
MCUXpresso SDK Documentation
Release 25.09.00-pvw1

NXP
Jul 17, 2025

Table of contents

1 LPCXpresso802 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with MCUXpresso SDK Package 3
1.3 Getting Started with MCUXpresso SDK GitHub . 55

1.3.1 Getting Started with MCUXpresso SDK Repository 55
1.4 Release Notes . 68

1.4.1 MCUXpresso SDK Release Notes . 68
1.5 ChangeLog . 71

1.5.1 MCUXpresso SDK Changelog . 71
1.6 Driver API Reference Manual . 94
1.7 Middleware Documentation . 95

1.7.1 FreeMASTER . 95

2 LPC802 97
2.1 Clock Driver . 97
2.2 CRC: Cyclic Redundancy Check Driver . 104
2.3 CTIMER: Standard counter/timers . 107
2.4 I2C: Inter-Integrated Circuit Driver . 117
2.5 I2C Driver . 117
2.6 I2C Master Driver . 118
2.7 I2C Slave Driver . 127
2.8 IAP: In Application Programming Driver . 136
2.9 Common Driver . 142
2.10 LPC_ACOMP: Analog comparator Driver . 154
2.11 ADC: 12-bit SAR Analog-to-Digital Converter Driver . 157
2.12 GPIO: General Purpose I/O . 168
2.13 IOCON: I/O pin configuration . 170
2.14 MRT: Multi-Rate Timer . 171
2.15 PINT: Pin Interrupt and Pattern Match Driver . 175
2.16 Power Driver . 183
2.17 Reset Driver . 188
2.18 SPI: Serial Peripheral Interface Driver . 190
2.19 SPI Driver . 190
2.20 SWM: Switch Matrix Module . 202
2.21 SYSCON: System Configuration . 206
2.22 USART: Universal Asynchronous Receiver/Transmitter Driver 208
2.23 USART Driver . 208
2.24 WKT: Self-wake-up Timer . 220
2.25 WWDT: Windowed Watchdog Timer Driver . 223

3 Middleware 227
3.1 Motor Control . 227

3.1.1 FreeMASTER . 227

4 RTOS 265
4.1 FreeRTOS . 265

i

4.1.1 FreeRTOS kernel . 265
4.1.2 FreeRTOS drivers . 265
4.1.3 backoffalgorithm . 265
4.1.4 corehttp . 265
4.1.5 corejson . 265
4.1.6 coremqtt . 266
4.1.7 coremqtt-agent . 266
4.1.8 corepkcs11 . 266
4.1.9 freertos-plus-tcp . 266

ii

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

This documentation contains information specific to the lpcxpresso802 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2 Table of contents

Chapter 1

LPCXpresso802

1.1 Overview

LPC800 series boards and devices are fully supported by NXPs MCUXpresso suite of free soft-
ware and tools, which include an Eclipse-based IDE, configuration tools and extensive SDK
drivers/examples available at https://mcuxpresso.nxp.com. All boards in this series include an
on-board CMSIS-DAP debug probe based on the LPC11U35 debug probe, with the option for an
external debug probe such as those from SEGGER and PE Micro. Popular Arduino UNO shield
boards can be used on these boards, enabling quick and easy prototyping.The LPC800 series
is fully supported by NXPs ‘MCUXpresso suite <https://www.nxp.com/mcuxpresso>‘__ of free
software and tools, which include an Eclipse-based IDE, configuration tools and extensive SDK
drivers/examples available at https://mcuxpresso.nxp.com. MCUXpresso SDK includes project
files for use with IDEs from lead partners Keil and IAR, and these IDEs are also fully supported
by the MCUXpresso pin, clock and peripheral configuration tools.

MCU device and part on board is shown below:

• Device: LPC802

• PartNumber: LPC802M001JDH20

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease, and help accelerate embedded system development of applications based on
general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of

3

https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

embedded applications. Along with the peripheral drivers, theMCUXpresso SDK provides an ex-
tensive and rich set of example applications covering everything from basic peripheral use case
examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations
such as FreeRTOS andAzure RTOS, and various othermiddleware to support rapid development.

For supported toolchain versions, seeMCUXpresso SDK Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm Cortex-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top-level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various subfolders to classify the type of examples
it contains. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases wheremultiple peripherals are used (for example, SPI conversion using
DMA).

• emwin_examples: Applications that use the emWin GUI widgets.

• rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

4 Chapter 1. LPCXpresso802

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world application folder you see the following contents:

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso
SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is
used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In thewindow
that appears, click OK and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK example(s)….

3. Expand the demo_apps folder and select hello_world.

4. Click Next.

6 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_basic, adc_burst,
adc_dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

1.2. Getting Started with MCUXpresso SDK Package 7

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. 8 data bits

4. 1 stopbit

4. On the Quickstart Panel, click Debug to launch the debug session.

5. Thefirst time youdebug a project, theDebugEmulator Selectiondialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

8 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

6. The application is downloaded to the target and automatically runs to main().

7. Start the application by clicking Resume.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Build amulticore example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)… on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114J256. Then, select lpcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cm0plus counterpart
project is automatically imported with the cm4 project, because themulticore examples are
linked together and there is no need to select it explicitly. Click Finish.

10 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the lpcxpresso54114_multicore_examples_hello_world_cm4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cm0plus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flashmemory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of themulticore
application are properly loaded and started. However, there is one additional dialogue that is
specific tomulticore examples which requires selecting the target core. See the following figures
as reference.

12 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cm0plus’ [Debug]” to launch the second debug

14 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

session.

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_worldmulticore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of themain() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

16 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

18 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_world example application targeted for theMIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)… on the Quickstart Panel. In the
window that appears, expand theMIMXRT500 folder and selectMIMXRT595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. Now, two projects should be imported into the workspace. To start building the TrustZone
application, highlight the evkmimxrt595_hello_world_s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrownext to the hammer icon, as shown in following figure.
For this example, select the Debug target.

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-
cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitivemenu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

20 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>_hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Now, the TrustZone sessions should be opened. Click Resume. The hello_world TrustZone appli-
cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and
the IAR toolchain should correspond to the latest supported version, as described in theMCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

22 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. To build the demo application, clickMake, highlighted in red in following figure.

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

4. 1 stopbit

4. In IAR, click the Download and Debug button to download the application to the target.

5. The application is then downloaded to the target and automatically runs to themain() func-
tion.

6. Run the code by clicking the Go button.

24 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

7. The hello_world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
IAR workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/iar/hello_world_cm0plus.
↪→eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm0plus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 – 4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/iar/hello_world_
↪→ns.eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world_s.
↪→eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

This project hello_world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 – 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the devicememory, and the secure application
is executed. It stops at the Reset_Handler function.

26 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run the code by clicking Go to start the application.

The TrustZone hello_world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i.MXRT500.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a demo using Keil MDK/μVision

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

2. After the installation finishes, close the Pack Installer window and return to the μVision
IDE.

Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual
path is:

28 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2. To build the demo project, select Rebuild, highlighted in red.

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

4. 1 stopbit

4. In μVision, after the application is built, click the Download button to download the appli-
cation to the target.

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

5. After clicking theDownload button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

6. Run the code by clicking the Run button to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

30 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/mdk/hello_world_
↪→cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm0plus) first because the primary core application project (cm4) must know the
auxiliary core application binarywhen running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 – 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second μVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

Armdescribesmulticore debugging using theNXP LPC54114 Cortex-M4/M0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_ns/
↪→mdk

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_s/
↪→mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/mdk/hello_world_
↪→ns.uvmpw

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world_s.
↪→uvmpw

32 Chapter 1. LPCXpresso802

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world.
↪→uvmpw

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in μVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

Run the code by clicking Run to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 33

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and
debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The
hello_world demo application is targeted which is used as an example.

Set up toolchain This section contains the steps to install the necessary components required
to build and run anMCUXpresso SDKdemoapplicationwith theArmGCC toolchain, as supported
by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example focuses
on a Windows operating system environment.

Install GCC Arm Embedded tool chain Download and run the installer from GNU Arm Em-
bedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The
GCC toolchain should correspond to the latest supported version, as described in MCUXpresso
SDK Release Notes.

Install MinGW (only required on Windows OS) The Minimalist GNU for Windows (MinGW)
development tools provide a set of tools that are not dependent on third-party C-Runtime DLLs
(such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW
build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic
shell with a Unix-like interface and tools.

1. Download the latest MinGWmingw-get-setup installer from MinGW.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that themingw32-base andmsys-base are selected under Basic Setup.

4. In the Installation menu, click Apply Changes and follow the remaining instructions to
complete the installation.

5. Add the appropriate item to the Windows operating system path environment variable.
It can be found under Control Panel->System and Security->System->Advanced System
Settings in the Environment Variables… section. The path is:

34 Chapter 1. LPCXpresso802

http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path
is not set correctly, the toolchain will not work.

Note: If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis
SDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your
installation.

1.2. Getting Started with MCUXpresso SDK Package 35

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Short path should be used for path setting, you could convert the path to short path by running
command for %I in (.) do echo %~sI in above path.

Install CMake

Windows OS
1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when in-
stalling. The user chooses to select whether it is installed into the PATH for all users or just
the current user. In this example, it is installed for all users.

36 Chapter 1. LPCXpresso802

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of
mingw32-make.

Linux OS It depends on the distributions of Linux Operation System. Here we use Ubuntu as
an example.

Open shell and use following commands to install cmake and its version. Ensure the cmake
version is above 3.0.x.

$ sudo apt-get install cmake
$ cmake --version

Build an example application To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from
the Windows operating system Startmenu, go to Programs >GNU Tools Arm Embedded
<version> and select GCC Command Prompt.

1.2. Getting Started with MCUXpresso SDK Package 37

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2. Change the directory to the example application project directory which has a path similar
to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:

Note: To change directories, use the cd command.

3. Type build_debug.bat on the command line or double click on build_debug.bat file in
Windows Explorer to build it. The output is as shown in following figure.

Run an example application This section describes steps to run a demo application using J-
Link GDB Server application. To install J-Link host driver and update the on-board debugger
firmware to Jlink firmware, see On-board debugger.

After the J-Link interface is configured and connected, follow these steps to download and run
the demo applications:

1. Connect the development platform to your PC via USB cable between the on-board debug-
ger USB connector and the PC USB connector. If using a standalone J-Link debug pod, con-
nect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port). Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity

3. 8 data bits

4. 1 stop bit

38 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

3. To launch the application, open the Windows Startmenu and select Programs > SEGGER
> J-Link <version> J-Link GDB Server.
Note: It is assumed that the J-Link software is already installed.

The SEGGER J-Link GDB Server Config settings dialog appears.
4. Make sure to check the following options.

1. Target interface: The debug connection on board uses internal SWD signaling. In
case of a wrong setting J-Link is unable to communicate with device under test.

2. Script file: If required, a J-Link init script file can be used for board initialization.
The file with the “.jlinkscript” file extension is located in the <install_dir>/boards/
<board_name>/ directory.

3. Under the Server settings, check the GDB port for connection with the gdb target re-
mote command. For more information, see step 9.

4. There is a command line version of J-LinkGDB server “JLinkGDBServerCL.exe”. Typical
path is C:\Program Files\SEGGER\JLink\. To start the J-Link GDB server with the same
settings as are selected in the UI, you can use these command line options.

1.2. Getting Started with MCUXpresso SDK Package 39

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

40 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

5. After it is connected, the screen should look like this figure:

6. If not already running, open a GCCArmEmbedded tool chain commandwindow. To launch
the window, from theWindows operating system Start menu, go to Programs - GNU Tools
Arm Embedded <version> and select GCC Command Prompt.

7. Change to the directory that contains the example application output. The output can be
found in using one of these paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

8. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is
arm-none-eabi-gdb.exe hello_world.elf.

1.2. Getting Started with MCUXpresso SDK Package 41

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

9. Run these commands:

1. target remote localhost:2331

2. monitor reset

3. monitor halt

4. load

5. monitor reset

10. The application is now downloaded and halted. Execute the monitor go command to start
the demo application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo application build scripts are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/armgcc

Begin with a simple dual-core version of the HelloWorld application. Themulticore HelloWorld
GCC build scripts are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/armgcc/build_debug.bat

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

42 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Build both applications separately following steps for single core examples as described in Build
an example application.

Run a multicore example application When running a multicore application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single-core ap-
plication, applies, as described in Run an example application.
The primary core debugger handles flashing of both the primary and the auxiliary core appli-
cations into the SoC flash memory. To download and run the multicore application, switch to
the primary core application project and perform steps 1 to 10, as described in Run an example
application. These steps are common for both single-core and dual-core applications in Arm
GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution
of the monitor go command, the primary core application is executed. During the primary core
code execution, the auxiliary core code is reallocated from the flashmemory to the RAM, and the
auxiliary core is released from the reset. The hello_world multicore application is now running

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

and a banner is displayed on the terminal. If this is not true, check your terminal settings and
connections.

Build a TrustZone example application This section describes the steps to build and run a
TrustZone application. The demo application build scripts are located in this folder:

44 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_ns/armgcc

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/
↪→<application_name>_s/armgcc

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World GCC build scripts are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/armgcc/build_
↪→debug.bat

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/armgcc/build_
↪→debug.bat

Build both applications separately, following steps for single core examples as described inBuild
an example application. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since CMSE library is running the
linker. It is not possible to finish the non-secure project linker with the secure project because
the CMSE library is not ready.

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run a TrustZone example application When running a TrustZone application, the same pre-
requisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single core ap-
plication, apply, as described in Run an example application.
To download and run the TrustZone application, perform steps 1 to 10, as described in Run an
example application. These steps are common for both single core and TrustZone applications
in Arm GCC.

Then, run these commands:

1. arm-none-eabi-gdb.exe

2. target remote localhost:2331

3. monitor reset

4. monitor halt

5. monitor exec SetFlashDLNoRMWThreshold = 0x20000

6. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_ns/
armgcc/debug/hello_world_ns.elf

7. load <install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
armgcc/debug/hello_world_s.elf

8. monitor reset

The application is now downloaded and halted. Execute the c command to start the demo appli-
cation.

46 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

MCUXpresso Config Tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Config Tool Description Im-
age

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

Peripher-
als tools

For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device
Config-
uration
tool

Configures Device Configuration Data (DCD) contained in the program
image that the Boot ROM code interprets to set up various on-chip pe-
ripherals prior to the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your
NXP hardware development platform. All NXP boards shipwith a factory programmed, onboard
debug interface, whether it is based on MCU-Link or the legacy OpenSDA, LPC-Link2, P&E Micro
OSJTAG interface. To determinewhat your specific board shipswith, seeDefault debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

$ dmesg | grep ”ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for core1.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Startmenu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLink interface:

48 Chapter 1. LPCXpresso802

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2. P&E Micro:

3. J-Link:

4. P&E Micro OSJTAG:

5. MRB-KW01:

On-board Debugger

This section describes the on-board debuggers used on NXP development boards.

On-boarddebuggerMCU-Link MCU-Link is a powerful and cost effective debug probe that can
beused seamlesslywithMCUXpresso IDE, and is also compatiblewith 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-boardMCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the

1.2. Getting Started with MCUXpresso SDK Package 49

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table inDefault
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

50 Chapter 1. LPCXpresso802

https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• For boards with a P&EMicro interface, see PEmicro to download and install the P&EMicro
Hardware Interface Drivers package.

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

1.2. Getting Started with MCUXpresso SDK Package 51

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
http://www.segger.com/opensda.html
http://www.nxp.com/opensda

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive calledMAINTENANCE.

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
apower supply input througha singlemicro-USB connector. It is a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

52 Chapter 1. LPCXpresso802

http://www.pemicro.com/opensda/index.cfm
http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various fac-
tory programmed debug interface configurations. The following table lists the hardware plat-
forms supported by the MCUXpresso SDK, their default debug firmware, and any version infor-
mation that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe
EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link
FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B41Z-EVK CMSIS-DAP MCU-Link
KW45B41Z-LOC CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2

continues on next page

1.2. Getting Started with MCUXpresso SDK Package 53

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Table 1 – continued from previous page
Hardware platform Default debugger firmware On-board debugger probe
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z75M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to over-
ride the default IRQ handler. For example, to override the default PIT_IRQHandler define in
startup_DEVICE.s, application code like app.c can be implement like:

// c
void PIT_IRQHandler(void)
{

// Your code
}

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

54 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

// cpp
extern ”C” {

void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{

// Your code
}

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Installation

NOTE
If the installation instruction asks/selects whether to have the tool installation path added to
the PATH variable, agree/select the choice. This option ensures that the tool can be used in any
terminal in any path. Verify the installation after each tool installation.

Install Prerequisites with MCUXpresso Installer The MCUXpresso Installer offers a quick
and easy way to install the basic tools needed. The MCUXpresso Installer can be obtained from
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation. The MCUX-
presso Installer is an automated installation process, simply select MCUXpresso SDK Developer
from the menu and click install. If you prefer to install the basic tools manually, refer to the next
section.

1.3. Getting Started with MCUXpresso SDK GitHub 55

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Alternative: Manual Installation

Basic tools

Git Git is a free and open source distributed version control system. Git is designed to handle
everything from small to large projects with speed and efficiency. To install Git, visit the official
Git website. Download the appropriate version(you may use the latest one) for your operating
system (Windows, macOS, Linux). Then run the installer and follow the installation instructions.

User git --version to check the version if you have a version installed.

Then configure your username and email using the commands:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python Install python 3.10 or latest. Follow the Python Download guide.

Use python --version to check the version if you have a version installed.

West Please use the west version equal or greater than 1.2.0

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a different␣
↪→source using option '-i'.
for example, in China you could try: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U west

Build And Configuration System

CMake It is strongly recommended to use CMake version equal or later than 3.30.0. You can get
latest CMake distributions from the official CMake download page.

For Windows, you can directly use the .msi installer like cmake-3.31.4-windows-x86_64.msi to
install.

For Linux, CMake can be installed using the system packagemanager or by getting binaries from
the official CMake download page.

After installation, you can use cmake --version to check the version.

Ninja Please use the ninja version equal or later than 1.12.1.

By default, Windows comes with the Ninja program. If the default Ninja version is too old, you
can directly download the ninja binary and register the ninja executor location path into your
system path variable to work.

For Linux, you can use your system package manager or you can directly download the ninja
binary to work.

After installation, you can use ninja --version to check the version.

Kconfig MCUXpresso SDK uses Kconfig python implementation. We customize it based on our
needs and integrate it into our build and configuration system. The Kconfiglib sources are placed
under mcuxsdk/scripts/kconfig folder.

Please make sure python environment is setup ready then you can use the Kconfig.

56 Chapter 1. LPCXpresso802

https://git-scm.com/
https://wiki.python.org/moin/BeginnersGuide/Download
https://cmake.org/download/
https://github.com/Kitware/CMake/releases/download/v3.31.4/cmake-3.31.4-windows-x86_64.msi
https://cmake.org/download/
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/wiki/Pre-built-Ninja-packages
https://github.com/ninja-build/ninja/releases
https://github.com/ninja-build/ninja/releases

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Ruby Our build system supports IDE project generation for iar, mdk, codewarrior and xtensa
to provide OOBE from build to debug. This feature is implemented with ruby. You can follow
the guide ruby environment setup to setup the ruby environment. Since we provide a built-in
portable ruby, it is just a simple one cmd installation.

If you only work with CLI, you can skip this step.

Toolchain MCUXpresso SDK supports all mainstream toolchains for embedded development.
You can install your used or interested toolchains following the guides.

Toolchain Download and Installation Guide Note
Armgcc Arm GNU Toolchain Install Guide ARMGCC is default

toolchain
IAR IAR Installation and Licensing quick ref-

erence guide
MDK MDK Installation

Armclang Installing Arm Compiler for Embedded

Zephyr Zephyr SDK

Codewarrior NXP CodeWarrior

Xtensa Tensilica Tools

NXP S32Compiler RISC-
V Zen-V

NXP Website

After you have installed the toolchains, register them in the system environment variables. This
will allow the west build to recognize them:

1.3. Getting Started with MCUXpresso SDK GitHub 57

https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://www.iar.com/siteassets/knowledge/support/tech-notes/qr_lms2.pdf
https://developer.arm.com/documentation/109350/v6/Installation?lang=en
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded
https://docs.zephyrproject.org/latest/develop/toolchains/zephyr_sdk.html
https://www.nxp.com/design/design-center/software/development-software/codewarrior-development-tools:CW_HOME
https://tensilicatools.com/platforms/
https://www.nxp.com/search?keyword=NXP%2520S32Compiler%2520RISC-V&start=0

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Toolchain Environ-
ment
Variable

Example Cmd
Line Ar-
gument

Armgcc AR-
MGCC_DIR

C:\armgcc for windows/usr for Linux. Typically
arm-none-eabi-* is installed under /usr/bin

–
toolchain
armgcc

IAR IAR_DIR C:\iar\ewarm-9.60.3 for Windows/opt/iarsystems/
bxarm-9.60.3 for Linux

–
toolchain
iar

MDK MDK_DIR C:\Keil_v5 for Windows.MDK IDE is not officially sup-
ported with Linux.

