- W& MCUXpresso SDK Documentation
Release 25.12.00

NXP

Dec 18, 2025 -

Table of contents

1 Middleware 3
1.1 BOOU . .t e e e e e e e e e 3
1.1.1 MCUZXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3

1.1.2 MCUDOOL. . o vt et e e e e e e e e e e e e e e e e 4

1.2 CONMECtiVILY v ittt e et e e e e e e e e e e e e e e e e 5
121 IWIP. . o e 5

1.3 el . oo e e e e 6
131 elQ . oot e e e e e 6

1.4 File System it e e e e e e e e e e e e e e e e e 35
141 FatFs o e e e e e e e e e e 35

1.5 Motor Control o e e e e e e e e 37
1.5.1 FreeMASTER e e 37

1.6 MUultiCore o ot e e e e e e e e e e e e 74
1.6.1 Multicore SDK i e e e e e e e e 74

1.7 Multimediao e e e e e e e e e e e e 172
171 Audio VOICE o it e e e e e e e e e e 172

1.7.2 VGLite GraphicsDriver. i 248

1.8 Wireless . . . o o ot e e e 338
1.8.1 NXP Wireless Frameworkand Stacks 338

1.8.2 EdgeFastBluetooth i iee.. 383

2 RTOS 459
2.1 FreeRTOS o e e e e e 459
2.1.1 FreeRTOSKkernel i e e et e it e 459

2.1.2 FreeRTOS Arivers it ittt it e it e et e it e e e 459

2.1.3 backoffalgorithm 459

214 corehttp e 459

215 COTEJSOM . . o v it e e e e e e e e 459

2.6 coremqtt. v i e e e e e e e e e e e e e e e e e e e 460

2.1.7 corepResIl e e e e e e 460

2.1.8 freertos-plus-tCp o ot i i e 460

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the evkbimxrt1050 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

{) Mynewt failing {) Espressif [passing
{) imgtool 'Passing License: Apache 2.0

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

* Zephyr

* Apache Mynewt
* Apache NuttX

* RIOT

Mbed OS

» Espressif

* Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

* Zephyr

* Apache Mynewt
* Apache NuttX

* RIOT

* Mbed OS

» Espressif

* Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.12.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

* boot/bootutil - The core of the bootloader itself.

boot/boot_serial - Support for serial upgrade within the bootloader itself.

boot/zephyr - Port of the bootloader to Zephyr.

* boot/mynewt - Bootloader application for Apache Mynewt.

* boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.
* boot/mbed - Port of the bootloader to Mbed OS.

* boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

* boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

* imgtool - A tool to securely sign firmware images for booting by MCUboot.

* sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!
Use the following links to join or see more about the project:
* Our developer mailing list

* Our Discord channel Get your invite

1.2 Connectivity

1.2.1 1wIP

This is the NXP fork of the IwIP networking stack.
» For details about changes and additions made by NXP, see CHANGELOG.
* For details about the NXP porting layer, see The NXP IwIP Port.

» For usage and API of IwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP IwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is Iwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

1.2. Connectivity)

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.12.00

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for IwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif probe_ link() which reads those data from
PHY and forwards them into IwIP stack.

In almost all examples this function is called every ETH_LINK_ POLLING_ INTERVAL_MS
(1500ms) by a function probe_ link_cyclic().

By setting ETH LINK_ POLLING INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_ cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX TASK STACK_ SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH DO_RX IN_SEPARATE TASK macro to 0.

Disabling Rx interrupt when out of buffers If ETH_ DISABLE_RX_INT WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH._MAX_ RX_PKTS_ AT ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

* ethernetif wait_ linkup()- Blocks until the link on the passed netif is not up.

* ethernetif_wait_linkup_ array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif wait_ipv4_ valid() does this.

1.3 elQ

1.3.1 elQ

6 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

elQ TensorFlow Lite for Micro Library User Guide

* Overview
» TensorFlow Lite for Microcontrollers
* Build Status
— Official Builds
— Community Supported TFLM Examples
— Community Supported Kernels and Unit Tests

* Contributing

Getting Help

Additional Documentation
* RFCs

Overview TensorFlow Lite is an open source software library for running machine learning
models on mobile and embedded devices. For more information, see www.tensorflow.org/lite.

For memory constrained devices, the library contains TensorFlow Lite for Microcontrollers. For
more information, see www.tensorflow.org/lite/microcontrollers.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated TensorFlow Lite for Microcontrollers based on version 25-
04-08 (from the 8th of April 2025 with commit). This document describes the steps required to
download and start using the library. Additionally, the document describes the steps required
to create an application for running pre-trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

TensorFlow Lite for Microcontrollers TensorFlow Lite for Microcontrollers is a port of Ten-
sorFlow Lite designed to run machine learning models on DSPs, microcontrollers and other de-
vices with limited memory.

Additional Links:
» Tensorflow github repository

* TFLM at tensorflow.org

Build Status
» GitHub Status

Official Builds

Build Type Status

{) R - i
CI (Linux) _J Run-Cl passing

{") Sync from Upstream TF passing

Code Sync

1.3. elQ 7

http://www.tensorflow.org/lite
https://github.com/tensorflow/tflite-micro/commit/bc68d362d6f3ac93ce11d8712974d05b1d6a8305
https://github.com/tensorflow/tensorflow/
https://www.tensorflow.org/lite/microcontrollers
https://www.githubstatus.com/
https://github.com/tensorflow/tflite-micro/actions/workflows/run_ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/sync.yml

MCUXpresso SDK Documentation, Release 25.12.00

Community Supported TFLM Examples This table captures platforms that TFLM has been
ported to. Please see New Platform Support for additional documentation.

Platform Status

I "no status Arduino examples tests [no status
TFLM + EdgeTPU Examples for Coral Dev Board Micro

Arduino
Coral Dev Board Micro

Espressif ~ Systems Dev Cl passing

Boards

Renesas Boards TFLM Examples for Renesas Boards
Silicon Labs Dev Kits TFLM Examples for Silicon Labs Dev Kits
Sparkfun Edge Cl
Texas Instruments Dev
Boards

Community Supported Kernels and Unit Tests This is a list of targets that have optimized
kernel implementations and/or run the TFLM unit tests using software emulation or instruction
set simulators.

Build Type Status
Cortex-M Cortex-M Fpassing
Hexagon F!.IJFI H'.-_":ill:agl:ln FI-E_:S”"Q
RISC-V RISC-V [passing
Xtensa

Generate Integration Tests passing

Generate Integration Test

Contributing See our contribution documentation.

Getting Help A Github issue should be the primary method of getting in touch with the Ten-
sorFlow Lite Micro (TFLM) team.

The following resources may also be useful:

1. SIG Micro email group and monthly meetings.

2. SIG Micro gitter chat room.

3. For questions that are not specific to TFLM, please consult the broader TensorFlow project,

e.g.:

* Create a topic on the TensorFlow Discourse forum
* Send an email to the TensorFlow Lite mailing list
* Create a TensorFlow issue

* Create a Model Optimization Toolkit issue

8 Chapter 1. Middleware

https://github.com/tensorflow/tflite-micro-arduino-examples/actions/workflows/ci.yml
https://github.com/antmicro/tensorflow-arduino-examples/actions/workflows/test_examples.yml
https://coral.ai/products/dev-board-micro
https://github.com/google-coral/coralmicro
https://github.com/espressif/tflite-micro-esp-examples/actions/workflows/ci.yml
https://github.com/renesas/tflite-micro-renesas
https://github.com/SiliconLabs/tflite-micro-efr32-examples
https://github.com/advaitjain/tflite-micro-sparkfun-edge-examples/actions/workflows/ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/cortex_m.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_hexagon.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/riscv.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_xtensa.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/generate_integration_tests.yml
https://github.com/tensorflow/tflite-micro/issues/new/choose
https://groups.google.com/a/tensorflow.org/g/micro
http://doc/1YHq9rmhrOUdcZnrEnVCWvd87s2wQbq4z17HbeRl-DBc
https://gitter.im/tensorflow/sig-micro
https://discuss.tensorflow.org
https://groups.google.com/a/tensorflow.org/g/tflite
https://github.com/tensorflow/tensorflow/issues/new/choose
https://github.com/tensorflow/model-optimization

MCUXpresso SDK Documentation, Release 25.12.00

Additional Documentation
* Continuous Integration
* Benchmarks
* Profiling
* Memory Management
* Logging
* Porting Reference Kernels from TfLite to TFLM

* Optimized Kernel Implementations

New Platform Support

Platform/IP support

— Arm IP support
* Software Emulation with Renode
* Software Emulation with QEMU
» Python Dev Guide
» Automatically Generated Files

* Python Interpreter Guide

RFCs
1. Pre-allocated tensors

2. TensorFlow Lite for Microcontrollers Port of 16x8 Quantized Operators

Deployment The eIQ TensorFlow Lite for Microcontrollers library is part of the eIQ machine
learning software package, which is an optional middleware component of MCUXpresso SDK.
The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on
mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso SDK package, the
elQ middleware component is selected in the software component selector on the SDK Builder
page when building a new package. See Figure 1.

