- Nxa MCUXpresso SDK Documentation
Release 25.09.00-pvw1




NXP

Jul 17, 2025 -




Table of contents

1 Middleware 3
1.1 Motor CONtrol . . . v v o o e e e e e e e e s e e e e e e e 3
1.1.1  FreeMASTER . . . . ot e e e e e e e e e e 3

1.2 MUltiCore . . o o o e o e e e e e e e e e e e e e e e 40
1.2.1 Multicore SDK . . . . . . i e e e e e e e 40

1.3 WIreless . . o v v i e e e e e e e e e e e e e e 135
1.3.1 NXP Wireless Frameworkand Stacks . . . . . ... ... ... .. ... ..... 135

2 RTOS 197
2.1 FreeRTOS . . . o o e e e e e e 197
2.1.1 FreeRTOSKernel . . . . . oo i i it it e et e e e e e e e e e e e e e e e 197

2.1.2  FreeRTOS dArivers . . . o v v v it i i i e e e e e e e e e e e e e e e e e e e 203

2.1.3 backoffalgorithm . ... ... ... ... .. . 203

214 corehttp . . . .. o e e e e e e 206

215 COTEJSOIL . v v v vt et e e e e e e e e e e e 208

21.6  coremqtt. . . . ... e e e e e e e e e 211

2.1.7  coremqtt-agent . . . . ... e e e e e e 214

2.1.8  corepResSIl ... e e e e e e e e e e 218

2.1.9  freertos-PlUS-tCP .« v v v v v v e e e e e e e e e e e e 221







MCUXpresso SDK Documentation, Release 25.09.00-pvw1

This documentation contains information specific to the mcxw71evk board.

Table of contents 1



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

2 Table of contents



Chapter 1

Middleware

1.1 Motor Control

1.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

 Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

» USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

* ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.



https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

» Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

4 Chapter 1. Middleware


https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:
* The official FreeMASTER middleware repository.

* Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

» fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

1.1. Motor Control 5


https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

* fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

* fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

» fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

* fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

» fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

* fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

» fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

* Read/write access to any memory location on the target.

* Optional password protection of the read, read/write, and read/write/flash access levels.

6 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

Version of the driver and the version of the protocol implemented.

MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

Application name, description, and version strings.
Application build date and time as a string.
Target processor byte ordering (little/big endian).

Protection level that requires password authentication.

1.1. Motor Control 7



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the hostto select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

8 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

» “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

1.1. Motor Control 9



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

— freemasterh - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

— freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

— freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

10 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial APIL

— freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APIL.

— freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger._rtt.c - implementation of network transport using Segger J-Link
RTT interface

1.1. Motor Control 11



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Driver configuration The driver is configured using a single header file (freemaster._cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR. LONG_INTR  [0[1]
#define FMSTR,_SHORT _INTR. [0|1]
#define FMSTR._ POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT INTR — short interrupt mode
* FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_ TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol

12 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR__SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR, SERIAL_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR,_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER _SIZE
#define FMSTR__ COMM_BUFFER_ SIZE [number]

Value Type O or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

1.1. Motor Control 13



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,_ COMM__ RQUEUE_ SIZE [number]

Value Type Value in range 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR,_ SERIAL_SINGLEWIRE [0]1]

Value Type BooleanOor 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_ TRANSPORT FMSTR,__CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver
FMSTR_CAN_MCUX_MCAN - MCAN driver
FMSTR_CAN_MCUX_MSCAN - msCAN driver
FMSTR_CAN_MCUX DSCFLEXCAN - DSC FlexCAN driver
FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

14 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR,_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR,_ CAN__RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bhit. Note that both CMDID and RSPID values may be the same. Default value
is 0X7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

1.1. Motor Control 15



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR,_ NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

« FMSTR_NET_LWIP_TCP - TCP communication using IwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IwIP stack
* FMSTR_NET _SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET BLOCKING_TIMEOUT
#define FMSTR,_ NET_BLOCKING__TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

16 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_NET AUTODISCOVERY
#define FMSTR_NET AUTODISCOVERY [0]1]

Value Type BooleanOor 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR._DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR. DEBUG_ TX [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR _APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

1.1. Motor Control 17



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_USE_READMEM
#define FMSTR_USE READMEM [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR.__USE_ WRITEMEM [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR _USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR, MAX_ SCOPE_ VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE RECORDER [number]

18 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF _SIZE
#define FMSTR,_ REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
* FMSTR_REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
* FMSTR_REC_BASE MICROSEC(x)
« FMSTR_REC_BASE NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_ REC_FLOAT _TRIG [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

1.1. Motor Control 19



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_USE_APPCMD
#define FMSTR_ USE_APPCMD [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF _SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX APPCMD CALLS
#define FMSTR, MAX_ APPCMD_ CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._ USE_ TSA [0]1]

Value Type BooleanOor 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR__USE_TSA_SAFETY [0[1]

Value Type Boolean O or 1.

20 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_ USE_TSA_INROM [0[1]

Value Type BooleanOor 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR._USE_TSA_DYNAMIC [0]1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_ SetUpTsaBuff() and FMSTR_ TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR, MAX_PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

1.1. Motor Control 21



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR__LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_ INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr;, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR _Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR Seriallsr or FM-
STR_Canlsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR,_ POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT _INTR and FMSTR_POLI_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

22 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR _Seriallsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module hit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

1.1. Motor Control 23



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Follow these steps to enable the basic FreeMASTER connectivity in the application:

» Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemasterh file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR _SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

e Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

* For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the hit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR Init
Prototype
FMSTR, BOOL FMSTR, Init(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

24 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR,_ Poll(void);

 Declaration: freemaster.h

» Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar
where:

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

* Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_Seriallsr /| FMSTR_Canlsr

Prototype

void FMSTR,_ Seriallsr(void);
void FMSTR,__ Canlsr(void);

* Declaration: freemaster.h

* Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

1.1. Motor Control 25



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR,_BOOL FMSTR_ RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC BUFF _SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR,_ Recorder(FMSTR_INDEX recIndex);

* Declaration: freemasterh

 Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger
Prototype
void FMSTR,_RecorderTrigger(FMSTR,_INDEX recIndex);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

26 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA TABLE BEGIN(table id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA RW_ VAR(name, type) /* read/write variable entry */
FMSTR,_TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_ MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_ MEM(name, type, address, size) /* read/write memory block */
FMSTR,_ TSA_RO_ MEM (name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR._TSA_TABLE_ END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references
it.

* type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

e struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

1.1. Motor Control 27



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description

FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).

FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM- Structure or union type declared with FMSTR_TSA_STRUCT

STR_TSA_USERTYPE(name) record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_ TABLE_LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._ TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR,_ TSA_TABLE_LIST END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_ TSA_TABLE_BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR, TSA_DIRECTORY(”/text_files”)  /* entering a new virtual directory */

(continues on next page)

28 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE("readme.txt”, readme__txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_ MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_ pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR,_ TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR,_ TSA_HREF("FreeMASTER Home Page”, "http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ?/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, "http://mycompany.com/prj/demo.pmp”)

FMSTR._ TSA_TABLE_ END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR,_ BOOL FMSTR,_ SetUpTsaBuff(FMSTR__ADDR buffAddr, FMSTR_ SIZE buffSize);

* Declaration: freemasterh

 Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

FMSTR_BOOL FMSTR,_ TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR,,
—tsaType,

FMSTR_ TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,

FMSTR_ SIZE flags);

* Declaration: freemaster.h

1.1. Motor Control 29



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* Implementation: freemaster_tsa.c

Arguments

* tsaName [in] - name of the object

* tsaType [in] - name of the object type

* varAddr [in] - address of the object

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR,_ APPCMD__ CODE FMSTR_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

30 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* datalen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_ AppCmdAck(FMSTR_APPCMD_ RESULT resultCode);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT NOCMD.

FMSTR_AppCmdSetResponseData
Prototype
void FMSTR__ AppCmdSetResponseData(FMSTR,_ADDR resultDataAddr, FMSTR,_SIZE resultDataLen);

* Declaration: freemaster.h

* Implementation: freemaster_appcmd.c

1.1. Motor Control 31



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

 resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR,_ BOOL FMSTR,_ RegisterAppCmdCall(FMSTR,_ APPCMD__ CODE appCmdCode, FMSTR,__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD_ RESULT HandlerFunction(FMSTR__ APPCMD_ CODE nAppcmd,
FMSTR_APPCMD_ PDATA pData, FMSTR,_ SIZE nDatalLen);
Where:
* nAppcmd -Application Command code
» pData —points to the Application Command data received (if any)

* nDatalL.en —information about the Application Command data length

32 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,

FMSTR_ ADDR pipeRxBuff, FMSTR,_ PIPE_SIZE pipeRxSize,
FMSTR_ ADDR pipeTxBuff, FMSTR_ PIPE_ SIZE pipeTxSize,
FMSTR_ U8 type, const FMSTR,__ CHAR *name);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

1.1. Motor Control 33



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

void PipeHandler(FMSTR,_ HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR,_PipeClose(FMSTR,_ HPIPE pipeHandle);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_ PipeWrite(FMSTR, HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster._pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

34 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Prototype
FMSTR, PIPE_SIZE FMSTR_ PipeRead(FMSTR_ HPIPE pipeHandle, FMSTR,__ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_SIZE readGranularity);
* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

» readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platform:s.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

1.1. Motor Control 35



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-
T

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

3

STR-APPCM:
enerally,
this is an
unsigned
8-bit value.

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See  FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.1. Motor Control 37



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

38

Chapter 1. Middleware


https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.1. Motor Control 39


https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Revi-
sion

Date

Description

1.0
2.0

2.1

2

2.3

2.4

2.5
2.7

2.8

2.9

3.0

4.0

4.1

4.2

4.3

4.4

03/2006
09/2007

12/2007
04/2010
04/2011
06/2011

08/2011
12/2013

06/2014

03/2015

08/2016

04/2019

04/2020

09/2020

10/2024

04/2025

Limited initial release

Updated for FreeMASTER version. New Freescale doc-
ument template used.

Added description of the new Fast Recorder feature and
its APL

Added support for MPC56xx platform, Added new API
for use CAN interface.

Added support for Kxx Kinetis platform and MQX oper-
ating system.

Serial driver update, adds support for USB CDC inter-
face.

Added Packet Driven BDM interface.

Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

Removed obsolete license text, see the software pack-
age content for up-to-date license.

Update for driver version 1.8.2 and 1.9: FreeMAS-
TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.
Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.
Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

Added Zephyr-specific information. Accompanying the
MCUZXpresso SDK version 25.06.00.

1.2 MultiCore

1.2.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUZXpresso SDK to make the software framework for easy development of multicore applica-

tions.

40

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit

(MCSDK) version 25.06.00.

This software package contains components for efficient work with multicore devices as well as

for the
multiprocessor communication.

What is new

* eRPC CHANGELOG

* RPMsg-Lite CHANGELOG

* MCMgr CHANGELOG

* Supported evaluation boards (multicore examples):
— LPCXpresso55S69
— FRDM-K32L3A6
- MIMXRT1170-EVKB
- MIMXRT1160-EVK
— MIMXRT1180-EVK
— MCX-N5XX-EVK
- MCX-N9XX-EVK
- FRDM-MCXN947
— MIMXRT700-EVK
- KW47-EVK
- KW47-LOC
— FRDM-MCXW72
- MCX-W72-EVK

* Supported evaluation boards (multiprocessor examples):

— LPCXpresso55S36
— FRDM-K22F

- FRDM-K32L2B

- MIMXRT685-EVK
- MIMXRT1170-EVKB
- MIMXRT1180

- FRDM-MCXN236
- FRDM-M(CX(C242
— FRDM-MCXC444
— MCX-N9XX-EVK
- FRDM-MCXN947
- MIMXRT700-EVK

1.2. MultiCore

41


https://github.com/EmbeddedRPC/erpc/blob/release/25.06.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.06.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.06.00/CHANGELOG.md

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location

Multicore SDK location <MCUZXpressoSDK__install_ dir>/middleware/
<MCSDK_ dir> multicore/

Documentation <MCSDK _ dir>/mcuxsdk-doc/

Embedded Remote Procedure Call <MCSDK_dir>/erpc/

component

Multicore Manager component <MCSDK__dir>/mcmgr/

RPMsg-Lite <MCSDK_ dir> /rpmsg_ lite/

<MCUZXpressoSDK _ install_ dir>/examples/
multicore__examples/
<MCUXpressoSDK__install _dir>/examples/
multiprocessor__examples/

Multicore demo applications

Multiprocessor demo applications

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

* Embedded Remote Procedure Call (eRPC)
* Multicore Manager (MCMGR) - included just in SDK for multicore devices
* Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.

The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in

the <MCUXpressoSDK__install_dir>/examples/multicore_examples subdirectories.

e erpc_matrix_multiply_mu

* erpc_matrix_multiply_mu_rtos

* erpc_matrix_multiply_rpmsg

* erpc_matrix_multiply_rpmsg_rtos
* erpc_two_way_rpc_rpmsg_rtos
 freertos_message_buffers

* hello_world

* multicore_manager

* rpmsg_lite_pingpong

* rpmsg_lite_pingpong_rtos

* rpmsg_lite_pingpong_tzm

42 Chapter 1. Middleware


https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.

The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in

the <MCUXpressoSDK__install_dir>/examples/multiprocessor__examples subdirectories.

* erpc_client_matrix_multiply_spi

* erpc_server_matrix_multiply_spi
* erpc_client_matrix_multiply_uart
* erpc_server_matrix_multiply_uart
* erpc_server_dac_adc

* erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

Multicore
Manager

RPMsg-Lite

MCUXpresso Drivers

Hardware

1.2. MultiCore 43



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

All the MCSDK-related files are located in <MCUXpressoSDK__install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.06.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

* Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

* Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

* Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

» [ [boards]
- [ [CMSIS]
» [ [devices]
» [ [docs]
4 [ [middleware]
= [ [emwin]
> [ Fatfs]
4 | [multicore]
> [ lempel
> [ [memar]
> [0 Irpmsg_lite]
» I ftools]
- [ [sdmmc]
» I usb]
> [Jites]
- [Jfools]

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

44 Chapter 1. Middleware


http://www.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Client Server

Application calls _— N
rerﬁlle functian() remate_functioni) Application Layer

Server shim calls requested
function

l R RYUURUIRRR NS T ..................................

Marshal invocation and Unmarshal invocation and
paramsters paramaters

.................................. l T

Byte i
Transport layer sends data Throam #  Transport layer receives data . Transpart Layer

RPCimplementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

remote_function() shim

Generated Shim Code

Protocol Layer

Main eRPC features:
* Scalable from BareMetal to Linux OS - configurable memory and threading policies.

» Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

* Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK install dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK__install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:
* Maintains information about all cores in system.
* Secondary/auxiliary cores startup and shutdown.
* Remote core monitoring and event handling.

The MCMGR library islocated in the <MCUXpressoSDK __install _dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK__install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:
* Shared memory interprocessor communication.
* Virtio-based messaging bus.

» Application-defined messages sent between endpoints.

1.2. MultiCore 45



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

 Portable to different environments/platforms.
* Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install _dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK install dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder

Multicore example <MCUXpressoSDK_install dir>/examples/multicore examples/
projects <application_name>/

Multiprocessor example <MCUXpressoSDK_ install _dir>/examples/

projects multiprocessor__examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers

The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism

On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging APIL

46 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls

To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

* Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)
» Sensor aggregation/fusion applications

* Encryption algorithms

* Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.06.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.14.0
— eRPC generator (erpcgen) v1.14.0
— Multicore Manager (MCMgr) v5.0.0
— RPMsg-Lite v5.2.0

[25.03.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.13.0

1.2. MultiCore 47


https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.7
- RPMsg-Lite v5.1.4

[24.12.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.13.0
— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.6
— RPMsg-Lite v5.1.3

[2.16.0]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.13.0
— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.5
— RPMsg-Lite v5.1.2

[2.15.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.12.0
— eRPC generator (erpcgen) v1.12.0
— Multicore Manager (MCMgr) v4.1.5
— RPMsg-Lite v5.1.1

[2.14.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.11.0
— eRPC generator (erpcgen) v1.11.0
— Multicore Manager (MCMgr) v4.1.4
— RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.10.0
— eRPC generator (erpcgen) v1.10.0
— Multicore Manager (MCMgr) v4.1.3
— RPMsg-Lite v5.0.0

48 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.13.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.10.0
eRPC generator (erpcgen) v1.10.0
Multicore Manager (MCMgr) v4.1.3
RPMsg-Lite v5.0.0

[2.12.0_imx93]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.9.1
— eRPC generator (erpcgen) v1.9.1
— Multicore Manager (MCMgr) v4.1.2
— RPMsg-Lite v4.0.1

[2.12.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.9.1
— eRPC generator (erpcgen) v1.9.1
— Multicore Manager (MCMgr) v4.1.2
— RPMsg-Lite v4.0.0

[2.11.1]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.9.0
eRPC generator (erpcgen) v1.9.0
Multicore Manager (MCMgr) v4.1.1
RPMsg-Lite v3.2.1

[2.11.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.9.0
— eRPC generator (erpcgen) v1.9.0
— Multicore Manager (MCMgr) v4.1.1
— RPMsg-Lite v3.2.0

1.2. MultiCore 49



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.10.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.8.1
eRPC generator (erpcgen) v1.8.1
Multicore Manager (MCMgr) v4.1.1
RPMsg-Lite v3.1.2

[2.9.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.8.0
— eRPC generator (erpcgen) v1.8.0
— Multicore Manager (MCMgr) v4.1.1
— RPMsg-Lite v3.1.1

[2.8.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.7.4
— eRPC generator (erpcgen) v1.7.4
— Multicore Manager (MCMgr) v4.1.0
— RPMsg-Lite v3.1.0

[2.7.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.7.3
eRPC generator (erpcgen) v1.7.3
Multicore Manager (MCMgr) v4.1.0
RPMsg-Lite v3.0.0

[2.6.0]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.7.2
— eRPC generator (erpcgen) v1.7.2
— Multicore Manager (MCMgr) v4.0.3
— RPMsg-Lite v2.2.0

50 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.5.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.7.1
eRPC generator (erpcgen) v1.7.1
Multicore Manager (MCMgr) v4.0.2
RPMsg-Lite v2.0.2

[2.4.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.7.0
— eRPC generator (erpcgen) v1.7.0
— Multicore Manager (MCMgr) v4.0.1
— RPMsg-Lite v2.0.1

[2.3.1]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.6.0
— eRPC generator (erpcgen) v1.6.0
— Multicore Manager (MCMgr) v4.0.0
— RPMsg-Lite v1.2.0

[2.3.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.5.0
eRPC generator (erpcgen) v1.5.0
Multicore Manager (MCMgr) v3.0.0
RPMsg-Lite v1.2.0

[2.2.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.4.0
— eRPC generator (erpcgen) v1.4.0
— Multicore Manager (MCMgr) v2.0.1
— RPMsg-Lite v1.1.0

[2.1.0]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.3.0
— eRPC generator (erpcgen) v1.3.0

1.2. MultiCore 51



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[2.0.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.2.0

eRPC generator (erpcgen) v1.2.0
Multicore Manager (MCMgr) v2.0.0
RPMsg-Lite v1.0.0

[1.1.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.1.0
— Multicore Manager (MCMgr) v1.1.0
— Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458{3cf80 rev01

[1.0.0]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.0.0
— Multicore Manager (MCMgr) v1.0.0
— Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

52 Chapter 1. Middleware


https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For Further documentation, please look at doxygen documentation at: https:/nxp-
mcuxpresso.github.io/rpmsg-lite/

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static APIin RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352

Relative Difference [%] ~52.7% ~T77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

1.2. MultiCore 53



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

RPMsg-Lite Architecture

main.c

rpmsg_ns.c / \\)

rpmsg_gqueue.c
rpmsg_lite_release_rx_buffer|
rpmsg_lite_*_ept()
rpmsg_format_message() - internal

env_*_queue()

rpmsg_lite.c

virtqueue_*() \\r_*[]

virtqueue_notification() rpmsg_env_bm.c platform_*(}

virtqueue.c « ! - rpmsg_platform.c
rpmsg_env_freertos.c

platform_init_interrupt()
platform_deinit_interrupt()
platform_notify()

D application D media access layer

D RPMsg-Lite base D porting layer

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.
However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

RFMsg Lite,
OpenAMFP RFMsqg, RPMsqg Transport Layet

Virtlo, Virtqueue,

Vring Virtlo / Virtqueue MAC Layer
Shmem, MU, _
Mailbox Fhysical Layer

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action

54 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL,_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_chb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

e Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

* Fill the data to be sentinto the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

* Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

* Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

* Read received data directly from the shared memory.

* Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

1.2. MultiCore 55



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Core A

rpmsg_lite_master/remote_init()

rpmsg_lite_master/remote_init()

buf = rpmsg_lite_alloc_tx_buffer()

L7

Fill in the buf, which is a buffer
allocated in shared memory

L7

rpmsg_lite_send_nocopy(buf) |—

rpmsg_lite_send{app_buf) — =
Y

rpmsg_queue_recv(app_buf) € —
Y

rpmsg_queue_recv_nocopy(&data)

v

Process data, which is a pointer
indicating to shared memory

v

rpmsg_queue_nocopy_free(data)

buf = rpmsg_lite_alloc_tx_buffer()

— >

v

Fill in the buf, which is a buffer
allocated in shared memory

— rpmsg_lite_send_nocopy(buf)

v

rpmsg_queue_recy_nocopy(&data)

v

Process data, which is a pointer
indicating to shared memory

v

rpmsg_queue_nocopy_free(data)

Core A sends data to Core B via

a copy mechanism, and Core B
receives it exposing directly shared
memory data to the application,
which is responsible for calling
rpmsg_queue_nocopy_free()
function to free the received data.

Core B first allocates

the transmit buffer in the
shared memory, then fills it
with the payload and finally
sends it using the nocopy
mechanism. Core A receives
the message using the copy
mechanism copying the data
to private application buffer.

Both cores use the nocopy
mechanisms for both receiving
and sending a message. This

is the most efficient way, since

no buffer-copying is involved.
Howewver when the application
(here represented by white boxes)
holds the buffer for a long time,
rpmsg will have less memory
available for other communicating
tasks and can thus suspend them
until a transmit/receive buffer is
available.

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

56 Chapter 1. Middleware


https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

see

<MCUXpressoSDK _install _dir>/boards/<board name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

* rpmsg_env_bm.c
* rpmsg_env_freertos.c
* rpmsg_env_xos.C
* rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

1.2. MultiCore 57


https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Config- De- Usage
uration  fault
option value

RL_MS_PE (1) Delay in milliseconds used in non-blocking API functions for polling.
RL_BUFFE (496) Size of the buffer payload, it must be equal to (240, 496, 1008, ...) [2”n - 16]
RL_BUFFE (2) Number of the buffers, it must be power of two (2, 4, ...)

RL_API H (1) Zero-copy API functions enabled/disabled.

RL_USE_S (0) Static API functions (no dynamic allocation) enabled/disabled.

RL_USE_D (0) Memory cache management of shared memory. Use in case of data cache
is enabled for shared memory.

RL_CLEAF (0) Clearing used buffers before returning back to the pool of free buffers en-
abled/disabled.

RL_USE_NV (0) When enabled IPC interrupts are managed by the Multicore Manager (IPC
interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_E (0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some

RAM).
RL_DEBU( (0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by

RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOV (0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOV (0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RI_ASSER see Assert implementation.

rpmsg

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvim project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_ clang_ format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1]1 M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

58 Chapter 1. Middleware


http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Unreleased

Fixed

» Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for
imxrt700_m33, imxrt700_hifi4, imxrt700_hifil platforms

v5.2.0

Added
* Add MCXL20 porting layer and unit testing

* New utility macro RL_CALCULATE BUFFER COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

* RT700 platform add support for MCMGR in DSPs

Changed
* Change rpmsg_ platform.c to support new MCMGR API

* Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

» Refactored repeated buffer count calculation pattern for better code maintainability.

* To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed

e Fixed env_ wait_ for_link_up function to handle timeout in link state checks for baremetal
and gqnx environment, R, BLOCK mode can be used to wait indefinitely.

* Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

* Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory -calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_ config.vring_size
expressions.

 Fixed CERT INT31-C violation in platform_ interrupt_ disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

* Fixed unsigned integer underflow in rpmsg lite alloc_tx buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

* Fixed CERT-C INT31-C violation in rpmsg_lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

— Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& 0xFFFFU).

— This fix prevents potential data loss when size values exceed 65535.

1.2. MultiCore 59



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

» Fixed CERT INT31-C violation in env_ memset functions by explicitly converting int32_ t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

» Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

— rpmsg_env_ freertos.c: Added validation before converting int32_t to UBaseType_t.

— rpmsg__env__gnx.c: Fixed format string and added validation before assigning to mqstat
fields.

— rpmsg_env_ threadx.c: Added validation to prevent integer overflow and negative val-
ues.

— rpmsg_env_xos.c: Added range checking before casting to uint16_t.
— rpmsg__env_zephyr.c: Added validation before passing values to k_msgq_init.

* Fixed a CERT INT31-C compliance issue in env_ get_ current_ queue_ size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

» Fixed CERT INT31-C violation in rpmsg_ platform.c where mememp() return value (signed int)
was compared with unsigned constant without proper type handling.

* Fixed CERT INT31-C violation in rpmsg_ platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

* Fixed potential integer overflow in env_sleep_ msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

* Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

* Added RL_MAX BUFFER_COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

» Fixed CERT INT31-C violation in vring _need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
* Add KW43B43 porting layer

Changed

* Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

60 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Added

* Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg__config.h in case of data cache is used.

* Cmake/Kconfig support added.

* Porting layers for imx95, imxrt700, mcmxw71x, mcmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
* Zephyr-related changes.

» Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
¢ Test suite provided.

* Zephyr support added.

Changed

* Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
* RPMsg-Lite: Added aarch64 support.

Changed
* RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.
* Code formatting using LLVM16.

Fixed

* Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added

» Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

1.2. MultiCore 61



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Changed

* Improved debug check buffers implementation - instead of checking the pointer fits into
shared memory check the presence in the VirtIO ring descriptors list.

* VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
* Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

» Misra corrections.

v4.0.0 - 20-Jun-2022

Added
* Added support for custom shared memory arrangement per the RPMsg_Lite instance.

* Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
* Adjusted rpmsg_lite_is_link_up() to return RL, TRUE/RL_FALSE.

v3.2.0 - 17-Jan-2022

Added
* Added support for . MX8 MP multicore platform.

Changed

* Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR
#14.

» Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
* Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added

* Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK
examples, otherwise stdio printf is used).

* Added environment layers for XOS.
* Added support for i. MX RT500, i.MX RT1160 and i.MX RT1170 multicore platforms.

62 Chapter 1. Middleware


https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Fixed

* Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
* Updated RL_BUFFER_COUNT documentation (issue #10).
» Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added

* Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-
site side notification sending each time received buffers are consumed and put into the

queue of available buffers.
* Added environment layers for Threadx.

* Added support for i MX8QM multicore platform.

Changed
» Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

Added
* Added support for several new multicore platforms.

Fixed
 MISRA C-2012 violations fixed (7.4).

* Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

* Correction of rpmsg_lite_instance structure members description.

* Address -Waddress-of-packed-member warnings in GCC9.

Changed
* Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added

* Added support for several new multicore platforms.

1.2. MultiCore

63


https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Fixed
* MISRA C-2012 violations fixed, incl. data types consolidation.

* Code formatted.

v2.2.0 - 20-Mar-2019

Added
* Added configuration macro RL,_ DEBUG_CHECK_BUFFERS.
 Several MISRA violations fixed.
* Added environment layers for QNX and Zephyr.

* Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

* Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
* Supporting . MX6SX and i.MX7D MPU platforms.
* Supporting LPC5411x MCU platform.
* Baremental and FreeRTOS support.
* Support of copy and zero-copy transfer.

* Support of static API (without dynamic allocations).

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview Thisrepositoryis for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

64 Chapter 1. Middleware


https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK _install dir>/middleware/multicore/
mcmgr directory.

Multicore
Manager

RPMsg-Lite

MCUXpressoSDK Drivers

Hardware

The Multicore Manager provides the following major functions:
* Maintains information about all cores in system.
* Secondary/auxiliary core(s) startup and shutdown.

* Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

1.2. MultiCore 65



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Example of MCMGR usage to start secondary core:

F#include "mcmgr.h”

void main()

{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR,_EarlyInit();

/* Initialize MCMGR, install generic event handlers */

MCMGR_ Init();

/* Boot secondary core application from the CORE1_BOOT__ADDRESS, pass ”1” as startup data,,
—starting synchronously. */

MCMGR,_StartCore(kMCMGR,_ Corel, CORE1_BOOT_ADDRESS, 1, kMCMGR_ Start_ Synchronous);

/* Stop secondary core execution. */
MCMGR__StopCore(kMCMGR,_Corel);
}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() APIL. Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include "mcmgr.h”
#define APP_ RPMSG_READY_EVENT_DATA (1)

#define APP_ NUMBER,_ OF_CORES (2)
#define APP. SECONDARY CORE kMCMGR _ Corel

/* Callback function registered via the MCMGR_ RegisterEvent() and triggered by MCMGR,__ TriggerEvent ().,
—called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_ core_t coreNum, uintl6_t eventData, void *context)

{
uint16_t *data = &((uint16_t *)context)[coreNuml];
*data = eventData;

}

void main()

{

uint16_t RPMsgRemoteReadyEventData]NUMBER _OF CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */
MCMGR,_ Earlylnit();

/* Initialize MCMGR, install generic event handlers */
MCMGR,_Init();
(continues on next page)

66 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

/* Register the application event before starting the secondary core */
MCMGR_ RegisterEvent(kMCMGR,_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void,,
—*)RPMsgRemoteReadyEventData);

/* Boot secondary core application from the CORE1_BOOT__ADDRESS, pass rpmsg_ lite_ base address,
—as startup data, starting synchronously. */

MCMGR,_StartCore(APP_SECONDARY__CORE, CORE1_BOOT__ADDRESS, (uint32_t)rpmsg_lite
—base, KMCMGR,_ Start_ Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to,

—communicate. */

while(APP_RPMSG_READY_EVENT_DATA !|= RPMsgRemoteReadyEventData|[APP_ SECONDARY __
—CORE]) {};

)

Code for the secondary side:

#include "mcmgr.h”

#define APP_ RPMSG_READY_EVENT_DATA (1)

void main()

{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */
MCMGR._ EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR._ Init();

/* Signal the to other core that we are ready by triggering the event and passing the APP_ RPMSG__
—-READY_ EVENT_ DATA */

MCMGR,_TriggerEvent(kMCMGR, Core0, kMCMGR,_RemoteApplicationEvent, APP_ RPMSG__
—READY_EVENT_ DATA);

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

1.2. MultiCore 67



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Initialize the multicore
manager, early init. Call this
function as close to the reset

entry as possible, {into the
startup sequence) to allow
CorelUp event triggering.

Multicore manager init
function to be called in the
application main. It registers
critical and generic event
handlers.

Register the application
event before starting the
secondary core.

Trigger the secondary core
application execution. Pass the
startupData to the secondary
core application. Either wait
until the secondary core reads
and confirms the startup data
(KMCMGR_Start_Synchronous
mode) or does not wait
(KMCMGR_Start_Asynchronous
mode).

Reqgister the
RemoteExceptionEvent
handler.

Primary core

MCMGR_Earlylnit() I

1 RemoteCoreUpEvent message

Secondary core

Y

MCMGR_Init()

MCMGR_RegisterEvent() |

release the secondary core

MCMGR_StatCore()

| from the reset

>

Initialize the multicore
manager, early init. Call this
function as close to the reset

MCMGR_Earlylnit()

entry as possible, (into the
| startup sequence) to allow

CorelUp event triggering.

MCMGR_Init()

Multicore manager init
| function to be called in the

application main. It registers
critical and generic event

MCMGR_GetStartupDatal)

handlers.

Trigger a mechanism to get
the startup data from the
primary core to the
secondary core.

Trigger the application event

MCMGR_TriggerEvent() |

to signal the primary core

o RemoteCorelUpEvent ge T
- L
ISR ISR
. FeedStartupDataEvent ige
|
StartupDataEvent message
L
o
£53
B0
EE . FeedStartupDataEvent message % 5
N £E
% = StartupDataEvent message o g £
35 'E
2
=]
. FeedStartupDataEvent message |=
el
c | RemoteApplicationEvent ige I
.S
T
2D
E_ [ =
2
ZE
=
g in]
o

MCMGR_RegisterEvent() |

RemoteException

Event handler

RemoteExceptionEvent message

4
el

DefaultlSR
(exception)

some application state and
to pass the accompany data.

68

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed
* Added CX flag into CMakeLists.txt to allow c++ build compatibility.

v5.0.0

Added

* Added MCMGR_BUSY_ POLL_COUNT macro to prevent infinite polling loops in MCMGR
operations.

* Implemented timeout mechanism for all polling loops in MCMGR code.

* Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

— MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

— MCMGR _TriggerEvent(mcmgr_event_type_t type, uintl16_t eventData, mcmgr_core_t
coreNum)

— MCMGR _TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

— typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

When registering the event with function MCMGR,_ RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

» Updated all porting files to support new MCMGR APL

* Added new platform specific include file memgr platform.h. It will contain common plat-
form specific macros that can be then used in mecmgr and application. e.g. platform core
count MCMGR,__ CORECOUNT 4.

* Move all header files to new inc directory.

» Added new platform-specific include files inc/platform/<platform name>/mecmgr platform.
h.

Added
» Add MCXL20 porting layer and unit testing

v4.1.7

1.2. MultiCore 69


https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Fixed

* mcmgr_stop__core__internal() function now returns kStatus_ MCMGR_ NotImplemented status
code instead of kStatus_ MCMGR__Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mcxw716, mexw727.

[v4.1.6]

Added
* Multicore Manager moved to standalone repository.
* Add porting layers for imxrt700, mcmxw727, kw47b42.
* New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added

* Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid
using uninitialized data in their implementations.

[v4.1.4]

Fixed

* Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable
flag is not set in the CR/TCR register.

» Messaging Unit RX and status registers are cleared after the initialization.

[v4.1.3]

Added
* Add porting layers for imxrt1180.

Fixed

* mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-
able flag is not set in the CR/TCR register.

* mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed

* Update mcmgr_stop_core_internal() implementations to set core state to kM-
CMGR_ResetCoreState.

70 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[v4.1.0]

Fixed
* Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
* Documentation updated to describe handshaking in a graphic form.
* Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
* Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed

* Code formatting, removed unused code

[v4.0.0]

Added
* Add new MCMGR_TriggerEventForce() API.

[v3.0.0]

Removed
* Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
* Modified MCMGR_GetStartupData()

Added
* Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()

* Added the ability for remote core monitoring and event handling

[v2.0.1]

1.2. MultiCore 71



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Fixed
* Updated to be Misra compliant.

[v2.0.0]

Added
» Support for Ipcxpresso54114 board.

[v1.1.0]

Fixed
» Ported to KSDK 2.0.0.

