as wake up source
* BOARD_WAKEUP_SOURCE_BUTTON0 can be customized based on board configuration

(continues on next page)

1.6. Middleware Documentation 101

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
* On EVK we use the SW2 mapped to GPIOD */
PM_InitWakeupSource(&button0WakeUpSource, BOARD_WAKEUP_SOURCE_BUTTON0, NULL,␣

↪→true);
#endif

#if (gAppButtonCnt_c > 1)
/* Init and enable button1 as wake up source
* BOARD_WAKEUP_SOURCE_BUTTON1 can be customized based on board configuration
* On EVK we use the SW3 mapped to PTC6 */
PM_InitWakeupSource(&button1WakeUpSource, BOARD_WAKEUP_SOURCE_BUTTON1, NULL,␣

↪→true);
#endif

#if (defined(gAppUseSerialManager_c) && (gAppUseSerialManager_c > 0))

#if defined(gAppLpuart0WakeUpSourceEnable_d) && (gAppLpuart0WakeUpSourceEnable_d > 0)
/* To be able to wake up from LPUART0, we need to keep the FRO6M running
* also, we need to keep the WAKE domain is SLEEP.
* We can't put the WAKE domain in DEEP SLEEP because the LPUART0 is not mapped
* to the WUU as wake up source */
(void)PM_SetConstraints(PM_LP_STATE_NO_CONSTRAINT, APP_LPUART0_WAKEUP_

↪→CONSTRAINTS);
#endif

/* Register PWR functions into SerialManager module in order to disable device lowpower
during SerialManager processing. Typically, allow only WFI instruction when
uart data are processed by serail manager */

SerialManager_SetLowpowerCriticalCb(&gSerMgr_LowpowerCriticalCBs);
#endif

#if defined(gAppUseSensors_d) && (gAppUseSensors_d > 0)
Sensors_SetLowpowerCriticalCb(&app_LowpowerSensorsCriticalCBs);

#endif

(void)status;
}

2.3 - low power entry/exit sequences : board files updates Board Files that handles low-
power are board_lp.[ch] files.

Low power board files implement the low-power callbacks of the peripherals to be notified
when entering or exiting Low Power mode. This module also registers these low-power call-
backs to the SDK Power Manager component to get the notifications when the device is about
to enter low-power or exit Low Power mode. The Low-power callbacks are registered from
BOARD_LowPowerInit() function. This function is called from app_services_init.c file after PWR
module initialization.

The low power callback functions can be categorized in two groups:

• Entry Low power call back functions: These are usually used to prepare the peripherals
to enter low-power. For example, they can be used for flushing FIFOs, switching off some
clocks, and reconfiguring pin mux to avoid leakage on pins. In case of Power Down mode,
these functions could be used to save the Hardware peripheral context.

• Exit Low power call back functions: These are typically used to restore the peripherals
to functionality. Therefore, they perform the reverse of what is done by the entry call-
back functions: restoring the pin mux, re-enabling the clock, in case of Power Down mode,
restoring the Hardware peripheral context, and so on.

Note that distinction can be done between clock gating mode (Deep Sleep mode), and
power gated mode (Power down mode) when entering and exiting Low Power mode. The

102 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

BOARD_EnterLowPowerCb() and BOARD_ExitLowPowerCb() functions provide the code to call
the various peripheral entry and exit functions to go and exit Deep Sleep mode: serial manager,
button, debug console, and others.

However, the processing to save and restore the Hardware peripheral is implemented in differ-
ent functions BOARD_EnterPowerDownCb() and BOARD_ExitPowerDownCb(). These two func-
tions should be called when exiting power gated modes of the power domain. These two should
implement specific code for such case (likely the complete reinitialization of each peripheral). In
order to know the Low Power mode that the wake up domain, or main domain has been entered,
the low-power platform API PLATFORM_GetLowpowerMode() can be called.

Note : BOARD_ExitPowerDownCb() is called before BOARD_ExitLowPowerCb() as it is
generally required to restore the Hardware peripheral contexts before reconfiguring
the pin mux to avoid any signal glitches on the pads

Also, It is important to know whether the location of the Hardware peripheral is in the main
domain or wake up domain. The two power domains can go into different power modes with
the limitation that the wakeup domain cannot go to a deepest Low Power mode than the main
domain. Depending on the constraint set on SDK power manager, the wake up domain could
remain in active while the main domain can go to deep sleep or power down modes. In this
case, the peripherals in the wake up domain does not required to be restored, as explained in
the section Power Down. Likely, only pin mux reconfiguration is required in this case.

example Low power entry and exit functions shall be registered to the SDK power manager so
these functions will be called when the device will enter and exit low power mode. This is done
by BOARD_LowPowerInit() typically called from application source code in app_services_init.c
file

static pm_notify_element_t boardLpNotifyGroup = {
.notifyCallback = BOARD_LowpowerCb,
.data = NULL,

};

void BOARD_LowPowerInit(void)
{

status_t status;

status = PM_RegisterNotify(kPM_NotifyGroup2, &boardLpNotifyGroup);
assert(status == kStatus_Success);
(void)status;

}

BOARD_LowpowerCb() callback function will handle both the entry and exit sequences. An ar-
gument is passed to the function to indicate the lowpower state the device enter/exit. Typical
implementation is given below. Customer shall make sure to differentiate low power entry and
exit, and the various low power states.

Typically, nothing is expected to be done if low power state is WFI or Sleep mode. These modes
are some light low power states and the system can be woken up by interrupt trigger.

In Deep sleep mode, the clock tree and source clocks are off, the system needs to be woken up
from an event from the WUU module.

In Power down mode, some peripherals are likely to be powered off, context save and restore
may need to be done in these functions.

static status_t BOARD_LowpowerCb(pm_event_type_t eventType, uint8_t powerState, void *data)
{

status_t ret = kStatus_Success;
if (powerState < PLATFORM_DEEP_SLEEP_STATE)
{

/* Nothing to do when entering WFI or Sleep low power state
NVIC fully functionnal to trigger upcoming interrupts */

(continues on next page)

1.6. Middleware Documentation 103

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
}
else
{

if (eventType == kPM_EventEnteringSleep)
{

BOARD_EnterLowPowerCb();

if (powerState >= PLATFORM_POWER_DOWN_STATE)
{

/* Power gated low power modes often require extra specific
* entry/exit low power procedures, those should be implemented
* in the following BOARD API */
BOARD_EnterPowerDownCb();

}
}
else
{

/* Check if Main power domain domain really went to Power down,
* powerState variable is just an indication, Lowpower mode could have been skipped by an␣

↪→immediate wakeup
*/
PLATFORM_PowerDomainState_t main_pd_state = PLATFORM_NO_LOWPOWER;
PLATFORM_status_t status;

status = PLATFORM_GetLowpowerMode(PLATFORM_MainDomain, &main_pd_state);
assert(status == PLATFORM_Successful);
(void)status;

if (main_pd_state == PLATFORM_POWER_DOWN_MODE)
{

/* Process wake up from power down mode on Main domain
* Note that Wake up domain has not been in power down mode */
BOARD_ExitPowerDownCb();

}

BOARD_ExitLowPowerCb();
}

}
return ret;

}

2.4 - Lowpower constraint updates andoptimization Except for the board file update as seen
in previous section, the application does not need any other changes for low-power support in
Deep Sleep mode. It shall work as if no low-power is supported. However, If more aggressive
power saving is required, this constraint can be changed in your application in order to further
reduce the power consumption in Low Power mode.

2.4.1 - Changing the Default Application low power constraint after firmware initializa-
tion The Low power reference design applications (central or peripheral) provides demon-
stration on how to change the Application low power constraint. In the Application main
entry point BluetoothLEHost_AppInit(), Deep Sleep mode is configured by default from
APP_ServiceInitLowpower() function.

Note : It is recommended to keep Deep Sleep mode as default during all the stack ini-
tialization phase until BluetoothLEHost_Initialized() and BleApp_StartInit() functions
are called. In case of Bonded device with privacy, it is recommended to wait for gCon-
trollerPrivacyStateChanged_c event to be called.

104 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

BleApp_LowpowerInit() function provides an example of code on how to release the default Deep
sleep low-power constraint and set a new constraint such as Power down mode for the applica-
tion. This deeper low-power mode is used when no Bluetooth LE activity is on going, and if
no other higher Low-power constraint is set by another components or layer. For instance, if
some serial transmission is on going by the serial manager, or if the SecLib module has on going
activity on the HW crypto accelerator, the low-power mode could less deep.

static void BleApp_LowpowerInit(void)
{
#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)

PWR_ReturnStatus_t status;

/*
* Optionally, Allow now Deepest lowpower mode constraint given by gAPP_

↪→LowPowerConstraintInNoBleActivity_c
* rather than DeepSleep mode.
* Deep Sleep mode constraint has been set in APP_InitServices(), this is fine
* to keep this constraint for typical lowpower application but we want the
* lowpower reference design application to be more agressive in term of power saving.

* To apply a lower lowpower mode than Deep Sleep mode, we need to
* - 1) First, release the Deep sleep mode constraint previously set by default in app_services_init()
* - 2) Apply new lowpower constraint when No BLE activity
* In the various BLE states (advertising, scanning, connected mode), a new Lowpower
* mode constraint will be applied depending of Application Compilation macro set in app_preinclude.

↪→h :
* gAppPowerDownInAdvertising, gAppPowerDownInConnected, gAppPowerDownInScanning
*/

/* 1) Release the Deep sleep mode constraint previously set by default in app_services_init() */
status = PWR_ReleaseLowPowerModeConstraint(PWR_DeepSleep);
assert(status == PWR_Success);
(void)status;

/* 2) Apply new Lowpower mode constraint gAppLowPowerConstraintInNoBleActivity_c *
* The BleAppStart() call above has already set up the new lowpower constraint
* when Advertising request has been sent to controller */
BleApp_SetLowPowerModeConstraint(gAppLowPowerConstraintInNoBleActivity_c);

#endif
}

2.4.2 - Changing the Application lowest low power constraint during application execution
In the various application use cases, (in the various Bluetooth LE activity states, advertising, con-
nected, scanning), some lower low-power constraint can be set, as Power down for advertising,
Deep Sleep for connected, or Scanning. Customer can change the level of Low Power mode in
the various use case mainly depending of the time duration the device is supposed to remain
in low-power. The longer the time that the device remains in low power, the higher the ben-
efit for a deeper Low Power mode such as Power down mode. However, please note that the
wake up from power down mode takes significantly more time than deep sleep as ROM code is
re executed and the hardware logic needs to be restored. Sections Deep Sleep and Power Down
provide some guidance on when to use Deep Sleep mode or Power Down modes respectively.

In the low power reference design applications, four application compilations macros are de-
fined to adjust the low-power mode into advertising, scanning, connected, or no Bluetooth LE
activity. Other use cases can be added as desired. For instance, If application needs to run a
DMA transfer, or if application needs to wakeup regularly to process data from external device,
it may be useful to set WFI constraint (in case of DMA transfer), or Deep Sleep constraint (in case
of regular wake up to process external data), rather than power down or a even lower low-power
mode.

The 4 application compilation macros can be found in app_preinclude.h file of the project. See

1.6. Middleware Documentation 105

MCUXpresso SDK Documentation, Release 25.06.00

app_preinclude.h for low power reference design peripheral application :

/*! Lowpower Constraint setting for various BLE states (Advertising, Scanning, connected mode)
The value shall map with the type defintion PWR_LowpowerMode_t in PWR_Interface.h
0 : no LowPower, WFI only
1 : Reserved
2 : Deep Sleep
3 : Power Down
4 : Deep Power Down

Note that if a Ble State is configured to Power Down mode, please make sure
gLowpowerPowerDownEnable_d variable is set to 1 in Linker Script

The PowerDown mode will allow lowest power consumption but the wakeup time is longer
and the first 16K in SRAM is reserved to ROM code (this section will be corrupted on
each power down wakeup so only temporary data could be stored there.)

Power down feature not supported. */

#define gAppLowPowerConstraintInAdvertising_c 3
/* Scanning not supported on peripheral */
//#define gAppLowPowerConstraintInScanning_c 2
#define gAppLowPowerConstraintInConnected_c 2
#define gAppLowPowerConstraintInNoBleActivity_c 4

In lowpower_central.c lowpower_preripheral.c files, the application sets and re-
leases the low power constraint from BleApp_SetLowPowerModeConstraint() and
BleApp_ReleaseLowPowerModeConstraint() functions. These functions are called with the
macro value passed as argument.

Important Note : Setting the application low power constraint shall be done on new
Bluetooth LE state request so the new constraint is applied immediately, while the
application low-power mode constraint shall be released when the Bluetooth LE state
is exited. For example, setting the new low power constraint for Advertising shall be
done when the application requests advertising to start. Releasing the low power con-
straint shall be done in the advertising stop callback (advertising has been stopped).

After releasing the low power constraint, the previous low power constraint, (likely the one that
has been set during firmware initialization in APP_ServiceInitLowpower() function, or the up-
dated low power constraint in BleApp_StartInit() function) applies again.

2.4.3 - Idle task implementation example

2.4.3.1 Tickless mode support and Low power entry function Idle task configuration from
FreeRTOS shall be enabled by configUSE_TICKLESS_IDLE in FreeRTOSConfig.h. This will have the
effect to have vPortSuppressTicksAndSleep() called from Idle task created by FreeRTOS. Here is
a typical implementation of this function:

void vPortSuppressTicksAndSleep(TickType_t xExpectedIdleTime)
{

bool abortIdle = false;
uint64_t actualIdleTimeUs, expectedIdleTimeUs;

/* The OSA_InterruptDisable() API will prevent us to wakeup so we use
* OSA_DisableIRQGlobal() */
OSA_DisableIRQGlobal();

/* Disable and prepare systicks for low power */
abortIdle = PWR_SysticksPreProcess((uint32_t)xExpectedIdleTime, &expectedIdleTimeUs);

if (abortIdle == false)
{

(continues on next page)

106 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
/* Enter low power with a maximal timeout */
actualIdleTimeUs = PWR_EnterLowPower(expectedIdleTimeUs);

/* Re enable systicks and compensate systick timebase */
PWR_SysticksPostProcess(expectedIdleTimeUs, actualIdleTimeUs);

}

/* Exit from critical section */
OSA_EnableIRQGlobal();

}

2.4.3.2 Connectivity background tasks and Idle hook function example Some process needs
to be run in background before going into low power. This is the case for writing in NVM,
or firmware update OTA to be writen in Flash. If so, configUSE_IDLE_HOOK shall be enabled
in FreeRTOSCOnfig.h so vApplicationIdleHook() will be called prior to vPortSuppressTicksAnd-
Sleep(). Typical implementation of vApplicationIdleHook() function can be found here :

void vApplicationIdleHook(void)
{

/* call some background tasks required by connectivity */
#if ((gAppUseNvm_d) || \

(defined gAppOtaASyncFlashTransactions_c && (gAppOtaASyncFlashTransactions_c > 0)))

if (PLATFORM_CheckNextBleConnectivityActivity() == true)
{

BluetoothLEHost_ProcessIdleTask();
}

#endif
}

PLATFORM_CheckNextBleConnectivityActivity() function implemented in low power platform
file fwk_platform_lowpower.c typically checks the next connectivity event and returns true if
there’s enough time to perform time consuming tasks such as flash erase/write operations (can
be defined by the compile macro depending on the platform).

2. Low power features

2.1 - FreeRTOS systicks Low power module in framework supports the systick generation
for FreeRTOS. Systicks in FreeRTOS are most of the time not required in the Bluetooth LE de-
mos applications because the framework already supports timers by the timer manager com-
ponent, so the application can use the timers from this module. The systicks in FreeRTOS are
useful for all internal timer service provided by FreeRTOS (through OSA) like OSA_TimeDelay(),
OSA_TimeGetMsec(), OSA_EventWait(). When systicks are enabled, an interrupt (systick inter-
rupt) is triggered and executed on a periodic basis. In order to save power, periodic systick
interrupts are undesirable and thus disabled when going to low-power mode. This feature is
called low power FreeRTOS tickless mode. When entering the low power state, the system ticks
shall be disabled and switch to a low power timer. On wake-up, the module retrieves the time
passed in low power and compensate the ticks count accordingly. This feature does not apply
on bare metal scheduler.

On FreeRTOS, the vPortSuppressTicksAndSleep() function implemented in the app_low_power.c
file will be called when going to idle. FreeRTOS will give to this function the xExpecte-
dIdleTime, time in tick periods before a task is due to be moved into the Ready state.
This function will manage the systicks (disable/enable) through PWR_SysticksPreProcess() and
PWR_SysticksPostProcess() calls. Then, when calling PWR_EnterLowPower(), a time out dura-
tion in micro seconds will be given and the function will set a timer before entering low power.

1.6. Middleware Documentation 107

MCUXpresso SDK Documentation, Release 25.06.00

In addition, this function will return the low power period duration, used to compensate the
ticks count.

In our example low power reference design peripheral application, an OSA_EventWait() has
been added to demonstrate the tickless mode feature. You can adjust the timeout with the gApp-
TaskWaitTimeout_ms_c flag in the app_preinclude.h file, its value in our demo is 8000ms. So 8
seconds after stopping any activity we will wake up from low power. If the flag is not defined in
the application its value will be osaWaitForever_c and there will be no OS wake up.

2.2 - Selective RAM bank retention To optimize the consumption in low power, the linker
script specific function PLATFORM_GetDefaultRamBanksRetained() is implemented. This func-
tion obtains the RAM banks that need to be retained when the device goes in low power, in
order to set them with PLATFORM_SetRamBanksRetained() function. The RAM banks that are
not needed are set in power off state, when the device goes in low power mode.

The function PLATFORM_GetDefaultRamBanksRetained() is linker script specific. Hence, it can-
not be adapted for a different application. If these functions are called from board_lp.c, it is
possible to give to PLATFORM_SetRamBanksRetained() a different bank_mask adapted to your
specific application.

In deep power down, this feature does not have any impact because in this power mode, all RAM
banks are already powered off.

3 - Low power modes overview PWR module API provides the capability to set low power
mode constraints from various components or from the application. These constraints are pro-
vided to the SDK power manager. Upper layer (all Application code, connectivity stacks, etc.)
can call directly the SDK Power Manger if it requires more advanced tuning. The PWR API can
be found in PWR_Interface.h.

Note : ‘Upper layer’ signifies all layers, applications, components, or modules that are
above the connectivity framework in the Software architecture.

Note : Each power domain has its own Low Power mode capability. The Low Power
modes described below are for the main domain and it is supposed that the wake
up domain goes to the same Low Power mode. This is not always true as the wake
up domain that contains some wake up peripheral can go a lower Low Power mode
state than the main domain so the peripherals in the wake up domain can remain
operational when the main domain is in Low Power mode (deep sleep or power down
modes). In this case, the context of the Hardware peripheral located in the wake up
domain does not need to be saved and restored as for the peripherals located in the
main domain

3.1 Wait for Interrupt (WFI) Definition
In the Wait for Interrupt (WFI) state, the CPU core is powered on, but is in an idle mode with the
clock turned OFF.

Wake up time and typical use case
The wakeup time from this Low Power mode is insignificant because the Fast clock from FRO is
still running.

This Low Power mode is mainly used when there is an hardware activity while the Software runs
the Idle task. This allows the code execution to be temporarily suspende, thus reducing a bit the
power consumption of the device by switching off the processor clock. When an interrupt fires,
the processor clock is instantaneously restored to process the Interrupt Service Routine (ISR).

Usage

108 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

In order to prevent the software from programming the device to go to a lower Low Power mode
(such as Deep Sleep, Power Down mode or Deep Power Down mode), the component responsi-
ble for the hardware drivers shall call PWR_SetLowPowerModeConstraint(PWR_WFI) function.
When the Hardware activity is completed, the component shall release the constraint by calling
PWR_ReleaseLowPowerModeConstraint(PWR_WFI).

Alternatively, the component can call PWR_LowPowerEnterCritical() and then
PWR_LowPowerExitCritical() functions.

For fine tuning of the Low Power mode allowing more power saving, the component can call
directly the SDK power manager API with PM_SetConstraints() function using the appropriate
Low Power mode and low power constraint. However, this is reserved for more advanced user
that knows the device very well. It is not recommended to do so.

The PWR module has no external dependencies, so the low-power entry and exit callback func-
tions must be defined by the user for each peripheral that has specific low power constraints It is
consequently convenient to register to the component the low power callbacks structure that is
used for entering and exit low power critical sections. In Bluetooth LE, you can take the example
in the app_conn.c file as shown here :

#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)
static const Seclib_LowpowerCriticalCBs_t app_LowpowerCriticalCBs =
{

.SeclibEnterLowpowerCriticalFunc = &PWR_LowPowerEnterCritical,

.SeclibExitLowpowerCriticalFunc = &PWR_LowPowerExitCritical,
};
#endif

void BluetoothLEHost_Init(..)
{
...

/* Cryptographic hardware initialization */
SecLib_Init();

#if defined(gAppLowpowerEnabled_d) && (gAppLowpowerEnabled_d>0)
/* Register PWR functions into SecLib module in order to disable device lowpower

during Seclib processing. Typically, allow only WFI instruction when
commands (key generation, encryption) are processed by Seclib */

SecLib_SetLowpowerCriticalCb(&app_LowpowerCriticalCBs);
#endif
...

}

Limitations
No limitation when using the WFI mode.

3.2 Sleep mode Sleep mode is similar to WFI low power mode but with some additional clock
gating. The Sleep mode is device specific, please consult the Hardware reference manuel of the
device for more information.

3.2 Deep Sleep mode Definition
In Deep Sleep mode, the fast clock is turned off, and the CPU along with the main power domain
are placed into a retention state, with the voltage being scaled down to support state retention
only. Because no high frequency clock is running, the voltage applied on the power domain
can be reduced to reduce leakage on the hardware logic. This reduces the overall power con-
sumption in the Deep Sleep mode. When waking up from Deep sleep mode, the core voltage is
increased back to nominal voltage and the fast clock (FRO) is turned back on, the peripheral in
this domain can be reused as normal.

1.6. Middleware Documentation 109

MCUXpresso SDK Documentation, Release 25.06.00

To same more additional power, Some unused RAM banks can be powered off. this prevents from
having current leakage and consequently, allow to reduce even more the power consumption
in Deep SLeep mode. This is achieved by calling PLATFORM_SetRamBanksRetained() from low
power entry function from board_lp.c file.

Usage
All firmware is able to implement Deep Sleep mode transparently to the application thanks to
the PWR module, low power platform submodule and low power board file. This is described in
the section Low-power implementation.

When entering this mode, it is recommended to turn the output pins into input mode, or high
impedance to reduce leakage on the pads. This is typically done in pin_mux.c file, called from
board.c file and executed from the low power callback in board_lp.c file. As an example, the
TX line of the UART peripheral can be turned to disabled so it prevents the current from being
drawn by the pad in Low Power mode.

Wake up time and typical use case
The wake up time is very fast, it takes mostly the time for the Fast FRO to start up again (couple
of hundreds of microseconds) so this mode is a very good balance between power consumption
in low-power mode and wake up latency and shall be used extensively in most of the use cases
of the application.

Limitations
In Deep Sleep mode, the clock is disabled to the CPU and the main peripheral domain, so periph-
eral activity (for example, an on-going DMA transfer) is not possible in Deep Sleep mode.

3.3 Power Down mode Definition
In Power Down mode, both the clock, and power are shut off to the CPU and the main peripheral
domain. SRAM is retained, but register values are lost. The SDK power manager handles the
restore of the processor registers and dependencies such as interrupt controller and similar ones
transparently from the application.

Usage
The application, with the help of the low power board files, saves and restores the peripherals
that were located in the power domain during the entry and exit of the power down mode. This
is done from low power board_lp files in the entry/exit low power callbacks. Example is given for
the serial manager and debug console in board_lp.c file in function BOARD_ExitPowerDownCb().

If the device contains a dedicated wake up power domain where some wake up peripherals are
located, if this wake up domain is not turned into power down mode but only Deep sleep mode
or active mode, this peripheral does not need for a save and restore on low power entry/exit.
For instance, on KW45, This is basically achieved when enabling the wakeup source of the pe-
ripheral PWR_EnableWakeUpSource() from APP_ServiceInitLowpower() function. Alternatively,
this can be directly achieved by setting the constraint to the SDK power manager by calling
PM_SetConstraints(), (use APP_LPUART0_WAKEUP_CONSTRAINTS for wakeup from UART con-
straint).

On exit from low power, The low power state of power domain can be retrieved by Platform API
PLATFORM_GetLowpowerMode(). This API shall be called from low power exit callback function
only.

As for Deep Sleep mode, software shall configure the output pins into input or high impedance
during the Low Power mode to avoid leakage on the pads.

Wake up time and typical use case
The wake up time is significantly longer than wake up time from Deep Sleep (from several hun-
dreds of micro-seconds to a couple of milliseconds depending on the platform). On some plat-
form, it can takes longer, for instance, if ROM code is implemented and perform authentication
checks for security and hardware logic in power domain needs to be restored (case for KW45).

110 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

However, After ROM code execution, the SDK power manager resumes the Idle task execution
from where it left before entering low-power mode. Hence, the wakeup time from this mode is
still significantly lower that the initialization time from a power on reset or any other reset.

Depending on the wakeup time of the platform and the low power time duration, This mode is
recommended when no Software activity is expected to happen for the next several seconds. In
Bluetooth LE, this mode is preferred in advertising or without Bluetooth LE activity. However, in
scanning or connected mode, Regular wakes up happens regularly for instance to retrieve HCI
message responses from the Link layer, the Deep Sleep mode is rather recommended.

Limitations
In addition to the Deep Sleep limitation (no Hardware processing on going when going to Power
down mode) and the significant increase of the wake time, the Power Down mode requires the
ROM code to execute and this last uses significant amount of memory in SRAM.

Typically, The first SRAM bank (16 KBytes) is used by the ROM code during execution so the Appli-
cation firmware can use this section of SRAM for storing bss, rw data, or stacks. Only temporary
data could be stored here and this location is overwritten on every Power Down exit sequence.

In order to avoid placing firmware data section (bss, rw, etc.) in the first SRAM bank, the linker
script variable gLowpowerPowerDownEnable_d should be set to 1. Setting the linker script vari-
able to avoid placing firmware data section in the first SRAM bank, The effect of setting this flag
is to prevent the firmware from using the first 16 KB in SRAM.

Note : This setting is ONLY required if the application implements Power Down mode.
If Application uses other low-power mode, this is not required.

3.4 Deep Power-down mode Definition
In Deep Power Down mode, the SRAM is not retained. This power mode is the lowest disponible,
it is exited through reset sequence.

Usage
In addition to the Power Down limitation, the Deep Power Down mode shut down all memory
in SRAM. Because it is exited through reset sequence the wake time is also longer.

Wake up time and typical use case
As this low-power mode is exited through the reset sequence, the wake up time is longer than any
other mode. In Bluetooth LE, this mode is possible in no Bluetooth LE activity, and is preferred
if we know that there will be no Bluetooth LE activity before a several amount of time.

Limitations
All memory in SRAM will be shut down in deep power down, the main limitation in going in this
low-power mode is that the context will not be saved.

ModuleInfo

Overview The ModuleInfo is a small Connectivity Framework module that provides a mecha-
nism that allows stack components to register information about themselves.

The information comprises :

• Component or module name (for example: Bootloader, IEEE 802.15.4 MAC, and Bluetooth
LE Host) and associated version string

• Component or module ID

• Version number

• Build number

1.6. Middleware Documentation 111

MCUXpresso SDK Documentation, Release 25.06.00

The information can be retrieved using shell commands or FSCI commands.

Detailed data types and APIs used in ConnFWK_APIs_documentation.pdf.

NVM: Non-volatile memory module

Overview In a standard Harvard-architecture-based MCU, the flash memory is used to store
the program code and program constant data. Modern processors have a built-in flash memory
controller that can be used under user program execution to store non-volatile data. The flash
memories have individually erasable segments (sectors) and each segment has a limited num-
ber of erase cycles. If the same segments are used to store various kinds of data all the time,
those segments quickly become unreliable. Therefore, a wear-leveling mechanism is necessary
to prolong the service life of the memory. The NVM module in the connectivity framework pro-
vides a file system with a wear-leveling mechanism, described in the subsequent sections. The
NvIdle() function handles the program and erase memory operations. Before resetting the MCU,
NvShutdown() must be called to ensure that all save operations have been processed.

NVMboundaries and linker script requirement Most of the MCUs have only a standard flash
memory that the non-volatile (NV) storage system uses. The amount of memory that the NV
system uses for permanent storage and its boundaries are defined in the linker configuration
file though the following linker symbols :

• NV_STORAGE_START_ADDRESS

• NV_STORAGE_END_ADDRESS

• NV_STORAGE_MAX_SECTORS

• NV_STORAGE_SECTOR_SIZE

The reserved memory consists of two virtual pages. The virtual pages are equally sized and each
page is using one or more physical flash sectors. Therefore, the smallest configuration is using
two physical sectors, one sector per virtual page.

NVM Table The Flash Management and Non-Volatile Storage Module holds a pointer to a RAM
table. The upper layers of this table register information about data that the storage system
should save and restore. An example of NVM table entry list is given below.

NVMTable entry As show above, A NVM table entry contains a generic pointer to a contiguous
RAM data structure, the number of elements the structure contains, the size of a single element,
a table entry ID, and an entry type.

A RAM table entry has the following structure:

• pData (4 bytes) is a pointer to the RAM memory location where the dataset elements are
stored.

112 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• elemCnt (2 bytes) represents how many elements the dataset has.

• elemSz (2 bytes) is the size of a single element.

• entryID is a 16-bit unique ID of the dataset.

• dataEntryType is a 16-bit value representing the type of entry (mir-
rored/unmirrored/unmirrored auto restore).

For mirrored datasets, pData must point directly to the RAM data. For unmirrored datasets, it
must be a double pointer to a vector of pointers. Each pointer in this table points to a RAM/FLASH
area. Mirrored datasets require the data to be permanently kept in RAM, while unmirrored
datasets have dataset entries either in flash or in RAM. If the unmirrored entries must be re-
stored at the initialization, NotMirroredInRamAutoRestore should be used. The entryID gUn-
mirroredFeatureSet_d should be set to 1 for enabling unmirrored entries in the application. The
last entry in the RAM table must have the entryID set to gNvEndOfTableId_c.

The figure below provides an example of table entry :

When the data pointed to by the table entry pointer (pData) has changed (entirely or just a sin-
gle element), the upper layers call the appropriate API function that requests the storage sys-
tem to save the modified data. All the save operations (except for the synchronous save and
atomic save) and the page erase and page copy operations are performed on system idle task.
The application must create a task that calls NvIdle in an infinite loop. It should be created with
OSA_PRIORITY_IDLE. However, the application may choose another priority. The save opera-
tions are done in one virtual page, which is the active page. After a save operation is performed
on an unmirrored dataset, pData points to a flash location and the RAM pointer is freed. As a
result, the effective data should always be allocated using the memory management module.

Active page The active page contains information about the records and the records. The stor-
age system can save individual elements of a table entry or the entire table entry. Unmirrored
datasets can only have individual saves. On mirrored datasets, the save/restore functions must
receive the pointer to RAM data. For example, if the application must save the third element in
the above vector, it should send 0x1FFF8000 + 2 * elemSz. For unmirrored datasets, the appli-
cation must send the pointer that points to the area where the data is located. For example, if
the application must save the third element in the above vector, it should send 0x1FFF8000 + 2
* sizeof(void*).

The page validity is guaranteed by the page counter. The page counter is a 32-bit value and
is written at the beginning and at the end of the active page. The values need to be equal to
consider the page a valid one. The value of the page counter is incremented after each page
copy operation. A page erase operation is performed when the system is formatted. It is also
performed when the page is full and a new record cannot be written into that page. Before
being erased, the full page is first copied (only the most recent saves) and erased afterward.

The validity of the Meta Information Tag (MIT), and, therefore, of a record, is guaranteed by
the MIT start and stop validation bytes. These two bytes must be equal to consider the record

1.6. Middleware Documentation 113

MCUXpresso SDK Documentation, Release 25.06.00

referred by the MIT valid. Furthermore, the value of these bytes indicates the type of the record,
whether it is a single element or an entire table entry. The nonvolatile storage system allows
dynamic changes of the table within the RAM memory, as follows:

• Remove table entry

• Register table entry

A new table entry can be successfully registered if there is at least one entry previously removed
or if the NV table contains uninitialized table entries, declared explicitly to register new table
entries at run time. A new table entry can also replace an existing one if the register table entry
is called with an overwrite set to true. This functionality is disabled by default and must be
enabled by the application by setting gNvUseExtendedFeatureSet_d to 1.