1.3. eIQ 9

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

< [& mcuxpresso.nxp.com/en/builder

NXO MCUXpress K Builder

A SDK Dashboard SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.
GENERAL

Developer Environment Settings

I & Select Board Selections here will impact files and examples projects included in the 30K and Generated Projects

Q Explore Toolchain / IDE Host 0S

All toolchains ~ Windows -
ADMIMISTRATION

A Notifications Embedded real-time operating system

Bare-iMetal -
0 Preferences
Filter by Name, Category, or Descriptior Select All Unselect All
DOWNLOADS
- Name * Category® Description Dependencies
@ MCUXpresso IDE gory P P
&& MCUXpresso C_MSIS DsSP ClﬂSIS CMSIS DSF’
Config Tools Library DSP Lib Software Library
B Ofiine data |:| canopen Middleware canopen library
@ MCUXpresso elQ machine
Secure Provisioning lzarning SDK
Tool : containing: - ARM
el Middleware CMSIS-NN library
(neural network
INTERNAL kern... (more)
i Deployed Releases 0 Embedded Middieware | EMbedded Wizard
Wizard GUI GUI
? Hardware in Releases
') emin graphics
; i emwin Middleware
L Analytics D library
FAT File System
[FatFs Middleware . | Y v

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2. The eIQ TensorFlow Lite library directories
are highlighted in red.

10 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

SDK_2_15_000_EVKB-IMXRT1050
boards
evkbimxrt1050
cmsis_driver_examples
component_examples
demo_apps
driver_examples
elg_examples
deepviewrt_camera_label_image
deepviewrt_image_detection
deepviewrt_labelimage
glow_cifar10
glow_cifar10_camera
glow_lenet_mnist
glow_lenet_mnist_camera
tfim_cifar10
tfim_kws
tfim_label_image
tfim_lib
littlefs_examples
lwip_examples
project_template
sdmme_examples
Xip
CMSIS
components
devices

docs

middleware
bm
cjson
eiq
deepviewrt
doc
glow
mpp
tensorflow-lite
lib
signal
tensorflow

third_party

1.3. elQ

11

MCUXpresso SDK Documentation, Release 25.12.00

MIMXRT700-EVK
arch
boards
mimxrt700evk
eiq_examples
mpp_static_Limage_mobilenet_view
mpp_static_image_ultraface_view_tflm
tflm_cifar10
tflm_cifar10_hifi4
tflm_lows
tfim_label_image
tflim_label_image_ext_mem
tfim_label_image_hifi4
tflm_lib
tflm_modelrunner
flash_config
project_template
CMSIS
components
devices
docs
merged_data
middleware
aws_iot
bm
dsp
eig
doc
mpp
tensorflow-lite
lib
signal
tensorflow
third_party
cmsis_nn
fft2d
flatbuffers
gemmlowp
kissfft
neutron
commaon
driver
rt700
ruy

xa nnlib hifi4

12

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the elQ library source code and example application source code and data.

Example applications The elQ TensorFlow Lite library is provided with a set of example appli-
cations. For details, see Table 1. The applications demonstrate the usage of the library in several

use cases.

Name Description Availability
tflm_ ¢ CIFAR-10 classification of 32 x 32 RGB pixel im- MCX-N947-EVK (no camera and
ages into 10 categories using a small Convolu- display support) MCX-N947-

tional Neural Network (CNN).

FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_1 Keyword spotting application using a neural net- MCX-N947-EVK (no audio sup-
work for word detection in pre-processed audio port) MCX-N947-FRDM (no audio
input. support) MCX-N547-EVK (no au-
dio support) MIMXRT700-EVK (no
audio support)
tflm_1 Image recognition application using a MobileNet MCX-N947-EVK (no camera and
model architecture to classify 128 x 128 RGB pixel display support) MCX-N947-
imagesinto 1000 categorieswith eIQ Neutron NPU. FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)
tflm_1 Image recognition application using a MobileNet MIMXRT700-EVK (no camera and
model architecture to classify 224 x 224 RGB pixel display support)
images into 1000 categorieswith eIQ Neutron NPU.
In this example, it demonstrates how to fetch
model’s weight from external memory(xSPI flash)
to internal SRAM for Neutron NPU execution.
tflm_ ¢ CIFAR-10 classification of 32 x 32 RGBpixel images MIMXRT700-EVK (no camera and
into 10 categories using a small Convolutional display support)
Neural Network. In this example, M33 core0 starts
HiFi4 DSP core with HiFi4 DSP image. HiFi4 DSP
does the inference for CIFAR-10 classification.
tflm_1 Image recognition application using a MobileNet MIMXRT700-EVK (no camera and

model architecture to classify 128 x 128 RGB pixel
images into 1000 categories. In this example, M33
coreO starts HiFi4 DSP core with HiFi4 DSP image.
HiFi4 DSP does the inference for image recogni-
tion application.

display support)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG). When using
MCUZXpresso IDE, the example applications can be imported through the SDK Import Wizard as
shown in Figure 1.

1.3. eIQ 13

MCUXpresso SDK Documentation, Release 25.12.00

3 soK Import Wizard

(1) You have selected 1 project to impert: "evkmimxrt1170_tflm_label_image_cm7".

=

. Import projects

Project name prefic | evkmirmert1170

* | Project name suffi:

[] Use default location

Location: | Chnxp

Browse

Project Type
C Project (@) C++ Project C Static Library

Project Options

-+ Static Library SDK Debug Console @) Semihost (J) UART
[JCopy sources
Import other files

Example default

Examples 2T | M 3/* | =
| |
Marne Description Yersion 2

v [m] £ eig_examples

[= deepviewrt_camera_label_image_cm7 DeepViewRT Camera Label Image example shows the demon...

[0 = deepviewrt_image_detection_cm7 DeepViewRT Image Detection example shows the demonstra...

[] = deepviewrt_labelimage_cm7 DeepViewRT Labellmage is as a basic "labelimage” example f...

[= glow_cifarl0_camera_cm7 Cifar10 example for Glow with camera and LCD

[] = glow_lenet_mnist_camera_cm7 Lenet MNIST example for Glow with camera and LCD

[= glow_lenet_mnist_cm7 LeMet MMIST example for Glow MM compiler

[= tflm_cifarl0_em7 CIFAR-10 example for TensorFlow Lite Micro

[= tfim_kws_cm7 Keyword spotting example for TensorFlow Lite Micro

& tfim_label_image_cm7 Label image example for TensorFlow Lite Micro

[1 = tflm_multicore_cméd elC multicore for TensorFlow Lite Micro Keyword spotting ex...

[= tflm_multicore_cm7 : Linked to: tflm_multicore_cr elQ multicore for TensorFlow Lite Micro Label image example ¥
@ Mext = Cancel

14

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

. Import projects

Project name prefix: ‘mimxr‘tTDDevk * | Project name suffix:

Use default location

CAUsers\nxa22946\Documents\MCUXpressolDE_11.10.0_3088_alpha\workspace\mimxrt700evk Browse...
Project Type Project Options
C Project C++ Project C Static Library C++ Static Library SDK Debug Console . Semihost UART Example default

Copy sources
Import other files

Examples £ | % | =

|t;me to filter ‘

MName Description Version 2
» [] £ dsp_examples
~ [] E eig_examples
[] = mpp_static_image_mobilenet_view_tflm Object classification with TensorFlow Lite Micro Example
[= tfim_cifar10 CIFAR-10 example for TensorFlow Lite Micro
[] = tfim_cifar10_hifi4_cm33 CIFAR-10 example for TensorFlow Lite Micro
[= tfim_kws Keyword spotting example for TensorFlow Lite Micro
[1 = tfim_label_image Label image example for TensorFlow Lite Micro
|:| tflm_label_image_hifi4_cm33 Label image example for TensorFlow Lite Micro
[= tfim_lib Library build of TensorFlow Lite Micro
[] £ els_pkc_examples
[€ emwin_examples
[] € ezhv_examples
[E freertos_examples
[] E littlefs_examples
[1 E Ival examples ¥
@- < Back Next > Finish Cancel

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 2 shows the output of the tlm_ label_image_cm7" *tflm_ label_image
example application printed to the MCUXpresso IDE Console window when semihosting debug
console is selected in the SDK Import Wizard.