[v1.0.0]

Added

 Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUZXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

72 Chapter 1. Middleware


https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

eRPC

* MCUXpresso SDK : mcuxsdk-middleware-erpc
— Overview
— Documentation
— Setup
— Contribution
* eRPC
— About
— Releases
* Edge releases
— Documentation
— Examples
— References
— Directories
— Building and installing
% Requirements
- Windows
» Mac OS X
* Building
- CMake and KConfig
- Make
* Installing for Python
— Known issues and limitations

— Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the

1.2. MultiCore 73


http://thrift.apache.org

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {
// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void
}

Client side usage:

void example_ client(void) {
erpc_ transport_ t transport;
erpc_mbf t message buffer factory;
erpc_ client_ t client_ manager;

/* Init eRPC client infrastructure */

transport = erpc__transport__cmsis__uart__init(Driver_ USARTO);
message_ buffer_factory = erpc_mbf_dynamic__init();

client_ manager = erpc_ client_ init(transport, message buffer_factory);

/* init eRPC client 1O service */
initIO__client(client__manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */

deinitIO_ client();

erpc__client_ deinit(client__manager);
erpc_mbf_dynamic_ deinit(message_ buffer_factory);
erpc_transport_ tcp_ deinit(transport);

void example_ client(void) {
erpc_ transport_ t transport;
erpc_mbf_t message_ buffer_ factory;
erpc_ client_ t client_ manager;

/* Init eRPC client infrastructure */

transport = erpc_transport_cmsis_uart_init(Driver_USARTO);
message_ buffer_ factory = erpc_ mbf_dynamic__init();

client_ manager = erpc__client_init(transport, message_ buffer_factory);

/* scope for client service */

{
/* init eRPC client IO service */
IO_ client client(client manager);

// Now we can call the remote function to turn on the green LED.
client.set_led(kGreen, true);

}

/* deinit objects */

(continues on next page)

74 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

erpc__client_ deinit(client_ manager);
erpc_mbf_dynamic_ deinit(message_ buffer_factory);
erpc__transport_tcp_ deinit(transport);

}

Server side usage:

// Implement the remote function.
void set_ led(LEDName whichLed, bool onOrOff) {

// implementation goes here

}

void example_server(void) {
erpc_ transport_ t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
erpc_service_t service = create_10_service();

/* Init eRPC server infrastructure */

transport = erpc__transport__cmsis__uart__init(Driver_ USARTO);

message_ buffer_factory = erpc_mbf dynamic_ init();
server = erpc_server_init(transport, message buffer_factory);

/* add custom service implementation to the server */
erpc_add_service to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */

destroy_IO_ service(service);

erpc_server_ deinit(server);

erpc_mbf _dynamic_ deinit(message_buffer_factory);
erpc__transport_ tcp_ deinit(transport);

// Implement the remote function.
class 10O : public IO__interface
{
/* eRPC call definition */
void set_ led(LEDName whichLed, bool onOrOff) override {

// implementation goes here

}

void example_server(void) {
erpc__transport__t transport;
erpc_mbf t message buffer factory;
erpc_server__t server;
10 IOImpl;
10_service io(&IOImpl);

/* Init eRPC server infrastructure */

transport = erpc__transport__cmsis_ uart__init(Driver_ USARTO);

message_ buffer_factory = erpc_mbf dynamic_init();
server = erpc_server_ init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_ service_to_ server(server, &io);

/* poll for requests */

(continued from previous page)

(continues on next page)

1.2. MultiCore

75



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

erpc_status_t err = server.run();

/* deinit objects */

erpc_server_deinit(server);

erpc_mbf dynamic_ deinit(message_buffer factory);

erpc__transport__tcp_ deinit(transport);
}
A number of transports are supported, and new transport classes are easy to write.
Supported transports can be found in erpc/erpc_c/transport folder. E.g:

* CMSIS UART

* NXP Kinetis SPI and DSPI

POSIX and Windows serial port

TCP/IP (mostly for testing)
NXP RPMsg-Lite / RPMsg TTY
SPIdev Linux

USB CDC

* NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and

76 Chapter 1. Middleware


https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc
https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in
mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

* erpc (EmbeddedRPC) getting started notes
* ERPC Linux Local Environment Construction and Use

¢ The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c - Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.
erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.
examples - Several example IDL files.
mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

1.2. MultiCore 77


https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

* CMake (minimal version 3.20.0)

* Generator - Make, Ninja, ...

* C/C++ compiler - GCC, CLANG, ...

* Binson - https://www.gnu.org/software/bison/

* Flex - https://github.com/westes/flex/
Requirements when using Make:

* Make

* C/C++ compiler - GCC, CLANG, ...

* Binson - https://www.gnu.org/software/bison/

* Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_ v14/readme_ erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install _dependencies.psl

H#HHH4 Linux

" "bash
./install _dependencies.sh
Mandatory for case, when build for different architecture is needed

* gce-multilib, g++-multilib

Mac 0S X

./install dependencies.sh

Building

CMake and KConfig eRPCuse CMake and KConfigto configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc¢/ execute:

cmake -B ./build # in erpc/build generate cmake project

cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and,
—examples

cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

78 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers

cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_ lib, tests and,
—examples

cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:

* erpc: build the liberpc.a static library

* erpcgen: build the erpcgen tool

e erpcsniffer: build the sniffer tool

* test: build the unit tests under the test directory
all: build all of the above

* install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

Known issues and limitations

* Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully
supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor; Inc.
Copyright 2016-2025 NXP

eRPC Getting Started

1.2. MultiCore 79



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:

1. Create two projects, where one project is for the client side (primary core) and the
other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.
4. Add user code for client and server applications.
5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar,
The project files for the eRPC server have the _c¢m4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

80 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

e erpc_matrix_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

Window Help

File Edit View Project CMSIS-DAP Toals
N =
Workspace

|ﬂebug

Files

B @ erpc_matrix_multiply_rpms...

=1 B hoard

T TR T A e e R ET BRI

board.c

[&] board.h
clock_config.c
clock_canfig h
ded.c

[ dedh
pin_mux.c

(] pin_rmu h
ChSIS
component
device

drivers
fsl_anatop_ai.c
[0 fsl_anatop_aih
fsl_cache.c
[ fsl_cache.h
fsl_clock.c
[l fsl_clack.h
[£] fsl_comman.c
[l fs|_commaon.h
fs|_common_arm.c
[ f=]_common_arm.h
fsl_decdc.c
[ fsl_dedeh
fsl_gpio.c
[ f5]_gpio.h
[+] f=]_iomuxc.h
fsl_lpuart.c
[ fsl_lpuarth
fsl_mu.c
[ fsl_rriuh
fsl_prmu.c

— [l fsl_pmuh

[+

= o erpc

= B evkmimxnt1 170
- & oo

= W rpmsg_lite

B source

21 8 startup

] starup_MIMXET1176_cm...
21 6 utilities

H H H H

[£]fs]_aszerc

[£] fsl_debug_console ¢
I— [+] fsl_debug_console.h
[ fsl_strc

L— Rzl strh

B xip
B Output

-_3_[_p-::_m_atriu_m_l._lll_iply__rpmsgft:m-‘l

1.2. MultiCore

81



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server related generated files The server-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_multiply_server.h
* erpc_matrix_multiply_ server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

82 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm4 - |AR Embedded Workbench |DE - Arrn 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO A = R0 OC -

Workspace -

debug

Files

2 @ erpc_matrix_multiply_rpmsg_cm4 - d__.
M hoard

i CMSIS

B component

M device

M doc

1 W erpc

Ml infra

B port

—E W service

— [ erpc_matrix_multiply.erpc
— [ erpc_matrix_multiply. h

[ erpc_matrix_multiply_serser.cpp
— [u] erpc_matrix_multiphy_serser.h
B setup

Bl transparts

B evkmimmt1 1720

B momgr

M rpmsg_lite

Bl source

B startup

M utilities

M xip

B Output

+

+

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

1.2. MultiCore 83



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

— Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and

erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

Three files (erpc_ codec.hpp, erpc_ basic_ codec.hpp, and erpc_ basic_ codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

The erpc_ common.hpp file is used for common eRPC definitions, typedefs, and enums.

The erpc_ manually constructed.hpp file is used for allocating static storage for the used
objects.

Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_ message_ buffer.cpp.

— The erpc_ transport.h file defines the abstract interface for transport layer.
» The port subfolder contains the eRPC porting layer to adapt to different environments.
— erpc_port.h file contains definition of erpc_malloc() and erpc_ free() functions.
— erpc_ port_ stdlib.cpp file ensures adaptation to stdlib.
— erpc_ config internal.h internal erpc configuration file.

* The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

— The erpc_server setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-

trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

— The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be

added into the project in order to allow the C-wrapped function for transport layer
setup.

— The erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the

project in order to allow message buffer factory usage.

» The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

— RPMsg-Lite is used as the transport layer for the communication between

cores, erpc_rpmsg_lite base_transport.hpp, erpc_rpmsg lite transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

84

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm4 - [4R Embedded Workbench IDE - &rm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

G e = iR W

Workspace w 0 X
|debug V|
Files  » 2o

B @ erpc_matrix_multiply_rpmsg_cm4 - debug ~
B board

B CMSIS

B component

M device

B doc

=1 8 erpe

=1 Wl infra

[ erpr_basic_codec.cpp

— Olerpc_basic_codechpp

— [lerpc_client_serser_common.hpp
— Clerpc_codechpp

— [l erpc_common.h

[& erpc_crclB.opp

— [ erpe_crcl6hpp

— [ erpc_manually_constructed hpp
[l erpc_message_buffer.cpp

—— [erpe_message_buffer hpp

[ erpc_message_loggers.cpp
— [Clerpc_message_loggers.hpp

[2) erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h
BIpC_Ser/er.cpp

— Dlerpc_sererhpp

[] erpc_simple_server.cpp

— [ erpc_simple_serverhpp

— Derpc_static_queue.hpp

—— [ erpc_transporthpp

'— [ erpc_wersionh

21 port

— [ erpc_config_internal.h

— [l erpc_endianness_agnostic_example.h
— [l erpc_endianness_undefined.h
— [l erpc_porth

[ erpc_port_stdlib.cpp

— il erpc_setup_extensions.h

B service

£ B setup

— [ erpe_mbi_setuph

[£ erpr_serser_setup.cpp

— [ erpc_server_setuph

[ erpc_setup_mbt_rpmsg.cpp

[& erpc_setup_rpmsg_lite_remote.cpp
— [i] erpc_transport_setuph

L5 W transparts

— [ erpc_rpmsg_lite_hase_transporthpp
[l erpc_rpmsg_lite_transport.cpp
— Llerpc_rpmsg_lite_transporthpp
B evkmimxrt1 171

B mcmgr

B rpmso_lite

B source

EIpc__matlix__multiply_l_pmsg_cm-ll

1.2. MultiCore

85



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

86 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrz_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace i gt

x
|de|:uug V|
Files k-
El @ erpc_matrix_multiply_rpmsg_cm4 - debug o

M board
i CMSIS

B component
M device
M doc
M erpc
B evkmimxrt1170
21 W memgr
momgr.c
— [ memagrh
— kI memgr_internal_core_apih
momgr_internal_core_api_imxt1170.c
mcmgr_mu_internal.c
-2 M rpmsg_lite
2 B comman
llist.c
-2 W include
21 B envviranment
L= & brn

L— B rpmsg_env_specifich
21§ platform
L= wl irriert1170

L— &) rpmsg_platform.h
— [=1llisth
— [l romsg_compilerh
— [l romsg_defauli_config.h
— [l ramsg_env.h
— [ rpmsg_lite h
— [ rpmsg_nsh
— [ wittio_ring.h
— [ wvingueue.h
21 W rpmsg_lite
1 B parting

B enviranment
| rpmsg_eny_hm.c
L3 & platfarm
Bl 1170

rpmsg_lite.c
FpMsg_hs.c
L= W virtio

[ wvingueue .
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply_rpmzg_cmd

1.2. MultiCore

87



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main corel.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply rpmsg/cm4
The main_corel.c file contains two functions:

* The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

* The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

» There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error__handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_ matrix)

{
=

int main()

{

/* RPMsg-Lite transport layer initialization */

erpc__transport_ t transport;

transport = erpc_ transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_ LINK_ID, SignalReady, NULL);

/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_ factory;
message_buffer_factory = erpc_ mbf rpmsg_ init(transport);

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_ buffer_factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service to_ server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_ poll(server);
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc__error__handler(status, 0);

88 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
S0SDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

File Edit View Project CMSIS-DAP Tools Window Help

DO e KD -

Workspace v 0 X

debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm4 - debug +
M bhoard

B CMSIS

B component

M device

M doc

M erpc

B evlmimet1 170

Bl rcimor

Bl rpmsg_lite

-2 W source

F— [ erpe_config.h

[ erpc_error_handler.cpp
I— k] erpc_errar_handler.h
main_corel.c

L— [ rpmsg_config.h

Bl startup

B utilities

Bl xip

B Output

erpc_matrix_multiply_rpmzg_cmd4

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar,

Project files for the eRPC client have the _cm?7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.2. MultiCore 89



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

a erpc_matrze_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools

| Flexspi_nor_dehug

Files

. )
—=1 B board
hoard.c
k] hoard.h
clock_config .o
clock_config.h
dod.c
o] dcd.h
pin_rux.c
] pin_muxh
ChEIS
companent
device
doc
drivers
fzl_anatop_aic
[ f=l_anatop_aih
fsl_cache.c
fsl_cache.h
fsl_clock.c
[ fsl_clock.h
fsl_commaon.c
[ fsl_cammon.h
fsl_comman_arm.c
fs|_comman_arm.h
fsl_dcdc.c
fzl_dedeh
fsl_gpio.c
fzl_gpio.h
fsl_iamuxc.h
fsl_lpuart.c
o] f2l_lpuarth
fsl_mu.c
8l f5l_rmu.h
fzl_pmu.c
— [ fsl_pmu.h
= B erpc
- B evkmirmxrt 170
= 8 mcmgr
= W rpmsg_lite
B source
-£1 1 startup

&) startup_MIMXRT1176_cm...
=1 W utilities

[ fsl_assertc

[c] fzl_debug_console .

F— B fsl_debug_console h

2] fsl_str.c

L— Rzl _strh
B xip
B Output

¥

T T T T e T T T E T e T T

H H H #H

[ n_:_r_p,t:_m_atri:;_m_l._lll_iply__rpm_sgfcr_l_‘n?

Window Help

90

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_ multiply_ client.cpp

These files contain the shim code for the functions and data types declared in the IDL

file. These functions also call methods for codec initialization, data serialization, per-

forming eRPC requests, and de-serializing outputs into expected data structures (if re-

turn values are expected). These shim code files can be found in the <MCUXpres-
SoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

1.2. MultiCore 91



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm7 - Master - IAR Embedded Workbench |DE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MR = K0 OC - L QO

Workspace w 0 X

flexspi_nor_debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm7? - flexsp_.. +
Ml board

B CMEIS

B component

Ml device

M doc

—=] W erpc

Ml infra

Ml port

] Wl service

L [ erpc_matrix_rmultiphy.erpc

— [ erpo_matrix_multiphyh
erpc_matrix_muliphy_clent.cpp
M setup

Bl fransports

B evkmimunt1170

B momgr

B rpmsg_lite

B source

B startup

M utilities

W xip

B Output

erpc_matrnix_multiply_rpmsg_cm?

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

92 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

» Two files, erpc_client_manager.h and erpc_ client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

e Three files (erpc_ codec.hpp, erpc_ basic_codec.hpp, and erpc_basic_ codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

* erpc_ common.h file is used for common eRPC definitions, typedefs, and enums.
* erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

* Message buffer files are used for storing serialized data: erpc_message buffer.hpp and
erpc_ message_ buffer.cpp.

* erpc_ transport.hpp file defines the abstract interface for transport layer.
The port subfolder contains the eRPC porting layer to adapt to different environments.
* erpc_ port.h file contains definition of erpc_malloc() and erpc_free() functions.
* erpc_port_stdlib.cpp file ensures adaptation to stdlib.
* erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

* erpc_client setup.h and erpc_ client setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

* erpc_transport_setup.h and erpc_setup_rpmsg_lite master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

* erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

* RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_ base_ transport.hpp, erpc_rpmsg_ lite_ transport.hpp, and
erpc_rpmsg_ lite_ transport.cpp files needs to be added into the client project.

1.2. MultiCore 93



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

e erpc_rnatr_multiply_rpmsg_cm7 - Master - AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 x
| flexspi_nor_debug w~ |
Files  + Yol

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_n... +
B board

M ChMEIS

B compaonent

B device

B doc

H drivers

£ 8 erpe

1 Bl infra

[l erpc_basic_codec.cpp

— [lerpc_basic_codechpp

[l erpc_client_manager.cpp

— [&] erpc_client_manager.h

— Derpc:_c:lient_sewer_u:nmmu:un.hpp
— Olerpc_codechpp

— [l erpc_common.h

[ erpc_crclB.opp

— Clerpc_crol6.hpp

— [Clerpc_manually_constucted hpp
[l erpc_message_buffer.cpp

M [Clerpc_message_bufferhpp

[] etpc_message_logoers.cpp
— Clerpc_message_loggers.hpp

[l erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h

— [Clerpc_static_gueus.hpp

— [Clerpc_transporthpp

— [l erpc_wersionh

=1 B port

— [l erpc_config_internal h

— [l erpc_endianness_agnostic_example h
— [ erpc_endianness_undefined h
— [kl erpc_porth
erpc_paott_stdlib.cpp

— [ erpc_setup_extensions.h

M senvice

£ B setup

[ erpc_client_setup.cpp

— [l erpc_client_setup.h
erpc_mhbi_setup.h

[l erpc_setup_mbf_rpomso.cpp

[l erpc_setup_rpmsg_lite_master.cpp
[l erpc_transport_setup.h

ey

— [lerpc_rpmsg_lite_base_fransporthpp

[l erpc_rpmsg_lite_transport.cpp

L— [erpc_rprmsg_lite_transport hpp

B evkmimrt! 170

B momor

B romsg_ite

B source

B startup

B utilities v

| EIpc__mallix__multiply_l_pmsg_cm?

94

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.2. MultiCore 95



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matroe_multiply_rpmsg_cm7 - Master - [AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 X

| flexzpi_nor_debug w |
Files o
B @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_... +
B board
B CMSIS
B component
B device
B doc
B drivers
M erpc
B evkmirmxrt] 170
1 B rmemgr
momgr.c
— [ momagrh
— [ meomogr_intemal_core_api h
mcmgr_internal_core_api_imxrt1170.c
momgr_mu_internal.c
£ 8 rpmsg_lite
=1 B commaon
llist.c
£ M include
21 B environment
L= ol brn
L— B rpmsg_env_specifich
51 1 platfarm
L3 ol irreert1 170
L— B rpmsg_platform h
— [ llisth
— k1 rpmsg_compiler b
— &1 romso_default_config.h
— [ rpmsg_envh
— [ rpmsg_lite.h
— [kl rpmsg_ns.h
— [ wirtio_ring.h
L— B wirqueueh
=1 W rpmsg_ite
21 W porting
B environment
| rpmsg_eny_bm.c
L3 & platform
B imort] 170
rpmsg_lite.c
FRMsg_ns.c
o o e
[&] virtqueus.c
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply _rpmsg_cm?

96 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7
The main_ core0.c file contains the code for target board and eRPC initialization.

 After initialization, the secondary core is released from reset.

* When the secondary core is ready, the primary core initializes two matrix variables.

* The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error__handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_ matrix = {0};

/* RPMsg-Lite transport layer initialization */

erpc_ transport_ t transport;

transport = erpc_ transport_rpmsg_ lite_ master_ init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_ factory = erpc_mbf_ rpmsg_ init(transport);

/* eRPC client side initialization */
erpc__client_ t client;
client = erpc_ client_ init(transport, message buffer factory);

/* Set default error handler */
erpc_ client_set_error_handler(client, erpc_error handler);

while (1)
{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_ config.h) and eRPC (erpc_ config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

1.2. MultiCore 97



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

File Edit View Project CMSIS-DAP Tools Window Help

Warkspace w 0 X
fleszpi_nor_debug w
Files o
= @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor____ +~

B board

B CHSIS

Bl component

M device

Bl doc

Bl drivers

M erpc

B evkmirmat] 170

B meomgr

B rpmsg_lite

—=1 Bl source
F— [ erpc_configh
[] erpc_errar_handler.cpp
F— & erpc_error_handlerh
main_carel.c
L— [ rpmsg_configh

B startup

B Utilities

M xip

B Output

erpc_matnix_multiply_rpmzg_cm?

Parent topic:Multicore client application

Parent topic:Create an eRPC application

3

Multiprocessor server application The “Matrix multiply
project for multiprocessor applications is located in
pressoSDK_install _dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

eRPC server
the <MCUX-

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each

transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_slave.cpp
<eRPC base directory>/erpc_ c/transports/erpc_ (d)spi_slave transport.hpp
<eRPC base directory> /erpc__c/transports/erpc_ (d)spi_slave_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup uart_ cmsis.cpp

98 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

<eRPC base directory>/erpc__c/transports/erpc_uart_cmsis__transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrixl, Matrix matrix2, Matrix result_ matrix)

{
=

int main()

{

/* UART transport layer initialization, ERPC_DEMO_ UART is the structure of CMSIS UART driver
—operations */

erpc_ transport_ t transport;

transport = erpc__transport_cmsis_uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf_t message buffer_factory;
message_ buffer_ factory = erpc_mbf_dynamic__init();

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_buffer factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service_to_server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_ status_t status = erpciserveripoll(server)
/* handle error status */
if (status != kErpcStatus_ Success)

{
/* print error description */
erpc__error__handler(status, 0);

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

1.2. MultiCore 99



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_master.cpp
<eRPC base directory>/erpc__c/transports/ erpc_ (d)spi_master_transport.hpp
<eRPC base directory>/erpc_ c/transports/ erpc_ (d)spi_master_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup_uart_ cmsis.cpp
<eRPC base directory>/erpc_ c/transports/erpc_uart_cmsis_ transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Client user code The client’s user code is stored in the main client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_matrix = {0};

/* UART transport layer initialization, ERPC_DEMO__UART is the structure of CMSIS UART driver,
—operations */

erpc_ transport_ t transport;

transport = erpc_transport_ cmsis_ uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_factory = erpc_mbf_dynamic__init();

/* eRPC client side initialization */
erpc_client__t client;
client = erpc__client__init(transport,message_ buffer_ factory);

/* Set default error handler */
erpc__client_set__error__handler(client, erpc_error__handler);

while (1)

{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */

if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

100 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

‘L COM4%:115200baud - Tera Term VT [=] @] ==

Eile Edit Setup Control Window KanjiCode Help

s

Primary core started

Matrix #1

23 4D 43 o 32
18 18 38 44 16

11 23 21 4 11

119 23 24 6
32 26 49 43 16
22 48 36 3% 4l
21 28 32 31 1

eRPC request is sent to the serwver
Secondary core is running

Result matrix

2103 4028 4759 4865 2631
2808 3142 4787 4956 1563
2284 3308 4122 4736 1821
2940 4176 4808 4868 2894
1428 2987 2715 3051 2015

Press the SW2 button to initiate the next matrix multiplication -

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

* The primary core (CM7) runs the eRPC client.
* The secondary core (CM4) runs the eRPC server.

* RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

1.2. MultiCore 101



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

| Multicore application source and project files | <MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore
| Multiprocessor application source and project files | <MCUXpressoSDK_install_dir>/boards/<board_name>/multi

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<tr

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files| <MCUXpressoSDK _install dir>/middleware/multicore/rpmsg_lite/ |

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:
<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

The created IDL file contains the following code:

program erpc_ matrix_ multiply

/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

const int32 matrix_ size = 5;

/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

type Matrix = int32[matrix_size][matrix_size];

interface MatrixMultiplyService {

erpcMatrixMultiply (in Matrix matrix1, in Matrix matrix2, out Matrix result_ matrix) ->
void

}

Details:

» The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

» The declaration and definition of the constant variable named matrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

* The alias name for the two-dimensional array type (Matrix) is declared.

* The interface group MatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

» As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_ matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

102 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

When writing the IDL file, the following order of items is recommended:
1. Program name at the top of the IDL file.
2. New data types and constants declarations.
3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPC generator tool |Windows OS | <MCUXpressoSDK_install_dir>/middleware/multicore/tools/ery
| Linux OS | <MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86
| |Mac OS |<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac |

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

* The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_ file>.erpc
* In the “Matrix multiply” example, the command should look like:
erpcgen erpc_ matrix_ multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

o “-?”/*—help” — Shows supported commands.
» “-0 <filePath>”/"—output<filePath>” — Sets the output directory.

For example,

<path__to_erpcgen> /erpcgen —o <path_to_output>
<path_to_IDL>/<IDL_ file_ name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:
erpcgen —o

Sof ] /boards/evkmimxrtl170/multicore_examples/erpc_common/erpc_matrix_multiply/service
J-f-///boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_mi

In both cases, the following four files are generated into the <MCUXpres-
SoSDK_install _dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

* erpc_ matrix_ multiply.h

* erpc_matrix_ multiply_ client.cpp
* erpc_matrix_ multiply_ server.h

* erpc_matrix_ multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/sen
folder.

For Linux OS users:
* Do not forget to set the permissions for the eRPC generator application.

* Run the application as ./erpcgen... instead of as erpcgen ....

1.2. MultiCore 103



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:

1. Create two projects, where one project is for the client side (primary core) and the
other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.
4. Add user code for client and server applications.
5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar,

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install _dir>/boards/<board_name>/multicore_examples/<example_name>/

104 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

e erpc_matrix_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

Window Help

File Edit View Project CMSIS-DAP Toals
N =
Workspace

|ﬂebug

Files

B @ erpc_matrix_multiply_rpms...

=1 B hoard

T TR T A e e R ET BRI

board.c

[&] board.h
clock_config.c
clock_canfig h
ded.c

[ dedh
pin_mux.c

(] pin_rmu h
ChSIS
component
device

drivers
fsl_anatop_ai.c
[0 fsl_anatop_aih
fsl_cache.c
[ fsl_cache.h
fsl_clock.c
[l fsl_clack.h
[£] fsl_comman.c
[l fs|_commaon.h
fs|_common_arm.c
[ f=]_common_arm.h
fsl_decdc.c
[ fsl_dedeh
fsl_gpio.c
[ f5]_gpio.h
[+] f=]_iomuxc.h
fsl_lpuart.c
[ fsl_lpuarth
fsl_mu.c
[ fsl_rriuh
fsl_prmu.c

— [l fsl_pmuh

[+

= o erpc

= B evkmimxnt1 170
- & oo

= W rpmsg_lite

B source

21 8 startup

] starup_MIMXET1176_cm...
21 6 utilities

H H H H

[£]fs]_aszerc

[£] fsl_debug_console ¢
I— [+] fsl_debug_console.h
[ fsl_strc

L— Rzl strh

B xip
B Output

-_3_[_p-::_m_atriu_m_l._lll_iply__rpmsgft:m-‘l

1.2. MultiCore

105



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server related generated files The server-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_multiply_server.h
* erpc_matrix_multiply_ server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

106 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm4 - |AR Embedded Workbench |DE - Arrn 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO A = R0 OC -

Workspace -

debug

Files

2 @ erpc_matrix_multiply_rpmsg_cm4 - d__.
M hoard

i CMSIS

B component

M device

M doc

1 W erpc

Ml infra

B port

—E W service

— [ erpc_matrix_multiply.erpc
— [ erpc_matrix_multiply. h

[ erpc_matrix_multiply_serser.cpp
— [u] erpc_matrix_multiphy_serser.h
B setup

Bl transparts

B evkmimmt1 1720

B momgr

M rpmsg_lite

Bl source

B startup

M utilities

M xip

B Output

+

+

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

1.2. MultiCore 107



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* The infra subfolder contains C++ infrastructure code used to build server and client appli-

cations.

— Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and

erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

Three files (erpc_ codec.hpp, erpc_ basic_ codec.hpp, and erpc_ basic_ codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

The erpc_ common.hpp file is used for common eRPC definitions, typedefs, and enums.

The erpc_ manually constructed.hpp file is used for allocating static storage for the used
objects.

Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_ message_ buffer.cpp.

— The erpc_ transport.h file defines the abstract interface for transport layer.

» The port subfolder contains the eRPC porting layer to adapt to different environments.

— erpc_port.h file contains definition of erpc_malloc() and erpc_ free() functions.
— erpc_ port_ stdlib.cpp file ensures adaptation to stdlib.

— erpc_ config internal.h internal erpc configuration file.

* The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-

ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

— The erpc_server setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-

trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

— The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be

added into the project in order to allow the C-wrapped function for transport layer
setup.

— The erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the

project in order to allow message buffer factory usage.

» The transports subfolder contains transport classes for the different methods of commu-

nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

— RPMsg-Lite is used as the transport layer for the communication between

cores, erpc_rpmsg_lite base_transport.hpp, erpc_rpmsg lite transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

108

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm4 - [4R Embedded Workbench IDE - &rm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

G e = iR W

Workspace w 0 X
|debug V|
Files  » 2o

B @ erpc_matrix_multiply_rpmsg_cm4 - debug ~
B board

B CMSIS

B component

M device

B doc

=1 8 erpe

=1 Wl infra

[ erpr_basic_codec.cpp

— Olerpc_basic_codechpp

— [lerpc_client_serser_common.hpp
— Clerpc_codechpp

— [l erpc_common.h

[& erpc_crclB.opp

— [ erpe_crcl6hpp

— [ erpc_manually_constructed hpp
[l erpc_message_buffer.cpp

—— [erpe_message_buffer hpp

[ erpc_message_loggers.cpp
— [Clerpc_message_loggers.hpp

[2) erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h
BIpC_Ser/er.cpp

— Dlerpc_sererhpp

[] erpc_simple_server.cpp

— [ erpc_simple_serverhpp

— Derpc_static_queue.hpp

—— [ erpc_transporthpp

'— [ erpc_wersionh

21 port

— [ erpc_config_internal.h

— [l erpc_endianness_agnostic_example.h
— [l erpc_endianness_undefined.h
— [l erpc_porth

[ erpc_port_stdlib.cpp

— il erpc_setup_extensions.h

B service

£ B setup

— [ erpe_mbi_setuph

[£ erpr_serser_setup.cpp

— [ erpc_server_setuph

[ erpc_setup_mbt_rpmsg.cpp

[& erpc_setup_rpmsg_lite_remote.cpp
— [i] erpc_transport_setuph

L5 W transparts

— [ erpc_rpmsg_lite_hase_transporthpp
[l erpc_rpmsg_lite_transport.cpp
— Llerpc_rpmsg_lite_transporthpp
B evkmimxrt1 171

B mcmgr

B rpmso_lite

B source

EIpc__matlix__multiply_l_pmsg_cm-ll

1.2. MultiCore

109



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

110 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrz_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace i gt

x
|de|:uug V|
Files k-
El @ erpc_matrix_multiply_rpmsg_cm4 - debug o

M board
i CMSIS

B component
M device
M doc
M erpc
B evkmimxrt1170
21 W memgr
momgr.c
— [ memagrh
— kI memgr_internal_core_apih
momgr_internal_core_api_imxt1170.c
mcmgr_mu_internal.c
-2 M rpmsg_lite
2 B comman
llist.c
-2 W include
21 B envviranment
L= & brn

L— B rpmsg_env_specifich
21§ platform
L= wl irriert1170

L— &) rpmsg_platform.h
— [=1llisth
— [l romsg_compilerh
— [l romsg_defauli_config.h
— [l ramsg_env.h
— [ rpmsg_lite h
— [ rpmsg_nsh
— [ wittio_ring.h
— [ wvingueue.h
21 W rpmsg_lite
1 B parting

B enviranment
| rpmsg_eny_hm.c
L3 & platfarm
Bl 1170

rpmsg_lite.c
FpMsg_hs.c
L= W virtio

[ wvingueue .
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply_rpmzg_cmd

1.2. MultiCore

111



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main corel.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply rpmsg/cm4
The main_corel.c file contains two functions:

* The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

* The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

» There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error__handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_ matrix)

{
=

int main()

{

/* RPMsg-Lite transport layer initialization */

erpc__transport_ t transport;

transport = erpc_ transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_ LINK_ID, SignalReady, NULL);

/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_ factory;
message_buffer_factory = erpc_ mbf rpmsg_ init(transport);

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_ buffer_factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service to_ server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_ poll(server);
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc__error__handler(status, 0);

112 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
S0SDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

File Edit View Project CMSIS-DAP Tools Window Help

DO e KD -

Workspace v 0 X

debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm4 - debug +
M bhoard

B CMSIS

B component

M device

M doc

M erpc

B evlmimet1 170

Bl rcimor

Bl rpmsg_lite

-2 W source

F— [ erpe_config.h

[ erpc_error_handler.cpp
I— k] erpc_errar_handler.h
main_corel.c

L— [ rpmsg_config.h

Bl startup

B utilities

Bl xip

B Output

erpc_matrix_multiply_rpmzg_cmd4

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar,

Project files for the eRPC client have the _cm?7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.2. MultiCore 113



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

a erpc_matrze_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools

| Flexspi_nor_dehug

Files

. )
—=1 B board
hoard.c
k] hoard.h
clock_config .o
clock_config.h
dod.c
o] dcd.h
pin_rux.c
] pin_muxh
ChEIS
companent
device
doc
drivers
fzl_anatop_aic
[ f=l_anatop_aih
fsl_cache.c
fsl_cache.h
fsl_clock.c
[ fsl_clock.h
fsl_commaon.c
[ fsl_cammon.h
fsl_comman_arm.c
fs|_comman_arm.h
fsl_dcdc.c
fzl_dedeh
fsl_gpio.c
fzl_gpio.h
fsl_iamuxc.h
fsl_lpuart.c
o] f2l_lpuarth
fsl_mu.c
8l f5l_rmu.h
fzl_pmu.c
— [ fsl_pmu.h
= B erpc
- B evkmirmxrt 170
= 8 mcmgr
= W rpmsg_lite
B source
-£1 1 startup

&) startup_MIMXRT1176_cm...
=1 W utilities

[ fsl_assertc

[c] fzl_debug_console .

F— B fsl_debug_console h

2] fsl_str.c

L— Rzl _strh
B xip
B Output

¥

T T T T e T T T E T e T T

H H H #H

[ n_:_r_p,t:_m_atri:;_m_l._lll_iply__rpm_sgfcr_l_‘n?

Window Help

114

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_ multiply_ client.cpp

These files contain the shim code for the functions and data types declared in the IDL

file. These functions also call methods for codec initialization, data serialization, per-

forming eRPC requests, and de-serializing outputs into expected data structures (if re-

turn values are expected). These shim code files can be found in the <MCUXpres-
SoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

1.2. MultiCore 115



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matrix_multiply_rpmsg_cm7 - Master - IAR Embedded Workbench |DE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MR = K0 OC - L QO

Workspace w 0 X

flexspi_nor_debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm7? - flexsp_.. +
Ml board

B CMEIS

B component

Ml device

M doc

—=] W erpc

Ml infra

Ml port

] Wl service

L [ erpc_matrix_rmultiphy.erpc

— [ erpo_matrix_multiphyh
erpc_matrix_muliphy_clent.cpp
M setup

Bl fransports

B evkmimunt1170

B momgr

B rpmsg_lite

B source

B startup

M utilities

W xip

B Output

erpc_matrnix_multiply_rpmsg_cm?

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

116 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

» Two files, erpc_client_manager.h and erpc_ client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

e Three files (erpc_ codec.hpp, erpc_ basic_codec.hpp, and erpc_basic_ codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

* erpc_ common.h file is used for common eRPC definitions, typedefs, and enums.
* erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

* Message buffer files are used for storing serialized data: erpc_message buffer.hpp and
erpc_ message_ buffer.cpp.

* erpc_ transport.hpp file defines the abstract interface for transport layer.
The port subfolder contains the eRPC porting layer to adapt to different environments.
* erpc_ port.h file contains definition of erpc_malloc() and erpc_free() functions.
* erpc_port_stdlib.cpp file ensures adaptation to stdlib.
* erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

* erpc_client setup.h and erpc_ client setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

* erpc_transport_setup.h and erpc_setup_rpmsg_lite master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

* erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

* RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_ base_ transport.hpp, erpc_rpmsg_ lite_ transport.hpp, and
erpc_rpmsg_ lite_ transport.cpp files needs to be added into the client project.

1.2. MultiCore 117



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

e erpc_rnatr_multiply_rpmsg_cm7 - Master - AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 x
| flexspi_nor_debug w~ |
Files  + Yol

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_n... +
B board

M ChMEIS

B compaonent

B device

B doc

H drivers

£ 8 erpe

1 Bl infra

[l erpc_basic_codec.cpp

— [lerpc_basic_codechpp

[l erpc_client_manager.cpp

— [&] erpc_client_manager.h

— Derpc:_c:lient_sewer_u:nmmu:un.hpp
— Olerpc_codechpp

— [l erpc_common.h

[ erpc_crclB.opp

— Clerpc_crol6.hpp

— [Clerpc_manually_constucted hpp
[l erpc_message_buffer.cpp

M [Clerpc_message_bufferhpp

[] etpc_message_logoers.cpp
— Clerpc_message_loggers.hpp

[l erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h

— [Clerpc_static_gueus.hpp

— [Clerpc_transporthpp

— [l erpc_wersionh

=1 B port

— [l erpc_config_internal h

— [l erpc_endianness_agnostic_example h
— [ erpc_endianness_undefined h
— [kl erpc_porth
erpc_paott_stdlib.cpp

— [ erpc_setup_extensions.h

M senvice

£ B setup

[ erpc_client_setup.cpp

— [l erpc_client_setup.h
erpc_mhbi_setup.h

[l erpc_setup_mbf_rpomso.cpp

[l erpc_setup_rpmsg_lite_master.cpp
[l erpc_transport_setup.h

ey

— [lerpc_rpmsg_lite_base_fransporthpp

[l erpc_rpmsg_lite_transport.cpp

L— [erpc_rprmsg_lite_transport hpp

B evkmimrt! 170

B momor

B romsg_ite

B source

B startup

B utilities v

| EIpc__mallix__multiply_l_pmsg_cm?