–
toolchain
mdk

Armclang ARM-
CLANG_DIR

C:\ArmCompilerforEmbedded6.22 for Windows/opt/
ArmCompilerforEmbedded6.21 for Linux

–
toolchain
mdk

Zephyr ZEPHYR_SDK_INSTALL_DIRc:\NXP\zephyr-sdk-<version> for windows/opt/
zephyr-sdk-<version> for Linux

–
toolchain
zephyr

CodeWar-
rior

CW_DIR C:\Freescale\CW MCU v11.2 for windowsCodeWarrior is
not supported with Linux

–
toolchain
code-
warrior

Xtensa XCC_DIR C:\xtensa\XtDevTools\install\tools\RI-2023.11-win32\
XtensaTools for windows/opt/xtensa/XtDevTools/
install/tools/RI-2023.11-Linux/XtensaTools for Linux

–
toolchain
xtensa

NXP
S32Compiler
RISC-V
Zen-V

RISCVL-
LVM_DIR

C:\riscv-llvm-win32_b298_b298_2024.08.12 for Win-
dows/opt/riscv-llvm-Linux-x64_b298_b298_2024.08.12
for Linux

–
toolchain
riscvl-
lvm

• The <toolchain>_DIR is the root installation folder, not the binary location folder. For IAR,
it is directory containing following installation folders:

• MDK IDE using armclang toolchain only officially supports Windows. In Linux, please di-
rectly use armclang toolchain by setting ARMCLANG_DIR. In Windows, since most Keil
users will install MDK IDE instead of standalone armclang toolchain, the MDK_DIR has
higher priority than ARMCLANG_DIR.

• For Xtensa toolchain, please set the XTENSA_CORE environment variable. Here’s an ex-
ample list:

58 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Device Core XTENSA_CORE
RT500 fusion1 nxp_rt500_RI23_11_newlib
RT600 hifi4 nxp_rt600_RI23_11_newlib
RT700 hifi1 rt700_hifi1_RI23_11_nlib
RT700 hifi4 t700_hifi4_RI23_11_nlib
i.MX8ULP fusion1 fusion_nxp02_dsp_prod

• In Windows, the short path is used in environment variables. If any toolchain is using
the long path, you can open a command window from the toolchain folder and use below
command to get the short path: for %i in (.) do echo %~fsi

Tool installation check Once installed, open a terminal or command prompt and type the
associated command to verify the installation.

If you see the version number, you have successfully installed the tool. Else, check whether the
tool’s installation path is added into the PATH variable. You can add the installation path to the
PATH with the commands below:

• Windows: Open command prompt or powershell, run below command to show the user
PATH variable.

reg query HKEY_CURRENT_USER\Environment /v PATH

The tool installation path should be C:\Users\xxx\AppData\Local\Programs\Git\cmd. If the
path is not seen in the output from above, append the path value to the PATH variable with
the command below:

reg add HKEY_CURRENT_USER\Environment /v PATH /d ”%PATH%;C:\Users\xxx\AppData\
↪→Local\Programs\Git\cmd”

Then close the command prompt or powershell and verify the tool command again.

• Linux:

1. Open the $HOME/.bashrc file using a text editor, such as vim.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bashrc or reboot the system to make the changes live. To
verify the changes, run echo $PATH.

• macOS:

1. Open the $HOME/.bash_profile file using a text editor, such as nano.

2. Go to the end of the file.

3. Add the line which appends the tool installation path to the PATH variable and export
PATH at the end of the file. For example, export PATH=”/Directory1:$PATH”.

4. Save and exit.

5. Execute the script with source .bash_profile or reboot the system to make the changes
live. To verify the changes, run echo $PATH.

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Get MCUXpresso SDK Repo

Establish SDK Workspace To get the MCUXpresso SDK repository, use the west tool to clone
the manifest repository and checkout all the west projects.

Initialize west with the manifest repository
west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/ mcuxpresso-sdk

Update the west projects
cd mcuxpresso-sdk
west update

Allow the usage of west extensions provided by MCUXpresso SDK
west config commands.allow_extensions true

Install Python Dependency(If do tool installation manually) To create a Python virtual en-
vironment in the west workspace core repo directory mcuxsdk, follow these steps:

1. Navigate to the core directory:

cd mcuxsdk

2. [Optional] Create and activate the virtual environment: If you don’t want to use the python
virtual environment, skip this step. We strongly suggest you use venv to avoid conflicts
with other projects using python.

python -m venv .venv

For Linux/MacOS
source .venv/bin/activate

For Windows
.\.venv\Scripts\activate
If you are using powershell and see the issue that the activate script cannot be run.
You may fix the issue by opening the powershell as administrator and run below command:
powershell Set-ExecutionPolicy RemoteSigned
then run above activate command again.

Once activated, your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate command.

Remember to activate the virtual environment every time you start working in this
directory. If you are using some modern shell like zsh, there are some powerful plugins to
help you auto switch venv among workspaces. For example, zsh-autoswitch-virtualenv.

3. Install the required Python packages:

Note: you can add option '--default-timeout=1000' if you meet connection issue. Or you may set a␣
↪→different source using option '-i'.
for example, in China you could try: pip3 install -r mcuxsdk/scripts/requirements.txt -i https://pypi.
↪→tuna.tsinghua.edu.cn/simple
pip install -r scripts/requirements.txt

Explore Contents

This section helps you build basic understanding of current fundamental project content and
guides you how to build and run the provided example project in whole SDK delivery.

60 Chapter 1. LPCXpresso802

https://github.com/MichaelAquilina/zsh-autoswitch-virtualenv

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Folder View The whole MCUXpresso SDK project, after you have done the west init and west
update operations follow the guideline at Getting Started Guide, have below folder structure:

Folder Description
mani-
fests

Manifest repo, contains the manifest file to initialize and update the west
workspace.

mcuxsdk The MCUXpresso SDK source code, examples, middleware integration and script
files.

All the projects record in the Manifest repo are checked out to the folder mcuxsdk/, the layout of
mcuxsdk folder is shown as below:

Folder Description
arch Arch related files such as ARM CMSIS core files, RISC-V files and the build files related

to the architecture.
cmake The cmake modules, files which organize the build system.
com-
po-
nents

Software components.

de-
vices

Device support package which categorized by device series. For each device, header
file, feature file, startup file and linker files are provided, also device specific drivers
are included.

docs Documentation source and build configuration for this sphinx built online documen-
tation.

drivers Peripheral drivers.
ex-
am-
ples

Various demos and examples, support files on different supported boards. For each
board support, there are board configuration files.

mid-
dle-
ware

Middleware components integrated into SDK.

rtos Rtos components integrated into SDK.
scripts Script files for the west extension command and build system support.
svd Svd files for devices, this is optional because of large size. Customers runwest manifest

config group.filter +optional and west update mcux-soc-svd to get this folder.

Examples Project The examples project is part of the whole SDK delivery, and locates in the
folder mcuxsdk/examples of west workspace.

Examples files are placed in folder of <example_category>, these examples include (but are not
limited to)

• demo_apps: Basic demo set to start using SDK, including hello_world and led_blinky.

• driver_examples: Simple applications that show how to use the peripheral drivers for a
single use case. These applications typically only use a single peripheral but there are cases
where multiple peripherals are used (for example, SPI transfer using DMA).

Board porting layers are placed in folder of _boards/<board_name>which aims at providing the
board specific parts for examples code mentioned above.

Run a demo using MCUXpresso for VS Code

This section explains how to configureMCUXpresso for VS Code to build, run, and debug example
applications. This guide uses the hello_world demo application as an example. However, these

1.3. Getting Started with MCUXpresso SDK GitHub 61

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

steps can be applied to any example application in the MCUXpresso SDK.

Build an example application This section assumes that the user has already obtained the
SDK as outlined in Get MCUXpresso SDK Repo.

To build an example application:

1. Import the SDK into your workspace. Click Import Repository from the QUICKSTART
PANEL.

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for
details.

Select Local if you’ve already obtained the SDK as seen inGetMCUXpresso SDK Repo. Select
your location and click Import.

2. Click Import Example from Repository from the QUICKSTART PANEL.

In the dropdown menu, select the MCUXpresso SDK, the Arm GNU Toolchain, your board,
template, and application type. Click Import.

62 Chapter 1. LPCXpresso802

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Note: The MCUXpresso SDK projects can be imported as Repository applications or Free-
standing applications. The difference between the two is the import location. Projects im-
ported as Repository examples will be located inside the MCUXpresso SDK, whereas Free-
standing examples can be imported to a user-defined location. Select between these by
designating your selection in the App type dropdown menu.

3. VS Code will prompt you to confirm if the imported files are trusted. Click Yes.
4. Navigate to the PROJECTS view. Find your project and click the Build Project icon.

The integrated terminal will open at the bottom and will display the build output.

1.3. Getting Started with MCUXpresso SDK GitHub 63

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Run an example application Note: for full details on MCUXpresso for VS Code debug probe
support, see MCUXpresso for VS Code Wiki.

1. Open the Serial Monitor from the VS Code’s integrated terminal. Select the VCom Port for
your device and set the baud rate to 115200.

2. Navigate to the PROJECTS view and click the play button to initiate a debug session.

The debug session will begin. The debug controls are initially at the top.

64 Chapter 1. LPCXpresso802

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

.

3. Click Continue on the debug controls to resume execution of the code. Observe the output
on the Serial Monitor.

Running a demo using ARMGCC CLI/IAR/MDK

Supported Boards Use the west extension west list_project to understand the board support
scope for a specified example. All supported build command will be listed in output:

west list_project -p examples/demo_apps/hello_world [-t armgcc]

INFO: [1][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evk9mimx8ulp -Dcore_id=cm33]
INFO: [2][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbimxrt1050]
INFO: [3][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣

(continues on next page)

1.3. Getting Started with MCUXpresso SDK GitHub 65

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)
↪→evkbmimxrt1060]
INFO: [4][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm4]
INFO: [5][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkbmimxrt1170 -Dcore_id=cm7]
INFO: [6][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkcmimxrt1060]
INFO: [7][west build -p always examples/demo_apps/hello_world --toolchain armgcc --config release -b␣
↪→evkmcimx7ulp]
...

The supported toolchains andbuild targets for an example are decidedby the example-self exam-
ple.yml and board example.yml, please refer Example Toolchains and Targets for more details.

Build the project Usewest build -h to see help information for west build command. Compared
to zephyr’s west build, MCUXpresso SDK’s west build command provides following additional
options for mcux examples:

• --toolchain: specify the toolchain for this build, default armgcc.

• --config: value for CMAKE_BUILD_TYPE. If not provided, build system will get all the ex-
ample supported build targets and use the first debug target as the default one. Please refer
Example Toolchains and Targets for more details about example supported build targets.

Here are some typical usages for generating a SDK example:

Generate example with default settings, default used device is the mainset MK22F51212
west build -b frdmk22f examples/demo_apps/hello_world

Just print cmake commands, do not execute it
west build -b frdmk22f examples/demo_apps/hello_world --dry-run

Generate example with other toolchain like iar, default armgcc
west build -b frdmk22f examples/demo_apps/hello_world --toolchain iar

Generate example with other config type
west build -b frdmk22f examples/demo_apps/hello_world --config release

Generate example with other devices with --device
west build -b frdmk22f examples/demo_apps/hello_world --device MK22F12810 --config release

For multicore devices, you shall specify the corresponding core id by passing the command line
argument -Dcore_id. For example

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For shield, please use the --shield to specify the shield to run, like

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Sysbuild(System build) To support multicore project building, we ported Sysbuild from
Zephyr. It supports combine multiple projects for compilation. You can build all projects by
adding --sysbuild for main application. For example:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

For more details, please refer to System build.

66 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Config a Project Example in MCUXpresso SDK is configured and tested with pre-defined con-
figuration. You can follow steps blow to change the configuration.

1. Run cmake configuration

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Please note the project will be built without --cmake-only parameter.

2. Run guiconfig target

west build -t guiconfig

Then you will get the Kconfig GUI launched, like

You can reconfigure the project by selecting/deselecting Kconfig options.

After saving and closing the Kconfig GUI, you can directly run west build to build with the new
configuration.

1.3. Getting Started with MCUXpresso SDK GitHub 67

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Flash Note: Please refer Flash and Debug The Example to enable west flash/debug support.

Flash the hello_world example:

west flash -r linkserver

Debug Start a gdb interface by following command:

west debug -r linkserver

Work with IDE Project The above build functionalities are all with CLI. If you want to use
the toolchain IDE to work to enjoy the better user experience especially for debugging or you
are already used to develop with IDEs like IAR, MDK, Xtensa and CodeWarrior in the embedded
world, you can play with our IDE project generation functionality.

This is the cmd to generate the evkbmimxrt1170 hello_world IAR IDE project files.

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

By default, the IDE project files are generated inmcuxsdk/build/<toolchain> folder, you can open
the project file with the IDE tool to work:

Note, please follow the Installation to setup the environment especially make sure that ruby has
been installed.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC

68 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.41

• MCUXpresso for VS Code v25.06

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development
boards

MCU devices

LPCXpresso802 LPC802M001JDH16, LPC802M001JDH20, LPC802M001JHI33,
LPC802M011JDH20, LPC802UK

1.4. Release Notes 69

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to themicrocontroller peripheral registers. The device header file provides an overall
SoCmemorymapped register definition. The folder also includes the feature header file for each
peripheral on themicrocontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

70 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[25.06.00]
• Initial version

LPC_ACOMP

[2.1.0]
• Bug Fixes

– Fixed one wrong enum value for the hysteresis.

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.1, 17.7.

[2.0.2]
• Bug Fixes

– Fixed the out-of-bounds error of Coverity caused bymissing an assert sentence to avoid
the return value of ACOMP_GetInstance() exceeding the array bounds.

[2.0.1]
• New Features

– Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

LPC_ADC

[2.6.0]
• New Features

– Added new feature macro to distinguish whether the GPADC_CTRL0_GPADC_TSAMP
control bit is on the device.

– Added new variable extendSampleTimeNumber to indicate the ADC extend sample
time.

• Bugfix

– Fixed the bug that incorrectly sets the PASS_ENABLE bit based on the sample time
setting.

[2.5.3]
• Improvements

– Release peripheral from reset if necessary in init function.

72 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.5.2]
• Improvements

– Integrated different sequence’s sample time numbers into one variable.

• Bug Fixes

– Fixed violation of MISRA C-2012 rule 20.9 .

[2.5.1]
• Bug Fixes

– Fixed ADC conversion sequence priority misconfiguration issue in the
ADC_SetConvSeqAHighPriority() and ADC_SetConvSeqBHighPriority() APIs.

• Improvements

– Supported configuration ADC conversion sequence sampling time.

[2.5.0]
• Improvements

– Add missing parameter tag of ADC_DoOffsetCalibration().

• Bug Fixes

– RemovedaduplicatedAPIwith typo inname: ADC_EnableShresholdCompareInterrupt().

[2.4.1]
• Bug Fixes

– Enabled self-calibration after clock divider be changed to make sure the frequency
update be taken.

[2.4.0]
• New Features

– Added new API ADC_DoOffsetCalibration() which supports a specific operation fre-
quency.

• Other Changes

– Marked the ADC_DoSelfCalibration(ADC_Type *base) as deprecated.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.1 10.3 10.4 10.7 10.8 17.7.

[2.3.2]
• Improvements

– Added delay after enabling using the ADC GPADC_CTRL0 LDO_POWER_EN bit for
JN5189/QN9090.

• New Features

– Added support for platforms which have only one ADC sequence control/result regis-
ter.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.3.1]
• Bug Fixes

– Avoided writing ADC STARTUP register in ADC_Init().

– Fixed Coverity zero divider error in ADC_DoSelfCalibration().

[2.3.0]
• Improvements

– Updated “ADC_Init()””ADC_GetChannelConversionResult()” API and “adc_resolution_t”
structure to match QN9090.

– Added “ADC_EnableTemperatureSensor” API.

[2.2.1]
• Improvements

– Added a brief delay in uSec after ADC calibration start.

[2.2.0]
• Improvements

– Updated “ADC_DoSelfCalibration” API and “adc_config_t” structure to match LPC845.

[2.1.0]
• Improvements

– Renamed “ADC_EnableShresholdCompareInterrupt” to “ADC_EnableThresholdCompareInterrupt”.

[2.0.0]
• Initial version.

CLOCK

[2.3.4]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.3.

[2.3.3]
• Improvements

– Added lost comments for some enumerations.

[2.3.2]
• Improvements

– Used “offsetof” macro to get the offset of the structure element from the beginning of
the structure.

74 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.3.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.1, rule 10.3, rule 15.5 and so on.

[2.3.0]
• New feature:

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.2.0]
• Replace the delay function

[2.1.0]
• New feature

– Adding new API CLOCK_DelayAtLeastUs() to implemente a delay fucntion which allow
users set delay in unit of microsecond.

[2.0.3]
• add api to get uart clock frequency.

• add api to set fractional multiplier value.

[2.0.2]
• some minor fixes.

[2.0.0]
• initial version.

COMMON

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user canmeasure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.4.2]
• Improvements

– Add themacros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

76 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Addednew featuremacro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

78 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.0]
• Initial version.

CRC

[2.1.1]
• Fix MISRA issue.

[2.1.0]
• Add CRC_WriteSeed function.

[2.0.2]
• Fix MISRA issue.

[2.0.1]
• Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

[2.0.0]
• Initial version.

CTIMER

[2.3.3]
• Bug Fixes

– Fix CERT INT30-C INT31-C issue.

– Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.

[2.3.2]
• Bug Fixes

– Clear unexpected DMA request generated by RESET_PeripheralReset in API
CTIMER_Init to avoid trigger DMA by mistake.

[2.3.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.7 and 12.2.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.3.0]
• Improvements

– Added the CTIMER_SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.

[2.2.2]
• Bug Fixes

– Fixed SetupPwm() API only can use match 3 as period channel issue.

[2.2.1]
• Bug Fixes

– Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.

– Fixed Coverity Out-of-bounds issue.

[2.2.0]
• Improvements

– Updated three API Interface to support Users to flexibly configure the PWMperiod and
PWM output.

• Bug Fixes

– MISRA C-2012 issue fixed: rule 8.4.

[2.1.0]
• Improvements

– Added the CTIMER_GetOutputMatchStatus() API Interface.

– Added feature macro for FSL_FEATURE_CTIMER_HAS_NO_CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS_NO_IR_CR2INT.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.

[2.0.2]
• New Features

– Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

– Added a new feature macro to update the API of CTimer driver for lpc8n04.

80 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.1]
• Improvements

– API Interface Change

* Changed API interface by adding CTIMER_SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]
• Initial version.

GPIO

[2.1.7]
• Improvements

– Enhanced GPIO_PinInit to enable clock internally.

[2.1.6]
• Bug Fixes

– Clear bit before set it within GPIO_SetPinInterruptConfig() API.

[2.1.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
• Improvements

– Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.

– Corrected typos in header file.

[2.1.3]
• Improvements

– Updated “GPIO_PinInit” API. If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
• Improvements

– Removed deprecated APIs.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.1.1]
• Improvements

– API interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

[2.1.0]
• New Features

– Added GPIO initialize API.

[2.0.0]
• Initial version.

I2C

[2.2.1]
• Bug Fixes

– Fixed coverity issues.

[2.2.0]
• Removed lpc_i2c_dma driver.

[2.1.0]
• Bug Fixes

– Fixed MISRA 8.6 violations.

[2.0.4]
• Bug Fixes

– Fixed wrong assignment for datasize in I2C_InitTransferStateMachineDMA.

– Fixedwrongworking flow in I2C_RunTransferStateMachineDMA to ensuremaster can
work in no start flag and no stop flag mode.

– Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

– Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

– Eliminated IAR Pa082 warning in I2C_SlaveTransferHandleIRQ by assigning volatile
variable to local variable and using local variable instead.

– Fixed MISRA issues.

* Fixed rules 4.7, 10.1, 10.3, 10.4, 11.1, 11.8, 14.4, 17.7.

82 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• Improvements

– Rounded up the calculated divider value in I2C_MasterSetBaudRate.

– Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.0.3]
• Bug Fixes

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

[2.0.2]
• New Features

– Added macro gate “FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs which will help reduce the code size when no non-
blocking transfer is used. Default configuration is enabled.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
• Improvements

– Added I2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.0]
• Initial version.

IAP

[2.0.7]
• Bug Fixes

– Fixed IAP_ReinvokeISP bug that can’t support UART ISP auto baud detection.

[2.0.6]
• Bug Fixes

– Fixed IAP_ReinvokeISP wrong parameter setting.