[Install.. [Propert... [® Proble.. & Console 3 @Terminal g Image ... EDEbug... =, Offline ... = 8

] | &R EFE =B -0~
evkmimxrt1170_tflm_label_image_cm7 LinkServer Release [C/C++ (NXP Semiconductors) MCU Application]
[MCUXpresso Semihosting Telnet console for 'evkmimxrtl117@ tflm label image cm7 LinkServer Releasta

Label image example using a TensorFlow Lite Micro model.
Detection threshold: 23%
Model: mobilenet_vl @.25 123 quant_int3

Static data processing:

Inference time: 44 ms
Detected: stopwatch (87%)

Camera data processing:

Data for inference are ready

Inference time: 45 ms
Detected: No label detected (@8%)

1.3. eIQ 15

MCUXpresso SDK Documentation, Release 25.12.00

Label unage example uswng a TensorFlow Lite Micro model.
Detection threshold: 23%
Model: mobilenet v1 0.25 128 quant_int8 npu

Static data processing:

Inference time: 3987 us
Detected: stopwatch (87%)

Model Conversion to TensorFlow Lite Format The eIQ® Toolkit provides a comprehensive
end-to-end environment for machine learning (ML) model development and deployment. De-
signed for NXP EdgeVerse processors, the toolkit includes both an intuitive GUI-based tool (eIQ
Portal) and command-line utilities for advanced workflows.

One key component, the eIQ ModelTool, enables seamless conversion of ML models from pop-
ular formats such as TensorFlow, PyTorch, and ONNX into the TensorFlow Lite (TFLite) format.
These converted models can be further optimized and deployed on NXP platforms for inference
acceleration.

Model Conversion for NXP eIQ Neutron NPU To leverage the NXP eIQ Neutron NPU for hard-
ware acceleration, models must undergo additional processing using the Neutron Converter
Tool. This tool transforms standard quantized TensorFlow Lite models into a format optimized
for execution on the Neutron NPU.

The key steps involved in this process are as follows:

1. Convert to Quantized TensorFlow Lite Model: Ensure the model is in a quantized TFLite
format before running the Neutron Converter.

2. Run the Neutron Converter Tool: The Neutron Converter analyzes the TFLite model, iden-
tifies supported operators, and replaces them with specialized NPU-compatible nodes. Un-
supported operations are executed using fallback mechanisms, such as:

* CMSIS-NN for optimized CPU execution
» Reference Operators for unsupported cases

3. Execute on Target Platform: The converted model runs efficiently on the Neutron NPU using
a custom TFLite Micro-operator implementation.

Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU The following
is a sample command-line invocation for the Neutron Converter tool:

neutron-converter —-input mobilenet_ vl_0.25 128 quant.tflite \
--output mobilenet_v1_0.25 128 quant_npu.tflite \
—-target imxrt700 \
--dump-header-file-output

Note: This will convert the source tflite model to neutron compatable model, meanwhile, it will

dump the model as one headfile name as “mobilenet_v1_0.25_128_quant_npu.h”.

Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE This section lists the
steps to Prepare CM33 Core for the examples and Prepare DSP core for the examples.

16 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prepare CM33 Core for the examples

1. The tfim_ cifar10_hifi4 and tAm_ label image hifi4 examples consist of two separate applica-
tions that run on the CM33 core0 and DSP core. The CM33 core0 application initializes the
DSP core and starts it.

To debug the application:
1. Set up and execute the CM33 application using an environment of your choice.
2. Build and execute the examples located in:
<SDK_ROOT> /boards/mimxrt700evk/eiq examples/tflm_cifar10_hifi4/cm33/
<SDK_ROOT>/ boards/mimxrt700evk/eiq examples/tflm_label image hifi4/cm33/

2. The tfim_ cifar10_hifil example consists of three separate applications that run on the CM33
core0, CM33 corel, and DSP core. The CM33 core0 application initializes the CM33 corel
core and starts it. The CM33 corel application initializes the DSP core and starts it.

To debug the application:
1. Set up and build the CM33 corel application using an environment of your choice.
2. Set up and execute the CM33 core0 application using an environment of your choice.
3. Build and execute the example located in:
<SDK__ROOT> /boards/mimxrt700evk/eiq_examples/tflm_ cifar10_hifil/cm33_corel/
<SDK_ROOT> /boards/mimxrt700evk/eiq examples/tflm_ cifar10_hifil/cm33_ core0/

Note: ARMGCC toolchain and IAR Embedded Workbench are both supported. To en-
able compatibility with RT700, IAR Embedded Workbench may require a patch. There
are default DSP core images in the SDK. For details on how to build the examples, refer
to Prepare DSP core for the examples.

Parent topic:Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE

Prepare DSP core for the examples The projects for different supported toolchains are built.
The “xcc” project builds on the command line and the “xtensa” directory is an Xplorer IDE
project.

To run the tflm_ cifar10_ hifi4 example, import the SDK sources into the Xplorer IDE.

1. Select File > Import > General > Existing Projects into Workspace.

1.3. elQ 17

MCUXpresso SDK Documentation, Release 25.12.00

Import O X
Select \g
Create new projects from an archive file or directory. H

Select an import wizard:

type filter text

v = General
A& Archive File
1-# Existing Projects into Workspace
(2 File System
[l Preferences
2 Projects from Folder or Archive
> = Install
> = Run/Debug
» = Team
v [= Xtensa Xplorer
& Import Xtensa Xplorer Workspace

@ < Back MNext = Finish Cancel

2. Click Next.

3. Select the SDK directory/boards/mimxrt700evk/eiq_examples/tflm_ cifar10_ hifi4/hifi4/xtensa
as the root directory.

18 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

eiq examples > tflm cifar10_hifi4 > hifi4

1%

N B

binary
doc
gdbio
min-rt
source
XCC

xtensa

L I 4

4. Click Select Folder.

5. Leave all the other options check boxes blank.

1.3. eIQ 19

MCUXpresso SDK Documentation, Release 25.12.00

Import O >
Import Projects "":
Select a directory to search for existing Eclipse projects. : d
@ Select root directory: |C:\Users\ \Downloads\bo. - Browse...
() Select archive file: Browse...
Projects:
tflm_cifar10_hifi4 (C:\Users\ \Downloads\board | Select All
Deselect All
Refresh
< >
Options

[_]Search for nested projects

[_| Copy projects into workspace

[_]Close newly imported projects upon completion
[Hide projects that already exist in the workspace

Working sets

[_] Add project to working sets New...
Select...
@:} = Back Next = Finish Cancel

Once imported, the tfim_cifar10_hifi4 example appears in the Project Explorer.

6. To make a build selection for the project and hardware target configuration, use the drop-
down buttons on the menu bar.

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

workspace - Xtensa Xplorer
File Edit Source Refactor Navigate Search Project Run Tools Window Help

g w03 % B InstruMode: None v P:tflm_cifar10_hifi4 ¥ C:rt700_hifi4 RI23_11 nlib ¥ T:Release ¥ Build Active ¥ . Run +

&5 Project Explarer &2 BT § =0

0 dsp_hello_world_usart_hifi4
B< Helloworld
~ B tflm_cifar10_hifi4
¥ Binaries
& Includes
= bin
e board
(= component
n device
& drivers
= eiq
(& source
& utilities
& Makefile
= Makefile.include
= tflm_cifar10_hifi4 debug jlink.launch

7. To build the DSP application image for the CM33 application, select the Release target op-
tion in the Xplorer IDE as below.
h Project Run Tools Window Help
r P:tflm _cifar10_hifi4 ~ C:rt700 hifi4 RI23 11 nlib > T:Release ¥ Build Active ¥ . Run ~ Profile

Build Active
Clean Active
Rebuild Active

Compare Active

8. Three DSP binaries are generated and are loaded into different TCM or SRAM address seg-
ments:

* <SDK_ROOT/>/boards/mimxrt700evk/eiq examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_data_ release.bin

* <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm__ cifar10_hifi4 /hifi4/binary/
dsp_ literal release.bin

* <SDK_ ROOT/>/boards/mimxrt700evk/eiq examples/tflm cifar10_hifi4/hifi4 /binary/
dsp__text_ release.bin

Parent topic:Run and debug eIQ HiFi4 and HiFil DSP examples using Xplorer IDE

Running an inference After converting the model to the TensorFlow Lite format, it is con-
verted into a C language array to include it in the application source code. The xxd utility
can be used for this purpose (distributed with the Vim editor for many platforms on https:
/[www.vim.org/) as shown in Converting a model to a C language header file. The utility con-
verts a TensorFlow Lite model into a C header file with an array definition containing the binary
image of the model and a variable containing the data size.