118

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.2. MultiCore 119



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

@ erpc_matroe_multiply_rpmsg_cm7 - Master - [AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 X

| flexzpi_nor_debug w |
Files o
B @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_... +
B board
B CMSIS
B component
B device
B doc
B drivers
M erpc
B evkmirmxrt] 170
1 B rmemgr
momgr.c
— [ momagrh
— [ meomogr_intemal_core_api h
mcmgr_internal_core_api_imxrt1170.c
momgr_mu_internal.c
£ 8 rpmsg_lite
=1 B commaon
llist.c
£ M include
21 B environment
L= ol brn
L— B rpmsg_env_specifich
51 1 platfarm
L3 ol irreert1 170
L— B rpmsg_platform h
— [ llisth
— k1 rpmsg_compiler b
— &1 romso_default_config.h
— [ rpmsg_envh
— [ rpmsg_lite.h
— [kl rpmsg_ns.h
— [ wirtio_ring.h
L— B wirqueueh
=1 W rpmsg_ite
21 W porting
B environment
| rpmsg_eny_bm.c
L3 & platform
B imort] 170
rpmsg_lite.c
FRMsg_ns.c
o o e
[&] virtqueus.c
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply _rpmsg_cm?

120 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7
The main_ core0.c file contains the code for target board and eRPC initialization.

 After initialization, the secondary core is released from reset.

* When the secondary core is ready, the primary core initializes two matrix variables.

* The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error__handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_ matrix = {0};

/* RPMsg-Lite transport layer initialization */

erpc_ transport_ t transport;

transport = erpc_ transport_rpmsg_ lite_ master_ init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_ factory = erpc_mbf_ rpmsg_ init(transport);

/* eRPC client side initialization */
erpc__client_ t client;
client = erpc_ client_ init(transport, message buffer factory);

/* Set default error handler */
erpc_ client_set_error_handler(client, erpc_error handler);

while (1)
{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_ config.h) and eRPC (erpc_ config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

1.2. MultiCore 121



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

File Edit View Project CMSIS-DAP Tools Window Help

Warkspace w 0 X
fleszpi_nor_debug w
Files o
= @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor____ +~

B board

B CHSIS

Bl component

M device

Bl doc

Bl drivers

M erpc

B evkmirmat] 170

B meomgr

B rpmsg_lite

—=1 Bl source

F— [ erpc_configh

[] erpc_errar_handler.cpp
F— & erpc_error_handlerh
main_carel.c

L— [ rpmsg_configh

B startup

B Utilities

M xip

B Output

erpc_matnix_multiply_rpmzg_cm?

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply”
project for multiprocessor applications is located in
pressoSDK_install _dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

eRPC server
the <MCUX-

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each

transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_slave.cpp
<eRPC base directory>/erpc_ c/transports/erpc_ (d)spi_slave transport.hpp
<eRPC base directory> /erpc__c/transports/erpc_ (d)spi_slave_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup uart_ cmsis.cpp

122 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

<eRPC base directory>/erpc__c/transports/erpc_uart_cmsis__transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrixl, Matrix matrix2, Matrix result_ matrix)

{
=

int main()

{

/* UART transport layer initialization, ERPC_DEMO_ UART is the structure of CMSIS UART driver
—operations */

erpc_ transport_ t transport;

transport = erpc__transport_cmsis_uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf_t message buffer_factory;
message_ buffer_ factory = erpc_mbf_dynamic__init();

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_buffer factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service_to_server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_ status_t status = erpciserveripoll(server)
/* handle error status */
if (status != kErpcStatus_ Success)

{
/* print error description */
erpc__error__handler(status, 0);

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

1.2. MultiCore 123



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_master.cpp
<eRPC base directory>/erpc__c/transports/ erpc_ (d)spi_master_transport.hpp
<eRPC base directory>/erpc_ c/transports/ erpc_ (d)spi_master_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup_uart_ cmsis.cpp
<eRPC base directory>/erpc_ c/transports/erpc_uart_cmsis_ transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Client user code The client’s user code is stored in the main client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_matrix = {0};

/* UART transport layer initialization, ERPC_DEMO__UART is the structure of CMSIS UART driver,
—operations */

erpc_ transport_ t transport;

transport = erpc_transport_ cmsis_ uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_factory = erpc_mbf_dynamic__init();

/* eRPC client side initialization */
erpc_client__t client;
client = erpc__client__init(transport,message_ buffer_ factory);

/* Set default error handler */
erpc__client_set__error__handler(client, erpc_error__handler);

while (1)

{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */

if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

124 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

‘L COM4%:115200baud - Tera Term VT [=] @] ==

Eile Edit Setup Control Window KanjiCode Help

s

Primary core started

Matrix #1

23 4D 43 o 32
18 18 38 44 16

11 23 21 4 11

119 23 24 6
32 26 49 43 16
22 48 36 3% 4l
21 28 32 31 1

eRPC request is sent to the serwver
Secondary core is running

Result matrix

2103 4028 4759 4865 2631
2808 3142 4787 4956 1563
2284 3308 4122 4736 1821
2940 4176 4808 4868 2894
1428 2987 2715 3051 2015

Press the SW2 button to initiate the next matrix multiplication -

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

1.2. MultiCore 125


https://github.com/EmbeddedRPC

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

1.14.0

Added
* Added Cmake/Kconfig support.
* Made java code jdk11 compliant, GitHub PR #432.
* Added imxrt1186 support into mu transport layer.

» erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
* eRPC: Sources reformatted.

* erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

* erpc: Free the arbitrated client token from client manager, GitHub PR #444.
* erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

* erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

* Examples and tests consolidated.

1.13.0

126 Chapter 1. Middleware


https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Added
* erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.
* eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).
* eRPC: Add new Zephyr-related examples.

Fixed
* eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.
* eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.
» eRPC,erpcgen: Align switch brackets, GitHub PR #396.
* erpc: Fix zephyr uart transport, GitHub PR #410.

» erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
* eRPC,erpcgen: Remove cstbool library, GitHub PR #403.

1.12.0

Added
* eRPC: Add dynamic/static option for transport init, GitHub PR #361.
* eRPC,erpcgen: Winsock2 support, GitHub PR #365.
» eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

* eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

* eRPC,erpcgen: Add experimental Java support.

Fixed
» eRPC: Fix receive error value for spidev, GitHub PR #363.
* eRPC: UartTransport::init adaptation to changed driver.
* eRPC: Fix typo in assert, GitHub PR #371.
* eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

* eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

1.11.0

Fixed
* eRPC: Makefiles update, GitHub PR #301.
* eRPC: Resolving warnings in Python, GitHub PR #325.
* eRPC: Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.

* eRPC: Improved codec function to use reference instead of address, GitHub PR #324.

1.2. MultiCore 127



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

eRPC: Fix NULL check for pending client creation, GitHub PR #341.

eRPC: Replace sprintf with snprintf, GitHub PR #343.

eRPC: Use MU_SendMsg blocking call in MU transport.

eRPC: New LPSPI and LPI2C transport layers.

eRPC: Freeing static objects, GitHub PR #353.

eRPC: Fixed casting in deinit functions, GitHub PR #354.

eRPC: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.
erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

erpcgen: Add check that string read is not more than max length, GitHub PR #328.
erpcgen: Move to g++ in pytest, GitHub PR #335.

erpcgen: Use huild=release for make, GitHub PR #334.

erpcgen: Removed boost dependency, GitHub PR #346.

erpcgen: Mingw support, GitHub PR #344.

erpcgen: VS build update, GitHub PR #347.

erpcgen: Modified name for common types macro scope, GitHub PR #337.

erpcgen: Fixed memcpy for template, GitHub PR #352.

eRPC,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.
eRPC,erpcgen: Remove redundant includes, GitHub PR #338.

eRPC,erpcgen: Many minor code improvements, GitHub PR #323.

1.10.0

Fixed

eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added

eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

Fixed

eRPC: MUTransport adaptation to new supported SoCs.
eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

eRPC: Endianness agnostic update, GitHub PR #276.

eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.
eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

128

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.9.1

eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker, GitHub
PR #266.

eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.
erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.
erpcgen: Several fixes for tests and CI, GitHub PR #289.

erpcgen: Refactoring erpcgen code, GitHub PR #302.

erpcgen: Fixed assigning const value to enum, GitHub PR #309.

erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

Fixed

eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

eRPC: Improve python detection in make, GitHub PR #225.

eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.
eRPC: Fix making test under Linux, GitHub PR #229.

eRPC: Assert costumizing, GitHub PR #148.

eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

eRPC: Fix inout cases, GitHub PR #237.
eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

eRPC: MessageBuffer usage improvement, GitHub PR #258.

eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

eRPC: Several MISRA violations addressed.

eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.
eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

1.2. MultiCore 129



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.9.0

erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

erpcgen: Fix serialization of list/binary types, GitHub PR #240.
erpcgen: Fix empty list parsing, GitHub PR #72.
erpcgen: Fix templates for malloc errors, GitHub PR #110.

erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #2439, #250.

erpcgen: Fix compile error:UniqueldChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

Added

eRPC: Allow used LIBUSBSIO device index being specified from the Python command line
argument.

Fixed

1.8.1

eRPC: Improving template usage, GitHub PR #153.

eRPC: run_clang_format.py cleanup, GitHub PR #177.

eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.
eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APi,
GitHub PR #168, #169.

erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

Added

eRPC: New i2c_slave_transport trasnport introduced.

Fixed

eRPC: Fix misra erpc c, GitHub PR #158.

eRPC: Allow conditional compilation of message_loggers and pre_post_action.
eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.
erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

erpcgen: Fix bison file, GitHub PR #156.

130

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.8.0

Added

eRPC: Support win32 thread, GitHub PR #108.

eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.
eRPC: Introduced new USB CDC transport.

eRPC: Introduced new Linux spidev-based transport.

eRPC: Added formatting extension for VSC, GitHub PR #134.

erpcgen: Introduce ustring type for unsigned char and force cast to char* GitHub PR #125.

Fixed

1.7.4

eRPC: Update makefile.
eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.
eRPC: Extend error msg for python server service handle function, GitHub PR #132.

eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

eRPC: SPI transport update to allow usage without handshaking GPIO.
eRPC: Native _ZWIN32 erpc serial transport and threading.

eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

eRPC: Update of matrix_multiply.py example: Add —serial and -baud argument, GitHub PR
#137.

eRPC: Update of .clang-format, GitHub PR #140.

eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

eRPC, erpcgen: Core re-formatted using Clang version 10.

erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

erpcgen: Python generator improvements, GitHub PR #100, #118.

erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.2. MultiCore 131



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Added
* eRPC: Support MU transport unit testing.
* eRPC: Adding mbed os support.

Fixed
* eRPC: Unit test code updated to handle service add and remove operations.
* eRPC: Several MISRA issues in rpmsg-based transports addressed.
* eRPC: Fixed Linux/TCP acceptance tests in release target.
* eRPC: Minor documentation updates, code formatting.

* erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed

* eRPC: Improved the test_callbacks logic to be more understandable and to allow requested
callback execution on the server side.

* eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

* eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

» erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added

* eRPC: Add missing doxygen comments for transports.

Fixed
* eRPC: Improved support of const types.
* eRPC: Fixed Mac build.
* eRPC: Fixed serializing python list.

* eRPC: Documentation update.

1.7.1

Fixed
» eRPC: Fixed semaphore in static message buffer factory.
» erpcgen: Fixed MU received error flag.

» erpcgen: Fixed tcp transport.

132 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.7.0

Added

* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:

Fixed

* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:

1.6.0

Added

¢ eRPC:

Fixed

* eRPC:
¢ eRPC:
* eRPC:

1.5.0

Added

* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
: Added RPMSG Lite RTOS TTY transport layer.
eRPC:

* eRPC

List names are based on their types. Names are more deterministic.
Service objects are as a default created as global static objects.
Added missing doxygen comments.

Added support for 64bit numbers.

Added support of program language specific annotations.

Improved code size of generated code.

Generating crc value is optional.

Fixed CMSIS Uart driver. Removed dependency on KSDK.
Forbid users use reserved words.

Removed outByref for function parameters.

Optimized code style of callback functions.

Added @nullable support for scalar types.

Improved code size of generated code.
Improved eRPC nested calls.

Improved eRPC list length variable serialization.

Added support for unions type non-wrapped by structure.
Added callbacks support.

Added support @external annotation for functions.
Added support @name annotation.

Added Messaging Unit transport layer.

Added version verification and IDL version verification between eRPC code and eRPC

generated shim code.

* eRPC:

Added support of shared memory pointer.

1.2. MultiCore 133



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

¢ eRPC

1.4.0

Added

* eRPC:

Fixed

* eRPC:
* eRPC:

[1.3.0]

Added

* eRPC:
* eRPC:
* eRPC:
» eRPC:

[1.2.0]

Added

: Added annotation to forbid generating const keyword for function parameters.
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:

Added python matrix multiply example.

Added nested call support.

Added struct member “byref” option support.

Added support of forward declarations of structures

Added Python RPMsg Multiendpoint kernel module support
Added eRPC sniffer tool

New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

win_flex_bison.zip for windows updated.

Use one codec (instead of inCodec outCodec).

New annotation types introduced (@length, @max_length, ...).
Support for running both erpc client and erpc server on one side.
New transport layers for (LP)UART, (D)SPIL

Error handling support.

» eRPC source directory organization changed.

* Many eRPC improvements.

[1.1.0]

Added

* Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added

 Initial Release

134

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.3 Wireless

1.3.1 NXP Wireless Framework and Stacks

Wireless Framework

Wireless Connectivity Framework Connectivity Framework repository provides both con-
nectivity platform enablement with hardware abstraction layer and a set of Services for NXP
connectivity stacks : BLE, Zigbee, OpenThread, Matter.

The connectivity framework repository consists of:

* Common folder to common header files for minimal type definition to be used in the repo

Platform folder used for platform enablement with Hardware abstraction:
- platform/include: common API header files used by several platforms
— platform/common: common code for several platforms
— specifics platform folders, See below the supported platform list

— platform/../configs folder: configuration files for framework repository and other mid-
dlewares (rpmsg, mbedTls, etc.._)

Services folder

Zephyr folder for zephyr modules integrated in mcux SDK

* clang formatting script and script folder to format appropriately the source files of the repo

Supported platforms The following devices/platforms are supported in platform folder for
connectivity applications:

o kw45x, k32w1x, mcxw71x, under wireless_mcu, kw45 k32wl _mcxw71 folders.

* kw47x, mcxw72x families under wireless_mcu, kw47 _mcxw72, kw47 _mcxw72_nbu fold-
ers.

s TW61X
* RT1060 and RT1170 for Matter
» Other RT devices such as i. MX RT595s

Supported services The supported services are provided for connectivity stacks and their
demo application, and are usually dependent on PLATFORM API implementation:

* DBG: Light Debug Module, currently a stubbed header file

* FSCIL: Framework Serial Communication Interface between BLE host stack and upper layer
located on an other core/device

FunctionLib: wrapper to toolchain memory manipulation functions (memcpy, memcmp,
etc) or use its own implementation for code size reduction

* HWParameters: Store Factory hardware parameters and Application parameters in Flash
or IFR

* LowPower: wrapper of SDK power manager for connectivity applications

Modulelnfo: Store and handle connectivity component versions

NVM: NXP proprietary File System used for KW45, KW47 automotive devices and
RT1060/RT1170 platform for Matter

1.3. Wireless 135



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

OtaSupport: Handle OTA binary writes into internal or external flash.

SecLib and RNG: Crypto and Random Number generator functions. It supports several
ports:

— Software algorithms
— Secure subsystem interface to an HW enclave
— MbedTls 2.x interface
Sensors: Provides service for Battery and temperature measurements

SFC: Smart Frequency Calibration to be run from KW47/MCXW?71 from NBU core. Matter
related modules:

OTW: Over The Wire module for External Transceiver firmware update from RT platforms

FactoryDataProvider to be used for Matter

Supported Zephyr modules integration in mcux SDK Connectivity framework provides in-
tegration and port layers to the following Zephyr Modules located into zephyr/subsys:

NVS: Zephyr File System used by Matter and Zigbhee

Settings: Over layer module that allows to store keys into NVS File System used by Matter
Port layer and required libraries for these zephyr modules are located in port and lib folder
in zephyr directory

Connectivity framework CHANGELOG

7.0.3 revA mcux SDK 25.06.00

Major Changes
* [wireless_nbu] Enhanced XTAL32M trimming handling: updates are ap-
plied when requested by the application core and the NBU enters low-
power mode, ensuring no interference from ongoing radio activity. Intro-

duced new APIs to lock (PLATFORM_ LockXtal32MTrim()) and unlock XTAL32M
(PLATFORM_ UnlockXtal32MTrim()) trimming updates using a counter-based mecha-
nism. Also added a reset API (PLATFORM _ResetContext()) for platform-specific variables
(currently limited to the trimming lock).

[wireless_mcu] Introduced a new API, PLATFORM_ SetLdoCoreNormalDriveVoltage(), to en-
able support for NBU clock frequency at 64 MHz, as required by BLE channel sounding
applications.

[wireless_mcu][wireless_nbu] Increased delayLpoCycle default from 2 to 3

to address link layer instabilities in low-power NBU wuse cases. Adjusted
BOARD_RADIO_DOMAIN_WAKE_UP_DELAY from 0x10 to 0x16 to balance
power consumption and stability. 0 NBU may malfunction if delayLpoCy-

cle (or BOARD_LL_32MHz WAKEUP_ADVANCE_HSLOT) is set to 2 while
BOARD_RADIO_DOMAIN_WAKE_UP_DELAY is 0x16.

Minor Changes (bug fixes)

[WorkQ] Increased stack size when RNG use mbedtls port and coverage is enabled.

[FSCI] Resolved an issue where messages remained unprocessed in the queue by ensuring
OSA__ EventSet() is triggered when pending messages are detected.

136

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* [OTA] Fixed a bug in in OTA_ PulllmageChunk() that prevented retrieval of data previously
received via OTA_ PushImageChunk() when still buffered in RAM during posted operations.

* [OTA] Various MISRA and coverity fixes.

o [mcxw23] Fixed an unused variable warning in PLAT-
FORM_ RegisterNbuTemperatureRequestEventCb() API.

* [SFC] Remove obsolete flag gNbuJtagCapability.

* [wireless_mcu] Introduced new API PLATFORM_ GetRadioldleDuration32K(). Deprecated
PLATFORM __ CheckNextBleConnectivity Activity() APL

* [mcxw23] Aligned platform-specific implementations with the corresponding prototypes
defined in wireless_mcu.

* [DBG] Cleaned up fwk_fault_handler.c.

7.0.2 RFP mcux SDK 25.06.00

Major Changes

¢ [wireless_mcu][wireless_nbu] Introduced PLATFORM__ Get32KTimeStamp() API, available
on platforms that support it.

* [RNG] Switched to using a workqueue for scheduling seed generation tasks.

* [Sensors] Integrated workqueue to trigger temperature readings on periodic timer expira-
tions.

¢ [wireless_nbu] Removed outdated configuration files from wireless_ nbu/configs.

* [SecLib_RNG][PSA] Added a PSA-compliant implementation for SecLib_RNG. O This is an
experimental feature and should be used with caution.

¢ [wireless_mcu][wireless_nbu] Implemented PLATFORM_ SendNBUXtal32MTrim() API to
transmit XTAL32M trimming values to the NBU.

Minor Changes (bug fixes)

* [MWS] Migrated the Mobile Wireless Standard (MWS) service to the public repository. This
service manages coexistence between connectivity protocols such as BLE, 802.15.4, and
GenFSK.

* [HWParameter][NVM][SecLib_RNG][Sensors] Addressed various MISRA compliance issues
across multiple modules.

* [Sensors] Applied a filtering mechanism to temperature data measured by the application
core before forwarding it to the NBU, improving data reliability.

* [Common] Relocated the GetPowerOfTwoShift() function to a shared module for broader
accessibility across components.

* [RNG] Resolved inconsistencies in RNG behavior when using the fsl_adapter_rng HAL by
aligning it with other API implementations.

* [SecLib] Updated the AES CMAC block counter in AES_128 CMAC() and
AES_128 CMAC_ LsbFirstInput() to support data segments larger than 4KB.

* [SecLib] Utilized sss_sscp_key_ object__free() with kSSS_ keyObjFree_ KeysStoreDefragment to
avoid key allocation failures.

* [MCXW23] Removed redundant NVIC_ SetPriority() call for the ctimer IRQ in the platform
file, as it’s already handled by the driver.

* [WorkQ] Increased workqueue stack size to accommodate RNG usage with mbedtls.

1.3. Wireless 137



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* [wireless_mcu][ot] Suppressed chip revision transmission when operating with nbu_15_4.

¢ [platform][mflash] Ensured proper address alignment for external flash reads in PLAT-
FORM__ReadExternalFlash() when required by platform constraints.

* [RNG] Corrected reseed flag behavior in RNG__ GetPseudoRandomData() after reaching gRng-
MaxRequests__d threshold.

* [platform][mflash] Fixed uninitialized variable issue in PLATFORM_ ReadExternalFlash().

¢ [platform][wireless_nbu] Fixed an issue on KW47 where PLATFORM_InitFro192M incor-
rectly reads IFR1 from a hardcoded flash address (0x48000), leading to unstable FRO192M
trimming. The function is now conditionally compiled for KW45 only.

7.0.2 revB mcux SDK 25.06.00

Major Changes
* [RNG][wireless_mcu][wireless_nbu] Rework RNG seeding on NBU request

» [wireless_mcu] [LowPower] Add gPlatformEnableFro6MCalLowpower_d macro to enable
FRO6M frequency verification on exit of Low Power

— add PLATFORM _ StartFro6MCalibration() and PLATFORM__EndFro6MCalibration() new
function for FRO6M calibration (6MHz or 2Mhz) on wake-up from low power mode.

— Enabled by default in fwk_config.h

¢ [wireless_nbu][LowPower] Clear pending interrupt status of the systick before going in low-
power - Reduce NBU active time

* [wireless_nbu] Fix impossibility to go to WFI in combo mode (15.4/BLE)
* [wireless_mcu] Implement XTAL32M temperature compensation mechanism. 2 new APIs:

— PLATFORM_ RegisterXtal32MTempCompLut(): register the temperature compensation
table for XTAL32M.

— PLATFORM__ CalibrateXtal32M(): apply XTAL32M temperature compensation depend-
ing on current temperature.

* [Sensors][wireless_mcu] Add support for periodic temperature measurement. new API:

— SENSORS_ TriggerTemperatureMeasurementUnsafe(): to be called from Interrupt masked
critical section, from ISR or when scheduler is stopped

* [SFC] Change default maximal ppm target of the SFC algorithm from 200 to 360ppm. Impact
the SFC algorith of kw45 and mcxw71 platforms, 360ppm was already the default setting
for kw47 and mcxw?72 platforms

Minor Changes (bug fixes)
* [DBG] Fix FWK_DBG_PERF_DWT_CYCLE_CNT_STOP macro
* [wireless_nbu] Add gPlatformIsNbu_d compile Macro set to 1
* [wireless_nbul][ics] gFwkSrvHostChipRevision_c can be processed in the system workqueue
e [kw45_mcexw71][kw47_mcxw72]
— Remove LTC dependency from platform in kconfig

— gPlatformShutdownEccRamInLowPower moved from fwk_platform_definition.h to
fwk_confg.h as this is a configuration flag.

* [wireless_mcu][sensors] Rework and remove unnecessary ADC APIs

138 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* [wireless_nbu] Add PLATFORM__GetMCUUid() function from Chip UID
* [SecLib] Change AES  MMO_ BlockUpdate() function from private to public for zighee.

7.0.2 revA mcux SDK 25.06.00 Supported platforms:

* Same as 25.03.00 release

Major Changes

o [KW45/MCXW71] HW parameters placement now located in IFR section. Flash storage is
not longer used:

— Compilation: Macro gHwParamsProdDataPlacement_ ¢ changed from gHwParamsProd-
DataMainFlash2IfrMode_ ¢ to gHwParamsProdDatalfrMode_ ¢

* [KW47] NBU: Add new fwk_platform_dcdc.[ch] files to allow DCDC stepping by using SPC
high power mode. This requires new API in board_dcdc.c files. Please refer to new compi-
lation MACROs gBoardDedcRampTrim_ ¢ and gBoardDedcEnableHighPowerModeOnNbu_ d in
board_platform.h files located in kw47evk, kw47loc, frdmmcxw?72 board folders.

* [KW45/MCXW71/KW47/MCXW72] Trigger an interrupt each time App core calls PLAT-
FORM_ RemoteActiveReq() to access NBU power domain in order to restart NBU core for
domain low power process

Minor Changes (bug fixes)

Services
* [SecLib_RNG]
— Rename mSecLibMutexId mutex to mSecLibSssMutexId in SecLib_sss.c
— Remove MEM_ TRACKING flag from RNG.c

— Implement port to fsl_adapter_rng.h API using gRngUseRngAdapter ¢ compil Macro
from RNG.c

— Add support for BLE debug Keys in SecLi and SecLin_sss.c with gSecLibUseBleDe-
bugKeys_ d - for Debug only

* [FSCI] Add queue mechanism to prevent corruption of FSCI global variableAllow the ap-
plication to override the trig sample number parameter when gFsciOverRpmsg_ ¢ is set to
1

* [DBG][btsnoop] Add a mechanism to dump raw HCI data via UART using SBT-
SNOOP_MODE_RAW

» [OTA]
— OtalnternalFlash.c: Take into account chunks smaller than a flash phrase worth

— fwk_platform_ot.c: dependencies and include files to gpio, port, pin_mux removed

Platform specific
o [kw45_mcxw71][kw47_mcxw72]

— fwk_platform_reset.h : add compil Macro gUseResetByLvdForce c¢ and gUseResetBy-
DeepPowerDown__c to avoid compile the code if not supported on some platforms

— New compile Flag gPlatformHasNbu_ d
— Rework FRO32K notification service for MISRA fix

1.3. Wireless 139



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

7.0.1 RFP mcux SDK 25.03.00 Supported platforms:
* KW45x, KW47x, MCXW71, MCXW72, K32W1x
* RW61x
* RT595, RT1060, RT1170
* MCXW23

Minor Changes (bug fixes)

* [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, SecLib and
platform files

Services

* [SecLib_RNG] fix return status from RNG GetTrueRandomNumber() function: return cor-
rectly gRngSuccess_d when RNG__entropy_ func() function is successful

* [SFC] Allow the application to override the trig sample number parameter

* [Settings] Re-define the framework settings API name to avoid double definition when gSet-
tingsRedefineApiName_ c flag is defined

Platform specific
* [wireless_mcu] fwk_platform_sensors update :
— Enable temperature measurement over ADC ISR
— Enable temperature handling requested by NBU
¢ [wireless_mcu] fwk_platform_lcl coex config update for KW45
* [kw47_mcxw72] Change the default ppm_target of SFC algorithm from 200 to 360ppm

7.0.1 revB mcux SDK 25.03.00 Supported platforms:
* KW45x, KW47x, MCXW71, MCXW72, K32W1x
* RW61x
* RT595, RT1060, RT1170
* MCXW23

Minor Changes (bug fixes)

General

* [General] Various MISRA/Coverity fixes in framework: NVM, RNG, LowPower, FunctionLib
and platform files

140 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Services

* [SecLib_RNG] AES-CBC evolution:
— added AES_CBC_ Decrypt() API for sw, SSS and mbedtls variants.

— Made AES-CBC SW implementation reentrant avoiding use of static storage of AES
block.

— fixed SSS version to update Initialization Vector within SecLib, simplifying caller’s im-
plementation.

— modified AES_128_CBC_ Encrypt_And_ Pad() so as to avoid the constraint mandating
that 16 byte headroom be available at end of input buffer.

* [SecLib_RNG] RNG modifications:

— RNG__GetPseudoRandomData() could return 0 in some error cases where caller ex-
pected a negative status.

3k

*

*

3k

*

Explicited RNG error codes

Added argument checks for all APIs and return gRngBadArguments_ d (-2) when
wrong

added checks of RNG initalization and return gRngNotInitialized_d (-3) when not
done

fixed correcteness of RNG_ GetPrngFunc() and RNG__GetPrngContext() relative to
API description.

Added RNG_ Delnit() function mostly for test and coverage purposes.
Improved RNG description in README.md

Unified the APIs behaviour between mbedtls and non mbedtls variants.

— RNG/mbedtls: Prevent RNG__Init() from corrupting RNG entropy contextif called more
than once.

— RNG/mbedtls: fixed RNG_GetTrueRandomNumber() to return a proper
mbedtls__entropy__func() result.

— [SecLib_RNG] Use defragmetation option when freeing key object in SecLib_sss to
avoid leak in S200 memory

— [SecLib_RNG] Add new API ECP256_IsKeyValid() to check whether a public key is valid

— [OtaSupport] Update return status to OTA_Flash_Success when success at the end of
InternalFlash_WriteData() and InternalFlash_FlushWriteBuffer() APIs

— [WorQ] Implementing a simple workqueue service to the framework

— [SFEC] Keep using immediate measurement for some measurement before switching to
configuration trig to confirm the calibration made

- [DBG] Adding modules to framework DBG :

*

3k

sbtsnoop
SWO

— [Common] Fix HAL_CTZ and HAL_RBIT IAR versions

— [LowPower] Fix wrong tick error calculation in case of infinite timeout

— [Settings] Add new macro gSettingsRedefineApiName_c to avoid multiple definition of
settings API when using connectivity framework repo

1.3. Wireless 141



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Platform specific

* [KW47/MCXW72] Change xtal cload default value from 4 to 8 in order to increase the pre-
cision of the link layer timebase in NBU

* [wireless_mcu] [wireless_nbu] Use new WorkQ service to process framework intercore
messages

* [rw61x] Fix HCI message sending failure in some corner case by releasing controller wakes
up after that the host has send its HCI message

* [MCXW23] Adding the initial support of MCXW?23 into the framework

7.0.0 mcux SDK 24.12.00 Supported platforms:
* KW45x, KW47x, MCXW71, MCXW72, K32W1x
* RW61x
* RT595, RT1060, RT1170

Minor Changes (bug fixes)

Platform specific
* [RW61X]

— Add MCUX_COMPONENT_middleware.wireless.framework.platform.rng to the plat-
form to fix a warning at generation

— Retrieve IEEE 64 bits address from OTP memory
» [KW45x%, MCXW71x, KW47x, MCXW72x]

— Ignore the secure bit from RAM addresses when comparing used ram bank in bank
retention mechanism

— Add gPlatformNbuDebugGpioDAccessEnabled_d Compile Macro (enabled by default).
Can be used to disable the NBU debug capability using IOs in case Trustzone is enabled
(“PLATFORM_InitNbu()‘ code executed from unsecure world).

- Fixin NBU firmware when sending ICS messages gFwkSrvNbuApiRequest_c (from con-
troller_api.h API functions)

Services
» [OTA]
— Add choice name to OtaSupport flash selection in Kconfig
* [NVM]
- Add gNvmErasePartitionWhenFlashing_c feature support to gcc toolchain
* [SecLib_RNG]

— Misra fixes

7.0.0 revB mcux SDK 24.12.00 Supported platforms: KW45x, KW47x, MCXW71, MCXW72,
K32W1x, RW61x, RT595, RT1060, RT1170

142 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Major Changes (User Applications may be impacted)

» mcux github support with cmake/Kconfig from sdk3 user shall now use CmakeLists.txt and
Kconfig files from root folder. Compilation should be done using west build command. In
order to see the Framework Kconfig, use command >west build -t guiconfig

* Board files and linker scripts moved to examples repository

Bugfixes
* [platform lowpower]

- Entering Deep down power mode will no longer call PLATFORM__EnterPowerDown().
This API is now called only when going to Power down mode

Platform specific
* [KW47/MCXW?72]: Early access release only

— Deep sleep power mode not fully tested. User can experiment deep sleep and deep
down modes using low power reference design applications

— XTAL32K-less support using FRO32K not tested
* [KW45/MCXW71/K32W148]

— Deep sleep mode is supported. Power down mode is supported in low power reference
design applications as experimental only

— XTAL32K-less support using FRO32K is experimental - FRO32K notifications callback is
debug only and should not be used for mass production firmware builds

Minor Changes (no impact on application)
* Overall folder restructuring for SDK3
— [Platform]:
* Rename platform_family from connected_mcu/nbu to wireless_mcu/nbu

* platform family have now a dedicated fwk_config.h, rpmsg_config.h and Se-
cLib_mbedtls_config.h

— [Services]

* Move all framework services in a common directory “services/”

7.0.0 revA: KW45/KW47/MCX W71/MCX W72/K32W148

Experimental Features only

* Power down on application power domain: Some tests have shown some failure. Power
consumption higher than Deep Sleep. => This feature is not fully supported in this release

* XTAL32K less board with FRO32K support: Some additional stress tests are under progress.

* FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

1.3. Wireless 143



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Main Changes
* Cmake/Kconfig support for SDK3.0
* [Sensors] API renaming:
— SENSORS_ InitAdc() renamed to SENSORS_ Init()
— SENSORS_ DeinitAde() remamed to SENSORS_ Deinit()
* [HWparams]

— Repair PROD_DATA sector in case of ECC error (implies loss of previous contents of
sector)

* [NVM] Linker script modification for armgcc whenever gNvTableKeptInRam_d option is
used:

— placement of NVM_TABLE_RW in data initialized section, providing start and end ad-
dress symbols. For details see NVM_Interface.h comments.

* [OtaSupport]

— OTA_ Initialize(): now transitions the image state from RunCandidate to Permanent if
not done by the application. OTA module shall always be initialized on a Permanent
image, this change ensures it is the case.

— OTA_ MakeHeadRoomForNextBlock(): now erases the OTA partition up to the image to-
tal size (rounded to the sector) if known.

Minor changes
 [Platform]

— Updated macro values: -kw47: BOARD_32MHZ_XTAL_CDAC_VALUE
from 12U to 16U, BOARD_32MHZ_XTAL_ISEL_VALUE from 70
to 110, BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 40,
BOARD_32KHZ_XTAL_COARSE_AD]_DEFAULT from 1U to 3U

* MCX W72 (low-power reference design applications
only): BOARD_32MHZ_XTAL_CDAC_VALUE from 12U to
100, BOARD_32MHZ_XTAL_ISEL_VALUE from 70 to 110,
BOARD_32KHZ_XTAL_CLOAD_DEFAULT from 8U to 40U,

BOARD_32KHZ_XTAL_COARSE_ADJ_DEFAULT from 1U to 3U

— New PLATFORM_ RegisterNbuTemperatureRequestEventCb() API: register a function
callback when NBU request new temperature measurement. API provides the interval
request for the temperature measurement

— Update PLATFORM_ IsNbuStarted() API to return true only if the NBU firmware has
been started.

* [platform lowpower]

— Move RAM layout values in fwk_platform_definition.h and update RAM retention API
for KW47/MCXW72

Bugfixes
* [OtaSupport]

— OTA_ MakeHeadRoomForNextBlock(): fixed a case where the function could try to erase
outside the OTA partition range.

144 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100 This release does not contain the changes
from 6.2.3 release.

This release contains changes from 6.2.2 release.

Main Change

» armgcc support for Cmake sdk2 support and VS code integration

Minor changes
* [NBU]
— Optimize some critical sections on nbu firmware
¢ [Platform]
— Optimize PLATFORM _RemoteActiveReq() execution time.

6.2.3: KW47 EAR1.0 Initial Connectivity Framework enablement for KW47 EAR1.0 support.

New features

* OpenNBU feature : nbu_ble project is available for modification and building

Supported features

* Deep sleep mode

Unsuported features
* Power down mode
* FRO32K support (XTAL32K less boards)

Main changes
» [NBU]

— LPTMR2 available and TimerManager initialization with Compile Macro: gPlatfor-
mUseLptmr_d

— NBU can now have access to GPIOD
— SW RNG and SW SecLib ported to NBU (Software implementation only)
* [RNG]
— Obsoleted API removed : FWK RNG DEPRECATED API
— RNG can be built without SecLib for NBU, using gRngUseSecLib__d in fwk_config.h
— Some API updates:
* RNG_ IsReseedneeded() renamed to RNG_ IsReseedNeeded,
% RNG_ TriggerReseed() renamed to RNG_ NotifyReseedNeeded(),
% RNG_ SetSeed() and RNG__SetExternalSeed() return status code.

— Optimized Linear Congruential modulus computation to reduce cycle count.