[2.0.5]
• New Feature

– Added support config flash memory access time.

[2.0.4]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules 9.1

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.3]
• New Features

– Added support for LPC 845’s FAIM operation.

– Added support for LPC 80x’s fixed reference clock for flash controller.

– Added support for LPC 5411x’s Read UID command useless situation.

• Improvements

– Improved the document and code structure.

• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.1 10.3 10.4 17.7

[2.0.2]
• New Features

– Added an API to read generated signature.

• Bug Fixes

– Fixed the incorrect board support of IAP_ExtendedFlashSignatureRead().

[2.0.1]
• New Features

– Added an API to read factory settings for some calibration registers.

• Improvements

– Updated the size of result array in part APIs.

[2.0.0]
• Initial version.

IOCON

[2.0.2]
• Bug Fixes

– Fixed MISRA-C 2012 violations.

[2.0.1]
• Bug Fixes

– Fixed out-of-range issue of the IOCON mode function when enabling DAC.

[2.0.0]
• Initial version.

84 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

MRT

[2.0.5]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.4]
• Improvements

– Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

– Fixed the wrong count value assertion in MRT_StartTimer API.

[2.0.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

PINT

[2.2.0]
• Fixed

– Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.

• Changed

– Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.

[2.1.13]
• Improvements

– Added instance array for PINT to adapt more devices.

– Used release reset instead of reset PINT which may clear other related registers out of
PINT.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.1.12]
• Bug Fixes

– Fixed coverity issue.

[2.1.11]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
• New Features

– Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
• Bug Fixes

– Fixed MISRA-2012 rule 8.4.

[2.1.8]
• Bug Fixes

– Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

[2.1.7]
• Improvements

– Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
• Bug Fixes

– Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

– Changed interrupt init order to make pin interrupt configuration more reasonable.

86 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.1.4]
• Improvements

– Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT_Init and PINT_Deinit API.

– Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

– Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
• Bug fix:

– Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

– Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitivemode
and will switch the active level for this pin in level-sensitive mode.

– Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

– Added FSL_FEATURE_SECPINT_NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

– Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
• Improvement:

– Improved way of initialization for SECPINT/PINT in PINT_Init API.

[2.1.1]
• Improvement:

– Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]
• Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

[2.0.2]
• Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
• Bug fix:

– Updated PINT driver to clear interrupt only in Edge sensitive.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.0]
• Initial version.

POWER

[2.1.0]
• New features

– Added BOD control APIs.

[2.0.4]
• Bug Fixes

– Fixed the typo “Enbale”, correcting it as “Enable”.

[2.0.3]
• Bug Fixes

– Fixed doxygen warnings(remove wrong character in annotation).

[2.0.2]
• New Features

– Added the Enable/DisableDeepSleepIRQ() to enable/disable pin wake up.

[2.0.1]
• Improvements

– Updated power drive to support PMU.

[2.0.0]
• initial version.

RESET

[2.4.0]
• Improvements

– Add RESET_ReleasePeripheralReset API.

[2.0.1]
• Update component full_name to “Reset Driver”.

88 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.0]
• initial version.

SPI

[2.0.8]
• Bug Fixes

– Fixed coverity issue.

[2.0.7]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API.

[2.0.6]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

[2.0.5]
• Bug Fixes

– Fixed bug that the transfer configuration does not take effect after the first transfer.

[2.0.4]
• Bug Fixes

– Fixed the issue that when transfer finish callback is invoked TX data is not sent to bus
yet.

[2.0.3]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

– Fixed MISRA 10.4 issue.

[2.0.2]
• Bug Fixes

– Fixed Coverity issue of incrementing null pointer in SPI_MasterTransferNonBlocking.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.6, 14.4.

• New Features

– Added enumeration for dataWidth.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.1]
• Bug Fixes

– Added wait mechanism in SPI_MasterTransferBlocking() API, which checks if master
SPI becomes IDLE when the EOT bit is set before returning. This confirms that all data
will be sent out by SPI master.

– Fixed the bug that the EOT bit couldn’t be set when only one frame was sent in polling
mode and interrupt transfer mode.

• New Features

– Added macro gate “FSL_SDK_ENABLE_SPI_DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

SWM

[2.1.2]
• Improvements

– Reduce RAM footprint.

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1 and 10.3.

[2.1.0]
• New Features

– Supported Flextimer function pin assign.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 14.3.

[2.0.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.3, and 10.4.

90 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.0]
• Initial version.

• The API SWM_SetFixedMovablePinSelect() is targeted at the device that has PINASSIGN-
FIXED0 register, such as LPC804.

SYSCON

[2.0.1]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.4.

[2.0.0]
• Initial version.

USART

[2.5.2]
• Improvements

– Fixed coverity issues.

[2.5.1]
• Improvements

– Fixed doxygen warning in USART_SetRxIdleTimeout.

[2.5.0]
• New Features

– Supported new feature of rx idle timeout.

[2.4.0]
• Improvements

– Used separate data for TX and RX in usart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.3.0]
• New Features

– Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

[2.2.0]
• Improvements

– Added timeout mechanism when waiting for certain states in transfer driver.

– Fixed MISRA 10.4 issues.

[2.1.1]
• Bug Fixes

– Fixed the bug that in USART_SetBaudRate best_diff rather than diff should be used to
compare with calculated baudrate.

– Eliminated IAR pa082warnings fromUSART_TransferGetRxRingBufferLength and US-
ART_TransferHandleIRQ.

– Fixed MISRA issues.

• Improvements

– Rounded up the calculated sbr value in USART_SetBaudRate to achieve more acurate
baudrate setting.

– Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

[2.1.0]
• New Features

– Added new APIs to allow users to configure the USART continuous SCLK feature in
synchronous mode transfer.

[2.0.1]
• Bug Fixes

– Fixed the repeated reading issue of the STAT register while dealing with the IRQ rou-
tine.

• New Features

– Added macro gate “FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

– Added a control macro to enable/disable the RESET and CLOCK code in current driver.

– Addedmacro switch gate “FSL_SDK_USART_DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE”
to enable/disable the baud rate to generate automatically. Disabling this feature will
help reduce the code size to a certain degree. Default configuration enables auto
generating of baud rate.

– Added the check of baud rate while initializing the USART. If the baud rate calculated
is not precise, the software assertion will be triggered.

92 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

– Added a new API to allow users to enable the CTS, which determines whether CTS is
used for flow control.

[2.0.0]
• Initial version.

WKT

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 10.3.

[2.0.1]
• New Features

– Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]
• Initial version.

WWDT

[2.1.9]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rule 10.4.

[2.1.8]
• Improvements

– Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0xFF (reset value) after WWDT_Init function returns.

[2.1.7]
• Bug Fixes

– Fixed the issue that the watchdog reset event affected the system from PMC.

– Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.

– Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.1.5]
• Bug Fixes

– deprecated a unusable API in WWWDT driver.

* WWDT_Disable

[2.1.4]
• Bug Fixes

– Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WWDT_Init

[2.1.3]
• Bug Fixes

– Fixed legacy issue when initializing the MOD register.

[2.1.2]
• Improvements

– Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API tomatch
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
• New Features

– Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

– Implemented delay/retry in WWDT driver.

[2.1.0]
• Improvements

– Added new parameter in configuration when initializingWWDTmodule. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

LPC802

94 Chapter 1. LPCXpresso802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

1.7. Middleware Documentation 95

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

96 Chapter 1. LPCXpresso802

Chapter 2

LPC802

2.1 Clock Driver

enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid
Invalid Ip Name.

enumerator kCLOCK_Rom
Clock gate name: Rom.

enumerator kCLOCK_Ram0
Clock gate name: Ram0.

enumerator kCLOCK_Flash
Clock gate name: Flash.

enumerator kCLOCK_I2c0
Clock gate name: I2c0.

enumerator kCLOCK_Gpio0
Clock gate name: Gpio0.

enumerator kCLOCK_Swm
Clock gate name: Swm.

enumerator kCLOCK_Wkt
Clock gate name: Wkt.

enumerator kCLOCK_Mrt
Clock gate name: Mrt.

enumerator kCLOCK_Spi0
Clock gate name: Spi0.

enumerator kCLOCK_Crc
Clock gate name: Crc.

enumerator kCLOCK_Uart0
Clock gate name: Uart0.

97

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kCLOCK_Uart1
Clock gate name: Uart1.

enumerator kCLOCK_Wwdt
Clock gate name: Wwdt.

enumerator kCLOCK_Iocon
Clock gate name: Iocon.

enumerator kCLOCK_Acmp
Clock gate name: Acmp.

enumerator kCLOCK_Adc
Clock gate name: Adc.

enumerator kCLOCK_Ctimer0
Clock gate name: Ctimer0.

enumerator kCLOCK_GpioInt
Clock gate name: GpioInt.

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk
Cpu/AHB/AHB matrix/Memories,etc

enumerator kCLOCK_MainClk
Main clock

enumerator kCLOCK_Fro
FRO18/24/30

enumerator kCLOCK_FroDiv
FRO div clock

enumerator kCLOCK_ExtClk
External Clock

enumerator kCLOCK_LPOsc
Low power Oscillator

enumerator kCLOCK_Frg
fractional rate0

enum _clock_select
ClockMux Switches CLK_MUX_DEFINE(reg,mux) reg is used to define themux registermux
is used to define the mux value.

Values:

enumerator kADC_Clk_From_Fro
Mux ADC_Clk from Fro.

enumerator kADC_Clk_From_ClkIn
Mux ADC_Clk from ClkIn.

enumerator kUART0_Clk_From_Fro
Mux UART0_Clk from Fro.

enumerator kUART0_Clk_From_MainClk
Mux UART0_Clk from MainClk.

98 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kUART0_Clk_From_Frg0Clk
Mux UART0_Clk from Frg0Clk.

enumerator kUART0_Clk_From_Fro_Div
Mux UART0_Clk from Fro_Div.

enumerator kUART1_Clk_From_Fro
Mux UART1_Clk from Fro.

enumerator kUART1_Clk_From_MainClk
Mux UART1_Clk from MainClk.

enumerator kUART1_Clk_From_Frg0Clk
Mux UART1_Clk from Frg0Clk.

enumerator kUART1_Clk_From_Fro_Div
Mux UART1_Clk from Fro_Div.

enumerator kI2C_Clk_From_Fro
Mux I2C_Clk from Fro.

enumerator kI2C_Clk_From_MainClk
Mux I2C_Clk from MainClk.

enumerator kI2C_Clk_From_Frg0Clk
Mux I2C_Clk from Frg0Clk.

enumerator kI2C_Clk_From_Fro_Div
Mux I2C_Clk from Fro_Div.

enumerator kSPI_Clk_From_Fro
Mux SPI_Clk from Fro.

enumerator kSPI_Clk_From_MainClk
Mux SPI_Clk from MainClk.

enumerator kSPI_Clk_From_Frg0Clk
Mux SPI_Clk from Frg0Clk.

enumerator kSPI_Clk_From_Fro_Div
Mux SPI_Clk from Fro_Div.

enumerator kFRG0_Clk_From_Fro
Mux FRG0_Clk from Fro.

enumerator kFRG0_Clk_From_MainClk
Mux FRG0_Clk from MainClk.

enumerator kCLKOUT_From_Fro
Mux CLKOUT from Fro.

enumerator kCLKOUT_From_MainClk
Mux CLKOUT from MainClk.

enumerator kCLKOUT_From_ExtClk
Mux CLKOUT from ExtClk.

enumerator kCLKOUT_From_WdtOsc
Mux clock out fromWdtOsc.

enum _clock_divider
Clock divider.

Values:

2.1. Clock Driver 99

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kCLOCK_DivAdcClk
Adc Clock Divider.

enumerator kCLOCK_DivClkOut
Clock out divider.

enum _clock_fro_src
fro output frequency source definition

Values:

enumerator kCLOCK_FroSrcLpwrBootValue
fro source from the fro oscillator divided by low power boot value

enum _clock_fro_osc_freq
fro oscillator output frequency value definition

Values:

enumerator kCLOCK_FroOscOut18M
FRO oscillator output 18M

enumerator kCLOCK_FroOscOut24M
FRO oscillator output 24M

enumerator kCLOCK_FroOscOut30M
FRO oscillator output 30M

enum _clock_main_clk_src
Main clock source definition.

Values:

enumerator kCLOCK_MainClkSrcFro
main clock source from FRO

enumerator kCLOCK_MainClkSrcExtClk
main clock source from Ext clock

enumerator kCLOCK_MainClkSrcLPOsc
main clock source from watchdog oscillator

enumerator kCLOCK_MainClkSrcFroDiv
main clock source from FRO Div

typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_select clock_select_t
ClockMux Switches CLK_MUX_DEFINE(reg,mux) reg is used to define themux registermux
is used to define the mux value.

typedef enum _clock_divider clock_divider_t
Clock divider.

typedef enum _clock_fro_src clock_fro_src_t
fro output frequency source definition

typedef enum _clock_fro_osc_freq clock_fro_osc_freq_t
fro oscillator output frequency value definition

100 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef enum _clock_main_clk_src clock_main_clk_src_t
Main clock source definition.

volatile uint32_t g_Wdt_Osc_Freq
watchdog oscilltor clock frequency.

This variable is used to store the watchdog oscillator frequency which is set by
CLOCK_InitWdtOsc, and it is returned by CLOCK_GetWdtOscFreq.

volatile uint32_t g_Ext_Clk_Freq
external clock frequency.

This variable is used to store the external clock frequency which is include external oscil-
lator clock and external clk in clock frequency value, it is set by CLOCK_InitExtClkin when
CLK IN is used as external clock or by CLOCK_InitSysOsc when external oscillator is used
as external clock ,and it is returned by CLOCK_GetExtClkFreq.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.3.4.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

CLOCK_FRO_SETTING_API_ROM_ADDRESS
FRO clock setting API address in ROM.

CLOCK_FAIM_BASE
FAIM base address.

ADC_CLOCKS
Clock ip name array for ADC.

ACMP_CLOCKS
Clock ip name array for ACMP.

DAC_CLOCKS
Clock ip name array for DAC.

SWM_CLOCKS
Clock ip name array for SWM.

ROM_CLOCKS
Clock ip name array for ROM.

SRAM_CLOCKS
Clock ip name array for SRAM.

IOCON_CLOCKS
Clock ip name array for IOCON.

GPIO_CLOCKS
Clock ip name array for GPIO.

GPIO_INT_CLOCKS
Clock ip name array for GPIO_INT.

DMA_CLOCKS
Clock ip name array for DMA.

CRC_CLOCKS
Clock ip name array for CRC.

WWDT_CLOCKS
Clock ip name array for WWDT.

2.1. Clock Driver 101

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

SCT_CLOCKS
Clock ip name array for SCT0.

I2C_CLOCKS
Clock ip name array for I2C.

USART_CLOCKS
Clock ip name array for I2C.

SPI_CLOCKS
Clock ip name array for SPI.

CAPT_CLOCKS
Clock ip name array for CAPT.

CTIMER_CLOCKS
Clock ip name array for CTIMER.

MTB_CLOCKS
Clock ip name array for MTB.

MRT_CLOCKS
Clock ip name array for MRT.

WKT_CLOCKS
Clock ip name array for WKT.

CLK_GATE_DEFINE(reg, bit)
Internal used Clock definition only.

CLK_GATE_GET_REG(x)

CLK_GATE_GET_BITS_SHIFT(x)

CLK_MUX_DEFINE(reg, mux)

CLK_MUX_GET_REG(x)

CLK_MUX_GET_MUX(x)

CLK_MAIN_CLK_MUX_DEFINE(preMux, mux)

CLK_MAIN_CLK_MUX_GET_PRE_MUX(x)

CLK_MAIN_CLK_MUX_GET_MUX(x)

CLK_DIV_DEFINE(reg)

CLK_DIV_GET_REG(x)

CLK_WDT_OSC_DEFINE(freq, regValue)

CLK_WDT_OSC_GET_FREQ(x)

CLK_WDT_OSC_GET_REG(x)

CLK_FRG_DIV_REG_MAP(base)

CLK_FRG_MUL_REG_MAP(base)

CLK_FRG_SEL_REG_MAP(base)

SYS_AHB_CLK_CTRL0

102 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void CLOCK_EnableClock(clock_ip_name_t clk)

static inline void CLOCK_DisableClock(clock_ip_name_t clk)

static inline void CLOCK_Select(clock_select_t sel)

static inline void CLOCK_SetClkDivider(clock_divider_t name, uint32_t value)

static inline uint32_t CLOCK_GetClkDivider(clock_divider_t name)

static inline void CLOCK_SetCoreSysClkDiv(uint32_t value)

void CLOCK_SetMainClkSrc(clock_main_clk_src_t src)
Set main clock reference source.

Parameters
• src – Reference clock_main_clk_src_t to set the main clock source.

static inline void CLOCK_SetFRGClkMul(uint32_t *base, uint32_t mul)

uint32_t CLOCK_GetFRGClkFreq(void)
Return Frequency of FRG0 Clock.

Returns
Frequency of FRG0 Clock.

uint32_t CLOCK_GetMainClkFreq(void)
Return Frequency of Main Clock.

Returns
Frequency of Main Clock.

uint32_t CLOCK_GetFroFreq(void)
Return Frequency of FRO.

Returns
Frequency of FRO.

static inline uint32_t CLOCK_GetCoreSysClkFreq(void)
Return Frequency of core.

Returns
Frequency of core.

uint32_t CLOCK_GetClockOutClkFreq(void)
Return Frequency of ClockOut.

Returns
Frequency of ClockOut

uint32_t CLOCK_GetUart0ClkFreq(void)
Get UART0 frequency.

Return values
UART0 – frequency value.

uint32_t CLOCK_GetUart1ClkFreq(void)
Get UART1 frequency.

Return values
UART1 – frequency value.

2.1. Clock Driver 103

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

static inline uint32_t CLOCK_GetLPOscFreq(void)
Get watch dog OSC frequency.

Return values
watch – dog OSC frequency value.

static inline uint32_t CLOCK_GetExtClkFreq(void)
Get external clock frequency.

Return values
external – clock frequency value.

bool CLOCK_SetFRGClkFreq(uint32_t freq)
Set FRG0 output frequency.

Parameters
• target (freq,) – output frequency,freq < input and (input / freq) < 2 should
be satisfy.

Return values
true – - successfully, false - input argument is invalid.

void CLOCK_InitExtClkin(uint32_t clkInFreq)
Init external CLK IN, select the CLKIN as the external clock source.

Parameters
• clkInFreq – external clock in frequency.

static inline void CLOCK_DeinitLPOsc(void)
Deinit watch dog OSC.

Parameters
• config – oscillator configuration.

void CLOCK_SetFroOscFreq(clock_fro_osc_freq_t freq)
Set FRO oscillator output frequency. Initialize the FRO clock to given frequency (18, 24 or
30 MHz).

Parameters
• please (freq,) – reference clock_fro_osc_freq_t definition, frequencymust be
one of 18000, 24000 or 30000 KHz.

2.2 CRC: Cyclic Redundancy Check Driver

FSL_CRC_DRIVER_VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

• Version 2.0.0

– initial version

• Version 2.0.1

104 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

– add explicit type cast when writing to WR_DATA

• Version 2.0.2

– Fix MISRA issue

• Version 2.1.0

– Add CRC_WriteSeed function

• Version 2.1.1

– Fix MISRA issue

enum _crc_polynomial
CRC polynomials to use.

Values:

enumerator kCRC_Polynomial_CRC_CCITT
x^16+x^12+x^5+1

enumerator kCRC_Polynomial_CRC_16
x^16+x^15+x^2+1

enumerator kCRC_Polynomial_CRC_32
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

typedef enum _crc_polynomial crc_polynomial_t
CRC polynomials to use.

typedef struct _crc_config crc_config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
• base – CRC peripheral address.

• config – CRC module configuration structure.

static inline void CRC_Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.

Parameters
• base – CRC peripheral address.

void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
• base – CRC peripheral address.

void CRC_WriteSeed(CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
• base – CRC peripheral address.

2.2. CRC: Cyclic Redundancy Check Driver 105

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• seed – CRC Seed value.

void CRC_GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_Polynomial_CRC_CCITT;
config->reverseIn = false;
config->complementIn = false;
config->reverseOut = false;
config->complementOut = false;
config->seed = 0xFFFFU;

Parameters
• config – CRC protocol configuration structure

void CRC_GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

Parameters
• base – CRC peripheral address.

• config – CRC protocol configuration structure

void CRC_WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.

Parameters
• base – CRC peripheral address.

• data – Input data stream, MSByte in data[0].

• dataSize – Size of the input data buffer in bytes.

static inline uint32_t CRC_Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.

Parameters
• base – CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

106 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

CRC_DRIVER_USE_CRC16_CCITT_FALSE_AS_DEFAULT
Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _crc_config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members

crc_polynomial_t polynomial
CRC polynomial.

bool reverseIn
Reverse bits on input.