Converting a model to a C language header file {#fEXAMPLE 4 .section}
xxd -i mobilenet_ vl _0.25 128 quant.tflite > mobilenet v1 0.25 128 quant_ model.h

1.3. elQ 21

https://www.vim.org/
https://www.vim.org/

MCUXpresso SDK Documentation, Release 25.12.00

After the header file is generated, the type of the array is changed from unsigned char to const
char to match the library API input parameters and the default array name can be changed to a
more convenient one. The user must align the buffer to at least 64-bit boundary (the size of a
double-precision floating-point number) to avoid misaligned memory access. The alignment can
be achieved by using the ALIGNED(16) macro from the cmsis_ compiler.h header file (available
in the MCUXpresso SDK) in the array declaration before the data assignment.

The easiest way to create an application with the proper configuration is to copy and modify an
existing example application. To learn where to find the example applications and how to build
them, see the Example applications.

Running an inference using TensorFlow Lite for Microcontrollers involves several steps (shown
for quantized model with signed 8-bit values as input and 32-floating point values as output):

1. Include the necessary eIQ TensorFlow Lite Micro library header files and the converted

model.
Including header files
#include "tensorflow/lite/micro/micro_error reporter.h”

#include tensorflow/lite/micro/micro_interpreter.h”
#include tensorflow/lite/micro/all_ops_ resolver.h”
#include "mobilenet_v1_0.25 128 quant_ model.h”

2. Allocate a static memory buffer for input and output tensors and intermediate arrays.
Load the FlatBuffer model image (assuming the mobilenet_v1_0.25 128 quant_model.h file
generated in Converting a model to a C language header file defines an array named mo-
bilenet_model and a size variable named mobilenet_model_len), build the interpreter ob-
ject and allocate memory for tensors.

Loading the FlatBuffer model

constexpr int kTensorArenaSize = 1024 * 1024;

static uint8 t tensorArenalkTensorArenaSize];

const tflite::Model™ model = tflite:: GetModel(mobilenet model);

// TODO: Report an error if model->version() !|= TFLITE SCHEMA VERSION

static tflite:: AllOpsResolver microOpResolver;

static tflite::MicroErrorReporter microErrorReporter;

static tflite::Microlnterpreter interpreter(model,
microOpResolver, tensorArena, kTensorArenaSize,
microErrorReporter);

interpreter->AllocateTensors();

// TODO: Check return value for kTfLiteOk

3. Fillhe input data into the input tensor. For example, if a speech recognition model, image
data from a camera or audio data from a microphone. The dimensions of the input data
must be the same as the dimensions of the input tensor. These dimensions were specified
when the model was created.

Fill-in input data

// Get access to the input tensor data

TfLiteTensor* inputTensor = interpreter->input(0);

// Copy the input tensor data from an application buffer

for (int i = 0; i < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input_ datali];

4. Run the inference and read the output data from the output tensor. The dimensions of the
output data must be the same as the dimensions of the output tensor. These dimensions
were specified when the model was created.

Running inference and reading output data

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

// Run the inference

interpreter->Invoke();

// TODO: Check the return value for TfLiteOk

// Get access to the output tensor data

TfLiteTensor™ outputTensor = interpreter->output(0);

// Copy the output tensor data to an application buffer

for (int i = 0; i < outputTensor->bytes / sizeof(float32); i++)
output_ data[i] = outputTensor->data.f[i];

NPU inference {#npu_infer .section} Running an inference using a model converted for the
NPU requires registration of a custom operator implementation. First the header file with the
custom operator implementation interface must be included.

#include "tensorflow/lite/micro/kernels/micro_ops.h”
#include tensorflow/lite/micro/all_ops_ resolver.h”
#include "tensorflow/lite/micro/kernels/neutron/neutron.h”

Next, the specialized implemetation has to be registered in the operator resolver object.

static tflite:: AllOpsResolver microOpResolver;
microOpResolver.AddCustom (tflite:: GetString. NEUTRON__GRAPH(),
tflite::Register NEUTRON__GRAPH());

The specialized NPU nodes from the converted model are the executed using this newly regis-
tered implementation.

Adjusting the tensor arena size {#adjust_arena .section} The tensor arena isa static memory
buffer used for intermediate tensor and scratch buffer allocation. The size of the tensor arena
buffer is set by the kTensorArenaSize constant in the example above. The value depends on the
tensor sizes used in the model and on the hardware-specific implementations of kernels, which
may require various sizes of scratch buffers for intermediate computations. The value can be
determined experimentally by running an inference with a small value, so the library fails with
an insufficient tensor memory error and prints the missing amount. Continue adjusting the size
until the error stops being reported. If the target hardware changes, readjust the value.

Code size optimization Typically, models do not use all the operators that are available in
TensorFlow Lite. However, because of the default operator registration mechanism used in the
library, the toolchain linker is not able to remove the code of unused operators. In order to reduce
code size, it is possible to only register the specific operators used by a model. To determine
which operators are used by a particular model, a model visualizer tool like Netron can be used.
Then a mutable operator resolver object can be created that only registers the operators that are
used by the model being inferenced.

Use the tflite::MicroMutableOpResolver object template, which is later passed to the
tflite::MicroInterpreter object. Depending on the list of used operators, the result should be
similar to the following code snippet. Make sure to update the MicroMutableOpResolver
template parameter to reflect the number of operators that need to be registered.

Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

#include “tensorflow/lite/micro/kernels/micro_ ops.h”
#include "tensorflow /lite/micro/micro_mutable_op_ resolver.h”
tflite::MicroMutableOpResolver<6> microOpResolver;
microOpResolver. Add AveragePool2D();
microOpResolver. AddConv2D();
microOpResolver. AddDepthwiseConv2D();

(continues on next page)

1.3. elQ 23

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
microOpResolver. AddDequantize();
microOpResolver. AddReshape();
microOpResolver. AddSoftmax();
static tflite::Microlnterpreter interpreter(
model, microOpResolver, tensorArena, kTensorArenaSize, microErrorReporter);

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

elQ ExecuTorch Library User Guide

Overview ExecuTorch is an end-to-end solution for enabling on-device inference capabilities
across mobile and edge devices including wearables, embedded devices and microcontrollers.
It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to
edge devices. For more information, see https://pytorch.org/executorch-overview.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated ExecuTorch based on version v1.0.0 which includes the Neu-
tron Backend. Neutron Backend enables acceleration of ML models on the eIQ® Neutron Neural
Processing Unit (NPU).

This document describes the steps required to download and start using the ExecuTorch. Ad-
ditionally, the document describes the steps required to create an application for running pre-
trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

Supported platforms:
* L.MX RT700

24 Chapter 1. Middleware

https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/products/i.MX-RT700

MCUXpresso SDK Documentation, Release 25.12.00

Installation The ExecuTorch, with the Neutron Backend consists of:
» ExecuTorch with Neutron Backend for Ahead of Time ML Model Compilation
* Neutron Converter
* MCUXpresso SDK

Here we briefly describe each components purpose and steps to install them.

The ExecuTorch AoT and Neutron Converter are needed to convert a PyTorch model to Execu-
Torch and Delegate it to eIQ Neutron NPU using the Neutron Backend. The MCUXpresso SDK
provides project to build the ExecuTorch Runtime Library, the example application with simple
CNN, toolchains and other middleware libraries to build and deploy the application on the target
platform.

If you want run to prepared example application on the i MX RT700 platform, and skip the model
preparation phase continue with the MCUXpresso SDK Part.

ExecuTorch for Ahead of Time model preparation The ExecuTorch enables to deploy Py-
Torch models on edge devices. For this purpose the PyTorch model must be processed and con-
verter by the ExecuTorch Ahead of Time (AoT) part. You can obtain the full ExecuTorch including
the AoT part aligned with this version of MCUX SDK from the mcuxsdk-middleware-executorch
release/mcux-full branch.