1.3. Wireless 145



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Minor changes
* [NVM]
— Optimize NvIsRecordErased() procedure for faster garbage collection

— MISRA fix : Remove externs and weaks from NVM module - Make RNG and timer man-
ager dependencies conditional

 [Platform)]
— Allow the debugger to wakeup the KW47/MCXW72 target

6.2.2: KW45/K32W1 MR6 SDK 2.16.000 Experimental Features only:

* Power down on application power domain : Some tests have shown some failure. Power
consumption higher than Deep Sleep. => This feature is not fully supported in this release

* XTAL32Kless board with FRO32K support : Some additional stress tests are under progress.

* FRO32K notifications callback is for debug only and shall not be used for production. User
shall not execute long processing (such as PRINTF) as it is executed in ISR context.

Changes
* [Board] Support for freedom board FRDM-MCX W7X
* [HWparams]
— Support for location of HWParameters and Application Factory Data IFR in IFR1
— Default is still to use HWparams in Flash to keep backward compatibility
* [RNG]: API updates:

— New APIS RNG_IsReseedneeded(), RNG_SetSeed() to provide See to PRNG on NBU/App
core - See BluetoothLEHost_ProcessIdleTask() in app_conn.c

— New APIs RNG_SetExternalSeed() : User can provide external seed. Typically used on
NBU firmrware for App core to set a seed to RNG. RNG_TriggerReseed() : Not required
on App core. Used on NBU only.

» [NVS] Wear statistics counters added - Fix nvs_file_stat() function
* [NVM] fix Nv_Shutdown() API
* [SecLib] New feature AES MMO supported for Zighee

6.2.2: RW61x RFP4 SDK 2.16.000
¢ [Platform] Support Zigbee stack
* [OTA] Add support for RW61x OTA with remap feature.

— Required modifications to prevent direct access to flash logical addresses when remap
is active.

— Image trailers expected at different offset with remap enabled (see gPlatformMcuBoo-
tUseRemap_d in fwk_config.h)

- fixed image state assessment procedure when in RunCandidate.
* [NVS] Wear statistics counters added
* [SecLib] New feature AES MMO supported for Zighee

e [Misra] various fixes

146 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

6.2.1: KW45/K32W1 MR5 SDK 2.15.000 Experimental Features only:

» Power down on application power domain : Some tests have shown some failure. This
feature is not fully supported in this release

* XTAL32Kless board with FRO32K support : Some additional stress tests are under progress.
Timing variation of the timebase are being analyzed

Major changes
* [RNG]: API updates
— New compile flag to keep deprecated API: FWK_RNG_DEPRECATED_API
— change return error code to int type for RNG_Init(), RNG_Relnit()
— New APIs RNG_GetTrueRandomNumber(), RNG_GetPseudoRandomData()
 [Platform)]
— fwk_platform_sensors
* Change default temperature value from -1 to 999999 when unknown
- fwk_platform_genfsk
* rename from platform_genfsk.c/h to fwk_platform_genfsk.c/h
— platform family

% Rename the framework platform folder from kw45_k32w1 to connected_mcu to
support other platform from the same family

— fwk_platform_intflash

* Moved from fwk_platform files to the new fwk_platform_intflash files the internal
flash dependant API

* [NBU]
— BOARD_LL_32MHz_WAKEUP_ADVANCE_HSLOT changed from 2 to 3 by default
— BOARD_RADIO_DOMAIN_WAKE_UP_DELAY changed from 0x10 to 0xXOF

* [gce linker]

— Exclude k32w1_nbu_ble_15_4_dyn.bin from .data section

Minor Changes
 [Platform)]

— PLATFORM_GetTimeStamp(0 has an important fix for reading the Timestamp in
TSTMRO

— New API PLATFORM_TerminateCrypto(), PLATFORM_ResetCrypto() called from SecLib
for lowpower exit

— Fix when enable fro debug callback on nbu
* [DBG]
- SWO
* Add new files fwk_debug_swo.c/h to use SWO for debug purpose
* Two new flags has been added:

- BOARD_DBG_SWO_CORE_FUNNEL to chose on which core you want to use
SWO

1.3. Wireless 147



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

- BOARD_DBG_SWO_PIN_ENABLE to enable SWO on a pin
* [NVS]
— Add support of NVS and Settings in framework
» [NBU]
— Fix power down issues and reduce critical section on NBU side:

% new API PLATFORM_RemoteActiveReqWithoutDelay() called from NBU functions
where waiting delay is not required

* Increase delay needed in power down for OEM part to request the SOC to be active

* Remove unnecessary code to PLATFORM_RemoteActiveReqWithoutDelay() from
PLATFORM_HciRpmsgRxCallback()

* Improve nbu memory allocation failure debug messages
* [SDK]

— Multicore: remove critical section in HAL_RpmsgSendTimeout() (only required in
FPGA HDI mode)

— Flash drivers: update for ECC detection
* [Platform]
- fwk_platform_sensors
* Fix temperature reporting to NBU
— fwk_platform_extflash
% Align .c and .h prototype of PLATFORM_ExternalFlashArealsBlank() function
* [NVM]
— Keep Mutex in NvModuleDelnit(). In Bare metal OS, Mutex can not be destroyed

— New API NvRegisterEccFaultNotificationCb() to register Notification callback when Ecc
error happens in FileSystem

* [MISRA] fixes
— SecLib_sss.c: ECDH_P256_ComputeDhKey()
— fwk_platform_extflash.c: PLATFORM_IsExternalFlashPageBlank()
— fwk_fs_abstraction.c: Various fixes

* [HWparams]

— Fix on if condition when gHwParamsProdDataPlacementLegacy2IfrMode_c mode is
selected

* [OTA]
— Enable gOtaCheckEccFaults_d by default to avoid bus in case of ECC error during OTA
— Fix OTA partition overflow during OTA stop and resume transfer

* [BOARD]
— Place code button or led specific under correct defines in board_comp.c/h

— Bring back MACROs BOARD_INITRFSWITCHCONTROLPINS in pin_mux header file of
the loc board

* [SecLib]

— Add some undefinition in SecLib_mbedtls_config as new dependency has been added
in mbedtls repo:

148 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

% MBEDTLS_SSL_CBC_RECORD_SPLITTING, MBEDTLS_SSL_PROTO_TLS1,
MBEDTLS_SSL_PROTO_TLS1_1

* [FRO32K]

— FRO32K notification callback PLATFORM_FroDebugCallback_t() has new parameter to
report he fro_trim value

— maxCalibrationIntervalMs value can be provided to NBU wusing PLAT-
FORM_FwkSrvSetRfSfcConfig()

* [Sensors]

— fix: PLATFORM_GetTemperatureValue() shall have NBU started to send temperature to
NBU

6.2.1: RW61x RFP3
* [NVS]
— Add support of NVS and Settings in framework
* [MISRA] fixes
— board_lp.c BOARD_UninitDebugConsole() and BOARD_ReinitDebugConsole()
— fwk_platform_ble.c: Various fixes
» [OTA]

— Fix OTA partition overflow during OTA stop and resume transfer

6.2.0: RT1060/RT1170 SDK2.15 Major

6.1.8: KW45/K32W1 MR4
* [BOARD PLATFORM]
— Move gBoardUseFro32k_d to board_platform.h file
— Offer the possibility to change the source clock accuracy to gain in power consumption
* [BOARD LP]

— Move PLATFORM_SetRamBanksRetained() at end of BOARD_EnterLowPowerCb() in
case a memory allocation is done previously in this function

— fix low power, increase BOARD_RADIO_DOMAIN_WAKE_UP_DELAY from 0 to 0x10 -
Skip this delay when App requesting NBU wakeup

* [PLATFORM]

— fwk_platform_ble.c/h: New timestamp API that returns the difference between the cur-
rent value of the LL clock and the argument of the function

- fwk_platform.c/h:

# New PLATFORM_EnableEccFaultsAPI_d compile flag: Enable APIs for interception
of ECC Fault in bus fault handler

* New glnterceptEccBusFaults_d compile flag: Provide FaultRecovery() demo code
for bus fault handler to Intercept bus fault from Flash Ecc error

» [LOC]
— Incorrect behavior for set_dtest_page (DQTEST11 overridden)

— Fix SW1 button wake able on Localization board

1.3. Wireless 149



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— Fix yellow led not properly initialized
— Format localization pin_mux.c/h files
* [Inter Core]
— Affect values to enumeration giving the inter core service message ids
— Shared memory settings shared between both cores
— Add callback to register when NBU has unrecoverable Radio issue
* [NVM]

— Add NV_STORAGE_MAX_SECTORS, NV_STORAGE_SIZE as linker symbol for alignment
with other toolchain

— ECC detection and recovery. New gNvSalvageFromEccFault_d and gNvVerifyRead-
BackAfterProgram_d compile flags. Please refer to ECC Fault detection section in
README.md file located in NVM folder

* [OTA]

— Prevent bus fault in case of ECC error when reading back OTA_CFR update status (dis-
able by default)

* [SecLib]
— Shared mutex for RNG and SecLib as they share same hardware resource
* [Key storage]
— Fix to ignore the garbage at the end of buffers
— Detect when buffers are too small in KS_AddKey() functions
* [FileCache]
— Fix deadlock in Filecache FC_Process()
* [SDK]

— Applications: remove definition of stack location and use default from linker script,
fix warmboot stack in freertos at 0x20004000

— Memory Manager Light:
* fix Null pointer harfault when MEM_STATISTICS_INTERNAL enable

* Fix MemReinitBank() on wakeup from lowpower when Ecc banks are turned off

6.1.7: KW45/K32W1 MR3
» [OTA]
— New API OTA_SetNewlImageFlagWithOffset()
— Fix StorageBitmapSize calculation
— OTA clean up: Removed OTA_ValidateImage()
* [Low Power]
— New linker Symbol m_lowpower_flag_start in linker file.

# Flag is used to indicate NBU that Application domain goes to power down mode.
Keep this flag to 0 if only Deep sleep is supported

* This flag will be set to 1 if Application domain goes to power down mode

— Re-introduce PWR_AllowDeviceToSleep()/PWR_DisallowDeviceToSleep(),
PWR_IsDeviceAllowedToSleep() API

150 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— Implement tick compensation mechanism for idle hook in a dedicated freertos utils
file fwk_freertos_utils.[ch], new functions: FWK_PreldleHookTickCompensation() and
FWK_PostIdleHookTickCompensation

— Rework timestamping on K4W1
% PLATFORM_GetMaxTimeStamp() based on TSTMR
* Rename PLATFORM_GetTimestamp() to PLATFORM_GetTimeStamp()

* Update PLATFORM_Delay(): Rework to use TSTMR instead of LPTMR for plat-
form_delay

* Update PLATFORM_WaitTimeout(): Fixed a bug in PLATFORM_WaitTimeout() re-
lated to timer wrap

* Add PLATFORM_IsTimeoutExpired() API

— Fix race condition in PWR_EnterLowPower(), masking interrupts in case not done at
upper layer

— Low power timer split in new files fwk_platform_lowpower_timer.[ch]

— New PWR_systicks_bm.c file for bare metal usage: implement SysTick suspend/resume
functionality, New weak PWR_SysTicksLowPowerlnit()

* [FRO32K]
— Improve FRO32K calibration in NBU

— create PLATFORM_InitFro32K() to initialize FRO32K instead of XTAL32K (to be called
from hardware_init())

— update FRO32K README.md file in SFC module
— Debug:
— Add Notification callback feature for SFC module FRO32K
— Linker script update to support m_sfc_log_start in SMU2
* [SecLib]
— Remove gSecLibSssUseEncryptedKeys_d compile option, split Secure/Unsecure APIs
— RNG update to use same mutex than SecLib
— Fix AES_128_CBC_Encrypt_And_Pad length
— Implement RNG_Relnit() for lowpower
- Fix issue in ECDH_P256_GenerateKeys() when waking up from power down
— Call CRYPTO_ELEMU_reset() from SecLib_relnit() for power down support
* [BOARD]

— Create new board_platform.h file for all Board characteristics settings (32Mhz XTAL,
32KHZ XTAL, etc..)

— TM_EnterLowpower() TM_EnterLowpower() to be called from LP callbacks
— Support Localization boards, Only BUTTONO supported

* New compile flag BOARD_LOCALIZATION_REVISION_SUPPORT

* New pin_mux.[ch] files

— Offer the possibility to override CDAC and ISEL 32MHz settings before the initialization
of the crystal in board_platform.h

% new BOARD_32MHZ_XTAL_CDAC_VALUE, BOARD_32MHZ_XTAL_ISEL_VALUE
% BOARD_32MHZ_XTAL_TRIM_DEFAULT obsoleted

1.3. Wireless 151



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* [NVM file system]
— Look ahead in pending save queue - Avoid consuming space to save outdated record
— Fix NVM gNvDuallmageSupport feature in NvIsRecordCopied

* [Inter Core]

— Change PLATFORM_NbuApiReq() API return parameters granularity from uint32 to
uint8

— MAX_VARIANT_SZ change from 20 to 25

— Set Ip wakeup delay to 0 to reduce time of execution on host side, NBU waits XTAL to
be ready before starting execution

— Update inter core config rpmsg_config.h

— Add timeout to while loops that relies on hardware in RemoteActiveReq(), Application
can register Callbacks when timeout

— Return non-0 status when calling PLATFORM_FwkSrvSendPacket when NBU non
started

— Let PLATFORM_GetNbulnfo return -10 if response not received on timeout - Doxygen
platform_ics APIs

* [HW params]

— New compile Macro for HW params placement in IFR - Save 8K in FLash: gHwParam-
sProdDataPlacement_c . 3 modes:

— Legacy placement, move from legacy to IFR, IFR only placement

— New compile Macro for Application data to be stored with HW params (in shared flash
sector): gHwParamsAppFactoryDataExtension_d, New APIs:

* Nv_WriteAppFactoryData(), Nv_GetAppFactoryData()
— See HWParameterh
* [Platform]

— Implement PLATFORM_Getleee802_15_4Addr() API in fwk_platform_ot.c - New gPlat-
formUseUniqueDeviceldFor15_4Addr_d compile Macro

— Wakeup NBU domain when reading RADIO_CTRL UID_LSB register in PLAT-
FORM_GenerateNewBDAddr()

* [Reset]
— New reset Implementations using Deep power down mode or LVD:
* new files fwk_platform_reset.[ch]

* new APIs: PLATFORM_ForceDeepPowerDownReset(), PLAT-
FORM_ForceLvdReset() + reset on ext pins

* new compile flags: gAppForceDeepPowerDownResetOnResetPinDet_d and gApp-
ForceLvdResetOnResetPinDet_d to reset on external pins

* [FSCI]
— fix when gFsciRxAck_c enabled

— integrate new reset APIs

152 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

6.1.4: RW610/RW612 RFP1
* [Low Power]
— Added support of low power for OpenThread stack.

— Added PWR_AllowDeviceToSleep/PWR_DisallowDeviceToSleep/PWR_IsDeviceAllowedToSleep
APIs.

* [platform]
— Added PLATFORM_GetMaxTimeStamp APL
— Fixed high impact Coverity.
* [FreeRTOS]
— Created a new utilities module for FreeRTOS: fwk_freertos_utils.c/h.

— Implemented a tick compensation mechanism to be used in FreeRTOS idle hook, likely
around flash operations. This mechanism aims to estimate the number of ticks missed
by FreeRTOS in case the interrupts are masked for a long time.

6.1.4: KW45/K32W1 MR2
* [Low power]
— Powerdown mode tested and enabled on Low Power Reference Design applications

— XTAL32K removal functionality using FRO32K, supported from NBU firmwares - limi-
tation: Application domain supports Deep Sleep only (not power down)

— NBU low power improvement: low power entry sequence improvement and system
clock reduction to 16Mhz during WFI

— Wake up time from cold boot, reset, power switch greatly improved. Device starts on
FRO32K, switch to XTAL32K when ready if gBoardUseFro32k_d not set

— Bug fixes:
* Move PWR LowPower callback to PLATFORM layers
* Fix wrong compensation of SysTicks

* Reinit system clocks when exiting power down mode:
BOARD_ExitPowerDownCh(), restore 96MHz clock is set before going to low
power

% Call Timermanager lowpower entry exit callbacks from PLAT-
FORM_EnterLowPower()

* Update PLATFORM_ShutdownRadio() function to force NBU for Deep power down
mode

- K32wW1:
* Support lowpower mode for 15.4 stacks
* [NVM]

— New Compilation MACRO gNvDuallmageSupport to support multiple firmware image
with different register dataset

— Change default configuration gNvStoragelncluded_ d to 1, gNvFragmenta-
tion_Enabled_d to 1, gUnmirroredFeatureSet_d to TRUE

— Some MISRA issues for this new configuration.
— Remove deprecated functionality gNvUseFlexNVM_d
* [SecLib]

1.3. Wireless 153



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— New NXP Ultrafast ecp256 security library:

* New optimized API for ecdh DhKey/ecp256 key pair computation:
Ecdh_ComputeDhKeyUltraFast(), ECP256_GenerateKeyPairUltraFast().

% New macro gSecLibUseDspExtension_d.

% Improved software version of Seclib with Ultrafast library for
ECP256_LePointValid()

— Bug fixes:
* Share same mutex between Seclib and RNG to prevent concurrent access to S200
# Optimized S200 re-initialization, restore ecdh key pair after power down
* Fixed race condition when power down low power entry is aborted
* Endianness function updates and clean up

» [OTA]

— OTASupport improvements:

* New API OTA_GetImgState(), OTA_UpdateImgState()

% OTASupport and fwk_platform_extflash API updates for external flash:
OTA_SelectExternalStoragePartition(), PLATFORM_IsExternalFlashSectorBlank(),
PLATFORM_IsExternalFlashPageBlank(), PLATFORM_OtaGetOtaPartitionConfig()

* Updated OtaExternalFlash.c, 2 new APIs in fwk_platform_extflash.c

% Removed unused FLASH_op_type and FLASH_TransactionOpNode_t definitions
from public API

* Removed unused InternalFlash_EraseBlock() from OtalnternalFlash.c
* [NBU firmware]

— Mechanism to set frequency constraint to controller from the host PLAT-
FORM_SetNbuConstraintFrequency()

— Nbulnfo has one more digit in versionBuildNo field
* [Board]

— Support Extflash low power mode, add BOARD_UninitExternalFlash(), PLAT-
FORM_UninitExternalFlash(), PLATFORM_ReinitExternalFlash()

— Support XTAL32K removal functionatity, use FRO32K instead by setting gBoardUse-
Fro32k_d to 1 in board.h file

— Support localization boards KW45B41Z-L.OC Rev C

- Low power improvement: New BOARD_InitPins() and
BOARD_InitPinButtonBootConfig() called from hardware_init.c

— Removed KW45_A0_SUPPORT support (dcdc)
— Bug fixes:
* Fixed glitches on the serial manager RX when exiting from power down
* Fixed ADC not deinitialized in clock gated modes in BOARD_EnterLowPowerCb()
* Fixed UART output flush when going to low power: BOARD_UninitAppConsole()
* [platform]

— PLATFORM._InitBle(), PLATFORM_SendHci() can now block with timeout if NBU does
not answer. Application can register callback function to be notified when it occurs:
PLATFORM_RegisterBleErrorCallback()

154 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

— Added API to set and get 32Khz XTAL -capacitance values: PLAT-
FORM_GetOscCap32KValue() and PLATFORM_SetOscCap32KValue()

— Added new Service FWK call gfwkSrvNbuMemFulllndication_c to get NBU mem full
indication, register with PLATFORM_RegisterNbuMemErrorCallback()

— Added support negative value in platform intercore service
* [linker script]

— Realigned gcc linker script with IAR linker script.

— Added possibility to redefine cstack_start position

— Added Possibility to change gNvmSectors in gcc linker script

— Added dedicated reserved Section in shared memory for LL debugging
* [FreeRTOSConfig.h]

— Removed wunused MACRO configFRTOS_MEMORY_SCHEME and configTO-
TAL_HEAP_SIZE

e [HW Param]
— Added xtalCap32K field to store XTAL32K triming value
* [fwk_hal macros.h]
— Added MACRO for KB, MB and set, clear bits in bit fields
* [Debug]
— Added MACROs for performance measurement using DWT: DBG_PERF_MEAS

6.1.3 KW45 MR1 QP1

* [Initialization] Delay the switch to XTAL32K source clock until the BLE host stack is initial-
ized

* [lowpower] NBU wakeup from lowpower: configuration can now be programmed with
BOARD_NBU_WAKEUP_DELAY_LPO_CYCLE, BOARD_RADIO_DOMAIN_WAKE_UP_DELAY
in board.h file

* [NBU firmware] Major fix for NBU system clock accuracy
* [clock_config]
— Update SRAM margin and flash config when switching system frequency

— Trim FIRC in HSRUN case
* [XTAL 32K trim] XTAL 32K configuration can be tuned in board.h file with
BOARD 32MHZ XTAL_TRIM_DEFAULT, BOARD_32KHZ_XTAL_CLOAD _DEFAULT,

BOARD_32KHZ_XTAL_COARSE_AD] DEFAULT

* [MAC address] Add OUI field in PLATFORM_GenerateNewBDAddr() when using Unique De-
vice Id

6.1.2: RW610/RW612 PRC1
* [Low Power]
— Updates after SDK Power Manager files renaming.
— Moved PWR LowPower callback to PLATFORM layers.
— Bug fixes:

% Fixed wrong compensation of SysTicks during tickless idle.

1.3. Wireless 155



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* Reinit RTC bus clock after exit from PM3 (power down).
» [OTA]
— Initial support for OTA using the external flash.
* [platform]
— Implemented platform specific time stamp APIs over OSTIMER.
— Implemented platform specific APIs for OTA and external flash support.
— Removed PLATFORM_GetLowpowerMode APIL.
— Added support of CPU2 wake up over Spinel for OpenThread stack.
- Bug fixes:
* Fixed issues related to handling CPU2 power state.
* [board]
— Updated flash_config to support 64MB range.
* [linker script]

— Fixed wrong assert.

6.1.1: KW45/K32W1 MR1

* [platform] Use new FLib_MemSet32Aligned() to write in ECC RAM bank to force ECC calcu-
lation in the MEM_ReinitRamBank() function

¢ [FunctionLib] Implement new API to set a word aligned

* [platform] Set coarse amplifier gain of the oscilattor 32k to 3

* [platform] Switch back to RNG for MAC Adress generation

* [SecLib] Get rid of the lowpower constraint of deep sleep in ECDH API

* [DCDC] Set DCDC output voltage to 1.35V in case LDO core is set to 1.1V to ensure a drop of
250mV between them

* [NVM] NvIdle() is now returning the number of operations that has been executed

* [documentation] Add markdown of each framework module by default on all package
* [LowPower] Add a delay advised by hardware team on exit of lowpower for SPC

* [SecLib] Rework of SecLib_mbedTLS ECDH functions

* [OTA] Make OTA_IsTransactionPending() public API

* [FunctionLib] Change prototype of FLib_MemCpyWord(), pDst is now a void* to permit
more flexibility

* [NVM] Add an API to know if there is a pending operation in the queue

 [FSCI] Fix wrong error case handling in FSCI_Monitor()

6.1.0: KW45/K32W1 RFP

* [LowPower] Do not call PLATFORM_StopWakeUpTimer() in PWR_EnterLowPower() if
PLATFORM_StartWakeUpTimer() was not previously called

* [boards] Add the possibility to wakeup on UART 0 even if it is not the default UART

* [boards] Add support for Hardware flow control for UARTO, Enable with gBoard-
UseUartOHwFlowControl, Pin mux update with two additional API for RTS, CTS pins

156 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* [Sensors] Improve ADC wakeup time from deep sleep state: use save and restore API for
ADC context before/after deep sleep state.

* [linker script] update SMU2 shared memory region layout with NBU: increase
sqram_btblebuf size to support 24 connections. Shared memory region moved to the
end

* [SecLib] SecLib_DeriveBluetoothSKD() API update to support if EdgeLock key shall be re-
generated

6.0.11: KW45/K32W1 PRC3.1

FSCI: Framework Serial Communication Interface

Overview The Framework Serial Communication Interface (FSCI) is both a software module
and a protocol that allows monitoring and extensive testing of the protocol layers. It also allows
separation of the protocol stack between two protocol layers in a two processing entities setup,
the host processor (typically running the upper layers of a protocol stack) and the Black Box
application (typically containing the lower layers of the stack, serving as a modem). The Test Tool
software is an example of a host processor, which can interact with FSCI Black Boxes at various
layers. In this setup, the user can run numerous commands to test the Black Box application
services and interfaces.

The FSCI enables common service features for each device enables monitoring of specific inter-
faces and API calls. Additionally, the FSCI injects or calls specific events and commands into the
interfaces between layers.

An entity which needs to be interfaced to the FSCI module can use the API to register opcodes
to specific interfaces. After doing so, any packet coming from that interface with the same op-
code triggers a callback execution. Two or more entities cannot register the same opcode on the
same interface, but they can do so on different interfaces. For example, two MAC instances can
register the same opcodes, one over UARTA, and the other over UARTB. This way, Test Tool can
communicate with each MAC layer over two UART interfaces.

The FSCI module executes either in the context of the Serial Manager task or owns its dedicated
task if the compilation Macro gFsciUseDedicatedTask_c is set to 1.

FSCI packet structure The FSCI module sends and receives messages as shown in the figure
below. This structure is not specific to a serial interface and is designed to offer the best com-
munication reliability. The Black Box device expects messages in little-endian format. It also
responds with messages in little-endian format.

STX Opcode Group MessageType Length Payload Checksum
— /
Header

Below is an illustration of the FSCI packet structure when a virtual interface is used instead :

1.3. Wireless 157



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

STX Opcode Message Length Payload Checksum - Checksum
roup || 1ype Vit
- /
Y
Header
Field name Length (bytes) Description
5TX 1 Used for synchronization over the serial interface.
The value is always 0x02.
Opcode Group 1 Distinguishes between different Service Access Primitives (for
example MLME or MCP3).
Message Type 1 Specifies the exact message opcode that is contained in the
packet.
Length 1or2 The length of the packet payload, excluding the header and FCS.
The length field content must be provided in little-endian format.
Payload variable Payload of the actual message.
Checksum 1 Checksum field used to check the data integnty of the packet.
Checksum2 Dor1 The second CRC field appears only for virtual interfaces.

NOTE : When virtual interfaces are used, the first checksum is decremented with the
ID of the interface. The second checksum is used for error detection.

constant definition The following Macro configurs the FSCI module

#define gFscilncluded ¢ 0 /* Enable/Disable FSCI module */
#define gFsciUseDedicatedTask ¢ 1 /* Enable Fsci task to avoid recursivity in Fsci module (Misra,,
—compliant) */

#define gFsciMaxOpGroups_ ¢ 8

#define gFsciMaxInterfaces_c 1

##define gFsciMaxVirtuallnterfaces_c 0

#define gFsciMaxPayloadLen ¢ 245 /* bytes */

#define gFsciTimestampSize_c 0 /* bytes */

#define gFsciLenHas2Bytes c 0 /* boolean */

#define gFsciUseEscapeSeq ¢ 0 /* boolean */

#define gFsciUseFmtLog_c 0 /* boolean */

#define gFsciUseFileDataLog c 0 /* boolean */

#define gFsciLoggingInterface_c 1 /* [0..gFsciMaxInterfaces_c) */
#define gFsciHostMacSupport_c 0 /* Host support at MAC layer */

The following provides the OpGroups values reserved by MAC, application, and FSCI.

FSCI Host FSCI Host is a functionality that allows separation at a certain stack layer between
two entities, usually two boards running separate layers of a stack.

Support is provided for functionality at the MAC layer, for example, MAC/PHY layers of a stack
are running as a Black Box on a board, and MAC higher layers are running on another. The
higher layers send and receive serial commands to and from the MAC Black Box using the FSCI
set of operation codes and groups.

The protocol of communication between the two is the same. The current level of support is
provided for:

158 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* FSCI_MsgResetCPUReqFunc - sends a CPU reset request to black box
* FSCI_MsgWriteExtendedAdrReqFunc - configures MAC extended address to the Black Box
* FSCI_MsgReadExtendedAdrReqFunc — N/A

The approach on the Host interfacing a Black Box using synchronous primitives is by default
the polling of the FSCI_receivePacket function, until the response is received from the Black Box.
The calling task polls whenever the task is being scheduled. This is required because a stack
synchronous primitive requires that the response of that request is available in the context of
the caller right after the SAP call has been executed.

The other option, available for RTOS environments, is using an event mechanism. The calling
task blocks waiting for the event that is sent from the Serial Manager task when the response
is available from the Black Box. This option is disabled by default. The disadvantage of this
option is that the primitive cannot be received from another Black Box through a serial interface
because the blocked task is the Serial Manager task, which reaches a deadlock as cannot be
released again.

FSCI ACK ACK transmission is enabled through the gFsciTxAck_c macro definition. Each FSCI
valid packet received triggers an FSCI ACK packet transmission on the same FSCI interface that
the packet was received on. The serial write call is performed synchronously to send the ACK
packet before any other FSCI packet. Only then the registered handler is called to process the
received packet. The ACK is represented by the gFSCI_CnfOpcodeGroup_c and mFsciMsgAck_c
Opcode. An additional byte is left empty in the payload so that it can be used optionally as a
packet identifier to correlate packets and ACKs. ACK reception is the other component that is en-
abled through gFsciRxAck_c. The behavior is such that every FSCI packet sent through a serial
interface triggers an FSCI ACK packet reception on the same interface after the packet is sent. If
an ACK packet is received, the transmission is considered successful. Otherwise, the packet is re-
sent a number of times. The ACK wait period is configurable through mFsciRxAckTimeoutMs_c
and the number of transmission retries through mFsciTxRetryCnt_c. The ACK mechanism de-
scribed above can also be coupled with a FSCI packet reception timeout enabled through gFs-
ciRxTimeout_c and configurable through mFsciRxRestartTimeoutMs_c. Whenever there are no
more bytes to be read from a serial interface, a timeout is configured at the predefined value ifno
other bytes are received. If new bytes are received, the timer is stopped and eventually canceled
at successful reception. However, if, for any reason, the timeout is triggered, the FSCI module
considers that the current packet is invalid, drops it, and searches for a new start marker.

FSCI usage example Detailed data types and APIs are described in ConnFWK API documenta-
tion.

Initialization

/* Configure the number of interfaces and virtual interfaces used */
#define gFsciMaxInterfaces_c 4
#define gFsciMaxVirtuallnterfaces_c 2

/* Define the interfaces used */
static const gFsciSerialConfig_t myFsciSerials|] = {

/* Baudrate, interface type, channel No, virtual interface */ {gUARTBaudRate115200_ c, gSerialMgrUart__
—c, 1, 0}, {gUARTBaudRate115200_ c, gSerialMgrUart_c, 1, 1}, {0, gSerialMgrIICSlave_c, 1, 0}, {0 ,,
—gSerialMgrUSB_ ¢, 0, 0},

J§

/* Call init function to open all interfaces */
FSCI_Init( (void*)mFsciSerials );

1.3. Wireless 159



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Registering operation groups

myOpGroup = 0x12; // Operation Group used
myParam = NULL; // pointer to a parameter to be passed to the handler function (myHandlerFunc)
mylInterface = 1; // index of entry from myFsciSerials

FSCI_RegisterOpGroup( myOpGroup, gFsciMonitorMode_ ¢, myHandlerFunc, myParam, myInterface );

Implementing handler function

void fsciMcpsReqHandler(void *pData, void* param, uint32_t interfaceld)
{

clientPacket t *pClientPacket = ((clientPacket t*)pData);

fsciLen__t myNewLen;

switch( pClientPacket->structured.header.opCode )

{

case 0x01:

/* Reuse packet received over the serial interface The OpCode remains the same. The length of the
—response must be <= that the length of the received packet */
pClientPacket->structured.header.opGroup = myResponseOpGroup;/* Process packet */

pClientPacket->structured.header. len = myNewLen;
FSCI__transmitFormatedPacket(pClientPacket, interfaceld);
return;

case 0x02:

/* Alocate a new message for the response. The received packet is Freed */
clientPacket_ t *pResponsePkt = MEM_ BufferAlloc( sizeof(clientPacketHdr_t) + myPayloadSize_ d,
<+ sizeof(uint8_t) // CRC);
if(pResponsePkt)
{
/* Process received data and fill the response packet */ ...
pResponsePkt->structured.header. len = myPayloadSize_ d;
FSCI__transmitFormatedPacket(pClientPacket, interfaceld);
}
break;
}
default:
MEM_ BufferFree( pData );
FSCI__Error( gFsciUnknownOpcode_ ¢, interfaceld );
return;

/* Free message received over the serial interface */
MEM__ BufferFree( pData );

Helper Functions Library

Overview This framework provides a collection of features commonly used in embedded soft-
ware centered on memory manipulation.

HWParameter: Hardware parameter

Production Data Storage Hardware parameters provide production data storage

160 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Overview Different platforms/boards need board/network node-specific settings to function
according to the design. (Examples of such settings are IEEE® addresses and radio calibra-
tion values specific to the node.) For this purpose, the last flash sector is reserved and contains
hardware-specific parameters for production data storage. These parameters pertain to the net-
work node as a distinct entity. For example, a silicon mounted on a PCB in a specific configura-
tion, rather than to just the silicon itself. This sector is reserved by the linker file, through the
PROD_DATA section and it should be read/written only through the API described below.

Note : This sector is not erased/written at code download time and it is not updated
via over-the-air firmware update procedures to preserve the respective node-specific
data, regardless of the firmware running on it.

Constant Definitions Name :

extern uint32_t PROD_DATA_BASE__ADDRJJ;

Description :
This symbol is defined in the linker script. It specifies the start address of the PROD_DATA section.

Name :

static const uint8_t mProdDataldentifier[10] = {"PROD_DATA:"};

Description :

The value of this constant is copied as identification word (header) at the beginning of the
PROD_DATA area and verified by the dedicated read function.

Note: the length of mProdDataldentifier imposes the definition of PROD_DATA_ID_STRING_SZ
as 10. The legacy HW parameters structure provides headroom for future usage. There are
currently 63 bytes available.

Data type definitions Name:

typedef PACKED STRUCT HwParameters_ tag
{
uint8_t identificationWord[PROD__DATA_ID_ STRING_ SZ]; /* internal usage only: valid data present */
/*a{*/
uint8_t bluetooth_address]BLE_ MAC__ADDR,_ SZJ; /*!< Bluetooth address */
uint8_t ieee_802_15_4 address[IEEE_802_15_4_SZ]; /*!< IEEE 802.15.4 MAC address - K32W1 only,
H*/
uint8_t xtalTrim; /*¥l< XTAL 32MHz Trim value */
uint8_t xtalCap32K; /*¥!< XTAL 32kHz capacitance value */
/* For forward compatibility additional fields may be added here
Existing data in flash will not be compatible after modifying the hardwareParameters_t typedef.
In this case the size of the padding has to be adjusted.
*/
uint8 t reserved[l1];
/* first byte of padding : actual size if 63 for legacy HwParameters but
complement to 128 bytes in the new structure */

}

hardwareParameters_ t;

Description:
Defines the structure of the hardware-dependent information.

Note : Some members of this structure may be ignored on a specific board/silicon con-
figuration. Also, new members may be added for implementation-specific purposes
and the backward compatibility must be maintained.

1.3. Wireless 161



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The CRC calculation starts from the reserved field of the hardwareParameters_t and ends before
the hardwareParamsCrc field. Additional members to this structure may be added using the
following method :

Add new fields before the reserved field. This method does not cause a CRC fail, but you must
keep in mind to subtract the total size of the new fields from the size of the reserved field. For
example, if a field of uint8_t size is added using this method, the size of the reserved field shall
be changed to 63.

Co-locating application factory data in HW Parameters flash sector. The sector containing
the Hardware parameter structure may be located in the internal flash, usually at its last sector.
The actual Hardware parameter structure has a size of 128 bytes - including padding reserved
for future use. Since there is plenty of room available in a flash sector (4kB or 8kB), co-locating
Application Factory Data in the same structure prevents from reserving another flash sector for
these data. The application designer may adopt this solution by defining gHwParamsAppFacto-
ryDataExtension_d as 1. A total of 2kB is alloted to this purpose.

If this option was chosen, whenever any of the Hardware parameter fields is modified, its CRC16
will change so the sector will need erasing. The gHwParamsAppFactoryDataPreserveOnHw-
ParamUpdate_d compilation option deals with restoring the contents of the App Factory Data.
Nonetheless this requires a temporary allocation a 2kB buffer to preserve the previous content
and restore then on completion of the Hw Parameter update.