The layout of an active page is shown below:

As shown above, the table stored in the RAM memory is copied into the flash active page, just
after the table version. The “table start” and “table end” are marked by the table markers. The
data pointers from RAM are not copied. A flash copy of a RAM table entry has the following

structure:

Where:

• entryID is the ID of the table entry

• entryType represents the type of the entry (mirrored/unmirrored/unmirrored auto restore)

• elemCnt is the elements count of that entry

• elemSz is the size of a single element

This copy of the RAM table in flash is used to determine whether the RAM table has changed.
The table marker has a value of 0x4254 (“TB” if read as ASCII codes) and marks the beginning

114 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

and end of the NV table copy.

After the end of the RAM table copy, the Meta Information Tags (MITs) follow. Each MIT
is used to store information related to one record. An MIT has the following structure:

Where:

• VSB is the validation start byte.

• entryID is the ID of the NV table entry.

• elemIdx is the element index.

• recordOffset is the offset of the record related to the start address of the virtual page.

• VEB is the validation end byte.

A valid MIT has a VSB equal to a VEB. If the MIT refers to a single-element record type,
VSB=VEB=0xAA. If the MIT refers to a full table entry record type (all elements from a table en-
try), VSB=VEB=0x55. Because the records are written to the flash page, the available page space
decreases. As a result, the page becomes full and a new record does not have enough free space
to be copied into that page.

In the example given below, the virtual page 1 is considered to be full if a new save request is
pending and the page free space is not sufficient to copy the new record and the additional MIT.
In this case, the latest saved datasets (table entries) are copied to virtual page 2.

In this example, there are five datasets (one color for each dataset) with both ‘full’ and ‘single’
record types.

• R1 is a ‘full’ record type (contains all the NV table entry elements), whereas R3, R4, R6 and
R11 are ‘single’ record types.

• R2 – full record type; R15 – single record type

• R5, R13 – full record type; R10, R12 – single record type

1.6. Middleware Documentation 115

MCUXpresso SDK Documentation, Release 25.06.00

• R8 – full record type

• R7, R9, R14, R16 – full record type

As shown above, the R3, R4, R6, and R11 are ‘single’ record types, while R1 is a ‘full’ record type
of the same dataset. When copied to virtual page 2, a defragmentation process takes place. As a
result, the record copied to virtual page 2 has as much elements as R1, but individual elements
are taken from R3, R4, R6, and R11. After the copy process completes, the virtual page 2 has five
‘full’ record types, one for each dataset. |This is illustrated below:

Finally, the virtual page 2 is validated by writing the PC value and a request to erase virtual page
1 is performed. The page is erased on an idle task, sector by sector where only one sector is
erased at a time when idle task is executed.

If there is any difference between the RAM and flash tables, the application must call RecoverN-
vEntry for each entry that is different from its RAM copy to recover the entry data (ID, Type,
ElemSz, ElemCnt) from flash before calling NvInit. The application must allocate the pData and
change the RAM entry. It can choose to ignore the flash entry if the entry is not desired. If any
entry from RAM differs from its flash equivalent at initialization, a page copy is triggered that
ignores the entries that are different. In other words, data stored in those entries is lost.

The application can check if the RAM table was updated. In other words, if the MCU program was
changed and the RAM table was updated, using the function GetFlashTableVersion and compare
the result with the constant gNvFlashTableVersion_c. If the versions are different, NvInit detects
the update and automatically upgrades the flash table. The upgrade process triggers a page copy
that moves the flash data from the active page to the other one. It keeps the entries that were
not modified intact and it moves the entries that had their elements count changed as follows:

• If the RAM element count is smaller than the flash element count, the upgrade only copies
as many elements as are in RAM.

• If the RAM element count is larger than the flash element count, the upgrade copies all data
from flash and fills the remaining space with data from RAM. If the entry size is changed,
the entry is not copied. Any entryIds that are present in flash and not present in RAM are
also not copied. This functionality is not supported if gNvUseExtendedFeatureSet_d is not
set to 1.

116 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

ECC Fault detection The KW45/K32W1 internal flash is organized in 16 byte phrases and 8kB
sectors (minimal erase unit). Its flash controller is synthesized so that it generates ECC infor-
mation and an ECC generator / checker. During the programming of internal flash, errors may
accidentally happen and cause ECC errors as a flash phrase is being written. These may happen
due to multiple reasons:

• programmatic errors such as overwriting an already programmed phrase (transitioning
bits from 0b to 1b). These are evitable by performing a blank check verification over phrase
to be programmed, at the expense of processing power.

• occurrence of power drop or glitches during a programming operation.

• excessive wear of flash sector. The flash controller is capable of correcting one single ECC
error but raises a bud fault whenever reading a phrase containing more than one ECC fault.
Once an ECC error has ‘infected’ a flash phrase, the fault will remain and raise again at each
read operation over the same phrase including blank check and prefetch. It can only be rid
of by erasing the whole flash sector that contained the faulty phrase. In order to recover
from situations where an ECC fault has occurred a gNvSalvageFromEccFault_d option has
been added, which forces gNvVerifyReadBackAfterProgram_d to be defined to TRUE. If de-
fined, the gNvVerifyReadBackAfterProgram_d option of the NVM module, causes the pro-
gram to read back the programmed area after every flash programming operation. The
verification is performed in safe mode if gNvSalvageFromEccFault_d is also defined. This
is so as to detect ECC faults as early as possible as they appear, indeed when verifying a
programming operation, one cannot be certain of the absence of ECC fault and avoid the
bus fault. The safe API is thence used to perform the read back operation is performed us-
ing this safe API, so that we can tread in the flash and detect potential errors. The defects
are detected on the fly whereas in the absence of safe read back, the error would cause a
fault, potentially much later. During normal operation, assuming that no chip reset was
provoked, this will consist in a single ECC fault either in the last record data or its meta in-
formation. Detecting such a fault calls for an immediate page copy to the other virtual page,
so that the currently active page gets erased and the error gets cleared. Should the ECC fault
occurs in the middle of a page copy operation, the switch of active page is postponed so that
the fault page can be erased again and the copy can be restarted.

If the system underwent a power drop during a flash programming operation, sufficient to pro-
voke a reset, at the ensuing reboot, ECC fault(s) may be present in the NVM area at the location
that was being written. The detection is performed by an NVM sweeping mechanism, using the
safe read API. That marks the faulty virtual page so that all subsequent reads within this virtual
page are done with the safe API. If this case arises, a copy of the valid contents of the faulty page
is attempted to the other virtual page. At NVM initialization, faults should be detected, either at
the top of the meta data or at the bottom of the record area within the previous active page. This
should guarantee that only the latest record write operation may be impaired. When the page
copy has taken place, the faulty page is erased and the execution may resume. During NvCopy-
Page, when ‘garbage collecting’ occurs or whenever the current virtual active page needs to be
transferred to the other virtual page, ECC errors are intercepted so that the operation can be
attempted again in case of error. In case of NVM contents clobbering by programming errors,
the salvage operation does its best to rescue as many records as possible but data will inevitably
be lost.

An additional option -namely gInterceptEccBusFaults_d - was introduced in order to catch and
correct ECC faults at Bus Fault handler level. Indeed, should an ECC bus fault fire, in spite of the
precautions taken with NVM’s gNvSalvageFromEccFault_d, we verify if the fault belongs to the
NV storage. If so, a drastic policy can be adopted consisting in an erasure of the faulty sector. The
corresponding Bus Fault handling is not part of the NVM, but dwells in the framework platform
specific sources. Alternative handling could be implemented by the customer.

Save policy: Execution of program and erase operations on a flash an MCU core fetches code
from cause perturbations of the core activity or requires to place critical code in RAM so that real-
time ISR can still be served. The penalty of a sector erase is much higher than a simple program
operation. The NVM is designed so as to limit the erase operations at ‘garbage collecting’ time,

1.6. Middleware Documentation 117

MCUXpresso SDK Documentation, Release 25.06.00

so that flash wear is limited and no time is wasted. Several write policies are implemented to
cope with the application constraints, one synchronous mode API and several posted write APIs.
Among the posted write policies, the gNvmSaveOnIdleTimerPolicy_d compilation option selects
a mode where flash write operations occur at time interval within the Idle task. Another option
exists to ‘randomize’ the time interval with some jitter.

1) NvSyncSave performs a write synchronously with the disadvantage of stalling processor
activity until comp

2) NvSaveOnCount posts a pending write operation and postpones the actual flash operation
until number of record updates has reached a maximum. The actual write happens during
Idle Task execution.see NvSetCountsBetweenSaves related API.

3) NvSaveOnInterval: posts a pending write operation and postpones the actual flash oper-
ation until the predefined number of ticks has elapsed. Optional mode - Active if (gN-
vmSaveOnIdleTimerPolicy_d & gNvmUseSaveOnTimerOn_c). see NvSetMinimumTicksBe-
tweenSaves related API. Note that gNvmUseSaveIntervalJitter_c policy is a sub-option of
gNvmSaveOnIdleTimerPolicy_d used to randomize slightly the time at which the write op-
eration will happen.

Constant macro definition
• gNvStorageIncluded_d : If set to TRUE, it enables the whole functionality of the nonvolatile

storage system. By default, it is set to FALSE (no code or data is generated for this module).

• gNvUseFlexNVM_d : If set to TRUE, it enables the FlexNVM functionality of the nonvolatile
storage system. By default, it is set to FALSE. If FlexNVM is used, the standard nonvolatile
storage system is disabled.

• gNvFragmentation_Enabled_d : Macro used to enable/disable the fragmented saves/restores
(a particular element from a table entry can be saved or restored). It is set to FALSE by
default.

• gNvUseExtendedFeatureSet_d : Macro used to enable/disable the extended feature set of the
module:

– Remove existing NV table entries

– Register new NV table entries

– Table upgrade

It is set to FALSE by default.

• gUnmirroredFeatureSet_d : Macro used to enable unmirrored datasets. It is set to 0 by de-
fault.

• gNvTableEntriesCountMax_c : This constant defines the maximum count of the table entries
(datasets) that the application is going to use. It is set to 32 by default.

• gNvRecordsCopiedBufferSize_c : This constant defines the size of the buffer used by the page
copy function, when the copy operation performs defragmentation. The chosen value must
be bigger than the maximum number of elements stored in any of the table entries. It is set
by default to 64.

• gNvCacheBufferSize_c : This constant defines the size of the cache buffer used by the page
copy function, when the copy operation does not perform defragmentation. The chosen
value must be a multiple of 8. It is set by default to 64.

• gNvMinimumTicksBetweenSaves_c : This constant defines the minimum timer ticks be-
tween dataset saves (in seconds). It is set to 4 by default.

• gNvCountsBetweenSaves_c : This constant defines the number of calls to ‘NvSaveOnCount’
between dataset saves. It is set to 256 by default.

118 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• gNvInvalidDataEntry_c : Macro used to mark a table entry as invalid in the NV table. The
default value is 0xFFFFU.

• gNvFormatRetryCount_c : Macro used to define the maximum retries count value for the
format operation. It is set to 3 by default.

• gNvPendingSavesQueueSize_c : Macro used to define the size of the pending saves queue. It
is set to 32 by default.

• gFifoOverwriteEnabled_c : Macro used to enable overwriting older entries in the pending
saves queue (if it is full). If it is FALSE and the queue is full, the module tries to process the
oldest save in the queue to free a position. It is set to FALSE by default.

• gNvMinimumFreeBytesCountStart_c : Macro used to define the minimum free space at ini-
tialization. If the free space is smaller than this value, a page copy is triggered. It is set by
default to 128.

• gNvEndOfTableId_c : Macro used to define the ID of the end-of-table entry. It is set to 0xFF-
FEU by default. No valid entry should use this ID.

• gNvTableMarker_c : Macro used to define the table marker value. The table marker is used
to indicate the start and the end of the flash copy of the NV table. It is set to 0x4254U by
default.

• gNvFlashTableVersion_c : Macro used to define the flash table version. It is used to deter-
mine if the NVM table was updated. It is set to 1 by default. The application should modify
this every time the NVM table is updated and the data from NVM is still required.

• gNvTableKeptInRam_d : Set gNvTableKeptInRam_d to FALSE, if the NVM table is stored in
FLASH memory (default). If the NVM table is stored in RAM memory, set the macro to TRUE.

• gNvVerifyReadBackAfterProgram_d : set by default force verification of NVM programming
operations. Is forced implicitly when gNvSalvageFromEccFault_d is defined.

• gNvSalvageFromEccFault_d : use safe flash API to read from flash, and provide corrective
action when ECC fault is met.

OtaSupport: Over-the-Air Programming Support

Overview This module includes APIs for the over-the-air image upgrade process. A Server
device receives an image over the serial interface from a PC or other device thorough FSCI com-
mands. If the Server has an image storage, the image is saved locally. If not, the image is re-
quested chunk by chunk: With image storage

• OTA_RegisterToFsci()

• OTA_InitExternalMemory()

• OTA_WriteExternalMemory()

• …

• OTA_WriteExternalMemory()

Without image storage:

• OTA_RegisterToFsci()

• OTA_QueryImageReq()

• OTA_ImageChunkReq()

• …

• OTA_ImageChunkReq()

1.6. Middleware Documentation 119

MCUXpresso SDK Documentation, Release 25.06.00

A Client device processes the received image by computing the CRC and filter unused data and
stores the received image into a non-volatile storage. After the entire image has been transferred
and verified, the Client device informs the Bootloader application that a new image is available,
and that the MCU must be reset to start the upgrade process. See the following command se-
quence:

• OTA_StartImage()

• OTA_PushImageChunk() and OTA_CrcCompute ()

• …

• OTA_PushImageChunk() and OTA_CrcCompute ()

• OTA_CommitImage()

• OTA_SetNewImageFlag()

• ResetMCU()

SecLib_RNG: Security library and random number generator

Random number generator

Overview The RNG module is part of the framework used for random number generation. It
uses hardware RNG peripherals as entropy sources (TRNG, Secure Subsystem, …) to provide a
true random number generator interface. A Pseudo-Random number generator (PRNG) imple-
mentation is available. The PRNG may depend of SecLib services (thus requiring a common
mutex) to perform HMAC-SHA256, SHA256, AES-CTR, or alternateively a Lehmer Linear Con-
gruential generator. A prerequisite for the PRNG to function with desired randomness is to be
seeded using a proper source of entropy. If no hardware acceleration is present, the RNG may
fallback to lesser quality ad-hoc source e.g if present SIM_UID registers, the UIDL is used as the
initial seed for the random number generator.

Initialization The RNG module requires an initialization via a call to RNG_Init. The RNG ini-
tialization involves a call to RNG_SetSeed.

In the case of a dual core system consisting of a Host core and an NBU core, the Secure Subsystem
is owned by the Host core. The Host core then has a direct access to its TRNG embedded in its
secure subssystem. On the NBU code side, a request is emitted via RPMSG to the Host to provide
a seed. On receipt of this request, the Host sets a ‘reseed needed’ flag (from the ISR context)
If the core running the RNG service owns the TRNG entropy hardware (if any), it can get the
seed directly form this hardware synchronously. In the case of an NBU that does not control the
devices entropy source, that is owned by the Host, it request a seed from the Host processor via
RPMSG exchange. On receipt of this request the Host sets a flag notifying of this request from the
RPMSG ISR context. From the Idle thread, this flag is polled via the RNG_IsReseedNeeded API. If
set the seed is regenerated and forwarded to the NBU via RPMSG.

RNG_ReInit API is to be used at wake up time in the context of LowPower. RNG_DeInit is used
for unit tests and coverage purposes but has no useful role in a real application.

Seed handling RNG_SetSeed: RNG_SetExternalSeed may be used to inject application entropy
to RNG context seed using a supplied array of bytes. RNG_IsReseedNeeded used from task in
Host core to check whether seed must be sent to NBU core.

RNG_GetTrueRandomNumber is the API used to generate a Random 32 bit number from a HW
source of entropy. It is essential if only to seed the pseudo random number generator.

RNG_GetPseudoRandomData is used to generate arrays of random bytes.

120 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

Security Library

Overview The framework provides support for cryptography in the security module. It sup-
ports both software and hardware encryption. Depending on the device, the hardware encryp-
tion uses either the S200, MMCAU, LTC, or CAU3 module instruction set or dedicated AES and
SHA hardware blocks.

Software implementation is provided in a library format.

Support for security algorithms

SW Seclib : Se-
cLib.c

EdgeLock
SecLib_sss.c

Se-
clib_ecdh.c

Mbedtls
Se-
cLib_mbedtls.c

nccl
(part
of Se-
cLib.c)

Usage
example

AES_128 SecLib_aes.c x x

AES_128_ECB x x

AES_128_CBC x x x

AES_128_CTR en-
cryption

x x

AES_128_OFB En-
cryption

x

AES_128_CMAC x x x BLE con-
nection,
ieee 15.4

AES_128_EAX x

AES_128_CCM x x x BLE,
ieee 15.4

SHA1 SecLib_sha.c x x

SHA256 x x x

HMAC_SHA256 x x x PRNG,
Digest
for Mat-
ter

ECDH_P256 shared
secret generation

x (by 15 in-
cremental
steps) -> Se-
cLib_ecdh.c

x with
MACRO
SecLibECD-
HUseSSS

x x x BLE
pairing,

EC_P256 key pair
generation

x x x x x

EC_P256 public key
generation from pri-
vate key

x x x Matter
(ECDSA)

ECDSA_P256 hash
and msg signature
generation / verifica-
tion

only if
owner of
the key pair

x x Matter

SPAKE2+ P256 arith-
metics

x x Matter

1.6. Middleware Documentation 121

MCUXpresso SDK Documentation, Release 25.06.00

BLE advanced secure mode

New elements in existing structures: computeDhKeyParam_t::keepInternalBlob - boolean
telling if the shared blob is kept in this structure(in .outpoint) after ECDH_P256_ComputeDhKey()
or ECDH_P256_ComputeDhKeySeg() call.

New arguments in existing functions: ECDH_P256_ComputeDhKey keepBlobDhKey
- boolean telling ECDH_P256_ComputeDhKey() or ECDH_P256_ComputeDhKeySeg() to
keep the shared object after computation for later use (it is required by the Se-
cLib_GenerateBluetoothF5KeysSecure).

Newmacros: gSecLibSssUseEncryptedKeys_d - Enable or disable S200 blobs SecLib support. 0 -
the Bluetooth Keys are available in plaintext, 1 - the Bluetooth Keys are not available in plaintext,
but in secured blobs. Default is disabled.

New functions:

LE Secure connections pairing:

void ECDH_P256_FreeDhKeyDataSecure This is a function used to free the shared object
stored in computeDhKeyParam_t. When user calls ECDH_P256_ComputeDhKeySeg() with keep-
BlobDhKey set to 1, it should also call ECDH_P256_FreeDhKeyDataSecure .

SecLib_GenerateBluetoothF5Keys This function is extracted from the Bluetooth LE Host Stack
implementation. This corresponds to the legacy implementation without key blobs.

SecLib_GenerateBluetoothF5KeysSecure Similar to SecLib_GenerateBluetoothF5Keys this
function is modified to work with key blobs, the reason is to not use SSS inside the Bluetooth LE
Host Stack.

SecLib_DeriveBluetoothSKD This is a helper function used by the Bluetooth LE Host Stack in
the pairing procedure, when receiving the vendor HCI command specifying that the ESK needs
to be provided to LL.

ELKE_BLE_SM_F5_DeriveKeys This is a private function, helper for Se-
cLib_GenerateBluetoothF5KeysSecure. It was provided by the STEC team.

Privacy:

SecLib_ObfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to obfus-
cate the IRK before setting it to Bluetooth LE Controller or before saving it to NVM

SecLib_DeobfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to ex-
tract the plaintext IRK key from the saved NVM blob.

122 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

SecLib_VerifyBluetoothAh This function is extracted from the legacy Bluetooth LE Host Stack
implementation using plaintext keys.

SecLib_VerifyBluetoothAhSecure Similar to SecLib_VerifyBluetoothAh with modification
to work with S200 key blob.

SecLib_GenerateSymmetricKey This is a function used by the application to generate the local
IRK and local CSRK.

SecLib_GenerateBluetoothEIRKBlobSecure This is a function used by the application to gen-
erate the EIRK needed by Bluetooth LE Controller from the IRK blob.

A2B feature

ECDH_P256_ComputeA2BKey This function is used to compute the EdgeLock to EdgeLock key.
pInPeerPublicKey points to the peer public key, pOutE2EKey is the pointer to where the E2E key
object will be stored, this will be freed by the application when it is no longer required by calling
ECDH_P256_FreeE2EKeyData().

ECDH_P256_FreeE2EKeyData This function is used to free the key object given as a parameter.
It is used by the application to free the E2E key when is no longer needed.

SecLib_ExportA2BBlobSecure This function is used to import an ELKE blob or plain text sym-
metric key in s200 and export an E2E key blob. The input type is identified by the keyType pa-
rameter.

SecLib_ImportA2BBlobSecure This function is used to import an E2E key blob in s200 and
export an ELKE blob or plain text symmetric key. The output type is identified by the keyType
parameter.

LE Secure connections Pairing flow and SecLib usage:
1. Each device needs to generate locally the public+private keypair. This is done using

ECDH_P256_GenerateKeys.

2. Devices exchange their public keys.

3. Upon receiving the peer device’s public key, local device is computing DH key using
ECDH_P256_ComputeDhKey.

4. Each device sends DHKeyCheck packet

5. Upon receiving DhKeyCheck each device computes LTK blob using Se-
cLib_GenerateBluetoothF5Keys

6. After computing the each device sends HCI_LeStartEnc (on initiator),
HCI_Le_Provide_Long_Term_Key (on responder)

7. Bluetooth LE Controller sends back SKD report custom event

8. Bluetooth LE Host Stack computes ESKD based on LTK blob using Se-
cLib_DeriveBluetoothSKD and sends it to Bluetooth LE Controller

9. Bluetooth LE Controller encrypts the link

1.6. Middleware Documentation 123

MCUXpresso SDK Documentation, Release 25.06.00

IRK flow and SecLib usage:
1. At startup, when gInitializationComplete_c event is received:

• the local IRK is generated using SecLib_GenerateSymmetricKey
• the local EIRK is generated using SecLib_GenerateBluetoothEIRKBlobSecure
• local CSRK is generated using SecLib_GenerateSymmetricKey

2. During legacy pairing when receiving bonding keys, IRK is obfuscated using Se-
cLib_ObfuscateKeySecure and stored

3. When app wants to set the OOB keys using Gap_SaveKeys the IRK is obfuscated using Se-
cLib_ObfuscateKeySecure

4. When application calls API Gap_VerifyPrivateResolvableAddress IRK is obfuscated using
SecLib_ObfuscateKeySecure and verified using SecLib_VerifyBluetoothAhSecure

5. When a new connection is received in Host with RPA address not resolved by the
Bluetooth LE Controller, the Host tries to resolve it by obfuscating it using Se-
cLib_ObfuscateKeySecure and verifying it using SecLib_VerifyBluetoothAhSecure

6. When adding a peer in Bluetooth LE Controller resolving list, the peer’s
IRK is obfuscated using SecLib_ObfuscateKeySecure before setting it using
HCI_Le_Add_Device_To_Resolving_List.

7. When an IRK plaintext is requested by the application using Gap_LoadKeys it is obtained
using SecLib_DeobfuscateKeySecure

8. When legacy pairing completes and LTK needs to be send in the pairing complete event
(gConnEvtPairingComplete_c) the SecLib_DeobfuscateKey is used to extract the plaintext.

A2B flow and SecLib usage:
1. At startup, when gInitializationComplete_c event is received, the application will call

ECDH_P256_GenerateKeys to generate the public/private key pair required for the E2E
key derivation and send the public key to the peer device.

2. When the public key is received from the peer device, the application will call
ECDH_P256_ComputeA2BKeySecure to generate the EdgeLock to EdgeLock key.

3. The application will obtain an E2E IRK blob by calling SecLib_ExportA2BBlobSecure with
key type gSecElkeBlob_c. The obtained blob is sent to the peer anchor. The peer anchor
will call SecLib_ImportA2BBlobwith keyType gSecElkeBlob_c and save the resulting ELKE
blob in NVM, for Digital Key both anchors must have the same IRK.

4. After pairing, in order to send the LTK and IRK contained in the bonding data securely,
the application will call SecLib_ExportA2BBlobSecure with keyType gSecLtkElkeBlob_c
for the LTK, and SecLib_ExportA2BBlobSecure with keyType gSecPlainText_c for the IRK.
The E2E blobs obtained are sent along with the rest of the bonding data to the peer anchor
device.

5. After the bonding data is trasfered the E2E key is no longer needed and
ECDH_P256_FreeE2EKeyData is called with the key object obtained at step 2 when
ECDH_P256_ComputeA2BKeySecure was called.

Sensors

Overview The Sensors module provides an API to communicate with the ADC. Two values can
be obtained by this module :

• Temperature value

124 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

• Battery level

The temperature is given in tenths of degrees Celsius and the battery in percentage.

This module is multi-caller, the ADC is protected by a mutex on the resource and by pre-
vententing lowpower (only WFI) during its processing. Platform specific code can be find in
fwk_platform_sensors.c/h.

Constant macro definitions Name :

#define VALUE_NOT_AVAILABLE_8 0xFFu
#define VALUE_NOT_AVAILABLE_32 0xFFFFFFFFu

Description :

Defines the error value that can be compared to the value obtain on the ADC.

SFC : Smart Frequency Calibration

Overview The Smart Frequency Calibration module provides operations and calibration for
the FRO32K source clock. This module is split between main core and Radio core:

• fwk_rf_sfc.[ch]: RF_SFC module on Radio core that provides Main FRO32K measure-
ment/calibration and state machine in synchornization with Radio domain activities. See
details below.

• fwk_sfc.h: SFC module on host core that provides type definition for usage
with fwk_platform_ics.[ch] with PLATFORM_FwkSrvSetRfSfcConfig() API and
fwk_platform_ble.c for received callback from the NBU core

Host SFC Module

Algorithm parametrization This module provides ability to configure the RF_SFC module by
sending message to Radio core through fwk_platform_ics.c PLATFORM_FwkSrvSetRfSfcConfig():

• Filter size

• Maximum ppm threshold

• Maximum calibration interval

• Number of sample in filter to swicth from convergence to monitor mode

Ppm target The ppm target is the deviation from the target clock accepted by the algorithm.
When the deviation is larger than the ppm target. The algorithm will update the trimming value
and reset the filter. The ppm target cannot be more aggressive RF_SFC_MAXIMAL_PPM_TARGET
in order to avoid having to update trimming value at each measurement.

Filter size Filter size must be included between RF_SFC_MINIMAL_FILTER_SIZE and
RF_SFC_MAXIMAL_FILTER_SIZE. See Filtering and Frequency estimation section for more details
on the parameter.

1.6. Middleware Documentation 125

MCUXpresso SDK Documentation, Release 25.06.00

Maximum calibration interval In monitor mode, new measurement are triggered by low-
power entry/exit. If the NBU core has a lot of radio activity it could never enter lowpower. The
maximum calibration interval is here to ensure a measurement is done regularly. When exe-
cuting idle the SFC module checks when the last measurement has been done, if it has been too
long, it reset the filter and forces a new measurement

Trig sample number The trig sample number is the number of samples needed by the algo-
rithm in its filter to switch from convergence to monitor mode. Having more than one sample
in convergence mode allows to confirm the trimming value that we have set.

SFCdebug information On the other way, the RF_SFC from Radio core sends back notifications
to SFC module on main core using RX callback PLATFORM_RegisterFroNotificationCallback()
from fwk_platform_ics.h and such information:

• last measured frequency

• average ppm from 32768Khz frequency

• last ppm measured from 32768Khz frequency

• FRO trimming value

RF_SFCmodule The RF_SFC module provides the functionality to calibrate the FRO32K source
clock during Initialization and radio activity.

The RF_SFC is mostly used on XTAL32K less solution when no 32Khz crystal is soldered on the
board. It allows to calibrate the FRO32K source clock to the desired frequency to keep Radio
time base within the allowed tolerance given by the connectivity standards. However, even on
a XTAL32K solution, the RF_SFC is also used during Initialization until the XTAL32K is up and
running in the system. The system firstly runs on the FRO32K clock source then switch to the
XTAL32K clock source when it is ready with enough accuracy. This allows to save significant
boot time as the FRO32K start up (including calibration) is much faster compared to XTAL32K .

This module will handle:

• FRO32K clock frequency measurement against 32Mhz crystal. It schedules appropriately
the start of the measurement and gets the result when completed,

• Filter and estimate the 32Khz frequency value and error by averaging from the last mea-
surements,

• FRO32K calibration in order to update the trimming value to reduce the frequency error
on the clock.

The targeted frequency offset shall be within 200ppm. The RF_SFC will handle two modes of
operation:

• Convergence mode: when frequency estimation is above 200pm,

• Monitor mode: when frequency estimation is below 200pm.

The RF_SFC module works in active and all low power modes on NBU domain, or on host appli-
cation domain except power down mode. Power down mode on host application domain is not
supported with the FRO32K configuration as clock source.

Feature enablement Enabling the FRO32K is done by calling the PLATFORM_InitFro32K()
function during application initialization in hardware_init.c file, in BOARD_InitHardware() func-
tion. If FRO32K is not enabled, Oscillator XTAL32K shall be called instead by calling PLAT-
FORM_InitOsc32K() function. The call to PLATFORM_InitFro32K() from BOARD_InitHardware()
can be done by setting the Compilation flag gBoardUseFro32k_d to 1 in hardware_init.c or any
header files included from this file.

126 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

#define gBoardUseFro32k_d 1

Detailed description

Frequency measurements When NBU low power is enabled, the frequency measurements
are triggered on Low power wake-up by HW signal. The SFC process called from Idle task will
check regularly the completion of the frequency measurement. When the measurement is done,
it goes to filtering and frequency estimation process. The frequency measurement duration de-
pends on monitor mode or convergence mode: In convergence mode, the frequency measure-
ment duration is 0.5ms while it is 2ms in monitor mode. In monitor mode, the duration value
remains less than the minimal radio activity duration so it does not impact the low power con-
sumption in monitoring mode.

Filtering andFrequency estimation The FRO32KHz frequency measurement values are noisy
because of thermal noise on the FRO32K itself. Also, the frequency measurement can introduce
some error. In monitoring mode, it is required to filter the measurements by applying an expo-
nential filter. new_estimation = (new_measurement + ((1 « n) -1) * last_estimation) » n

Default value for n is 7 (meaning 128 samples in the averaging window).

Frequency calibration When the frequency estimation gets higher than the targeted 200ppm
target, the RF_SFC updates the trimming value for one positive or negative increment. For this
purpose, it requires to:

• wake up the host application domain and keep the domain active,

• update the trim register of the FRO32K , this register is used to trim the capacitance value
of the FRO32K,

• re-allow the host application domain to enter low power.

A slight power impact is expected during a calibration update due to host domain wake-up.

Operationalmodes When the low power mode is enabled on NBU power domain, RF SFC han-
dles two modes of operation: convergence and monitor modes. However, when low power is
disabled on NBU power domain, only convergence mode is supported.

Convergencemode Convergence mode is used when the estimated FRO32K frequency is above
200ppm or when the filter has been reset. Typically this occurs :

• During Power ON reset or other reset when NBU is switched OFF

• When temperature varies and FRO32K frequency deviates outside 200ppm threshold target

• When no calibration has been done during some time as we discard old values that could
influence the algorithm

The convergence mode process typically starts with a FRO32K trim register update, performs a
frequency measurement and the FRO32K trim register is updated until the measured frequency
gets below 200ppm. These operations are repeated in a loop until the estimated frequency value
gets below 200ppm. When below 200ppm during multiple measurements, the RC SFC switches
to Monitoring mode. The convergence mode is only a transition mode to monitoring mode. In
convergence mode, the NBU power domain does not go to low power. The convergence mode
time duration depends on the initial frequency error of the FR032K. Default frequency measure-
ment duration is 0.5ms so 20 measurements (given as example only) will require less than 10 ms
to converge.

1.6. Middleware Documentation 127

MCUXpresso SDK Documentation, Release 25.06.00

Monitoring mode Monitoring mode is used when the estimated FRO32K frequency is below
200ppm. In this mode, the measurement is triggered on NBU domain wake up from low power
mode using an internal hardware signal. The exponential filter is applied to compute the fre-
quency estimation. If the frequency estimation value is still within 200ppm, the NBU power
domain is allowed to go to low power. If the estimated value gets above the 200ppm threshold,
the RF SFC switch back to convergence mode. The trim register is updated by one increment
(positive or negative) and because the frequency has been adjusted and changed, the estimated
filtered frequency is reset to discard all previous measurements. Going back to convergence
mode typically happens during a temperature gradient. If the temperature is constant, it is not
expected to have the estimated value to go beyond 200ppm so no calibration should be required.

Initialization and configuration During initialization, the RF SFC module will block the Radio
Software until monitoring mode is reached. This is to prevent the radio from running with an
inaccurate time base due to an important 32k clock frequency error.

Initialization and configuration is done by the NBU core. The configuration parameters can set
up:

• The 200ppm target threshold. This value shall be 200ppm or higher.