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.3 CTIMER: Standard counter/timers

void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
• base – Ctimer peripheral base address

• config – Pointer to the user configuration structure.

void CTIMER_Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
• base – Ctimer peripheral base address

void CTIMER_GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_TimerMode;
config->input = kCTIMER_Capture_0;
config->prescale = 0;

2.3. CTIMER: Standard counter/timers 107

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• config – Pointer to the user configuration structure.

status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output frommultiple output pins, all should use the same PWM
period

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• pwmPeriod – PWM period match value

• pulsePeriod – Pulse width match value

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than 0xFFFFFFFF.

status_t CTIMER_SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,
ctimer_match_tmatchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output frommultiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWMwith high resolution.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – PWMpulse width; the value should be between 0 to 100

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – Timer counter clock in Hz

• enableInt – Enable interrupt when the timer value reaches thematch value
of the PWM pulse, if it is 0 then no interrupt will be generated.

108 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void CTIMER_UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match pin to be used to output the PWM signal

• pulsePeriod – New PWM pulse width match value

status_t CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_tmatchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWMwith high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
• base – Ctimer peripheral base address

• pwmPeriodChannel – Specify the channel to control the PWM period

• matchChannel – Match pin to be used to output the PWM signal

• dutyCyclePercent – New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than 0xFFFFFFFF.

static inline void CTIMER_EnableInterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER_DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
• base – Ctimer peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
• base – Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

2.3. CTIMER: Standard counter/timers 109

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline uint32_t CTIMER_GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
• base – Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER_ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
• base – Ctimer peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters
• base – Ctimer peripheral base address

FSL_CTIMER_DRIVER_VERSION
Version 2.3.3

enum _ctimer_capture_channel
List of Timer capture channels.

Values:

enumerator kCTIMER_Capture_0
Timer capture channel 0

enumerator kCTIMER_Capture_1
Timer capture channel 1

enumerator kCTIMER_Capture_3
Timer capture channel 3

enum _ctimer_capture_edge
List of capture edge options.

Values:

enumerator kCTIMER_Capture_RiseEdge
Capture on rising edge

enumerator kCTIMER_Capture_FallEdge
Capture on falling edge

enumerator kCTIMER_Capture_BothEdge
Capture on rising and falling edge

110 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _ctimer_match
List of Timer match registers.

Values:

enumerator kCTIMER_Match_0
Timer match register 0

enumerator kCTIMER_Match_1
Timer match register 1

enumerator kCTIMER_Match_2
Timer match register 2

enumerator kCTIMER_Match_3
Timer match register 3

enum _ctimer_external_match
List of external match.

Values:

enumerator kCTIMER_External_Match_0
External match 0

enumerator kCTIMER_External_Match_1
External match 1

enumerator kCTIMER_External_Match_2
External match 2

enumerator kCTIMER_External_Match_3
External match 3

enum _ctimer_match_output_control
List of output control options.

Values:

enumerator kCTIMER_Output_NoAction
No action is taken

enumerator kCTIMER_Output_Clear
Clear the EM bit/output to 0

enumerator kCTIMER_Output_Set
Set the EM bit/output to 1

enumerator kCTIMER_Output_Toggle
Toggle the EM bit/output

enum _ctimer_timer_mode
List of Timer modes.

Values:

enumerator kCTIMER_TimerMode

enumerator kCTIMER_IncreaseOnRiseEdge

enumerator kCTIMER_IncreaseOnFallEdge

enumerator kCTIMER_IncreaseOnBothEdge

2.3. CTIMER: Standard counter/timers 111

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _ctimer_interrupt_enable
List of Timer interrupts.

Values:

enumerator kCTIMER_Match0InterruptEnable
Match 0 interrupt

enumerator kCTIMER_Match1InterruptEnable
Match 1 interrupt

enumerator kCTIMER_Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER_Match3InterruptEnable
Match 3 interrupt

enum _ctimer_status_flags
List of Timer flags.

Values:

enumerator kCTIMER_Match0Flag
Match 0 interrupt flag

enumerator kCTIMER_Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_Match3Flag
Match 3 interrupt flag

enum ctimer_callback_type_t
Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_SingleCallback
Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_capture_channel_t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer_capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external_match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer_match_output_control_t
List of output control options.

112 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef enum _ctimer_timer_mode ctimer_timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer_interrupt_enable_t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.

typedef void (*ctimer_callback_t)(uint32_t flags)

typedef struct _ctimer_match_config ctimer_match_config_t
Match configuration.

This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_tmatchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
• base – Ctimer peripheral base address

• matchChannel – Match register to configure

• config – Pointer to the match configuration structure

uint32_t CTIMER_GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
• base – Ctimer peripheral base address

• matchChannel – External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enableInt)

Setup the capture.

Parameters
• base – Ctimer peripheral base address

• capture – Capture channel to configure

2.3. CTIMER: Standard counter/timers 113

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• edge – Edge on the channel that will trigger a capture

• enableInt – Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER_GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
• base – Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.

This function configures CTimer Callback in following modes:

• Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

• Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_match0_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
• base – Ctimer peripheral base address

• cb_func – Pointer to callback function pointer

• cb_type – callback function type, singular or multiple

static inline void CTIMER_Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.

Parameters
• base – Ctimer peripheral base address

static inline void CTIMER_SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.

Parameters
• base – Ctimer peripheral base address

• prescale – Prescale value

static inline uint32_t CTIMER_GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t
capture)

Get capture channel value.

Get the counter/timer value on the corresponding capture channel.

Parameters
• base – Ctimer peripheral base address

114 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• capture – Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.

Set the specified match channel reset operation.

Parameters
• base – Ctimer peripheral base address

• match – match channel used

• enable – Enable match channel reset operation.

static inline void CTIMER_EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable match channel stop operation.

static inline void CTIMER_EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.

Enable the specified match channel reload match shadow value.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• enable – Enable .

static inline void CTIMER_EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.

Sets the specified capture channel for rising edge capture.

Parameters
• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable rising edge capture.

static inline void CTIMER_EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.

Sets the specified capture channel for falling edge capture.

Parameters

2.3. CTIMER: Standard counter/timers 115

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• base – Ctimer peripheral base address.

• capture – capture channel used.

• enable – Enable falling edge capture.

static inline void CTIMER_SetShadowValue(CTIMER_Type *base, ctimer_match_tmatch,
uint32_t matchvalue)

Set the specified match shadow channel.

Parameters
• base – Ctimer peripheral base address.

• match – match channel used.

• matchvalue – Reload the value of the corresponding match register.

struct _ctimer_match_config
#include <fsl_ctimer.h>Match configuration.

This structure holds the configuration settings for each match register.

Public Members

uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM bit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ctimer_config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

116 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2.4 I2C: Inter-Integrated Circuit Driver

2.5 I2C Driver

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
The master is already performing a transfer.

enumerator kStatus_I2C_Idle
The slave driver is idle.

enumerator kStatus_I2C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_I2C_InvalidParameter
Unable to proceed due to invalid parameter.

enumerator kStatus_I2C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_I2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

enumerator kStatus_I2C_DmaRequestFail
DMA request failed.

enumerator kStatus_I2C_StartStopError
Start and stop error.

enumerator kStatus_I2C_UnexpectedState
Unexpected state.

enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.

enumerator kStatus_I2C_Timeout
Timeout polling status flags.

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_STAT_MSTCODE_IDLE
Master Idle State Code

I2C_STAT_MSTCODE_RXREADY
Master Receive Ready State Code

I2C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code

2.4. I2C: Inter-Integrated Circuit Driver 117

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

I2C_STAT_MSTCODE_NACKADR
Master NACK by slave on address State Code

I2C_STAT_MSTCODE_NACKDAT
Master NACK by slave on data State Code

I2C_STAT_SLVST_ADDR

I2C_STAT_SLVST_RX

I2C_STAT_SLVST_TX

2.6 I2C Master Driver

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->baudRate_Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with I2C_MasterInit().

Parameters
• masterConfig – [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters
• base – The I2C peripheral base address.

• masterConfig – User provided peripheral configuration. Use
I2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void I2C_MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

118 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

uint32_t I2C_GetInstance(I2C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
• base – The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_MasterReset(I2C_Type *base)
Performs a software reset.

Restores the I2C master peripheral to reset conditions.

Parameters
• base – The I2C peripheral base address.

static inline void I2C_MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
• base – The I2C peripheral base address.

• enable – Pass true to enable or false to disable the specified I2C as master.

static inline uint32_t I2C_GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:
_i2c_master_flags

Parameters
• base – The I2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

The following status register flags can be cleared:

• kI2C_MasterArbitrationLostFlag

• kI2C_MasterStartStopErrorFlag

Attempts to clear other flags has no effect.

See also:
_i2c_master_flags.

2.6. I2C Master Driver 119

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_master_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void I2C_EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C master interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _i2c_master_flags for
the set of constants that should be OR’d together to form the bit mask.

static inline void I2C_DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C master interrupt requests.

Parameters
• base – The I2C peripheral base address.

• interruptMask – Bit mask of interrupts to disable. See _i2c_master_flags for
the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t I2C_GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C master interrupt requests.

Parameters
• base – The I2C peripheral base address.

Returns
A bitmask composed of _i2c_master_flags enumerators OR’d together to indi-
cate the set of enabled interrupts.

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.

The I2Cmaster is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
• base – The I2C peripheral base address.

• srcClock_Hz – I2C functional clock frequency in Hertz.

• baudRate_Bps – Requested bus frequency in bits per second.

static inline bool I2C_MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters
• base – The I2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

120 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

static inline status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t
direction)

Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slavemay
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was sent successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

2.6. I2C Master Driver 121

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
• kStatus_Success – Data was received successfully.

• kStatus_I2C_Busy – Another master is currently utilizing the bus.

• kStatus_I2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_I2C_ArbitrationLost – Arbitration lost error.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_MasterTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C master driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

122 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• xfer – The pointer to the transfer descriptor.

Return values
• kStatus_Success – The transaction was started successfully.

• kStatus_I2C_Busy – Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

• count – [out]Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_I2C_Busy –

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to the I2C master driver handle.

Return values
• kStatus_Success – A transaction was successfully aborted.

• kStatus_I2C_Timeout – Abort failure due to flags polling timeout.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

2.6. I2C Master Driver 123

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• i2cHandle – Pointer to the I2C master driver handle i2c_master_handle_t.

enum _i2c_master_flags
I2C master peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_MasterPendingFlag
The I2C module is waiting for software interaction.

enumerator kI2C_MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus

enumerator kI2C_MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction.

enum _i2c_direction
Direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmit.

enumerator kI2C_Read
Master receive.

enum _i2c_master_transfer_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_TransferNoStopFlag
Don’t send a stop condition.

enum _i2c_transfer_states
States for the state machine used by transactional APIs.

Values:

enumerator kIdleState

enumerator kTransmitSubaddrState

enumerator kTransmitDataState

enumerator kReceiveDataBeginState

124 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState

typedef enum _i2c_direction i2c_direction_t
Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_master_config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blockingmaster transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

uint32_t baudRate_Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

2.6. I2C Master Driver 125

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

struct _i2c_master_transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
I2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint16_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct _i2c_master_handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytes
Remaining byte count in current state.

uint8_t *buf
Buffer pointer for current state.

i2c_master_transfer_t transfer
Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

126 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2.7 I2C Slave Driver

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Provides a default configuration for the I2C slave peripheral.

This function provides the following default configuration for the I2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0.disable = false;
slaveConfig->address0.address = 0u;
slaveConfig->address1.disable = true;
slaveConfig->address2.disable = true;
slaveConfig->address3.disable = true;
slaveConfig->busSpeed = kI2C_SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_SlaveInit(). Be sure to override at least the ad-
dress0.addressmember of the configuration structure with the desired slave address.

Parameters
• slaveConfig – [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config_t.

status_t I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
• base – The I2C peripheral base address.

• slaveConfig – User provided peripheral configuration. Use
I2C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

• srcClock_Hz – Frequency in Hertz of the I2C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void I2C_SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.

This function writes new value to Slave Address register.

Parameters
• base – The I2C peripheral base address.

• addressRegister – The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

• address – The slave address to be stored to the address register for match-
ing.

• addressDisable – Disable matching of the specified address register.

void I2C_SlaveDeinit(I2C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters

2.7. I2C Slave Driver 127

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• base – The I2C peripheral base address.

static inline void I2C_SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
• base – The I2C peripheral base address.

• enable – True to enable or flase to disable.

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:

• slave deselected flag

Attempts to clear other flags has no effect.

See also:
_i2c_slave_flags.

Parameters
• base – The I2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns
kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.

Parameters
• base – The I2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

128 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I2C_SlaveTransferAbort() API shall be called.

Parameters
• base – The I2C peripheral base address.

• handle – [out] Pointer to the I2C slave driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetSendBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

2.7. I2C Slave Driver 129

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• transfer – Pointer to i2c_slave_transfer_t structure.

• txData – Pointer to data to send to master.

• txSize – Size of txData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

status_t I2C_SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void
*rxData, size_t rxSize, uint32_t eventMask)

Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
• base – The I2C peripheral base address.

• transfer – Pointer to i2c_slave_transfer_t structure.

• rxData – Pointer to data to store data from master.

• rxSize – Size of rxData in bytes.

• eventMask – Bitmask formed byOR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

130 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline uint32_t I2C_SlaveGetReceivedAddress(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer)

Returns the slave address sent by the I2C master.

This function should only be called from the address match event callback
kI2C_SlaveAddressMatchEvent.

Parameters
• base – The I2C peripheral base address.

• transfer – The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
• kStatus_Success –

• kStatus_I2C_Idle –

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count –Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The I2C peripheral base address.

• i2cHandle – Pointer to i2c_slave_handle_t structure which stores the trans-
fer state.

2.7. I2C Slave Driver 131

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _i2c_slave_flags
I2C slave peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_SlavePendingFlag
The I2C module is waiting for software interaction.

enumerator kI2C_SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no).

enumerator kI2C_SlaveSelected
Indicates whether the slave is selected by an address match.

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, w1c).

enum _i2c_slave_address_register
I2C slave address register.

Values:

enumerator kI2C_SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_SlaveAddressRegister1
Slave Address 1 register.

enumerator kI2C_SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave_address_qual_mode
I2C slave address match options.

Values:

enumerator kI2C_QualModeMask
The SLVQUAL0 field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_QualModeExtend
The SLVQUAL0 (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_speed
I2C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode

enumerator kI2C_SlaveFastMode

enumerator kI2C_SlaveFastModePlus

enumerator kI2C_SlaveHsMode

132 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _i2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C_SlaveReceiveEvent
Callback is requested to provide a buffer inwhich to place received data (slave-receiver
role).

enumerator kI2C_SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c_slave_fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C_SlaveFsmAddressMatch

enumerator kI2C_SlaveFsmReceive

enumerator kI2C_SlaveFsmTransmit

typedef enum _i2c_slave_address_register i2c_slave_address_register_t
I2C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2c_slave_address_qual_mode_t
I2C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
I2C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config_t
Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

2.7. I2C Slave Driver 133

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the I2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsm i2c_slave_fsm_t
I2C slave software finite state machine states.

typedef void (*i2c_isr_t)(I2C_Type *base, void *i2cHandle)
Typedef for interrupt handler.

struct _i2c_slave_address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members

uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.

struct _i2c_slave_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the I2C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

134 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Public Members

i2c_slave_address_t address0
Slave’s 7-bit address and disable.

i2c_slave_address_t address1
Alternate slave 7-bit address and disable.

i2c_slave_address_t address2
Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2c_slave_bus_speed_t busSpeed
Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I2C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data
setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave
Enable slave mode.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

Public Members

i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event
Reason the callback is being invoked.

uint8_t receivedAddress
Matching address send by master. 7-bits plus R/nW bit0

uint32_t eventMask
Mask of enabled events.

uint8_t *rxData
Transfer buffer for receive data

const uint8_t *txData
Transfer buffer for transmit data

size_t txSize
Transfer size

size_t rxSize
Transfer size

2.7. I2C Slave Driver 135

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

size_t transferredCount
Number of bytes transferred during this transfer.

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

volatile i2c_slave_transfer_t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2c_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.8 IAP: In Application Programming Driver

status_t IAP_ReadPartID(uint32_t *partID)
Read part identification number.

This function is used to read the part identification number.

Parameters
• partID – Address to store the part identification number.

Return values
kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)
Read boot code version number.

This function is used to read the boot code version number.

note Boot code version is two 32-bit words. Word 0 is themajor version, word 1 is theminor
version.

Parameters
• bootCodeVersion – Address to store the boot code version.

Return values
kStatus_IAP_Success – Api has been executed successfully.

136 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void IAP_ReinvokeISP(uint8_t ispType, uint32_t *status)
Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and con-
figures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type se-
lection appears. The call won’t return unless an error occurs, so there can be no status
code.

Parameters
• ispType – ISP type selection.

• status – store the possible status.

Return values
kStatus_IAP_ReinvokeISPConfig – reinvoke configuration error.

status_t IAP_ReadUniqueID(uint32_t *uniqueID)
Read unique identification.

This function is used to read the unique id.

Parameters
• uniqueID – store the uniqueID.

Return values
kStatus_IAP_Success – Api has been executed successfully.

status_t IAP_PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)
Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called
before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function.
The end sector number must be greater than or equal to the start sector number.

Parameters
• startSector – Start sector number.

• endSector – End sector number.

Return values
• kStatus_IAP_Success – Api has been executed successfully.

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_InvalidSector – Sector number is invalid or end sector num-
ber is greater than start sector number.

• kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes,
uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via
IAP_PrepareSectorForWrite before calling this function.

Parameters
• dstAddr – Destination flash address where data bytes
are to be written, the address should be multiples of
FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.

2.8. IAP: In Application Programming Driver 137

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• srcAddr – Source ram address from where data bytes are to be read.

• numOfBytes – Number of bytes to be written, it should be mul-
tiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and
ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to
FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.

• systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
• kStatus_IAP_Success – Api has been executed successfully.

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_SrcAddrError – Source address is not on word boundary.

• kStatus_IAP_DstAddrError – Destination address is not on a correct
boundary.

• kStatus_IAP_SrcAddrNotMapped – Source address is not mapped in the
memory map.

• kStatus_IAP_DstAddrNotMapped – Destination address is not mapped in
the memory map.

• kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a per-
mitted value.

• kStatus_IAP_NotPrepared – Command to prepare sector for write opera-
tion has not been executed.

• kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)
Erase sector.

This function erases sector(s). The end sector number must be greater than or equal to the
start sector number.

Parameters
• startSector – Start sector number.

• endSector – End sector number.

• systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
• kStatus_IAP_Success – Api has been executed successfully.

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_InvalidSector – Sector number is invalid or end sector num-
ber is greater than start sector number.

• kStatus_IAP_NotPrepared – Command to prepare sector for write opera-
tion has not been executed.

• kStatus_IAP_Busy – Flash programming hardware interface is busy.

138 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

status_t IAP_ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)
Erase page.

This function erases page(s). The end page number must be greater than or equal to the
start page number.

Parameters
• startPage – Start page number.

• endPage – End page number.

• systemCoreClock – SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
• kStatus_IAP_Success – Api has been executed successfully.

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_InvalidSector – Page number is invalid or end page number
is greater than start page number.

• kStatus_IAP_NotPrepared – Command to prepare sector for write opera-
tion has not been executed.

• kStatus_IAP_Busy – Flash programming hardware interface is busy.

status_t IAP_BlankCheckSector(uint32_t startSector, uint32_t endSector)
Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector number must be
greater than or equal to the start sector number. It can be used to verify the sector erasure
after IAP_EraseSector call.

Parameters
• startSector – Start sector number.

• endSector – End sector number.

Return values
• kStatus_IAP_Success – One or more sectors are in erased state.

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_SectorNotblank – One or more sectors are not blank.

status_t IAP_Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)
Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash
memory contents after IAP_CopyRamToFlash call.

Parameters
• dstAddr – Destination flash address.

• srcAddr – Source ram address.

• numOfBytes – Number of bytes to be compared.

Return values
• kStatus_IAP_Success – Contents of flash and ram match.

2.8. IAP: In Application Programming Driver 139

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• kStatus_IAP_NoPower – Flash memory block is powered down.

• kStatus_IAP_NoClock – Flash memory block or controller is not clocked.

• kStatus_IAP_AddrError – Address is not on word boundary.

• kStatus_IAP_AddrNotMapped – Address is not mapped in the memory
map.

• kStatus_IAP_CountError – Byte count is not multiple of 4 or is not a per-
mitted value.

• kStatus_IAP_CompareError – Destination and source memory contents do
not match.

FSL_IAP_DRIVER_VERSION

iap status codes.