Special reserved area at start of IFR1 in range [0x02002000..0x02002600] On development
boards a 1536 byte area is reserved and the actual Hardware parameter area begins at offset
0x600. Preserving this area on a HW parameter update also requires a temporary 1.5kB dynamic
allocation (in addition to the App Factory 2kB allocation), to be able to restore on completion of
update operation.

HW Parameters Production Data placement options The placement of production data
(PROD_DATA) can be selected based on the definition of gHwParamsProdDataPlacement_c (see
fwk_config.h). The productions data seldom need update for final products, once calibration
data, MAC addresses or others have been programmed. Two cases exist, plus a transition mode :

1) gHwParamsProdDataMainFlashMode_c (0) :

* PROD_DATA are located at top of Main Flash. Hardware parameters section is placed
in the last sector of internal flash [0xfe000..0x100000[.

* The linker script must reserve this area explicitly so as to prevent placement of NVM
or text sections at that location by setting gUseProdInfoMainFlash_d.

2) gHwParamsProdDataMainFlash2IfrMode_c(1): - PROD_DATA are located in IFR1, but Main-
Flash version still exists during interim period. - If the contents of the PROD_DATA section
in MainFlash is valid (not blank and correct CRC) but the IFR PROD_DATA is still blank, copy
the contents of MainFlash PROD_DATA to IFR location. - When done PROD_DATA in IFR are
used. Once the transition is done, an application using (2: gHwParamsProdDataPlacemen-
tIfrMode_c) may be programmed.

3) gHwParamsProdDatalfrMode_c (2) :
« PROD_DATA section dwells in the IFR1 sector [0x02002000..0x02004000[

* in development phase the area comprised between [0x02002000..0x02002600[ must be
reserved for internal purposes.

 This allows to free up the top sector of Main Flash by linking with gUseProdInfoMain-
Flash_d unset.

162 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

LowPower

Low Power reference user guide This Readme file describes the connectivity software archi-
tecture and provides the general low power enablement user guide.

1- Connectivity Low Power SW architecture The connectivity low power software architec-
ture is composed of various components. These are described from the lower layer to the appli-
cation layer:

1. The SDK power manager in component/power_manager. This component provides the ba-
sic low power framework. It is not specific to the connectivity but generic across devices.
it covers:

+ gather the low power constraints for upper layer and take the decision on the best
suitable low power state the device is allowed to go to fullfill the constraints.

+ call the low power entry and exit function callbacks
« call the appropriate SW routines to switch the device into the suitable low power state

2. Connectivity Low power module in the connectivity framework. This module is composed
of:

* The low power service called PWR inside framework/LowPower (this folder), This
module is generic to all connectivity devices.

* The platform lowpower: fwk_platform_lowpower.[ch] located in frame-
work\platform\<platform_name>. These files are a collection of low power routines
functions for the PWR module and upper layer. These are specific to the device.

Both PWR and platform lowpower files are detailed in section below.
3. Low power Application modules, it consists of 3 parts:

* Application initialization file app_services_init.c where the application initializes the
low power framework, see next section ‘Demo example for typical usage of low power
framework’

* Application Idle task from application to call the main low power entry function
PWR_EnterLowPower() to switch the device into lowpower. This function is applica-
tion specific, one example is given in the section 1.3.3

* Low power board files : board_lp.[ch] located in board/lowpower. These files imple-
ment the low power entry and exit functions related to the application and board.
Customers shall modify these files for their own needs. Example code is given for the
connectivity applications.

User guide is provided in section 1.3 below.

Note : Linker script may also be impacted for power down mode support in order to
provide an RAM area for ROM warm boot (depends on the platform) and application
warmboot stack

The Low power central and master reference design applications provide an example of Low
power implementation for BLE. Customer can also refer to the associated document ‘low power
connectivity reference design user guide’.

1.1 - SDK power manager This module provides the main low power functionalities such as:

* Decide the best low-power mode dependent on the constraints set by upper layers by using
PWR_SetLowPowerModeConstraints() API function.

1.3. Wireless 163



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* Handle the sequences to enter and exit low-power mode.

* Enable and configure wake up sources, call the application callbacks on low power en-
try/exit sequences.

The SDK power manager provides the capability for application and all components to receive
low power constraints to the power. The Application does not set the low-power mode the device
shall go into. When going to low power, the SDK power manager selects the best low-power mode
that fits all the constraints.

As an example, if the low power constraint set from Application is Power Down mode, and no
other constraint is set, the SDK power manager selects Power down mode, the next time the
device enters low power. However, if a new constraint is set by another component, such as
the SecLib module that operates Hardware encryption, the SecLib module would select WFI as
additional low power constraint. Also, the SDK power manager selects this last low-power mode
until the constraint is released by the SecLib module. It then reselects Power Down mode for
further low power entry modes.

1.2 - PWR Low power module The PWR module in the connectivity framework provides ad-
ditional services for the connectivity stacks and applications on top of the SDK power manager.

It also provides a simple API for Connectivity Stack and Connectivity applications.

However, more advanced features such as configuring the wake-up sources are only accessible
from the SDK Power Manager API.

In addition to the SDK Power Manager, the PWR module uses the software resources from lower
level drivers but is independent of the platform used.

1.2.1 - Functional description Initialization of the PWR module should be done through
PWR_Init() function. This is mainly to initialize the SDK power manager and the platform for
low power. It also registers PWR low power entry/exit callback PWR_LowpowerCh() to the SDK
power manager. This function will be called back when entering and exiting low power to per-
form mandatory save/restore operations for connectivity stacks. The application can perform
extra optional save/restore operations in the board_lp file where it can register to the SDK Power
Manager its own callback. This is usually used to handle optional peripherals such as serial in-
terfaces, GPIOs, and so on.The main entry function is PWR_EnterLowPower(). It should be called
from Idle task when no SW activity is required. The maximum duration for lowpower is given as
argument timeoutUs in useconds. This function will check the next Hardware event in the con-
nectivity stack, typically the next Radio activity. A wakeup timer is programmed if the timeoutUs
value is shorter than the next radio event timing. Passing a timeout of Ous will be interpreted as
no timeout on the application side.

On device wakeup from low power state, the function will return the time duration the device
has been in low power state.

Two APi are provided to set and release low power state constraints
PWR_SetLowPowerModeConstraint() and PWR_ReleaseLowPowerModeConstraint().  These
are helper functions. User can use directly the SDK power manager if needed.

The PWR module also provides some API to be set as callbacks into other components to prevent
from going to low power state. It can be used in following examples :

1. If a DMA is running, the module in charge of the DMA would need to set a constraint to
avoid the system from going to a low power state when the RAM and system bus are no
longer available.

2. If transfer is going on a peripheral, the drivers shall set a constraint to forbid low power
mode.

3. If encryption is on going through an Hardware accelerator, the HW accelerator and the
required ressources (clocks, etc), shall be kept active also by setting a constraints.

164 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

1.2.2 - Tickless mode support This module also provides some routines functions
PWR_SysticksPreProcess() and PWR_SysticksPostProcess() from PWR_systicks.c in order to sup-
port the tickless mode when using FreeRTOS. The tickless mode is the capability to suspend
the periodic system ticks from FreeRTOS and keep timebase tracking using another low power
counter. In this implementation, the Timer Manager and time_stamp component are used for
this purpose.

Idle task shall call these functions PWR_SysticksPreProcess() and PWR_SysticksPostProcess() be-
fore and after the call to the main low power entry function PWR_EnterLowPower().

Refer to framework/LowPower/PWR_systicks.c file or section 2.1 below for more information.

1.3 - Low power platform submodule Low power platform module file
fwk_platform_lowpower.c provides the necessary helper functions to support low power
device initialization, device entry, and exit routines. These are platform and device specific.
Typically, the PWR module uses the low power platform submodule for all low power specific
routines.

The low power platform submodule is documented in the Connectivity Framework Reference
Manual document and in the Connectivity Framework API document.

1.4 - Low power hoard files Low power board files board_lp.[ch] are both application and
board specific. Users should update this file to add new functions to include new used periph-
erals that require low power support. In the current SDK package, only Serial Manager over
UART and button (IO toggle wake up source) are supported and demonstrated in the Bluetooth
LE demo application.

Other peripherals that require specific action on low power entry and restore on low power exit
should be added to low power board files. For more details, refer to section Low power board
file update

2-Low power Application user guide This section provides a user guide to enable Low power
on a connectivity application, It gives example of typical implementation for the initialization,
Idle task function and low power entry/exit functions.

2.1 - Application Project updates It is recommended to reuse the low-power periph-
eral/central reference design application projects as a start. This ensures that everything is in
place for the low-power optimization feature. Then, application files may be added to one of the
two projects.

However, users can start directly from the application project and implement low power in it,
by performing the steps described in the following sections.

2.1.1 - SDK Power Manager Most of the Low power functionality is implemented in the SDK
Power Manager. The files to add into the project SDK power_manager module are listed in the
figure below:

1.3. Wireless 165



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

] W power_manager

2 & boards

L@ W K\W45B41 Z-EVK

] fel_pm_board.c

— [l fsl_prm_board h

— [] fsl_pm_hoard_config.h
L5 m core

— [u] fsl_pm_config.h

] fsl_pm_core.c

— [ fsl_pm_core.h

You need to use the files located in the folder that match your device.

2.1.2 - PWR connectivity framework module PWR.c PWR_Interface.h shall be added to your
application projects :

1 W framewark

B Cammon

W DBG

B FunctionLib

B HWParameter

=1 W LowPower

PwWh.c

— L] PWPR_Interface.h

Optionally, in order to support Systick less mode, PWR_systicks.c or PWR_systicks_bm.c could
also be added.

The include path to add is: middleware/wireless/framework/LowPower

2.1.3 -Low power platform submodule Low power platform files can be found in the ‘Plat-
form’ module in the connectivity framework:

166 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

£ W framework

B Comman

B DBG

B FunctionLib

B HwWParameter

B LowPower

B hModulelnfo

B MWSCoexistence
N

—1 W Platform

W configs

fuk_platform.c
fwk_platform.h
fwk_platformm_ble.c

— [] fwk_platform_ble.h
fwk_platform_dcdc.c
— [u] fwk_platform_dcdc.h
fwk_platform_ics.c
fwk_platform_ics.h
fwk_platform_lowpower.c
— [ fwk_platform_lowpower.
fwk_platform_ota.c

— ] fwk_platform_ota.h
fwk_platform_sensors.c

[ fwele nlatfarm cencnre b

2.1.4 - Low power board files These files are located in the same folder that the other board
files board.[ch]. Hence, it is not required to add any new include path at compiler command line.

1.3. Wireless 167



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

£ W framework

B Comman

M DBG

B FunctionLib

B HWParameter

W LowPower

B Modulelnfo

B MWSCoexistence
N

—F1 W Platform

7 W configs

fuk_platform.c
fwk_platform.h
fwk_platform_ble.c

k] fwrk_platform_ble.h
fwk_platform_dede.c
fwk_platform_dcdc.h
fwk_platform_ics.c
fwk_platform_ics.h
fwk_platform_lowpower.c
fuwk_platform_lowpower,
fwk_platform_ota.c
fwk_platform_ota.h
fwhk,_platform_sensors.c

[ fwele nlatfarm cencnre b

AR

8l el e

2.1.5 - Application RTOS Idle hook and tickeless hook functions See section 2.4.3 Idle task
implementation example

2.2 - Low power and wake up sources Initialization Low power initialization and
configuration are performed in APP_ServicelnitLowpower()function. This is called from
APP_InitServices() function called from the main() function so all is already set up when calling
the main application entry point, typically BluetoothLEHost_AppInit() function in the Bluetooth
LE demo applications.

The default Low Power mode configured in APP_InitServices() is Deep Sleep mode. In Bluetooth

168 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

LE, (or any other stack technology), Deep Sleep mode fits for all use cases. For instance, for
Bluetooth LE states: Advertising, Connected, Scanning states. This mode already performs a
very good level of power saving and likely, this is not required to optimize more if the device is
powered from external supply.

APP_ServicelnitLowpower() function performs the following initialization and configuration:

* Initialize the Connectivity framework Low power module PWR_Init(), this function initial-

ized the SDK power manager.

Configure the wakeup sources such as serial manager wake up source for UART, or button
for 10 wake up configuration. These are typical wakeup sources used in the connectivity
application. Developer may want to add additional wake up sources here specific for the
application.

Note : The low power timer wakeup source and wakeup from Radio domain
are directly enabled from the Connectivity framework Low power module PWR
as it is mandatory for the connectivity stack. If your application supports other
peripherals (such as i2c, spi, and others) that require wake sources from low
power, developer should add additional wake up sources setting in this func-
tion APP_ServicelnitLowpower(). The complete list of wakeup sources are avail-
able from the SDK power manager component, see file fsl_pm_board.h in compo-
nent/boards/<device_name>/.

Initialize and register the Low power board file used to register and implement low
power entry and exit callback function used for peripheral. This is done by calling the
BOARD_LowPowerInit() function.

Register low power Enter and exit critical function to driver component to enable / disable
low power when the Hardware is active. Example is given for serial manager that needs to
disable low power when the TX ring buffer contains data so the device does not enter low
power until the buffer is empty.

Finally, APP_ServicelnitLowpower() function configures the Deep Sleep mode as the default low
power constraint for the application. It is recommended to keep this level of low power con-
straint during all the connectivity stack initialization.

Example of low power framework initialization can be found in app_services_init.c file. Below
is some code example for initializing the low power framework and wake up sources:

static void APP_ ServicelnitLowpower(void)

{

PWR_ ReturnStatus_t status = PWR_ Success;

/* Tt is required to initialize PWR module so the application
* can call PWR API during its init (wake up sources...) */
PWR_ Init();

/* Initialize board_Ip module, likely to register the enter/exit
* low power callback to Power Manager */

BOARD_ LowPowerlInit();

/* Set Deep Sleep constraint by default (works for All application)
*  Application will be allowed to release the Deep Sleep constraint

* and set a deepest lowpower mode constraint such as Power down if it needs

* more optimization */

status = PWR,__SetLowPowerModeConstraint(PWR_ DeepSleep);
assert(status == PWR__Success);

#if (defined(gAppButtonCnt_ c) && (gAppButtonCnt_c > 0))

/* Init and enable button0 as wake up source

* BOARD_WAKEUP__SOURCE_ BUTTONO can be customized based on board configuration

(continues on next page)

1.3. Wireless

169



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)
* On EVK we use the SW2 mapped to GPIOD */
PM__InitWakeupSource(&button0WakeUpSource, BOARD_WAKEUP__ SOURCE_BUTTONO, NULL,,

—true);

#endif

#if (gAppButtonCnt_c > 1)

/* Init and enable buttonl as wake up source

* BOARD_ WAKEUP_ SOURCE_BUTTONI can be customized based on board configuration

* On EVK we use the SW3 mapped to PTC6 */

PM__ InitWakeupSource(&buttonl WakeUpSource, BOARD_WAKEUP_SOURCE_BUTTON1, NULL,,,
—true);
F#endif

#if (defined(gAppUseSerialManager c) && (gAppUseSerialManager ¢ > 0))

#if defined(gAppLpuartOWakeUpSourceEnable d) && (gAppLpuartOWakeUpSourceEnable _d > 0)
/* To be able to wake up from LPUARTO, we need to keep the FRO6M running
* also, we need to keep the WAKE domain is SLEEP.
* We can't put the WAKE domain in DEEP SLEEP because the LPUARTO is not mapped
* to the WUU as wake up source */
(void)PM__SetConstraints(PM__LP_ STATE_NO__ CONSTRAINT, APP_ LPUART0_WAKEUP__
—CONSTRAINTYS);
#endif

/* Register PWR functions into SerialManager module in order to disable device lowpower
during SerialManager processing. Typically, allow only WFI instruction when
uart data are processed by serail manager */
SerialManager _SetLowpowerCriticalCb(&gSerMgr_LowpowerCriticalCBs);
#endif

#if defined(gAppUseSensors_d) && (gAppUseSensors_d > 0)
Sensors__SetLowpowerCriticalCb(&app_ LowpowerSensorsCritical CBs);
#endif

(void)status;

}

2.3 - low power entry/exit sequences : board files updates Board Files that handles low-
power are board_lp.[ch] files.

Low power board files implement the low-power callbacks of the peripherals to be notified
when entering or exiting Low Power mode. This module also registers these low-power call-
backs to the SDK Power Manager component to get the notifications when the device is about
to enter low-power or exit Low Power mode. The Low-power callbacks are registered from
BOARD_LowPowerlnit() function. This function is called from app_services_init.c file after PWR
module initialization.

The low power callback functions can be categorized in two groups:

* Entry Low power call back functions: These are usually used to prepare the peripherals
to enter low-power. For example, they can be used for flushing FIFOs, switching off some
clocks, and reconfiguring pin mux to avoid leakage on pins. In case of Power Down mode,
these functions could be used to save the Hardware peripheral context.

» Exit Low power call back functions: These are typically used to restore the peripherals
to functionality. Therefore, they perform the reverse of what is done by the entry call-
back functions: restoring the pin mux, re-enabling the clock, in case of Power Down mode,
restoring the Hardware peripheral context, and so on.

Note that distinction can be done between clock gating mode (Deep Sleep mode), and
power gated mode (Power down mode) when entering and exiting Low Power mode. The

170 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

BOARD_EnterLowPowerCb() and BOARD_ExitLowPowerCb() functions provide the code to call
the various peripheral entry and exit functions to go and exit Deep Sleep mode: serial manager,
button, debug console, and others.

However, the processing to save and restore the Hardware peripheral is implemented in differ-
ent functions BOARD_EnterPowerDownCb() and BOARD_ExitPowerDownCb(). These two func-
tions should be called when exiting power gated modes of the power domain. These two should
implement specific code for such case (likely the complete reinitialization of each peripheral). In
order to know the Low Power mode that the wake up domain, or main domain has been entered,
the low-power platform API PLATFORM_GetLowpowerMode() can be called.

Note : BOARD_ExitPowerDownCb() is called before BOARD_ExitLowPowerCh() as it is
generally required to restore the Hardware peripheral contexts before reconfiguring
the pin mux to avoid any signal glitches on the pads

Also, It is important to know whether the location of the Hardware peripheral is in the main
domain or wake up domain. The two power domains can go into different power modes with
the limitation that the wakeup domain cannot go to a deepest Low Power mode than the main
domain. Depending on the constraint set on SDK power manager, the wake up domain could
remain in active while the main domain can go to deep sleep or power down modes. In this
case, the peripherals in the wake up domain does not required to be restored, as explained in
the section Power Down. Likely, only pin mux reconfiguration is required in this case.

example Low power entry and exit functions shall be registered to the SDK power manager so
these functions will be called when the device will enter and exit low power mode. This is done
by BOARD_LowPowerlInit() typically called from application source code in app_services_init.c
file

static pm_ notify_element_ t boardLpNotifyGroup = {
.notifyCallback = BOARD_ LowpowerCb,
.data = NULL,

h

void BOARD LowPowerlnit(void)

{

status_ t status;

status = PM_ RegisterNotify (kPM_ NotifyGroup2, &boardLpNotifyGroup);
assert(status == kStatus_ Success);
(void)status;

}

BOARD_LowpowerCbh() callback function will handle both the entry and exit sequences. An ar-
gument is passed to the function to indicate the lowpower state the device enter/exit. Typical
implementation is given below. Customer shall make sure to differentiate low power entry and
exit, and the various low power states.

Typically, nothing is expected to be done if low power state is WFI or Sleep mode. These modes
are some light low power states and the system can be woken up by interrupt trigger.

In Deep sleep mode, the clock tree and source clocks are off, the system needs to be woken up
from an event from the WUU module.

In Power down mode, some peripherals are likely to be powered off, context save and restore
may need to be done in these functions.

static status_t BOARD_ LowpowerCb(pm__event_ type_t eventType, uint8 t powerState, void *data)

{

status_ t ret = kStatus_ Success;
if (powerState < PLATFORM_DEEP_SLEEP_STATE)

/* Nothing to do when entering WFI or Sleep low power state
NVIC fully functionnal to trigger upcoming interrupts */
(continues on next page)

1.3. Wireless 171



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

}

else

{

if (eventType == kPM__ EventEnteringSleep)
BOARD_ EnterLowPowerChb();
if (powerState >= PLATFORM_POWER_DOWN_ STATE)

/* Power gated low power modes often require extra specific

* entry/exit low power procedures, those should be implemented
*in the following BOARD API */

BOARD_ EnterPowerDownCb();

}
}

else

{

/* Check if Main power domain domain really went to Power down,
*  powerState variable is just an indication, Lowpower mode could have been skipped by an,,

—immediate wakeup

* /
PLATFORM_ PowerDomainState_t main_ pd_state = PLATFORM_NO_LOWPOWER;
PLATFORM _status_t status;

status = PLATFORM__GetLowpowerMode(PLATFORM __MainDomain, &main_ pd_ state);
assert(status == PLATFORM__ Successful);
(void)status;

if (main_ pd_ state == PLATFORM_POWER_DOWN_ MODE)
{

/* Process wake up from power down mode on Main domain
* Note that Wake up domain has not been in power down mode */

BOARD_ ExitPowerDownCb();
}

BOARD__ ExitLowPowerCh();
}
}
return ret;

}

2.4 -Low power constraint updates and optimization Except for the board file update as seen
in previous section, the application does not need any other changes for low-power support in
Deep Sleep mode. It shall work as if no low-power is supported. However, If more aggressive
power saving is required, this constraint can be changed in your application in order to further
reduce the power consumption in Low Power mode.

2.4.1 - Changing the Default Application low power constraint after firmware initializa-
tion The Low power reference design applications (central or peripheral) provides demon-
stration on how to change the Application low power constraint. In the Application main
entry point BluetoothLEHost_AppInit(), Deep Sleep mode is configured by default from
APP_ServicelnitLowpower() function.

Note : It is recommended to keep Deep Sleep mode as default during all the stack ini-
tialization phase until BluetoothLEHost_Initialized() and BleApp_StartInit() functions
are called. In case of Bonded device with privacy, it is recommended to wait for gCon-
trollerPrivacyStateChanged_c event to be called.

172 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

BleApp_Lowpowerlnit() function provides an example of code on how to release the default Deep
sleep low-power constraint and set a new constraint such as Power down mode for the applica-
tion. This deeper low-power mode is used when no Bluetooth LE activity is on going, and if
no other higher Low-power constraint is set by another components or layer. For instance, if
some serial transmission is on going by the serial manager, or if the SecLib module has on going
activity on the HW crypto accelerator, the low-power mode could less deep.

static void BleApp_ Lowpowerlnit(void)

{

#if defined(gAppLowpowerEnabled d) && (gAppLowpowerEnabled d>0)
PWR_ ReturnStatus_t status;

/*
* Optionally, Allow now Deepest lowpower mode constraint given by gAPP
— LowPowerConstraintInNoBleActivity ¢
*  rather than DeepSleep mode.
* Deep Sleep mode constraint has been set in APP_ InitServices(), this is fine
*  to keep this constraint for typical lowpower application but we want the

& lowpower reference design application to be more agressive in term of power saving.

*  To apply a lower lowpower mode than Deep Sleep mode, we need to

s - 1) First, release the Deep sleep mode constraint previously set by default in app_ services_ init()

& - 2) Apply new lowpower constraint when No BLE activity

* In the various BLE states (advertising, scanning, connected mode), a new Lowpower

i mode constraint will be applied depending of Application Compilation macro set in app_ preinclude.
—h :

w gAppPowerDownlnAdvertising, gAppPowerDownInConnected, gAppPowerDownInScanning

*/

/* 1) Release the Deep sleep mode constraint previously set by default in app_ services_ init() */
status = PWR,_ ReleaseLowPowerModeConstraint(PWR_ DeepSleep);
assert(status == PWR__Success);
(void)status;
/* 2) Apply new Lowpower mode constraint gAppLowPowerConstraintInNoBleActivity ¢ *
o The BleAppStart() call above has already set up the new lowpower constraint
when Advertising request has been sent to controller */

BleApp_ SetLowPowerModeConstraint(gAppLowPowerConstraintInNoBleActivity  c);
#endif
}

*

2.4.2 - Changing the Application lowest low power constraint during application execution
In the various application use cases, (in the various Bluetooth LE activity states, advertising, con-
nected, scanning), some lower low-power constraint can be set, as Power down for advertising,
Deep Sleep for connected, or Scanning. Customer can change the level of Low Power mode in
the various use case mainly depending of the time duration the device is supposed to remain
in low-power. The longer the time that the device remains in low power, the higher the ben-
efit for a deeper Low Power mode such as Power down mode. However, please note that the
wake up from power down mode takes significantly more time than deep sleep as ROM code is
re executed and the hardware logic needs to be restored. Sections Deep Sleep and Power Down
provide some guidance on when to use Deep Sleep mode or Power Down modes respectively.

In the low power reference design applications, four application compilations macros are de-
fined to adjust the low-power mode into advertising, scanning, connected, or no Bluetooth LE
activity. Other use cases can be added as desired. For instance, If application needs to run a
DMA transfer, or if application needs to wakeup regularly to process data from external device,
it may be useful to set WFI constraint (in case of DMA transfer), or Deep Sleep constraint (in case
of regular wake up to process external data), rather than power down or a even lower low-power
mode.

The 4 application compilation macros can be found in app_preinclude.h file of the project. See

1.3. Wireless 173



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

app_preinclude.h for low power reference design peripheral application :

/*! Lowpower Constraint setting for various BLE states (Advertising, Scanning, connected mode)

The value shall map with the type defintion PWR,__LowpowerMode t in PWR,_ Interface.h
0 : no LowPower, WFI only
1 : Reserved
2 : Deep Sleep
3 : Power Down
4 : Deep Power Down

Note that if a Ble State is configured to Power Down mode, please make sure
gLowpowerPowerDownEnable d variable is set to 1 in Linker Script

The PowerDown mode will allow lowest power consumption but the wakeup time is longer
and the first 16K in SRAM is reserved to ROM code (this section will be corrupted on
each power down wakeup so only temporary data could be stored there.)

Power down feature not supported. */

#define gAppLowPowerConstraintInAdvertising ¢ 3
/* Scanning not supported on peripheral */

//#define gAppLowPowerConstraintInScanning_ ¢ 2
#define gAppLowPowerConstraintInConnected_ c 2
#define gAppLowPowerConstraintInNoBleActivity ¢ 4

In lowpower_central.c lowpower_preripheral.c files, the application sets and re-
leases the low power constraint from BleApp_SetLowPowerModeConstraint() and
BleApp_ReleaseLowPowerModeConstraint() functions. These functions are called with the
macro value passed as argument.

Important Note : Setting the application low power constraint shall be done on new
Bluetooth LE state request so the new constraint is applied immediately, while the
application low-power mode constraint shall be released when the Bluetooth LE state
is exited. For example, setting the new low power constraint for Advertising shall be
done when the application requests advertising to start. Releasing the low power con-
straint shall be done in the advertising stop callback (advertising has been stopped).

After releasing the low power constraint, the previous low power constraint, (likely the one that
has been set during firmware initialization in APP_ServicelnitLowpower() function, or the up-
dated low power constraint in BleApp_StartInit() function) applies again.

2.4.3 - Idle task implementation example

2.4.3.1 Tickless mode support and Low power entry function Idle task configuration from
FreeRTOS shall be enabled by configUSE_TICKLESS_IDLE in FreeRTOSConfig.h. This will have the
effect to have vPortSuppressTicksAndSleep() called from Idle task created by FreeRTOS. Here is
a typical implementation of this function:

void vPortSuppressTicksAndSleep(TickType_t xExpectedldleTime)

{

bool abortldle = false;
uint64__t actualldleTimeUs, expectedldleTimeUs;

/* The OSA_InterruptDisable() API will prevent us to wakeup so we use
* OSA_ DisableIRQGlobal() */
OSA_ DisableIRQGlobal();

/* Disable and prepare systicks for low power */
abortldle = PWR,_ SysticksPreProcess((uint32_ t)xExpectedIdleTime, &expectedIdleTimeUs);

if (abortldle == false)
{

(continues on next page)

174 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

/* Enter low power with a maximal timeout */
actualldleTimeUs = PWR,__EnterLowPower(expectedIdleTimeUs);

/* Re enable systicks and compensate systick timebase */
PWR_ SysticksPostProcess(expectedIdleTimeUs, actualldleTimeUs);

}

/* Exit from critical section */

OSA_ EnableIRQGlobal();

2.4.3.2 Connectivity background tasks and Idle hook function example Some process needs
to be run in background before going into low power. This is the case for writing in NVM,
or firmware update OTA to be writen in Flash. If so, configUSE_IDLE_HOOK shall be enabled
in FreeRTOSCOnNfig.h so vApplicationldleHook() will be called prior to vPortSuppressTicksAnd-
Sleep(). Typical implementation of vApplicationIdleHook() function can be found here :

void vApplicationIdleHook(void)

{

/* call some background tasks required by connectivity */
#if ((gAppUseNvm_d) || \
(defined gAppOtaASyncFlashTransactions ¢ && (gAppOtaASyncFlashTransactions_c > 0)))

if (PLATFORM __CheckNextBleConnectivityActivity() == true)

BluetoothLEHost_ ProcessldleTask();

}
#endif

}

PLATFORM_CheckNextBleConnectivityActivity() function implemented in low power platform
file fwk_platform_lowpower.c typically checks the next connectivity event and returns true if
there’s enough time to perform time consuming tasks such as flash erase/write operations (can
be defined by the compile macro depending on the platform).

2. Low power features

2.1 - FreeRTOS systicks Low power module in framework supports the systick generation
for FreeRTOS. Systicks in FreeRTOS are most of the time not required in the Bluetooth LE de-
mos applications because the framework already supports timers by the timer manager com-
ponent, so the application can use the timers from this module. The systicks in FreeRTOS are
useful for all internal timer service provided by FreeRTOS (through OSA) like OSA_TimeDelay(),
OSA_TimeGetMsec(), OSA_EventWait(). When systicks are enabled, an interrupt (systick inter-
rupt) is triggered and executed on a periodic basis. In order to save power, periodic systick
interrupts are undesirable and thus disabled when going to low-power mode. This feature is
called low power FreeRTOS tickless mode. When entering the low power state, the system ticks
shall be disabled and switch to a low power timer. On wake-up, the module retrieves the time
passed in low power and compensate the ticks count accordingly. This feature does not apply
on bare metal scheduler.

On FreeRTOS, the vPortSuppressTicksAndSleep() function implemented in the app_low_power.c
file will be called when going to idle. FreeRTOS will give to this function the xExpecte-
dIdleTime, time in tick periods before a task is due to be moved into the Ready state.
This function will manage the systicks (disable/enable) through PWR_SysticksPreProcess() and
PWR_SysticksPostProcess() calls. Then, when calling PWR_EnterLowPower(), a time out dura-
tion in micro seconds will be given and the function will set a timer before entering low power.

1.3. Wireless 175



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

In addition, this function will return the low power period duration, used to compensate the
ticks count.

In our example low power reference design peripheral application, an OSA_EventWait() has
been added to demonstrate the tickless mode feature. You can adjust the timeout with the gApp-
TaskWaitTimeout_ms_c flag in the app_preinclude.h file, its value in our demo is 8000ms. So 8
seconds after stopping any activity we will wake up from low power. If the flag is not defined in
the application its value will be osaWaitForever_c and there will be no OS wake up.

2.2 - Selective RAM bhank retention To optimize the consumption in low power, the linker
script specific function PLATFORM_GetDefaultRamBanksRetained() is implemented. This func-
tion obtains the RAM banks that need to be retained when the device goes in low power, in
order to set them with PLATFORM_SetRamBanksRetained() function. The RAM banks that are
not needed are set in power off state, when the device goes in low power mode.

The function PLATFORM_GetDefaultRamBanksRetained() is linker script specific. Hence, it can-
not be adapted for a different application. If these functions are called from board_Ip.c, it is
possible to give to PLATFORM_SetRamBanksRetained() a different bank_mask adapted to your
specific application.

In deep power down, this feature does not have any impact because in this power mode, all RAM
banks are already powered off.

3 - Low power modes overview PWR module API provides the capability to set low power
mode constraints from various components or from the application. These constraints are pro-
vided to the SDK power manager. Upper layer (all Application code, connectivity stacks, etc.)
can call directly the SDK Power Manger if it requires more advanced tuning. The PWR API can
be found in PWR_Interface.h.

Note : ‘Upper layer’ signifies all layers, applications, components, or modules that are
above the connectivity framework in the Software architecture.

Note : Each power domain has its own Low Power mode capability. The Low Power
modes described below are for the main domain and it is supposed that the wake
up domain goes to the same Low Power mode. This is not always true as the wake
up domain that contains some wake up peripheral can go a lower Low Power mode
state than the main domain so the peripherals in the wake up domain can remain
operational when the main domain is in Low Power mode (deep sleep or power down
modes). In this case, the context of the Hardware peripheral located in the wake up
domain does not need to be saved and restored as for the peripherals located in the
main domain

3.1 Wait for Interrupt (WFI) Definition

In the Wait for Interrupt (WFI) state, the CPU core is powered on, but is in an idle mode with the
clock turned OFF.

Wake up time and typical use case

The wakeup time from this Low Power mode is insignificant because the Fast clock from FRO is
still running.

This Low Power mode is mainly used when there is an hardware activity while the Software runs
the Idle task. This allows the code execution to be temporarily suspende, thus reducing a bit the
power consumption of the device by switching off the processor clock. When an interrupt fires,
the processor clock is instantaneously restored to process the Interrupt Service Routine (ISR).

Usage

176 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

In order to prevent the software from programming the device to go to a lower Low Power mode
(such as Deep Sleep, Power Down mode or Deep Power Down mode), the component responsi-
ble for the hardware drivers shall call PWR_SetLowPowerModeConstraint(PWR_WTFI) function.
When the Hardware activity is completed, the component shall release the constraint by calling
PWR_ReleaseLowPowerModeConstraint(PWR_WTFI).

Alternatively, the component can call PWR_LowPowerEnterCritical) and then
PWR_LowPowerExitCritical() functions.

For fine tuning of the Low Power mode allowing more power saving, the component can call
directly the SDK power manager API with PM_SetConstraints() function using the appropriate
Low Power mode and low power constraint. However, this is reserved for more advanced user
that knows the device very well. It is not recommended to do so.

The PWR module has no external dependencies, so the low-power entry and exit callback func-
tions must be defined by the user for each peripheral that has specific low power constraints It is
consequently convenient to register to the component the low power callbacks structure that is
used for entering and exit low power critical sections. In Bluetooth LE, you can take the example
in the app_conn.c file as shown here :

#if defined(gAppLowpowerEnabled d) && (gAppLowpowerEnabled d>0)
static const Seclib_ LowpowerCritical CBs__t app_ LowpowerCritical CBs =

{
.SeclibEnterLowpowerCriticalFunc = &PWR,_LowPowerEnterCritical,
.SeclibExitLowpowerCriticalFunc = &PWR_ LowPowerExitCritical,
b
#endif

void BluetoothLEHost Init(..)

{

/* Cryptographic hardware initialization */

SecLib_ Init();

#if defined(gAppLowpowerEnabled d) && (gAppLowpowerEnabled d>0)

/* Register PWR functions into SecLib module in order to disable device lowpower
during Seclib processing. Typically, allow only WFI instruction when
commands (key generation, encryption) are processed by Seclib */

SecLib__SetLowpowerCriticalCb(&app_ LowpowerCritical CBs);

F#endif

=

Limitations

No limitation when using the WFI mode.

3.2 Sleep mode Sleep mode is similar to WFI low power mode but with some additional clock
gating. The Sleep mode is device specific, please consult the Hardware reference manuel of the
device for more information.

3.2 Deep Sleep mode Definition

In Deep Sleep mode, the fast clock is turned off, and the CPU along with the main power domain
are placed into a retention state, with the voltage being scaled down to support state retention
only. Because no high frequency clock is running, the voltage applied on the power domain
can be reduced to reduce leakage on the hardware logic. This reduces the overall power con-
sumption in the Deep Sleep mode. When waking up from Deep sleep mode, the core voltage is
increased back to nominal voltage and the fast clock (FRO) is turned back on, the peripheral in
this domain can be reused as normal.

1.3. Wireless 177



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

To same more additional power, Some unused RAM banks can be powered off. this prevents from
having current leakage and consequently, allow to reduce even more the power consumption
in Deep SLeep mode. This is achieved by calling PLATFORM_SetRamBanksRetained() from low
power entry function from board_lp.c file.

Usage

All firmware is able to implement Deep Sleep mode transparently to the application thanks to
the PWR module, low power platform submodule and low power board file. This is described in
the section Low-power implementation.