• The filtering number n (see section above), It shall be between 0 and 8. Default is 7 which
is similar to an averaging filter of 128 samples. A higher value will be more robust against
noise. A lower value will track temperature variation more faster.

In order to prevent the host application domain from going into power down mode (power
down mode not supported with FRO32K as clock source), the fwkSrvLowPowerConstraintCall-
backs functions structure is registered to the Framework service on host application core from
fwk_platform_lowpower.c file, PLATFORM_LowPowerInit() function. The NBU code applies a
low power Deep Sleep constraint to the application core. This constraint is released when the
NBU firmware has no activity to do and re-applied when a new activity starts.

Lowpower impact

Power impact during active mode: In monitoring mode (this should be 99.9% of the time if
temperature does not vary), the FRO32KHz frequency measurements are performed during a
Radio activity so it does not increase the active current as the sources clocks are already active.
Also, it does not increase the active time as the measurement takes less time than an advertising
event or connection event so no impact on power consumption.

The main power impact will be in convergence mode. In this case, measurements/calibrations
are done in loop until the monitoring mode is reached (frequency error less than 200ppm). This
could happen:

• During power ON reset,

• When temperature varies: The frequency will deviate from 32768Hz and FRO32K trimming
register correction will need to be updated for that,

• When no measurement has been done during some time as we cannot predict if the FRO
has drifted, so we discard older values and start convergence mode.

When FRO32K frequency needs to be adjusted, the NBU core will wake-up the main power do-
main and will update the FRO32K trimming register.

Power impact during low power mode: The power consumption in low power mode will
increase slightly due to running FRO32K compared to XTAL32K. The power consumption of
FRO32K typically consumes 350nA while it is only 100nA with XTAL32K. Refer to the product
datasheet for the exact numbers.

128 Chapter 1. MCXW23-EVK

MCUXpresso SDK Documentation, Release 25.06.00

1.6.3 FreeRTOS

FreeRTOS

1.6. Middleware Documentation 129

MCUXpresso SDK Documentation, Release 25.06.00

130 Chapter 1. MCXW23-EVK

Chapter 2

MCXW236B

2.1 ANACTRL: Analog Control Driver

void ANACTRL_Init(ANACTRL_Type *base)
Initializes the ANACTRL mode, the module’s clock will be enabled by invoking this function.

Parameters
• base – ANACTRL peripheral base address.

void ANACTRL_Deinit(ANACTRL_Type *base)
De-initializes ANACTRL module, the module’s clock will be disabled by invoking this func-
tion.

Parameters
• base – ANACTRL peripheral base address.

void ANACTRL_SetFro192M(ANACTRL_Type *base, const anactrl_fro192M_config_t *config)
Configs the on-chip high-speed Free Running Oscillator(FRO192M), such as en-
abling/disabling 12 MHZ clock output and enable/disable 96MHZ clock output.

Parameters
• base – ANACTRL peripheral base address.

• config – Pointer to FRO192M configuration structure. Refer to anac-
trl_fro192M_config_t structure.

void ANACTRL_GetDefaultFro192MConfig(anactrl_fro192M_config_t *config)
Gets the default configuration of FRO192M. The default values are:

config->enable12MHzClk = true;
config->enable96MHzClk = false;

Parameters
• config – Pointer to FRO192M configuration structure. Refer to anac-

trl_fro192M_config_t structure.

void ANACTRL_SetXo32M(ANACTRL_Type *base, const anactrl_xo32M_config_t *config)
Configs the 32 MHz Crystal oscillator(High-speed crystal oscillator), such as enable/disable
output to CPU system, and so on.

Parameters

131

MCUXpresso SDK Documentation, Release 25.06.00

• base – ANACTRL peripheral base address.

• config – Pointer to XO32M configuration structure. Refer to anac-
trl_xo32M_config_t structure.

void ANACTRL_GetDefaultXo32MConfig(anactrl_xo32M_config_t *config)
Gets the default configuration of XO32M. The default values are:

config->enableSysCLkOutput = false;
config->enableACBufferBypass = false;

Parameters
• config – Pointer to XO32M configuration structure. Refer to anac-

trl_xo32M_config_t structure.

uint32_t ANACTRL_MeasureFrequency(ANACTRL_Type *base, uint8_t scale, uint32_t refClkFreq)
Measures the frequency of the target clock source.

This function measures target frequency according to a accurate reference frequency.The
formula is: Ftarget = (CAPVAL * Freference) / ((1«SCALE)-1)

Note: Both tartget and reference clocks are selectable by programming the target clock se-
lect FREQMEAS_TARGET register in INPUTMUX and reference clock select FREQMEAS_REF
register in INPUTMUX.

Parameters
• base – ANACTRL peripheral base address.

• scale – Define the power of 2 count that ref counter counts to during mea-
surement, ranges from 2 to 31.

• refClkFreq – frequency of the reference clock.

Returns
frequency of the target clock.

static inline void ANACTRL_EnableInterrupts(ANACTRL_Type *base, uint32_t mask)
Enables the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

static inline void ANACTRL_DisableInterrupts(ANACTRL_Type *base, uint32_t mask)
Disables the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

static inline void ANACTRL_ClearInterrupts(ANACTRL_Type *base, uint32_t mask)
Clears the ANACTRL interrupts.

Parameters
• base – ANACTRL peripheral base address.

• mask – The interrupt mask. Refer to “_anactrl_interrupt” enumeration.

132 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t ANACTRL_GetStatusFlags(ANACTRL_Type *base)
Gets ANACTRL status flags.

This function gets Analog control status flags. The flags are returned as the logical OR value
of the enumerators _anactrl_flags. To check for a specific status, compare the return value
with enumerators in the _anactrl_flags. For example, to check whether the flash is in power
down mode:

if (kANACTRL_FlashPowerDownFlag & ANACTRL_ANACTRL_GetStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL status flags which are given in the enumerators in the _anac-
trl_flags.

static inline uint32_t ANACTRL_GetOscStatusFlags(ANACTRL_Type *base)
Gets ANACTRL oscillators status flags.

This function gets Anactrl oscillators status flags. The flags are returned as the logical OR
value of the enumerators _anactrl_osc_flags. To check for a specific status, compare the
return value with enumerators in the _anactrl_osc_flags. For example, to check whether
the FRO192M clock output is valid:

if (kANACTRL_OutputClkValidFlag & ANACTRL_ANACTRL_GetOscStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL oscillators status flags which are given in the enumerators in the
_anactrl_osc_flags.

static inline uint32_t ANACTRL_GetInterruptStatusFlags(ANACTRL_Type *base)
Gets ANACTRL interrupt status flags.

This function gets Anactrl interrupt status flags. The flags are returned as the logical OR
value of the enumerators _anactrl_interrupt_flags. To check for a specific status, compare
the return value with enumerators in the _anactrl_interrupt_flags. For example, to check
whether the VBAT voltage level is above the threshold:

if (kANACTRL_BodVbatPowerFlag & ANACTRL_ANACTRL_GetInterruptStatusFlags(ANACTRL))
{

...
}

Parameters
• base – ANACTRL peripheral base address.

Returns
ANACTRL oscillators status flags which are given in the enumerators in the
_anactrl_osc_flags.

2.1. ANACTRL: Analog Control Driver 133

MCUXpresso SDK Documentation, Release 25.06.00

static inline void ANACTRL_EnableVref1V(ANACTRL_Type *base, bool enable)
Aux_Bias Control Interfaces.

Enables/disabless 1V reference voltage buffer.

Parameters
• base – ANACTRL peripheral base address.

• enable – Used to enable or disable 1V reference voltage buffer.

enum _anactrl_interrupt_flags
ANACTRL interrupt flags.

Values:

enumerator kANACTRL_Bod1Flag
BOD1 Interrupt status before Interrupt Enable.

enumerator kANACTRL_Bod1InterruptFlag
BOD1 Interrupt status after Interrupt Enable.

enumerator kANACTRL_Bod1PowerFlag
Current value of BOD1 power status output.

enumerator kANACTRL_BodCoreFlag
BOD CORE Interrupt status before Interrupt Enable.

enumerator kANACTRL_BodCoreInterruptFlag
BOD CORE Interrupt status after Interrupt Enable.

enumerator kANACTRL_BodCorePowerFlag
Current value of BOD CORE power status output.

enumerator kANACTRL_DcdcFlag
DCDC Interrupt status before Interrupt Enable.

enumerator kANACTRL_DcdcInterruptFlag
DCDC Interrupt status after Interrupt Enable.

enumerator kANACTRL_DcdcPowerFlag
Current value of DCDC power status output.

enum _anactrl_interrupt
ANACTRL interrupt control.

Values:

enumerator kANACTRL_Bod1InterruptEnable
BOD1 interrupt control.

enumerator kANACTRL_BodCoreInterruptEnable
BOD CORE interrupt control.

enumerator kANACTRL_DcdcInterruptEnable
DCDC interrupt control.

enum _anactrl_flags
ANACTRL status flags.

Values:

enumerator kANACTRL_FlashPowerDownFlag
Flash power-down status.

134 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kANACTRL_FlashInitErrorFlag
Flash initialization error status.

enum _anactrl_osc_flags
ANACTRL FRO192M and XO32M status flags.

Values:

enumerator kANACTRL_OutputClkValidFlag
Output clock valid signal.

enumerator kANACTRL_CCOThresholdVoltageFlag
CCO threshold voltage detector output (signal vcco_ok).

enumerator kANACTRL_XO32MOutputReadyFlag
Indicates XO out frequency statibilty.

typedef struct _anactrl_fro192M_config anactrl_fro192M_config_t
Configuration for FRO192M.

This structure holds the configuration settings for the on-chip high-speed Free Run-
ning Oscillator. To initialize this structure to reasonable defaults, call the ANAC-
TRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure in-
stance.

typedef struct _anactrl_xo32M_config anactrl_xo32M_config_t
Configuration for XO32M.

This structure holds the configuration settings for the 32 MHz crystal oscillator. To initialize
this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function
and pass a pointer to your config structure instance.

FSL_ANACTRL_DRIVER_VERSION
ANACTRL driver version.

struct _anactrl_fro192M_config
#include <fsl_anactrl.h> Configuration for FRO192M.

This structure holds the configuration settings for the on-chip high-speed Free Run-
ning Oscillator. To initialize this structure to reasonable defaults, call the ANAC-
TRL_GetDefaultFro192MConfig() function and pass a pointer to your config structure in-
stance.

Public Members

bool enable12MHzClk
Enable 12MHz clock.

bool enable96MHzClk
Enable 96MHz clock.

struct _anactrl_xo32M_config
#include <fsl_anactrl.h> Configuration for XO32M.

This structure holds the configuration settings for the 32 MHz crystal oscillator. To initialize
this structure to reasonable defaults, call the ANACTRL_GetDefaultXo32MConfig() function
and pass a pointer to your config structure instance.

Public Members

2.1. ANACTRL: Analog Control Driver 135

MCUXpresso SDK Documentation, Release 25.06.00

bool enableACBufferBypass
Enable XO AC buffer bypass in pll and top level.

bool enableSysCLkOutput
Enable XO 32 MHz output to CPU system, SCT, and CLKOUT

bool enableADCOutput
Enable High speed crystal oscillator output to ADC.

2.2 CASPER: The Cryptographic Accelerator and Signal Pro-
cessing Engine with RAM sharing

2.3 casper_driver

FSL_CASPER_DRIVER_VERSION
CASPER driver version. Version 2.2.4.

Current version: 2.2.4

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Bug fix KPSDK-24531 double_scalar_multiplication() result may be all zeroes for
some specific input

• Version 2.0.2

– Bug fix KPSDK-25015 CASPER_MEMCPY hard-fault on LPC55xx when both source
and destination buffers are outside of CASPER_RAM

• Version 2.0.3

– Bug fix KPSDK-28107 RSUB, FILL and ZERO operations not implemented in enum
_casper_operation.

• Version 2.0.4

– For GCC compiler, enforce O1 optimize level, specifically to remove strict-aliasing
option. This driver is very specific and requires -fno-strict-aliasing.

• Version 2.0.5

– Fix sign-compare warning.

• Version 2.0.6

– Fix IAR Pa082 warning.

• Version 2.0.7

– Fix MISRA-C 2012 issue.

• Version 2.0.8

– Add feature macro for CASPER_RAM_OFFSET.

• Version 2.0.9

– Remove unused function Jac_oncurve().

– Fix ECC384 build.

136 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• Version 2.0.10

– Fix MISRA-C 2012 issue.

• Version 2.1.0

– Add ECC NIST P-521 elliptic curve.

• Version 2.2.0

– Rework driver to support multiple curves at once.

• Version 2.2.1

– Fix MISRA-C 2012 issue.

• Version 2.2.2

– Enable hardware interleaving to RAMX0 and RAMX1 for CASPER by feature macro
FSL_FEATURE_CASPER_RAM_HW_INTERLEAVE

• Version 2.2.3

– Added macro into CASPER_Init and CASPER_Deinit to support devices without
clock and reset control.

• Version 2.2.4

– Fix MISRA-C 2012 issue.

enum _casper_operation
CASPER operation.

Values:

enumerator kCASPER_OpMul6464NoSum

enumerator kCASPER_OpMul6464Sum
Walking 1 or more of J loop, doing r=a*b using 64x64=128

enumerator kCASPER_OpMul6464FullSum
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but assume inner j loop

enumerator kCASPER_OpMul6464Reduce
Walking 1 or more of J loop, doing c,r=r+a*b using 64x64=128, but sum all of w.

enumerator kCASPER_OpAdd64
Walking 1 or more of J loop, doing c,r[-1]=r+a*b using 64x64=128, but skip 1st write

enumerator kCASPER_OpSub64
Walking add with off_AB, and in/out off_RES doing c,r=r+a+c using 64+64=65

enumerator kCASPER_OpDouble64
Walking subtract with off_AB, and in/out off_RES doing r=r-a using 64-64=64, with last
borrow implicit if any

enumerator kCASPER_OpXor64
Walking add to self with off_RES doing c,r=r+r+c using 64+64=65

enumerator kCASPER_OpRSub64
Walking XOR with off_AB, and in/out off_RES doing r=r^a using 64^64=64

enumerator kCASPER_OpShiftLeft32
Walking subtract with off_AB, and in/out off_RES using r=a-r

enumerator kCASPER_OpShiftRight32
Walking shift left doing r1,r=(b*D)|r1, where D is 2^amt and is loaded by app (off_CD
not used)

2.3. casper_driver 137

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kCASPER_OpCopy
Walking shift right doing r,r1=(b*D)|r1, where D is 2^(32-amt) and is loaded by app
(off_CD not used) and off_RES starts at MSW

enumerator kCASPER_OpRemask
Copy from ABoff to resoff, 64b at a time

enumerator kCASPER_OpFill
Copy and mask from ABoff to resoff, 64b at a time

enumerator kCASPER_OpZero
Fill RESOFF using 64 bits at a time with value in A and B

enumerator kCASPER_OpCompare
Fill RESOFF using 64 bits at a time of 0s

enumerator kCASPER_OpCompareFast
Compare two arrays, running all the way to the end

enum _casper_algo_t
Algorithm used for CASPER operation.

Values:

enumerator kCASPER_ECC_P256
ECC_P256

enumerator kCASPER_ECC_P384
ECC_P384

enumerator kCASPER_ECC_P521
ECC_P521

Values:

enumerator kCASPER_RamOffset_Result

enumerator kCASPER_RamOffset_Base

enumerator kCASPER_RamOffset_TempBase

enumerator kCASPER_RamOffset_Modulus

enumerator kCASPER_RamOffset_M64

typedef enum _casper_operation casper_operation_t
CASPER operation.

typedef enum _casper_algo_t casper_algo_t
Algorithm used for CASPER operation.

void CASPER_Init(CASPER_Type *base)
Enables clock and disables reset for CASPER peripheral.

Enable clock and disable reset for CASPER.

Parameters
• base – CASPER base address

void CASPER_Deinit(CASPER_Type *base)
Disables clock for CASPER peripheral.

Disable clock and enable reset.

138 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – CASPER base address

CASPER_CP

CASPER_CP_CTRL0

CASPER_CP_CTRL1

CASPER_CP_LOADER

CASPER_CP_STATUS

CASPER_CP_INTENSET

CASPER_CP_INTENCLR

CASPER_CP_INTSTAT

CASPER_CP_AREG

CASPER_CP_BREG

CASPER_CP_CREG

CASPER_CP_DREG

CASPER_CP_RES0

CASPER_CP_RES1

CASPER_CP_RES2

CASPER_CP_RES3

CASPER_CP_MASK

CASPER_CP_REMASK

CASPER_CP_LOCK

CASPER_CP_ID

CASPER_Wr32b(value, off)

CASPER_Wr64b(value, off)

CASPER_Rd32b(off)

N_wordlen_max

2.4 casper_driver_pkha

void CASPER_ModExp(CASPER_Type *base, const uint8_t *signature, const uint8_t *pubN,
size_t wordLen, uint32_t pubE, uint8_t *plaintext)

Performs modular exponentiation - (A^E) mod N.

This function performs modular exponentiation.

Parameters
• base – CASPER base address

2.4. casper_driver_pkha 139

MCUXpresso SDK Documentation, Release 25.06.00

• signature – first addend (in little endian format)

• pubN – modulus (in little endian format)

• wordLen – Size of pubN in bytes

• pubE – exponent

• plaintext – [out] Output array to store result of operation (in little endian
format)

void CASPER_ecc_init(casper_algo_t curve)
Initialize prime modulus mod in Casper memory .

Set the prime modulus mod in Casper memory and set N_wordlen according to selected
algorithm.

Parameters
• curve – elliptic curve algoritm

void CASPER_ECC_SECP256R1_Mul(CASPER_Type *base, uint32_t resX[8], uint32_t resY[8],
uint32_t X[8], uint32_t Y[8], uint32_t scalar[8])

Performs ECC secp256r1 point single scalar multiplication.

This function performs ECC secp256r1 point single scalar multiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP256R1_MulAdd(CASPER_Type *base, uint32_t resX[8], uint32_t
resY[8], uint32_t X1[8], uint32_t Y1[8], uint32_t
scalar1[8], uint32_t X2[8], uint32_t Y2[8], uint32_t
scalar2[8])

Performs ECC secp256r1 point double scalar multiplication.

This function performs ECC secp256r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

140 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_SECP384R1_Mul(CASPER_Type *base, uint32_t resX[12], uint32_t resY[12],
uint32_t X[12], uint32_t Y[12], uint32_t scalar[12])

Performs ECC secp384r1 point single scalar multiplication.

This function performs ECC secp384r1 point single scalar multiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP384R1_MulAdd(CASPER_Type *base, uint32_t resX[12], uint32_t
resY[12], uint32_t X1[12], uint32_t Y1[12], uint32_t
scalar1[12], uint32_t X2[12], uint32_t Y2[12], uint32_t
scalar2[12])

Performs ECC secp384r1 point double scalar multiplication.

This function performs ECC secp384r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_SECP521R1_Mul(CASPER_Type *base, uint32_t resX[18], uint32_t resY[18],
uint32_t X[18], uint32_t Y[18], uint32_t scalar[18])

Performs ECC secp521r1 point single scalar multiplication.

This function performs ECC secp521r1 point single scalar multiplication [resX; resY] = scalar
* [X; Y] Coordinates are affine in normal form, little endian. Scalars are little endian. All
arrays are little endian byte arrays, uint32_t type is used only to enforce the 32-bit alignment
(0-mod-4 address).

Parameters
• base – CASPER base address

2.4. casper_driver_pkha 141

MCUXpresso SDK Documentation, Release 25.06.00

• resX – [out] Output X affine coordinate in normal form, little endian.

• resY – [out] Output Y affine coordinate in normal form, little endian.

• X – Input X affine coordinate in normal form, little endian.

• Y – Input Y affine coordinate in normal form, little endian.

• scalar – Input scalar integer, in normal form, little endian.

void CASPER_ECC_SECP521R1_MulAdd(CASPER_Type *base, uint32_t resX[18], uint32_t
resY[18], uint32_t X1[18], uint32_t Y1[18], uint32_t
scalar1[18], uint32_t X2[18], uint32_t Y2[18], uint32_t
scalar2[18])

Performs ECC secp521r1 point double scalar multiplication.

This function performs ECC secp521r1 point double scalar multiplication [resX; resY] =
scalar1 * [X1; Y1] + scalar2 * [X2; Y2] Coordinates are affine in normal form, little endian.
Scalars are little endian. All arrays are little endian byte arrays, uint32_t type is used only
to enforce the 32-bit alignment (0-mod-4 address).

Parameters
• base – CASPER base address

• resX – [out] Output X affine coordinate.

• resY – [out] Output Y affine coordinate.

• X1 – Input X1 affine coordinate.

• Y1 – Input Y1 affine coordinate.

• scalar1 – Input scalar1 integer.

• X2 – Input X2 affine coordinate.

• Y2 – Input Y2 affine coordinate.

• scalar2 – Input scalar2 integer.

void CASPER_ECC_equal(int *res, uint32_t *op1, uint32_t *op2)

void CASPER_ECC_equal_to_zero(int *res, uint32_t *op1)

2.5 CDOG

status_t CDOG_Init(CDOG_Type *base, cdog_config_t *conf)
Initialize CDOG.

This function initializes CDOG block and setting.

Parameters
• base – CDOG peripheral base address

• conf – CDOG configuration structure

Returns
Status of the init operation

void CDOG_Deinit(CDOG_Type *base)
Deinitialize CDOG.

This function deinitializes CDOG secure counter.

Parameters

142 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – CDOG peripheral base address

void CDOG_GetDefaultConfig(cdog_config_t *conf)
Sets the default configuration of CDOG.

This function initialize CDOG config structure to default values.

Parameters
• conf – CDOG configuration structure

void CDOG_Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.

This function stops instruction timer and secure counter. This also change state od CDOG
to IDLE.

Parameters
• base – CDOG peripheral base address

• stop – expected value which will be compared with value of secure counter

void CDOG_Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in RELOAD and START registers for instruction timer and secure
counter

Parameters
• base – CDOG peripheral base address

• reload – reload value

• start – start value

void CDOG_Check(CDOG_Type *base, uint32_t check)
Checks secure counter.

This function compares stop value in handler with secure counter value by writting to
RELOAD refister.

Parameters
• base – CDOG peripheral base address

• check – expected (stop) value

void CDOG_Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in STOP, RELOAD and START registers for instruction timer and
secure counter.

Parameters
• base – CDOG peripheral base address

• stop – expected value which will be compared with value of secure counter

• reload – reload value for instruction timer

• start – start value for secure timer

void CDOG_Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.

This function add specified value to secure counter.

Parameters

2.5. CDOG 143

MCUXpresso SDK Documentation, Release 25.06.00

• base – CDOG peripheral base address.

• add – Value to be added.

void CDOG_Add1(CDOG_Type *base)
Add 1 to secure counter.

This function add 1 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add16(CDOG_Type *base)
Add 16 to secure counter.

This function add 16 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add256(CDOG_Type *base)
Add 256 to secure counter.

This function add 256 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter

This function substract specified value to secure counter.

param base CDOG peripheral base address. param sub Value to be substracted.

void CDOG_Sub1(CDOG_Type *base)
Substract 1 from secure counter.

This function substract specified 1 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub16(CDOG_Type *base)
Substract 16 from secure counter.

This function substract specified 16 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub256(CDOG_Type *base)
Substract 256 from secure counter.

This function substract specified 256 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

144 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• value – The value to be written.

uint32_t CDOG_ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

Returns
The persistent word.

FSL_CDOG_DRIVER_VERSION
Defines CDOG driver version 2.1.3.

Change log:

• Version 2.1.3

– Re-design multiple instance IRQs and Clocks

– Add fix for RESTART command errata

• Version 2.1.2

– Support multiple IRQs

– Fix default CONTROL values

• Version 2.1.1

– Remove bit CONTROL[CONTROL_CTRL]

• Version 2.1.0

– Rename CWT to CDOG

• Version 2.0.2

– Fix MISRA-2012 issues

• Version 2.0.1

– Fix doxygen issues

• Version 2.0.0

– initial version

enum __cdog_debug_Action_ctrl_enum
Values:

enumerator kCDOG_DebugHaltCtrl_Run

enumerator kCDOG_DebugHaltCtrl_Pause

enum __cdog_irq_pause_ctrl_enum
Values:

enumerator kCDOG_IrqPauseCtrl_Run

enumerator kCDOG_IrqPauseCtrl_Pause

enum __cdog_fault_ctrl_enum
Values:

enumerator kCDOG_FaultCtrl_EnableReset

enumerator kCDOG_FaultCtrl_EnableInterrupt

2.5. CDOG 145

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kCDOG_FaultCtrl_NoAction

enum __code_lock_ctrl_enum
Values:

enumerator kCDOG_LockCtrl_Lock

enumerator kCDOG_LockCtrl_Unlock

typedef uint32_t secure_counter_t

SC_ADD(add)

SC_ADD1

SC_ADD16

SC_ADD256

SC_SUB(sub)

SC_SUB1

SC_SUB16

SC_SUB256

SC_CHECK(val)

struct cdog_config_t
#include <fsl_cdog.h>

2.6 CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

• Version 2.0.0

– initial version

• Version 2.0.1

– add explicit type cast when writing to WR_DATA

• Version 2.0.2

– Fix MISRA issue

• Version 2.1.0

– Add CRC_WriteSeed function

• Version 2.1.1

– Fix MISRA issue

enum _crc_polynomial
CRC polynomials to use.

Values:

146 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
• base – CRC peripheral address.

• config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters
• base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
• base – CRC peripheral address.

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
• base – CRC peripheral address.

• seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters

2.6. CRC: Cyclic Redundancy Check Driver 147

MCUXpresso SDK Documentation, Release 25.06.00

• config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters
• base – CRC peripheral address.

• config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters
• base – CRC peripheral address.

• data – Input data stream, MSByte in data[0].

• dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _crc_config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial
CRC polynomial.

bool reverseIn
Reverse bits on input.

148 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.7 CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
• base – Ctimer peripheral base address

• config – Pointer to the user configuration structure.

void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
• base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

Parameters
• config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
period

Parameters

2.7. CTIMER: Standard counter/timers 149

MCUXpresso SDK Documentation, Release 25.06.00

• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• pwmPeriod – PWM period match value

• pulsePeriod – Pulse width match value

• enableInt – Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,
ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – PWM pulse width; the value should be between 0 to 100

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – Timer counter clock in Hz

• enableInt – Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match pin to be used to output the PWM signal

• pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

150 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Note: Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
• base – Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
• base – Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
• base – Ctimer peripheral base address

2.7. CTIMER: Standard counter/timers 151

MCUXpresso SDK Documentation, Release 25.06.00

• mask – The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters
• base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION
Version 2.3.3

enum _ctimer_capture_channel
List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0
Timer capture channel 0

enumerator kCTIMER_Capture_1
Timer capture channel 1

enumerator kCTIMER_Capture_3
Timer capture channel 3

enum _ctimer_capture_edge
List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge

enumerator kCTIMER_Capture_FallEdge
Capture on falling edge

enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge

enum _ctimer_match
List of Timer match registers.

Values:

enumerator kCTIMER_Match_0
Timer match register 0

enumerator kCTIMER_Match_1
Timer match register 1

enumerator kCTIMER_Match_2
Timer match register 2

enumerator kCTIMER_Match_3
Timer match register 3

152 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enum _ctimer_external_match
List of external match.

Values:

enumerator kCTIMER_External_Match_0
External match 0

enumerator kCTIMER_External_Match_1
External match 1

enumerator kCTIMER_External_Match_2
External match 2

enumerator kCTIMER_External_Match_3
External match 3

enum _ctimer_match_output_control
List of output control options.

Values:

enumerator kCTIMER_Output_NoAction
No action is taken

enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0

enumerator kCTIMER_Output_Set
Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output

enum _ctimer_timer_mode
List of Timer modes.

Values:

enumerator kCTIMER_TimerMode

enumerator kCTIMER_IncreaseOnRiseEdge

enumerator kCTIMER_IncreaseOnFallEdge

enumerator kCTIMER_IncreaseOnBothEdge

enum _ctimer_interrupt_enable
List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt

2.7. CTIMER: Standard counter/timers 153

MCUXpresso SDK Documentation, Release 25.06.00

enum _ctimer_status_flags
List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag
Match 0 interrupt flag

enumerator kCTIMER_Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_Match3Flag
Match 3 interrupt flag

enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.

typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)

typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.

This structure holds the configuration settings for each match register.

154 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match register to configure

• config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
• base – Ctimer peripheral base address

• matchChannel – External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters
• base – Ctimer peripheral base address

• capture – Capture channel to configure

• edge – Edge on the channel that will trigger a capture

• enableInt – Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
• base – Ctimer peripheral base address.

Returns
return the timer count value.

2.7. CTIMER: Standard counter/timers 155

MCUXpresso SDK Documentation, Release 25.06.00

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.

This function configures CTimer Callback in following modes:

• Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

• Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_match0_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
• base – Ctimer peripheral base address

• cb_func – Pointer to callback function pointer

• cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters
• base – Ctimer peripheral base address

• prescale – Prescale value

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t
capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters
• base – Ctimer peripheral base address

• capture – Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters
• base – Ctimer peripheral base address

156 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• match – match channel used

• enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable .

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable rising edge capture.

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_t match,
uint32_t matchvalue)

Set the specified match shadow channel.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

2.7. CTIMER: Standard counter/timers 157

MCUXpresso SDK Documentation, Release 25.06.00

• matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h> Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM bit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ctimer_config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

2.8 DMA: Direct Memory Access Controller Driver

void DMA_Init(DMA_Type *base)
Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.

Parameters
• base – DMA peripheral base address.

158 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

void DMA_Deinit(DMA_Type *base)
Deinitializes DMA peripheral.

This function gates the DMA clock.

Parameters
• base – DMA peripheral base address.

void DMA_InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA
descriptor for one channel only.

Parameters
• base – DMA base address.

• addr – DMA descriptor address

static inline bool DMA_ChannelIsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for active state, false otherwise.

static inline bool DMA_ChannelIsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for busy state, false otherwise.

static inline void DMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.

Parameters
• base – DMA peripheral base address.

2.8. DMA: Direct Memory Access Controller Driver 159

MCUXpresso SDK Documentation, Release 25.06.00

• channel – DMA channel number.

static inline void DMA_DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
True for enabled PeriphRq, false for disabled.

void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger)

Set trigger settings of DMA channel.

Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• trigger – trigger configuration.

void DMA_SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger_t
*trigger, bool isPeriph)

set channel config.

This function provide a interface to configure channel configuration reisters.

Parameters
• base – DMA base address.

• channel – DMA channel number.

• trigger – channel configurations structure.

• isPeriph – true is periph request, false is not.

static inline uint32_t DMA_SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB,
uint8_t width, uint8_t srcInc, uint8_t dstInc,
uint32_t bytes)

DMA channel xfer transfer configurations.

160 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• reload – true is reload link descriptor after current exhaust, false is not

• clrTrig – true is clear trigger status, wait software trigger, false is not

• intA – enable interruptA

• intB – enable interruptB

• width – transfer width

• srcInc – source address interleave size

• dstInc – destination address interleave size

• bytes – transfer bytes

Returns
The vaule of xfer config

uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
The number of bytes which have not been transferred yet.

static inline void DMA_SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t
priority)

Set priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• priority – Channel priority value.

static inline dma_priority_t DMA_GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

Returns
Channel priority value.

static inline void DMA_SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

static inline void DMA_DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.

Parameters
• base – DMA peripheral base address.

2.8. DMA: Direct Memory Access Controller Driver 161

MCUXpresso SDK Documentation, Release 25.06.00

• channel – DMA channel number.

static inline void DMA_LoadChannelTransferConfig(DMA_Type *base, uint32_t channel, uint32_t
xfer)

Load channel transfer configurations.

Parameters
• base – DMA peripheral base address.

• channel – DMA channel number.

• xfer – transfer configurations.

void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void
*dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcAddr – Address of last item to transmit

• dstAddr – Address of last item to receive.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr, void
*dstStartAddr, void *nextDesc)

setup dma descriptor

Note: This function do not support configure wrap descriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

void DMA_SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr,
void *dstStartAddr, void *nextDesc, dma_burst_wrap_t
wrapType, uint32_t burstSize)

setup dma channel descriptor

Note: This function support configure wrap descriptor.

Parameters
• desc – DMA descriptor address.

• xfercfg – Transfer configuration for DMA descriptor.

• srcStartAddr – Start address of source address.

• dstStartAddr – Start address of destination address.

• nextDesc – Address of next descriptor in chain.

162 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• wrapType – burst wrap type.

• burstSize – burst size, reference _dma_burst_size.

void DMA_LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t
*descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is
used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful
for the case:

a. for the polling transfer, application can allocate a local descriptor memory table to
prepare a descriptor firstly and then call this api to load the configured descriptor to
driver descriptor table.