Values:

enumerator kStatus_IAP_Success
Api is executed successfully

enumerator kStatus_IAP_InvalidCommand
Invalid command

enumerator kStatus_IAP_SrcAddrError
Source address is not on word boundary

enumerator kStatus_IAP_DstAddrError
Destination address is not on a correct boundary

enumerator kStatus_IAP_SrcAddrNotMapped
Source address is not mapped in the memory map

enumerator kStatus_IAP_DstAddrNotMapped
Destination address is not mapped in the memory map

enumerator kStatus_IAP_CountError
Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus_IAP_InvalidSector
Sector/page number is invalid or end sector/page number is greater than start sec-
tor/page number

enumerator kStatus_IAP_SectorNotblank
One or more sectors are not blank

enumerator kStatus_IAP_NotPrepared
Command to prepare sector for write operation has not been executed

enumerator kStatus_IAP_CompareError
Destination and source memory contents do not match

enumerator kStatus_IAP_Busy
Flash programming hardware interface is busy

enumerator kStatus_IAP_ParamError
Insufficient number of parameters or invalid parameter

enumerator kStatus_IAP_AddrError
Address is not on word boundary

140 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatus_IAP_AddrNotMapped
Address is not mapped in the memory map

enumerator kStatus_IAP_NoPower
Flash memory block is powered down

enumerator kStatus_IAP_NoClock
Flash memory block or controller is not clocked

enumerator kStatus_IAP_ReinvokeISPConfig
Reinvoke configuration error

enum _iap_commands
iap command codes.

Values:

enumerator kIapCmd_IAP_ReadFactorySettings
Read the factory settings

enumerator kIapCmd_IAP_PrepareSectorforWrite
Prepare Sector for write

enumerator kIapCmd_IAP_CopyRamToFlash
Copy RAM to flash

enumerator kIapCmd_IAP_EraseSector
Erase Sector

enumerator kIapCmd_IAP_BlankCheckSector
Blank check sector

enumerator kIapCmd_IAP_ReadPartId
Read part id

enumerator kIapCmd_IAP_Read_BootromVersion
Read bootrom version

enumerator kIapCmd_IAP_Compare
Compare

enumerator kIapCmd_IAP_ReinvokeISP
Reinvoke ISP

enumerator kIapCmd_IAP_ReadUid
Read Uid

enumerator kIapCmd_IAP_ErasePage
Erase Page

enumerator kIapCmd_IAP_ReadSignature
Read Signature

enumerator kIapCmd_IAP_ExtendedReadSignature
Extended Read Signature

enumerator kIapCmd_IAP_ReadEEPROMPage
Read EEPROM page

enumerator kIapCmd_IAP_WriteEEPROMPage
Write EEPROM page

2.8. IAP: In Application Programming Driver 141

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _flash_access_time
Flash memory access time.

Values:

enumerator kFlash_IAP_OneSystemClockTime

enumerator kFlash_IAP_TwoSystemClockTime
1 system clock flash access time

enumerator kFlash_IAP_ThreeSystemClockTime
2 system clock flash access time

2.9 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

142 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

2.9. Common Driver 143

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

144 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

2.9. Common Driver 145

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

146 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

2.9. Common Driver 147

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEMMANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

148 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

2.9. Common Driver 149

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

150 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environmentsmake the timenot precise, if precise delay countwas needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there areNVIC and intmux. Here the interrupts connected toNVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values

2.9. Common Driver 151

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

152 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its ownmanagement
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)
Enable specific interrupt for wake-up from deep-sleep mode.

Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleepmode only andwill not occur during deep-sleepmode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters
• interrupt – The IRQ number.

void DisableDeepSleepIRQ(IRQn_Type interrupt)
Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleepmode only andwill not occur during deep-sleepmode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also disables the interrupt in the NVIC (DisableIRQ() is called inter-
naly).

Parameters
• interrupt – The IRQ number.

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

2.9. Common Driver 153

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as CortexM) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.10 LPC_ACOMP: Analog comparator Driver

void ACOMP_Init(ACOMP_Type *base, const acomp_config_t *config)
Initialize the ACOMP module.

Parameters
• base – ACOMP peripheral base address.

• config – Pointer to “acomp_config_t” structure.

void ACOMP_Deinit(ACOMP_Type *base)
De-initialize the ACOMP module.

Parameters
• base – ACOMP peripheral base address.

void ACOMP_GetDefaultConfig(acomp_config_t *config)
Gets an available pre-defined settings for the ACOMP’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are:

config->enableSyncToBusClk = false;
config->hysteresisSelection = kACOMP_hysteresisNoneSelection;

In default configuration, the ACOMP’s output would be used directly and switch as the volt-
ages cross.

154 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• config – Pointer to the configuration structure.

void ACOMP_EnableInterrupts(ACOMP_Type *base, acomp_interrupt_enable_t enable)
Enable ACOMP interrupts.

Parameters
• base – ACOMP peripheral base address.

• enable – Enable/Disable interrupt feature.

static inline bool ACOMP_GetInterruptsStatusFlags(ACOMP_Type *base)
Get interrupts status flags.

Parameters
• base – ACOMP peripheral base address.

Returns
Reflect the state ACOMP edge-detect status, true or false.

static inline void ACOMP_ClearInterruptsStatusFlags(ACOMP_Type *base)
Clear the ACOMP interrupts status flags.

Parameters
• base – ACOMP peripheral base address.

static inline bool ACOMP_GetOutputStatusFlags(ACOMP_Type *base)
Get ACOMP output status flags.

Parameters
• base – ACOMP peripheral base address.

Returns
Reflect the state of the comparator output, true or false.

static inline void ACOMP_SetInputChannel(ACOMP_Type *base, uint32_t postiveInputChannel,
uint32_t negativeInputChannel)

Set the ACOMP postive and negative input channel.

Parameters
• base – ACOMP peripheral base address.

• postiveInputChannel – The index of postive input channel.

• negativeInputChannel – The index of negative input channel.

void ACOMP_SetLadderConfig(ACOMP_Type *base, const acomp_ladder_config_t *config)
Set the voltage ladder configuration.

Parameters
• base – ACOMP peripheral base address.

• config – The structure for voltage ladder. If the config is NULL, voltage lad-
der would be diasbled, otherwise the voltage ladder would be configured
and enabled.

FSL_ACOMP_DRIVER_VERSION
ACOMP driver version 2.1.0.

enum _acomp_ladder_reference_voltage
The ACOMP ladder reference voltage.

Values:

2.10. LPC_ACOMP: Analog comparator Driver 155

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kACOMP_LadderRefVoltagePinVDD
Supply from pin VDD.

enumerator kACOMP_LadderRefVoltagePinVDDCMP
Supply from pin VDDCMP.

enum _acomp_interrupt_enable
The ACOMP interrupts enable.

Values:

enumerator kACOMP_InterruptsFallingEdgeEnable
Enable the falling edge interrupts.

enumerator kACOMP_InterruptsRisingEdgeEnable
Enable the rising edge interrupts.

enumerator kACOMP_InterruptsBothEdgesEnable
Enable the both edges interrupts.

enumerator kACOMP_InterruptsDisable
Disable the interrupts.

enum _acomp_hysteresis_selection
The ACOMP hysteresis selection.

Values:

enumerator kACOMP_HysteresisNoneSelection
None (the output will switch as the voltages cross).

enumerator kACOMP_Hysteresis5MVSelection
5mV.

enumerator kACOMP_Hysteresis10MVSelection
10mV.

enumerator kACOMP_Hysteresis20MVSelection
20mV.

typedef enum _acomp_ladder_reference_voltage acomp_ladder_reference_voltage_t
The ACOMP ladder reference voltage.

typedef enum _acomp_interrupt_enable acomp_interrupt_enable_t
The ACOMP interrupts enable.

typedef enum _acomp_hysteresis_selection acomp_hysteresis_selection_t
The ACOMP hysteresis selection.

typedef struct _acomp_config acomp_config_t
The structure for ACOMP basic configuration.

typedef struct _acomp_ladder_config acomp_ladder_config_t
The structure for ACOMP voltage ladder.

struct _acomp_config
#include <fsl_acomp.h> The structure for ACOMP basic configuration.

Public Members

156 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

bool enableSyncToBusClk
If true, Comparator output is synchronized to the bus clock for output to othermodules.
If false, Comparator output is used directly.

acomp_hysteresis_selection_t hysteresisSelection
Controls the hysteresis of the comparator.

struct _acomp_ladder_config
#include <fsl_acomp.h> The structure for ACOMP voltage ladder.

Public Members

uint8_t ladderValue
Voltage ladder value. 00000 = Vss, 00001 = 1*Vref/31, …, 11111 = Vref.

acomp_ladder_reference_voltage_t referenceVoltage
Selects the reference voltage(Vref) for the voltage ladder.

2.11 ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_Init(ADC_Type *base, const adc_config_t *config)
Initialize the ADC module.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure, see to adc_config_t.

void ADC_Deinit(ADC_Type *base)
Deinitialize the ADC module.

Parameters
• base – ADC peripheral base address.

void ADC_GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->clockMode = kADC_ClockSynchronousMode;
config->clockDividerNumber = 0U;
config->resolution = kADC_Resolution12bit;
config->enableBypassCalibration = false;
config->sampleTimeNumber = 0U;
config->extendSampleTimeNumber = kADC_ExtendSampleTimeNotUsed;

Parameters
• config – Pointer to configuration structure.

static inline void ADC_EnableConvSeqA(ADC_Type *base, bool enable)
Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 157

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable the feature or not.

void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence A.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_DoSoftwareTriggerConvSeqA(ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
• base – ADC peripheral base address.

static inline void ADC_EnableConvSeqABurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqAHighPriority(ADC_Type *base)
Set the high priority for conversion sequence A.

Parameters
• base – ADC peripheral bass address.

static inline void ADC_EnableConvSeqB(ADC_Type *base, bool enable)
Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable the feature or not.

void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence B.

Parameters
• base – ADC peripheral base address.

• config – Pointer to configuration structure, see to adc_conv_seq_config_t.

158 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void ADC_DoSoftwareTriggerConvSeqB(ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
• base – ADC peripheral base address.

static inline void ADC_EnableConvSeqBBurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
• base – ADC peripheral base address.

• enable – Switcher to enable this feature.

static inline void ADC_SetConvSeqBHighPriority(ADC_Type *base)
Set the high priority for conversion sequence B.

Parameters
• base – ADC peripheral bass address.

bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence A.

Parameters
• base – ADC peripheral base address.

• info – Pointer to information structure, see to adc_result_info_t;

Return values
• true – The conversion result is ready.

• false – The conversion result is not ready yet.

bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence B.

Parameters
• base – ADC peripheral base address.

• info – Pointer to information structure, see to adc_result_info_t;

Return values
• true – The conversion result is ready.

• false – The conversion result is not ready yet.

bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t
*info)

Get the channel’s ADC conversion completed under each conversion sequence.

Parameters
• base – ADC peripheral base address.

• channel – The indicated channel number.

• info – Pointer to information structure, see to adc_result_info_t;

Return values

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 159

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• true – The conversion result is ready.

• false – The conversion result is not ready yet.

static inline void ADC_SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 0 with low and high value.

Parameters
• base – ADC peripheral base address.

• lowValue – LOW threshold value.

• highValue – HIGH threshold value.

static inline void ADC_SetThresholdPair1(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 1 with low and high value.

Parameters
• base – ADC peripheral base address.

• lowValue – LOW threshold value. The available value is with 12-bit.

• highValue – HIGH threshold value. The available value is with 12-bit.

static inline void ADC_SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 0.

Parameters
• base – ADC peripheral base address.

• channelMask – Indicated channels’ mask.

static inline void ADC_SetChannelWithThresholdPair1(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 1.

Parameters
• base – ADC peripheral base address.

• channelMask – Indicated channels’ mask.

static inline void ADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts for conversion sequences.

Parameters
• base – ADC peripheral base address.

• mask – Mask of interrupt mask value for global block except each channal,
see to _adc_interrupt_enable.

static inline void ADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts for conversion sequence.

Parameters
• base – ADC peripheral base address.

• mask – Mask of interrupt mask value for global block except each channel,
see to _adc_interrupt_enable.

static inline void ADC_EnableThresholdCompareInterrupt(ADC_Type *base, uint32_t channel,
adc_threshold_interrupt_mode_tmode)

Enable the interrupt of threshold compare event for each channel.

Parameters

160 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• base – ADC peripheral base address.

• channel – Channel number.

• mode – Interrupt mode for threshold compare event, see to
adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_GetStatusFlags(ADC_Type *base)
Get status flags of ADC module.

Parameters
• base – ADC peripheral base address.

Returns
Mask of status flags of module, see to _adc_status_flags.

static inline void ADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags of ADC module.

Parameters
• base – ADC peripheral base address.

• mask – Mask of status flags of module, see to _adc_status_flags.

FSL_ADC_DRIVER_VERSION
ADC driver version 2.6.0.

enum _adc_status_flags
Flags.

Values:

enumerator kADC_ThresholdCompareFlagOnChn0
Threshold comparison event on Channel 0.

enumerator kADC_ThresholdCompareFlagOnChn1
Threshold comparison event on Channel 1.

enumerator kADC_ThresholdCompareFlagOnChn2
Threshold comparison event on Channel 2.

enumerator kADC_ThresholdCompareFlagOnChn3
Threshold comparison event on Channel 3.

enumerator kADC_ThresholdCompareFlagOnChn4
Threshold comparison event on Channel 4.

enumerator kADC_ThresholdCompareFlagOnChn5
Threshold comparison event on Channel 5.

enumerator kADC_ThresholdCompareFlagOnChn6
Threshold comparison event on Channel 6.

enumerator kADC_ThresholdCompareFlagOnChn7
Threshold comparison event on Channel 7.

enumerator kADC_ThresholdCompareFlagOnChn8
Threshold comparison event on Channel 8.

enumerator kADC_ThresholdCompareFlagOnChn9
Threshold comparison event on Channel 9.

enumerator kADC_ThresholdCompareFlagOnChn10
Threshold comparison event on Channel 10.

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 161

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kADC_ThresholdCompareFlagOnChn11
Threshold comparison event on Channel 11.

enumerator kADC_OverrunFlagForChn0
Mirror the OVERRUN status flag from the result register for ADC channel 0.

enumerator kADC_OverrunFlagForChn1
Mirror the OVERRUN status flag from the result register for ADC channel 1.

enumerator kADC_OverrunFlagForChn2
Mirror the OVERRUN status flag from the result register for ADC channel 2.

enumerator kADC_OverrunFlagForChn3
Mirror the OVERRUN status flag from the result register for ADC channel 3.

enumerator kADC_OverrunFlagForChn4
Mirror the OVERRUN status flag from the result register for ADC channel 4.

enumerator kADC_OverrunFlagForChn5
Mirror the OVERRUN status flag from the result register for ADC channel 5.

enumerator kADC_OverrunFlagForChn6
Mirror the OVERRUN status flag from the result register for ADC channel 6.

enumerator kADC_OverrunFlagForChn7
Mirror the OVERRUN status flag from the result register for ADC channel 7.

enumerator kADC_OverrunFlagForChn8
Mirror the OVERRUN status flag from the result register for ADC channel 8.

enumerator kADC_OverrunFlagForChn9
Mirror the OVERRUN status flag from the result register for ADC channel 9.

enumerator kADC_OverrunFlagForChn10
Mirror the OVERRUN status flag from the result register for ADC channel 10.

enumerator kADC_OverrunFlagForChn11
Mirror the OVERRUN status flag from the result register for ADC channel 11.

enumerator kADC_GlobalOverrunFlagForSeqA
Mirror the glabal OVERRUN status flag for conversion sequence A.

enumerator kADC_GlobalOverrunFlagForSeqB
Mirror the global OVERRUN status flag for conversion sequence B.

enumerator kADC_ConvSeqAInterruptFlag
Sequence A interrupt/DMA trigger.

enumerator kADC_ConvSeqBInterruptFlag
Sequence B interrupt/DMA trigger.

enumerator kADC_ThresholdCompareInterruptFlag
Threshold comparision interrupt flag.

enumerator kADC_OverrunInterruptFlag
Overrun interrupt flag.

enum _adc_interrupt_enable
Interrupts.

Note: Not all the interrupt options are listed here

Values:

162 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kADC_ConvSeqAInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence A, or
entire sequence.

enumerator kADC_ConvSeqBInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence B, or en-
tire sequence.

enumerator kADC_OverrunInterruptEnable
Enable the detection of an overrun condition on any of the channel data registers will
cause an overrun interrupt/DMA trigger.

enum _adc_clock_mode
Define selection of clock mode.

Values:

enumerator kADC_ClockSynchronousMode
The ADC clock would be derived from the system clock based on “clockDividerNum-
ber”.

enumerator kADC_ClockAsynchronousMode
The ADC clock would be based on the SYSCON block’s divider.

enum _adc_resolution
Define selection of resolution.

Values:

enumerator kADC_Resolution6bit
6-bit resolution.

enumerator kADC_Resolution8bit
8-bit resolution.

enumerator kADC_Resolution10bit
10-bit resolution.

enumerator kADC_Resolution12bit
12-bit resolution.

enum _adc_voltage_range
Definfe range of the analog supply voltage VDDA.

Values:

enumerator kADC_HighVoltageRange

enumerator kADC_LowVoltageRange

enum _adc_trigger_polarity
Define selection of polarity of selected input trigger for conversion sequence.

Values:

enumerator kADC_TriggerPolarityNegativeEdge
A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_TriggerPolarityPositiveEdge
A positive edge launches the conversion sequence on the trigger(s).

enum _adc_priority
Define selection of conversion sequence’s priority.

Values:

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 163

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kADC_PriorityLow
This sequence would be preempted when another sequence is started.

enumerator kADC_PriorityHigh
This sequence would preempt other sequence even when it is started.

enum _adc_seq_interrupt_mode
Define selection of conversion sequence’s interrupt.

Values:

enumerator kADC_InterruptForEachConversion
The sequence interrupt/DMA trigger will be set at the end of each individual ADC con-
version inside this conversion sequence.

enumerator kADC_InterruptForEachSequence
The sequence interrupt/DMA trigger will be set when the entire set of this sequence
conversions completes.

enum _adc_threshold_compare_status
Define status of threshold compare result.

Values:

enumerator kADC_ThresholdCompareInRange
LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ThresholdCompareBelowRange
conversion value < LOW threshold.

enumerator kADC_ThresholdCompareAboveRange
conversion value > HIGH threshold.

enum _adc_threshold_crossing_status
Define status of threshold crossing detection result.

Values:

enumerator kADC_ThresholdCrossingNoDetected
No threshold Crossing detected.

enumerator kADC_ThresholdCrossingDownward
Downward Threshold Crossing detected.

enumerator kADC_ThresholdCrossingUpward
Upward Threshold Crossing Detected.

enum _adc_threshold_interrupt_mode
Define interrupt mode for threshold compare event.

Values:

enumerator kADC_ThresholdInterruptDisabled
Threshold comparison interrupt is disabled.

enumerator kADC_ThresholdInterruptOnOutside
Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ThresholdInterruptOnCrossing
Threshold comparison interrupt is enabled on crossing threshold.

enum _adc_inforesultshift
Define the info result mode of different resolution.

Values:

164 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kADC_Resolution12bitInfoResultShift
Info result shift of Resolution12bit.

enumerator kADC_Resolution10bitInfoResultShift
Info result shift of Resolution10bit.

enumerator kADC_Resolution8bitInfoResultShift
Info result shift of Resolution8bit.

enumerator kADC_Resolution6bitInfoResultShift
Info result shift of Resolution6bit.

enum _adc_tempsensor_common_mode
Define common modes for Temerature sensor.

Values:

enumerator kADC_HighNegativeOffsetAdded
Temperature sensor common mode: high negative offset added.

enumerator kADC_IntermediateNegativeOffsetAdded
Temperature sensor common mode: intermediate negative offset added.

enumerator kADC_NoOffsetAdded
Temperature sensor common mode: no offset added.

enumerator kADC_LowPositiveOffsetAdded
Temperature sensor common mode: low positive offset added.

enum _adc_second_control
Define source impedance modes for GPADC control.

Values:

enumerator kADC_Impedance621Ohm
Extand ADC sampling time according to source impedance 1: 0.621 kOhm.

enumerator kADC_Impedance55kOhm
Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.

enumerator kADC_Impedance87kOhm
Extand ADC sampling time according to source impedance 31: 87 kOhm.

enumerator kADC_NormalFunctionalMode
TEST mode: Normal functional mode.

enumerator kADC_MultiplexeTestMode
TEST mode: Multiplexer test mode.

enumerator kADC_ADCInUnityGainMode
TEST mode: ADC in unity gain mode.

typedef enum _adc_clock_mode adc_clock_mode_t
Define selection of clock mode.

typedef enum _adc_resolution adc_resolution_t
Define selection of resolution.

typedef enum _adc_voltage_range adc_vdda_range_t
Definfe range of the analog supply voltage VDDA.

typedef enum _adc_trigger_polarity adc_trigger_polarity_t
Define selection of polarity of selected input trigger for conversion sequence.