Installation Prerequisities:
* x86 Linux Machine with GLIBC-2.29 or higher (e.g. Ubuntu 20.04 or higher)
* Python 3.10, 3.11 or 3.12

To build and install the ExecuTorch follow these steps:

1. (Optional) Setup python virtual environment on desired location and activate it.

$ python3 -m venv venv
$ source venv/bin/activate

2. Clone the ExecuTorch from mcuxsdk-middleware-executorch

$ git clone --branch release/mcux-full https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch.git
$ cd mcuxsdk-middleware-executorch
$ git submodule update --init --recursive

3. Build and install the ExecuTorch and its dependencies:

$./install executorch.sh

['WARNING] The install_requirements.sh installs the CPU version of torch from https://
download.pytorch.org/whl/cpu. If you are behind corporate proxy, it might have issues
accessing it and you will see warnings like:

WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,
—status=None)) after connection broken by 'SSLError(SSLCertVerificationError(1, '[SSL:
—CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer
—certificate (_ssl.c:1006)"))": /whl/test/cpu/torch/

In this case the CUDA version of torch is installed and the install requirements.sh script
fails with:

PyTorch: CUDA cannot be found. Depending on whether you are building

Make sure the pip can access the https://download.pytorch.org/whl/cpu PyPI.

1.3. elQ 25

https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full
https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full

MCUXpresso SDK Documentation, Release 25.12.00

Next continue with installation of the Neutron Converter

Neutron Converter The elQ Neutron Backend uses the Neutron Converter to convert the Ex-
ecuTorch program to the eIQ Neutron NPU microcode.

Installation The Neutron Converter is available as a Python package and can be installed by
the pip command from eiq.nxp.com/repository:

pip install --index-url https://eiq.nxp.com/repository neutron_ converter SDK_ 25 12==1.0.0

Or you can use the prepared setup script:

./examples/nxp/setup.sh

The Neutron Converter is used internally by the ExecuTorch, and it is tied to the particular BSP
you are using - the suffix of the python package name. In the code snippet above the flavor is
the SDK_ 25 12. In the aot_neutron_convert.py example script by the --neutron_ converter_ flavor
parameter.

MCUXpresso SDK The MCUXpresso SDK is used to build, debug and deploy the application
using the ExecuTorch on the target platform.

You can obtain the MCUXpresso SDK from MCUXpresso SDK Builder including the IDE. See the
getting_mcuxpress for details.

In the MCUXpresso SDK, there are 2 projects available related to ExecuTorch:
» executorch_lib
 executorch_cifarnet

For more details see example_applications. Here you will find the details to run build and run
the demo applications.

Getting the MCUXpresso SDK with eIQ ExecuTorch The eIQ ExecuTorch library is part of
the eIQ machine learning software package, which is an optional middleware component of
MCUZXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery
system available on mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso
SDK package, the eIQ middleware component is selected in the software component selector on
the SDK Builder page when building a new package:

26 Chapter 1. Middleware

https://mcuxpresso.nxp.com/en
https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

4 SDK Dashboard

GENERAL
I ¥ Select Board

Q Explore

ADMINISTRATION

A Notfifications

£ Preferences

DOWNLOADS
(B mMCUXpresso IDE

£& MCUXpresso
Config Tools

B Offline data
@ MCUXpresso

Secure Provisioning
Tool

INTERNAL
i Deployed Releases

? Hardware in Releases

L Analytics

SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.

Developer Environment Settings
Selections here will impact files and examples projects included in the SDK and Generated Projects

Toolchain / IDE

All toolchains «

Host 05

Windows -

Embedded real-time operating system

Bare-Metal

Filter by Name, Category, or Descriptior

4

R <

O
O

A

Name

CMSIS DSP
Library

canopen

ela

Embedded
Wizard GUI

emwin

FatFSs

Category

CMSIS
DSPLib

Middleware

Middleware

Middleware

Middleware

Middleware

Select All Unselect All

Description Dependencies
CMSIS DSP
Software Library

canopen library

elQ machine
learning SDK
containing: - ARM
CMSIS-NN library
{neural network

kern... (mare)
Embedded Wizard
GuUl

emWin graphics
library

FAT File System

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).

The package directory structure is similar to figure bellow:

1.3. elQ

27

MCUXpresso SDK Documentation, Release 25.12.00

v MIMXRT700-EVK
arch
v boards
b mimxrt700evk
v eiq_examples

executorch_cifarnet
executorch_lib
mpp
tflm_cifar10
tflm_cifar10_hifi4
tflm_kws
tflim_label_image
tflm_label_image_ext_mem
tflm_label_image_hifi4
tflm_lib

tflm_modelrunner

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the elQ library source code and example application source code and data.

PyTorch Model Conversion to ExecuTorch Format In this guideline we will show how to use
the ExecuTorch AoT part to convert a PyTorch model to ExecuTorch format and delegate the
model computation to eIQ Neutron NPU using the eIQ Neutron Backend.

First we will start with an example script converting the model. This example shows the CifarNet
model preparation. It is the same model which is part of the example_ cifarnet.

1. Runtheaot_neutron_ compile.py example with the cifar10 model. Asthe aot_neutron_ compile.
py is already installed as part of the ExecuTorch installation we will run it from there

$ python -m examples.nxp.aot_ neutron_ compile --quantize \
--delegate --neutron__converter_ flavor SDK_ 25 12 -m cifar10

2. It will generate you cifar10_nxp delegate.pte file which can be used with the MXUXpresso
SDK cifarnet__example project.

The generated PTE file is used in the executorch_cifarnet example application, see exam-
ple_application.

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso SDK Example applications The MCUXpresso SDK provides a set of projects and
example application with the eIQ ExecuTorch. These demonstrate the functionality of the Execu-
Torch with the Neutron Backend, or enable to build the executorch library itself, if code changes
or customization is needed. See table bellow:

Name Description Availability

ex- This project contains the ExecuTorch Runtime Library source code and MIMXRT700-
ecu- isused to build the ExecuTorch Runtime Library. The library is further EVK (no

torch_ used to build a full application using the leveraging ExecuTorch. camera and
display sup-
port)

ex- Example application demonstrating the use of the ExecuTorch running MIMXRT700-

ecu- a CifarNet classification model accelerated on the eIQ Neutron NPU. EVK (no

torch The Cifarnet is a small Convolutional Neural Network (CNN), trained camera and
on CIFAR-10 [1] dataset. The model clasifies the input images into 10 display sup-
caterories. port)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).

How to build and run executorch_ cifarnet example The example needs ExecuTorch Runtime
Library and Neutron Libraries.

ExecuTorch Runtime Library:
* middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a for Cortex-M33 Core
* middleware/eiq/executorch/lib/hifi4/xcc/imxrt700/libexecutorch.a for HiFi4 Core
Neutron Libraries:
* Cortex-M33
— /middleware/eiq/neutron/rt700/cm33/libNeutronDriver.a and
— /middleware/eiq/neutron/rt700/cm33/libNeutronFirmware.a
» HiFi4 DSP
— /middleware/eiq/neutron/rt700/hifi4/libNeutronDriver.a and
— /middleware/eiq/neutron/rt700/hifi4/libNeutronFirmware.a

In the example the model and the input image is already embedded into the program and ready
to build and deploy to i.MX RT700, so you can continue right to the building and deployment
section.

Convert the model and example input to Carray Inthissection we describe where the model
and example input is located in the example application sources, and how it was generated.

The cifarl0 model ExecuTorch model is stored in boards/mimxrt700evk/eiq examples/
executorch_ cifarnet/cm33_ core0/model pte.h. and was generated from the cifar10_nxp_delegate.
pte (see convert_model).

We use the xxd command to get the C array containing the model data and array size:

$ xxd -i cifar10_nxp_ delegate.pte > model_pte_data.h

then use the array data and size in the model_pte.h.

1.3. elQ 29

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00

As input image we use the image from CIFAR-10 dataset [1]. After preprocessing and
normalization it is converted to bytes and located here boards/mimxrt700evk/eiq examples/
executorch_ cifarnet/cm33_ coreQ/image_ data.h. The preprocessing is performed as follows:

import torch
import torchvision
import numpy as np

batch size = 1

transform = torchvision.transforms.Compose(|
torchvision.transforms. ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

)

test_set = torchvision.datasets. CIFAR10(root="./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_ size, shuffle=False, num_ workers=0)

index = 0
num__images = 10
for data in test loader:
images, labels = data
for image, label in zip(images,labels):
arr = image.numpy().astype(np.float32)
arr.tofile("img” + str(index) + 7 7 + str(int(label)) + ”.bin”)
index = index + 1
if index >= num__images:
break
if index >= num_ images:
break

This generates the num_ images count of images from Cifar10 dataset, as input tensors for the
cifar10 model and store them in corresponding .bin files. Then we use the xxd command to get
the C array data and size:

$ xxd -i img0__3.bin > image_data_ base.h

and again copy the array data and size in the image_data.h

Note, the img0 is the image picturing a cat, what is a class number 3.