DMA_Init(DMA0);
DMA_EnableChannel(DMA0, DEMO_DMA_CHANNEL);
DMA_SetupDescriptor(desc, xferCfg, s_srcBuffer, &s_destBuffer[0], NULL);
DMA_LoadChannelDescriptor(DMA0, DEMO_DMA_CHANNEL, (dma_descriptor_t *)desc);
DMA_DoChannelSoftwareTrigger(DMA0, DEMO_DMA_CHANNEL);
while(DMA_ChannelIsBusy(DMA0, DEMO_DMA_CHANNEL))
{}

Parameters
• base – DMA base address.

• channel – DMA channel.

• descriptor – configured DMA descriptor.

void DMA_AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.

This function aborts DMA transfer specified by handle.

Parameters
• handle – DMA handle pointer.

void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal
state of DMA handle.

Parameters
• handle – DMA handle pointer. The DMA handle stores callback function

and parameters.

• base – DMA peripheral base address.

• channel – DMA channel number.

void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters
• handle – DMA handle pointer.

• callback – DMA callback function pointer.

• userData – Parameter for callback function.

2.8. DMA: Direct Memory Access Controller Driver 163

MCUXpresso SDK Documentation, Release 25.06.00

void DMA_PrepareTransfer(dma_transfer_config_t *config, void *srcAddr, void *dstAddr,
uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t
type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:
Do not use this function. It has been superceded by DMA_PrepareChannelTransfer.
This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address
error(SAE).

Parameters
• config – The user configuration structure of type dma_transfer_t.

• srcAddr – DMA transfer source address.

• dstAddr – DMA transfer destination address.

• byteWidth – DMA transfer destination address width(bytes).

• transferBytes – DMA transfer bytes to be transferred.

• type – DMA transfer type.

• nextDesc – Chain custom descriptor to transfer.

void DMA_PrepareChannelTransfer(dma_channel_config_t *config, void *srcStartAddr, void
*dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type,
dma_channel_trigger_t *trigger, void *nextDesc)

Prepare channel transfer configurations.

This function used to prepare channel transfer configurations.

Parameters
• config – Pointer to DMA channel transfer configuration structure.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• type – transfer type.

• trigger – DMA channel trigger configurations.

• nextDesc – address of next descriptor.

status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
Submits the DMA transfer request.

Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.

164 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values
• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_SubmitChannelTransferParameter(dma_handle_t *handle, uint32_t xferCfg, void
*srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, it is useful for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, NULL);

DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[3]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelTransferParameter(handle, DMA_CHANNEL_XFER(reload, clrTrig,␣

↪→intA, intB, width, srcInc, dstInc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);

DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• xferCfg – xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

• srcStartAddr – source start address.

• dstStartAddr – destination start address.

2.8. DMA: Direct Memory Access Controller Driver 165

MCUXpresso SDK Documentation, Release 25.06.00

• nextDesc – address of next descriptor.

void DMA_SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)
Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, this functiono is typical for the ping
pong case:

a. for the ping pong case, application should responsible for the descriptor, for example,
application should prepare two descriptor table with macro.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc[2]);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);
DMA_CreateHandle(handle, base, channel)
DMA_SubmitChannelDescriptor(handle, nextDesc0);
DMA_StartTransfer(handle);

Parameters
• handle – Pointer to DMA handle.

• descriptor – descriptor to submit.

status_t DMA_SubmitChannelTransfer(dma_handle_t *handle, dma_channel_config_t *config)
Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.
It is used for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,NULL);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);
DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,

↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),

(continues on next page)

166 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

(continued from previous page)
srcStartAddr, dstStartAddr, NULL);

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

c. for the ping pong case, application should responsible for link descriptor, for example,
application should prepare two descriptor table with macro , the head descriptor in
driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_DESCRIPTOR(nextDesc);

DMA_SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc1);

DMA_SetupDescriptor(nextDesc1, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
↪→ srcInc, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_CreateHandle(handle, base, channel)
DMA_PrepareChannelTransfer(config,srcStartAddr,dstStartAddr,xferCfg,type,trigger,

↪→nextDesc0);
DMA_SubmitChannelTransfer(handle, config)
DMA_StartTransfer(handle)

Parameters
• handle – DMA handle pointer.

• config – Pointer to DMA transfer configuration structure.

Return values
• kStatus_DMA_Success – It means submit transfer request succeed.

• kStatus_DMA_QueueFull – It means TCD queue is full. Submit transfer re-
quest is not allowed.

• kStatus_DMA_Busy – It means the given channel is busy, need to submit
request later.

void DMA_StartTransfer(dma_handle_t *handle)
DMA start transfer.

This function enables the channel request. User can call this function after submitting the
transfer request It will trigger transfer start with software trigger only when hardware
trigger is not used.

Parameters
• handle – DMA handle pointer.

void DMA_IRQHandle(DMA_Type *base)
DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is
not NULL.

Parameters
• base – DMA base address.

2.8. DMA: Direct Memory Access Controller Driver 167

MCUXpresso SDK Documentation, Release 25.06.00

FSL_DMA_DRIVER_VERSION
DMA driver version.

Version 2.5.3.

_dma_transfer_status DMA transfer status

Values:

enumerator kStatus_DMA_Busy
Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size

Values:

enumerator kDMA_AddressInterleave0xWidth
dma source/destination address no interleave

enumerator kDMA_AddressInterleave1xWidth
dma source/destination address interleave 1xwidth

enumerator kDMA_AddressInterleave2xWidth
dma source/destination address interleave 2xwidth

enumerator kDMA_AddressInterleave4xWidth
dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width

Values:

enumerator kDMA_Transfer8BitWidth
dma channel transfer bit width is 8 bit

enumerator kDMA_Transfer16BitWidth
dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit

enum _dma_priority
DMA channel priority.

Values:

enumerator kDMA_ChannelPriority0
Highest channel priority - priority 0

enumerator kDMA_ChannelPriority1
Channel priority 1

enumerator kDMA_ChannelPriority2
Channel priority 2

enumerator kDMA_ChannelPriority3
Channel priority 3

enumerator kDMA_ChannelPriority4
Channel priority 4

168 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kDMA_ChannelPriority5
Channel priority 5

enumerator kDMA_ChannelPriority6
Channel priority 6

enumerator kDMA_ChannelPriority7
Lowest channel priority - priority 7

enum _dma_int
DMA interrupt flags.

Values:

enumerator kDMA_IntA
DMA interrupt flag A

enumerator kDMA_IntB
DMA interrupt flag B

enumerator kDMA_IntError
DMA interrupt flag error

enum _dma_trigger_type
DMA trigger type.

Values:

enumerator kDMA_NoTrigger
Trigger is disabled

enumerator kDMA_LowLevelTrigger
Low level active trigger

enumerator kDMA_HighLevelTrigger
High level active trigger

enumerator kDMA_FallingEdgeTrigger
Falling edge active trigger

enumerator kDMA_RisingEdgeTrigger
Rising edge active trigger

_dma_burst_size DMA burst size

Values:

enumerator kDMA_BurstSize1
burst size 1 transfer

enumerator kDMA_BurstSize2
burst size 2 transfer

enumerator kDMA_BurstSize4
burst size 4 transfer

enumerator kDMA_BurstSize8
burst size 8 transfer

enumerator kDMA_BurstSize16
burst size 16 transfer

2.8. DMA: Direct Memory Access Controller Driver 169

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kDMA_BurstSize32
burst size 32 transfer

enumerator kDMA_BurstSize64
burst size 64 transfer

enumerator kDMA_BurstSize128
burst size 128 transfer

enumerator kDMA_BurstSize256
burst size 256 transfer

enumerator kDMA_BurstSize512
burst size 512 transfer

enumerator kDMA_BurstSize1024
burst size 1024 transfer

enum _dma_trigger_burst
DMA trigger burst.

Values:

enumerator kDMA_SingleTransfer
Single transfer

enumerator kDMA_LevelBurstTransfer
Burst transfer driven by level trigger

enumerator kDMA_EdgeBurstTransfer1
Perform 1 transfer by edge trigger

enumerator kDMA_EdgeBurstTransfer2
Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer32
Perform 32 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer64
Perform 64 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer128
Perform 128 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer256
Perform 256 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer512
Perform 512 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger

170 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enum _dma_burst_wrap
DMA burst wrapping.

Values:

enumerator kDMA_NoWrap
Wrapping is disabled

enumerator kDMA_SrcWrap
Wrapping is enabled for source

enumerator kDMA_DstWrap
Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap
Wrapping is enabled for source and destination

enum _dma_transfer_type
DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)

enumerator kDMA_PeripheralToMemory
Transfer from peripheral to memory (increment only destination)

enumerator kDMA_MemoryToPeripheral
Transfer from memory to peripheral (increment only source)

enumerator kDMA_StaticToStatic
Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_descriptor_t
DMA descriptor structure.

typedef struct _dma_xfercfg dma_xfercfg_t
DMA transfer configuration.

typedef enum _dma_priority dma_priority_t
DMA channel priority.

typedef enum _dma_int dma_irq_t
DMA interrupt flags.

typedef enum _dma_trigger_type dma_trigger_type_t
DMA trigger type.

typedef enum _dma_trigger_burst dma_trigger_burst_t
DMA trigger burst.

typedef enum _dma_burst_wrap dma_burst_wrap_t
DMA burst wrapping.

typedef enum _dma_transfer_type dma_transfer_type_t
DMA transfer type.

typedef struct _dma_channel_trigger dma_channel_trigger_t
DMA channel trigger.

typedef struct _dma_channel_config dma_channel_config_t
DMA channel trigger.

2.8. DMA: Direct Memory Access Controller Driver 171

MCUXpresso SDK Documentation, Release 25.06.00

typedef struct _dma_transfer_config dma_transfer_config_t
DMA transfer configuration.

typedef void (*dma_callback)(struct _dma_handle *handle, void *userData, bool transferDone,
uint32_t intmode)

Define Callback function for DMA.

typedef struct _dma_handle dma_handle_t
DMA transfer handle structure.

DMA_MAX_TRANSFER_COUNT
DMA max transfer size.

FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(x)
DMA channel numbers.

FSL_FEATURE_DMA_MAX_CHANNELS

FSL_FEATURE_DMA_ALL_CHANNELS

FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE
DMA head link descriptor table align size.

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)
DMA head descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA head descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)
DMA link descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS_AT_NONCACHEABLE(name, number)
DMA link descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
• name – Allocate decriptor name.

• number – Number of descriptor to be allocated.

172 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.

DMA_CHANNEL_GROUP(channel)

DMA_CHANNEL_INDEX(base, channel)

DMA_COMMON_REG_GET(base, channel, reg)
DMA linked descriptor address algin size.

DMA_COMMON_CONST_REG_GET(base, channel, reg)

DMA_COMMON_REG_SET(base, channel, reg, value)

DMA_DESCRIPTOR_END_ADDRESS(start, inc, bytes, width)
DMA descriptor end address calculate.

Parameters
• start – start address

• inc – address interleave size

• bytes – transfer bytes

• width – transfer width

DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)

struct _dma_descriptor
#include <fsl_dma.h> DMA descriptor structure.

Public Members

volatile uint32_t xfercfg
Transfer configuration

void *srcEndAddr
Last source address of DMA transfer

void *dstEndAddr
Last destination address of DMA transfer

void *linkToNextDesc
Address of next DMA descriptor in chain

struct _dma_xfercfg
#include <fsl_dma.h> DMA transfer configuration.

Public Members

bool valid
Descriptor is ready to transfer

bool reload
Reload channel configuration register after current descriptor is exhausted

bool swtrig
Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig
Clear trigger

2.8. DMA: Direct Memory Access Controller Driver 173

MCUXpresso SDK Documentation, Release 25.06.00

bool intA
Raises IRQ when transfer is done and set IRQA status register flag

bool intB
Raises IRQ when transfer is done and set IRQB status register flag

uint8_t byteWidth
Byte width of data to transfer

uint8_t srcInc
Increment source address by ‘srcInc’ x ‘byteWidth’

uint8_t dstInc
Increment destination address by ‘dstInc’ x ‘byteWidth’

uint16_t transferCount
Number of transfers

struct _dma_channel_trigger
#include <fsl_dma.h> DMA channel trigger.

Public Members

dma_trigger_type_t type
Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst
Select whether hardware triggers cause a single or burst transfer.

dma_burst_wrap_t wrap
Select wrap type, source wrap or dest wrap, or both.

struct _dma_channel_config
#include <fsl_dma.h> DMA channel trigger.

Public Members

void *srcStartAddr
Source data address

void *dstStartAddr
Destination data address

void *nextDesc
Chain custom descriptor

uint32_t xferCfg
channel transfer configurations

dma_channel_trigger_t *trigger
DMA trigger type

bool isPeriph
select the request type

struct _dma_transfer_config
#include <fsl_dma.h> DMA transfer configuration.

174 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint8_t *srcAddr
Source data address

uint8_t *dstAddr
Destination data address

uint8_t *nextDesc
Chain custom descriptor

dma_xfercfg_t xfercfg
Transfer options

bool isPeriph
DMA transfer is driven by peripheral

struct _dma_handle
#include <fsl_dma.h> DMA transfer handle structure.

Public Members

dma_callback callback
Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData
Callback function parameter

DMA_Type *base
DMA peripheral base address

uint8_t channel
DMA channel number

2.9 FLEXCOMM: FLEXCOMM Driver

2.10 FLEXCOMM Driver

FSL_FLEXCOMM_DRIVER_VERSION
FlexCOMM driver version 2.0.2.

enum FLEXCOMM_PERIPH_T
FLEXCOMM peripheral modes.

Values:

enumerator FLEXCOMM_PERIPH_NONE
No peripheral

enumerator FLEXCOMM_PERIPH_USART
USART peripheral

enumerator FLEXCOMM_PERIPH_SPI
SPI Peripheral

enumerator FLEXCOMM_PERIPH_I2C
I2C Peripheral

2.9. FLEXCOMM: FLEXCOMM Driver 175

MCUXpresso SDK Documentation, Release 25.06.00

enumerator FLEXCOMM_PERIPH_I2S_TX
I2S TX Peripheral

enumerator FLEXCOMM_PERIPH_I2S_RX
I2S RX Peripheral

typedef void (*flexcomm_irq_handler_t)(void *base, void *handle)
Typedef for interrupt handler.

IRQn_Type const kFlexcommIrqs[]
Array with IRQ number for each FLEXCOMM module.

uint32_t FLEXCOMM_GetInstance(void *base)
Returns instance number for FLEXCOMM module with given base address.

status_t FLEXCOMM_Init(void *base, FLEXCOMM_PERIPH_T periph)
Initializes FLEXCOMM and selects peripheral mode according to the second parameter.

void FLEXCOMM_SetIRQHandler(void *base, flexcomm_irq_handler_t handler, void
*flexcommHandle)

Sets IRQ handler for given FLEXCOMM module. It is used by drivers register IRQ handler
according to FLEXCOMM mode.

2.11 GINT: Group GPIO Input Interrupt Driver

FSL_GINT_DRIVER_VERSION
Driver version.

enum _gint_comb
GINT combine inputs type.

Values:

enumerator kGINT_CombineOr
A grouped interrupt is generated when any one of the enabled inputs is active

enumerator kGINT_CombineAnd
A grouped interrupt is generated when all enabled inputs are active

enum _gint_trig
GINT trigger type.

Values:

enumerator kGINT_TrigEdge
Edge triggered based on polarity

enumerator kGINT_TrigLevel
Level triggered based on polarity

enum _gint_port
Values:

enumerator kGINT_Port0

enumerator kGINT_Port1

typedef enum _gint_comb gint_comb_t
GINT combine inputs type.

176 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

typedef enum _gint_trig gint_trig_t
GINT trigger type.

typedef enum _gint_port gint_port_t

typedef void (*gint_cb_t)(void)
GINT Callback function.

void GINT_Init(GINT_Type *base)
Initialize GINT peripheral.

This function initializes the GINT peripheral and enables the clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_SetCtrl(GINT_Type *base, gint_comb_t comb, gint_trig_t trig, gint_cb_t callback)
Setup GINT peripheral control parameters.

This function sets the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Controls if the enabled inputs are logically ORed or ANDed for in-
terrupt generation.

• trig – Controls if the enabled inputs are level or edge sensitive based on
polarity.

• callback – This function is called when configured group interrupt is gen-
erated.

Return values
None. –

void GINT_GetCtrl(GINT_Type *base, gint_comb_t *comb, gint_trig_t *trig, gint_cb_t *callback)
Get GINT peripheral control parameters.

This function returns the control parameters of GINT peripheral.

Parameters
• base – Base address of the GINT peripheral.

• comb – Pointer to store combine input value.

• trig – Pointer to store trigger value.

• callback – Pointer to store callback function.

Return values
None. –

void GINT_ConfigPins(GINT_Type *base, gint_port_t port, uint32_t polarityMask, uint32_t
enableMask)

Configure GINT peripheral pins.

This function enables and controls the polarity of enabled pin(s) of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

2.11. GINT: Group GPIO Input Interrupt Driver 177

MCUXpresso SDK Documentation, Release 25.06.00

• polarityMask – Each bit position selects the polarity of the corresponding
enabled pin. 0 = The pin is active LOW. 1 = The pin is active HIGH.

• enableMask – Each bit position selects if the corresponding pin is enabled
or not. 0 = The pin is disabled. 1 = The pin is enabled.

Return values
None. –

void GINT_GetConfigPins(GINT_Type *base, gint_port_t port, uint32_t *polarityMask, uint32_t
*enableMask)

Get GINT peripheral pin configuration.

This function returns the pin configuration of a given port.

Parameters
• base – Base address of the GINT peripheral.

• port – Port number.

• polarityMask – Pointer to store the polarity mask Each bit position indicates
the polarity of the corresponding enabled pin. 0 = The pin is active LOW.
1 = The pin is active HIGH.

• enableMask – Pointer to store the enable mask. Each bit position indicates
if the corresponding pin is enabled or not. 0 = The pin is disabled. 1 = The
pin is enabled.

Return values
None. –

void GINT_EnableCallback(GINT_Type *base)
Enable callback.

This function enables the interrupt for the selected GINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

void GINT_DisableCallback(GINT_Type *base)
Disable callback.

This function disables the interrupt for the selected GINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

static inline void GINT_ClrStatus(GINT_Type *base)
Clear GINT status.

This function clears the GINT status bit.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

178 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t GINT_GetStatus(GINT_Type *base)
Get GINT status.

This function returns the GINT status.

Parameters
• base – Base address of the GINT peripheral.

Return values
status – = 0 No group interrupt request. = 1 Group interrupt request active.

void GINT_Deinit(GINT_Type *base)
Deinitialize GINT peripheral.

This function disables the GINT clock.

Parameters
• base – Base address of the GINT peripheral.

Return values
None. –

2.12 Hashcrypt: The Cryptographic Accelerator

2.13 Hashcrypt Background HASH

void HASHCRYPT_SHA_SetCallback(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
hashcrypt_callback_t callback, void *userData)

Initializes the HASHCRYPT handle for background hashing.

This function initializes the hash context for background hashing (Non-blocking) APIs. This
is less typical interface to hash function, but can be used for parallel processing, when
main CPU has something else to do. Example is digital signature RSASSA-PKCS1-V1_5-
VERIFY((n,e),M,S) algorithm, where background hashing of M can be started, then CPU can
compute S^e mod n (in parallel with background hashing) and once the digest becomes
available, CPU can proceed to comparison of EM with EM’.

Parameters
• base – HASHCRYPT peripheral base address.

• ctx – [out] Hash context.

• callback – Callback function.

• userData – User data (to be passed as an argument to callback function,
once callback is invoked from isr).

status_t HASHCRYPT_SHA_UpdateNonBlocking(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t
*ctx, const uint8_t *input, size_t inputSize)

Create running hash on given data.

Configures the HASHCRYPT to compute new running hash as AHB master and returns
immediately. HASHCRYPT AHB Master mode supports only aligned input address and
can be called only once per continuous block of data. Every call to this function must
be preceded with HASHCRYPT_SHA_Init() and finished with HASHCRYPT_SHA_Finish().
Once callback function is invoked by HASHCRYPT isr, it should set a flag for the main
application to finalize the hashing (padding) and to read out the final digest by calling
HASHCRYPT_SHA_Finish().

Parameters

2.12. Hashcrypt: The Cryptographic Accelerator 179

MCUXpresso SDK Documentation, Release 25.06.00

• base – HASHCRYPT peripheral base address

• ctx – Specifies callback. Last incomplete 512-bit block of the input is copied
into clear buffer for padding.

• input – 32-bit word aligned pointer to Input data.

• inputSize – Size of input data in bytes (must be word aligned)

Returns
Status of the hash update operation.

2.14 Hashcrypt common functions

FSL_HASHCRYPT_DRIVER_VERSION
HASHCRYPT driver version. Version 2.2.16.

Current version: 2.2.16

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Support loading AES key from unaligned address

• Version 2.0.2

– Support loading AES key from unaligned address for different compiler and core
variants

• Version 2.0.3

– Remove SHA512 and AES ICB algorithm definitions

• Version 2.0.4

– Add SHA context switch support

• Version 2.1.0

– Update the register name and macro to align with new header.

• Version 2.1.1

– Fix MISRA C-2012.

• Version 2.1.2

– Support loading AES input data from unaligned address.

• Version 2.1.3

– Fix MISRA C-2012.

• Version 2.1.4

– Fix context switch cannot work when switching from AES.

• Version 2.1.5

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to
prevent possible optimization issue.

• Version 2.2.0

– Add AES-OFB and AES-CFB mixed IP/SW modes.

180 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• Version 2.2.1

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() pre-
vent compiler from reordering memory write when -O2 or higher is used.

• Version 2.2.2

– Add data synchronization barrier inside hashcrypt_sha_ldm_stm_16_words() to fix
optimization issue

• Version 2.2.3

– Added check for size in hashcrypt_aes_one_block to prevent overflowing COUNT
field in MEMCTRL register, if its bigger than COUNT field do a multiple runs.

• Version 2.2.4

– In all HASHCRYPT_AES_xx functions have been added setting CTRL_MODE bitfield
to 0 after processing data, which decreases power consumption.

• Version 2.2.5

– Add data synchronization barrier and instruction synchronization barrier inside
hashcrypt_sha_process_message_data() to fix optimization issue

• Version 2.2.6

– Add data synchronization barrier inside HASHCRYPT_SHA_Update() and
hashcrypt_get_data() function to fix optimization issue on MDK and ARMGCC
release targets

• Version 2.2.7

– Add data synchronization barrier inside HASHCRYPT_SHA_Update() to fix opti-
mization issue on MCUX IDE release target

• Version 2.2.8

– Unify hashcrypt hashing behavior between aligned and unaligned input data

• Version 2.2.9

– Add handling of set ERROR bit in the STATUS register

• Version 2.2.10

– Fix missing error statement in hashcrypt_save_running_hash()

• Version 2.2.11

– Fix incorrect SHA-256 calculation for long messages with reload

• Version 2.2.12

– Fix hardfault issue on the Keil compiler due to unaligned memcpy() input on some
optimization levels

• Version 2.2.13

– Added function hashcrypt_seed_prng() which loading random number into
PRNG_SEED register before AES operation for SCA protection

• Version 2.2.14

– Modify function hashcrypt_get_data() to prevent issue with unaligned access

• Version 2.2.15

– Add wait on DIGEST BIT inside hashcrypt_sha_one_block() to fix issues with some
optimization flags

• Version 2.2.16

2.14. Hashcrypt common functions 181

MCUXpresso SDK Documentation, Release 25.06.00

– Add DSB instruction inside hashcrypt_sha_ldm_stm_16_words() to fix issues with
some optimization flags

enum _hashcrypt_algo_t
Algorithm used for Hashcrypt operation.

Values:

enumerator kHASHCRYPT_Sha1
SHA_1

enumerator kHASHCRYPT_Sha256
SHA_256

enumerator kHASHCRYPT_Aes
AES

typedef enum _hashcrypt_algo_t hashcrypt_algo_t
Algorithm used for Hashcrypt operation.

void HASHCRYPT_Init(HASHCRYPT_Type *base)
Enables clock and disables reset for HASHCRYPT peripheral.

Enable clock and disable reset for HASHCRYPT.

Parameters
• base – HASHCRYPT base address

void HASHCRYPT_Deinit(HASHCRYPT_Type *base)
Disables clock for HASHCRYPT peripheral.

Disable clock and enable reset.

Parameters
• base – HASHCRYPT base address

HASHCRYPT_MODE_SHA1
Algorithm definitions correspond with the values for Mode field in Control register !

HASHCRYPT_MODE_SHA256

HASHCRYPT_MODE_AES

2.15 Hashcrypt AES

enum _hashcrypt_aes_mode_t
AES mode.

Values:

enumerator kHASHCRYPT_AesEcb
AES ECB mode

enumerator kHASHCRYPT_AesCbc
AES CBC mode

enumerator kHASHCRYPT_AesCtr
AES CTR mode

182 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enum _hashcrypt_aes_keysize_t
Size of AES key.

Values:

enumerator kHASHCRYPT_Aes128
AES 128 bit key

enumerator kHASHCRYPT_Aes192
AES 192 bit key

enumerator kHASHCRYPT_Aes256
AES 256 bit key

enumerator kHASHCRYPT_InvalidKey
AES invalid key

enum _hashcrypt_key
HASHCRYPT key source selection.

Values:

enumerator kHASHCRYPT_UserKey
HASHCRYPT user key

enumerator kHASHCRYPT_SecretKey
HASHCRYPT secret key (dedicated hw bus from PUF)

typedef enum _hashcrypt_aes_mode_t hashcrypt_aes_mode_t
AES mode.

typedef enum _hashcrypt_aes_keysize_t hashcrypt_aes_keysize_t
Size of AES key.

typedef enum _hashcrypt_key hashcrypt_key_t
HASHCRYPT key source selection.

typedef struct _hashcrypt_handle hashcrypt_handle_t

struct _hashcrypt_handle __attribute__ ((aligned))

status_t HASHCRYPT_AES_SetKey(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *key, size_t keySize)

Set AES key to hashcrypt_handle_t struct and optionally to HASHCRYPT.

Sets the AES key for encryption/decryption with the hashcrypt_handle_t structure. The
hashcrypt_handle_t input argument specifies key source.

Parameters
• base – HASHCRYPT peripheral base address.

• handle – Handle used for the request.

• key – 0-mod-4 aligned pointer to AES key.

• keySize – AES key size in bytes. Shall equal 16, 24 or 32.

Returns
status from set key operation

status_t HASHCRYPT_AES_EncryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t
size)

2.15. Hashcrypt AES 183

MCUXpresso SDK Documentation, Release 25.06.00

Encrypts AES on one or multiple 128-bit block(s).

Encrypts AES. The source plaintext and destination ciphertext can overlap in system mem-
ory.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptEcb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t
size)

Decrypts AES on one or multiple 128-bit block(s).

Decrypts AES. The source ciphertext and destination plaintext can overlap in system mem-
ory.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input plain text to encrypt

• plaintext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

Returns
Status from decrypt operation

status_t HASHCRYPT_AES_EncryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t iv[16])

Encrypts AES using CBC block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptCbc(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t iv[16])

Decrypts AES using CBC block mode.

184 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from decrypt operation

status_t HASHCRYPT_AES_CryptCtr(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *input, uint8_t *output, size_t size, uint8_t
counter[16U], uint8_t counterlast[16U], size_t *szLeft)

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• counterlast – [out] Output cipher of last counter, for chained CTR calls
(statefull encryption). NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_CryptOfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *input, uint8_t *output, size_t size, const
uint8_t iv[16U])

Encrypts or decrypts AES using OFB block mode.

Encrypts or decrypts AES using OFB block mode. AES OFB mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• input – Input data for OFB block mode

2.15. Hashcrypt AES 185

MCUXpresso SDK Documentation, Release 25.06.00

• output – [out] Output data for OFB block mode

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_EncryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t iv[16])

Encrypts AES using CFB block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

status_t HASHCRYPT_AES_DecryptCfb(HASHCRYPT_Type *base, hashcrypt_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t iv[16])

Decrypts AES using CFB block mode.

Parameters
• base – HASHCRYPT peripheral base address

• handle – Handle used for this request.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plaintext text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

Returns
Status from encrypt operation

HASHCRYPT_AES_BLOCK_SIZE
AES block size in bytes

AES_ENCRYPT

AES_DECRYPT

struct _hashcrypt_handle
#include <fsl_hashcrypt.h> Specify HASHCRYPT’s key resource.

Public Members

uint32_t keyWord[8]
Copy of user key (set by HASHCRYPT_AES_SetKey().

186 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

hashcrypt_key_t keyType
For operations with key (such as AES encryption/decryption), specify key type.

2.16 Hashcrypt HASH

typedef struct _hashcrypt_hash_ctx_t hashcrypt_hash_ctx_t
Storage type used to save hash context.

typedef void (*hashcrypt_callback_t)(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
status_t status, void *userData)

HASHCRYPT background hash callback function.

status_t HASHCRYPT_SHA(HASHCRYPT_Type *base, hashcrypt_algo_t algo, const uint8_t
*input, size_t inputSize, uint8_t *output, size_t *outputSize)

Create HASH on given data.

Perform the full SHA in one function call. The function is blocking.

Parameters
• base – HASHCRYPT peripheral base address

• algo – Underlaying algorithm to use for hash computation.

• input – Input data

• inputSize – Size of input data in bytes

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

status_t HASHCRYPT_SHA_Init(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx,
hashcrypt_algo_t algo)

Initialize HASH context.

This function initializes the HASH.

Parameters
• base – HASHCRYPT peripheral base address

• ctx – [out] Output hash context

• algo – Underlaying algorithm to use for hash computation.

Returns
Status of initialization

status_t HASHCRYPT_SHA_Update(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, const
uint8_t *input, size_t inputSize)

Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data
to be hashed. The functions blocks. If it returns kStatus_Success, the running hash has been
updated (HASHCRYPT has processed the input data), so the memory at input pointer can be
released back to system. The HASHCRYPT context buffer is updated with the running hash
and with all necessary information to support possible context switch.

Parameters

2.16. Hashcrypt HASH 187

MCUXpresso SDK Documentation, Release 25.06.00

• base – HASHCRYPT peripheral base address

• ctx – [inout] HASH context

• input – Input data

• inputSize – Size of input data in bytes

Returns
Status of the hash update operation

status_t HASHCRYPT_SHA_Finish(HASHCRYPT_Type *base, hashcrypt_hash_ctx_t *ctx, uint8_t
*output, size_t *outputSize)

Finalize hashing.

Outputs the final hash (computed by HASHCRYPT_HASH_Update()) and erases the context.

Parameters
• base – HASHCRYPT peripheral base address

• ctx – [inout] Input hash context

• output – [out] Output hash data

• outputSize – [inout]Optional parameter (can be passed as NULL). On func-
tion entry, it specifies the size of output[] buffer. On function return, it
stores the number of updated output bytes.

Returns
Status of the hash finish operation

HASHCRYPT_HASH_CTX_SIZE
HASHCRYPT HASH Context size.

struct _hashcrypt_hash_ctx_t
#include <fsl_hashcrypt.h> Storage type used to save hash context.

Public Members

uint32_t x[30]
storage

2.17 I2C: Inter-Integrated Circuit Driver

2.18 I2C DMA Driver

void I2C_MasterTransferCreateHandleDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_dma_transfer_callback_t callback, void
*userData, dma_handle_t *dmaHandle)

Init the I2C handle which is used in transactional functions.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• callback – pointer to user callback function

• userData – user param passed to the callback function

• dmaHandle – DMA handle pointer

188 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

status_t I2C_MasterTransferDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master dma non-blocking transfer on the I2C bus.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• xfer – pointer to transfer structure of i2c_master_transfer_t

Return values
• kStatus_Success – Sucessully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive Nak during transfer.

status_t I2C_MasterTransferGetCountDMA(I2C_Type *base, i2c_master_dma_handle_t *handle,
size_t *count)

Get master transfer status during a dma non-blocking transfer.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

• count – Number of bytes transferred so far by the non-blocking transaction.

void I2C_MasterTransferAbortDMA(I2C_Type *base, i2c_master_dma_handle_t *handle)
Abort a master dma non-blocking transfer in a early time.

Parameters
• base – I2C peripheral base address

• handle – pointer to i2c_master_dma_handle_t structure

FSL_I2C_DMA_DRIVER_VERSION
I2C DMA driver version.

typedef struct _i2c_master_dma_handle i2c_master_dma_handle_t
I2C master dma handle typedef.

typedef void (*i2c_master_dma_transfer_callback_t)(I2C_Type *base, i2c_master_dma_handle_t
*handle, status_t status, void *userData)

I2C master dma transfer callback typedef.

typedef void (*flexcomm_i2c_dma_master_irq_handler_t)(I2C_Type *base,
i2c_master_dma_handle_t *handle)

Typedef for master dma handler.