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 165

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef enum _adc_priority adc_priority_t
Define selection of conversion sequence’s priority.

typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_mode_t
Define selection of conversion sequence’s interrupt.

typedef enum _adc_threshold_compare_status adc_threshold_compare_status_t
Define status of threshold compare result.

typedef enum _adc_threshold_crossing_status adc_threshold_crossing_status_t
Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc_threshold_interrupt_mode_t
Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_inforesult_t
Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc_tempsensor_common_mode_t
Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_second_control_t
Define source impedance modes for GPADC control.

typedef struct _adc_config adc_config_t
Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq_config_t
Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_result_info_t
Define structure of keeping conversion result information.

struct _adc_config
#include <fsl_adc.h> Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode
Select the clock mode for ADC converter.

uint32_t clockDividerNumber
This field is only available when using kADC_ClockSynchronousMode for “clockMode”
field. The divider would be plused by 1 based on the value in this field. The available
range is in 8 bits.

adc_resolution_t resolution
Select the conversion bits.

bool enableBypassCalibration
By default, a calibration cycle must be performed each time the chip is powered-up.
Re-calibration may be warranted periodically - especially if operating conditions have
changed. To enable this option would avoid the need to calibrate if offset error is not
a concern in the application.

uint32_t sampleTimeNumber
By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to
plus the “sampleTimeNumber” value here. The available value range is in 3 bits.

166 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

bool enableLowPowerMode
If disable low-power mode, ADC remains activated even when no conversions are re-
quested. If enable low-power mode, The ADC is automatically powered-down when
no conversions are taking place.

adc_vdda_range_t voltageRange
Configure the ADC for the appropriate operating range of the analog supply voltage
VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion
results.

struct _adc_conv_seq_config
#include <fsl_adc.h> Define structure for configuring conversion sequence.

Public Members

uint32_t channelMask
Selects which one or more of the ADC channels will be sampled and converted when
this sequence is launched. Themasked channels would be involved in current conver-
sion sequence, beginning with the lowest-order. The available range is in 12-bit.

uint32_t triggerMask
Selects which one or more of the available hardware trigger sources will cause this
conversion sequence to be initiated. The available range is 6-bit.

adc_trigger_polarity_t triggerPolarity
Select the trigger to launch conversion sequence.

bool enableSyncBypass
To enable this feature allows the hardware trigger input to bypass synchronization
flip-flop stages and therefore shorten the time between the trigger input signal and
the start of a conversion.

bool enableSingleStep
When enabling this feature, a trigger will launch a single conversion on the next chan-
nel in the sequence instead of the default response of launching an entire sequence of
conversions.

adc_seq_interrupt_mode_t interruptMode
Select the interrpt/DMA trigger mode.

struct _adc_result_info
#include <fsl_adc.h> Define structure of keeping conversion result information.

Public Members

uint32_t result
Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus
Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus
Keep the threshold crossing status.

uint32_t channelNumber
Keep the channel number for this conversion.

bool overrunFlag
Keep the status whether the conversion is overrun or not.

2.11. ADC: 12-bit SAR Analog-to-Digital Converter Driver 167

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2.12 GPIO: General Purpose I/O

void GPIO_PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters
• base – GPIO peripheral base pointer.

• port – GPIO port number.

void GPIO_PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• pin – GPIO pin number

• output – GPIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

168 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• port – GPIO port number

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

FSL_GPIO_DRIVER_VERSION
LPC GPIO driver version.

enum _gpio_pin_direction
LPC GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_direction_t
LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer(Typically GPIO)

• port – GPIO port number

• mask – GPIO pin number macro

2.12. GPIO: General Purpose I/O 169

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set default output logic, no use in input

2.13 IOCON: I/O pin configuration

LPC_IOCON_DRIVER_VERSION
IOCON driver version 2.0.2.

typedef struct _iocon_group iocon_group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__STATIC_INLINE void IOCON_PinMuxSet (IOCON_Type *base, uint8_t ionumber,
uint32_t modefunc)

IOCON function and mode selection definitions.

Sets I/O Control pin mux

Note: See the UserManual for specificmodes and functions supported by the various pins.

Parameters
• base – : The base of IOCON peripheral on the chip

• ionumber – : GPIO number to mux

• modefunc – : OR’ed values of type IOCON_*

Returns
Nothing

__STATIC_INLINE void IOCON_SetPinMuxing (IOCON_Type *base,
const iocon_group_t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.

Parameters
• base – : The base of IOCON peripheral on the chip

• pinArray – : Pointer to array of pin mux selections

• arrayLength – : Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID

170 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

struct _iocon_group
#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

2.14 MRT: Multi-Rate Timer

voidMRT_Init(MRT_Type *base, constmrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
• base – Multi-Rate timer peripheral base address

• config – Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

voidMRT_Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
• base – Multi-Rate timer peripheral base address

static inline voidMRT_GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters
• config – Pointer to user’s MRT config structure.

static inline voidMRT_SetupChannelMode(MRT_Type *base,mrt_chnl_t channel, const
mrt_timer_mode_tmode)

Sets up an MRT channel mode.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Channel that is being configured.

• mode – Timer mode to use for the channel.

static inline voidMRT_EnableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

2.14. MRT: Multi-Rate Timer 171

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline voidMRT_DisableInterrupts(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline uint32_tMRT_GetEnabledInterrupts(MRT_Type *base,mrt_chnl_t channel)
Gets the enabled MRT interrupts.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_tMRT_GetStatusFlags(MRT_Type *base,mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline voidMRT_ClearStatusFlags(MRT_Type *base,mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

voidMRT_UpdateTimerPeriod(MRT_Type *base,mrt_chnl_t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

172 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• immediateLoad – true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_tMRT_GetCurrentTimerCount(MRT_Type *base,mrt_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

static inline voidMRT_StartTimer(MRT_Type *base,mrt_chnl_t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

• count – Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

static inline voidMRT_StopTimer(MRT_Type *base,mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.

Parameters
• base – Multi-Rate timer peripheral base address

• channel – Timer channel number.

static inline uint32_tMRT_GetIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.

Parameters
• base – Multi-Rate timer peripheral base address

FSL_MRT_DRIVER_VERSION

enum _mrt_chnl
List of MRT channels.

Values:

2.14. MRT: Multi-Rate Timer 173

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kMRT_Channel_0
MRT channel number 0

enumerator kMRT_Channel_1
MRT channel number 1

enumerator kMRT_Channel_2
MRT channel number 2

enumerator kMRT_Channel_3
MRT channel number 3

enum _mrt_timer_mode
List of MRT timer modes.

Values:

enumerator kMRT_RepeatMode
Repeat Interrupt mode

enumerator kMRT_OneShotMode
One-shot Interrupt mode

enumerator kMRT_OneShotStallMode
One-shot stall mode

enum _mrt_interrupt_enable
List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable
Timer interrupt enable

enum _mrt_status_flags
List of MRT status flags.

Values:

enumerator kMRT_TimerInterruptFlag
Timer interrupt flag

enumerator kMRT_TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_chnl_t
List of MRT channels.

typedef enum _mrt_timer_mode mrt_timer_mode_t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt_interrupt_enable_t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.

typedef struct _mrt_config mrt_config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

174 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

struct _mrt_config
#include <fsl_mrt.h>MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.15 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_VERSION

enum _pint_pin_enable
PINT Pin Interrupt enable type.

Values:

enumerator kPINT_PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT_PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT_PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT_PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT_PinIntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT_PinIntEnableHighLevel
Generate Pin Interrupt on high level

enum _pint_int
PINT Pin Interrupt type.

Values:

enumerator kPINT_PinInt0
Pin Interrupt 0

enum _pint_pmatch_input_src
PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT_PatternMatchInp0Src
Input source 0

enumerator kPINT_PatternMatchInp1Src
Input source 1

2.15. PINT: Pin Interrupt and Pattern Match Driver 175

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kPINT_PatternMatchInp2Src
Input source 2

enumerator kPINT_PatternMatchInp3Src
Input source 3

enumerator kPINT_PatternMatchInp4Src
Input source 4

enumerator kPINT_PatternMatchInp5Src
Input source 5

enumerator kPINT_PatternMatchInp6Src
Input source 6

enumerator kPINT_PatternMatchInp7Src
Input source 7

enumerator kPINT_SecPatternMatchInp0Src
Input source 0

enumerator kPINT_SecPatternMatchInp1Src
Input source 1

enum _pint_pmatch_bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT_PatternMatchBSlice0
Bit slice 0

enum _pint_pmatch_bslice_cfg
PINT Pattern Match configuration type.

Values:

enumerator kPINT_PatternMatchAlways
Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT_PatternMatchStickyFall
Sticky Falling edge

enumerator kPINT_PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT_PatternMatchHigh
High level

enumerator kPINT_PatternMatchLow
Low level

enumerator kPINT_PatternMatchNever
Never contributes to product term match

enumerator kPINT_PatternMatchBothEdges
Either rising or falling edge

typedef enum _pint_pin_enable pint_pin_enable_t
PINT Pin Interrupt enable type.

176 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef enum _pint_int pint_pin_int_t
PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_pmatch_bslice_t
PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_bslice_cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_status_t
PINT event status.

typedef void (*pint_cb_t)(pint_pin_int_t pintr, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_pmatch_cfg_t

void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.

This function initializes the PINT peripheral and enables the clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.

Parameters
• base – Base address of the PINT peripheral.

• callback – Callback.

Return values
None. –

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.

Parameters
• base – Base address of the PINT peripheral.

• intr – Pin interrupt.

• enable – Selects detection logic.

Return values
None. –

void PINT_PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.

This function returns the configuration of a given pin interrupt.

Parameters

2.15. PINT: Pin Interrupt and Pattern Match Driver 177

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

• enable – Pointer to store the detection logic.

Return values
None. –

void PINT_PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
status – = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the status of corresponding pin interrupt.
= 0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

178 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

static inline void PINT_PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.

Parameters
• base – Base address of the PINT peripheral.

• pintr – Pin interrupt.

Return values
flag – = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

2.15. PINT: Pin Interrupt and Pattern Match Driver 179

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void PINT_PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline uint32_t PINT_PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.

Parameters
• base – Base address of the PINT peripheral.

Return values
flags – Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT_PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t
*cfg)

Configure PINT pattern match.

This function configures a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.

This function returns the configuration of a given pattern match bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

• cfg – Pointer to bit slice configuration.

Return values
None. –

static inline uint32_t PINT_PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.

This function returns the status of selected bit slice.

Parameters
• base – Base address of the PINT peripheral.

• bslice – Pattern match bit slice number.

180 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Return values
status – = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.

This function returns the status of all bit slices.

Parameters
• base – Base address of the PINT peripheral.

Return values
status – Each bit position indicates the match status of corresponding bit slice.
= 0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the patternmatch detection logic if any of the product term ismatching.

Parameters
• base – Base address of the PINT peripheral.

Return values
pmstatus – Each bit position indicates the match status of corresponding bit
slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

static inline void PINT_PatternMatchDisableRXEV(PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters

2.15. PINT: Pin Interrupt and Pattern Match Driver 181

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallback(PINT_Type *base)
Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_DisableCallback(PINT_Type *base)
Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
• base – Base address of the peripheral.

Return values
None. –

void PINT_Deinit(PINT_Type *base)
Deinitialize PINT peripheral.

This function disables the PINT clock.

Parameters
• base – Base address of the PINT peripheral.

Return values
None. –

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

void PINT_DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintIdx)
disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters
• base – Base address of the peripheral.

• pintIdx – pin index.

Return values
None. –

182 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

PINT_USE_LEGACY_CALLBACK

PININT_BITSLICE_SRC_START

PININT_BITSLICE_SRC_MASK

PININT_BITSLICE_CFG_START

PININT_BITSLICE_CFG_MASK

PININT_BITSLICE_ENDP_MASK

PINT_PIN_INT_LEVEL

PINT_PIN_INT_EDGE

PINT_PIN_INT_FALL_OR_HIGH_LEVEL

PINT_PIN_INT_RISE

PINT_PIN_RISE_EDGE

PINT_PIN_FALL_EDGE

PINT_PIN_BOTH_EDGE

PINT_PIN_LOW_LEVEL

PINT_PIN_HIGH_LEVEL

struct _pint_status
#include <fsl_pint.h> PINT event status.

struct _pint_pmatch_cfg
#include <fsl_pint.h>

2.16 Power Driver

enum pd_bits
Values:

enumerator kPDRUNCFG_PD_FRO_OUT

enumerator kPDRUNCFG_PD_FRO

enumerator kPDRUNCFG_PD_FLASH

enumerator kPDRUNCFG_PD_BOD

enumerator kPDRUNCFG_PD_ADC0

enumerator kPDRUNCFG_PD_LPOSC

enumerator kPDRUNCFG_PD_ACMP

enumerator kPDRUNCFG_ForceUnsigned

enum _power_wakeup
Deep sleep and power down mode wake up configurations.

Values:

2.16. Power Driver 183

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kPDAWAKECFG_Wakeup_FRO_OUT

enumerator kPDAWAKECFG_Wakeup_FRO

enumerator kPDAWAKECFG_Wakeup_FLASH

enumerator kPDAWAKECFG_Wakeup_BOD

enumerator kPDAWAKECFG_Wakeup_ADC

enumerator kPDAWAKECFG_Wakeup_LPOSC

enumerator kPDAWAKECFG_Wakeup_ACMP

enum _power_dpd_wakeup_pin
Deep power down mode wake up pins.

Values:

enumerator kPmu_Dpd_En_Pio0_15

enumerator kPmu_Dpd_En_Pio0_9

enumerator kPmu_Dpd_En_Pio0_8

enumerator kPmu_Dpd_En_Pio0_17

enumerator kPmu_Dpd_En_Pio0_13

enumerator kPmu_Dpd_En_Pio0_4

enumerator kPmu_Dpd_En_Pio0_11

enumerator kPmu_Dpd_En_Pio0_10

enum _power_deep_sleep_active
Deep sleep/power down mode active part.

Values:

enumerator kPDSLEEPCFG_DeepSleepBODActive

enumerator kPDSLEEPCFG_DeepSleepLPOscActive

enum _power_gen_reg
pmu general purpose register index

Values:

enumerator kPmu_GenReg0
general purpose register0

enumerator kPmu_GenReg1
general purpose register1

enumerator kPmu_GenReg2
general purpose register2

enumerator kPmu_GenReg3
general purpose register3

enumerator kPmu_GenReg4
general purpose reguster4

enum _power_mode_config
Values:

184 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kPmu_Sleep

enumerator kPmu_Deep_Sleep

enumerator kPmu_PowerDown

enumerator kPmu_Deep_PowerDown

enum _power_bod_reset_level
BOD reset level, if VDD below reset level value, the reset will be asserted.

Values:

enumerator kBod_ResetLevel0
BOD Reset Level0: 1.51V.

enum _power_bod_interrupt_level
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

Values:

enumerator kBod_InterruptLevelReserved
BOD interrupt level reserved.

enumerator kBod_InterruptLevel1
BOD interrupt level1: 2.24V.

enumerator kBod_InterruptLevel2
BOD interrupt level2: 2.52V.

enumerator kBod_InterruptLevel3
BOD interrupt level3: 2.81V.

typedef enum pd_bits pd_bit_t

typedef enum _power_gen_reg power_gen_reg_t
pmu general purpose register index

typedef enum _power_mode_config power_mode_cfg_t

typedef enum _power_bod_reset_level power_bod_reset_level_t
BOD reset level, if VDD below reset level value, the reset will be asserted.

typedef enum _power_bod_interrupt_level power_bod_interrupt_level_t
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

FSL_POWER_DRIVER_VERSION
power driver version 2.1.0.

PMUC_PCON_RESERVED_MASK
PMU PCON reserved mask, used to clear reserved field which should not write 1.

POWER_EnbaleLPO

static inline void POWER_EnablePD(pd_bit_t en)
API to enable PDRUNCFG bit in the Syscon. Note that enabling the bit powers down the
peripheral.

Parameters
• en – peripheral for which to enable the PDRUNCFG bit

Returns
none

2.16. Power Driver 185

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void POWER_DisablePD(pd_bit_t en)
API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the pe-
ripheral.

Parameters
• en – peripheral for which to disable the PDRUNCFG bit

Returns
none

static inline void POWER_EnableLPO(bool enable)
API to enable LPO.

Parameters
• enable – true to enable LPO, false to disable LPO.

static inline void POWER_WakeUpConfig(uint32_t mask, bool powerDown)
API to config wakeup configurations for deep sleep mode and power down mode.

Parameters
• mask – wake up configurations for deep sleep mode and power down
mode, reference _power_wakeup.

• powerDown – true is power down the mask part, false is powered part.

static inline void POWER_DeepSleepConfig(uint32_t mask, bool powerDown)
API to config active part for deep sleep mode and power down mode.

Parameters
• mask – active part configurations for deep sleep mode and power down
mode, reference _power_deep_sleep_active.

• powerDown – true is power down the mask part, false is powered part.

static inline void POWER_EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.

Returns
none

static inline void POWER_DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.

Returns
none

void POWER_EnterSleep(void)
API to enter sleep power mode.

Returns
none

void POWER_EnterDeepSleep(uint32_t activePart)
API to enter deep sleep power mode.

Parameters
• activePart – should be a single or combine value of
_power_deep_sleep_active .

Returns
none

186 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void POWER_EnterPowerDown(uint32_t activePart)
API to enter power down mode.

Parameters
• activePart – should be a single or combine value of
_power_deep_sleep_active .

Returns
none

void POWER_EnterDeepPowerDownMode(void)
API to enter deep power down mode.

Returns
none

static inline uint32_t POWER_GetSleepModeFlag(void)
API to get sleep mode flag.

Returns
sleep mode flag: 0 is active mode, 1 is sleep mode entered.

static inline void POWER_ClrSleepModeFlag(void)
API to clear sleep mode flag.

static inline uint32_t POWER_GetDeepPowerDownModeFlag(void)
API to get deep power down mode flag.

Returns
sleepmode flag: 0 not deep power down, 1 is deep power downmode entered.

static inline void POWER_ClrDeepPowerDownModeFlag(void)
API to clear deep power down mode flag.

static inline void POWER_ClrWakeupPinFlag(void)
API to clear wake up pin status flag.

static inline void POWER_DeepPowerDownWakeupSourceSelect(uint32_t wakeup_pin)

static inline void POWER_EnableNonDpd(bool enable)
API to enable non deep power down mode.

Parameters
• enable – true is enable non deep power down, otherwise disable.

static inline void POWER_SetRetainData(power_gen_reg_t index, uint32_t data)
API to retore data to general purpose register which can be retain during deep power down
mode.

Parameters
• index – general purpose data register index.

• data – data to restore.

static inline uint32_t POWER_GetRetainData(power_gen_reg_t index)
API to get data from general purpose register which retain during deep power downmode.

Parameters
• index – general purpose data register index.

Returns
data stored in the general purpose register.

2.16. Power Driver 187

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void POWER_SetBodLevel(power_bod_reset_level_t resetLevel,
power_bod_interrupt_level_t interruptLevel, bool
enable)

Set Bod interrupt level and reset level.

Parameters
• resetLevel – BOD reset threshold level, please refer to
power_bod_reset_level_t.

• interruptLevel – BOD interrupt threshold level, please refer to
power_bod_interrupt_level_t.

• enable – Used to enable/disable the BOD interrupt and BOD reset.

2.17 Reset Driver

enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

Values:

enumerator kFLASH_RST_N_SHIFT_RSTn
Flash controller reset control

enumerator kI2C0_RST_N_SHIFT_RSTn
I2C0 reset control

enumerator kGPIO0_RST_N_SHIFT_RSTn
GPIO0 reset control

enumerator kSWM_RST_N_SHIFT_RSTn
SWM reset control

enumerator kWKT_RST_N_SHIFT_RSTn
Self-wake-up timer(WKT) reset control

enumerator kMRT_RST_N_SHIFT_RSTn
Multi-rate timer(MRT) reset control

enumerator kSPI0_RST_N_SHIFT_RSTn
SPI0 reset control.

enumerator kCRC_RST_SHIFT_RSTn
CRC reset control

enumerator kUART0_RST_N_SHIFT_RSTn
UART0 reset control

enumerator kUART1_RST_N_SHIFT_RSTn
UART1 reset control

enumerator kIOCON_RST_N_SHIFT_RSTn
IOCON reset control

enumerator kACMP_RST_N_SHIFT_RSTn
Analog comparator reset control

188 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kADC_RST_N_SHIFT_RSTn
ADC reset control

enumerator kCTIMER0_RST_N_SHIFT_RSTn
CTIMER0 reset control

enumerator kGPIOINT_RST_N_SHIFT_RSTn
GPIOINT reset control

enumerator kFRG0_RST_N_SHIFT_RSTn
Fractional baud rate generator 0 reset control

enumerator kOTHER_RST_N_SHIFT_RSTn
Some functions don’t need reset

typedef enum _SYSCON_RSTn SYSCON_RSTn_t
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t

void RESET_SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.