When entering this mode, it is recommended to turn the output pins into input mode, or high
impedance to reduce leakage on the pads. This is typically done in pin_mux.c file, called from
board.c file and executed from the low power callback in board_lp.c file. As an example, the
TX line of the UART peripheral can be turned to disabled so it prevents the current from being
drawn by the pad in Low Power mode.

Wake up time and typical use case

The wake up time is very fast, it takes mostly the time for the Fast FRO to start up again (couple
of hundreds of microseconds) so this mode is a very good balance between power consumption
in low-power mode and wake up latency and shall be used extensively in most of the use cases
of the application.

Limitations

In Deep Sleep mode, the clock is disabled to the CPU and the main peripheral domain, so periph-
eral activity (for example, an on-going DMA transfer) is not possible in Deep Sleep mode.

3.3 Power Down mode Definition

In Power Down mode, both the clock, and power are shut off to the CPU and the main peripheral
domain. SRAM is retained, but register values are lost. The SDK power manager handles the
restore of the processor registers and dependencies such as interrupt controller and similar ones
transparently from the application.

Usage

The application, with the help of the low power board files, saves and restores the peripherals
that were located in the power domain during the entry and exit of the power down mode. This
is done from low power board_Ip files in the entry/exit low power callbacks. Example is given for
the serial manager and debug console in board_Ip.c file in function BOARD_ExitPowerDownCh().

If the device contains a dedicated wake up power domain where some wake up peripherals are
located, if this wake up domain is not turned into power down mode but only Deep sleep mode
or active mode, this peripheral does not need for a save and restore on low power entry/exit.
For instance, on KW45, This is basically achieved when enabling the wakeup source of the pe-
ripheral PWR_EnableWakeUpSource() from APP_ServicelnitLowpower() function. Alternatively,
this can be directly achieved by setting the constraint to the SDK power manager by calling
PM_SetConstraints(), (use APP_LPUARTO_WAKEUP_CONSTRAINTS for wakeup from UART con-
straint).

On exit from low power, The low power state of power domain can be retrieved by Platform API
PLATFORM_GetLowpowerMode(). This API shall be called from low power exit callback function
only.

As for Deep Sleep mode, software shall configure the output pins into input or high impedance
during the Low Power mode to avoid leakage on the pads.

Wake up time and typical use case

The wake up time is significantly longer than wake up time from Deep Sleep (from several hun-
dreds of micro-seconds to a couple of milliseconds depending on the platform). On some plat-
form, it can takes longer, for instance, if ROM code is implemented and perform authentication
checks for security and hardware logic in power domain needs to be restored (case for KW45).

178 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

However, After ROM code execution, the SDK power manager resumes the Idle task execution
from where it left before entering low-power mode. Hence, the wakeup time from this mode is
still significantly lower that the initialization time from a power on reset or any other reset.

Depending on the wakeup time of the platform and the low power time duration, This mode is
recommended when no Software activity is expected to happen for the next several seconds. In
Bluetooth LE, this mode is preferred in advertising or without Bluetooth LE activity. However, in
scanning or connected mode, Regular wakes up happens regularly for instance to retrieve HCI
message responses from the Link layer, the Deep Sleep mode is rather recommended.

Limitations

In addition to the Deep Sleep limitation (no Hardware processing on going when going to Power
down mode) and the significant increase of the wake time, the Power Down mode requires the
ROM code to execute and this last uses significant amount of memory in SRAM.

Typically, The first SRAM bank (16 KBytes) is used by the ROM code during execution so the Appli-
cation firmware can use this section of SRAM for storing bss, rw data, or stacks. Only temporary
data could be stored here and this location is overwritten on every Power Down exit sequence.

In order to avoid placing firmware data section (bss, rw, etc.) in the first SRAM bank, the linker
script variable gLowpowerPowerDownEnable_d should be set to 1. Setting the linker script vari-
able to avoid placing firmware data section in the first SRAM bank, The effect of setting this flag
is to prevent the firmware from using the first 16 KB in SRAM.

Note : This setting is ONLY required if the application implements Power Down mode.
If Application uses other low-power mode, this is not required.

3.4 Deep Power-down mode Definition

In Deep Power Down mode, the SRAM is not retained. This power mode is the lowest disponible,
it is exited through reset sequence.

Usage

In addition to the Power Down limitation, the Deep Power Down mode shut down all memory
in SRAM. Because it is exited through reset sequence the wake time is also longer.

Wake up time and typical use case

As this low-power mode is exited through the reset sequence, the wake up time is longer than any
other mode. In Bluetooth LE, this mode is possible in no Bluetooth LE activity, and is preferred
if we know that there will be no Bluetooth LE activity before a several amount of time.

Limitations

All memory in SRAM will be shut down in deep power down, the main limitation in going in this
low-power mode is that the context will not be saved.

ModulelInfo

Overview The Modulelnfo is a small Connectivity Framework module that provides a mecha-
nism that allows stack components to register information about themselves.

The information comprises :

* Component or module name (for example: Bootloader, IEEE 802.15.4 MAC, and Bluetooth
LE Host) and associated version string

* Component or module ID
* Version number

* Build number

1.3. Wireless 179



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

The information can be retrieved using shell commands or FSCI commands.

Detailed data types and APIs used in ConnFWK_APIs_documentation.pdf.

NVM: Non-volatile memory module

Overview In a standard Harvard-architecture-based MCU, the flash memory is used to store
the program code and program constant data. Modern processors have a built-in flash memory
controller that can be used under user program execution to store non-volatile data. The flash
memories have individually erasable segments (sectors) and each segment has a limited num-
ber of erase cycles. If the same segments are used to store various kinds of data all the time,
those segments quickly become unreliable. Therefore, a wear-leveling mechanism is necessary
to prolong the service life of the memory. The NVM module in the connectivity framework pro-
vides a file system with a wear-leveling mechanism, described in the subsequent sections. The
NvlIdle() function handles the program and erase memory operations. Before resetting the MCU,
NvShutdown() must be called to ensure that all save operations have been processed.

NVM boundaries and linker script requirement Most of the MCUs have only a standard flash
memory that the non-volatile (NV) storage system uses. The amount of memory that the NV
system uses for permanent storage and its boundaries are defined in the linker configuration
file though the following linker symbols :

* NV_STORAGE_START_ADDRESS
* NV_STORAGE_END_ADDRESS

* NV_STORAGE_MAX_SECTORS

* NV_STORAGE_SECTOR_SIZE

The reserved memory consists of two virtual pages. The virtual pages are equally sized and each
page is using one or more physical flash sectors. Therefore, the smallest configuration is using
two physical sectors, one sector per virtual page.

NVM Table The Flash Management and Non-Volatile Storage Module holds a pointer to a RAM
table. The upper layers of this table register information about data that the storage system
should save and restore. An example of NVM table entry list is given below.

pData ElemCount |ElemSize| Entryld EntryType
Ox1FFFS000 3 8 OxF1iF4 | MirroredInRam

Ox1FFF7640 5 4 0xA2A6 |NotMirroredInRam

Ox1FFF1502 6 1| ox4212 |NotMirroredInRam
AutoRestore

Ox1FFFF200 2 6 0x118F | MirroredInRam

NVM Table entry Asshow above, A NVM table entry contains a generic pointer to a contiguous
RAM data structure, the number of elements the structure contains, the size of a single element,
a table entry ID, and an entry type.

A RAM table entry has the following structure:

» pData (4 bytes) is a pointer to the RAM memory location where the dataset elements are
stored.

180 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

elemCnt (2 bytes) represents how many elements the dataset has.
* elemSz (2 bytes) is the size of a single element.
* entrylID is a 16-bit unique ID of the dataset.

* dataEntryType is a 16-bit value representing the type of entry (mir-
rored/unmirrored/unmirrored auto restore).

For mirrored datasets, pData must point directly to the RAM data. For unmirrored datasets, it
must be a double pointer to a vector of pointers. Each pointer in this table points to a RAM/FLASH
area. Mirrored datasets require the data to be permanently kept in RAM, while unmirrored
datasets have dataset entries either in flash or in RAM. If the unmirrored entries must be re-
stored at the initialization, NotMirroredInRamAutoRestore should be used. The entryID gUn-
mirroredFeatureSet_d should be set to 1 for enabling unmirrored entries in the application. The
last entry in the RAM table must have the entryID set to gNvEndOfTableld_c.

Ox1FFF8000

pData

elemCnt 4

elemSz 10

entrylD 1

dataEntryType gNVM_NotM

gNVM_NotM

4 bytes 4 bytes 4 bytes
Ox1FFF0O000 Ox1FFF1280 Ox1FFF1200
10 bytes 10 bytes 10 bytes
DATA1 DATAZ2 DATA3

The figure below provides an example of table entry :

When the data pointed to by the table entry pointer (pData) has changed (entirely or just a sin-
gle element), the upper layers call the appropriate API function that requests the storage sys-
tem to save the modified data. All the save operations (except for the synchronous save and
atomic save) and the page erase and page copy operations are performed on system idle task.
The application must create a task that calls NvIdle in an infinite loop. It should be created with
OSA_PRIORITY_IDLE. However, the application may choose another priority. The save opera-
tions are done in one virtual page, which is the active page. After a save operation is performed
on an unmirrored dataset, pData points to a flash location and the RAM pointer is freed. As a
result, the effective data should always be allocated using the memory management module.

Active page The active page contains information about the records and the records. The stor-
age system can save individual elements of a table entry or the entire table entry. Unmirrored
datasets can only have individual saves. On mirrored datasets, the save/restore functions must
receive the pointer to RAM data. For example, if the application must save the third element in
the above vector, it should send 0x1FFF8000 + 2 * elemSz. For unmirrored datasets, the appli-
cation must send the pointer that points to the area where the data is located. For example, if
the application must save the third element in the above vector, it should send 0x1FFF8000 + 2
* sizeof(void™).

The page validity is guaranteed by the page counter. The page counter is a 32-bit value and
is written at the beginning and at the end of the active page. The values need to be equal to
consider the page a valid one. The value of the page counter is incremented after each page
copy operation. A page erase operation is performed when the system is formatted. It is also
performed when the page is full and a new record cannot be written into that page. Before
being erased, the full page is first copied (only the most recent saves) and erased afterward.

The validity of the Meta Information Tag (MIT), and, therefore, of a record, is guaranteed by
the MIT start and stop validation bytes. These two bytes must be equal to consider the record

1.3. Wireless 181



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

referred by the MIT valid. Furthermore, the value of these bytes indicates the type of the record,
whether it is a single element or an entire table entry. The nonvolatile storage system allows
dynamic changes of the table within the RAM memory, as follows:

* Remove table entry
* Register table entry

A new table entry can be successfully registered if there is at least one entry previously removed
or if the NV table contains uninitialized table entries, declared explicitly to register new table
entries at run time. A new table entry can also replace an existing one if the register table entry
is called with an overwrite set to true. This functionality is disabled by default and must be
enabled by the application by setting gNvUseExtendedFeatureSet_d to 1.

PageCounter TableMarker TableVersion
4/8 bytes 2 bytes 2 bytes
0x00 TableMarker 0x00 MIT
4 bytes 2 bytes 2 bytes 8 byte:
MIT MIT
8 bytes 8 bytes
REC_05 —*
v
REC_03 REC_02 REC_C

The layout of an active page is shown below:

As shown above, the table stored in the RAM memory is copied into the flash active page, just
after the table version. The “table start” and “table end” are marked by the table markers. The
data pointers from RAM are not copied. A flash copy of a RAM table entry has the following

entryld | entryType |elemCnt|elemSz

2 bytes 2 bytes 2 bytes 2 bytes

structure:
Where:
* entrylID is the ID of the table entry
* entryType represents the type of the entry (mirrored/unmirrored/unmirrored auto restore)
* elemCnt is the elements count of that entry
* elemSz is the size of a single element

This copy of the RAM table in flash is used to determine whether the RAM table has changed.
The table marker has a value of 0x4254 (“TB” if read as ASCII codes) and marks the beginning

182 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

and end of the NV table copy.

After the end of the RAM table copy, the Meta Information Tags (MITs) follow. Each MIT
is used to store information related to one record. An MIT has the following structure:

VSB entryID |elemldx|recordOffset| VEB
1 byte 2 bytes 2 bytes 2 bytes

Where:
* VSB is the validation start byte.
* entrylID is the ID of the NV table entry.
* elemldx is the element index.
» recordOffset is the offset of the record related to the start address of the virtual page.
* VEB is the validation end byte.

A valid MIT has a VSB equal to a VEB. If the MIT refers to a single-element record type,
VSB=VEB=0xAA. If the MIT refers to a full table entry record type (all elements from a table en-
try), VSB=VEB=0x55. Because the records are written to the flash page, the available page space
decreases. As a result, the page becomes full and a new record does not have enough free space
to be copied into that page.

In the example given below, the virtual page 1 is considered to be full if a new save request is
pending and the page free space is not sufficient to copy the new record and the additional MIT.
In this case, the latest saved datasets (table entries) are copied to virtual page 2.

Virtual Page 1 Virtual Page 2

PC ™ NvTe MNvTe NvTe

NvTe NvTe ™ |MIT_01(MIT_02| MIT_03

VIIT_04 |MIT_05 |MIT_06|MIT_O07 |MIT_08| MIT_09

MIT_10 (MIT_11|MIT_12{MIT_13|MIT_14| MIT_15

FREE SPACE FREE SPACE

In this example, there are five datasets (one color for each dataset) with both ‘full’ and ‘single’
record types.

* R1is a ‘full’ record type (contains all the NV table entry elements), whereas R3, R4, R6 and
R11 are ‘single’ record types.

* R2 —full record type; R15 - single record type
* R5, R13 - full record type; R10, R12 - single record type

1.3. Wireless 183



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* R8 - full record type
* R7,R9, R14, R16 - full record type

As shown above, the R3, R4, R6, and R11 are ‘single’ record types, while R1 is a ‘full’ record type
of the same dataset. When copied to virtual page 2, a defragmentation process takes place. As a
result, the record copied to virtual page 2 has as much elements as R1, but individual elements
are taken from R3, R4, R6, and R11. After the copy process completes, the virtual page 2 has five
‘full’ record types, one for each dataset. |This is illustrated below:

Virtual Page 1 Virtual Page 2
PC ™ VER! NvTe NvTe NvTe PC ™ NvTe NvTe NvTe
NvTe | NvTe | TM |MIT_01| MIT 02 |MIT 03 MvTe | NvTe | TM |MIT_01|MIT_02|MIT_03
MIT_O4 | MIT_O0S5 | MIT_O06|MIT_07| MIT_08 | MIT_092 MIT_04|MIT_0O5
MIT_10|MIT_11|MIT_12|MIT_13| MIT_14 | MIT_15 COPY
MIT_16 —»

FREE SPACE

FREE SPACE

rR2 R1 PC R2 R1 PC

Finally, the virtual page 2 is validated by writing the PC value and a request to erase virtual page
1 is performed. The page is erased on an idle task, sector by sector where only one sector is
erased at a time when idle task is executed.

If there is any difference between the RAM and flash tables, the application must call RecoverN-
vEntry for each entry that is different from its RAM copy to recover the entry data (ID, Type,
ElemSz, ElemCnt) from flash before calling NvInit. The application must allocate the pData and
change the RAM entry. It can choose to ignore the flash entry if the entry is not desired. If any
entry from RAM differs from its flash equivalent at initialization, a page copy is triggered that
ignores the entries that are different. In other words, data stored in those entries is lost.

The application can check if the RAM table was updated. In other words, if the MCU program was
changed and the RAM table was updated, using the function GetFlashTableVersion and compare
the result with the constant gNvFlashTableVersion_c. If the versions are different, NvInit detects
the update and automatically upgrades the flash table. The upgrade process triggers a page copy
that moves the flash data from the active page to the other one. It keeps the entries that were
not modified intact and it moves the entries that had their elements count changed as follows:

 If the RAM element count is smaller than the flash element count, the upgrade only copies
as many elements as are in RAM.

 If the RAM element count is larger than the flash element count, the upgrade copies all data
from flash and fills the remaining space with data from RAM. If the entry size is changed,
the entry is not copied. Any entrylds that are present in flash and not present in RAM are
also not copied. This functionality is not supported if gNvUseExtendedFeatureSet_d is not
setto 1.

184 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

ECC Fault detection The KW45/K32W1 internal flash is organized in 16 byte phrases and 8kB
sectors (minimal erase unit). Its flash controller is synthesized so that it generates ECC infor-
mation and an ECC generator / checker. During the programming of internal flash, errors may
accidentally happen and cause ECC errors as a flash phrase is being written. These may happen
due to multiple reasons:

* programmatic errors such as overwriting an already programmed phrase (transitioning
bits from 0b to 1b). These are evitable by performing a blank check verification over phrase
to be programmed, at the expense of processing power.

» occurrence of power drop or glitches during a programming operation.

» excessive wear of flash sector. The flash controller is capable of correcting one single ECC
error but raises a bud fault whenever reading a phrase containing more than one ECC fault.
Once an ECC error has ‘infected’ a flash phrase, the fault will remain and raise again at each
read operation over the same phrase including blank check and prefetch. It can only be rid
of by erasing the whole flash sector that contained the faulty phrase. In order to recover
from situations where an ECC fault has occurred a gNvSalvageFromEccFault_d option has
been added, which forces gNvVerifyReadBackAfterProgram_d to be defined to TRUE. If de-
fined, the gNvVerifyReadBackAfterProgram_d option of the NVM module, causes the pro-
gram to read back the programmed area after every flash programming operation. The
verification is performed in safe mode if gNvSalvageFromEccFault_d is also defined. This
is so as to detect ECC faults as early as possible as they appear, indeed when verifying a
programming operation, one cannot be certain of the absence of ECC fault and avoid the
bus fault. The safe API is thence used to perform the read back operation is performed us-
ing this safe API, so that we can tread in the flash and detect potential errors. The defects
are detected on the fly whereas in the absence of safe read back, the error would cause a
fault, potentially much later. During normal operation, assuming that no chip reset was
provoked, this will consist in a single ECC fault either in the last record data or its meta in-
formation. Detecting such a fault calls for an immediate page copy to the other virtual page,
so that the currently active page gets erased and the error gets cleared. Should the ECC fault
occurs in the middle of a page copy operation, the switch of active page is postponed so that
the fault page can be erased again and the copy can be restarted.

If the system underwent a power drop during a flash programming operation, sufficient to pro-
voke a reset, at the ensuing reboot, ECC fault(s) may be present in the NVM area at the location
that was being written. The detection is performed by an NVM sweeping mechanism, using the
safe read API. That marks the faulty virtual page so that all subsequent reads within this virtual
page are done with the safe API. If this case arises, a copy of the valid contents of the faulty page
is attempted to the other virtual page. At NVM initialization, faults should be detected, either at
the top of the meta data or at the bottom of the record area within the previous active page. This
should guarantee that only the latest record write operation may be impaired. When the page
copy has taken place, the faulty page is erased and the execution may resume. During NvCopy-
Page, when ‘garbage collecting’ occurs or whenever the current virtual active page needs to be
transferred to the other virtual page, ECC errors are intercepted so that the operation can be
attempted again in case of error. In case of NVM contents clobbering by programming errors,
the salvage operation does its best to rescue as many records as possible but data will inevitably
be lost.

An additional option -namely gInterceptEccBusFaults_d - was introduced in order to catch and
correct ECC faults at Bus Fault handler level. Indeed, should an ECC bus fault fire, in spite of the
precautions taken with NVM’s gNvSalvageFromEccFault_d, we verify if the fault belongs to the
NV storage. If so, a drastic policy can be adopted consisting in an erasure of the faulty sector. The
corresponding Bus Fault handling is not part of the NVM, but dwells in the framework platform
specific sources. Alternative handling could be implemented by the customer.

Save policy: Execution of program and erase operations on a flash an MCU core fetches code
from cause perturbations of the core activity or requires to place critical code in RAM so that real-
time ISR can still be served. The penalty of a sector erase is much higher than a simple program
operation. The NVM is designed so as to limit the erase operations at ‘garbage collecting’ time,

1.3. Wireless 185



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

so that flash wear is limited and no time is wasted. Several write policies are implemented to
cope with the application constraints, one synchronous mode API and several posted write APIs.
Among the posted write policies, the gNvmSaveOnldleTimerPolicy_d compilation option selects
a mode where flash write operations occur at time interval within the Idle task. Another option
exists to ‘randomize’ the time interval with some jitter.

1) NvSyncSave performs a write synchronously with the disadvantage of stalling processor

activity until comp

2) NvSaveOnCount posts a pending write operation and postpones the actual flash operation

until number of record updates has reached a maximum. The actual write happens during
Idle Task execution.see NvSetCountsBetweenSaves related APL

3) NvSaveOnlInterval: posts a pending write operation and postpones the actual flash oper-

ation until the predefined number of ticks has elapsed. Optional mode - Active if (gN-
vmSaveOnldleTimerPolicy_d & gNvmUseSaveOnTimerOn_c). see NvSetMinimumTicksBe-
tweenSaves related API. Note that gNvmUseSavelntervalJitter_c policy is a sub-option of
gNvmSaveOnlIdleTimerPolicy_d used to randomize slightly the time at which the write op-
eration will happen.

Constant macro definition

» gNvStoragelncluded_d : If set to TRUE, it enables the whole functionality of the nonvolatile

storage system. By default, it is set to FALSE (no code or data is generated for this module).

» gNvUseFlexNVM_d : If set to TRUE, it enables the FlexNVM functionality of the nonvolatile

storage system. By default, it is set to FALSE. If FlexNVM is used, the standard nonvolatile
storage system is disabled.

» gNvFragmentation_Enabled_d: Macro used to enable/disable the fragmented saves/restores

(a particular element from a table entry can be saved or restored). It is set to FALSE by
default.

» gNvUseExtendedFeatureSet_d : Macro used to enable/disable the extended feature set of the

module:
— Remove existing NV table entries
— Register new NV table entries
— Table upgrade
It is set to FALSE by default.

» gUnmirroredFeatureSet_d : Macro used to enable unmirrored datasets. It is set to 0 by de-

fault.

» gNvTableEntriesCountMax_c : This constant defines the maximum count of the table entries

(datasets) that the application is going to use. It is set to 32 by default.

» gNvRecordsCopiedBufferSize_c : This constant defines the size of the buffer used by the page

copy function, when the copy operation performs defragmentation. The chosen value must
be bigger than the maximum number of elements stored in any of the table entries. It is set
by default to 64.

» gNvCacheBufferSize_c : This constant defines the size of the cache buffer used by the page

copy function, when the copy operation does not perform defragmentation. The chosen
value must be a multiple of 8. It is set by default to 64.

» gNvMinimumTicksBetweenSaves_c : This constant defines the minimum timer ticks be-

tween dataset saves (in seconds). It is set to 4 by default.

* gNvCountsBetweenSaves_c : This constant defines the number of calls to ‘NvSaveOnCount’

between dataset saves. It is set to 256 by default.

186

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* gNvInvalidDataEntry_c : Macro used to mark a table entry as invalid in the NV table. The

default value is OXFFFFU.

» gNvFormatRetryCount_c : Macro used to define the maximum retries count value for the

format operation. It is set to 3 by default.

» gNvPendingSavesQueueSize_c : Macro used to define the size of the pending saves queue. It

is set to 32 by default.

 gFifoOverwriteEnabled_c : Macro used to enable overwriting older entries in the pending

saves queue (if it is full). If it is FALSE and the queue is full, the module tries to process the
oldest save in the queue to free a position. It is set to FALSE by default.

» gNvMinimumFreeBytesCountStart_c : Macro used to define the minimum free space at ini-

tialization. If the free space is smaller than this value, a page copy is triggered. It is set by
default to 128.

* gNVEndOfTableld _c : Macro used to define the ID of the end-of-table entry. It is set to OXFF-

FEU by default. No valid entry should use this ID.

» gNvTableMarker_c : Macro used to define the table marker value. The table marker is used

to indicate the start and the end of the flash copy of the NV table. It is set to 0x4254U by
default.

» gNvFlashTableVersion_c : Macro used to define the flash table version. It is used to deter-

mine if the NVM table was updated. It is set to 1 by default. The application should modify
this every time the NVM table is updated and the data from NVM is still required.

» gNvTableKeptInRam_d : Set gNvTableKeptInRam_d to FALSE, if the NVM table is stored in

FLASH memory (default). If the NVM table is stored in RAM memory, set the macro to TRUE.

» gNvVerifyReadBackAfterProgram_d : set by default force verification of NVM programming

operations. Is forced implicitly when gNvSalvageFromEccFault_d is defined.

» gNvSalvageFromEccFault_d : use safe flash API to read from flash, and provide corrective

action when ECC fault is met.

OtaSupport: Over-the-Air Programming Support

Overview This module includes APIs for the over-the-air image upgrade process. A Server
device receives an image over the serial interface from a PC or other device thorough FSCI com-
mands. If the Server has an image storage, the image is saved locally. If not, the image is re-
quested chunk by chunk: With image storage

OTA_RegisterToFsci()
OTA_InitExternalMemory()
OTA_WriteExternalMemory()

OTA_WriteExternalMemory()

Without image storage:

OTA_RegisterToFsci()
OTA_QueryImageReq()
OTA_ImageChunkReq()

OTA_ImageChunkReq()

1.3. Wireless 187



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

A Client device processes the received image by computing the CRC and filter unused data and
stores the received image into a non-volatile storage. After the entire image has been transferred
and verified, the Client device informs the Bootloader application that a new image is available,
and that the MCU must be reset to start the upgrade process. See the following command se-
quence:

* OTA_StartImage()
OTA_PushImageChunk() and OTA_CrcCompute ()

OTA_PushImageChunk() and OTA_CrcCompute ()
* OTA_CommitImage()

OTA_SetNewImageFlag()

ResetMCU()

SecLib_RNG: Security library and random number generator

Random number generator

Overview The RNG module is part of the framework used for random number generation. It
uses hardware RNG peripherals as entropy sources (TRNG, Secure Subsystem, ...) to provide a
true random number generator interface. A Pseudo-Random number generator (PRNG) imple-
mentation is available. The PRNG may depend of SecLib services (thus requiring a common
mutex) to perform HMAC-SHA256, SHA256, AES-CTR, or alternateively a Lehmer Linear Con-
gruential generator. A prerequisite for the PRNG to function with desired randomness is to be
seeded using a proper source of entropy. If no hardware acceleration is present, the RNG may
fallback to lesser quality ad-hoc source e.g if present SIM_UID registers, the UIDL is used as the
initial seed for the random number generator.

Initialization The RNG module requires an initialization via a call to RNG_Init. The RNG ini-
tialization involves a call to RNG_SetSeed.

In the case of a dual core system consisting of a Host core and an NBU core, the Secure Subsystem
is owned by the Host core. The Host core then has a direct access to its TRNG embedded in its
secure subssystem. On the NBU code side, a request is emitted via RPMSG to the Host to provide
a seed. On receipt of this request, the Host sets a ‘reseed needed’ flag (from the ISR context)
If the core running the RNG service owns the TRNG entropy hardware (if any), it can get the
seed directly form this hardware synchronously. In the case of an NBU that does not control the
devices entropy source, that is owned by the Host, it request a seed from the Host processor via
RPMSG exchange. On receipt of this request the Host sets a flag notifying of this request from the
RPMSG ISR context. From the Idle thread, this flag is polled via the RNG_IsReseedNeeded API. If
set the seed is regenerated and forwarded to the NBU via RPMSG.

RNG_Relnit API is to be used at wake up time in the context of LowPower. RNG_Delnit is used
for unit tests and coverage purposes but has no useful role in a real application.

Seed handling RNG_SetSeed: RNG_SetExternalSeed may be used to inject application entropy
to RNG context seed using a supplied array of bytes. RNG_IsReseedNeeded used from task in
Host core to check whether seed must be sent to NBU core.

RNG_GetTrueRandomNumber is the API used to generate a Random 32 bit number from a HW
source of entropy. It is essential if only to seed the pseudo random number generator.

RNG_GetPseudoRandomData is used to generate arrays of random bytes.

188 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Security Library

Overview The framework provides support for cryptography in the security module. It sup-
ports both software and hardware encryption. Depending on the device, the hardware encryp-
tion uses either the S200, MMCAU, LTC, or CAU3 module instruction set or dedicated AES and

SHA hardware blocks.

Software implementation is provided in a library format.

Support for security algorithms

SW Seclib : Se- Edgelock Se- Mbedtls  nccl Usage
cLib.c SecLib_sss.c clib_er Se- (part example
cLib_mbec of Se-
cLib.c)
AES_128 SecLib_aes.c X X
AES_128_ECB X X
AES_128 CBC X X X
AES 128 CTR en- X X
cryption
AES_128_OFB En- x
cryption
AES_128 CMAC X X X BLE con-
nection,
ieee 154
AES_128_EAX X
AES_128_CCM X X X BLE,
ieee 154
SHA1 SecLib_sha.c X X
SHA256 X X X
HMAC_SHA256 X X X PRNG,
Digest
for Mat-
ter
ECDH_P256 shared x (by 15 in- X with x X X BLE
secret generation cremental MACRO pairing,
steps) -> Se- SecLibECD-
cLib_ecdh.c HUseSSS
EC_P256 key pair x X X X X
generation
EC_P256 public key X X X Matter
generation from pri- (ECDSA)
vate key
ECDSA_P256  hash only if X X Matter
and msg signature owner of
generation / verifica- the key pair
tion
SPAKE2+ P256 arith- X X Matter

metics

1.3. Wireless

189



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

BLE advanced secure mode

New elements in existing structures: computeDhKeyParam_t::keepInternalBlob - boolean
telling if the shared blob is kept in this structure(in .outpoint) after ECDH_P256_ComputeDhKey()
or ECDH_P256_ComputeDhKeySeg() call.

New arguments in existing functions: ECDH_P256_ComputeDhKey keepBlobDhKey
- boolean telling ECDH_P256_ComputeDhKey() or ECDH_P256_ComputeDhKeySeg() to
keep the shared object after computation for later use (it is required by the Se-
cLib_GenerateBluetoothF5KeysSecure).

Newmacros: gSecLibSssUseEncryptedKeys_d -Enable or disable S200 blobs SecLib support. 0 -
the Bluetooth Keys are available in plaintext, 1 - the Bluetooth Keys are not available in plaintext,
but in secured blobs. Default is disabled.

New functions:

LE Secure connections pairing:

void ECDH_P256_FreeDhKeyDataSecure This is a function used to free the shared object
stored in computeDhKeyParam_t. When user calls ECDH_P256_ComputeDhKeySeg() with keep-
BlobDhKey set to 1, it should also call ECDH_P256_FreeDhKeyDataSecure .

SecLib_GenerateBluetoothF5Keys Thisfunctionis extracted from the Bluetooth LE Host Stack
implementation. This corresponds to the legacy implementation without key blobs.

SecLib_GenerateBluetoothF5KeysSecure Similar to SecLib_GenerateBluetoothF5Keys this
function is modified to work with key blobs, the reason is to not use SSS inside the Bluetooth LE
Host Stack.

SecLib_DeriveBluetoothSKD This is a helper function used by the Bluetooth LE Host Stack in
the pairing procedure, when receiving the vendor HCI command specifying that the ESK needs
to be provided to LL.

ELKE_BLE_SM_F5_DeriveKeys This is a private function, helper for Se-
cLib_GenerateBluetoothF5KeysSecure. It was provided by the STEC team.

Privacy:

SecLib_ObfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to obfus-
cate the IRK before setting it to Bluetooth LE Controller or before saving it to NVM

SecLib_DeobfuscateKeySecure This is a function used by the Bluetooth LE Host Stack to ex-
tract the plaintext IRK key from the saved NVM blob.

190 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

SecLib_VerifyBluetoothAh This function is extracted from the legacy Bluetooth LE Host Stack
implementation using plaintext keys.

SecLib_VerifyBluetoothAhSecure Similar to SecLib_VerifyBluetoothAh with modification
to work with S200 key blob.

SecLib_GenerateSymmetricKey Thisisa function used by the application to generate the local
IRK and local CSRK.

SecLib_GenerateBluetoothEIRKBlobSecure This is a function used by the application to gen-
erate the EIRK needed by Bluetooth LE Controller from the IRK blob.

A2B feature

ECDH_P256_ComputeA2BKey This function is used to compute the EdgeLock to EdgeLock key.
pInPeerPublicKey points to the peer public key, pOutE2EKey is the pointer to where the E2E key
object will be stored, this will be freed by the application when it is no longer required by calling
ECDH_P256_FreeE2EKeyData().

ECDH_P256_FreeE2EKeyData This function is used to free the key object given as a parameter.
It is used by the application to free the E2E key when is no longer needed.

SecLib_ExportA2BBlobSecure This function is used to import an ELKE blob or plain text sym-
metric key in s200 and export an E2E key blob. The input type is identified by the keyType pa-
rameter.

SecLib_ImportA2BBlobSecure This function is used to import an E2E key blob in s200 and
export an ELKE blob or plain text symmetric key. The output type is identified by the keyType
parameter.

LE Secure connections Pairing flow and SecLib usage:

1. Each device needs to generate locally the public+private keypair. This is done using
ECDH_P256_GenerateKeys.

2. Devices exchange their public keys.

3. Upon receiving the peer device’s public key, local device is computing DH key using
ECDH_P256_ComputeDhKey.

4. Each device sends DHKeyCheck packet

5. Upon receiving DhKeyCheck each device computes LTK blob wusing Se-
cLib_GenerateBluetoothF5Keys

6. After computing the each device sends HCI LeStartEnc (on initiator),
HCI_Le_Provide_Long_Term_Key (on responder)

7. Bluetooth LE Controller sends back SKD report custom event

8. Bluetooth LE Host Stack computes ESKD based on LTK blob using Se-
cLib_DeriveBluetoothSKD and sends it to Bluetooth LE Controller

9. Bluetooth LE Controller encrypts the link

1.3. Wireless 191



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

IRK flow and SecLib usage:

1.

At startup, when glnitializationComplete_c event is received:

the local IRK is generated using SecLib_GenerateSymmetricKey

the local EIRK is generated using SecLib_GenerateBluetoothEIRKBlohSecure
local CSRK is generated using SecLib_GenerateSymmetricKey

During legacy pairing when receiving bonding keys, IRK is obfuscated using Se-
cLib_ObfuscateKeySecure and stored

When app wants to set the OOB keys using Gap_SaveKeys the IRK is obfuscated using Se-
cLib_ObfuscateKeySecure

When application calls API Gap_VerifyPrivateResolvableAddress IRK is obfuscated using
SecLib_ObfuscateKeySecure and verified using SecLib_VerifyBluetoothAhSecure

When a new connection is received in Host with RPA address not resolved by the
Bluetooth LE Controller, the Host tries to resolve it by obfuscating it using Se-
cLib_ObfuscateKeySecure and verifying it using SecLib_VerifyBluetoothAhSecure

When adding a peer in Bluetooth LE Controller resolving list, the peer’s
IRK is obfuscated using SecLib_ObfuscateKeySecure before setting it using
HCI_Le_Add_Device_To_Resolving List.

When an IRK plaintext is requested by the application using Gap_LoadKeys it is obtained
using SecLib_DeobfuscateKeySecure

When legacy pairing completes and LTK needs to be send in the pairing complete event
(gConnEvtPairingComplete_c) the SecLib_DeobfuscateKey is used to extract the plaintext.

A2B flow and SecLib usage:

1.

At startup, when glnitializationComplete_c event is received, the application will call
ECDH_P256_GenerateKeys to generate the public/private key pair required for the E2E
key derivation and send the public key to the peer device.

When the public key is received from the peer device, the application will call
ECDH_P256_ComputeA2BKeySecure to generate the EdgeLock to EdgeLock key.

The application will obtain an E2E IRK blob by calling SecLib_ExportA2BBlobSecure with
key type gSecElkeBlob_c. The obtained blob is sent to the peer anchor. The peer anchor
will call SecLib_ImportA2BBlob with keyType gSecElkeBlob_c and save the resulting ELKE
blob in NVM, for Digital Key both anchors must have the same IRK.

After pairing, in order to send the LTK and IRK contained in the bonding data securely,
the application will call SecLib_ExportA2BBlobSecure with keyType gSecLtkElkeBlob_c
for the LTK, and SecLib_ExportA2BBlobSecure with keyType gSecPlainText_c for the IRK.
The E2E blobs obtained are sent along with the rest of the bonding data to the peer anchor
device.

After the bonding data is trasfered the E2E key is no longer needed and
ECDH_P256_FreeE2EKeyData is called with the key object obtained at step 2 when
ECDH_P256_ComputeA2BKeySecure was called.

Sensors

Overview The Sensors module provides an API to communicate with the ADC. Two values can
be obtained by this module :

Temperature value

192

Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

» Battery level
The temperature is given in tenths of degrees Celsius and the battery in percentage.