I2C_MAX_DMA_TRANSFER_COUNT
Maximum lenght of single DMA transfer (determined by capability of the DMA engine)

struct _i2c_master_dma_handle
#include <fsl_i2c_dma.h> I2C master dma transfer structure.

2.18. I2C DMA Driver 189

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytesDMA
Remaining byte count to be transferred using DMA.

uint8_t *buf
Buffer pointer for current state.

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

dma_handle_t *dmaHandle
The DMA handler used.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_dma_transfer_callback_t completionCallback
Callback function called after dma transfer finished.

void *userData
Callback parameter passed to callback function.

2.19 I2C Driver

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
The master is already performing a transfer.

enumerator kStatus_I2C_Idle
The slave driver is idle.

enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

190 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatus_I2C_DmaRequestFail
DMA request failed.

enumerator kStatus_I2C_StartStopError
Start and stop error.

enumerator kStatus_I2C_UnexpectedState
Unexpected state.

enumerator kStatus_I2C_Timeout
Timeout when waiting for I2C master/slave pending status to set to continue transfer.

enumerator kStatus_I2C_Addr_Nak
NAK received for Address

enumerator kStatus_I2C_EventTimeout
Timeout waiting for bus event.

enumerator kStatus_I2C_SclLowTimeout
Timeout SCL signal remains low.

enum _i2c_status_flags
I2C status flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction. bit 0

enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus. bit 4

enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction. bit 6

enumerator kI2C_MasterIdleFlag
The I2C master idle status. bit 5

enumerator kI2C_MasterRxReadyFlag
The I2C master rx ready status. bit 1

enumerator kI2C_MasterTxReadyFlag
The I2C master tx ready status. bit 2

enumerator kI2C_MasterAddrNackFlag
The I2C master address nack status. bit 7

enumerator kI2C_MasterDataNackFlag
The I2C master data nack status. bit 3

enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction. bit 8

enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no). bit 11

enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match. bit 14

2.19. I2C Driver 191

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c). bit 15

enumerator kI2C_SlaveAddressedFlag
One of the I2C slave’s 4 addresses is matched. bit 22

enumerator kI2C_SlaveReceiveFlag
Slave receive data available. bit 9

enumerator kI2C_SlaveTransmitFlag
Slave data can be transmitted. bit 10

enumerator kI2C_SlaveAddress0MatchFlag
Slave address0 match. bit 20

enumerator kI2C_SlaveAddress1MatchFlag
Slave address1 match. bit 12

enumerator kI2C_SlaveAddress2MatchFlag
Slave address2 match. bit 13

enumerator kI2C_SlaveAddress3MatchFlag
Slave address3 match. bit 21

enumerator kI2C_MonitorReadyFlag
The I2C monitor ready interrupt. bit 16

enumerator kI2C_MonitorOverflowFlag
The monitor data overrun interrupt. bit 17

enumerator kI2C_MonitorActiveFlag
The monitor is active. bit 18

enumerator kI2C_MonitorIdleFlag
The monitor idle interrupt. bit 19

enumerator kI2C_EventTimeoutFlag
The bus event timeout interrupt. bit 24

enumerator kI2C_SclTimeoutFlag
The SCL timeout interrupt. bit 25

enumerator kI2C_MasterAllClearFlags

enumerator kI2C_SlaveAllClearFlags

enumerator kI2C_CommonAllClearFlags

enum _i2c_interrupt_enable
I2C interrupt enable.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingInterruptEnable
The I2C master communication pending interrupt.

enumerator kI2C_MasterArbitrationLostInterruptEnable
The I2C master arbitration lost interrupt.

192 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kI2C_MasterStartStopErrorInterruptEnable
The I2C master start/stop timing error interrupt.

enumerator kI2C_SlavePendingInterruptEnable
The I2C slave communication pending interrupt.

enumerator kI2C_SlaveNotStretchingInterruptEnable
The I2C slave not streching interrupt, deep-sleep mode can be entered only when this
interrupt occurs.

enumerator kI2C_SlaveDeselectedInterruptEnable
The I2C slave deselection interrupt.

enumerator kI2C_MonitorReadyInterruptEnable
The I2C monitor ready interrupt.

enumerator kI2C_MonitorOverflowInterruptEnable
The monitor data overrun interrupt.

enumerator kI2C_MonitorIdleInterruptEnable
The monitor idle interrupt.

enumerator kI2C_EventTimeoutInterruptEnable
The bus event timeout interrupt.

enumerator kI2C_SclTimeoutInterruptEnable
The SCL timeout interrupt.

enumerator kI2C_MasterAllInterruptEnable

enumerator kI2C_SlaveAllInterruptEnable

enumerator kI2C_CommonAllInterruptEnable

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_MASTER_TRANSMIT_IGNORE_LAST_NACK
Whether to ignore the nack signal of the last byte during master transmit.

I2C_STAT_MSTCODE_IDLE
Master Idle State Code

I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code

I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR

I2C_STAT_SLVST_RX

I2C_STAT_SLVST_TX

2.19. I2C Driver 193

MCUXpresso SDK Documentation, Release 25.06.00

2.20 I2C Master Driver

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->baudRate_Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with I2C_MasterInit().

Parameters
• masterConfig – [out] User provided configuration structure for default val-

ues. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters
• base – The I2C peripheral base address.

• masterConfig – User provided peripheral configuration. Use
I2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
• base – The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters

194 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – The I2C peripheral base address.

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
• base – The I2C peripheral base address.

• enable – Pass true to enable or false to disable the specified I2C as master.

uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void I2C_ClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

Refer to kI2C_CommonAllClearStatusFlags, kI2C_MasterAllClearStatusFlags and
kI2C_SlaveAllClearStatusFlags to see the clearable flags. Attempts to clear other flags
has no effect.

See also:
_i2c_status_flags, _i2c_master_status_flags and _i2c_slave_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The
mask is composed of the members in kI2C_CommonAllClearStatusFlags,
kI2C_MasterAllClearStatusFlags and kI2C_SlaveAllClearStatusFlags. You
may pass the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

Deprecated:
Do not use this function. It has been superceded by I2C_ClearStatusFlags The following
status register flags can be cleared:

• kI2C_MasterArbitrationLostFlag

• kI2C_MasterStartStopErrorFlag

2.20. I2C Master Driver 195

MCUXpresso SDK Documentation, Release 25.06.00

Attempts to clear other flags has no effect.

See also:
_i2c_status_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_status_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to disable. See _i2c_interrupt_enable
for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C interrupt requests.

Parameters
• base – The I2C peripheral base address.

Returns
A bitmask composed of _i2c_interrupt_enable enumerators OR’d together to
indicate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.

The I2C master is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
• base – The I2C peripheral base address.

• srcClock_Hz – I2C functional clock frequency in Hertz.

• baudRate_Bps – Requested bus frequency in bits per second.

void I2C_MasterSetTimeoutValue(I2C_Type *base, uint8_t timeout_Ms, uint32_t srcClock_Hz)
Sets the I2C bus timeout value.

If the SCL signal remains low or bus does not have event longer than the timeout value,
kI2C_SclTimeoutFlag or kI2C_EventTimeoutFlag is set. This can indicete the bus is held by
slave or any fault occurs to the I2C module.

Parameters

196 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – The I2C peripheral base address.

• timeout_Ms – Timeout value in millisecond.

• srcClock_Hz – I2C functional clock frequency in Hertz.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters
• base – The I2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t
direction)

Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

2.20. I2C Master Driver 197

MCUXpresso SDK Documentation, Release 25.06.00

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was sent successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was received successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

198 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

• kStataus_I2C_Addr_Nak – Transfer error, receive NAK during addressing.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_MasterTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C master driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• xfer – The pointer to the transfer descriptor.

Return values
• kStatus_Success – The transaction was started successfully.

• kStatus_I2C_Busy – Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• count – [out]Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_I2C_Busy –

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

2.20. I2C Master Driver 199

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

Return values
• kStatus_Success – A transaction was successfully aborted.

• kStatus_I2C_Timeout – Timeout during polling for flags.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, i2c_master_handle_t *handle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

enum _i2c_direction
Direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmit.

enumerator kI2C_Read
Master receive.

enum _i2c_master_transfer_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.

enum _i2c_transfer_states
States for the state machine used by transactional APIs.

Values:

enumerator kIdleState

enumerator kTransmitSubaddrState

200 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kTransmitDataState

enumerator kReceiveDataBeginState

enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState

typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

2.20. I2C Master Driver 201

MCUXpresso SDK Documentation, Release 25.06.00

uint32_t baudRate_Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

uint8_t timeout_Ms
Event timeout and SCL low timeout value.

struct _i2c_master_transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint8_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytes
Remaining byte count in current state.

uint8_t *buf
Buffer pointer for current state.

202 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

bool checkAddrNack
Whether to check the nack signal is detected during addressing.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

2.21 I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_SlaveInit(). Be sure to override at least the ad-
dress0.address member of the configuration structure with the desired slave address.

Parameters
• slaveConfig – [out] User provided configuration structure that is set to de-

fault values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
• base – The I2C peripheral base address.

• slaveConfig – User provided peripheral configuration. Use
I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters
• base – The I2C peripheral base address.

2.21. I2C Slave Driver 203

MCUXpresso SDK Documentation, Release 25.06.00

• addressRegister – The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

• address – The slave address to be stored to the address register for match-
ing.

• addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
• base – The I2C peripheral base address.

• enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:

• slave deselected flag

Attempts to clear other flags has no effect.

See also:
_i2c_slave_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns
kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

204 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_SlaveTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C slave driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

2.21. I2C Slave Driver 205

MCUXpresso SDK Documentation, Release 25.06.00

• eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• transfer – Pointer to i2c_slave_transfer_t structure.

• txData – Pointer to data to send to master.

• txSize – Size of txData in bytes.

• eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void
*rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

206 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• transfer – Pointer to i2c_slave_transfer_t structure.

• rxData – Pointer to data to store data from master.

• rxSize – Size of rxData in bytes.

• eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback
kI2C_SlaveAddressMatchEvent.

Parameters
• base – The I2C peripheral base address.

• transfer – The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
• kStatus_Success –

• kStatus_I2C_Idle –

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

2.21. I2C Slave Driver 207

MCUXpresso SDK Documentation, Release 25.06.00

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, i2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

enum _i2c_slave_address_register
I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave_address_qual_mode
I2C slave address match options.

Values:

enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_speed
I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode

enumerator kI2C_SlaveFastMode

enumerator kI2C_SlaveFastModePlus

enumerator kI2C_SlaveHsMode

enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

208 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c_slave_fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch

enumerator kI2C_SlaveFsmReceive

enumerator kI2C_SlaveFsmTransmit

typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

2.21. I2C Slave Driver 209

MCUXpresso SDK Documentation, Release 25.06.00

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the I2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.

typedef void (*flexcomm_i2c_master_irq_handler_t)(I2C_Type *base, i2c_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_i2c_slave_irq_handler_t)(I2C_Type *base, i2c_slave_handle_t *handle)
Typedef for slave interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

i2c_slave_address_t address0
Slave’s 7-bit address and disable.

210 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

i2c_slave_address_t address1
Alternate slave 7-bit address and disable.

i2c_slave_address_t address2
Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data
setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave
Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event
Reason the callback is being invoked.

uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask
Mask of enabled events.

uint8_t *rxData
Transfer buffer for receive data

const uint8_t *txData
Transfer buffer for transmit data

size_t txSize
Transfer size

size_t rxSize
Transfer size

size_t transferredCount
Number of bytes transferred during this transfer.

2.21. I2C Slave Driver 211

MCUXpresso SDK Documentation, Release 25.06.00

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.22 INPUTMUX: Input Multiplexing Driver

FSL_INPUTMUX_DRIVER_VERSION
Group interrupt driver version for SDK.

void INPUTMUX_Init(void *base)
Initialize INPUTMUX peripheral.

This function enables the INPUTMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

Return values
None. –

void INPUTMUX_AttachSignal(void *base, uint32_t index, inputmux_connection_t connection)
Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example,
to attach GPIO PORT0 Pin 5 to PINT peripheral, do the following:

INPUTMUX_AttachSignal(INPUTMUX, 2, kINPUTMUX_GpioPort0Pin5ToPintsel);

In this example, INTMUX has 8 registers for PINT, PINT_SEL0~PINT_SEL7. With parameter
index specified as 2, this function configures register PINT_SEL2.

Parameters
• base – Base address of the INPUTMUX peripheral.

• index – The serial number of destination register in the group of INPUT-
MUX registers with same name.

212 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• connection – Applies signal from source signals collection to target signal.

Return values
None. –

void INPUTMUX_EnableSignal(void *base, inputmux_signal_t signal, bool enable)
Enable/disable a signal.

This function gates the INPUTPMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

• signal – Enable signal register id and bit offset.

• enable – Selects enable or disable.

Return values
None. –

void INPUTMUX_Deinit(void *base)
Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUX clock.

Parameters
• base – Base address of the INPUTMUX peripheral.

Return values
None. –

2.23 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

2.23. Common Driver 213

MCUXpresso SDK Documentation, Release 25.06.00

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

214 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

2.23. Common Driver 215

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

216 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

2.23. Common Driver 217

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

218 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

2.23. Common Driver 219

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

220 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

2.23. Common Driver 221

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

222 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

2.23. Common Driver 223

MCUXpresso SDK Documentation, Release 25.06.00

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is

supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

224 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.24 GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters
• base – GPIO peripheral base pointer.

• port – GPIO port number.

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

2.24. GPIO: General Purpose I/O 225

MCUXpresso SDK Documentation, Release 25.06.00

• pin – GPIO pin number

• config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• output – GPIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.

enum _gpio_pin_direction
LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

226 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set default output logic, no use in input

2.25 IOCON: I/O pin configuration

FSL_IOCON_DRIVER_VERSION
IOCON driver version.

typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t port, uint8_t pin,
uint32_t modefunc)

Sets I/O Control pin mux.

Parameters
• base – : The base of IOCON peripheral on the chip

• port – : GPIO port to mux

• pin – : GPIO pin to mux

• modefunc – : OR’ed values of type IOCON_*

Returns
Nothing

2.25. IOCON: I/O pin configuration 227

MCUXpresso SDK Documentation, Release 25.06.00

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base,
const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters
• base – : The base of IOCON peripheral on the chip

• pinArray – : Pointer to array of pin mux selections

• arrayLength – : Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID

IOCON_FUNC0
IOCON function and mode selection definitions.

Note: See the User Manual for specific modes and functions supported by the various pins.
Selects pin function 0

IOCON_FUNC1
Selects pin function 1

IOCON_FUNC2
Selects pin function 2

IOCON_FUNC3
Selects pin function 3

IOCON_FUNC4
Selects pin function 4

IOCON_FUNC5
Selects pin function 5

IOCON_FUNC6
Selects pin function 6

IOCON_FUNC7
Selects pin function 7

struct _iocon_group
#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

2.26 Mailbox

static inline void MAILBOX_Init(MAILBOX_Type *base)
Initializes the MAILBOX module.

This function enables the MAILBOX clock only.

Parameters
• base – MAILBOX peripheral base address.

228 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline void MAILBOX_Deinit(MAILBOX_Type *base)
De-initializes the MAILBOX module.

This function disables the MAILBOX clock only.

Parameters
• base – MAILBOX peripheral base address.

FSL_MAILBOX_DRIVER_VERSION
MAILBOX driver version.

static inline uint32_t MAILBOX_GetMutex(MAILBOX_Type *base)
Get MUTEX state and lock mutex.

Note: Returns ‘1’ if the mutex was taken or ‘0’ if another resources has the mutex locked.
Once a mutex is taken, it can be returned with the MAILBOX_SetMutex() function.

Parameters
• base – MAILBOX peripheral base address.

Returns
See note

static inline void MAILBOX_SetMutex(MAILBOX_Type *base)
Set MUTEX state.

Note: Sets mutex state to ‘1’ and allows other resources to get the mutex.

Parameters
• base – MAILBOX peripheral base address.

FSL_COMPONENT_ID

2.27 MRT: Multi-Rate Timer

void MRT_Init(MRT_Type *base, const mrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
• base – Multi-Rate timer peripheral base address

• config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

void MRT_Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
• base – Multi-Rate timer peripheral base address

2.27. MRT: Multi-Rate Timer 229

MCUXpresso SDK Documentation, Release 25.06.00

static inline void MRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters
• config – Pointer to user’s MRT config structure.

static inline void MRT_SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const
mrt_timer_mode_t mode)

Sets up an MRT channel mode.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Channel that is being configured.

• mode – Timer mode to use for the channel.

static inline void MRT_EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline void MRT_DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline uint32_t MRT_GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)
Gets the enabled MRT interrupts.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_t MRT_GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

230 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Returns
The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline void MRT_ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

• immediateLoad – true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

static inline void MRT_StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters

2.27. MRT: Multi-Rate Timer 231

MCUXpresso SDK Documentation, Release 25.06.00

• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

• count – Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

static inline void MRT_StopTimer(MRT_Type *base, mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

static inline uint32_t MRT_GetIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.

Parameters
• base – Multi-Rate timer peripheral base address

static inline void MRT_ReleaseChannel(MRT_Type *base, mrt_chnl_t channel)
Release the channel when the timer is using the multi-task mode.

In multi-task mode, the INUSE flags allow more control over when MRT channels are
released for further use. The user can hold on to a channel acquired by calling
MRT_GetIdleChannel() for as long as it is needed and release it by calling this function.
This removes the need to ask for an available channel for every use.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

FSL_MRT_DRIVER_VERSION

enum _mrt_chnl
List of MRT channels.

Values:

enumerator kMRT_Channel_0
MRT channel number 0

enumerator kMRT_Channel_1
MRT channel number 1

enumerator kMRT_Channel_2
MRT channel number 2

enumerator kMRT_Channel_3
MRT channel number 3

enum _mrt_timer_mode
List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode
Repeat Interrupt mode

232 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kMRT_OneShotMode
One-shot Interrupt mode

enumerator kMRT_OneShotStallMode
One-shot stall mode

enum _mrt_interrupt_enable
List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable
Timer interrupt enable

enum _mrt_status_flags
List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag
Timer interrupt flag

enumerator kMRT_TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.

typedef struct _mrt_config mrt_config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_config
#include <fsl_mrt.h> MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.27. MRT: Multi-Rate Timer 233

MCUXpresso SDK Documentation, Release 25.06.00

2.28 OSTIMER: OS Event Timer Driver

void OSTIMER_Init(OSTIMER_Type *base)
Initializes an OSTIMER by turning its bus clock on.

void OSTIMER_Deinit(OSTIMER_Type *base)
Deinitializes a OSTIMER instance.

This function shuts down OSTIMER bus clock

Parameters
• base – OSTIMER peripheral base address.

uint64_t OSTIMER_GrayToDecimal(uint64_t gray)
Translate the value from gray-code to decimal.

Parameters
• gray – The gray value input.

Returns
The decimal value.

static inline uint64_t OSTIMER_DecimalToGray(uint64_t dec)
Translate the value from decimal to gray-code.

Parameters
• dec – The decimal value.

Returns
The gray code of the input value.

uint32_t OSTIMER_GetStatusFlags(OSTIMER_Type *base)
Get OSTIMER status Flags.

This returns the status flag. Currently, only match interrupt flag can be got.

Parameters
• base – OSTIMER peripheral base address.

Returns
status register value

void OSTIMER_ClearStatusFlags(OSTIMER_Type *base, uint32_t mask)
Clear Status Interrupt Flags.

This clears intrrupt status flag. Currently, only match interrupt flag can be cleared.

Parameters
• base – OSTIMER peripheral base address.

• mask – Clear bit mask.

Returns
none

status_t OSTIMER_SetMatchRawValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t
cb)

Set the match raw value for OSTIMER.

This function will set a match value for OSTIMER with an optional callback. And this call-
back will be called while the data in dedicated pair match register is equals to the value of
central EVTIMER. Please note that, the data format is gray-code, if decimal data was desired,
please using OSTIMER_SetMatchValue().

234 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – OSTIMER peripheral base address.

• count – OSTIMER timer match value.(Value is gray-code format)

• cb – OSTIMER callback (can be left as NULL if none, otherwise should be a
void func(void)).

Return values
• kStatus_Success – - Set match raw value and enable interrupt Successfully.

• kStatus_Fail – - Set match raw value fail.

status_t OSTIMER_SetMatchValue(OSTIMER_Type *base, uint64_t count, ostimer_callback_t cb)
Set the match value for OSTIMER.

This function will set a match value for OSTIMER with an optional callback. And this call-
back will be called while the data in dedicated pair match register is equals to the value of
central OS TIMER.

Parameters
• base – OSTIMER peripheral base address.

• count – OSTIMER timer match value.(Value is decimal format, and this
value will be translate to Gray code internally.)

• cb – OSTIMER callback (can be left as NULL if none, otherwise should be a
void func(void)).

Return values
• kStatus_Success – - Set match value and enable interrupt Successfully.

• kStatus_Fail – - Set match value fail.

static inline void OSTIMER_SetMatchRegister(OSTIMER_Type *base, uint64_t value)
Set value to OSTIMER MATCH register directly.

This function writes the input value to OSTIMER MATCH register directly, it does not
touch any other registers. Note that, the data format is gray-code. The function OS-
TIMER_DecimalToGray could convert decimal value to gray code.

Parameters
• base – OSTIMER peripheral base address.

• value – OSTIMER timer match value (Value is gray-code format).

static inline void OSTIMER_EnableMatchInterrupt(OSTIMER_Type *base)
Enable the OSTIMER counter match interrupt.

Enable the timer counter match interrupt. The interrupt happens when OSTIMER counter
matches the value in MATCH registers.

Parameters
• base – OSTIMER peripheral base address.

static inline void OSTIMER_DisableMatchInterrupt(OSTIMER_Type *base)
Disable the OSTIMER counter match interrupt.

Disable the timer counter match interrupt. The interrupt happens when OSTIMER counter
matches the value in MATCH registers.

Parameters
• base – OSTIMER peripheral base address.

2.28. OSTIMER: OS Event Timer Driver 235

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint64_t OSTIMER_GetCurrentTimerRawValue(OSTIMER_Type *base)
Get current timer raw count value from OSTIMER.

This function will get a gray code type timer count value from OS timer register. The raw
value of timer count is gray code format.

Parameters
• base – OSTIMER peripheral base address.

Returns
Raw value of OSTIMER, gray code format.

uint64_t OSTIMER_GetCurrentTimerValue(OSTIMER_Type *base)
Get current timer count value from OSTIMER.

This function will get a decimal timer count value. The RAW value of timer count is gray
code format, will be translated to decimal data internally.

Parameters
• base – OSTIMER peripheral base address.

Returns
Value of OSTIMER which will be formated to decimal value.

static inline uint64_t OSTIMER_GetCaptureRawValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.

This function will get a captured gray-code value from OSTIMER. The Raw value of timer
capture is gray code format.

Parameters
• base – OSTIMER peripheral base address.

Returns
Raw value of capture register, data format is gray code.

uint64_t OSTIMER_GetCaptureValue(OSTIMER_Type *base)
Get the capture value from OSTIMER.

This function will get a capture decimal-value from OSTIMER. The RAW value of timer cap-
ture is gray code format, will be translated to decimal data internally.

Parameters
• base – OSTIMER peripheral base address.

Returns
Value of capture register, data format is decimal.

void OSTIMER_HandleIRQ(OSTIMER_Type *base, ostimer_callback_t cb)
OS timer interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback
user (as per request in OSTIMER_SetMatchValue()). if no user callback is scheduled, the
interrupt will simply be cleared.

Parameters
• base – OS timer peripheral base address.

• cb – callback scheduled for this instance of OS timer

Returns
none

236 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

FSL_OSTIMER_DRIVER_VERSION
OSTIMER driver version.

enum _ostimer_flags
OSTIMER status flags.

Values:

enumerator kOSTIMER_MatchInterruptFlag
Match interrupt flag bit, sets if the match value was reached.

typedef void (*ostimer_callback_t)(void)
ostimer callback function.

2.29 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION

enum _pint_pin_enable
PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level

enum _pint_int
PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0
Pin Interrupt 0

enumerator kPINT_SecPinInt0
Secure Pin Interrupt 0

enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src
Input source 0

2.29. PINT: Pin Interrupt and Pattern Match Driver 237

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPINT_PatternMatchInp1Src
Input source 1

enumerator kPINT_PatternMatchInp2Src
Input source 2

enumerator kPINT_PatternMatchInp3Src
Input source 3

enumerator kPINT_PatternMatchInp4Src
Input source 4

enumerator kPINT_PatternMatchInp5Src
Input source 5

enumerator kPINT_PatternMatchInp6Src
Input source 6

enumerator kPINT_PatternMatchInp7Src
Input source 7

enumerator kPINT_SecPatternMatchInp0Src
Input source 0

enumerator kPINT_SecPatternMatchInp1Src
Input source 1

enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0
Bit slice 0

enumerator kPINT_SecPatternMatchBSlice0
Bit slice 0

enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways
Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge

enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh
High level

enumerator kPINT_PatternMatchLow
Low level

enumerator kPINT_PatternMatchNever
Never contributes to product term match

238 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.

typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_status_t
PINT event status.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t

void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.

Parameters
• base – Base address of the PINT peripheral.

• callback – Callback.

Return values
None. –

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• intr – Pin interrupt.

• enable – Selects detection logic.

Return values
None. –

2.29. PINT: Pin Interrupt and Pattern Match Driver 239

MCUXpresso SDK Documentation, Release 25.06.00

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

• enable – Pointer to store the detection logic.

Return values
None. –

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the status of corresponding pin interrupt.
= 0 No pin interrupt request. = 1 Pin interrupt request active.

240 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

2.29. PINT: Pin Interrupt and Pattern Match Driver 241

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t
*cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

242 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Return values
None. –

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

Return values
status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the match status of corresponding bit slice.
= 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the pattern match detection logic if any of the product term is matching.

Parameters
• base – Base address of the PINT peripheral.

Return values
pmstatus – Each bit position indicates the match status of corresponding bit
slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

2.29. PINT: Pin Interrupt and Pattern Match Driver 243

MCUXpresso SDK Documentation, Release 25.06.00

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallback(PINT_Type *base)
Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_DisableCallback(PINT_Type *base)
Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters
• base – Base address of the peripheral.

244 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• pintIdx – pin index.

Return values
None. –

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

PINT_USE_LEGACY_CALLBACK

PININT_BITSLICE_SRC_START

PININT_BITSLICE_SRC_MASK

PININT_BITSLICE_CFG_START

PININT_BITSLICE_CFG_MASK

PININT_BITSLICE_ENDP_MASK

PINT_PIN_INT_LEVEL

PINT_PIN_INT_EDGE

PINT_PIN_INT_FALL_OR_HIGH_LEVEL

PINT_PIN_INT_RISE

PINT_PIN_RISE_EDGE

PINT_PIN_FALL_EDGE

PINT_PIN_BOTH_EDGE

PINT_PIN_LOW_LEVEL

PINT_PIN_HIGH_LEVEL

struct _pint_status
#include <fsl_pint.h> PINT event status.

struct _pint_pmatch_cfg
#include <fsl_pint.h>

2.30 PLU: Programmable Logic Unit

void PLU_Init(PLU_Type *base)
Enable the PLU clock and reset the module.

Note: This API should be called at the beginning of the application using the PLU driver.

2.30. PLU: Programmable Logic Unit 245

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – PLU peripheral base address

void PLU_Deinit(PLU_Type *base)
Gate the PLU clock.

Parameters
• base – PLU peripheral base address

static inline void PLU_SetLutInputSource(PLU_Type *base, plu_lut_index_t lutIndex,
plu_lut_in_index_t lutInIndex, plu_lut_input_source_t
inputSrc)

Set Input source of LUT.

Note: An external clock must be applied to the PLU_CLKIN input when using FFs. For each
LUT, the slot associated with the output from LUTn itself is tied low.

Parameters
• base – PLU peripheral base address.

• lutIndex – LUT index (see plu_lut_index_t typedef enumeration).

• lutInIndex – LUT input index (see plu_lut_in_index_t typedef enumeration).

• inputSrc – LUT input source (see plu_lut_input_source_t typedef enumera-
tion).

static inline void PLU_SetOutputSource(PLU_Type *base, plu_output_index_t outputIndex,
plu_output_source_t outputSrc)

Set Output source of PLU.

Note: An external clock must be applied to the PLU_CLKIN input when using FFs.

Parameters
• base – PLU peripheral base address.

• outputIndex – PLU output index (see plu_output_index_t typedef enumera-
tion).

• outputSrc – PLU output source (see plu_output_source_t typedef enumera-
tion).

static inline void PLU_SetLutTruthTable(PLU_Type *base, plu_lut_index_t lutIndex, uint32_t
truthTable)

Set Truth Table of LUT.

Parameters
• base – PLU peripheral base address.

• lutIndex – LUT index (see plu_lut_index_t typedef enumeration).

• truthTable – Truth Table value.

static inline uint32_t PLU_ReadOutputState(PLU_Type *base)
Read the current state of the 8 designated PLU Outputs.

Note: The PLU bus clock must be re-enabled prior to reading the Outpus Register if PLU bus
clock is shut-off.

Parameters
• base – PLU peripheral base address.

Returns
Current PLU output state value.

246 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

void PLU_GetDefaultWakeIntConfig(plu_wakeint_config_t *config)
Gets an available pre-defined settings for wakeup/interrupt control.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->filterMode = kPLU_WAKEINT_FILTER_MODE_BYPASS;
config->clockSource = kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC;

Parameters
• config – Pointer to configuration structure.

void PLU_EnableWakeIntRequest(PLU_Type *base, uint32_t interruptMask, const
plu_wakeint_config_t *config)

Enable PLU outputs wakeup/interrupt request.

This function enables Any of the eight selected PLU outputs to contribute to an asyn-
chronous wake-up or an interrupt request.

Note: If a PLU_CLKIN is provided, the raw wake-up/interrupt request will be set
on the rising-edge of the PLU_CLKIN whenever the raw request signal is high.
This registered signal will be glitch-free and just use the default wakeint config by
PLU_GetDefaultWakeIntConfig(). If not, have to specify the filter mode and clock source
to eliminate the glitches caused by long and widely disparate delays through the network
of LUTs making up the PLU. This way may increase power consumption in low-power op-
erating modes and inject delay before the wake-up/interrupt request is generated.

Parameters
• base – PLU peripheral base address.

• interruptMask – PLU interrupt mask (see _plu_interrupt_mask enumera-
tion).

• config – Pointer to configuration structure (see plu_wakeint_config_t type-
def enumeration)

static inline void PLU_LatchInterrupt(PLU_Type *base)
Latch an interrupt.

This function latches the interrupt and then it can be cleared with
PLU_ClearLatchedInterrupt().

Note: This mode is not compatible with use of the glitch filter. If this bit is set, the FIL-
TER MODE should be set to kPLU_WAKEINT_FILTER_MODE_BYPASS (Bypass Mode) and
PLU_CLKIN should be provided. If this bit is set, the wake-up/interrupt request will be set
on the rising-edge of PLU_CLKIN whenever the raw wake-up/interrupt signal is high. The
request must be cleared by software.

Parameters
• base – PLU peripheral base address.

void PLU_ClearLatchedInterrupt(PLU_Type *base)
Clear the latched interrupt.

This function clears the wake-up/interrupt request flag latched by PLU_LatchInterrupt()

Note: It is not necessary for the PLU bus clock to be enabled in order to write-to or read-back
this bit.

Parameters
• base – PLU peripheral base address.

2.30. PLU: Programmable Logic Unit 247

MCUXpresso SDK Documentation, Release 25.06.00

FSL_PLU_DRIVER_VERSION
Version 2.2.1

enum _plu_lut_index
Index of LUT.

Values:

enumerator kPLU_LUT_0
5-input Look-up Table 0

enumerator kPLU_LUT_1
5-input Look-up Table 1

enumerator kPLU_LUT_2
5-input Look-up Table 2

enumerator kPLU_LUT_3
5-input Look-up Table 3

enumerator kPLU_LUT_4
5-input Look-up Table 4

enumerator kPLU_LUT_5
5-input Look-up Table 5

enumerator kPLU_LUT_6
5-input Look-up Table 6

enumerator kPLU_LUT_7
5-input Look-up Table 7

enumerator kPLU_LUT_8
5-input Look-up Table 8

enumerator kPLU_LUT_9
5-input Look-up Table 9

enumerator kPLU_LUT_10
5-input Look-up Table 10

enumerator kPLU_LUT_11
5-input Look-up Table 11

enumerator kPLU_LUT_12
5-input Look-up Table 12

enumerator kPLU_LUT_13
5-input Look-up Table 13

enumerator kPLU_LUT_14
5-input Look-up Table 14

enumerator kPLU_LUT_15
5-input Look-up Table 15

enumerator kPLU_LUT_16
5-input Look-up Table 16

enumerator kPLU_LUT_17
5-input Look-up Table 17

248 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_LUT_18
5-input Look-up Table 18

enumerator kPLU_LUT_19
5-input Look-up Table 19

enumerator kPLU_LUT_20
5-input Look-up Table 20

enumerator kPLU_LUT_21
5-input Look-up Table 21

enumerator kPLU_LUT_22
5-input Look-up Table 22

enumerator kPLU_LUT_23
5-input Look-up Table 23

enumerator kPLU_LUT_24
5-input Look-up Table 24

enumerator kPLU_LUT_25
5-input Look-up Table 25

enum _plu_lut_in_index
Inputs of LUT. 5 input present for each LUT.