Build, Deploy and Run
1. When using ARMGCC toolchain, the example application can be built as below:

$ boards/mimxrt700evk/eiq examples/executorch cifarnet/cm33_core0/armgcc$./build flash release.sh

After building the example application, download it to the target with JLink as shown in figure
J= =1 F et .elf

2s, Verify: 1.

5

30 Chapter 1. Middleware

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00

Model PTE file loaded. Size:
Model buffer loaded, has 1 me
Running method forward
Setting up planned buffer 0,
Method loaded.

Preparing inputs...

Input prepared.

Starting the model execution
Model executed successfully.

Inference time: 11950 uc

1 outputs:

Output [0]:
Output [1]:
Output [2]:
Output [3]:
Output [4]:
Output [5]:
Output [6]:
Output WAE
Output [8]:
Output [9]:
Program complete, exiting.

.996094

loNoNoNoNoN ol ool ol o)

The output message displays on the connected terminal:

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard:

1.3. elQ 31

MCUXpresso SDK Documentation, Release 25.12.00

[sDK Import Wizard

+ % You have selected 2 projects to import.
| The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the

. Import projects

Project name prefoc mimxrt700evk

B use default location

Project Type

C Project C++ Project C Static Library

XO &

X Project name suffix:

CAUsers\nxal5450\Documents\MCUXpressol DE_24.12.148\workspace\executorch\mimxrt700evk Browse...

Project Options

C++ Static Library SDK Debug Console () Semihost () UART @ Example default

Copy sources
B Import other files

Examples &% m e
type to filter
Description Version

I Name
~ @ & eig_examples

‘ x executorch_cifarnet_cm33_coreD

executorch_lib_cm33_core0
tflm_cifar10_cm33_cored
tflm_cifar10_hifid_cm33_coreD
tfim_kws_cm33_core0
tflm_label_image_cm33_core0
tflm_label image_ext_mem_cm33_core0
tflm_label_image_hifi4_cm33_corel
tflm_lib_em33_corel
tflm_modelrunner_cm33_coreD

CIFARMET example for ExecuTorch

Library build project for ExecuTorch

CIFAR-10 example for TensorFlow Lite Micro

The tflm_cifar10_hifi4 demo application demonstrates starting
Keyword spotting example for TensorfFlow Lite Micro

Label image example for TensorFlow Lite Micro

Label image external memory example for TensorFlow Lite Mia
The tflm_label_image_hifid demo application demonstrates sta
Library build project for TensorFlow Lite Micro

ModelRunner for TFlite

e
@

< Back Mext > Finish Cancel

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, bellow figure shows the output of the executorch__ cifarnet example appli-
cation:

32

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Model PTE file loaded. Size: 99376 bytes.
Model buffer loaded, has 1 methods
Running method forward

Setting up planned buffer 0, size 53760.
Method loaded.

Preparing uwnputs...

Input prepared.

Starting the model execution...

Model executed successfully.

Inference time: 14855 us

1 outputs:

Output [0]:
Output 11
Output [2]:
Output (31
Output [41]:
Output [51]:
Output [6]:
Output e
Output [8]:
Output [9]:
Program complete, exiting.

.996094

(<o B <o B <o i <= B <= i <= [<= i = [= [=

In case of missing probabilities in the printed output, add PRINTF_FLOAT_ENABLE=1 to the Pre-
processor settings for C++ and C compiler:

1.3. elQ 33

MCUXpresso SDK Documentation, Release 25.12.00

m Properties for mimxrt700evl_executorch_cifarnet_cm33_corel

| type filter text

Resource
Builders

w CfC++ Build

Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
C/C++ General
MCUXpresso Config Tools
Project Natures
Project References
Run/Debug Settings
Task Tags
Validation
WikiText

Settings
Configuration:

Debug [Active]

%3 Tool Settings | & Build Steps

~ | | Manage Configurations...

Build Artifact Binary Parsers| €@ Error Parsers

~ 183 MCU C++ Compiler
(% Dialect
[Preprocessor
@ Includes
Optimization
(2 Debugging
@ Warnings
2 Miscellaneous
@ Architecture
@ TrustZone

w % MCU C Compiler
@ Dialect
(# Preprocessor
= Includes
=5 Optimization
(Debugging
= Warnings
(2 Miscellaneous
@ Architecture
@ TrustZone

w 3 MCU Assembler
@ General
@ Architecture & Headers

w B33 MCU C++ Linker
@ General
@ Libraries
2 Miscellaneous

[Do not search systemn directories (-nostding)
O Preprocess only (-E)

Defined symbols (-0

88 8 &l &

CPU_MIMXRT7925GFOA
CPU_MIMXRT7985GFOA_cm33
CPU_MIMXRT7985GFOA_cm33_cored
MCUXPRESSO_SDK
SDK_DEBUGCONSOLE_UART
ARM_MATH_CM33
_FPU_PRESENT=1
PRINTF_ADVANCED_ENABLE=1
SDK_DEBUGCONSOLE=1
MCUX_META_BUILD
BOOT_HEADER_ENABLE=1
NO_HEAP_USAGE=1

_ MCUXPRESSQ

__USE_CMSIS

DEBUG

NEWLIB

Undefined symbols (-U) 4

How to build executorch_lib example If you want to build a new ExecuTorch Runtime Library,
follow the commands as below and use the new library to replace the default Runtime library
middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a.

1. When using ARMGCC toolchain, the example application can be built as below.

$ boards/mimxrt700evk/eiq examples/executorch lib/cm33_ core0/armgcc$./build_ release.sh
$ boards/mimxrt700evk/eiq examples/executorch lib/cm33_ core0/armgcc$ cp release/libexecutorch lib
—cm33_corel.a ../../../../../../middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

2. When using MCUXpresso IDE, you can import the project directly to the IDE through the

SDK Import Wizard. The project can be found under eiq__examples:

34

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[sDK Import Wizard (] X

" You have selected 2 projects to import.
The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the

. Import projects
Project name prefoc mimxrt700evk X Project name suffix:

B use default location

CAUsers\nxal5450\Documents\MCUXpressol DE_24.12.148\workspace\executorch\mimxrt700evk Browse.
Project Type Project Options
C Project | C++ Project C Static Library C++ Static Library SDK Debug Console () Semihost () UART @ Example default
Copy sources

B Import other files

Examples % ®mE
type to filter
i : Name Description Version
| ~ @ © eiq_examples
ﬂ x executorch_cifarnet_cm33_coreD CIFARMET example for ExecuTorch
B © executorch_lib_cm33_corel Library build project for ExecuTorch
[_] % tflm_cifar10_cm33_core0 CIFAR-10 example for TensorFlow Lite Micro
[T = tfim_cifar10_hifi4_cm33_corel The tflm_cifar10_hifi4 demo application demonstrates starting
(] tflm_kws_em33_core0 Keyword spotting example for TensorfFlow Lite Micro
[] = tfim_label_image_cm33_core Label image example for TensorFlow Lite Micro
[% tflm_label_image_ext_mem_cm33_corel Label image external memory example for TensorFlow Lite Mia
[] = tflm_label_image_hifid_cm33_cored The tflm_label_image_hifid demo application demonstrates sta
[= tim_lib_cm33_corel Library build project for Tensorflow Lite Micro
[# tfim_modelrunner_cm33_core0 MaodelRunner for TFlite
1 —_—
@ < Back Next > | Finish Cancel
After building the example application, copy the new library

mimxrt700evk executorch_lib_c¢m33_ core0\Debug)\libmimxrt700evk executorch_ lib_cm33_ core0.a
to replace the default Runtime library mimxrt700evk_executorch cifarnet_cm33_ core0\eiq\
executorch\lib\cm33\armgcc\libexecutorch.a.