Asserts reset signal to specified peripheral module.

Parameters
• peripheral – Assert reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.

Parameters
• peripheral – Clear reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.

Reset peripheral module.

Parameters
• peripheral – Peripheral to reset. The enum argument contains encoding of
reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.

Release peripheral module.

Parameters
• peripheral – Peripheral to release. The enum argument contains encoding
of reset register and reset bit position in the reset register.

FSL_RESET_DRIVER_VERSION
reset driver version 2.4.0

2.17. Reset Driver 189

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FLASH_RSTS_N
Array initializers with peripheral reset bits

I2C_RSTS_N

GPIO_RSTS_N

SWM_RSTS_N

WKT_RSTS_N

MRT_RSTS_N

SPI_RSTS_N

CRC_RSTS_N

UART_RSTS_N

IOCON_RSTS_N

ACMP_RSTS_N

ADC_RSTS_N

CTIMER_RSTS_N

GPIOINT_RSTS_N

FRG_RSTS_N

WWDT_RSTS_N

2.18 SPI: Serial Peripheral Interface Driver

2.19 SPI Driver

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or
modify some fields of the structure before calling SPI_MasterInit(). After calling this API,
the master is ready to transfer. Example:

spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);

Parameters
• config – pointer to master config structure

status_t SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

190 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

spi_master_config_t config = {
.baudRate_Bps = 500000,
...
};
SPI_MasterInit(SPI0, &config);

Parameters
• base – SPI base pointer

• config – pointer to master configuration structure

• srcClock_Hz – Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Exam-
ple:

spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);

Parameters
• config – pointer to slave configuration structure

status_t SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
Initializes the SPI with slave configuration.

The configuration structure can be filled by user from scratch or be set with default val-
ues by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spi_slave_config_t config = {
.polarity = kSPI_ClockPolarityActiveHigh;
.phase = kSPI_ClockPhaseFirstEdge;
.direction = kSPI_MsbFirst;
...
};
SPI_SlaveInit(SPI0, &config);

Parameters
• base – SPI base pointer

• config – pointer to slave configuration structure

void SPI_Deinit(SPI_Type *base)
De-initializes the SPI.

Calling this API resets the SPI module, gates the SPI clock. Disable the fifo if enabled. The
SPI module can’t work unless calling the SPI_MasterInit/SPI_SlaveInit to initialize module.

Parameters
• base – SPI base pointer

static inline void SPI_Enable(SPI_Type *base, bool enable)
Enable or disable the SPI Master or Slave.

Parameters
• base – SPI base pointer

2.19. SPI Driver 191

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• enable – or disable (true = enable, false = disable)

static inline uint32_t SPI_GetStatusFlags(SPI_Type *base)
Gets the status flag.

Parameters
• base – SPI base pointer

Returns
SPI Status, use status flag to AND _spi_status_flags could get the related status.

static inline void SPI_ClearStatusFlags(SPI_Type *base, uint32_t mask)
Clear the status flag.

Parameters
• base – SPI base pointer

• mask – SPI Status, use status flag to AND _spi_status_flags could get the re-
lated status.

static inline void SPI_EnableInterrupts(SPI_Type *base, uint32_t irqs)
Enables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• irqs – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxReadyInterruptEnable

– kSPI_TxReadyInterruptEnable

static inline void SPI_DisableInterrupts(SPI_Type *base, uint32_t irqs)
Disables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• irqs – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxReadyInterruptEnable

– kSPI_TxReadyInterruptEnable

static inline bool SPI_IsMaster(SPI_Type *base)
Returns whether the SPI module is in master mode.

Parameters
• base – SPI peripheral address.

Returns
Returns true if the module is in master mode or false if the module is in slave
mode.

status_t SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.

Parameters
• base – SPI base pointer

• baudrate_Bps – baud rate needed in Hz.

• srcClock_Hz – SPI source clock frequency in Hz.

192 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline void SPI_WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register directly.

Parameters
• base – SPI base pointer

• data – needs to be write.

static inline void SPI_WriteConfigFlags(SPI_Type *base, uint32_t configFlags)
Writes a data into the SPI TXCTL register directly.

Parameters
• base – SPI base pointer

• configFlags – control command needs to be written.

void SPI_WriteDataWithConfigFlags(SPI_Type *base, uint16_t data, uint32_t configFlags)
Writes a data control info and data into the SPI TX register directly.

Parameters
• base – SPI base pointer

• data – value needs to be written.

• configFlags – control command needs to be written.

static inline uint32_t SPI_ReadData(SPI_Type *base)
Gets a data from the SPI data register.

Parameters
• base – SPI base pointer

Returns
Data in the register.

void SPI_SetTransferDelay(SPI_Type *base, const spi_delay_config_t *config)
Set delay time for transfer. the delay uint is SPI clock time, maximum value is 0xF.

Parameters
• base – SPI base pointer

• config – configuration for delay option spi_delay_config_t.

void SPI_SetDummyData(SPI_Type *base, uint16_t dummyData)
Set up the dummy data. This API can change the default data to be transferred when users
set the tx buffer to NULL.

Parameters
• base – SPI peripheral address.

• dummyData – Data to be transferred when tx buffer is NULL.

status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
Transfers a block of data using a polling method.

Parameters
• base – SPI base pointer

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

2.19. SPI Driver 193

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• kStatus_SPI_Timeout – The transfer timed out and was aborted.

status_t SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle,
spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPImaster handlewhich can be used for other SPImaster trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structurewhich stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t
*count)

Gets the master transfer count.

This function gets the master transfer count.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to the spi_master_handle_t structure which stores the
transfer state.

• count – The number of bytes transferred by using the non-blocking trans-
action.

Returns
status of status_t.

void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
SPI master aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to the spi_master_handle_t structure which stores the
transfer state.

194 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structurewhich stores the transfer
state.

status_t SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle,
spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.

Note: The API returns immediately after the transfer initialization is finished.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structurewhich stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle,
size_t *count)

Gets the slave transfer count.

This function gets the slave transfer count.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to the spi_master_handle_t structure which stores the
transfer state.

• count – The number of bytes transferred by using the non-blocking trans-
action.

2.19. SPI Driver 195

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Returns
status of status_t.

static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
SPI slave aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to the spi_slave_handle_t structure which stores the trans-
fer state.

void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_slave_handle_t structure which stores the transfer
state

FSL_SPI_DRIVER_VERSION
SPI driver version.

enum _spi_xfer_option
SPI transfer option.

Values:

enumerator kSPI_EndOfFrame
Add delay at the end of each frame(the last clk edge).

enumerator kSPI_EndOfTransfer
Re-assert the CS signal after transfer finishes to deselect slave.

enumerator kSPI_ReceiveIgnore
Ignore the receive data.

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

196 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _spi_ssel
Slave select.

Values:

enumerator kSPI_Ssel0Assert
Slave select 0

enumerator kSPI_SselDeAssertAll

enum _spi_spol
ssel polarity

Values:

enumerator kSPI_Spol0ActiveHigh

enumerator kSPI_Spol1ActiveHigh

enumerator kSPI_Spol2ActiveHigh

enumerator kSPI_Spol3ActiveHigh

enumerator kSPI_SpolActiveAllHigh

enumerator kSPI_SpolActiveAllLow

enum _spi_data_width
Transfer data width.

Values:

enumerator kSPI_Data4Bits
4 bits data width

enumerator kSPI_Data5Bits
5 bits data width

enumerator kSPI_Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_Data10Bits
10 bits data width

2.19. SPI Driver 197

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSPI_Data11Bits
11 bits data width

enumerator kSPI_Data12Bits
12 bits data width

enumerator kSPI_Data13Bits
13 bits data width

enumerator kSPI_Data14Bits
14 bits data width

enumerator kSPI_Data15Bits
15 bits data width

enumerator kSPI_Data16Bits
16 bits data width

SPI transfer status.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_SPI_Timeout
SPI Timeout polling status flags.

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

enumerator kSPI_RxReadyInterruptEnable
Rx ready interrupt

enumerator kSPI_TxReadyInterruptEnable
Tx ready interrupt

enumerator kSPI_RxOverrunInterruptEnable
Rx overrun interrupt

enumerator kSPI_TxUnderrunInterruptEnable
Tx underrun interrupt

enumerator kSPI_SlaveSelectAssertInterruptEnable
Slave select assert interrupt

enumerator kSPI_SlaveSelectDeassertInterruptEnable
Slave select deassert interrupt

enumerator kSPI_AllInterruptEnable

198 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _spi_status_flags
SPI status flags.

Values:

enumerator kSPI_RxReadyFlag
Receive ready flag.

enumerator kSPI_TxReadyFlag
Transmit ready flag.

enumerator kSPI_RxOverrunFlag
Receive overrun flag.

enumerator kSPI_TxUnderrunFlag
Transmit underrun flag.

enumerator kSPI_SlaveSelectAssertFlag
Slave select assert flag.

enumerator kSPI_SlaveSelectDeassertFlag
slave select deassert flag.

enumerator kSPI_StallFlag
Stall flag.

enumerator kSPI_EndTransferFlag
End transfer bit.

enumerator kSPI_MasterIdleFlag
Master in idle status flag.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef enum _spi_data_width spi_data_width_t
Transfer data width.

typedef struct _spi_delay_config spi_delay_config_t
SPI delay time configure structure.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

2.19. SPI Driver 199

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

typedef struct _spi_master_handle spi_master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI slave callback for finished transmit.

volatile uint16_t s_dummyData[]

uint32_t SPI_GetInstance(SPI_Type *base)
Returns instance number for SPI peripheral base address.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

FSL_SDK_ENABLE_SPI_DRIVER_TRANSACTIONAL_APIS

SPI_RETRY_TIMES
Retry times for waiting flag.

struct _spi_delay_config
#include <fsl_spi.h> SPI delay time configure structure.

Public Members

uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.

uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableLoopback
Enable loopback for test purpose

bool enableMaster
Enable SPI at initialization time

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

spi_clock_polarity_t clockPolarity
Clock polarity

200 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint8_t dataWidth
Width of the data

spi_ssel_t sselNumber
Slave select number

spi_spol_t sselPolarity
Configure active CS polarity

spi_delay_config_t delayConfig
Configure for delay time.

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

Public Members

bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t clockPolarity
Clock polarity

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint8_t dataWidth
Width of the data

spi_spol_t sselPolarity
Configure active CS polarity

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

uint32_t configFlags
Additional option to control transfer _spi_xfer_option.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

2.19. SPI Driver 201

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]

volatile size_t rxRemainingBytes
Number of data to be received [in bytes]

size_t totalByteCount
A number of transfer bytes

volatile uint32_t state
SPI internal state

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint32_t lastCommand
Last command for transfer.

2.20 SWM: Switch Matrix Module

enum _swm_port_pin_type_t
SWM port_pin number.

Values:

enumerator kSWM_PortPin_P0_0
port_pin number P0_0.

enumerator kSWM_PortPin_P0_1
port_pin number P0_1.

enumerator kSWM_PortPin_P0_2
port_pin number P0_2.

enumerator kSWM_PortPin_P0_3
port_pin number P0_3.

enumerator kSWM_PortPin_P0_4
port_pin number P0_4.

enumerator kSWM_PortPin_P0_5
port_pin number P0_5.

enumerator kSWM_PortPin_P0_6
port_pin number P0_6.

202 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSWM_PortPin_P0_7
port_pin number P0_7.

enumerator kSWM_PortPin_P0_8
port_pin number P0_8.

enumerator kSWM_PortPin_P0_9
port_pin number P0_9.

enumerator kSWM_PortPin_P0_10
port_pin number P0_10.

enumerator kSWM_PortPin_P0_11
port_pin number P0_11.

enumerator kSWM_PortPin_P0_12
port_pin number P0_12.

enumerator kSWM_PortPin_P0_13
port_pin number P0_13.

enumerator kSWM_PortPin_P0_14
port_pin number P0_14.

enumerator kSWM_PortPin_P0_15
port_pin number P0_15.

enumerator kSWM_PortPin_P0_16
port_pin number P0_16.

enumerator kSWM_PortPin_P0_17
port_pin number P0_17.

enumerator kSWM_PortPin_Reset
port_pin reset number.

enum _swm_select_movable_t
SWMmovable selection.

Values:

enumerator kSWM_USART0_TXD
Movable function as USART0_TXD.

enumerator kSWM_USART0_RXD
Movable function as USART0_RXD.

enumerator kSWM_USART0_RTS
Movable function as USART0_RTS.

enumerator kSWM_USART0_CTS
Movable function as USART0_CTS.

enumerator kSWM_USART0_SCLK
Movable function as USART0_SCLK.

enumerator kSWM_USART1_TXD
Movable function as USART1_TXD.

enumerator kSWM_USART1_RXD
Movable function as USART1_RXD.

2.20. SWM: Switch Matrix Module 203

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSWM_USART1_SCLK
Movable function as USART1_SCLK.

enumerator kSWM_SPI0_SCK
Movable function as SPI0_SCK.

enumerator kSWM_SPI0_MOSI
Movable function as SPI0_MOSI.

enumerator kSWM_SPI0_MISO
Movable function as SPI0_MISO.

enumerator kSWM_SPI0_SSEL0
Movable function as SPI0_SSEL0.

enumerator kSWM_SPI0_SSEL1
Movable function as SPI0_SSEL1.

enumerator kSWM_T0_CAP_CHN0
Movable function as Timer Capture Channel 0.

enumerator kSWM_T0_CAP_CHN1
Movable function as Timer Capture Channel 1.

enumerator kSWM_T0_CAP_CHN2
Movable function as Timer Capture Channel 2.

enumerator kSWM_T0_MAT_CHN0
Movable function as Timer Match Channel 0.

enumerator kSWM_T0_MAT_CHN1
Movable function as Timer Match Channel 1.

enumerator kSWM_T0_MAT_CHN2
Movable function as Timer Match Channel 2.

enumerator kSWM_T0_MAT_CHN3
Movable function as Timer Match Channel 3.

enumerator kSWM_I2C0_SDA
Movable function as I2C1_SDA.

enumerator kSWM_I2C0_SCL
Movable function as I2C1_SCL.

enumerator kSWM_ACMP_OUT
Movable function as ACMP_OUT.

enumerator kSWM_CLKOUT
Movable function as CLKOUT.

enumerator kSWM_GPIO_INT_BMAT
Movable function as GPIO_INT_BMAT.

enumerator kSWM_LVLSHFT_IN0
Movable function as LVLSHFT_IN0.

enumerator kSWM_LVLSHFT_IN1
Movable function as LVLSHFT_IN1.

enumerator kSWM_LVLSHFT_OUT0
Movable function as LVLSHFT_OUT0.

204 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSWM_LVLSHFT_OUT1
Movable function as LVLSHFT_OUT1.

enumerator kSWM_MOVABLE_NUM_FUNCS
Movable function number.

enum _swm_select_fixed_pin_t
SWM fixed pin selection.

Values:

enumerator kSWM_ACMP_INPUT1
Fixed-pin function as ACMP_INPUT1.

enumerator kSWM_ACMP_INPUT2
Fixed-pin function as ACMP_INPUT2.

enumerator kSWM_ACMP_INPUT3
Fixed-pin function as ACMP_INPUT3.

enumerator kSWM_ACMP_INPUT4
Fixed-pin function as ACMP_INPUT4.

enumerator kSWM_SWCLK
Fixed-pin function as SWCLK.

enumerator kSWM_SWDIO
Fixed-pin function as SWDIO.

enumerator kSWM_RESETN
Fixed-pin function as RESETN.

enumerator kSWM_CLKIN
Fixed-pin function as CLKIN.

enumerator kSWM_WKCLKIN
Fixed-pin function as CLKIN.

enumerator kSWM_VDDCMP
Fixed-pin function as VDDCMP.

enumerator kSWM_ADC_CHN0
Fixed-pin function as ADC_CHN0.

enumerator kSWM_ADC_CHN1
Fixed-pin function as ADC_CHN1.

enumerator kSWM_ADC_CHN2
Fixed-pin function as ADC_CHN2.

enumerator kSWM_ADC_CHN3
Fixed-pin function as ADC_CHN3.

enumerator kSWM_ADC_CHN4
Fixed-pin function as ADC_CHN4.

enumerator kSWM_ADC_CHN5
Fixed-pin function as ADC_CHN5.

enumerator kSWM_ADC_CHN6
Fixed-pin function as ADC_CHN6.

2.20. SWM: Switch Matrix Module 205

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSWM_ADC_CHN7
Fixed-pin function as ADC_CHN7.

enumerator kSWM_ADC_CHN8
Fixed-pin function as ADC_CHN8.

enumerator kSWM_ADC_CHN9
Fixed-pin function as ADC_CHN9.

enumerator kSWM_ADC_CHN10
Fixed-pin function as ADC_CHN10.

enumerator kSWM_ADC_CHN11
Fixed-pin function as ADC_CHN11.

enumerator kSWM_FIXEDPIN_NUM_FUNCS
Fixed-pin function number.

typedef enum _swm_port_pin_type_t swm_port_pin_type_t
SWM port_pin number.

typedef enum _swm_select_movable_t swm_select_movable_t
SWMmovable selection.

typedef enum _swm_select_fixed_pin_t swm_select_fixed_pin_t
SWM fixed pin selection.

FSL_SWM_DRIVER_VERSION
LPC SWM driver version.

void SWM_SetMovablePinSelect(SWM_Type *base, swm_select_movable_t func,
swm_port_pin_type_t swm_port_pin)

Assignment of digital peripheral functions to pins.

This function will selects a pin (designated by its GPIO port and bit numbers) to a function.

Parameters
• base – SWM peripheral base address.

• func – any function name that is movable.

• swm_port_pin – any pin which has a GPIO port number and bit number.

void SWM_SetFixedPinSelect(SWM_Type *base, swm_select_fixed_pin_t func, bool enable)
Enable the fixed-pin function.

This function will enables a fixed-pin function in PINENABLE0 or PINENABLE1.

Parameters
• base – SWM peripheral base address.

• func – any function name that is fixed pin.

• enable – enable or disable.

2.21 SYSCON: System Configuration

enum _syscon_connection_t
SYSCON connections type.

Values:

206 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kSYSCON_GpioPort0Pin0ToPintsel
Pin Interrupt.

enumerator kSYSCON_GpioPort0Pin1ToPintsel

enumerator kSYSCON_GpioPort0Pin2ToPintsel

enumerator kSYSCON_GpioPort0Pin3ToPintsel

enumerator kSYSCON_GpioPort0Pin4ToPintsel

enumerator kSYSCON_GpioPort0Pin5ToPintsel

enumerator kSYSCON_GpioPort0Pin7ToPintsel

enumerator kSYSCON_GpioPort0Pin8ToPintsel

enumerator kSYSCON_GpioPort0Pin9ToPintsel

enumerator kSYSCON_GpioPort0Pin10ToPintsel

enumerator kSYSCON_GpioPort0Pin11ToPintsel

enumerator kSYSCON_GpioPort0Pin12ToPintsel

enumerator kSYSCON_GpioPort0Pin13ToPintsel

enumerator kSYSCON_GpioPort0Pin14ToPintsel

enumerator kSYSCON_GpioPort0Pin15ToPintsel

enumerator kSYSCON_GpioPort0Pin16ToPintsel

enumerator kSYSCON_GpioPort0Pin17ToPintsel

typedef enum _syscon_connection_t syscon_connection_t
SYSCON connections type.

PINTSEL_ID
Periphinmux IDs.

SYSCON_SHIFT

FSL_SYSON_DRIVER_VERSION
Group syscon driver version for SDK.

Version 2.0.1.

void SYSCON_AttachSignal(SYSCON_Type *base, uint32_t index, syscon_connection_t
connection)

Attaches a signal.

This function gates the SYSCON clock.

Parameters
• base – Base address of the SYSCON peripheral.

• index – Destination peripheral to attach the signal to.

• connection – Selects connection.

Return values
None. –

2.21. SYSCON: System Configuration 207

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2.22 USART: Universal Asynchronous Receiver/Transmitter
Driver

2.23 USART Driver

uint32_t USART_GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

status_t USART_Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart_config_t usartConfig;
usartConfig.baudRate_Bps = 115200U;
usartConfig.parityMode = kUSART_ParityDisabled;
usartConfig.stopBitCount = kUSART_OneStopBit;
USART_Init(USART1, &usartConfig, 20000000U);

Parameters
• base – USART peripheral base address.

• config – Pointer to user-defined configuration structure.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_InvalidArgument – USART base address is not valid

• kStatus_Success – Status USART initialize succeed

void USART_Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables the USART clock.