Values:

enumerator kPLU_LUT_IN_0
LUT input 0

enumerator kPLU_LUT_IN_1
LUT input 1

enumerator kPLU_LUT_IN_2
LUT input 2

enumerator kPLU_LUT_IN_3
LUT input 3

enumerator kPLU_LUT_IN_4
LUT input 4

enum _plu_lut_input_source
Available sources of LUT input.

Values:

enumerator kPLU_LUT_IN_SRC_PLU_IN_0
Select PLU input 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_1
Select PLU input 1 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_2
Select PLU input 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_3
Select PLU input 3 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_PLU_IN_4
Select PLU input 4 to be connected to LUTn Input x

2.30. PLU: Programmable Logic Unit 249

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_LUT_IN_SRC_PLU_IN_5
Select PLU input 5 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_0
Select LUT output 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_1
Select LUT output 1 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_2
Select LUT output 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_3
Select LUT output 3 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_4
Select LUT output 4 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_5
Select LUT output 5 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_6
Select LUT output 6 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_7
Select LUT output 7 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_8
Select LUT output 8 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_9
Select LUT output 9 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_10
Select LUT output 10 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_11
Select LUT output 11 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_12
Select LUT output 12 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_13
Select LUT output 13 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_14
Select LUT output 14 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_15
Select LUT output 15 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_16
Select LUT output 16 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_17
Select LUT output 17 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_18
Select LUT output 18 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_19
Select LUT output 19 to be connected to LUTn Input x

250 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_LUT_IN_SRC_LUT_OUT_20
Select LUT output 20 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_21
Select LUT output 21 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_22
Select LUT output 22 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_23
Select LUT output 23 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_24
Select LUT output 24 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_LUT_OUT_25
Select LUT output 25 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_0
Select Flip-Flops state 0 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_1
Select Flip-Flops state 1 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_2
Select Flip-Flops state 2 to be connected to LUTn Input x

enumerator kPLU_LUT_IN_SRC_FLIPFLOP_3
Select Flip-Flops state 3 to be connected to LUTn Input x

enum _plu_output_index
PLU output multiplexer registers.

Values:

enumerator kPLU_OUTPUT_0
PLU OUTPUT 0

enumerator kPLU_OUTPUT_1
PLU OUTPUT 1

enumerator kPLU_OUTPUT_2
PLU OUTPUT 2

enumerator kPLU_OUTPUT_3
PLU OUTPUT 3

enumerator kPLU_OUTPUT_4
PLU OUTPUT 4

enumerator kPLU_OUTPUT_5
PLU OUTPUT 5

enumerator kPLU_OUTPUT_6
PLU OUTPUT 6

enumerator kPLU_OUTPUT_7
PLU OUTPUT 7

enum _plu_output_source
Available sources of PLU output.

Values:

2.30. PLU: Programmable Logic Unit 251

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_OUT_SRC_LUT_0
Select LUT0 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_1
Select LUT1 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_2
Select LUT2 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_3
Select LUT3 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_4
Select LUT4 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_5
Select LUT5 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_6
Select LUT6 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_7
Select LUT7 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_8
Select LUT8 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_9
Select LUT9 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_10
Select LUT10 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_11
Select LUT11 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_12
Select LUT12 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_13
Select LUT13 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_14
Select LUT14 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_15
Select LUT15 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_16
Select LUT16 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_17
Select LUT17 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_18
Select LUT18 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_19
Select LUT19 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_20
Select LUT20 output to be connected to PLU output

252 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_OUT_SRC_LUT_21
Select LUT21 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_22
Select LUT22 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_23
Select LUT23 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_24
Select LUT24 output to be connected to PLU output

enumerator kPLU_OUT_SRC_LUT_25
Select LUT25 output to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_0
Select Flip-Flops state(0) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_1
Select Flip-Flops state(1) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_2
Select Flip-Flops state(2) to be connected to PLU output

enumerator kPLU_OUT_SRC_FLIPFLOP_3
Select Flip-Flops state(3) to be connected to PLU output

enum _plu_interrupt_mask
The enumerator of PLU Interrupt.

Values:

enumerator kPLU_OUTPUT_0_INTERRUPT_MASK
Select PLU output 0 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_1_INTERRUPT_MASK
Select PLU output 1 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_2_INTERRUPT_MASK
Select PLU output 2 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_3_INTERRUPT_MASK
Select PLU output 3 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_4_INTERRUPT_MASK
Select PLU output 4 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_5_INTERRUPT_MASK
Select PLU output 5 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_6_INTERRUPT_MASK
Select PLU output 6 contribute to interrupt/wake-up generation

enumerator kPLU_OUTPUT_7_INTERRUPT_MASK
Select PLU output 7 contribute to interrupt/wake-up generation

enum _plu_wakeint_filter_mode
Control input of the PLU, add filtering for glitch.

Values:

enumerator kPLU_WAKEINT_FILTER_MODE_BYPASS
Select Bypass mode

2.30. PLU: Programmable Logic Unit 253

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPLU_WAKEINT_FILTER_MODE_1_CLK_PERIOD
Filter 1 clock period

enumerator kPLU_WAKEINT_FILTER_MODE_2_CLK_PERIOD
Filter 2 clock period

enumerator kPLU_WAKEINT_FILTER_MODE_3_CLK_PERIOD
Filter 3 clock period

enum _plu_wakeint_filter_clock_source
Clock source for filter mode.

Values:

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_1MHZ_LPOSC
Select the 1MHz low-power oscillator as the filter clock

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_12MHZ_FRO
Select the 12MHz FRO as the filer clock

enumerator kPLU_WAKEINT_FILTER_CLK_SRC_ALT
Select a third clock source

typedef enum _plu_lut_index plu_lut_index_t
Index of LUT.

typedef enum _plu_lut_in_index plu_lut_in_index_t
Inputs of LUT. 5 input present for each LUT.

typedef enum _plu_lut_input_source plu_lut_input_source_t
Available sources of LUT input.

typedef enum _plu_output_index plu_output_index_t
PLU output multiplexer registers.

typedef enum _plu_output_source plu_output_source_t
Available sources of PLU output.

typedef enum _plu_wakeint_filter_mode plu_wakeint_filter_mode_t
Control input of the PLU, add filtering for glitch.

typedef enum _plu_wakeint_filter_clock_source plu_wakeint_filter_clock_source_t
Clock source for filter mode.

typedef struct _plu_wakeint_config plu_wakeint_config_t
Wake configuration.

struct _plu_wakeint_config
#include <fsl_plu.h> Wake configuration.

Public Members

plu_wakeint_filter_mode_t filterMode
Filter Mode.

plu_wakeint_filter_clock_source_t clockSource
The clock source for filter mode.

254 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

2.31 PUF: Physical Unclonable Function

FSL_PUF_DRIVER_VERSION
PUF driver version. Version 2.2.0.

Current version: 2.2.0

Change log:

• 2.0.0

– Initial version.

• 2.0.1

– Fixed puf_wait_usec function optimization issue.

• 2.0.2

– Add PUF configuration structure and support for PUF SRAM controller. Remove
magic constants.

• 2.0.3

– Fix MISRA C-2012 issue.

• 2.1.0

– Align driver with PUF SRAM controller registers on LPCXpresso55s16.

– Update initizalition logic .

• 2.1.1

– Fix ARMGCC build warning .

• 2.1.2

– Update: Add automatic big to little endian swap for user (pre-shared) keys desti-
nated to secret hardware bus (PUF key index 0).

• 2.1.3

– Fix MISRA C-2012 issue.

• 2.1.4

– Replace register uint32_t ticksCount with volatile uint32_t ticksCount in
puf_wait_usec() to prevent optimization out delay loop.

• 2.1.5

– Use common SDK delay in puf_wait_usec()

• 2.1.6

– Changed wait time in PUF_Init(), when initialization fails it will try
PUF_Powercycle() with shorter time. If this shorter time will also fail, initial-
ization will be tried with worst case time as before.

• 2.2.0

• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

enum _puf_key_index_register
Values:

enumerator kPUF_KeyIndex_00

2.31. PUF: Physical Unclonable Function 255

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kPUF_KeyIndex_01

enumerator kPUF_KeyIndex_02

enumerator kPUF_KeyIndex_03

enumerator kPUF_KeyIndex_04

enumerator kPUF_KeyIndex_05

enumerator kPUF_KeyIndex_06

enumerator kPUF_KeyIndex_07

enumerator kPUF_KeyIndex_08

enumerator kPUF_KeyIndex_09

enumerator kPUF_KeyIndex_10

enumerator kPUF_KeyIndex_11

enumerator kPUF_KeyIndex_12

enumerator kPUF_KeyIndex_13

enumerator kPUF_KeyIndex_14

enumerator kPUF_KeyIndex_15

enum _puf_min_max
Values:

enumerator kPUF_KeySizeMin

enumerator kPUF_KeySizeMax

enumerator kPUF_KeyIndexMax

enum _puf_key_slot
PUF key slot.

Values:

enumerator kPUF_KeySlot0
PUF key slot 0

enumerator kPUF_KeySlot1
PUF key slot 1

PUF status return codes.

Values:

enumerator kStatus_EnrollNotAllowed

enumerator kStatus_StartNotAllowed

typedef enum _puf_key_index_register puf_key_index_register_t

typedef enum _puf_min_max puf_min_max_t

typedef enum _puf_key_slot puf_key_slot_t
PUF key slot.

256 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(x)
Get Key Code size in bytes from key size in bytes at compile time.

PUF_MIN_KEY_CODE_SIZE

PUF_ACTIVATION_CODE_SIZE

KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS

KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS

struct puf_config_t
#include <fsl_puf.h>

2.32 RTC: Real Time Clock

void RTC_Init(RTC_Type *base)
Un-gate the RTC clock and enable the RTC oscillator.

Note: This API should be called at the beginning of the application using the RTC driver.

Parameters
• base – RTC peripheral base address

static inline void RTC_Deinit(RTC_Type *base)
Stop the timer and gate the RTC clock.

Parameters
• base – RTC peripheral base address

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Set the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function as writes to the RTC seconds
register will fail if the RTC counter is running.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details to set are
stored

Returns
kStatus_Success: Success in setting the time and starting the RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Get the RTC time and stores it in the given time structure.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the date and time details are stored.

2.32. RTC: Real Time Clock 257

MCUXpresso SDK Documentation, Release 25.06.00

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Set the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If
not, the function does not set the alarm and returns an error.

Parameters
• base – RTC peripheral base address

• alarmTime – Pointer to structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument:
Error because the alarm datetime format is incorrect kStatus_Fail: Error be-
cause the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Return the RTC alarm time.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to structure where the alarm date and time details are
stored.

static inline void RTC_EnableWakeupTimer(RTC_Type *base, bool enable)
Enable the RTC wake-up timer (1KHZ).

After calling this function, the RTC driver will use/un-use the RTC wake-up (1KHZ) at the
same time.

Parameters
• base – RTC peripheral base address

• enable – Use/Un-use the RTC wake-up timer.

– true: Use RTC wake-up timer at the same time.

– false: Un-use RTC wake-up timer, RTC only use the normal seconds timer
by default.

static inline uint32_t RTC_GetEnabledWakeupTimer(RTC_Type *base)
Get the enabled status of the RTC wake-up timer (1KHZ).

Parameters
• base – RTC peripheral base address

Returns
The enabled status of RTC wake-up timer (1KHZ).

static inline void RTC_EnableSubsecCounter(RTC_Type *base, bool enable)
Enable the RTC Sub-second counter (32KHZ).

Note: Only enable sub-second counter after RTC_ENA bit has been set to 1.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC sub-second counter.

– true: Enable RTC sub-second counter.

– false: Disable RTC sub-second counter.

258 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t RTC_GetSubsecValue(const RTC_Type *base)
A read of 32KHZ sub-seconds counter.

Parameters
• base – RTC peripheral base address

Returns
Current value of the SUBSEC register

static inline void RTC_EnableWakeUpTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the wake-up timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable wake-up timer interrupt from deep power down
mode.

– true: Enable wake-up timer interrupt from deep power down mode.

– false: Disable wake-up timer interrupt from deep power down mode.

static inline void RTC_EnableAlarmTimerInterruptFromDPD(RTC_Type *base, bool enable)
Enable the alarm timer interrupt from deep power down mode.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable alarm timer interrupt from deep power down
mode.

– true: Enable alarm timer interrupt from deep power down mode.

– false: Disable alarm timer interrupt from deep power down mode.

static inline void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

static inline void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.

Deprecated:
Do not use this function. It has been superceded by
RTC_EnableAlarmTimerInterruptFromDPD and RTC_EnableWakeUpTimerInterruptFromDPD

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

2.32. RTC: Real Time Clock 259

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Get the enabled RTC interrupts.

Deprecated:
Do not use this function. It will be deleted in next release version.

Parameters
• base – RTC peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
rtc_interrupt_enable_t

static inline uint32_t RTC_GetStatusFlags(RTC_Type *base)
Get the RTC status flags.

Parameters
• base – RTC peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
rtc_status_flags_t

static inline void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clear the RTC status flags.

Parameters
• base – RTC peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration rtc_status_flags_t

static inline void RTC_EnableTimer(RTC_Type *base, bool enable)
Enable the RTC timer counter.

After calling this function, the RTC inner counter increments once a second when only using
the RTC seconds timer (1hz), while the RTC inner wake-up timer countdown once a millisec-
ond when using RTC wake-up timer (1KHZ) at the same time. RTC timer contain two timers,
one is the RTC normal seconds timer, the other one is the RTC wake-up timer, the RTC en-
able bit is the master switch for the whole RTC timer, so user can use the RTC seconds (1HZ)
timer independly, but they can’t use the RTC wake-up timer (1KHZ) independently.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC Timer counter.

– true: Enable RTC Timer counter.

– false: Disable RTC Timer counter.

static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

After calling this function, the timer counter increments once a second provided SR[TOF]
or SR[TIF] are not set.

260 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.

Deprecated:
Do not use this function. It has been superceded by RTC_EnableTimer

RTC’s seconds register can be written to only when the timer is stopped.

Parameters
• base – RTC peripheral base address

FSL_RTC_DRIVER_VERSION
Version 2.2.0

enum _rtc_interrupt_enable
List of RTC interrupts.

Values:

enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.

enumerator kRTC_WakeupInterruptEnable
Wake-up interrupt.

enum _rtc_status_flags
List of RTC flags.

Values:

enumerator kRTC_AlarmFlag
Alarm flag

enumerator kRTC_WakeupFlag
1kHz wake-up timer flag

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.

typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.

static inline void RTC_SetSecondsTimerMatch(RTC_Type *base, uint32_t matchValue)
Set the RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

• matchValue – The value to be set into the RTC MATCH register

static inline uint32_t RTC_GetSecondsTimerMatch(RTC_Type *base)
Read actual RTC seconds timer (1HZ) MATCH value.

Parameters
• base – RTC peripheral base address

2.32. RTC: Real Time Clock 261

MCUXpresso SDK Documentation, Release 25.06.00

Returns
The actual RTC seconds timer (1HZ) MATCH value.

static inline void RTC_SetSecondsTimerCount(RTC_Type *base, uint32_t countValue)
Set the RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

• countValue – The value to be loaded into the RTC COUNT register

static inline uint32_t RTC_GetSecondsTimerCount(RTC_Type *base)
Read the actual RTC seconds timer (1HZ) COUNT value.

Parameters
• base – RTC peripheral base address

Returns
The actual RTC seconds timer (1HZ) COUNT value.

static inline void RTC_SetWakeupCount(RTC_Type *base, uint16_t wakeupValue)
Enable the RTC wake-up timer (1KHZ) and set countdown value to the RTC WAKE register.

Parameters
• base – RTC peripheral base address

• wakeupValue – The value to be loaded into the WAKE register in RTC wake-
up timer (1KHZ).

static inline uint16_t RTC_GetWakeupCount(RTC_Type *base)
Read the actual value from the WAKE register value in RTC wake-up timer (1KHZ)

Read the WAKE register twice and compare the result, if the value match,the time can be
used.

Parameters
• base – RTC peripheral base address

Returns
The actual value of the WAKE register value in RTC wake-up timer (1KHZ).

static inline void RTC_Reset(RTC_Type *base)
Perform a software reset on the RTC module.

This resets all RTC registers to their reset value. The bit is cleared by software explicitly
clearing it.

Parameters
• base – RTC peripheral base address

struct _rtc_datetime
#include <fsl_rtc.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

262 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

2.33 SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_Init(SCT_Type *base, const sctimer_config_t *config)
Ungates the SCTimer clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SCTimer
driver.

Parameters
• base – SCTimer peripheral base address

• config – Pointer to the user configuration structure.

Returns
kStatus_Success indicates success; Else indicates failure.

void SCTIMER_Deinit(SCT_Type *base)
Gates the SCTimer clock.

Parameters
• base – SCTimer peripheral base address

void SCTIMER_GetDefaultConfig(sctimer_config_t *config)
Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;
config->clockMode = kSCTIMER_System_ClockMode;
config->clockSelect = kSCTIMER_Clock_On_Rise_Input_0;
config->enableBidirection_l = false;
config->enableBidirection_h = false;
config->prescale_l = 0U;
config->prescale_h = 0U;
config->outInitState = 0U;
config->inputsync = 0xFU;

Parameters
• config – Pointer to the user configuration structure.

status_t SCTIMER_SetupPwm(SCT_Type *base, const sctimer_pwm_signal_param_t
*pwmParams, sctimer_pwm_mode_t mode, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

2.33. SCTimer: SCTimer/PWM (SCT) 263

MCUXpresso SDK Documentation, Release 25.06.00

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This
function will create 2 events; one of the events will trigger on match with the pulse value
and the other will trigger when the counter matches the PWM period. The PWM period
event is also used as a limit event to reset the counter or change direction. Both events
are enabled for the same state. The state number can be retrieved by calling the function
SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter
(unify bit is set to 1). The counter operates in bi-directional mode when generating a center-
aligned PWM.

Note: When setting PWM output from multiple output pins, they all should use the same
PWM mode i.e all PWM’s should be either edge-aligned or center-aligned. When using this
API, the PWM signal frequency of all the initialized channels must be the same. Other-
wise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s
pwmFreq_Hz.

Parameters
• base – SCTimer peripheral base address

• pwmParams – PWM parameters to configure the output

• mode – PWM operation mode, options available in enumeration sc-
timer_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – SCTimer counter clock in Hz

• event – Pointer to a variable where the PWM period event number is stored

Returns
kStatus_Success on success kStatus_Fail If we have hit the limit in terms of
number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t
dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is
set to 1).

Parameters
• base – SCTimer peripheral base address

• output – The output to configure

• dutyCyclePercent – New PWM pulse width; the value should be between 1
to 100

• event – Event number associated with this PWM signal. This was returned
to the user by the function SCTIMER_SetupPwm().

static inline void SCTIMER_EnableInterrupts(SCT_Type *base, uint32_t mask)
Enables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

264 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline void SCTIMER_DisableInterrupts(SCT_Type *base, uint32_t mask)
Disables the selected SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetEnabledInterrupts(SCT_Type *base)
Gets the enabled SCTimer interrupts.

Parameters
• base – SCTimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
sctimer_interrupt_enable_t

static inline uint32_t SCTIMER_GetStatusFlags(SCT_Type *base)
Gets the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration sc-
timer_status_flags_t

static inline void SCTIMER_ClearStatusFlags(SCT_Type *base, uint32_t mask)
Clears the SCTimer status flags.

Parameters
• base – SCTimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration sctimer_status_flags_t

static inline void SCTIMER_StartTimer(SCT_Type *base, uint32_t countertoStart)
Starts the SCTimer counter.

Note: In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we
only can select Counter_U.

Parameters
• base – SCTimer peripheral base address

• countertoStart – The SCTimer counters to enable. This is a logical OR of
members of the enumeration sctimer_counter_t.

static inline void SCTIMER_StopTimer(SCT_Type *base, uint32_t countertoStop)
Halts the SCTimer counter.

Parameters
• base – SCTimer peripheral base address

• countertoStop – The SCTimer counters to stop. This is a logical OR of mem-
bers of the enumeration sctimer_counter_t.

2.33. SCTimer: SCTimer/PWM (SCT) 265

MCUXpresso SDK Documentation, Release 25.06.00

status_t SCTIMER_CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor,
uint32_t matchValue, uint32_t whichIO,
sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or IO and schedule in current state.

This function will configure an event using the options provided by the user. If the event
type uses the counter match, then the function will set the user provided match value into
a match register and put this match register number into the event control register. The
event is enabled for the current state and the event number is increased by one at the end.
The function returns the event number; this event number can be used to configure actions
to be done when this event is triggered.

Parameters
• base – SCTimer peripheral base address

• howToMonitor – Event type; options are available in the enumeration sc-
timer_interrupt_enable_t

• matchValue – The match value that will be programmed to a match register

• whichIO – The input or output that will be involved in event triggering.
This field is ignored if the event type is “match only”

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Pointer to a variable where the new event number is stored

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of events created or if we have reached the limit in terms of number
of match registers

void SCTIMER_ScheduleEvent(SCT_Type *base, uint32_t event)
Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event
must be created earlier by either calling the function SCTIMER_SetupPwm() or function
SCTIMER_CreateAndScheduleEvent() .

Parameters
• base – SCTimer peripheral base address

• event – Event number to enable in the current state

status_t SCTIMER_IncreaseState(SCT_Type *base)
Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled
in this new state.

Parameters
• base – SCTimer peripheral base address

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
states used

uint32_t SCTIMER_GetCurrentState(SCT_Type *base)
Provides the current state.

User can use this to set the next state by calling the function SC-
TIMER_SetupNextStateAction().

Parameters

266 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – SCTimer peripheral base address

Returns
The current state

static inline void SCTIMER_SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t state)

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L,
STATE_H, or unified register is only allowed when the corresponding counter is halted
(HALT bits are set to 1 in the CTRL register).

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• state – The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER_GetCounterState(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the counter current state value.

The function is to get the state variable bit field of STATE register.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The the counter current state value.

status_t SCTIMER_SetupCaptureAction(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• captureRegister – Pointer to a variable where the capture register number
will be returned. User can read the captured value from this register when
the specified event is triggered.

• event – Event number that will trigger the capture

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of match/capture registers available

void SCTIMER_SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)
Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which
will be invoked when the event is triggered

Parameters
• base – SCTimer peripheral base address

2.33. SCTimer: SCTimer/PWM (SCT) 267

MCUXpresso SDK Documentation, Release 25.06.00

• event – Event number that will trigger the interrupt

• callback – Function to invoke when the event is triggered

static inline void SCTIMER_SetupStateLdMethodAction(SCT_Type *base, uint32_t event, bool
fgLoad)

Change the load method of transition to the specified state.

Change the load method of transition, it will be triggered by the event number that is passed
in by the user.

Parameters
• base – SCTimer peripheral base address

• event – Event number that will change the method to trigger the state tran-
sition

• fgLoad – The method to load highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER_SetupNextStateActionwithLdMethod(SCT_Type *base, uint32_t
nextState, uint32_t event, bool
fgLoad)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the
method decide how to load the highest-numbered event occurring for that state to the
STATE register.

Parameters
• base – SCTimer peripheral base address

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

• fgLoad – The method to load the highest-numbered event occurring for that
state to the STATE register.

– true: Load the STATEV value to STATE when the event occurs to be the
next state.

– false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER_SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t
event)

Transition to the specified state.

Deprecated:
Do not use this function. It has been superceded by SC-
TIMER_SetupNextStateActionwithLdMethod

This transition will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

268 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• nextState – The next state SCTimer will transition to

• event – Event number that will trigger the state transition

static inline void SCTIMER_SetupEventActiveDirection(SCT_Type *base,
sctimer_event_active_direction_t
activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.

Parameters
• base – SCTimer peripheral base address

• activeDirection – Event generation active direction, see sc-
timer_event_active_direction_t.

• event – Event number that need setup the active direction.

static inline void SCTIMER_SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t
event)

Set the Output.

This output will be set when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to set

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupOutputClearAction(SCT_Type *base, uint32_t whichIO,
uint32_t event)

Clear the Output.

This output will be cleared when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to clear

• event – Event number that will trigger the output change

void SCTIMER_SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the
user.

Parameters
• base – SCTimer peripheral base address

• whichIO – The output to toggle

• event – Event number that will trigger the output change

static inline void SCTIMER_SetupCounterLimitAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Limit the running counter.

The counter is limited when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

2.33. SCTimer: SCTimer/PWM (SCT) 269

MCUXpresso SDK Documentation, Release 25.06.00

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be limited

static inline void SCTIMER_SetupCounterStopAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Stop the running counter.

The counter is stopped when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be stopped

static inline void SCTIMER_SetupCounterStartAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Re-start the stopped counter.

The counter will re-start when the event number that is passed in by the user is triggered.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to re-start

static inline void SCTIMER_SetupCounterHaltAction(SCT_Type *base, sctimer_counter_t
whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is
triggered. When the counter is halted, all further events are disabled. The HALT condition
can only be removed by calling the SCTIMER_StartTimer() function.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• event – Event number that will trigger the counter to be halted

static inline void SCTIMER_SetupDmaTriggerAction(SCT_Type *base, uint32_t dmaNumber,
uint32_t event)

Generate a DMA request.

DMA request will be triggered by the event number that is passed in by the user.

Parameters
• base – SCTimer peripheral base address

• dmaNumber – The DMA request to generate

• event – Event number that will trigger the DMA request

270 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline void SCTIMER_SetCOUNTValue(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or
unified register is only allowed when the corresponding counter is halted (HALT bits are
set to 1 in the CTRL register).

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• value – the counter value update to the COUNT register.

static inline uint32_t SCTIMER_GetCOUNTValue(SCT_Type *base, sctimer_counter_t
whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers
at any time..

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The value of counter selected.

static inline void SCTIMER_SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Set the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be set.

• state – The state value in which the event is enabled to occur.

static inline void SCTIMER_ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Clear the state mask bit field of EV_STATE register.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be clear.

• state – The state value in which the event is disabled to occur.

static inline bool SCTIMER_GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Get the state mask bit field of EV_STATE register.

Note: This function is to check whether the event is enabled in a specific state.

Parameters
• base – SCTimer peripheral base address

• event – The EV_STATE register be read.

• state – The state value.

2.33. SCTimer: SCTimer/PWM (SCT) 271

MCUXpresso SDK Documentation, Release 25.06.00

Returns
The the state mask bit field of EV_STATE register.

• true: The event is enable in state.

• false: The event is disable in state.

static inline uint32_t SCTIMER_GetCaptureValue(SCT_Type *base, sctimer_counter_t
whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the
corresponding Capture Control registers occurred.

Parameters
• base – SCTimer peripheral base address

• whichCounter – SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

• capChannel – SCTimer capture register of capture channel.

Returns
The SCTimer counter value at which this register was last captured.

void SCTIMER_EventHandleIRQ(SCT_Type *base)
SCTimer interrupt handler.

Parameters
• base – SCTimer peripheral base address.

FSL_SCTIMER_DRIVER_VERSION
Version

enum _sctimer_pwm_mode
SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_EdgeAlignedPwm
Edge-aligned PWM

enumerator kSCTIMER_CenterAlignedPwm
Center-aligned PWM

enum _sctimer_counter
SCTimer counters type.

Values:

enumerator kSCTIMER_Counter_L
16-bit Low counter.

enumerator kSCTIMER_Counter_H
16-bit High counter.

enumerator kSCTIMER_Counter_U
32-bit Unified counter.

enum _sctimer_input
List of SCTimer input pins.

Values:

272 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_Input_0
SCTIMER input 0

enumerator kSCTIMER_Input_1
SCTIMER input 1

enumerator kSCTIMER_Input_2
SCTIMER input 2

enumerator kSCTIMER_Input_3
SCTIMER input 3

enumerator kSCTIMER_Input_4
SCTIMER input 4

enumerator kSCTIMER_Input_5
SCTIMER input 5

enumerator kSCTIMER_Input_6
SCTIMER input 6

enumerator kSCTIMER_Input_7
SCTIMER input 7

enum _sctimer_out
List of SCTimer output pins.

Values:

enumerator kSCTIMER_Out_0
SCTIMER output 0

enumerator kSCTIMER_Out_1
SCTIMER output 1

enumerator kSCTIMER_Out_2
SCTIMER output 2

enumerator kSCTIMER_Out_3
SCTIMER output 3

enumerator kSCTIMER_Out_4
SCTIMER output 4

enumerator kSCTIMER_Out_5
SCTIMER output 5

enumerator kSCTIMER_Out_6
SCTIMER output 6

enumerator kSCTIMER_Out_7
SCTIMER output 7

enumerator kSCTIMER_Out_8
SCTIMER output 8

enumerator kSCTIMER_Out_9
SCTIMER output 9

enum _sctimer_pwm_level_select
SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

2.33. SCTimer: SCTimer/PWM (SCT) 273

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_LowTrue
Low true pulses

enumerator kSCTIMER_HighTrue
High true pulses

enum _sctimer_clock_mode
SCTimer clock mode options.

Values:

enumerator kSCTIMER_System_ClockMode
System Clock Mode

enumerator kSCTIMER_Sampled_ClockMode
Sampled System Clock Mode

enumerator kSCTIMER_Input_ClockMode
SCT Input Clock Mode

enumerator kSCTIMER_Asynchronous_ClockMode
Asynchronous Mode

enum _sctimer_clock_select
SCTimer clock select options.

Values:

enumerator kSCTIMER_Clock_On_Rise_Input_0
Rising edges on input 0

enumerator kSCTIMER_Clock_On_Fall_Input_0
Falling edges on input 0

enumerator kSCTIMER_Clock_On_Rise_Input_1
Rising edges on input 1

enumerator kSCTIMER_Clock_On_Fall_Input_1
Falling edges on input 1

enumerator kSCTIMER_Clock_On_Rise_Input_2
Rising edges on input 2

enumerator kSCTIMER_Clock_On_Fall_Input_2
Falling edges on input 2

enumerator kSCTIMER_Clock_On_Rise_Input_3
Rising edges on input 3

enumerator kSCTIMER_Clock_On_Fall_Input_3
Falling edges on input 3

enumerator kSCTIMER_Clock_On_Rise_Input_4
Rising edges on input 4

enumerator kSCTIMER_Clock_On_Fall_Input_4
Falling edges on input 4

enumerator kSCTIMER_Clock_On_Rise_Input_5
Rising edges on input 5

enumerator kSCTIMER_Clock_On_Fall_Input_5
Falling edges on input 5

274 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_Clock_On_Rise_Input_6
Rising edges on input 6

enumerator kSCTIMER_Clock_On_Fall_Input_6
Falling edges on input 6

enumerator kSCTIMER_Clock_On_Rise_Input_7
Rising edges on input 7

enumerator kSCTIMER_Clock_On_Fall_Input_7
Falling edges on input 7

enum _sctimer_conflict_resolution
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

Values:

enumerator kSCTIMER_ResolveNone
No change

enumerator kSCTIMER_ResolveSet
Set output

enumerator kSCTIMER_ResolveClear
Clear output

enumerator kSCTIMER_ResolveToggle
Toggle output

enum _sctimer_event_active_direction
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

Values:

enumerator kSCTIMER_ActiveIndependent
This event is triggered regardless of the count direction.

enumerator kSCTIMER_ActiveInCountUp
This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER_ActiveInCountDown
This event is triggered only during down-counting when BIDIR = 1.

enum _sctimer_event
List of SCTimer event types.

Values:

enumerator kSCTIMER_InputLowOrMatchEvent

enumerator kSCTIMER_InputRiseOrMatchEvent

enumerator kSCTIMER_InputFallOrMatchEvent

enumerator kSCTIMER_InputHighOrMatchEvent

enumerator kSCTIMER_MatchEventOnly

enumerator kSCTIMER_InputLowEvent

2.33. SCTimer: SCTimer/PWM (SCT) 275

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_InputRiseEvent

enumerator kSCTIMER_InputFallEvent

enumerator kSCTIMER_InputHighEvent

enumerator kSCTIMER_InputLowAndMatchEvent

enumerator kSCTIMER_InputRiseAndMatchEvent

enumerator kSCTIMER_InputFallAndMatchEvent

enumerator kSCTIMER_InputHighAndMatchEvent

enumerator kSCTIMER_OutputLowOrMatchEvent

enumerator kSCTIMER_OutputRiseOrMatchEvent

enumerator kSCTIMER_OutputFallOrMatchEvent

enumerator kSCTIMER_OutputHighOrMatchEvent

enumerator kSCTIMER_OutputLowEvent

enumerator kSCTIMER_OutputRiseEvent

enumerator kSCTIMER_OutputFallEvent

enumerator kSCTIMER_OutputHighEvent

enumerator kSCTIMER_OutputLowAndMatchEvent

enumerator kSCTIMER_OutputRiseAndMatchEvent

enumerator kSCTIMER_OutputFallAndMatchEvent

enumerator kSCTIMER_OutputHighAndMatchEvent

enum _sctimer_interrupt_enable
List of SCTimer interrupts.