This module is multi-caller, the ADC is protected by a mutex on the resource and by pre-
vententing lowpower (only WFI) during its processing. Platform specific code can be find in
fwk_platform_sensors.c/h.

Constant macro definitions Name :

#define VALUE_NOT__AVAILABLE_ 8 0xFFu
#define VALUE_NOT AVAILABLE 32 0xFFFFFFFFu
Description :

Defines the error value that can be compared to the value obtain on the ADC.

SFC : Smart Frequency Calibration

Overview The Smart Frequency Calibration module provides operations and calibration for
the FRO32K source clock. This module is split between main core and Radio core:

o fwk_rf sfc.[ch]: RF_SFC module on Radio core that provides Main FRO32K measure-
ment/calibration and state machine in synchornization with Radio domain activities. See
details below.

o fwk_sfch: SFC module on host core that provides type definition for usage
with  fwk_platform_ics.[ch] with PLATFORM_FwkSrvSetRfSfcConfig) API and
fwk_platform_ble.c for received callback from the NBU core

Host SFC Module

Algorithm parametrization This module provides ability to configure the RF_SFC module by
sending message to Radio core through fwk_platform_ics.c PLATFORM_ FwkSrvSetR{SfcConfig():

* Filter size
* Maximum ppm threshold
* Maximum calibration interval

* Number of sample in filter to swicth from convergence to monitor mode

Ppm target The ppm target is the deviation from the target clock accepted by the algorithm.
When the deviation is larger than the ppm target. The algorithm will update the trimming value
and reset the filter. The ppm target cannot be more aggressive RF_SFC_MAXIMAL_PPM_TARGET
in order to avoid having to update trimming value at each measurement.

Filter size Filter size must be included between RF_SFC_MINIMAL_ FILTER_SIZE and
RF_SFC_MAXIMAL_FILTER_SIZE. See Filtering and Frequency estimation section for more details
on the parameter.

1.3. Wireless 193



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Maximum calibration interval In monitor mode, new measurement are triggered by low-
power entry/exit. If the NBU core has a lot of radio activity it could never enter lowpower. The
maximum calibration interval is here to ensure a measurement is done regularly. When exe-
cuting idle the SFC module checks when the last measurement has been done, if it has been too
long, it reset the filter and forces a new measurement

Trig sample number The trig sample number is the number of samples needed by the algo-
rithm in its filter to switch from convergence to monitor mode. Having more than one sample
in convergence mode allows to confirm the trimming value that we have set.

SFC debug information On the other way, the RF_SFC from Radio core sends back notifications
to SFC module on main core using RX callback PLATFORM_RegisterFroNotificationCallback()
from fwk_platform_ics.h and such information:

* last measured frequency
» average ppm from 32768Khz frequency
* last ppm measured from 32768Khz frequency

* FRO trimming value

RF_SFCmodule The RF_SFC module provides the functionality to calibrate the FRO32K source
clock during Initialization and radio activity.

The RF_SFC is mostly used on XTAL32K less solution when no 32Khz crystal is soldered on the
board. It allows to calibrate the FRO32K source clock to the desired frequency to keep Radio
time base within the allowed tolerance given by the connectivity standards. However, even on
a XTAL32K solution, the RF_SFC is also used during Initialization until the XTAL32K is up and
running in the system. The system firstly runs on the FRO32K clock source then switch to the
XTAL32K clock source when it is ready with enough accuracy. This allows to save significant
boot time as the FRO32K start up (including calibration) is much faster compared to XTAL32K .

This module will handle:

* FRO32K clock frequency measurement against 32Mhz crystal. It schedules appropriately
the start of the measurement and gets the result when completed,

* Filter and estimate the 32Khz frequency value and error by averaging from the last mea-
surements,

* FRO32K calibration in order to update the trimming value to reduce the frequency error
on the clock.

The targeted frequency offset shall be within 200ppm. The RF_SFC will handle two modes of
operation:

* Convergence mode: when frequency estimation is above 200pm,
* Monitor mode: when frequency estimation is below 200pm.

The RF_SFC module works in active and all low power modes on NBU domain, or on host appli-
cation domain except power down mode. Power down mode on host application domain is not
supported with the FRO32K configuration as clock source.

Feature enablement Enabling the FRO32K is done by calling the PLATFORM_InitFro32K()
function during application initialization in hardware_init.c file, in BOARD_InitHardware() func-
tion. If FRO32K is not enabled, Oscillator XTAL32K shall be called instead by calling PLAT-
FORM_InitOsc32K() function. The call to PLATFORM_InitFro32K() from BOARD_InitHardware()
can be done by setting the Compilation flag gBoardUseFro32k_d to 1 in hardware_init.c or any
header files included from this file.

194 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

F#define gBoardUseFro32k_d 1

Detailed description

Frequency measurements When NBU low power is enabled, the frequency measurements
are triggered on Low power wake-up by HW signal. The SFC process called from Idle task will
check regularly the completion of the frequency measurement. When the measurement is done,
it goes to filtering and frequency estimation process. The frequency measurement duration de-
pends on monitor mode or convergence mode: In convergence mode, the frequency measure-
ment duration is 0.5ms while it is 2ms in monitor mode. In monitor mode, the duration value
remains less than the minimal radio activity duration so it does not impact the low power con-
sumption in monitoring mode.

Filtering and Frequency estimation The FRO32KHz frequency measurement values are noisy
because of thermal noise on the FRO32K itself. Also, the frequency measurement can introduce
some error. In monitoring mode, it is required to filter the measurements by applying an expo-
nential filter. new_estimation = (new_measurement + ((1 « n) -1) * last_estimation) » n

Default value for n is 7 (meaning 128 samples in the averaging window).

Frequency calibration When the frequency estimation gets higher than the targeted 200ppm
target, the RF_SFC updates the trimming value for one positive or negative increment. For this
purpose, it requires to:

* wake up the host application domain and keep the domain active,

» update the trim register of the FRO32K, this register is used to trim the capacitance value
of the FRO32K,

* re-allow the host application domain to enter low power.

A slight power impact is expected during a calibration update due to host domain wake-up.

Operational modes When the low power mode is enabled on NBU power domain, RF SFC han-
dles two modes of operation: convergence and monitor modes. However, when low power is
disabled on NBU power domain, only convergence mode is supported.

Convergence mode Convergence modeisused when the estimated FRO32K frequency is above
200ppm or when the filter has been reset. Typically this occurs :

* During Power ON reset or other reset when NBU is switched OFF
* When temperature varies and FRO32K frequency deviates outside 200ppm threshold target

* When no calibration has been done during some time as we discard old values that could
influence the algorithm

The convergence mode process typically starts with a FRO32K trim register update, performs a
frequency measurement and the FRO32K trim register is updated until the measured frequency
gets below 200ppm. These operations are repeated in a loop until the estimated frequency value
gets below 200ppm. When below 200ppm during multiple measurements, the RC SFC switches
to Monitoring mode. The convergence mode is only a transition mode to monitoring mode. In
convergence mode, the NBU power domain does not go to low power. The convergence mode
time duration depends on the initial frequency error of the FR032K. Default frequency measure-
ment duration is 0.5ms so 20 measurements (given as example only) will require less than 10 ms
to converge.

1.3. Wireless 195



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Monitoring mode Monitoring mode is used when the estimated FRO32K frequency is below
200ppm. In this mode, the measurement is triggered on NBU domain wake up from low power
mode using an internal hardware signal. The exponential filter is applied to compute the fre-
quency estimation. If the frequency estimation value is still within 200ppm, the NBU power
domain is allowed to go to low power. If the estimated value gets above the 200ppm threshold,
the RF SFC switch back to convergence mode. The trim register is updated by one increment
(positive or negative) and because the frequency has been adjusted and changed, the estimated
filtered frequency is reset to discard all previous measurements. Going back to convergence
mode typically happens during a temperature gradient. If the temperature is constant, it is not
expected to have the estimated value to go beyond 200ppm so no calibration should be required.

Initialization and configuration During initialization, the RF SFC module will block the Radio
Software until monitoring mode is reached. This is to prevent the radio from running with an
inaccurate time base due to an important 32k clock frequency error.

Initialization and configuration is done by the NBU core. The configuration parameters can set
up:
* The 200ppm target threshold. This value shall be 200ppm or higher.

* The filtering number n (see section above), It shall be between 0 and 8. Default is 7 which
is similar to an averaging filter of 128 samples. A higher value will be more robust against
noise. A lower value will track temperature variation more faster.

In order to prevent the host application domain from going into power down mode (power
down mode not supported with FRO32K as clock source), the fwkSrvLowPowerConstraintCall-
backs functions structure is registered to the Framework service on host application core from
fwk_platform_lowpower.c file, PLATFORM_LowPowerlnit() function. The NBU code applies a
low power Deep Sleep constraint to the application core. This constraint is released when the
NBU firmware has no activity to do and re-applied when a new activity starts.

Lowpower impact

Power impact during active mode: In monitoring mode (this should be 99.9% of the time if
temperature does not vary), the FRO32KHz frequency measurements are performed during a
Radio activity so it does not increase the active current as the sources clocks are already active.
Also, it does not increase the active time as the measurement takes less time than an advertising
event or connection event so no impact on power consumption.

The main power impact will be in convergence mode. In this case, measurements/calibrations
are done in loop until the monitoring mode is reached (frequency error less than 200ppm). This
could happen:

* During power ON reset,

* When temperature varies: The frequency will deviate from 32768Hz and FRO32K trimming
register correction will need to be updated for that,

* When no measurement has been done during some time as we cannot predict if the FRO
has drifted, so we discard older values and start convergence mode.

When FRO32K frequency needs to be adjusted, the NBU core will wake-up the main power do-
main and will update the FRO32K trimming register.

Power impact during low power mode: The power consumption in low power mode will
increase slightly due to running FRO32K compared to XTAL32K. The power consumption of
FRO32K typically consumes 350nA while it is only 100nA with XTAL32K. Refer to the product
datasheet for the exact numbers.

196 Chapter 1. Middleware



Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK

Overview The purpose of this document is to describes the FreeRTOS kernel repo integration
into the NXP MCUXpresso Software Development Kit: mcuxsdk. MCUXpresso SDK provides a
comprehensive development solutions designed to optimize, ease, and help accelerate embed-
ded system development of applications based on MCUs from NXP. This project involves the
FreeRTOS kernel repo fork with:

» cmake and Kconfig support to allow the configuration and build in MCUXpresso SDK ecosys-
tem

* FreeRTOS OS additions, such as FreeRTOS driver wrappers, RTOS ready FatFs file system,
and the implementation of FreeRTOS tickless mode

The history of changes in FreeRTOS kernel repo for MCUXpresso SDK are summarized in
CHANGELOG mcuxsdk.md file.

The MCUXpresso SDK framework also contains a set of FreeRTOS examples which show basic
FreeRTOS OS features. This makes it easy to start a new FreeRTOS project or begin experiment-
ing with FreeRTOS OS. Selected drivers and middleware are RTOS ready with related FreeRTOS
adaptation layer.

FreeRTOS example applications The FreeRTOS examples are written to demonstrate basic
FreeRTOS features and the interaction between peripheral drivers and the RTOS.

List of examples Thelist of freertos_examples, their description and availability for individual
supported MCUXpresso SDK development boards can be obtained here: https://mcuxpresso.nxp.
com/mcuxsdk/latest/html/examples/freertos_examples/index.html

197


https://github.com/FreeRTOS/FreeRTOS
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcux-freertos-drivers
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/examples/freertos_examples/index.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Location of examples The FreeRTOS examples are located in mcuxsdk-examples repository,
see the freertos_examples folder.

Once using MCUXpresso SDK zip packages created via the MCUXpresso SDK Builder the FreeRTOS
kernel library and associated freertos_examples are added into final zip package once FreeRTOS
components is selected on the Developer Environment Settings page:

[\ MCUXpresso SDK Builder

#i  sDkDashboard Developer Environment Settings
@ Select Board / Processor Selections here ( operating host system, toolchain or mtddfewure) will impact files and examples projects included in the SDK and Generated FProjects

Host OS Toolchain [ IDE

=  Filters

== Windows - 0J: Al Toolchains - Search...
B Middieware
Examples
& Name Description Dependencies
3 Toochains o e g 1 S O 61 T o
:_.—: Processor Parametrics
emWwin emWin graphics library
EXPLORE
Fatfs FAT File System stack
E Expansion Board Hub
— FreeMASTER FreeMASTER communication driver for 32bit platforms
. Application Code Hub
DOWNLOADS FreeRTOS m Real-time operating system for microcontrollers from Amazon
. MCUXpresso IDE LittleFs LittleFs filesystem stack
- MCUXpresso for VS Code lihttp HTTP parser lihttp
MCUXpresso Secure
. Provisioning Tool LVGL (£ LvGLOpen Source Graphics Library
. Lo o @il Tl Iwip [ Lightweight IP open-source TCP/IP stack
Offline data
Mbed Crypto Mbed Crypto library
INTERNAL
mbedTLS mbedTLS SSL/TLS library v

The FreeRTOS examples in MCUXpresso SDK zip packages are located in <MCUXpres-
soSDK install_dir>/boards/<board_name>/freertos_examples/ subfolders.

Building a FreeRTOS example application For information how to use the cmake and Kconfig
based build and configuration system and how to build freertos_examples visit: MCUXpresso
SDK documentation for Build And Configuration MCUXpresso SDK Getting Start Guide

Tip: To list all FreeRTOS example projects and targets that can be built via the west build com-
mand, use this west list_project command in mcuxsdk workspace:

west list_ project -p examples/freertos_examples

FreeRTOS aware debugger plugin NXP provides FreeRTOS task aware debugger for GDB. The
plugin is compatible with Eclipse-based (MCUXpressoIDE) and is available after the installation.

s Task List (FreeRTOS) 52 B ® =8
TCBJ;‘ Task Mame Task Handle  Task State Pricrity Stack Usage Event Object Runtime
> 1 task_one ol fffeccd [0 Blocked 1(1) 0B/8308B MyCountingSemaphaore (Fx) 00 (0.0%)
b 2 task_two (L FF130 00 Blocked 2(2) O0B/888B MyCountingSemaphore (Rx) O (01%)
> 3 IDLE L £330 B> Running  0/(0] 0B/296 B 0365 (996%)
> 4 Tror Sve Dl ffffobE [0 Blocked 17(17) I 28B/6I2E Tmir() (Rx) 0x3 (0.3%)

FreeRTOS kernel for MCUXpresso SDK ChangeLog

Changelog FreeRTOS kernel for MCUXpresso SDK All notable changes to this project will be
documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

198 Chapter 2. RTOS


https://github.com/nxp-mcuxpresso/mcuxsdk-examples
https://mcuxpresso.nxp.com
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/repo.html#gsd-index
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[Unreleased]

Added

» Kconfig added CONFIG_FREERTOS_USE_CUSTOM_CONFIG_FRAGMENT config to op-
tionally include custom FreeRTOSConfig fragment
include file FreeRTOSConfig_frag.h. File must be provided by application.

» Added missing Kconfig option for configUSE_PICOLIBC_TLS.

* Add correct header files to build when configUSE_NEWLIB_REENTRANT and confi-
gUSE_PICOLIBC_TLS is selected in config.

[11.1.0_revO0]

* update amazon freertos version

[11.0.1_revO0]

* update amazon freertos version

[10.5.1_revO0]

 update amazon freertos version

[10.4.3_rev1]
* Apply CM33 security fix from 10.4.3-LTS-Patch-2. See rtos\freertos\freertos_kernel\History.txt
* Apply CM33 security fix from 10.4.3-LTS-Patch-1. See rtos\freertos\freertos_kernel\History.txt

[10.4.3_rev0]

* update amazon freertos version.

[10.4.3_rev0]

 update amazon freertos version.

[9.0.0_rev3]
* New features:
— Tickless idle mode support for Cortex-A7. Add fsl_tickless_epit.c and
fsl_tickless_generic.h in portable/TAR/ARM_CAS9 folder.
— Enabled float context saving in IAR for Cortex-A7. Added confi-
gUSE_TASK_FPU_SUPPORT macros. Modified port.c and portmacro.h in

portable/IAR/ARM_CA9 folder.
» Other changes:

— Transformed ARM_CM core specific tickless low power support into generic form un-
der freertos/Source/portable/low_power_tickless/.

2.1. FreeRTOS 199



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

[9.0.0 rev2]
» New features:

— Enabled MCUXpresso thread aware debugging. Add freertos_tasks_c_additions.h
and configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H and configFR-
TOS_MEMORY_SCHEME macros.

[9.0.0_rev1]
* New features:
— Enabled -flto optimization in GCC by adding attribute((used)) for vTaskSwitchContext.

— Enabled KDS Task Aware Debugger. Apply FreeRTOS patch to enable confi-
gRECORD_STACK_HIGH_ADDRESS macro. Modified files are task.c and FreeRTOS.h.

[9.0.0_rev0]
* New features:
— Example freertos_sem_static.
— Static allocation support RTOS driver wrappers.
* Other changes:

— Tickless idle rework. Support for different timers is in separated files
(fs1_tickless_systick.c, fsl_tickless_lptmr.c).

— Removed configuration option configSYSTICK_USE_LOW_POWER_TIMER. Low power
timer is now selected by linking of apropriate file fsl_tickless_lptmr.c.

— Removed configOVERRIDE_DEFAULT_TICK_CONFIGURATION in RVDS port. Use of at-
tribute((weak)) is the preferred solution. Not same as _weak!

[8.2.3]
* New features:
— Tickless idle mode support.
— Added template application for Kinetis Expert (KEx) tool (template_application).
* Other changes:

— Folder structure reduction. Keep only Kinetis related parts.

FreeRTOS kernel Readme

MCUXpresso SDK: FreeRTOS kernel This repository is a fork of FreeRTOS kernel
(https://github.com/FreeRTOS/FreeRTOS-Kernel)(11.1.0). Modifications have been made to adapt
to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS kernel repo
sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is
composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

For more information about the FreeRTOS kernel repo adoption see README_mcuxsdk.md:
FreeRTOS kernel for MCUXpresso SDK Readme document.

(") CMock Unit Tests | passing

200 Chapter 2. RTOS


https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/rtos/freertos/freertos-kernel/README_mcuxsdk.html
https://github.com/FreeRTOS/FreeRTOS-Kernel/actions/workflows/unit-tests.yml?query=branch%3Amain+event%3Apush+workflow%3A%22CMock+Unit+Tests%22++

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Getting started This repository contains FreeRTOS kernel source/header files and kernel ports
only. This repository is referenced as a submodule in FreeRTOS/FreeRTOS repository, which
contains pre-configured demo application projects under FreeRTOS/Demo directory.

The easiest way to use FreeRTOS is to start with one of the pre-configured demo application
projects. That way you will have the correct FreeRTOS source files included, and the correct
include paths configured. Once a demo application is building and executing you can remove
the demo application files, and start to add in your own application source files. See the FreeRTOS
Kernel Quick Start Guide for detailed instructions and other useful links.

Additionally, for FreeRTOS kernel feature information refer to the Developer Documentation,
and API Reference.

Also for contributing and creating a Pull Request please refer to the instructions here.

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.

To consume FreeRTOS-Kernel

Consume with CMake If using CMake, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

* Define the source and version/tag you want to use:

FetchContent Declare( freertos kernel
GIT_REPOSITORY https://github.com/FreeRTOS/FreeRTOS-Kernel.git
GIT_TAG main #Note: Best practice to use specific git-hash or tagged version

)

In case you prefer to add it as a git submodule, do:

git submodule add https://github.com/FreeRTOS/FreeRTOS-Kernel.git <path of the submodule>
git submodule update --init

* Add a freertos_config library (typically an INTERFACE library) The following assumes the
directory structure:

— include/FreeRTOSConfig.h

add_ library(freertos_ config INTERFACE)

target_ include_ directories(freertos_ config SYSTEM
INTERFACE

include
)

target__compile_ definitions(freertos_config
INTERFACE
projCOVERAGE__TEST=0
)

In case you installed FreeRTOS-Kernel as a submodule, you will have to add it as a subdirectory:

add_ subdirectory(${FREERTOS PATH})

* Configure the FreeRTOS-Kernel and make it available

— this particular example supports a native and cross-compiled build option.

2.1. FreeRTOS 201


https://github.com/FreeRTOS/FreeRTOS
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/FreeRTOS-quick-start-guide.html
https://www.FreeRTOS.org/features.html
https://www.FreeRTOS.org/a00106.html
https://forums.freertos.org

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

set( FREERTOS_HEAP ”4” CACHE STRING ”” FORCE)
# Select the native compile PORT
set( FREERTOS_PORT "GCC_ POSIX” CACHE STRING ”” FORCE)
# Select the cross-compile PORT
if (CMAKE__CROSSCOMPILING)
set(FREERTOS_PORT "GCC_ARM_CA9” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_ kernel)

* In case of cross compilation, you should also add the following to freertos_ config:

target compile definitions(freertos config INTERFACE ${definitions})
target__compile_options(freertos_ config INTERFACE ${options})

Consuming stand-alone - Cloning this repository To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Kernel.git

Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Kernel.git

Repository structure

* The root of this repository contains the three files that are common to every port - list.c,
queue.c and tasks.c. The kernel is contained within these three files. croutine.c implements
the optional co-routine functionality - which is normally only used on very memory limited
systems.

» The ./portable directory contains the files that are specific to a particular microcontroller
and/or compiler. See the readme file in the ./portable directory for more information.

* The ./include directory contains the real time kernel header files.

* The ./template configuration directory contains a sample FreeRTOSConfig.h to help jumpstart
a new project. See the FreeRTOSConfig.h file for instructions.

Code Formatting FreeRTOS files are formatted using the “uncrustify” tool. The configuration
file used by uncrustify can be found in the FreeRTOS/CI-CD-GitHub-Actions’s uncrustify.cfg file.

Line Endings File checked into the FreeRTOS-Kernel repository use unix-style LF line endings
for the best compatibility with git.

For optimal compatibility with Microsoft Windows tools, it is best to enable the git autocrlf fea-
ture. You can enable this setting for the current repository using the following command:

git config core.autocrlf true

Git History Optimizations Some commits in this repository perform large refactors which
touch many lines and lead to unwanted behavior when using the git blame command. You can
configure git to ignore the list of large refactor commits in this repository with the following
command:

git config blame.ignoreRevsFile .git-blame-ignore-revs

202 Chapter 2. RTOS


https://github.com/uncrustify/uncrustify
https://github.com/FreeRTOS/CI-CD-Github-Actions
https://github.com/FreeRTOS/CI-CD-Github-Actions/tree/main/formatting

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Spelling and Formatting We recommend using Visual Studio Code, commonly referred to as
VSCode, when working on the FreeRTOS-Kernel. The FreeRTOS-Kernel also uses cSpell as part
of its spelling check. The config file for which can be found at cspell.config.yaml There is addi-
tionally a cSpell plugin for VSCode that can be used as well. .cSpellWords.txt contains words
that are not traditionally found in an English dictionary. It is used by the spellchecker to ver-
ify the various jargon, variable names, and other odd words used in the FreeRTOS code base
are correct. If your pull request fails to pass the spelling and you believe this is a mistake, then
add the word to .cSpellWords.txt. When adding a word please then sort the list, which can be
done by running the bash command: sort -u .cSpellWords.txt -o .cSpellWords.txt Note that only
the FreeRTOS-Kernel Source Files, include, portable/MemMang, and portable/Common files are
checked for proper spelling, and formatting at this time.

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

MCUXpresso SDK: backoffAlgorithm Library This repository is a fork of backoffAlgorithm
library (https://github.com/FreeRTOS/backoffalgorithm)(1.3.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable backoffAlgorithm
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

backoffAlgorithm Library This repository contains the backoffAlgorithm library, a utility li-
brary to calculate backoff period using an exponential backoff with jitter algorithm for retry-
ing network operations (like failed network connection with server). This library uses the “Full
Jitter” strategy for the exponential backoff with jitter algorithm. More information about the
algorithm can be seen in the Exponential Backoff and Jitter AWS blog.

The backoffAlgorithm library is distributed under the MIT Open Source License.

Exponential backoff with jitter is typically used when retrying a failed network connection or
operation request with the server. An exponential backoff with jitter helps to mitigate failed
network operations with servers, that are caused due to network congestion or high request
load on the server, by spreading out retry requests across multiple devices attempting network
operations. Besides, in an environment with poor connectivity, a client can get disconnected at
any time. A backoff strategy helps the client to conserve battery by not repeatedly attempting
reconnections when they are unlikely to succeed.

See memory requirements for this library here.
backoffAlgorithm v1.3.0 source code is part of the FreeRTOS 202210.00 LTS release.
backoffAlgorithm v1.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

2.1. FreeRTOS 203


https://code.visualstudio.com
https://cspell.org/
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.3.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/backoffAlgorithm/tree/v1.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Reference example The example below shows how to use the backoffAlgorithm library on a
POSIX platform to retry a DNS resolution query for amazon.com.

#include "backoff algorithm.h”
#include <stdlib.h>

#include <string.h>

#include <netdb.h>

#include <unistd.h>

#include <time.h>

/* The maximum number of retries for the example code. */
#define RETRY_ MAX_ ATTEMPTS (5U)

/* The maximum back-off delay (in milliseconds) for between retries in the example. */
#define RETRY MAX_BACKOFF_DELAY MS ( 5000U )

/* The base back-off delay (in milliseconds) for retry configuration in the example. */
#define RETRY BACKOFF_BASE_MS (500U )

int main()
{
/* Variables used in this example. */
BackoffAlgorithmStatus_ t retryStatus = BackoffAlgorithmSuccess;
BackoffAlgorithmContext_ t retryParams;
char serverAddress|] = "amazon.com”;
uint16_ t nextRetryBackoff = 0;

int32_t dnsStatus = -1;

struct addrinfo hints;

struct addrinfo ** pListHead = NULL;
struct timespec tp;

/* Add hints to retrieve only TCP sockets in getaddrinfo. */
( void ) memset( &hints, 0, sizeof( hints ) );

/* Address family of either IPv4 or IPv6. */
hints.ai_family = AF__ UNSPEC;

/* TCP Socket. */

hints.ai_socktype = ( int32_t ) SOCK_STREAM;
hints.ai_ protocol = IPPROTO__ TCP;

/* Initialize reconnect attempts and interval. */

BackoffAlgorithm_ InitializeParams( &retryParams,
RETRY_ BACKOFF_BASE MS,
RETRY MAX BACKOFF DELAY MS,
RETRY_MAX_ ATTEMPTS );

/* Seed the pseudo random number generator used in this example (with call to
* rand() function provided by ISO C standard library) for use in backoff period
* calculation when retrying failed DNS resolution. */

/* Get current time to seed pseudo random number generator. */
( void ) clock gettime( CLOCK _REALTIME, &tp );

/* Seed pseudo random number generator with seconds. */
srand( tp.tv__sec );

do

/* Perform a DNS lookup on the given host name. */

dnsStatus = getaddrinfo( serverAddress, NULL, &hints, pListHead );

(continues on next page)

204 Chapter 2. RTOS



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

(continued from previous page)

/* Retry if DNS resolution query failed. */
if( dnsStatus !=0)

{

/* Generate a random number and get back-off value (in milliseconds) for the next retry.
* Note: It is recommended to use a random number generator that is seeded with

* device-specific entropy source so that backoff calculation across devices is different

* and possibility of network collision between devices attempting retries can be avoided.
*

* For the simplicity of this code example, the pseudo random number generator, rand|()
* function is used. */
retryStatus = BackoffAlgorithm__GetNextBackoff( &retryParams, rand(), &nextRetryBackoff );

/* Wait for the calculated backoff period before the next retry attempt of querying DNS.
* As usleep() takes nanoseconds as the parameter, we multiply the backoff period by 1000. */
( void ) usleep( nextRetryBackoff * 1000U );

}

} while( ( dnsStatus != 0 ) && ( retryStatus |= BackoffAlgorithmRetriesExhausted ) );

return dnsStatus;

Building the library A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses a header file introduced in ISO C99, stdint.h. For compilers that do
not provide this header file, the source/include directory contains stdint.readme, which can be
renamed to stdint.h to build the backoffAlgorithm library.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/backoff algorithm.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c¢ source/backoff _algorithm.c

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C89 or later compiler like gcc
— CMake 3.13.0 or later

* For running the coverage target, gcov is additionally required.

2.1. FreeRTOS 205


https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

S S

Run ctest to execute all tests and view the test run summary.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

MCUXpresso SDK: coreHTTP Client Library

This repository is a fork of coreHTTP Client library (https://github.com/FreeRTOS/corehttp)(3.0.0).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig
added to enable coreHTTP Client repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreHTTP Client Library

This repository contains a C language HTTP client library designed for embedded platforms. It
has no dependencies on any additional libraries other than the standard C library, llhttp, and
a customer-implemented transport interface. This library is distributed under the MIT Open
Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8. This library has also undergone both static code analysis from
Coverity static analysis, and validation of memory safety and data structure invariance through
the CBMC automated reasoning tool.

See memory requirements for this library here.
coreHTTP v3.0.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreHTTP v2.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

coreHTTP Config File The HTTP client library exposes configuration macros that are required
for building the library. A list of all the configurations and their default values are defined in
core_http_config_defaults.h. To provide custom values for the configuration macros, a custom
config file named core_ http_ config.h can be provided by the user application to the library.

By default, a core_http_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
HTTP_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

The HTTP client library can be built by either:

206 Chapter 2. RTOS


https://github.com/nodejs/llhttp
https://www.gnu.org/software/complexity/manual/complexity.html
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreHTTP/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreHTTP/tree/v2.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

* Defining a core_http_ config.h file in the application, and adding it to the include directories
for the library build. OR

* Defining the HTTP_ DO_NOT_USE CUSTOM_CONFIG preprocessor macro for the li-
brary build.

Building the Library The httpFilePaths.cmake file contains the information of all source files
and header include paths required to build the HTTP client library.

As mentioned in the previous section, either a custom config file (i.e. core http_config.h) OR
HTTP_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the HTTP client
library.

For a CMake example of building the HTTP library with the httpFilePaths.cmake file, refer to the
coverity__analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Platform Prerequisites
* For running unit tests, the following are required:
— C90 compiler like gcc
- CMake 3.13.0 or later
— Ruby 2.0.0 or later is required for this repository’s CMock test framework.
 For running the coverage target, the following are required:
- gcov

- lcov

Steps to build Unit Tests
1. Go to the root directory of this repository.
2. Run the cmake command: cmake -S test -B build -DBUILD CLONE_SUBMODULES=0ON
3. Run this command to build the library and unit tests: make -C build all
4. The generated test executables will be present in build/bin/tests folder.
5

. Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The AWS IoT Device SDK for Embedded C repository contains demos of
using the HTTP client library here on a POSIX platform. These can be used as reference examples
for the library API.

Documentation

2.1. FreeRTOS 207


https://github.com/ThrowTheSwitch/CMock
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/http

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreHTTP may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.5 corejson

JSON parser.

Readme

MCUXpresso SDK: coreJSON Library This repository is a fork of coreJSON library
(https://github.com/FreeRTOS/corejson)(3.2.0). Modifications have been made to adapt to NXP
MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable core]JSON repo sources build
in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which is com-
posed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

coreJSON Library This repository contains the coreJSON library, a parser that strictly enforces
the ECMA-404 JSON standard and is suitable for low memory footprint embedded devices. The
core]JSON library is distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreJSON v3.2.0 source code is part of the FreeRTOS 202210.00 LTS release.
coreJSON v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

Reference example

208 Chapter 2. RTOS


https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreHTTP/docs/doxygen/output/html/index.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreJSON/tree/v3.2.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/coreJSON/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

#include <stdio.h>
#include "core_ json.h

int main()

{

// Variables used in this example.

JSONStatus_ t result;

char buffer]] = 7{\”foo\”:\”abc\”,\”bar\”:{\ "foo\":\"xyz\"}}";
size t bufferLength = sizeof( buffer ) - 1;

char queryKey|[] = "bar.foo”;

size_t queryKeyLength = sizeof( queryKey ) - 1;

char * value;

size_t valueLength;

// Calling JSON_ Validate() is not necessary if the document is guaranteed to be valid.

result = JSON_ Validate( buffer, bufferLength );

if( result == JSONSuccess )
{

result = JSON__Search( buffer, bufferLength, queryKey, queryKeyLength,
&value, &valueLength );
}

if( result == JSONSuccess )
{

// The pointer ”value” will point to a location in the "buffer”.
char save = value[ valueLength |;

// After saving the character, set it to a null byte for printing.
value[ valueLength | = '"\0';

// "Found: bar.foo -> xyz” will be printed.

printf( "Found: %s -> %s\n”, queryKey, value );

// Restore the original character.

value[ valueLength | = save;

}

return 0;

}

A search may descend through nested objects when the queryKey contains matching key strings
joined by a separator; .. In the example above, bar has the value {"foo”:”’xyz”}. Therefore, a search
for query key bar.foo would output xyz.

Building coreJ]SON A compiler that supports C90 or later such as gcc is required to build the
library.

Additionally, the library uses 2 header files introduced in ISO C99, stdbool.h and stdint.h. For com-
pilers that do not provide this header file, the source/include directory contains stdbool.readme
and stdint.readme, which can be renamed to stdbool.h and stdint.h respectively.

For instance, if the example above is copied to a file named example.c, gcc can be used like so:

gee -1 source/include example.c source/core_ json.c -o example
./example

gcc can also produce an output file to be linked:

gce -1 source/include -c source/core_json.c

Documentation

2.1. FreeRTOS 209



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Existing documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of the coreJSON library may differ across repositories.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Building unit tests

Checkout Unity Submodule By default, the submodules in this repository are configured with
update=none in .gitmodules, to avoid increasing clone time and disk space usage of other reposi-
tories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of Unity is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/Unity

Platform Prerequisites
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later
— Ruby 2.0.0 or later is additionally required for the Unity test framework (that we use).

* For running the coverage target, gcov is additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the Unity submodule is cloned
as described above.)

Create build directory: mkdir build && cd build
Run cmake while inside build directory: cmake -S ../test
Run this command to build the library and unit tests: make all

The generated test executables will be present in build/bin/tests folder.

SEERL S

Run ctest to execute all tests and view the test run summary.

210 Chapter 2. RTOS


https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreJSON/docs/doxygen/output/html/index.html
https://github.com/aws/amazon-freertos

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Contributing See CONTRIBUTING.md for information on contributing.

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

MCUXpresso SDK: coreMQTT Library

This repository is a fork of coreMQTT library (https://github.com/FreeRTOS/coremqtt)(2.1.1).
Modifications have been made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kcon-
fig added to enable coreMQTT repo sources build in MCUXpresso SDK. It is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate
to the top/parent repository mcuxsdk-manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-
manifests) for the complete delivery of MCUXpresso SDK.

coreMQTT Client Library

This repository contains the coreMQTT library that has been optimized for a low memory foot-
print. The coreMQTT library is compliant with the MQTT 3.1.1 standard. It has no dependencies
on any additional libraries other than the standard C library, a customer-implemented network
transport interface, and optionally a user-implemented platform time function. This library is
distributed under the MIT Open Source License.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
coreMQTT v2.1.1 source code is part of the FreeRTOS 202210.01 LTS release.

MQTT Config File The MQTT client library exposes build configuration macros that are re-
quired for building the library. A list of all the configurations and their default values are de-
fined in core_mgqtt_config_defaults.h. To provide custom values for the configuration macros, a
custom config file named core_mqtt_ config.h can be provided by the application to the library.

By default, a core_mqtt_config.h custom config is required to build the library. To dis-
able this requirement and build the library with default configuration values, provide
MQTT_DO_NOT_USE_CUSTOM_CONFIG as a compile time preprocessor macro.

Thus, the MQTT library can be built by either:

* Defining a core_ mqtt_ config.h file in the application, and adding it to the include directories
list of the library
OR

* Defining the MQTT_DO_NOT_USE_CUSTOM_ CONFIG preprocessor macro for the li-
brary build.

2.1. FreeRTOS 211


https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/coreMQTT/tree/v2.1.1/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.01-LTS

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Sending metrics to AWS IoT When establishing a connection with AWS IoT, users can option-
ally report the Operating System, Hardware Platform and MQTT client version information of
their device to AWS. This information can help AWS IoT provide faster issue resolution and tech-
nical support. If users want to report this information, they can send a specially formatted string
(see below) in the username field of the MQTT CONNECT packet.