Parameters
• base – USART peripheral base address.

void USART_GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 9600U; usartConfig->parityMode =
kUSART_ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig-
>bitCountPerChar = kUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false; …

Parameters
• config – Pointer to configuration structure.

208 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

status_t USART_SetBaudRate(USART_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART_Init.

USART_SetBaudRate(USART1, 115200U, 20000000U);

Parameters
• base – USART peripheral base address.

• baudrate_Bps – USART baudrate to be set.

• srcClock_Hz – USART clock source frequency in HZ.

Return values
• kStatus_USART_BaudrateNotSupport – Baudrate is not support in current
clock source.

• kStatus_Success – Set baudrate succeed.

• kStatus_InvalidArgument – One or more arguments are invalid.

static inline uint32_t USART_GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the RX is ready:

if (kUSART_RxReady & USART_GetStatusFlags(USART1))
{

...
}

Parameters
• base – USART peripheral base address.

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags For example:

USART_ClearStatusFlags(USART1, kUSART_HardwareOverrunFlag)

Parameters
• base – USART peripheral base address.

• mask – status flags to be cleared.

static inline void USART_EnableInterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX ready interrupt and RX ready interrupt:

USART_EnableInterrupts(USART1, kUSART_RxReadyInterruptEnable | kUSART_
↪→TxReadyInterruptEnable);

2.23. USART Driver 209

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – USART peripheral base address.

• mask – The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX ready interrupt and RX ready interrupt:

USART_DisableInterrupts(USART1, kUSART_TxReadyInterruptEnable | kUSART_
↪→RxReadyInterruptEnable);

Parameters
• base – USART peripheral base address.

• mask – The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART_GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.

This function returns the enabled USART interrupts.

Parameters
• base – USART peripheral base address.

static inline void USART_EnableContinuousSCLK(USART_Type *base, bool enable)
Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronousmode. Enable this funciton, SCLKwill run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).

Parameters
• base – USART peripheral base address.

• enable – Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)
Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
• base – USART peripheral base address.

• enable – Enable auto clear or not, true for enable and false for disable.

static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
• base – USART peripheral base address.

• enable – Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableTx(USART_Type *base, bool enable)
Enable the USART transmit.

This function will enable or disable the USART transmit.

210 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – USART peripheral base address.

• enable – true for enable and false for disable.

static inline void USART_EnableRx(USART_Type *base, bool enable)
Enable the USART receive.

This function will enable or disable the USART receive. Note: if the transmit is enabled, the
receive will not be disabled.

Parameters
• base – USART peripheral base address.

• enable – true for enable and false for disable.

static inline void USART_WriteByte(USART_Type *base, uint8_t data)
Writes to the TXDAT register.

This function will writes data to the TXDAT automatly.The upper layer must ensure that
TXDATA has space for data to write before calling this function.

Parameters
• base – USART peripheral base address.

• data – The byte to write.

static inline uint8_t USART_ReadByte(USART_Type *base)
Reads the RXDAT directly.

This function reads data from the RXDAT automatly. The upper layer must ensure that the
RXDAT is not empty before calling this function.

Parameters
• base – USART peripheral base address.

Returns
The byte read from USART data register.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty.

Parameters
• base – USART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full.

Parameters
• base – USART peripheral base address.

• data – Start address of the buffer to store the received data.

2.23. USART Driver 211

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• length – Size of the buffer.

Return values
• kStatus_USART_FramingError – Receiver overrun happened while receiv-
ing data.

• kStatus_USART_ParityError – Noise error happened while receiving data.

• kStatus_USART_NoiseError – Framing error happened while receiving
data.

• kStatus_USART_RxError – Overflow or underflow happened.

• kStatus_USART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t USART_TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handlewhich can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_t USART_TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Note: The kStatus_USART_TxIdle is passed to the upper layer when all data is written to
the TX register. However it does not ensure that all data are sent out. Before disabling the
TX, check the kUSART_TransmissionCompleteFlag to ensure that the TX is finished.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure. See usart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_USART_TxBusy – Previous transmission still not finished, data
not all written to TX register yet.

• kStatus_InvalidArgument – Invalid argument.

212 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void USART_TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• ringBuffer – Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void USART_TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

size_t USART_TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• handle – USART handle pointer.

Returns
Length of received data in RX ring buffer.

void USART_TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been written to USART TX register.

This function gets the number of bytes that have been written to USART TX register by
interrupt method.

Parameters
• base – USART peripheral base address.

2.23. USART Driver 213

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• handle – USART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t USART_TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new
data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

• xfer – USART transfer structure, see usart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into transmit queue.

• kStatus_USART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void USART_TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

status_t USART_TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – USART peripheral base address.

214 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• handle – USART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void USART_TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.

This function handles the USART transmit and receive IRQ request.

Parameters
• base – USART peripheral base address.

• handle – USART handle pointer.

FSL_USART_DRIVER_VERSION
USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_USART_TxBusy
Transmitter is busy.

enumerator kStatus_USART_RxBusy
Receiver is busy.

enumerator kStatus_USART_TxIdle
USART transmitter is idle.

enumerator kStatus_USART_RxIdle
USART receiver is idle.

enumerator kStatus_USART_TxError
Error happens on tx.

enumerator kStatus_USART_RxError
Error happens on rx.

enumerator kStatus_USART_RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus_USART_NoiseError
USART noise error.

enumerator kStatus_USART_FramingError
USART framing error.

enumerator kStatus_USART_ParityError
USART parity error.

enumerator kStatus_USART_HardwareOverrun
USART hardware over flow.

enumerator kStatus_USART_BaudrateNotSupport
Baudrate is not support in current clock source

2.23. USART Driver 215

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kStatus_USART_Timeout
USART times out.

enum _usart_parity_mode
USART parity mode.

Values:

enumerator kUSART_ParityDisabled
Parity disabled

enumerator kUSART_ParityEven
Parity enabled, type even, bit setting: PARITYSEL = 10

enumerator kUSART_ParityOdd
Parity enabled, type odd, bit setting: PARITYSEL = 11

enum _usart_sync_mode
USART synchronous mode.

Values:

enumerator kUSART_SyncModeDisabled
Asynchronous mode.

enumerator kUSART_SyncModeSlave
Synchronous slave mode.

enumerator kUSART_SyncModeMaster
Synchronous master mode.

enum _usart_stop_bit_count
USART stop bit count.

Values:

enumerator kUSART_OneStopBit
One stop bit

enumerator kUSART_TwoStopBit
Two stop bits

enum _usart_data_len
USART data size.

Values:

enumerator kUSART_7BitsPerChar
Seven bit mode

enumerator kUSART_8BitsPerChar
Eight bit mode

enum _usart_clock_polarity
USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART_RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART_RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

216 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enum _usart_interrupt_enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_RxReadyInterruptEnable
Receive ready interrupt.

enumerator kUSART_TxReadyInterruptEnable
Transmit ready interrupt.

enumerator kUSART_TxIdleInterruptEnable
Transmit idle interrupt.

enumerator kUSART_DeltaCtsInterruptEnable
Cts pin change interrupt.

enumerator kUSART_TxDisableInterruptEnable
Transmit disable interrupt.

enumerator kUSART_HardwareOverRunInterruptEnable
hardware ove run interrupt.

enumerator kUSART_RxBreakInterruptEnable
Receive break interrupt.

enumerator kUSART_RxStartInterruptEnable
Receive ready interrupt.

enumerator kUSART_FramErrorInterruptEnable
Receive start interrupt.

enumerator kUSART_ParityErrorInterruptEnable
Receive frame error interrupt.

enumerator kUSART_RxNoiseInterruptEnable
Receive noise error interrupt.

enumerator kUSART_AutoBaudErrorInterruptEnable
Receive auto baud error interrupt.

enumerator kUSART_AllInterruptEnable
All interrupt.

enum _usart_flags
USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART_RxReady
Receive ready flag.

enumerator kUSART_RxIdleFlag
Receive IDLE flag.

enumerator kUSART_TxReady
Transmit ready flag.

enumerator kUSART_TxIdleFlag
Transmit idle flag.

2.23. USART Driver 217

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

enumerator kUSART_CtsState
Cts pin status.

enumerator kUSART_DeltaCtsFlag
Cts pin change flag.

enumerator kUSART_TxDisableFlag
Transmit disable flag.

enumerator kUSART_HardwareOverrunFlag
Hardware over run flag.

enumerator kUSART_RxBreakFlag
Receive break flag.

enumerator kUSART_RxStartFlag
receive start flag.

enumerator kUSART_FramErrorFlag
Frame error flag.

enumerator kUSART_ParityErrorFlag
Parity error flag.

enumerator kUSART_RxNoiseFlag
Receive noise flag.

enumerator kUSART_AutoBaudErrorFlag
Auto baud error flag.

typedef enum _usart_parity_mode usart_parity_mode_t
USART parity mode.

typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.

typedef enum _usart_stop_bit_count usart_stop_bit_count_t
USART stop bit count.

typedef enum _usart_data_len usart_data_len_t
USART data size.

typedef enum _usart_clock_polarity usart_clock_polarity_t
USART clock polarity configuration, used in sync mode.

typedef struct _usart_config usart_config_t
USART configuration structure.

typedef struct _usart_transfer usart_transfer_t
USART transfer structure.

typedef struct _usart_handle usart_handle_t

typedef void (*usart_transfer_callback_t)(USART_Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.

FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL_APIS
Macro gate for enable transaction API. 1 for enable, 0 for disable.

FSL_SDK_USART_DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE
USART baud rate auto generate switch gate. 1 for enable, 0 for disable.

218 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

UART_RETRY_TIMES
Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert.

struct _usart_config
#include <fsl_usart.h> USART configuration structure.

Public Members

uint32_t baudRate_Bps
USART baud rate

bool enableRx
USART receive enable.

bool enableTx
USART transmit enable.

bool loopback
Enable peripheral loopback

bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.

bool enableHardwareFlowControl
Enable hardware control RTS/CTS

usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar
Data length - 7 bit, 8 bit

usart_sync_mode_t syncMode
Transfer mode - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in sync mode.

struct _usart_transfer
#include <fsl_usart.h> USART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _usart_handle
#include <fsl_usart.h> USART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

2.23. USART Driver 219

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

union __unnamed6__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.24 WKT: Self-wake-up Timer

voidWKT_Init(WKT_Type *base, const wkt_config_t *config)
Ungates the WKT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the WKT driver.

220 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – WKT peripheral base address

• config – Pointer to user’s WKT config structure.

voidWKT_Deinit(WKT_Type *base)
Gate the WKT clock.

Parameters
• base – WKT peripheral base address

static inline voidWKT_GetDefaultConfig(wkt_config_t *config)
Initializes the WKT configuration structure.

This function initializes the WKT configuration structure to default values. The default
values are as follows.

config->clockSource = kWKT_DividedFROClockSource;

See also:
wkt_config_t

Parameters
• config – Pointer to the WKT configuration structure.

static inline uint32_tWKT_GetCounterValue(WKT_Type *base)
Read actual WKT counter value.

Parameters
• base – WKT peripheral base address

static inline uint32_tWKT_GetStatusFlags(WKT_Type *base)
Gets the WKT status flags.

Parameters
• base – WKT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
wkt_status_flags_t

static inline voidWKT_ClearStatusFlags(WKT_Type *base, uint32_t mask)
Clears the WKT status flags.

Parameters
• base – WKT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration wkt_status_flags_t

static inline voidWKT_StartTimer(WKT_Type *base, uint32_t count)
Starts the timer counting.

After calling this function, timer loads a count value, counts down to 0, then stops.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks Do not
write to Counter register while the counting is in progress

2.24. WKT: Self-wake-up Timer 221

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parameters
• base – WKT peripheral base address.

• count – The value to be loaded into the WKT Count register

static inline voidWKT_StopTimer(WKT_Type *base)
Stops the timer counting.

This function Clears the counter and stops the timer from counting.

Parameters
• base – WKT peripheral base address

FSL_WKT_DRIVER_VERSION
Version 2.0.2

enum _wkt_clock_source
Describes WKT clock source.

Values:

enumerator kWKT_DividedFROClockSource
WKT clock sourced from the divided FRO clock

enumerator kWKT_LowPowerClockSource
WKT clock sourced from the Low power clock Use this clock, LPOSCEN bit of DPDCTRL
register must be enabled

enumerator kWKT_ExternalClockSource
WKT clock sourced from the Low power clock Use this clock, WAKECLKPAD_DISABLE
bit of DPDCTRL register must be enabled

enum _wkt_status_flags
List of WKT flags.

Values:

enumerator kWKT_AlarmFlag
Alarm flag

typedef enum _wkt_clock_source wkt_clock_source_t
Describes WKT clock source.

typedef struct _wkt_config wkt_config_t
Describes WKT configuration structure.

typedef enum _wkt_status_flags wkt_status_flags_t
List of WKT flags.

struct _wkt_config
#include <fsl_wkt.h> Describes WKT configuration structure.

Public Members

wkt_clock_source_t clockSource
External or internal clock source select

222 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2.25 WWDT: Windowed Watchdog Timer Driver

voidWWDT_GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value
are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = 0xFFFFFFU;
config->timeoutValue = 0xFFFFFFU;
config->warningValue = 0;

See also:
wwdt_config_t

Parameters
• config – Pointer to WWDT config structure.

voidWWDT_Init(WWDT_Type *base, const wwdt_config_t *config)
Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-
uration.

Example:

wwdt_config_t config;
WWDT_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
WWDT_Init(wwdt_base,&config);

Parameters
• base – WWDT peripheral base address

• config – The configuration of WWDT

voidWWDT_Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.

Parameters
• base – WWDT peripheral base address

static inline voidWWDT_Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters
• base – WWDT peripheral base address

2.25. WWDT: Windowed Watchdog Timer Driver 223

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

static inline voidWWDT_Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:
Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.

Parameters
• base – WWDT peripheral base address

static inline uint32_tWWDT_GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_base) & kWWDT_TimeoutFlag;

Parameters
• base – WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t

voidWWDT_ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT_ClearStatusFlags(wwdt_base, kWWDT_WarningFlag);

Parameters
• base – WWDT peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline voidWWDT_SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

TheWDWARNINT register determines the watchdog timer counter value that will generate
awatchdog interrupt. When thewatchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
• base – WWDT peripheral base address

• warningValue – WWDT warning value.

static inline voidWWDT_SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register is loaded into theWatchdog timer. Writing a value below 0xFFwill cause 0xFF to be

224 Chapter 2. LPC802

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
• base – WWDT peripheral base address

• timeoutCount – WWDT timeout value, count of WWDT clock tick.

static inline voidWWDT_SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to 0xFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
• base – WWDT peripheral base address

• windowValue – WWDT window value.

voidWWDT_Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WWDT peripheral base address

FSL_WWDT_DRIVER_VERSION
Defines WWDT driver version.

WWDT_FIRST_WORD_OF_REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_OF_REFRESH
Second word of refresh sequence

enum _wwdt_status_flags_t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.

Values:

enumerator kWWDT_TimeoutFlag
Time-out flag, set when the timer times out

enumerator kWWDT_WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT

typedef struct _wwdt_config wwdt_config_t
Describes WWDT configuration structure.

struct _wwdt_config
#include <fsl_wwdt.h> Describes WWDT configuration structure.

2.25. WWDT: Windowed Watchdog Timer Driver 225

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this
bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue
Window value, set this to 0xFFFFFF if windowing is not in effect

uint32_t timeoutValue
Timeout value

uint32_t warningValue
Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq_Hz
Watchdog clock source frequency.

226 Chapter 2. LPC802

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.
The driver also supports so-called “packet-drivenBDM” interfacewhich enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to getmore advanced FreeMASTER protocol features over the BDM interface. The drivermust be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

227

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systemsbased onNXPmicrocontroller ormicroprocessor unit. Usewith non-NXPMCUplatforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN,Networking, PD-BDM, and othermeth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-orientedAPI implemented by different serial communicationmod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

228 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pinmultiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK TheMCUXpresso SDK is a software package providedbyNXPwhich contains
the device initialization code, linker files, and software driverswith example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 229

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use aWiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCEmodule of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAMdirectly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXPMCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

230 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes andRecorderswithout the limitation ofmaximumnum-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support towrite-protectmemory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.1. Motor Control 231

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than theMTU to fit into the outgoing communication buffer. To read a devicememory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the MemoryWrite feature enables to
write to any RAMmemory location on the target device. A single write command framemust be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement thewrite access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variableswhose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER toolwhichmay use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

232 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, anymemory request received from thehost is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation TheMCUSerial CommunicationDriver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 233

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Dedicated communication task FreeMASTER communicationmay run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
whichmay use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute theApplicationCommandswithin the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

234 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 235

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration filemust be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR— long interrupt mode

• FMSTR_SHORT_INTR— short interrupt mode

• FMSTR_POLL_DRIVEN— poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

236 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implementedwithout
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 237

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters usedwhen CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

238 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CANmessage identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

Description Only usedwhen the FlexCAN low-level driver is used. Define the FlexCANmessage
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CANmessage-buffers supported by
HWmodule.

3.1. Motor Control 239

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

240 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 241

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

242 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 243

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Commandwhichwaits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

244 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description Enable thememory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 245

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CANmodule’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of themodule (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tionmay be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter twomodes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

246 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issuemay appear even in the full interruptmode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communicationmodule before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CANmodule is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 247

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTRmodes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

248 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communicationmodule. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 249

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-triggermode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

250 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTERdriver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name—variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 251

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• member_name— structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

252 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This functionmust be used to assign the RAMmemory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.1. Motor Control 253

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR— read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR— read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

254 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.1. Motor Control 255

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driverwhen the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData—points to the Application Command data received (if any)

• nDataLen—information about the Application Command data length

256 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configurationmacro defines howmanydifferent Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is calledwhenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PCHost client. The receivememory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 257

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

258 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mationprovidedhere canbeusefulwhenmodifying or porting the FreeMASTERCommunication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table belowdescribes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 259

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. Onmost platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

260 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 261

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

262 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 263

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the newFast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform andMQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description ofNetwork and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

264 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

265

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 coremqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

4.1.8 corepkcs11

PKCS #11 key management library.

Readme

4.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

266 Chapter 4. RTOS

	LPCXpresso802
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with MCUXpresso SDK Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Keil MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Arm GCC
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake
	Windows OS
	Linux OS

	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	MCUXpresso Config Tools
	How to determine COM port
	On-board Debugger
	On-board debugger MCU-Link
	Updating MCU-Link firmware

	On-board debugger LPC-Link
	Updating LPC-Link firmware

	On-board debugger OpenSDA
	Updating OpenSDA firmware

	On-board debugger Multilink
	On-board debugger OSJTAG

	Default debug interfaces
	How to define IRQ handler in CPP files

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Installation
	Install Prerequisites with MCUXpresso Installer
	Alternative: Manual Installation
	Basic tools
	Git
	Python
	West
	Build And Configuration System
	CMake
	Ninja
	Kconfig
	Ruby
	Toolchain
	Tool installation check

	Get MCUXpresso SDK Repo
	Establish SDK Workspace
	Install Python Dependency(If do tool installation manually)

	Explore Contents
	Folder View
	Examples Project

	Run a demo using MCUXpresso for VS Code
	Build an example application
	Run an example application

	Running a demo using ARMGCC CLI/IAR/MDK
	Supported Boards
	Build the project
	Sysbuild(System build)

	Config a Project
	Flash
	Debug
	Work with IDE Project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	Middleware
	CMSIS DSP Library
	FreeMASTER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	LPC_ACOMP
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_ADC
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	CLOCK
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.0]

	COMMON
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CTIMER
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	I2C
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IAP
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOCON
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MRT
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PINT
	[2.2.0]
	[2.1.13]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	POWER
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RESET
	[2.4.0]
	[2.0.1]
	[2.0.0]

	SPI
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SWM
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SYSCON
	[2.0.1]
	[2.0.0]

	USART
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	WKT
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WWDT
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER

	LPC802
	Clock Driver
	CRC: Cyclic Redundancy Check Driver
	CTIMER: Standard counter/timers
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	I2C Master Driver
	I2C Slave Driver
	IAP: In Application Programming Driver
	Common Driver
	LPC_ACOMP: Analog comparator Driver
	ADC: 12-bit SAR Analog-to-Digital Converter Driver
	GPIO: General Purpose I/O
	IOCON: I/O pin configuration
	MRT: Multi-Rate Timer
	PINT: Pin Interrupt and Pattern Match Driver
	Power Driver
	Reset Driver
	SPI: Serial Peripheral Interface Driver
	SPI Driver
	SWM: Switch Matrix Module
	SYSCON: System Configuration
	USART: Universal Asynchronous Receiver/Transmitter Driver
	USART Driver
	WKT: Self-wake-up Timer
	WWDT: Windowed Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	coremqtt-agent
	Readme

	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