Values:

enumerator kSCTIMER_Event0InterruptEnable
Event 0 interrupt

enumerator kSCTIMER_Event1InterruptEnable
Event 1 interrupt

enumerator kSCTIMER_Event2InterruptEnable
Event 2 interrupt

enumerator kSCTIMER_Event3InterruptEnable
Event 3 interrupt

enumerator kSCTIMER_Event4InterruptEnable
Event 4 interrupt

enumerator kSCTIMER_Event5InterruptEnable
Event 5 interrupt

enumerator kSCTIMER_Event6InterruptEnable
Event 6 interrupt

276 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_Event7InterruptEnable
Event 7 interrupt

enumerator kSCTIMER_Event8InterruptEnable
Event 8 interrupt

enumerator kSCTIMER_Event9InterruptEnable
Event 9 interrupt

enumerator kSCTIMER_Event10InterruptEnable
Event 10 interrupt

enumerator kSCTIMER_Event11InterruptEnable
Event 11 interrupt

enumerator kSCTIMER_Event12InterruptEnable
Event 12 interrupt

enum _sctimer_status_flags
List of SCTimer flags.

Values:

enumerator kSCTIMER_Event0Flag
Event 0 Flag

enumerator kSCTIMER_Event1Flag
Event 1 Flag

enumerator kSCTIMER_Event2Flag
Event 2 Flag

enumerator kSCTIMER_Event3Flag
Event 3 Flag

enumerator kSCTIMER_Event4Flag
Event 4 Flag

enumerator kSCTIMER_Event5Flag
Event 5 Flag

enumerator kSCTIMER_Event6Flag
Event 6 Flag

enumerator kSCTIMER_Event7Flag
Event 7 Flag

enumerator kSCTIMER_Event8Flag
Event 8 Flag

enumerator kSCTIMER_Event9Flag
Event 9 Flag

enumerator kSCTIMER_Event10Flag
Event 10 Flag

enumerator kSCTIMER_Event11Flag
Event 11 Flag

enumerator kSCTIMER_Event12Flag
Event 12 Flag

2.33. SCTimer: SCTimer/PWM (SCT) 277

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSCTIMER_BusErrorLFlag
Bus error due to write when L counter was not halted

enumerator kSCTIMER_BusErrorHFlag
Bus error due to write when H counter was not halted

typedef enum _sctimer_pwm_mode sctimer_pwm_mode_t
SCTimer PWM operation modes.

typedef enum _sctimer_counter sctimer_counter_t
SCTimer counters type.

typedef enum _sctimer_input sctimer_input_t
List of SCTimer input pins.

typedef enum _sctimer_out sctimer_out_t
List of SCTimer output pins.

typedef enum _sctimer_pwm_level_select sctimer_pwm_level_select_t
SCTimer PWM output pulse mode: high-true, low-true or no output.

typedef struct _sctimer_pwm_signal_param sctimer_pwm_signal_param_t
Options to configure a SCTimer PWM signal.

typedef enum _sctimer_clock_mode sctimer_clock_mode_t
SCTimer clock mode options.

typedef enum _sctimer_clock_select sctimer_clock_select_t
SCTimer clock select options.

typedef enum _sctimer_conflict_resolution sctimer_conflict_resolution_t
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

typedef enum _sctimer_event_active_direction sctimer_event_active_direction_t
List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

typedef enum _sctimer_event sctimer_event_t
List of SCTimer event types.

typedef void (*sctimer_event_callback_t)(void)
SCTimer callback typedef.

typedef enum _sctimer_interrupt_enable sctimer_interrupt_enable_t
List of SCTimer interrupts.

typedef enum _sctimer_status_flags sctimer_status_flags_t
List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t
SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

SCT_EV_STATE_STATEMSKn(x)

struct _sctimer_pwm_signal_param
#include <fsl_sctimer.h> Options to configure a SCTimer PWM signal.

278 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

sctimer_out_t output
The output pin to use to generate the PWM signal

sctimer_pwm_level_select_t level
PWM output active level select.

uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0 = always inactive signal (0% duty
cycle) 100 = always active signal (100% duty cycle).

struct _sctimer_config
#include <fsl_sctimer.h> SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify
true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit coun-
ters. User can use the 16-bit low counter and the 16-bit high counters at the same time;
for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high
counter at the same time.

sctimer_clock_mode_t clockMode
SCT clock mode value

sctimer_clock_select_t clockSelect
SCT clock select value

bool enableBidirection_l
true: Up-down count mode for the L or unified counter false: Up count mode only for
the L or unified counter

bool enableBidirection_h
true: Up-down count mode for the H or unified counter false: Up count mode only for
the H or unified counter. This field is used only if the enableCounterUnify is set to false

uint8_t prescale_l
Prescale value to produce the L or unified counter clock

uint8_t prescale_h
Prescale value to produce the H counter clock. This field is used only if the enable-
CounterUnify is set to false

uint8_t outInitState
Defines the initial output value

uint8_t inputsync
SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to
define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12
= input 3 All other bits are reserved (bit13 ~bit 16). How User to set the the value for the
member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input
3 MACRO definition in user level. #define INPUTSYNC0 (0U) #define INPUTSYNC1 (1U)
#define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync
= (1 « INPUTSYNC2) | (1 « INPUTSYNC3);

2.33. SCTimer: SCTimer/PWM (SCT) 279

MCUXpresso SDK Documentation, Release 25.06.00

2.34 SPI: Serial Peripheral Interface Driver

2.35 SPI DMA Driver

status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_dma_callback_t callback, void *userData,
dma_handle_t *txHandle, dma_handle_t
*rxHandle)

Initialize the SPI master DMA handle.

This function initializes the SPI master DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t
*xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_half_duplex_transfer_t *xfer)

Transfers a block of data using a DMA method.

This function using polling way to do the first half transimission and using DMA way to do
the srcond half transimission, the transfer mechanism is half-duplex. When do the second
half transimission, code will return right away. When all data is transferred, the callback
function is called.

Parameters

280 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – SPI base pointer

• handle – A pointer to the spi_master_dma_handle_t structure which stores
the transfer state.

• xfer – A pointer to the spi_half_duplex_transfer_t structure.

Returns
status of status_t.

static inline status_t SPI_SlaveTransferCreateHandleDMA(SPI_Type *base, spi_dma_handle_t
*handle, spi_dma_callback_t callback,
void *userData, dma_handle_t
*txHandle, dma_handle_t *rxHandle)

Initialize the SPI slave DMA handle.

This function initializes the SPI slave DMA handle which can be used for other SPI master
transactional APIs. Usually, for a specified SPI instance, user need only call this API once to
get the initialized handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – User callback function called at the end of a transfer.

• userData – User data for callback.

• txHandle – DMA handle pointer for SPI Tx, the handle shall be static allo-
cated by users.

• rxHandle – DMA handle pointer for SPI Rx, the handle shall be static allo-
cated by users.

static inline status_t SPI_SlaveTransferDMA(SPI_Type *base, spi_dma_handle_t *handle,
spi_transfer_t *xfer)

Perform a non-blocking SPI transfer using DMA.

Note: This interface returned immediately after transfer initiates, users should call
SPI_GetTransferStatus to poll the transfer status to check whether SPI transfer finished.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

• xfer – Pointer to dma transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

2.35. SPI DMA Driver 281

MCUXpresso SDK Documentation, Release 25.06.00

status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t
*count)

Gets the master DMA transfer remaining bytes.

This function gets the master DMA transfer remaining bytes.

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

static inline void SPI_SlaveTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
Abort a SPI transfer using DMA.

Parameters
• base – SPI peripheral base address.

• handle – SPI DMA handle pointer.

static inline status_t SPI_SlaveTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t
*handle, size_t *count)

Gets the slave DMA transfer remaining bytes.

This function gets the slave DMA transfer remaining bytes.

Parameters
• base – SPI peripheral base address.

• handle – A pointer to the spi_dma_handle_t structure which stores the
transfer state.

• count – A number of bytes transferred by the non-blocking transaction.

Returns
status of status_t.

FSL_SPI_DMA_DRIVER_VERSION
SPI DMA driver version 2.1.1.

typedef struct _spi_dma_handle spi_dma_handle_t

typedef void (*spi_dma_callback_t)(SPI_Type *base, spi_dma_handle_t *handle, status_t status,
void *userData)

SPI DMA callback called at the end of transfer.

struct _spi_dma_handle
#include <fsl_spi_dma.h> SPI DMA transfer handle, users should not touch the content of
the handle.

Public Members

volatile bool txInProgress
Send transfer finished

volatile bool rxInProgress
Receive transfer finished

282 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

uint8_t bytesPerFrame
Bytes in a frame for SPI transfer

uint8_t lastwordBytes
The Bytes of lastword for master

dma_handle_t *txHandle
DMA handler for SPI send

dma_handle_t *rxHandle
DMA handler for SPI receive

spi_dma_callback_t callback
Callback for SPI DMA transfer

void *userData
User Data for SPI DMA callback

uint32_t state
Internal state of SPI DMA transfer

size_t transferSize
Bytes need to be transfer

uint32_t instance
Index of SPI instance

const uint8_t *txNextData
The pointer of next time tx data

const uint8_t *txEndData
The pointer of end of data

uint8_t *rxNextData
The pointer of next time rx data

uint8_t *rxEndData
The pointer of end of rx data

uint32_t dataBytesEveryTime
Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT

2.36 SPI Driver

FSL_SPI_DRIVER_VERSION
SPI driver version.

enum _spi_xfer_option
SPI transfer option.

Values:

enumerator kSPI_FrameDelay
A delay may be inserted, defined in the DLY register.

enumerator kSPI_FrameAssert
SSEL will be deasserted at the end of a transfer

2.36. SPI Driver 283

MCUXpresso SDK Documentation, Release 25.06.00

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_txfifo_watermark
txFIFO watermark values

Values:

enumerator kSPI_TxFifo0
SPI tx watermark is empty

enumerator kSPI_TxFifo1
SPI tx watermark at 1 item

enumerator kSPI_TxFifo2
SPI tx watermark at 2 items

enumerator kSPI_TxFifo3
SPI tx watermark at 3 items

enumerator kSPI_TxFifo4
SPI tx watermark at 4 items

enumerator kSPI_TxFifo5
SPI tx watermark at 5 items

enumerator kSPI_TxFifo6
SPI tx watermark at 6 items

enumerator kSPI_TxFifo7
SPI tx watermark at 7 items

284 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enum _spi_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kSPI_RxFifo1
SPI rx watermark at 1 item

enumerator kSPI_RxFifo2
SPI rx watermark at 2 items

enumerator kSPI_RxFifo3
SPI rx watermark at 3 items

enumerator kSPI_RxFifo4
SPI rx watermark at 4 items

enumerator kSPI_RxFifo5
SPI rx watermark at 5 items

enumerator kSPI_RxFifo6
SPI rx watermark at 6 items

enumerator kSPI_RxFifo7
SPI rx watermark at 7 items

enumerator kSPI_RxFifo8
SPI rx watermark at 8 items

enum _spi_data_width
Transfer data width.

Values:

enumerator kSPI_Data4Bits
4 bits data width

enumerator kSPI_Data5Bits
5 bits data width

enumerator kSPI_Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_Data10Bits
10 bits data width

enumerator kSPI_Data11Bits
11 bits data width

enumerator kSPI_Data12Bits
12 bits data width

enumerator kSPI_Data13Bits
13 bits data width

2.36. SPI Driver 285

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSPI_Data14Bits
14 bits data width

enumerator kSPI_Data15Bits
15 bits data width

enumerator kSPI_Data16Bits
16 bits data width

enum _spi_ssel
Slave select.

Values:

enumerator kSPI_Ssel0
Slave select 0

enumerator kSPI_Ssel1
Slave select 1

enumerator kSPI_Ssel2
Slave select 2

enumerator kSPI_Ssel3
Slave select 3

enum _spi_spol
ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh

enumerator kSPI_Spol1ActiveHigh

enumerator kSPI_Spol3ActiveHigh

enumerator kSPI_SpolActiveAllHigh

enumerator kSPI_SpolActiveAllLow

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

286 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSPI_RxLvlIrq
Rx level interrupt

enumerator kSPI_TxLvlIrq
Tx level interrupt

enum _spi_statusflags
SPI status flags.

Values:

enumerator kSPI_TxEmptyFlag
txFifo is empty

enumerator kSPI_TxNotFullFlag
txFifo is not full

enumerator kSPI_RxNotEmptyFlag
rxFIFO is not empty

enumerator kSPI_RxFullFlag
rxFIFO is full

typedef enum _spi_xfer_option spi_xfer_option_t
SPI transfer option.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
txFIFO watermark values

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
rxFIFO watermark values

typedef enum _spi_data_width spi_data_width_t
Transfer data width.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure. Note: The DLY register controls several programmable
delays related to SPI signalling, it stands for how many SPI clock time will be inserted. The
maxinun value of these delay time is 15.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

2.36. SPI Driver 287

MCUXpresso SDK Documentation, Release 25.06.00

typedef struct _spi_half_duplex_transfer spi_half_duplex_transfer_t
SPI half-duplex(master only) transfer structure.

typedef struct _spi_config spi_config_t
Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

typedef struct _spi_master_handle spi_master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI slave callback for finished transmit.

typedef void (*flexcomm_spi_master_irq_handler_t)(SPI_Type *base, spi_master_handle_t
*handle)

Typedef for master interrupt handler.

typedef void (*flexcomm_spi_slave_irq_handler_t)(SPI_Type *base, spi_slave_handle_t *handle)
Typedef for slave interrupt handler.

volatile uint8_t s_dummyData[]
SPI default SSEL COUNT.

Global variable for dummy data value setting.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

SPI_DATA(n)

SPI_CTRLMASK

SPI_ASSERTNUM_SSEL(n)

SPI_DEASSERTNUM_SSEL(n)

SPI_DEASSERT_ALL

SPI_FIFOWR_FLAGS_MASK

SPI_FIFOTRIG_TXLVL_GET(base)

SPI_FIFOTRIG_RXLVL_GET(base)

struct _spi_delay_config
#include <fsl_spi.h> SPI delay time configure structure. Note: The DLY register controls
several programmable delays related to SPI signalling, it stands for how many SPI clock
time will be inserted. The maxinun value of these delay time is 15.

288 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableLoopback
Enable loopback for test purpose

bool enableMaster
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

spi_data_width_t dataWidth
Width of the data

spi_ssel_t sselNum
Slave select number

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

spi_delay_config_t delayConfig
Delay configuration.

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

2.36. SPI Driver 289

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_width_t dataWidth
Width of the data

spi_spol_t sselPol
Configure active CS polarity

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

uint32_t configFlags
Additional option to control transfer, spi_xfer_option_t.

size_t dataSize
Transfer bytes

struct _spi_half_duplex_transfer
#include <fsl_spi.h> SPI half-duplex(master only) transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t txDataSize
Transfer bytes for transmit

size_t rxDataSize
Transfer bytes

290 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

uint32_t configFlags
Transfer configuration flags, spi_xfer_option_t.

bool isPcsAssertInTransfer
If PCS pin keep assert between transmit and receive. true for assert and false for de-
assert.

bool isTransmitFirst
True for transmit first and false for receive first.

struct _spi_config
#include <fsl_spi.h> Internal configuration structure used in ‘spi’ and ‘spi_dma’ driver.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes
Number of data to be received [in bytes]

volatile int8_t toReceiveCount
The number of data expected to receive in data width. Since the received count and
sent count should be the same to complete the transfer, if the sent count is x and the
received count is y, toReceiveCount is x-y.

size_t totalByteCount
A number of transfer bytes

volatile uint32_t state
SPI internal state

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint8_t sselNum
Slave select number to be asserted when transferring data [Valid values: 0 to 3]

uint32_t configFlags
Additional option to control transfer

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

2.36. SPI Driver 291

MCUXpresso SDK Documentation, Release 25.06.00

2.37 SPIFI: SPIFI flash interface driver

void SPIFI_TransferTxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_dma_callback_t callback, void *userData,
dma_handle_t *dmaHandle)

Initializes the SPIFI handle for send which is used in transactional functions and set the
callback.

Parameters
• base – SPIFI peripheral base address

• handle – Pointer to spifi_dma_handle_t structure

• callback – SPIFI callback, NULL means no callback.

• userData – User callback function data.

• dmaHandle – User requested DMA handle for DMA transfer

void SPIFI_TransferRxCreateHandleDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_dma_callback_t callback, void *userData,
dma_handle_t *dmaHandle)

Initializes the SPIFI handle for receive which is used in transactional functions and set the
callback.

Parameters
• base – SPIFI peripheral base address

• handle – Pointer to spifi_dma_handle_t structure

• callback – SPIFI callback, NULL means no callback.

• userData – User callback function data.

• dmaHandle – User requested DMA handle for DMA transfer

status_t SPIFI_TransferSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, spifi_transfer_t
*xfer)

Transfers SPIFI data using an DMA non-blocking method.

This function writes data to the SPIFI transmit FIFO. This function is non-blocking.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• xfer – SPIFI transfer structure.

status_t SPIFI_TransferReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
spifi_transfer_t *xfer)

Receives data using an DMA non-blocking method.

This function receive data from the SPIFI receive buffer/FIFO. This function is non-blocking.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• xfer – SPIFI transfer structure.

292 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

void SPIFI_TransferAbortSendDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)
Aborts the sent data using DMA.

This function aborts the sent data using DMA.

Parameters
• base – SPIFI peripheral base address.

• handle – Pointer to spifi_dma_handle_t structure

void SPIFI_TransferAbortReceiveDMA(SPIFI_Type *base, spifi_dma_handle_t *handle)
Aborts the receive data using DMA.

This function abort receive data which using DMA.

Parameters
• base – SPIFI peripheral base address.

• handle – Pointer to spifi_dma_handle_t structure

status_t SPIFI_TransferGetSendCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle, size_t
*count)

Gets the transferred counts of send.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure.

• count – Bytes sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SPIFI_TransferGetReceiveCountDMA(SPIFI_Type *base, spifi_dma_handle_t *handle,
size_t *count)

Gets the status of the receive transfer.

Parameters
• base – Pointer to QuadSPI Type.

• handle – Pointer to spifi_dma_handle_t structure

• count – Bytes received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

uint32_t SPIFI_GetInstance(SPIFI_Type *base)
Get the SPIFI instance from peripheral base address.

Parameters
• base – SPIFI peripheral base address.

Returns
SPIFI instance.

2.37. SPIFI: SPIFI flash interface driver 293

MCUXpresso SDK Documentation, Release 25.06.00

void SPIFI_Init(SPIFI_Type *base, const spifi_config_t *config)
Initializes the SPIFI with the user configuration structure.

This function configures the SPIFI module with the user-defined configuration.

Parameters
• base – SPIFI peripheral base address.

• config – The pointer to the configuration structure.

void SPIFI_GetDefaultConfig(spifi_config_t *config)
Get SPIFI default configure settings.

Parameters
• config – SPIFI config structure pointer.

void SPIFI_Deinit(SPIFI_Type *base)
Deinitializes the SPIFI regions.

Parameters
• base – SPIFI peripheral base address.

void SPIFI_SetCommand(SPIFI_Type *base, spifi_command_t *cmd)
Set SPIFI flash command.

Parameters
• base – SPIFI peripheral base address.

• cmd – SPIFI command structure pointer.

static inline void SPIFI_SetCommandAddress(SPIFI_Type *base, uint32_t addr)
Set SPIFI command address.

Parameters
• base – SPIFI peripheral base address.

• addr – Address value for the command.

static inline void SPIFI_SetIntermediateData(SPIFI_Type *base, uint32_t val)
Set SPIFI intermediate data.

Before writing a command wihch needs specific intermediate value, users shall call this
function to write it. The main use of this function for current serial flash is to select no-
opcode mode and cancelling this mode. As dummy cycle do not care about the value, no
need to call this function.

Parameters
• base – SPIFI peripheral base address.

• val – Intermediate data.

static inline void SPIFI_SetCacheLimit(SPIFI_Type *base, uint32_t val)
Set SPIFI Cache limit value.

SPIFI includes caching of prevously-accessed data to improve performance. Software can
write an address to this function, to prevent such caching at and above the address.

Parameters
• base – SPIFI peripheral base address.

• val – Zero-based upper limit of cacheable memory.

294 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline void SPIFI_ResetCommand(SPIFI_Type *base)
Reset the command field of SPIFI.

This function is used to abort the current command or memory mode.

Parameters
• base – SPIFI peripheral base address.

void SPIFI_SetMemoryCommand(SPIFI_Type *base, spifi_command_t *cmd)
Set SPIFI flash AHB read command.

Call this function means SPIFI enters to memory mode, while users need to use command,
a SPIFI_ResetCommand shall be called.

Parameters
• base – SPIFI peripheral base address.

• cmd – SPIFI command structure pointer.

static inline void SPIFI_EnableInterrupt(SPIFI_Type *base, uint32_t mask)
Enable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is fin-
ished.

Parameters
• base – SPIFI peripheral base address.

• mask – SPIFI interrupt enable mask. It is a logic OR of members the enu-
meration :: spifi_interrupt_enable_t

static inline void SPIFI_DisableInterrupt(SPIFI_Type *base, uint32_t mask)
Disable SPIFI interrupt.

The interrupt is triggered only in command mode, and it means the command now is fin-
ished.

Parameters
• base – SPIFI peripheral base address.

• mask – SPIFI interrupt enable mask. It is a logic OR of members the enu-
meration :: spifi_interrupt_enable_t

static inline uint32_t SPIFI_GetStatusFlag(SPIFI_Type *base)
Get the status of all interrupt flags for SPIFI.

Parameters
• base – SPIFI peripheral base address.

Returns
SPIFI flag status

FSL_SPIFI_DMA_DRIVER_VERSION
SPIFI DMA driver version 2.0.3.

FSL_SPIFI_DRIVER_VERSION
SPIFI driver version 2.0.3.

Status structure of SPIFI.

Values:

2.37. SPIFI: SPIFI flash interface driver 295

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kStatus_SPIFI_Idle
SPIFI is in idle state

enumerator kStatus_SPIFI_Busy
SPIFI is busy

enumerator kStatus_SPIFI_Error
Error occurred during SPIFI transfer

enum _spifi_interrupt_enable
SPIFI interrupt source.

Values:

enumerator kSPIFI_CommandFinishInterruptEnable
Interrupt while command finished

enum _spifi_spi_mode
SPIFI SPI mode select.

Values:

enumerator kSPIFI_SPISckLow
SCK low after last bit of command, keeps low while CS high

enumerator kSPIFI_SPISckHigh
SCK high after last bit of command and while CS high

enum _spifi_dual_mode
SPIFI dual mode select.

Values:

enumerator kSPIFI_QuadMode
SPIFI uses IO3:0

enumerator kSPIFI_DualMode
SPIFI uses IO1:0

enum _spifi_data_direction
SPIFI data direction.

Values:

enumerator kSPIFI_DataInput
Data input from serial flash.

enumerator kSPIFI_DataOutput
Data output to serial flash.

enum _spifi_command_format
SPIFI command opcode format.

Values:

enumerator kSPIFI_CommandAllSerial
All fields of command are serial.

enumerator kSPIFI_CommandDataQuad
Only data field is dual/quad, others are serial.

enumerator kSPIFI_CommandOpcodeSerial
Only opcode field is serial, others are quad/dual.

296 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kSPIFI_CommandAllQuad
All fields of command are dual/quad mode.

enum _spifi_command_type
SPIFI command type.

Values:

enumerator kSPIFI_CommandOpcodeOnly
Command only have opcode, no address field

enumerator kSPIFI_CommandOpcodeAddrOneByte
Command have opcode and also one byte address field

enumerator kSPIFI_CommandOpcodeAddrTwoBytes
Command have opcode and also two bytes address field

enumerator kSPIFI_CommandOpcodeAddrThreeBytes
Command have opcode and also three bytes address field.

enumerator kSPIFI_CommandOpcodeAddrFourBytes
Command have opcode and also four bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrThreeBytes
Command have no opcode and three bytes address field

enumerator kSPIFI_CommandNoOpcodeAddrFourBytes
Command have no opcode and four bytes address field

SPIFI status flags.

Values:

enumerator kSPIFI_MemoryCommandWriteFinished
Memory command write finished

enumerator kSPIFI_CommandWriteFinished
Command write finished

enumerator kSPIFI_InterruptRequest
CMD flag from 1 to 0, means command execute finished

typedef struct _spifi_dma_handle spifi_dma_handle_t

typedef void (*spifi_dma_callback_t)(SPIFI_Type *base, spifi_dma_handle_t *handle, status_t
status, void *userData)

SPIFI DMA transfer callback function for finish and error.

typedef enum _spifi_interrupt_enable spifi_interrupt_enable_t
SPIFI interrupt source.

typedef enum _spifi_spi_mode spifi_spi_mode_t
SPIFI SPI mode select.

typedef enum _spifi_dual_mode spifi_dual_mode_t
SPIFI dual mode select.

typedef enum _spifi_data_direction spifi_data_direction_t
SPIFI data direction.

typedef enum _spifi_command_format spifi_command_format_t
SPIFI command opcode format.

2.37. SPIFI: SPIFI flash interface driver 297

MCUXpresso SDK Documentation, Release 25.06.00

typedef enum _spifi_command_type spifi_command_type_t
SPIFI command type.

typedef struct _spifi_command spifi_command_t
SPIFI command structure.

typedef struct _spifi_config spifi_config_t
SPIFI region configuration structure.

typedef struct _spifi_transfer spifi_transfer_t
Transfer structure for SPIFI.

static inline void SPIFI_EnableDMA(SPIFI_Type *base, bool enable)
Enable or disable DMA request for SPIFI.

Parameters
• base – SPIFI peripheral base address.

• enable – True means enable DMA and false means disable DMA.

static inline uint32_t SPIFI_GetDataRegisterAddress(SPIFI_Type *base)
Gets the SPIFI data register address.

This API is used to provide a transfer address for the SPIFI DMA transfer configuration.

Parameters
• base – SPIFI base pointer

Returns
data register address

static inline void SPIFI_WriteData(SPIFI_Type *base, uint32_t data)
Write a word data in address of SPIFI.

Users can write a page or at least a word data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

static inline void SPIFI_WriteDataByte(SPIFI_Type *base, uint8_t data)
Write a byte data in address of SPIFI.

Users can write a byte data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

void SPIFI_WriteDataHalfword(SPIFI_Type *base, uint16_t data)
Write a halfword data in address of SPIFI.

Users can write a halfword data into SPIFI address.

Parameters
• base – SPIFI peripheral base address.

• data – Data need be write.

298 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint32_t SPIFI_ReadData(SPIFI_Type *base)
Read data from serial flash.

Users should notice before call this function, the data length field in command register shall
larger than 4, otherwise a hardfault will happen.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

static inline uint8_t SPIFI_ReadDataByte(SPIFI_Type *base)
Read a byte data from serial flash.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

uint16_t SPIFI_ReadDataHalfword(SPIFI_Type *base)
Read a halfword data from serial flash.

Parameters
• base – SPIFI peripheral base address.

Returns
Data input from flash.

struct _spifi_dma_handle
#include <fsl_spifi_dma.h> SPIFI DMA transfer handle, users should not touch the content
of the handle.

Public Members

dma_handle_t *dmaHandle
DMA handler for SPIFI send

size_t transferSize
Bytes need to transfer.

uint32_t state
Internal state for SPIFI DMA transfer

spifi_dma_callback_t callback
Callback for users while transfer finish or error occurred

void *userData
User callback parameter

struct _spifi_command
#include <fsl_spifi.h> SPIFI command structure.

Public Members

uint16_t dataLen
How many data bytes are needed in this command.

2.37. SPIFI: SPIFI flash interface driver 299

MCUXpresso SDK Documentation, Release 25.06.00

bool isPollMode
For command need to read data from serial flash

spifi_data_direction_t direction
Data direction of this command.

uint8_t intermediateBytes
How many intermediate bytes needed

spifi_command_format_t format
Command format

spifi_command_type_t type
Command type

uint8_t opcode
Command opcode value

struct _spifi_config
#include <fsl_spifi.h> SPIFI region configuration structure.

Public Members

uint16_t timeout
SPI transfer timeout, the unit is SCK cycles

uint8_t csHighTime
CS high time cycles

bool disablePrefetch
True means SPIFI will not attempt a speculative prefetch.

bool disableCachePrefech
Disable prefetch of cache line

bool isFeedbackClock
Is data sample uses feedback clock.

spifi_spi_mode_t spiMode
SPIFI spi mode select

bool isReadFullClockCycle
If enable read full clock cycle.

spifi_dual_mode_t dualMode
SPIFI dual mode, dual or quad.

struct _spifi_transfer
#include <fsl_spifi.h> Transfer structure for SPIFI.

Public Members

uint8_t *data
Pointer to data to transmit

size_t dataSize
Bytes to be transmit

300 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

2.38 SPIFI DMA Driver

2.39 SPIFI Driver

2.40 TRNG: True Random Number Generator

FSL_TRNG_DRIVER_VERSION
TRNG driver version 2.0.18.

Current version: 2.0.18

Change log:

• version 2.0.18

– TRNG health checks now done in software on RT5xx and RT6xx.

• version 2.0.17

– Added support for RT700.

• version 2.0.16

– Added support for Dual oscillator mode.

• version 2.0.15

– Changed TRNG_USER_CONFIG_DEFAULT_XXX values according to latest rec-
comended by design team.

• version 2.0.14

– add support for RW610 and RW612

• version 2.0.13

– After deepsleep it might return error, added clearing bits in
TRNG_GetRandomData() and generating new entropy.

– Modified reloading entropy in TRNG_GetRandomData(), for some data length it
doesn’t reloading entropy correctly.

• version 2.0.12

– For KW34A4_SERIES, KW35A4_SERIES, KW36A4_SERIES set
TRNG_USER_CONFIG_DEFAULT_OSC_DIV to kTRNG_RingOscDiv8.

• version 2.0.11

– Add clearing pending errors in TRNG_Init().

• version 2.0.10

– Fixed doxygen issues.

• version 2.0.9

– Fix HIS_CCM metrics issues.

• version 2.0.8

– For K32L2A41A_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
kTRNG_RingOscDiv4.

• version 2.0.7

– Fix MISRA 2004 issue rule 12.5.

• version 2.0.6

2.38. SPIFI DMA Driver 301

MCUXpresso SDK Documentation, Release 25.06.00

– For KW35Z4_SERIES set TRNG_USER_CONFIG_DEFAULT_OSC_DIV to
kTRNG_RingOscDiv8.

• version 2.0.5

– Add possibility to define default TRNG configuration by device specific preproces-
sor macros for FRQMIN, FRQMAX and OSCDIV.

• version 2.0.4

– Fix MISRA-2012 issues.

• Version 2.0.3

– update TRNG_Init to restart entropy generation

• Version 2.0.2

– fix MISRA issues

• Version 2.0.1

– add support for KL8x and KL28Z

– update default OSCDIV for K81 to divide by 2

enum _trng_sample_mode
TRNG sample mode. Used by trng_config_t.

Values:

enumerator kTRNG_SampleModeVonNeumann
Use von Neumann data in both Entropy shifter and Statistical Checker.

enumerator kTRNG_SampleModeRaw
Use raw data into both Entropy shifter and Statistical Checker.

enumerator kTRNG_SampleModeVonNeumannRaw
Use von Neumann data in Entropy shifter. Use raw data into Statistical Checker.

enum _trng_clock_mode
TRNG clock mode. Used by trng_config_t.

Values:

enumerator kTRNG_ClockModeRingOscillator
Ring oscillator is used to operate the TRNG (default).

enumerator kTRNG_ClockModeSystem
System clock is used to operate the TRNG. This is for test use only, and indeterminate
results may occur.

enum _trng_ring_osc_div
TRNG ring oscillator divide. Used by trng_config_t.

Values:

enumerator kTRNG_RingOscDiv0
Ring oscillator with no divide

enumerator kTRNG_RingOscDiv2
Ring oscillator divided-by-2.

enumerator kTRNG_RingOscDiv4
Ring oscillator divided-by-4.

enumerator kTRNG_RingOscDiv8
Ring oscillator divided-by-8.