Format

The format of the username string with metrics is:

<Actual Username>?SDK=<0OS Name>& Version=<OS _Version>&Platform=<Hardware Platform>&
—MQTTLib=<MQTT_ Library_name>@Q<MQTT__Library_ version>
Where

» <Actual_Username> is the actual username used for authentication, if username and pass-
word are used for authentication. When username and password based authentication is
not used, this is an empty value.

* <OS_Name> is the Operating System the application is running on (e.g. FreeRTOS)
» <0OS_Version> is the version number of the Operating System (e.g. V10.4.3)
» <Hardware_Platform> is the Hardware Platform the application is running on (e.g. Win-
Sim)
* <MQTT_Library_name> is the MQTT Client library being used (e.g. coreMQTT)
* <MQTT_Library_version> is the version of the MQTT Client library being used (e.g. 1.0.2)
Example

* Actual Username = “iotuser”, OS_Name = FreeRTOS, OS_Version = V10.4.3, Hard-
ware_Platform_Name = WinSim, MQTT_Library_Name = coremqtt, MQTT_Library_version
= 2.1.1. If username is not used, then “iotuser” can be removed.

/* Username string:
* jotuser?’SDK=FreeRTOS& Version=v10.4.3&Platform=WinSim&MQTTLib=coremqtt@2.1.1

*/

#define OS_NAME "FreeRTOS”

#define OS_ VERSION ”V10.4.3”

#define HARDWARE PLATFORM_NAME ”WinSim”

#define MQTT__LIB ?coremqtt@2.1.1”

#define USERNAME_STRING “iotuser’SDK=" OS__NAME "&Version=" OS_ VERSION 7”&

—Platform=" HARDWARE_PLATFORM_NAME ”&MQTTLib=" MQTT_LIB
#define USERNAME_STRING_LENGTH  ( (uint16_t ) ( sizeof( USERNAME_STRING )- 1))

MQTTConnectInfo_t connectInfo;

connectInfo.pUserName = USERNAME__ STRING;

connectInfo.userNameLength = USERNAME_STRING_LENGTH;

mqttStatus = MQTT__Connect( pMqgttContext, &connectInfo, NULL, CONNACK_RECV_TIMEOUT_MS,,,
—»pSessionPresent );

Upgrading to v2.0.0 and above With coreMQTT versions >=v2.0.0, there are breaking changes.
Please refer to the coreMQTT version >=v2.0.0 Migration Guide.

Building the Library The mgqttFilePaths.cmake file contains the information of all source files
and the header include path required to build the MQTT library.

Additionally, the MQTT library requires two header files that are not part of the ISO C90 stan-
dard library, stdbool.h and stdint.h. For compilers that do not provide these header files, the

212 Chapter 2. RTOS



MCUXpresso SDK Documentation, Release 25.09.00-pvw1

source/include directory contains the files stdbool.readme and stdint.readme, which can be re-
named to stdbool.h and stdint.h, respectively, to provide the type definitions required by MQTT.

As mentioned in the previous section, either a custom config file (i.e. core_mqtt_config.h) OR
MQTT_DO_NOT_USE_CUSTOM__CONFIG macro needs to be provided to build the MQTT li-
brary.

For a CMake example of building the MQTT library with the mqttFilePaths.cmake file, refer to the
coverity analysis library target in test/CMakeLists.txt file.

Building Unit Tests

Checkout CMock Submodule By default, the submodules in this repository are configured
with update=none in .gitmodules to avoid increasing clone time and disk space usage of other
repositories (like amazon-freertos that submodules this repository).

To build unit tests, the submodule dependency of CMock is required. Use the following command
to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Platform Prerequisites
* Docker
or the following:
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later

— Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

« For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests
1. If using docker, launch the container:
1. docker build -t coremqtt .
2. docker run -it -v "$PWD?”: /workspaces/coreMQTT -w /workspaces/coreMQTT coremqtt

2. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

Run the cmake command: cmake -S test -B build
Run this command to build the library and unit tests: make -C build all

The generated test executables will be present in build/bin/tests folder.

o Uk w

Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

2.1. FreeRTOS 213


https://github.com/aws/amazon-freertos
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Reference examples Please refer to the demos of the MQTT client library in the following
locations for reference examples on POSIX and FreeRTOS platforms:

Plat- Location Transport Interface Implementation

form

POSIX AWS IoT Device SDK for Embed- POSIX sockets for TCP/IP and OpenSSL for TLS
ded C stack

FreeR- FreeRTOS/FreeRTOS FreeRTOS+TCP for TCP/IP and mbedTLS for

TOS TLS stack

FreeR- FreeRTOS AWS Reference Inte- Based on Secure Sockets Abstraction
TOS grations

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of coreMQTT may differ across repositories.

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Contributing See CONTRIBUTING.md for information on contributing.

2.1.7 coremgqtt-agent

The coreMQTT Agent library is a high level API that adds thread safety to the coreMQTT library.

Readme

MCUXpresso SDK: coreMQTT Agent Library This repository is a fork of coreMQTT Agent
library (https://github.com/FreeRTOS/coremqtt-agent)(1.2.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable coreMQTT Agent
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

214 Chapter 2. RTOS


https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/aws/aws-iot-device-sdk-embedded-C/tree/main/demos/mqtt
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/amazon-freertos/tree/main/demos/coreMQTT
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/coreMQTT/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

coreMQTT Agent Library The coreMQTT Agent library is a high level API that adds thread
safety to the coreMQTT library. The library provides thread safe equivalents to the coreMQTT’s
APIs, greatly simplifying its use in multi-threaded environments. The coreMQTT Agent library
manages the MQTT connection by serializing the access to the coreMQTT library and reduc-
ing implementation overhead (e.g., removing the need for the application to repeatedly call to
MQTT__ProcessLoop). This allows your multi-threaded applications to share the same MQTT con-
nection, and enables you to design an embedded application without having to worry about
coreMQTT thread safety.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. This library has also undergone both static code analysis from Coverity static analy-
sis, and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.

Cloning this repository This repo uses Git Submodules to bring in dependent components.
To clone using HTTPS:

git clone https://github.com/FreeRTOS /coreMQTT-Agent.git --recurse-submodules

Using SSH:
git clone git@github.com:FreeRTOS/coreMQTT-Agent.git --recurse-submodules

If you have downloaded the repo without using the --recurse-submodules argument, you need to
run:

git submodule update --init --recursive

coreMQTT Agent Library Configurations The MQTT Agent library uses the same
core_mgqtt_config.h configuration file as coreMQTT, with the addition of configuration con-
stants listed at the top of core_mgqtt agent.h and core_mgqtt_agent_command_functions.h.
Documentation for these configurations can be found here.

To provide values for these configuration values, they must be either:
¢ Defined in core_mqtt_ config.h used by coreMQTT OR

* Passed as compile time preprocessor macros

Porting the coreMQTT Agent Library In order to use the MQTT Agent library on a platform,
you need to supply thread safe functions for the agent’s messaging interface.

Messaging Interface Each of the following functions must be thread safe.

2.1. FreeRTOS 215


https://github.com/FreeRTOS/coreMQTT
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/core_mqtt_agent_config.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Function Description
Pointer

MQTTA- A function that sends commands (as MQTTAgentCommand_t * pointers) to be re-
gentMes-  ceived by MQTTAgent CommandLoop. This can be implemented by pushing to a
sage- thread safe queue.

Send_t

MQTTA- A function used by MQTTAgent_ CommandLoop to receive MQTTAgentCommand_ t
gentMes-  * pointers that were sent by API functions. This can be implemented by receiving
sageRecv_1 from a thread safe queue.

MQTTA- Afunction that returns a pointer to an allocated MQTTAgentCommand__t structure,
gentCom- which is used to hold information and arguments for a command to be executed in

mand- MQTTAgent_ CommandLoop(). If using dynamic memory, this can be implemented
Get_t using malloc().
MQT- A function called to indicate that a command structure that had been allocated

TAgent-  with the MQTTAgentCommandGet_t function pointer will no longer be used by
Comman- the agent, so it may be freed or marked as not in use. If using dynamic memory,
dRelease_t this can be implemented with free().

Reference implementations for the interface functions can be found in the reference examples
below.

Additional Considerations

Static Memory If only static allocation is used, then the MQTTAgentCommandGet_ t and MQT-
TAgentCommandRelease_ t could instead be implemented with a pool of MQTTAgentCommand_ t
structures, with a queue or semaphore used to control access and provide thread safety. The
below reference examples use static memory with a command pool.

Subscription Management The MQTT Agent does not track subscriptions for MQTT topics.
The receipt of any incoming PUBLISH packet will result in the invocation of a single MQTTA-
gentIncomingPublishCallback_t callback, which is passed to MQTTAgent_ Init() for initialization.
If it is desired for different handlers to be invoked for different incoming topics, then the pub-
lish callback will have to manage subscriptions and fan out messages. A platform independent
subscription manager example is implemented in the reference examples below.

Building the Library You can build the MQTT Agent source files that are in the source directory,
and add source/include to your compiler’s include path. Additionally, the MQTT Agent library
requires the coreMQTT library, whose files follow the same source/ and source/include pattern as
the agent library; its build instructions can be found here.

If using CMake, the mqttAgentFilePaths.cmake file contains the above information of the source
files and the header include path from this repository. The same information is found for
coreMQTT from mqttFilePaths.cmake in the coreMQTT submodule.

For a CMake example of building the MQTT Agent library with the mqttAgentFilePaths.cmake file,
refer to the coverity analysis library target in test/CMakeLists.txt file.

Building Unit Tests

216 Chapter 2. RTOS


https://github.com/FreeRTOS/coreMQTT#building-the-library

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Checkout CMock Submodule To build unit tests, the submodule dependency of CMock is re-
quired. Use the following command to clone the submodule:

git submodule update --checkout --init --recursive test/unit-test/CMock

Unit Test Platform Prerequisites
* For running unit tests
— C90 compiler like gcc
— CMake 3.13.0 or later

— Ruby 2.0.0 or later is additionally required for the CMock test framework (that we
use).

» For running the coverage target, gcov and lcov are additionally required.

Steps to build Unit Tests

1. Go to the root directory of this repository. (Make sure that the CMock submodule is cloned
as described above)

Run the cmake command: cmake -S test -B build
Run this command to build the library and unit tests: make -C build all

The generated test executables will be present in build /bin/tests folder.

gk W

Run cd build && ctest to execute all tests and view the test run summary.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples Please refer to the demos of the MQTT Agent library in the following
locations for reference examples on FreeRTOS platforms:

Location

coreMQTT Agent Demos
FreeRTOS/FreeRTOS

Documentation The MQTT Agent API documentation can be found here.

Generating documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages yourself, please run the following command from the root
of this repository:

doxygen docs/doxygen/config.doxyfile

Getting help You can use your Github login to get support from both the FreeRTOS community
and directly from the primary FreeRTOS developers on our active support forum. You can find
a list of frequently asked questions here.

2.1. FreeRTOS 217


https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator/MQTT_Multitask
https://freertos.org/Documentation/api-ref/coreMQTT-Agent/docs/doxygen/output/html/index.html
https://forums.freertos.org
https://www.freertos.org/FAQ.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Contributing See CONTRIBUTING.md for information on contributing.

License This library is licensed under the MIT License. See the LICENSE file.

2.1.8 corepkesll

PKCS #11 key management library.

Readme

MCUXpresso SDK: corePKCS11 Library This repository is a fork of PKCS #11 key management
library (https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0)(v3.5.0). Modifications have been
made to adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable corepkes11
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

corePKCS11 Library PKCS #11 is a standardized and widely used API for manipulating com-
mon cryptographic objects. It is important because the functions it specifies allow application
software to use, create, modify, and delete cryptographic objects, without ever exposing those
objects to the application’s memory. For example, FreeRTOS AWS reference integrations use a
small subset of the PKCS #11 API to, among other things, access the secret (private) key neces-
sary to create a network connection that is authenticated and secured by the Transport Layer
Security (TLS) protocol — without the application ever ‘seeing’ the key.

The Cryptoki or PKCS #11 standard defines a platform-independent API to manage and use cryp-
tographic tokens. The name, “PKCS #11”, is used interchangeably to refer to the API itself and
the standard which defines it.

This repository contains a software based mock implementation of the PKCS #11 interface (API)
that uses the cryptographic functionality provided by Mbed TLS. Using a software mock enables
rapid development and flexibility, but it is expected that the mock be replaced by an implemen-
tation specific to your chosen secure key storage in production devices.

Only a subset of the PKCS #11 standard is implemented, with a focus on operations involving
asymmetric keys, random number generation, and hashing.

The targeted use cases include certificate and key management for TLS authentication and code-
sign signature verification, on small embedded devices.

corePKCS11 is implemented on PKCS #11 v2.4.0, the full PKCS #11 standard can be found on the
oasis website.

This library has gone through code quality checks including verification that no function has a
GNU Complexity score over 8, and checks against deviations from mandatory rules in the MISRA
coding standard. Deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. Thislibrary has also undergone both static code analysis from Coverity static analysis
and validation of memory safety through the CBMC automated reasoning tool.

See memory requirements for this library here.
corePKCS11 v3.5.0 source code is part of the FreeRTOS 202210.00 LTS release.
corePKCS11 v3.0.0 source code is part of the FreeRTOS 202012.00 LTS release.

218 Chapter 2. RTOS


https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.gnu.org/software/complexity/manual/complexity.html
https://www.misra.org.uk
https://www.misra.org.uk
https://scan.coverity.com/
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/corePKCS11/tree/v3.5.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/corePKCS11/tree/v3.0.0/source
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202012.00-LTS

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Purpose Generally vendors for secure cryptoprocessors such as Trusted Platform Module
(TPM), Hardware Security Module (HSM), Secure Element, or any other type of secure hard-
ware enclave, distribute a PKCS #11 implementation with the hardware. The purpose of the
corePKCS11 software only mock library is therefore to provide a non hardware specific PKCS
#11 implementation that allows for rapid prototyping and development before switching to a
cryptoprocessor specific PKCS #11 implementation in production devices.

Since the PKCS #11 interface is defined as part of the PKCS #11 specification replacing this li-
brary with another implementation should require little porting effort, as the interface will not
change. The system tests distributed in this repository can be leveraged to verify the behavior
of a different implementation is similar to corePKCS11.

corePKCS11 Configuration The corePKCS11 library exposes preprocessor macros which must
be defined prior to building the library. A list of all the configurations and their default values
are defined in the doxygen documentation for this library.

Build Prerequisites

Library Usage For building the library the following are required:
* A C99 compiler
* mbedcrypto library from mbedtls version 2.x or 3.x.
* pkes11 API header(s) available from OASIS or OpenSC

Optionally, variables from the pkcsFilePaths.cmake file may be referenced if your project uses
cmake.

Integration and Unit Tests In order to run the integration and unit test suites the following
are dependencies are necessary:

* C Compiler
CMake 3.13.0 or later
* Ruby 2.0.0 or later required by CMock.

* Python 3 required for configuring mbedtls.
* git required for fetching dependencies.
* GNU Make or Ninja

The mbedtls, CMock, and Unity libraries are downloaded and built automatically using the cmake
FetchContent feature.

Coverage Measurement and Instrumentation The following software is required to run the
coverage target:

e Linux, MacOS, or another POSIX-like environment.

» A recent version of GCC or Clang with support for gcov-like coverage instrumentation.
* gcov binary corresponding to your chosen compiler

* Icov from the Linux Test Project

» perl needed to run the Icov utility.

Coverage builds are validated on recent versions of Ubuntu Linux.

2.1. FreeRTOS 219


https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Hardware_security_module
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://github.com/ARMmbed/mbedtls
https://github.com/oasis-tcs/pkcs11
https://github.com/OpenSC/libp11/blob/master/src/pkcs11.h
https://github.com/linux-test-project/lcov

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Running the Integration and Unit Tests
1. Navigate to the root directory of this repository in your shell.
2. Run cmake to construct a build tree: cmake -S test -B build

* You may specify your preferred build tool by appending -G'Unix Makefiles' or -GNinja
to the command above.

* You may append -DUNIT__TESTS=0 or -DSYSTEM_ TESTS=0 to disable Unit Tests or
Integration Tests respectively.

3. Build the test binaries: cmake --build ./build --target all

4. Run ctest --test-dir ./build or cmake --build . /build --target test to run the tests without captur-
ing coverage.

5. Run cmake --build ./build —-target coverage to run the tests and capture coverage data.

CBMC To learn more about CBMC and proofs specifically, review the training material here.
The test/cbme/proofs directory contains CBMC proofs.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

Reference examples The FreeRTOS-Labs repository contains demos using the PKCS #11 li-
brary here using FreeRTOS on the Windows simulator platform. These can be used as reference
examples for the library APIL

Porting Guide Documentation for porting corePKCS11 to a new platform can be found on the
AWS docs web page.

corePKCS11 is not meant to be ported to projects that have a TPM, HSM, or other hardware for
offloading crypto-processing. This library is specifically meant to be used for development and

prototyping.

Related Example Implementations These projects implement the PKCS #11 interface on real
hardware and have similar behavior to corePKCS11. It is preferred to use these, over coreP-
KCS11, as they allow for offloading Cryptography to separate hardware.

* ARM’s Platform Security Architecture.
* Microchip’s cryptoauthlib.
* Infineon’s Optiga Trust X.

Documentation

Existing Documentation For pre-generated documentation, please see the documentation
linked in the locations below:

Location

AWS IoT Device SDK for Embedded C
FreeRTOS.org

Note that the latest included version of corePKCS11 may differ across repositories.

220 Chapter 2. RTOS


https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html
https://github.com/FreeRTOS/FreeRTOS-Labs/tree/master/FreeRTOS-Plus/Demo/FreeRTOS_Plus_PKCS11_Windows_Simulator/examples
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/MicrochipTech/cryptoauthlib
https://github.com/aws/amazon-freertos/blob/main/vendors/infineon/secure_elements/pkcs11/iot_pkcs11_trustx.c
https://github.com/aws/aws-iot-device-sdk-embedded-C#releases-and-documentation
https://freertos.org/Documentation/api-ref/corePKCS11/docs/doxygen/output/html/index.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Generating Documentation The Doxygen references were created using Doxygen version
1.9.2. To generate the Doxygen pages, please run the following command from the root of this
repository:

doxygen docs/doxygen/config.doxyfile

Security See CONTRIBUTING for more information.

License This library is licensed under the MIT-0 License. See the LICENSE file.

2.1.9 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

MCUXpresso SDK: FreeRTOS-Plus-TCP Library This repository is a fork of FreeRTOS-Plus-TCP
library (https://github.com/FreeRTOS/freertos-plus-tcp)(4.0.0). Modifications have been made to
adapt to NXP MCUXpresso SDK. CMakeLists.txt and Kconfig added to enable FreeRTOS-Plus-TCP
repo sources build in MCUXpresso SDK. It is part of the MCUXpresso SDK overall delivery which
is composed of several sub-repositories/projects. Navigate to the top/parent repository mcuxsdk-
manifests(https://github.com/nxp-mcuxpresso/mcuxsdk-manifests) for the complete delivery of
MCUXpresso SDK.

Introduction This branch contains unified IPv4 and IPv6 functionalities. Refer to the Getting
started Guide (found here) for more details.

FreeRTOS-Plus-TCP Library FreeRTOS-Plus-TCP is a lightweight TCP/IP stack for FreeRTOS. It
provides a familiar Berkeley sockets interface, making it as simple to use and learn as possi-
ble. FreeRTOS-Plus-TCP’s features and RAM footprint are fully scalable, making FreeRTOS-Plus-
TCP equally applicable to smaller lower throughput microcontrollers as well as larger higher
throughput microprocessors.

This library has undergone static code analysis and checks for compliance with the MISRA cod-
ing standard. Any deviations from the MISRA C:2012 guidelines are documented under MISRA
Deviations. The library is validated for memory safety and data structure invariance through
the CBMC automated reasoning tool for the functions that parse data originating from the net-
work. The library is also protocol tested using Maxwell protocol tester for both IPv4 and IPv6.

Getting started The easiest way to use the 4.0.0 version of FreeRTOS-Plus-TCP is to refer the
Getting started Guide (found here) Another way is to start with the pre-configured demo appli-
cation project (found in this directory). That way you will have the correct FreeRTOS source files
included, and the correct include paths configured. Once a demo application is building and
executing you can remove the demo application files, and start to add in your own application
source files. See the FreeRTOS Kernel Quick Start Guide for detailed instructions and other useful
links.

Additionally, for FreeRTOS-Plus-TCP source code organization refer to the Documentation, and
API Reference.

2.1. FreeRTOS 221


https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://www.misra.org.uk/
https://www.misra.org.uk/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/MISRA.md
https://www.cprover.org/cbmc/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/GettingStarted.md
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/FreeRTOS_Plus_TCP_Minimal_Windows_Simulator
https://www.freertos.org/FreeRTOS-quick-start-guide.html
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_Networking_Tutorial.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_API_Functions.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Getting help If you have any questions or need assistance troubleshooting your FreeRTOS
project, we have an active community that can help on the FreeRTOS Community Support Forum.
Please also refer to FAQ for frequently asked questions.

Also see the Submitting a bugs/feature request section of CONTRIBUTING.md for more details.

Note: All the remaining sections are generic and applies to all the versions from V3.0.0 onwards.

Upgrading to V3.0.0 and V3.1.0 In version 3.0.0 or 3.1.0, the folder structure of FreeRTOS-Plus-
TCP has changed and the files have been broken down into smaller logically separated mod-
ules. This change makes the code more modular and conducive to unit-tests. FreeRTOS-Plus-TCP
V3.0.0 improves the robustness, security, and modularity of the library. Version 3.0.0 adds com-
prehensive unit test coverage for all lines and branches of code and has undergone protocol
testing, and penetration testing by AWS Security to reduce the exposure to security vulnerabili-
ties. Additionally, the source files have been moved to a source directory. This change requires
modification of any existing project(s) to include the modified source files and directories. There
are examples on how to use the new files and directory structure. For an example based on the
Xilinx Zyng-7000, use the code in this branch and follow these instructions to build and run the
demo.

FreeRTOS-Plus-TCP V3.1.0 source code(.c .h) is part of the FreeRTOS 202210.00 LTS release.

Generating pre V3.0.0 folder structure for backward compatibility: If you wish to continue
using a version earlier than V3.0.0 i.e. continue to use your existing source code organization, a
script is provided to generate the folder structure similar to this.

Note: After running the script, while the .c files will have same names as the pre V3.0.0 source,
the files in the include directory will have different names and the number of files will differ as
well. This should, however, not pose any problems to most projects as projects generally include
all files in a given directory.

Running the script to generate pre V3.0.0 folder structure: For running the script, you will need
Python version > 3.7. You can download/install it from here.

Once python is downloaded and installed, you can verify the version from your termi-
nal/command window by typing python --version.

To run the script, you should switch to the FreeRTOS-Plus-TCP directory that was created
using the Cloning this repository step above. And then run python <Path/to/the/script>/
GenerateOriginalFiles.py.

To consume FreeRTOS+TCP

Consume with CMake If using CMaKke, it is recommended to use this repository using Fetch-
Content. Add the following into your project’s main or a subdirectory’s CMakeLists.txt:

 Define the source and version/tag you want to use:

FetchContent_ Declare( freertos_ plus_ tcp
GIT_REPOSITORY https://github.com/FreeRTOS /FreeRTOS-Plus-TCP.git
GIT_TAG master #Note: Best practice to use specific git-hash or tagged version
GIT_SUBMODULES ”” # Don't grab any submodules since not latest

)

* Configure the FreeRTOS-Kernel and make it available

— this particular example supports a native and cross-compiled build option.

222 Chapter 2. RTOS


https://forums.freertos.org
http://www.freertos.org/FAQHelp.html
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/blob/main/.github/CONTRIBUTING.md#submitting-a-bugsfeature-request
https://github.com/aws/amazon-freertos/tree/TCPRefactorDemo
https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_xilinx.html
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/V3.1.0
https://github.com/FreeRTOS/FreeRTOS-LTS/tree/202210.00-LTS
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/f118c8415b4373e3d6e6dbd2d5a116f7eaf27b63
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

set( FREERTOS_PLUS_FAT DEV_SUPPORT OFF CACHE BOOL ”” FORCE)
# Select the native compile PORT
set( FREERTOS_PLUS_FAT PORT ”"POSIX” CACHE STRING ”” FORCE)
# Select the cross-compile PORT
if (CMAKE__CROSSCOMPILING)
# Eg. Zynq 2019 _ 3 version of port
set(FREERTOS_PLUS_FAT_PORT "ZYNQ_ 2019 3” CACHE STRING ”” FORCE)
endif()

FetchContent_ MakeAvailable(freertos_ plus_ tep)

Consuming stand-alone This repository uses Git Submodules to bring in dependent compo-
nents.

Note: If you download the ZIP file provided by GitHub UL, you will not get the contents of the
submodules. (The ZIP file is also not a valid Git repository)

To clone using HTTPS:

git clone https://github.com/FreeRTOS /FreeRTOS-Plus-TCP git ./FreeRTOS-Plus-TCP
cd ./FreeRTOS-Plus-TCP

git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel
Using SSH:

git clone git@github.com:FreeRTOS/FreeRTOS-Plus-TCP.git ./FreeRTOS-Plus-TCP
cd . /FreeRTOS-Plus-TCP
git submodule update --checkout --init --recursive tools/CMock test/FreeRTOS-Kernel

Porting The porting guide is available on this page.

Repository structure This repository contains the FreeRTOS-Plus-TCP repository and a num-
ber of supplementary libraries for testing/PR Checks. Below is the breakdown of what each di-
rectory contains:

* tools

— This directory contains the tools and related files (CMock/uncrustify) required to run
tests/checks on the TCP source code.

* tests

— This directory contains all the tests (unit tests and CBMC) and the dependencies
(FreeRTOS-Kernel/Litani-port) the tests require.

* source/portable

— This directory contains the portable files required to compile the FreeRTOS-Plus-TCP
source code for different hardware/compilers.

source/include
— The include directory has all the ‘core’ header files of FreeRTOS-Plus-TCP source.
* source

— This directory contains all the [.c] source files.

Note At this time it is recommended to use BufferAllocation_2.c in which case it is essential to
use the heap_4.c memory allocation scheme. See memory management.

2.1. FreeRTOS 223


https://git-scm.com/book/en/v2/Git-Tools-Submodules
http://www.FreeRTOS.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/FreeRTOS_TCP_Porting.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/awslabs/aws-build-accumulator
http://www.FreeRTOS.org/a00111.html

MCUXpresso SDK Documentation, Release 25.09.00-pvw1

Kernel sources The FreeRTOS Kernel Source is in FreeRTOS/FreeRTOS-Kernel repository, and
it is consumed by testing/PR checks as a submodule in this repository.

The version of the FreeRTOS Kernel Source in use could be accessed at ./test/FreeRTOS-Kernel
directory.

CBMC The test/cbmc/proofs directory contains CBMC proofs.
To learn more about CBMC and proofs specifically, review the training material here.

In order to run these proofs you will need to install CBMC and other tools by following the in-
structions here.

224 Chapter 2. RTOS


https://github.com/FreeRTOS/FreeRTOS-Kernel
https://model-checking.github.io/cbmc-training
https://model-checking.github.io/cbmc-training/installation.html

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications


	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types


	Document references
	Links
	Documents
	Revision history



	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	Unreleased
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	Unreleased
	Added
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added




	Wireless
	NXP Wireless Framework and Stacks
	Wireless Framework
	Wireless Connectivity Framework
	Supported platforms
	Supported services
	Supported Zephyr modules integration in mcux SDK

	Connectivity framework CHANGELOG
	7.0.3 revA mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 RFP mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revB mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	7.0.2 revA mcux SDK 25.06.00
	Major Changes
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 RFP mcux SDK 25.03.00
	Minor Changes (bug fixes)
	Services
	Platform specific
	7.0.1 revB mcux SDK 25.03.00
	Minor Changes (bug fixes)
	General
	Services
	Platform specific
	7.0.0 mcux SDK 24.12.00
	Minor Changes (bug fixes)
	Platform specific
	Services
	7.0.0 revB mcux SDK 24.12.00
	Major Changes (User Applications may be impacted)
	Bugfixes
	Platform specific
	Minor Changes (no impact on application)
	7.0.0 revA: KW45/KW47/MCX W71/MCX W72/K32W148
	Experimental Features only
	Main Changes
	Minor changes
	Bugfixes
	6.2.4: KW45/K32W1x/MCXW71/RX61x SDK 2.16.100
	Main Change
	Minor changes
	6.2.3: KW47 EAR1.0
	New features
	Supported features
	Unsuported features
	Main changes
	Minor changes
	6.2.2: KW45/K32W1 MR6 SDK 2.16.000
	Changes
	6.2.2: RW61x RFP4 SDK 2.16.000
	6.2.1: KW45/K32W1 MR5 SDK 2.15.000
	Major changes
	Minor Changes
	6.2.1: RW61x RFP3
	6.2.0: RT1060/RT1170 SDK2.15 Major
	6.1.8: KW45/K32W1 MR4
	6.1.7: KW45/K32W1 MR3
	6.1.4: RW610/RW612 RFP1
	6.1.4: KW45/K32W1 MR2
	6.1.3 KW45 MR1 QP1
	6.1.2: RW610/RW612 PRC1
	6.1.1: KW45/K32W1 MR1
	6.1.0: KW45/K32W1 RFP
	6.0.11: KW45/K32W1 PRC3.1

	FSCI: Framework Serial Communication Interface
	Overview
	FSCI packet structure
	constant definition
	FSCI Host
	FSCI ACK
	FSCI usage example
	Initialization
	Registering operation groups
	Implementing handler function

	Helper Functions Library
	Overview

	HWParameter: Hardware parameter
	Production Data Storage
	Overview
	Constant Definitions
	Data type definitions
	Co-locating application factory data in HW Parameters flash sector.
	Special reserved area at start of IFR1 in range [0x02002000..0x02002600[
	HW Parameters Production Data placement options

	LowPower
	Low Power reference user guide
	1- Connectivity Low Power SW architecture
	1.1 - SDK power manager
	1.2 - PWR Low power module
	1.2.1 - Functional description
	1.2.2 - Tickless mode support
	1.3 - Low power platform submodule
	1.4 - Low power board files
	2 - Low power Application user guide
	2.1 - Application Project updates
	2.1.1 - SDK Power Manager
	2.1.2 - PWR connectivity framework module
	2.1.3 -Low power platform submodule
	2.1.4 - Low power board files
	2.1.5 - Application RTOS Idle hook and tickeless hook functions
	2.2 - Low power and wake up sources Initialization
	2.3 - low power entry/exit sequences : board files updates
	2.4 - Low power constraint updates and optimization
	2.4.1 - Changing the Default Application low power constraint after firmware initialization
	2.4.2 - Changing the Application lowest low power constraint during application execution
	2.4.3 - Idle task implementation example
	2.4.3.1 Tickless mode support and Low power entry function
	2.4.3.2 Connectivity background tasks and Idle hook function example
	2. Low power features
	2.1 - FreeRTOS systicks
	2.2 - Selective RAM bank retention
	3 - Low power modes overview
	3.1 Wait for Interrupt (WFI)
	3.2 Sleep mode
	3.2 Deep Sleep mode
	3.3 Power Down mode
	3.4 Deep Power-down mode

	ModuleInfo
	Overview

	NVM: Non-volatile memory module
	Overview
	NVM boundaries and linker script requirement
	NVM Table
	NVM Table entry
	Active page
	ECC Fault detection
	Save policy:
	Constant macro definition

	OtaSupport: Over-the-Air Programming Support
	Overview

	SecLib_RNG: Security library and random number generator
	Random number generator
	Overview
	Initialization
	Seed handling
	Security Library
	Overview
	Support for security algorithms
	BLE advanced secure mode
	New elements in existing structures:
	New arguments in existing functions:
	New macros:
	New functions:
	LE Secure connections pairing:
	void ECDH_P256_FreeDhKeyDataSecure
	SecLib_GenerateBluetoothF5Keys
	SecLib_GenerateBluetoothF5KeysSecure
	SecLib_DeriveBluetoothSKD
	ELKE_BLE_SM_F5_DeriveKeys
	Privacy:
	SecLib_ObfuscateKeySecure
	SecLib_DeobfuscateKeySecure
	SecLib_VerifyBluetoothAh
	SecLib_VerifyBluetoothAhSecure
	SecLib_GenerateSymmetricKey
	SecLib_GenerateBluetoothEIRKBlobSecure
	A2B feature
	ECDH_P256_ComputeA2BKey
	ECDH_P256_FreeE2EKeyData
	SecLib_ExportA2BBlobSecure
	SecLib_ImportA2BBlobSecure
	LE Secure connections Pairing flow and SecLib usage:
	IRK flow and SecLib usage:
	A2B flow and SecLib usage:

	Sensors
	Overview
	Constant macro definitions

	SFC : Smart Frequency Calibration
	Overview
	Host SFC Module
	Algorithm parametrization
	Ppm target
	Filter size
	Maximum calibration interval
	Trig sample number
	SFC debug information
	RF_SFC module
	Feature enablement
	Detailed description
	Frequency measurements
	Filtering and Frequency estimation
	Frequency calibration
	Operational modes
	Convergence mode
	Monitoring mode
	Initialization and configuration
	Lowpower impact
	Power impact during active mode:
	Power impact during low power mode:





	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK
	Overview
	FreeRTOS example applications
	List of examples
	Location of examples
	Building a FreeRTOS example application
	FreeRTOS aware debugger plugin


	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	Changelog FreeRTOS kernel for MCUXpresso SDK
	[Unreleased]
	Added
	[11.1.0_rev0]
	[11.0.1_rev0]
	[10.5.1_rev0]
	[10.4.3_rev1]
	[10.4.3_rev0]
	[10.4.3_rev0]
	[9.0.0_rev3]
	[9.0.0_rev2]
	[9.0.0_rev1]
	[9.0.0_rev0]
	[8.2.3]


	FreeRTOS kernel Readme
	MCUXpresso SDK: FreeRTOS kernel
	Getting started
	Getting help
	To consume FreeRTOS-Kernel
	Consume with CMake
	Consuming stand-alone - Cloning this repository
	Repository structure
	Code Formatting
	Line Endings
	Git History Optimizations
	Spelling and Formatting



	FreeRTOS drivers
	backoffalgorithm
	Readme
	MCUXpresso SDK: backoffAlgorithm Library
	backoffAlgorithm Library
	Reference example
	Building the library
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	Contributing



	corehttp
	MCUXpresso SDK: coreHTTP Client Library
	coreHTTP Client Library
	coreHTTP Config File
	Building the Library
	Building Unit Tests
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing


	corejson
	Readme
	MCUXpresso SDK: coreJSON Library
	coreJSON Library
	Reference example
	Building coreJSON
	Documentation
	Existing documentation
	Generating documentation
	Building unit tests
	Checkout Unity Submodule
	Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Contributing



	coremqtt
	MCUXpresso SDK: coreMQTT Library
	coreMQTT Client Library
	MQTT Config File
	Sending metrics to AWS IoT
	Upgrading to v2.0.0 and above
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Platform Prerequisites
	Steps to build Unit Tests

	CBMC
	Reference examples
	Documentation
	Existing Documentation
	Generating Documentation

	Contributing


	coremqtt-agent
	Readme
	MCUXpresso SDK: coreMQTT Agent Library
	coreMQTT Agent Library
	Cloning this repository
	coreMQTT Agent Library Configurations
	Porting the coreMQTT Agent Library
	Messaging Interface
	Additional Considerations
	Static Memory
	Subscription Management
	Building the Library
	Building Unit Tests
	Checkout CMock Submodule
	Unit Test Platform Prerequisites
	Steps to build Unit Tests
	CBMC
	Reference examples
	Documentation
	Generating documentation
	Getting help
	Contributing
	License



	corepkcs11
	Readme
	MCUXpresso SDK: corePKCS11 Library
	corePKCS11 Library
	Purpose
	corePKCS11 Configuration
	Build Prerequisites
	Library Usage
	Integration and Unit Tests
	Coverage Measurement and Instrumentation
	Running the Integration and Unit Tests
	CBMC
	Reference examples
	Porting Guide
	Related Example Implementations
	Documentation
	Existing Documentation
	Generating Documentation
	Security
	License



	freertos-plus-tcp
	Readme
	MCUXpresso SDK: FreeRTOS-Plus-TCP Library
	Introduction
	FreeRTOS-Plus-TCP Library
	Getting started
	Getting help
	Upgrading to V3.0.0 and V3.1.0
	Generating pre V3.0.0 folder structure for backward compatibility:
	To consume FreeRTOS+TCP
	Consume with CMake
	Consuming stand-alone
	Porting
	Repository structure
	Note
	Kernel sources
	CBMC