[1] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

1.4 File System

1.4.1 FatFs
MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

1.4. File System 35

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content Thisis MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUZXpresso version is extending original content by following hardware specific porting layers:
* mmc_disk
* nand_disk
e ram_disk
» sd_disk
* sdspi_disk
* usb_disk

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15 rev0]
» Upgraded to version 0.15
» Applied patches from http://elm-chan.org/fsw/ff/patches.html

[RO.14b_revi]
» Applied patches from http://elm-chan.org/fsw/ff/patches.html

[RO.14b _revO0]
» Upgraded to version 0.14b

[RO.14a_rev0]
» Upgraded to version 0.14a
» Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
» Upgraded to version 0.14
* Applied patch ff14_p1.diff and ff14_p2.diff

36 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.12.00

[R0.13c_rev0]
» Upgraded to version 0.13c
» Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff 13c_p3.diff and ff_13c_p4.diff.

[R0.13b_revO0]
» Upgraded to version 0.13b

[RO.13a_rev0]
» Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[RO.12c_revi]
* Add NAND disk support.

[R0.12c_revO0]
» Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[RO.12b_revO0]
» Upgraded to version 0.12b.

[RO.11a]
» Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.
Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

Conditional compilation of physical disk interfaces in diskio.c.

1.5 Motor Control

1.5.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

» Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

1.5. Motor Control 37

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

» USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

+ ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. Itis recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified

38 Chapter 1. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

* Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented APIimplemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK s a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

1.5. Motor Control 39

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

MCUXpresso SDK Documentation, Release 25.12.00

Related links:

* The official FreeMASTER middleware repository.

e Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

» fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s

physical or virtual COM port. The typical transmission speed is 115200 bps.

* fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface

connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56 F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

40

Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

Read/write access to any memory location on the target.
Optional password protection of the read, read/write, and read/write/flash access levels.
Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

1.5. Motor Control 1

MCUXpresso SDK Documentation, Release 25.12.00

* Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

* Version of the driver and the version of the protocol implemented.

* MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

* Application name, description, and version strings.

* Application build date and time as a string.

» Target processor byte ordering (little/big endian).

* Protection level that requires password authentication.
* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a hostrequest or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

» “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

1.5. Motor Control 43

MCUXpresso SDK Documentation, Release 25.12.00

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may runisolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

— freemasterh - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

— freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

44 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

— freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial API.

— freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APL.

— freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

. Motor Control 45

MCUXpresso SDK Documentation, Release 25.12.00

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR, LONG_INTR [0]1]
#define FMSTR._ SHORT INTR. [0|1]
#define FMSTR,_ POLL_DRIVEN [0[1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT_INTR — short interrupt mode
* FMSTR,_ POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR,_ TRANSPORT [identifier]

46 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR__SERIAL_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

1.5. Motor Control 47

MCUXpresso SDK Documentation, Release 25.12.00

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR,_ SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER _SIZE
#define FMSTR,_ COMM_ BUFFER,_SIZE [number]

Value Type O or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,_ COMM__ RQUEUE_ SIZE [number]

Value Type Value inrange 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR SERIAL SINGLEWIRE [0[1]

Value Type Boolean O or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR _TRANSPORT FMSTR CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR,_ CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

48 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

* FMSTR_CAN_MCUX_MCAN - MCAN driver

* FMSTR_CAN_MCUX_MSCAN - msCAN driver

* FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver
* FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR,_ CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR,_ SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR__CAN__CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0X7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

1.5. Motor Control 49

MCUXpresso SDK Documentation, Release 25.12.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR,_ NET DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

* FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IwIP stack
* FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET _PORT
#define FMSTR,_ NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT

50 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR,_ NET_ BLOCKING_ TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0]1]

Value Type Boolean O or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR,_ DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_ DEBUG_ TX [0]1]

Value Type Boolean O or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

1.5. Motor Control 51

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_APPLICATION_STR
#define FMSTR _APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR,_ USE_ READMEM [0]1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR._ USE_ WRITEMEM [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_ MAX SCOPE_ VARS [number]

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR__USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR,_ REC_ BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
* FMSTR_REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
* FMSTR_REC_BASE MICROSEC(x)
« FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG

1.5. Motor Control 53

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_REC_FLOAT_TRIG [0]1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR._ USE_APPCMD [0]1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR,_ APPCMD__ BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX APPCMD_CALLS
#define FMSTR, MAX APPCMD__ CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._USE_ TSA [0|1]

Value Type BooleanOor 1.

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean O or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR. USE_TSA_INROM [0[1]

Value Type Boolean O or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0[1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_ SetUpTsaBuff() and FMSTR_ TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_ PIPES [0/1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

1.5. Motor Control 55

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR _MAX PIPES COUNT
#define FMSTR,_ MAX_PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR SHORT INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_Canlisr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Completely Poll-driven
#define FMSTR POLL_ DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlisr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT _INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_Seriallsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set

1.5. Motor Control 57

MCUXpresso SDK Documentation, Release 25.12.00

up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

* Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemasterh file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

* Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

» For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Control API There are three key functions to initialize and use the driver.

FMSTR _Init

Prototype
FMSTR_BOOL FMSTR,_ Init(void);

* Declaration: freemaster.h

* Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR _Poll

Prototype
void FMSTR,_Poll(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar
where:

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

» Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR Seriallsr / FMSTR_Canlsr

Prototype

1.5. Motor Control 59

MCUXpresso SDK Documentation, Release 25.12.00

void FMSTR,_ Seriallsr(void);
void FMSTR __ Canlsr(void);
* Declaration: freemasterh

» Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR REC_BUFF* buffCfg);

* Declaration: freemasterh

* Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR,_Recorder(FMSTR_INDEX recIndex);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR,_ RecorderTrigger(FMSTR__INDEX recIndex);

 Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR,_TSA_ TABLE BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR,_ TSA_RW_ VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR,_TSA_STRUCT(struct_name) /* structure or union type entry */
(continues on next page)

1.5. Motor Control 61

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

FMSTR,_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */

FMSTR,_TSA_RW_ MEM/(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM (name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references

1t.

* type — variable or member type. Only one of the pre-defined type constants may be used

(see below).

* struct_name — structure type name. The type must be defined (typedef) before the TSA

descriptor references it.

*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant

Description

FMSTR_TSA_UINTn
FMSTR_TSA_SINTn
FMSTR_TSA_FRACn
FMSTR_TSA_FRAC_Q(m,n)
FMSTR_TSA_FRAC_UQ(m,n)

FMSTR_TSA_FLOAT
FMSTR_TSA_DOUBLE
FMSTR_TSA_POINTER

FM-
STR_TSA_USERTYPE(name)

Unsigned integer type of size n bits (n=8,16,32,64)

Signed integer type of size n bits (n=8,16,32,64)

Fractional number of size n bits (n=16,32,64).

Signed fractional number in general Q form (m+n+1 total bits)
Unsigned fractional number in general UQ form (m+n total
bits)

4-byte standard IEEE floating-point type

8-byte standard IEEE floating-point type

Generic pointer type defined (platform-specific 16 or 32 bit)
Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA TABLE_ LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

62

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR_TSA_TABLE_LIST_ END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_TSA_ TABLE_ BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR,_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_ files/readme.txt URL */
FMSTR,_TSA_MEMFILE("readme.txt”, readme__ txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR,_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF("Board's Built-in Welcome Page”, ”/index.htm”)

FMSTR_TSA HREF("FreeMASTER Home Page”, "http://www.nxp.com/freemaster”)
/* Project file links simplify opening the projects from any URLs */

FMSTR,_ TSA_PROJECT(”Demonstration Project (embedded)”, ?/prj/demo.pmp”)
FMSTR,_TSA_PROJECT(”Full Project (online)”, “http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_ TABLE END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_ SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

* Declaration: freemasterh

* Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

1.5. Motor Control 63

MCUXpresso SDK Documentation, Release 25.12.00

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR _TsaAddVar

Prototype

FMSTR,_BOOL FMSTR_ TsaAddVar(FMSTR,_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR,,
—tsaType,
FMSTR_ TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,
FMSTR_SIZE flags);
* Declaration: freemaster.h

* Implementation: freemaster._tsa.c

Arguments

» tsaName [in] - name of the object

* tsaType [in] - name of the object type

* varAddr [in] - address of the object

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd
Prototype
FMSTR__APPCMD__CODE FMSTR_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

64 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* datalen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_ AppCmdAck(FMSTR,_ APPCMD_ RESULT resultCode);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT NOCMD.