302 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

typedef enum _trng_sample_mode trng_sample_mode_t
TRNG sample mode. Used by trng_config_t.

typedef enum _trng_clock_mode trng_clock_mode_t
TRNG clock mode. Used by trng_config_t.

typedef enum _trng_ring_osc_div trng_ring_osc_div_t
TRNG ring oscillator divide. Used by trng_config_t.

typedef struct _trng_statistical_check_limit trng_statistical_check_limit_t
Data structure for definition of statistical check limits. Used by trng_config_t.

typedef struct _trng_user_config trng_config_t
Data structure for the TRNG initialization.

This structure initializes the TRNG by calling the TRNG_Init() function. It contains all TRNG
configurations.

status_t TRNG_GetDefaultConfig(trng_config_t *userConfig)
Initializes the user configuration structure to default values.

This function initializes the configuration structure to default values. The default values
are platform dependent.

Parameters
• userConfig – User configuration structure.

Returns
If successful, returns the kStatus_TRNG_Success. Otherwise, it returns an er-
ror.

status_t TRNG_Init(TRNG_Type *base, const trng_config_t *userConfig)
Initializes the TRNG.

This function initializes the TRNG. When called, the TRNG entropy generation starts imme-
diately.

Parameters
• base – TRNG base address

• userConfig – Pointer to the initialization configuration structure.

Returns
If successful, returns the kStatus_TRNG_Success. Otherwise, it returns an er-
ror.

void TRNG_Deinit(TRNG_Type *base)
Shuts down the TRNG.

This function shuts down the TRNG.

Parameters
• base – TRNG base address.

status_t TRNG_GetRandomData(TRNG_Type *base, void *data, size_t dataSize)
Gets random data.

This function gets random data from the TRNG.

Parameters
• base – TRNG base address.

• data – Pointer address used to store random data.

• dataSize – Size of the buffer pointed by the data parameter.

2.40. TRNG: True Random Number Generator 303

MCUXpresso SDK Documentation, Release 25.06.00

Returns
random data

struct _trng_statistical_check_limit
#include <fsl_trng.h> Data structure for definition of statistical check limits. Used by
trng_config_t.

Public Members

uint32_t maximum
Maximum limit.

int32_t minimum
Minimum limit.

struct _trng_user_config
#include <fsl_trng.h> Data structure for the TRNG initialization.

This structure initializes the TRNG by calling the TRNG_Init() function. It contains all TRNG
configurations.

Public Members

bool lock
Disable programmability of TRNG registers.

trng_clock_mode_t clockMode
Clock mode used to operate TRNG.

trng_ring_osc_div_t ringOscDiv
Ring oscillator divide used by TRNG.

trng_sample_mode_t sampleMode
Sample mode of the TRNG ring oscillator.

uint16_t entropyDelay
Entropy Delay. Defines the length (in system clocks) of each Entropy sample taken.

uint16_t sampleSize
Sample Size. Defines the total number of Entropy samples that will be taken during
Entropy generation.

uint16_t sparseBitLimit
Sparse Bit Limit which defines the maximum number of consecutive samples that may
be discarded before an error is generated. This limit is used only for during von Neu-
mann sampling (enabled by TRNG_HAL_SetSampleMode()). Samples are discarded if
two consecutive raw samples are both 0 or both 1. If this discarding occurs for a long
period of time, it indicates that there is insufficient Entropy.

uint8_t retryCount
Retry count. It defines the number of times a statistical check may fails during the
TRNG Entropy Generation before generating an error.

uint8_t longRunMaxLimit
Largest allowable number of consecutive samples of all 1, or all 0, that is allowed dur-
ing the Entropy generation.

trng_statistical_check_limit_t monobitLimit
Maximum and minimum limits for statistical check of number of ones/zero detected
during entropy generation.

304 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

trng_statistical_check_limit_t runBit1Limit
Maximum and minimum limits for statistical check of number of runs of length 1 de-
tected during entropy generation.

trng_statistical_check_limit_t runBit2Limit
Maximum and minimum limits for statistical check of number of runs of length 2 de-
tected during entropy generation.

trng_statistical_check_limit_t runBit3Limit
Maximum and minimum limits for statistical check of number of runs of length 3 de-
tected during entropy generation.

trng_statistical_check_limit_t runBit4Limit
Maximum and minimum limits for statistical check of number of runs of length 4 de-
tected during entropy generation.

trng_statistical_check_limit_t runBit5Limit
Maximum and minimum limits for statistical check of number of runs of length 5 de-
tected during entropy generation.

trng_statistical_check_limit_t runBit6PlusLimit
Maximum and minimum limits for statistical check of number of runs of length 6 or
more detected during entropy generation.

trng_statistical_check_limit_t pokerLimit
Maximum and minimum limits for statistical check of “Poker Test”.

trng_statistical_check_limit_t frequencyCountLimit
Maximum and minimum limits for statistical check of entropy sample frequency
count.

2.41 USART: Universal Synchronous/Asynchronous Re-
ceiver/Transmitter Driver

2.42 USART DMA Driver

status_t USART_TransferCreateHandleDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_dma_transfer_callback_t callback, void
*userData, dma_handle_t *txDmaHandle,
dma_handle_t *rxDmaHandle)

Initializes the USART handle which is used in transactional functions.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• callback – Callback function.

• userData – User data.

• txDmaHandle – User-requested DMA handle for TX DMA transfer.

• rxDmaHandle – User-requested DMA handle for RX DMA transfer.

2.41. USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver 305

MCUXpresso SDK Documentation, Release 25.06.00

status_t USART_TransferSendDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Sends data using DMA.

This function sends data using DMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART DMA transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_TxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

status_t USART_TransferReceiveDMA(USART_Type *base, usart_dma_handle_t *handle,
usart_transfer_t *xfer)

Receives data using DMA.

This function receives data using DMA. This is a non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters
• base – USART peripheral base address.

• handle – Pointer to usart_dma_handle_t structure.

• xfer – USART DMA transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_USART_RxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortSendDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the sent data using DMA.

This function aborts send data using DMA.

Parameters
• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

void USART_TransferAbortReceiveDMA(USART_Type *base, usart_dma_handle_t *handle)
Aborts the received data using DMA.

This function aborts the received data using DMA.

Parameters
• base – USART peripheral base address

• handle – Pointer to usart_dma_handle_t structure

306 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

status_t USART_TransferGetReceiveCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferGetSendCountDMA(USART_Type *base, usart_dma_handle_t *handle,
uint32_t *count)

Get the number of bytes that have been sent.

This function gets the number of bytes that have been sent.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Sent bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

FSL_USART_DMA_DRIVER_VERSION
USART dma driver version.

typedef struct _usart_dma_handle usart_dma_handle_t

typedef void (*usart_dma_transfer_callback_t)(USART_Type *base, usart_dma_handle_t *handle,
status_t status, void *userData)

UART transfer callback function.

struct _usart_dma_handle
#include <fsl_usart_dma.h> UART DMA handle.

Public Members

USART_Type *base
UART peripheral base address.

usart_dma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

2.42. USART DMA Driver 307

MCUXpresso SDK Documentation, Release 25.06.00

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

dma_handle_t *txDmaHandle
The DMA TX channel used.

dma_handle_t *rxDmaHandle
The DMA RX channel used.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

2.43 USART Driver

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters
• base – USART peripheral base address.

• config – Pointer to user-defined configuration structure.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current

clock source.

• kStatus_InvalidArgument – USART base address is not valid

• kStatus_Success – Status USART initialize succeed

void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables TX and RX, and disables the USART clock.

Parameters
• base – USART peripheral base address.

308 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 115200U; usartConfig->parityMode =
kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig-
>bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false;

Parameters
• config – Pointer to configuration structure.

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters
• base – USART peripheral base address.

• baudrate_Bps – USART baudrate to be set.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current

clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

status_t USART_Enable32kMode(USART_Type *base, uint32_t baudRate_Bps, bool
enableMode32k, uint32_t srcClock_Hz)

Enable 32 kHz mode which USART uses clock from the RTC oscillator as the clock source.

Please note that in order to use a 32 kHz clock to operate USART properly, the RTC oscillator
and its 32 kHz output must be manully enabled by user, by calling RTC_Init and setting
SYSCON_RTCOSCCTRL_EN bit to 1. And in 32kHz clocking mode the USART can only work
at 9600 baudrate or at the baudrate that 9600 can evenly divide, eg: 4800, 3200.

Parameters
• base – USART peripheral base address.

• baudRate_Bps – USART baudrate to be set..

• enableMode32k – true is 32k mode, false is normal mode.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current

clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

2.43. USART Driver 309

MCUXpresso SDK Documentation, Release 25.06.00

void USART_Enable9bitMode(USART_Type *base, bool enable)
Enable 9-bit data mode for USART.

This function set the 9-bit mode for USART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – USART peripheral base address.

• enable – true to enable, false to disable.

static inline void USART_SetMatchAddress(USART_Type *base, uint8_t address)
Set the USART slave address.

This function configures the address for USART module that works as slave in 9-bit data
mode. When the address detection is enabled, the frame it receices with MSB being 1 is
considered as an address frame, otherwise it is considered as data frame. Once the address
frame matches slave’s own addresses, this slave is addressed. This address frame and its
following data frames are stored in the receive buffer, otherwise the frames will be dis-
carded. To un-address a slave, just send an address frame with unmatched address.

Note: Any USART instance joined in the multi-slave system can work as slave. The position
of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9 bit
data formats.

Parameters
• base – USART peripheral base address.

• address – USART slave address.

static inline void USART_EnableMatchAddress(USART_Type *base, bool match)
Enable the USART match address feature.

Parameters
• base – USART peripheral base address.

• match – true to enable match address, false to disable.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the TX is empty:

if (kUSART_TxFifoNotFullFlag & USART_GetStatusFlags(USART1))
{

...
}

Parameters
• base – USART peripheral base address.

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags. The mask is a logical OR of enumeration
members. See kUSART_AllClearFlags. For example:

310 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

USART_ClearStatusFlags(USART1, kUSART_TxError | kUSART_RxError)

Parameters
• base – USART peripheral base address.

• mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX empty interrupt and RX full interrupt:

USART_EnableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX empty interrupt and RX full interrupt:

USART_DisableInterrupts(USART1, kUSART_TxLevelInterruptEnable | kUSART_
↪→RxLevelInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters
• base – USART peripheral base address.

static inline void USART_EnableTxDMA(USART_Type *base, bool enable)
Enable DMA for Tx.

static inline void USART_EnableRxDMA(USART_Type *base, bool enable)
Enable DMA for Rx.

static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
• base – USART peripheral base address.

• enable – Enable CTS or not, true for enable and false for disable.

2.43. USART Driver 311

MCUXpresso SDK Documentation, Release 25.06.00

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).

Parameters
• base – USART peripheral base address.

• enable – Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
• base – USART peripheral base address.

• enable – Enable auto clear or not, true for enable and false for disable.

static inline void USART_SetRxFifoWatermark(USART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Rx FIFO watermark.

static inline void USART_SetTxFifoWatermark(USART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – USART peripheral base address.

• water – Tx FIFO watermark.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the FIFOWR register.

This function writes data to the txFIFO directly. The upper layer must ensure that txFIFO
has space for data to write before calling this function.

Parameters
• base – USART peripheral base address.

• data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the FIFORD register directly.

This function reads data from the rxFIFO directly. The upper layer must ensure that the
rxFIFO is not empty before calling this function.

Parameters
• base – USART peripheral base address.

Returns
The byte read from USART data register.

312 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

static inline uint8_t USART_GetRxFifoCount(USART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t USART_GetTxFifoCount(USART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – USART peripheral base address.

Returns
tx FIFO data count.

void USART_SendAddress(USART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – USART peripheral base address.

• address – USART slave address.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
to have room and writes data to the TX buffer.

Parameters
• base – USART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_InvalidArgument – Invalid argument.

• kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full or for RX FIFO to have
data and read data from the TX register.

Parameters
• base – USART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values
• kStatus_USART_FramingError – Receiver overrun happened while receiv-

ing data.

• kStatus_USART_ParityError – Noise error happened while receiving data.

2.43. USART Driver 313

MCUXpresso SDK Documentation, Release 25.06.00

• kStatus_USART_NoiseError – Framing error happened while receiving
data.

• kStatus_USART_RxError – Overflow or underflow rxFIFO happened.

• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handle which can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_USART_TxBusy – Previous transmission still not finished, data
not all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – USART peripheral base address.

314 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• handle – USART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – USART handle pointer.

Returns
Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by interrupt method.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new

2.43. USART Driver 315

MCUXpresso SDK Documentation, Release 25.06.00

data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure, see usart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_USART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

316 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

FSL_USART_DRIVER_VERSION
USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy
Transmitter is busy.

enumerator kStatus_USART_RxBusy
Receiver is busy.

enumerator kStatus_USART_TxIdle
USART transmitter is idle.

enumerator kStatus_USART_RxIdle
USART receiver is idle.

enumerator kStatus_USART_TxError
Error happens on txFIFO.

enumerator kStatus_USART_RxError
Error happens on rxFIFO.

enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError
USART noise error.

enumerator kStatus_USART_FramingError
USART framing error.

enumerator kStatus_USART_ParityError
USART parity error.

enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source

enum _usart_sync_mode
USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled
Asynchronous mode.

enumerator kUSART_SyncModeSlave
Synchronous slave mode.

enumerator kUSART_SyncModeMaster
Synchronous master mode.

enum _usart_parity_mode
USART parity mode.

Values:

enumerator kUSART_ParityDisabled
Parity disabled

2.43. USART Driver 317

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _usart_stop_bit_count
USART stop bit count.

Values:

enumerator kUSART_OneStopBit
One stop bit

enumerator kUSART_TwoStopBit
Two stop bits

enum _usart_data_len
USART data size.

Values:

enumerator kUSART_7BitsPerChar
Seven bit mode

enumerator kUSART_8BitsPerChar
Eight bit mode

enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

enum _usart_txfifo_watermark
txFIFO watermark values

Values:

enumerator kUSART_TxFifo0
USART tx watermark is empty

enumerator kUSART_TxFifo1
USART tx watermark at 1 item

enumerator kUSART_TxFifo2
USART tx watermark at 2 items

enumerator kUSART_TxFifo3
USART tx watermark at 3 items

enumerator kUSART_TxFifo4
USART tx watermark at 4 items

enumerator kUSART_TxFifo5
USART tx watermark at 5 items

enumerator kUSART_TxFifo6
USART tx watermark at 6 items

318 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kUSART_TxFifo7
USART tx watermark at 7 items

enum _usart_rxfifo_watermark
rxFIFO watermark values

Values:

enumerator kUSART_RxFifo1
USART rx watermark at 1 item

enumerator kUSART_RxFifo2
USART rx watermark at 2 items

enumerator kUSART_RxFifo3
USART rx watermark at 3 items

enumerator kUSART_RxFifo4
USART rx watermark at 4 items

enumerator kUSART_RxFifo5
USART rx watermark at 5 items

enumerator kUSART_RxFifo6
USART rx watermark at 6 items

enumerator kUSART_RxFifo7
USART rx watermark at 7 items

enumerator kUSART_RxFifo8
USART rx watermark at 8 items

enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_TxErrorInterruptEnable

enumerator kUSART_RxErrorInterruptEnable

enumerator kUSART_TxLevelInterruptEnable

enumerator kUSART_RxLevelInterruptEnable

enumerator kUSART_TxIdleInterruptEnable
Transmitter idle.

enumerator kUSART_CtsChangeInterruptEnable
Change in the state of the CTS input.

enumerator kUSART_RxBreakChangeInterruptEnable
Break condition asserted or deasserted.

enumerator kUSART_RxStartInterruptEnable
Rx start bit detected.

enumerator kUSART_FramingErrorInterruptEnable
Framing error detected.

enumerator kUSART_ParityErrorInterruptEnable
Parity error detected.

2.43. USART Driver 319

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kUSART_NoiseErrorInterruptEnable
Noise error detected.

enumerator kUSART_AutoBaudErrorInterruptEnable
Auto baudrate error detected.

enumerator kUSART_AllInterruptEnables

enum _usart_flags
USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_TxError
TXERR bit, sets if TX buffer is error

enumerator kUSART_RxError
RXERR bit, sets if RX buffer is error

enumerator kUSART_TxFifoEmptyFlag
TXEMPTY bit, sets if TX buffer is empty

enumerator kUSART_TxFifoNotFullFlag
TXNOTFULL bit, sets if TX buffer is not full

enumerator kUSART_RxFifoNotEmptyFlag
RXNOEMPTY bit, sets if RX buffer is not empty

enumerator kUSART_RxFifoFullFlag
RXFULL bit, sets if RX buffer is full

enumerator kUSART_RxIdleFlag
Receiver idle.

enumerator kUSART_TxIdleFlag
Transmitter idle.

enumerator kUSART_CtsAssertFlag
CTS signal high.

enumerator kUSART_CtsChangeFlag
CTS signal changed interrupt status.

enumerator kUSART_BreakDetectFlag
Break detected. Self cleared when rx pin goes high again.

enumerator kUSART_BreakDetectChangeFlag
Break detect change interrupt flag. A change in the state of receiver break detection.

enumerator kUSART_RxStartFlag
Rx start bit detected interrupt flag.

enumerator kUSART_FramingErrorFlag
Framing error interrupt flag.

enumerator kUSART_ParityErrorFlag
parity error interrupt flag.

enumerator kUSART_NoiseErrorFlag
Noise error interrupt flag.

320 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

enumerator kUSART_AutobaudErrorFlag
Auto baudrate error interrupt flag, caused by the baudrate counter timeout before the
end of start bit.

enumerator kUSART_AllClearFlags

typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.

typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.

typedef enum _usart_data_len usart_data_len_t
USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.

typedef enum _usart_txfifo_watermark usart_txfifo_watermark_t
txFIFO watermark values

typedef enum _usart_rxfifo_watermark usart_rxfifo_watermark_t
rxFIFO watermark values

typedef struct _usart_config usart_config_t
USART configuration structure.

typedef struct _usart_transfer usart_transfer_t
USART transfer structure.

typedef struct _usart_handle usart_handle_t

typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.

typedef void (*flexcomm_usart_irq_handler_t)(USART_Type *base, usart_handle_t *handle)
Typedef for usart interrupt handler.

uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

USART_FIFOTRIG_TXLVL_GET(base)

USART_FIFOTRIG_RXLVL_GET(base)

UART_RETRY_TIMES
Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert in blocking
transfer, otherwise the program will wait until the UART_RETRY_TIMES counts down to 0,
if the flag still remains unchanged then program will return kStatus_USART_Timeout. It is
not advised to use this macro in formal application to prevent any hardware error because
the actual wait period is affected by the compiler and optimization.

struct _usart_config
#include <fsl_usart.h> USART configuration structure.

2.43. USART Driver 321

MCUXpresso SDK Documentation, Release 25.06.00

Public Members

uint32_t baudRate_Bps
USART baud rate

usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit

bool loopback
Enable peripheral loopback

bool enableRx
Enable RX

bool enableTx
Enable TX

bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.

bool enableMode32k
USART uses 32 kHz clock from the RTC oscillator as the clock source.

bool enableHardwareFlowControl
Enable hardware control RTS/CTS

usart_txfifo_watermark_t txWatermark
txFIFO watermark

usart_rxfifo_watermark_t rxWatermark
rxFIFO watermark

usart_sync_mode_t syncMode
Transfer mode select - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in synchronous mode.

struct _usart_transfer
#include <fsl_usart.h> USART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h> USART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

322 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

uint8_t txWatermark
txFIFO watermark

uint8_t rxWatermark
rxFIFO watermark

union __unnamed13__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.43. USART Driver 323

MCUXpresso SDK Documentation, Release 25.06.00

2.44 UTICK: MictoTick Timer Driver

void UTICK_Init(UTICK_Type *base)
Initializes an UTICK by turning its bus clock on.

void UTICK_Deinit(UTICK_Type *base)
Deinitializes a UTICK instance.

This function shuts down Utick bus clock

Parameters
• base – UTICK peripheral base address.

uint32_t UTICK_GetStatusFlags(UTICK_Type *base)
Get Status Flags.

This returns the status flag

Parameters
• base – UTICK peripheral base address.

Returns
status register value

void UTICK_ClearStatusFlags(UTICK_Type *base)
Clear Status Interrupt Flags.

This clears intr status flag

Parameters
• base – UTICK peripheral base address.

Returns
none

void UTICK_SetTick(UTICK_Type *base, utick_mode_t mode, uint32_t count, utick_callback_t
cb)

Starts UTICK.

This function starts a repeat/onetime countdown with an optional callback

Parameters
• base – UTICK peripheral base address.

• mode – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• count – UTICK timer mode (ie kUTICK_onetime or kUTICK_repeat)

• cb – UTICK callback (can be left as NULL if none, otherwise should be a
void func(void))

Returns
none

void UTICK_HandleIRQ(UTICK_Type *base, utick_callback_t cb)
UTICK Interrupt Service Handler.

This function handles the interrupt and refers to the callback array in the driver to callback
user (as per request in UTICK_SetTick()). if no user callback is scheduled, the interrupt will
simply be cleared.

Parameters
• base – UTICK peripheral base address.

324 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• cb – callback scheduled for this instance of UTICK

Returns
none

FSL_UTICK_DRIVER_VERSION
UTICK driver version 2.0.5.

enum _utick_mode
UTICK timer operational mode.

Values:

enumerator kUTICK_Onetime
Trigger once

enumerator kUTICK_Repeat
Trigger repeatedly

typedef enum _utick_mode utick_mode_t
UTICK timer operational mode.

typedef void (*utick_callback_t)(void)
UTICK callback function.

2.45 WWDT: Windowed Watchdog Timer Driver

void WWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value
are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also:
wwdt_config_t

Parameters
• config – Pointer to WWDT config structure.

void WWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-
uration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

2.45. WWDT: Windowed Watchdog Timer Driver 325

MCUXpresso SDK Documentation, Release 25.06.00

Parameters
• base – WWDT peripheral base address

• config – The configuration of WWDT

void WWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.

Parameters
• base – WWDT peripheral base address

static inline void WWDT_Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters
• base – WWDT peripheral base address

static inline void WWDT_Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters
• base – WWDT peripheral base address

static inline uint32_t WWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters
• base – WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t

void WWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters

326 Chapter 2. MCXW236B

MCUXpresso SDK Documentation, Release 25.06.00

• base – WWDT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline void WWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

The WDWARNINT register determines the watchdog timer counter value that will generate
a watchdog interrupt. When the watchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
• base – WWDT peripheral base address

• warningValue – WWDT warning value.

static inline void WWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register is loaded into the Watchdog timer. Writing a value below 0xFF will cause 0xFF to be
loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
• base – WWDT peripheral base address

• timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline void WWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
• base – WWDT peripheral base address

• windowValue – WWDT window value.

void WWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence

2.45. WWDT: Windowed Watchdog Timer Driver 327

MCUXpresso SDK Documentation, Release 25.06.00

enum _wwdt_status_flags_t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h> Describes WWDT configuration structure.

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue
Timeout value

uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq_Hz
Watchdog clock source frequency.

328 Chapter 2. MCXW236B

Chapter 3

Middleware

3.1 Wireless

3.1.1 NXP Wireless Framework and Stacks

329

MCUXpresso SDK Documentation, Release 25.06.00

330 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

331

MCUXpresso SDK Documentation, Release 25.06.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

332 Chapter 4. RTOS

	MCXW23-EVK
	Overview
	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	How to determine COM Port
	Updating debugger firmware

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	TF-M
	PSA Test Suite
	Wireless Bluetooth LE host stack and applications
	Wireless Connectivity Framework
	Bluetooth Synopsys Controller
	LittleFS

	Release contents
	What is new
	Known issues
	Limitations when creating a new FreeRTOS-based C/C++ project
	Wireless UART application – Bluetooth Low Energy advertising and connection loss issue
	Bluetooth Synopsys Controller

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	ANACTRL
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	CASSPER
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CDOG
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CTIMER
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_DMA
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.0.1]
	[2.0.0]

	FLEXCOMM
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GINT
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	HASHCRYPT
	[2.0.0]
	[2.0.1]
	[2.0.2]
	[2.0.3]
	[2.0.4]
	[2.1.0]
	[2.1.1]
	[2.1.2]
	[2.1.3]
	[2.1.4]
	[2.1.5]
	[2.2.0]
	[2.2.1]
	[2.2.2]
	[2.2.3]
	[2.2.4]
	[2.2.5]
	[2.2.6]
	[2.2.7]
	[2.2.8]
	[2.2.9]
	[2.2.10]
	[2.2.11]
	[2.2.12]
	[2.2.13]
	[2.2.14]
	[2.2.15]
	[2.2.16]

	I2C
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	INPUTMUX
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOCON
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	MAILBOX
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	MRT
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	OSTIMER
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PINT
	[2.2.0]
	[2.1.13]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PLU
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PUF
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RTC
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SCTIMER
	[2.5.1]
	[2.5.0]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	SPI
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPI_DMA
	[2.2.1]
	[2.2.0]

	SPI Flash Interface
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	TRNG
	[2.0.18]
	[2.0.17]
	[2.0.16]
	[2.0.15]
	[2.0.14]
	[2.0.13]
	[2.0.12]
	[2.0.11]
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART_DMA
	[2.6.0]

	UTICK
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WWDT
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	Wireless Bluetooth LE host stack and applications
	Wireless Connectivity Framework
	Wireless Framework
	Wireless Connectivity Framework
	Supported platforms
	Supported services
	Supported Zephyr modules integration in mcux SDK

	Connectivity framework CHANGELOG
	7.0.2 RFP mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revB mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revA mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 RFP mcux SDK 25.03.00
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 revB mcux SDK 25.03.00
	Minor Changes (bug fixes)
	General
	Services
	Platform specific
	7.0.0 mcux SDK 24.12.00
	Minor Changes (bug fixes)
	Platform specific
	Services
	7.0.0 revB mcux SDK 24.12.00
	Major Changes (User Applications may be impacted)
	Bugfixes
	Platform specific
	Minor Changes (no impact on application)
	7.0.0 revA: KW45/KW47/MCX W71/MCX W72/K32W148
	Experimental Features only
	Main Changes
	Minor changes
	Bugfixes
	6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100
	Main Change
	Minor changes
	6.2.3: KW47 EAR1.0
	New features
	Supported features
	Unsuported features
	Main changes
	Minor changes
	6.2.2: KW45/K32W1 MR6 SDK 2.16.000
	Changes
	6.2.2: RW61x RFP4 SDK 2.16.000
	6.2.1: KW45/K32W1 MR5 SDK 2.15.000
	Major changes
	Minor Changes
	6.2.1: RW61x RFP3
	6.2.0: RT1060/RT1170 SDK2.15 Major
	6.1.8: KW45/K32W1 MR4
	6.1.7: KW45/K32W1 MR3
	6.1.4: RW610/RW612 RFP1
	6.1.4: KW45/K32W1 MR2
	6.1.3 KW45 MR1 QP1
	6.1.2: RW610/RW612 PRC1
	6.1.1: KW45/K32W1 MR1
	6.1.0: KW45/K32W1 RFP
	6.0.11: KW45/K32W1 PRC3.1

	FSCI: Framework Serial Communication Interface
	Overview
	FSCI packet structure
	constant definition
	FSCI Host
	FSCI ACK
	FSCI usage example
	Initialization
	Registering operation groups
	Implementing handler function

	Helper Functions Library
	Overview

	HWParameter: Hardware parameter
	Production Data Storage
	Overview
	Constant Definitions
	Data type definitions
	Co-locating application factory data in HW Parameters flash sector.
	Special reserved area at start of IFR1 in range [0x02002000..0x02002600[
	HW Parameters Production Data placement options

	LowPower
	Low Power reference user guide
	1- Connectivity Low Power SW architecture
	1.1 - SDK power manager
	1.2 - PWR Low power module
	1.2.1 - Functional description
	1.2.2 - Tickless mode support
	1.3 - Low power platform submodule
	1.4 - Low power board files
	2 - Low power Application user guide
	2.1 - Application Project updates
	2.1.1 - SDK Power Manager
	2.1.2 - PWR connectivity framework module
	2.1.3 -Low power platform submodule
	2.1.4 - Low power board files
	2.1.5 - Application RTOS Idle hook and tickeless hook functions
	2.2 - Low power and wake up sources Initialization
	2.3 - low power entry/exit sequences : board files updates
	2.4 - Low power constraint updates and optimization
	2.4.1 - Changing the Default Application low power constraint after firmware initialization
	2.4.2 - Changing the Application lowest low power constraint during application execution
	2.4.3 - Idle task implementation example
	2.4.3.1 Tickless mode support and Low power entry function
	2.4.3.2 Connectivity background tasks and Idle hook function example
	2. Low power features
	2.1 - FreeRTOS systicks
	2.2 - Selective RAM bank retention
	3 - Low power modes overview
	3.1 Wait for Interrupt (WFI)
	3.2 Sleep mode
	3.2 Deep Sleep mode
	3.3 Power Down mode
	3.4 Deep Power-down mode

	ModuleInfo
	Overview

	NVM: Non-volatile memory module
	Overview
	NVM boundaries and linker script requirement
	NVM Table
	NVM Table entry
	Active page
	ECC Fault detection
	Save policy:
	Constant macro definition

	OtaSupport: Over-the-Air Programming Support
	Overview

	SecLib_RNG: Security library and random number generator
	Random number generator
	Overview
	Initialization
	Seed handling
	Security Library
	Overview
	Support for security algorithms
	BLE advanced secure mode
	New elements in existing structures:
	New arguments in existing functions:
	New macros:
	New functions:
	LE Secure connections pairing:
	void ECDH_P256_FreeDhKeyDataSecure
	SecLib_GenerateBluetoothF5Keys
	SecLib_GenerateBluetoothF5KeysSecure
	SecLib_DeriveBluetoothSKD
	ELKE_BLE_SM_F5_DeriveKeys
	Privacy:
	SecLib_ObfuscateKeySecure
	SecLib_DeobfuscateKeySecure
	SecLib_VerifyBluetoothAh
	SecLib_VerifyBluetoothAhSecure
	SecLib_GenerateSymmetricKey
	SecLib_GenerateBluetoothEIRKBlobSecure
	A2B feature
	ECDH_P256_ComputeA2BKey
	ECDH_P256_FreeE2EKeyData
	SecLib_ExportA2BBlobSecure
	SecLib_ImportA2BBlobSecure
	LE Secure connections Pairing flow and SecLib usage:
	IRK flow and SecLib usage:
	A2B flow and SecLib usage:

	Sensors
	Overview
	Constant macro definitions

	SFC : Smart Frequency Calibration
	Overview
	Host SFC Module
	Algorithm parametrization
	Ppm target
	Filter size
	Maximum calibration interval
	Trig sample number
	SFC debug information
	RF_SFC module
	Feature enablement
	Detailed description
	Frequency measurements
	Filtering and Frequency estimation
	Frequency calibration
	Operational modes
	Convergence mode
	Monitoring mode
	Initialization and configuration
	Lowpower impact
	Power impact during active mode:
	Power impact during low power mode:

	FreeRTOS

	MCXW236B
	ANACTRL: Analog Control Driver
	CASPER: The Cryptographic Accelerator and Signal Processing Engine with RAM sharing
	casper_driver
	casper_driver_pkha
	CDOG
	CRC: Cyclic Redundancy Check Driver
	CTIMER: Standard counter/timers
	DMA: Direct Memory Access Controller Driver
	FLEXCOMM: FLEXCOMM Driver
	FLEXCOMM Driver
	GINT: Group GPIO Input Interrupt Driver
	Hashcrypt: The Cryptographic Accelerator
	Hashcrypt Background HASH
	Hashcrypt common functions
	Hashcrypt AES
	Hashcrypt HASH
	I2C: Inter-Integrated Circuit Driver
	I2C DMA Driver
	I2C Driver
	I2C Master Driver
	I2C Slave Driver
	INPUTMUX: Input Multiplexing Driver
	Common Driver
	GPIO: General Purpose I/O
	IOCON: I/O pin configuration
	Mailbox
	MRT: Multi-Rate Timer
	OSTIMER: OS Event Timer Driver
	PINT: Pin Interrupt and Pattern Match Driver
	PLU: Programmable Logic Unit
	PUF: Physical Unclonable Function
	RTC: Real Time Clock
	SCTimer: SCTimer/PWM (SCT)
	SPI: Serial Peripheral Interface Driver
	SPI DMA Driver
	SPI Driver
	SPIFI: SPIFI flash interface driver
	SPIFI DMA Driver
	SPIFI Driver
	TRNG: True Random Number Generator
	USART: Universal Synchronous/Asynchronous Receiver/Transmitter Driver
	USART DMA Driver
	USART Driver
	UTICK: MictoTick Timer Driver
	WWDT: Windowed Watchdog Timer Driver

	Middleware
	Wireless
	NXP Wireless Framework and Stacks

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	coremqtt-agent
	Readme

	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