FMSTR_AppCmdSetResponseData

1.5. Motor Control 65

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
void FMSTR,__ AppCmdSetResponseData(FMSTR,_ADDR resultDataAddr, FMSTR,_SIZE resultDataLen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

 resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR, BOOL FMSTR,_ RegisterAppCmdCall(FMSTR,_ APPCMD__ CODE appCmdCode, FMSTR,__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD_RESULT HandlerFunction(FMSTR__ APPCMD_ CODE nAppcmd,
FMSTR__APPCMD_ PDATA pData, FMSTR,_ SIZE nDatalLen);

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Where:
* nAppcmd -Application Command code
* pData —points to the Application Command data received (if any)
* nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_ PipeOpen(FMSTR, PIPE_PORT pipePort, FMSTR,_PPIPEFUNC pipeCallback,

—

FMSTR__ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR,_ PIPE_SIZE pipeTxSize,
FMSTR,_ U8 type, const FMSTR,_ CHAR *name);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

1.5. Motor Control 67

MCUXpresso SDK Documentation, Release 25.12.00

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR,_ HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR,_PipeClose(FMSTR,_ HPIPE pipeHandle);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR,_ PipeWrite(FMSTR,_HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR,_ PIPE_SIZE FMSTR_ PipeRead(FMSTR_ HPIPE pipeHandle, FMSTR,__ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_SIZE readGranularity);
* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
e pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

* readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platform:s.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

1.5. Motor Control 69

MCUXpresso SDK Documentation, Release 25.12.00

Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-
T

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

7

STR_APPCM:
enerally,
this is an
unsigned
8-bit value.

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.5. Motor Control 71

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

72

Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.5. Motor Control 73

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Description

Revi- Date
sion

1.0 03/2006
2.0 09/2007
2.1 12/2007
2.2 04/2010
2.3 04/2011
2.4 06/2011
2.5 08/2011
2.7 12/2013
2.8 06/2014
2.9 03/2015
3.0 08/2016
4.0 04/2019
41 04/2020
4.2 09/2020
4.3 10/2024
4.4 04/2025

Limited initial release

Updated for FreeMASTER version. New Freescale doc-
ument template used.

Added description of the new Fast Recorder feature and
its APL

Added support for MPC56xx platform, Added new API
for use CAN interface.

Added support for Kxx Kinetis platform and MQX oper-
ating system.

Serial driver update, adds support for USB CDC inter-
face.

Added Packet Driven BDM interface.

Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

Removed obsolete license text, see the software pack-
age content for up-to-date license.

Update for driver version 1.8.2 and 1.9: FreeMAS-
TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.
Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.
Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

Added Zephyr-specific information. Accompanying the
MCUZXpresso SDK version 25.06.00.

1.6 MultiCore

1.6.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUZXpresso SDK to make the software framework for easy development of multicore applica-

tions.

74

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit

(MCSDK) version 25.12.00.

This software package contains components for efficient work with multicore devices as well as

for the
multiprocessor communication.

What is new
* eRPC CHANGELOG
* RPMsg-Lite CHANGELOG
* MCMgr CHANGELOG
* Supported evaluation boards (multicore examples):
— LPCXpresso55S69
— FRDM-K32L3A6
- MIMXRT1170-EVKB
- MIMXRT1160-EVK
— MIMXRT1180-EVK
— MCX-N5XX-EVK
- MCX-N9XX-EVK
- FRDM-MCXN947
— MIMXRT700-EVK
- KW47-EVK
- KW47-LOC
— FRDM-MCXW72
- MCX-W72-EVK
- FRDM-IMXRT1186
* Supported evaluation boards (multiprocessor examples):
— LPCXpresso55S36
- FRDM-K22F
- FRDM-K32L2B
- MIMXRT685-EVK
- MIMXRT1170-EVKB
- MIMXRT1180
- FRDM-MCXN236
— FRDM-MCXC242
- FRDM-M(CXC444
- MCX-N9XX-EVK
- FRDM-MCXN947
— MIMXRT700-EVK
- FRDM-IMXRT1186

1.6. MultiCore

75

https://github.com/EmbeddedRPC/erpc/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.12.00/CHANGELOG.md

MCUXpresso SDK Documentation, Release 25.12.00

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location

Multicore SDK location <MCUZXpressoSDK__install_ dir>/middleware/
<MCSDK_ dir> multicore/

Documentation <MCSDK _ dir>/mcuxsdk-doc/

Embedded Remote Procedure Call <MCSDK_dir>/erpc/

component

Multicore Manager component <MCSDK__dir>/mcmgr/

RPMsg-Lite <MCSDK_ dir> /rpmsg_ lite/

Multicore demo applications

Multiprocessor demo applications

<MCUZXpressoSDK _ install_ dir>/examples/
multicore__examples/
<MCUXpressoSDK__install _dir>/examples/

multiprocessor__examples/

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

* Embedded Remote Procedure Call (eRPC)
* Multicore Manager (MCMGR) - included just in SDK for multicore devices
* Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.

The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in

the <MCUXpressoSDK__install_dir>/examples/multicore_examples subdirectories.

e erpc_matrix_multiply_mu

* erpc_matrix_multiply_mu_rtos
* erpc_matrix_multiply_rpmsg
* erpc_matrix_multiply_rpmsg_rtos
* erpc_two_way_rpc_rpmsg_rtos
 freertos_message_buffers

* hello_world

* multicore_manager

* rpmsg_lite_pingpong

* rpmsg_lite_pingpong_rtos

* rpmsg_lite_pingpong_dsp

* rpmsg_lite_pingpong_tzm

76 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain

MCUXpresso SDK Documentation, Release 25.12.00

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.

The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in

the <MCUXpressoSDK__install_dir>/examples/multiprocessor__examples subdirectories.

* erpc_client_matrix_multiply_spi

* erpc_server_matrix_multiply_spi
* erpc_client_matrix_multiply_uart
* erpc_server_matrix_multiply_uart
* erpc_server_dac_adc

* erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

Multicore
Manager

RPMsg-Lite

MCUXpresso Drivers

Hardware

1.6. MultiCore 77

MCUXpresso SDK Documentation, Release 25.12.00

All the MCSDK-related files are located in <MCUXpressoSDK__install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.12.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

* Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

* Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

* Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

» [[boards]
- [[CMSIS]
» [[devices]
» [[docs]
4 [[middleware]
= [[emwin]
> [Fatfs]
4 | [multicore]
> [lempel
> [[memar]
> [0 Irpmsg_lite]
» I ftools]
- [[sdmmc]
» I usb]
> [Jites]
- [Jfools]

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

78 Chapter 1. Middleware

http://www.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

Client Server

Application calls _— N
rerﬁlle functian() remate_functioni) Application Layer

Server shim calls requested
function

l R RYUURUIRRR NS T

Marshal invocation and Unmarshal invocation and
paramsters paramaters

.................................. l T

Byte i
Transport layer sends data Throam # Transport layer receives data . Transpart Layer

RPCimplementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

remote_function() shim

Generated Shim Code

Protocol Layer

Main eRPC features:
* Scalable from BareMetal to Linux OS - configurable memory and threading policies.

» Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

* Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK install dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK__install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:
* Maintains information about all cores in system.
* Secondary/auxiliary cores startup and shutdown.
* Remote core monitoring and event handling.

The MCMGR library islocated in the <MCUXpressoSDK __install _dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK__install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:
* Shared memory interprocessor communication.
* Virtio-based messaging bus.

» Application-defined messages sent between endpoints.

1.6. MultiCore 79

MCUXpresso SDK Documentation, Release 25.12.00

 Portable to different environments/platforms.
* Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install _dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK install dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder

Multicore example <MCUXpressoSDK_install dir>/examples/multicore examples/
projects <application_name>/

Multiprocessor example <MCUXpressoSDK_ install _dir>/examples/

projects multiprocessor__examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers

The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism

On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging APIL

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls

To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

* Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)
» Sensor aggregation/fusion applications

* Encryption algorithms

* Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.12.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.14.0
— eRPC generator (erpcgen) v1.14.0
— Multicore Manager (MCMgr) v5.0.2
— RPMsg-Lite v5.3.0

[25.09.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.14.0

1.6. MultiCore 81

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

— eRPC generator (erpcgen) v1.14.0
— Multicore Manager (MCMgr) v5.0.1
- RPMsg-Lite v5.2.1

[25.06.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.14.0
— eRPC generator (erpcgen) v1.14.0
— Multicore Manager (MCMgr) v5.0.0
— RPMsg-Lite v5.2.0

[25.03.00]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.13.0
— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.7
- RPMsg-Lite v5.1.4

[24.12.00]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.13.0
— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.6
— RPMsg-Lite v5.1.3

[2.16.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.13.0
— eRPC generator (erpcgen) v1.13.0
— Multicore Manager (MCMgr) v4.1.5
— RPMsg-Lite v5.1.2

[2.15.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.12.0
— eRPC generator (erpcgen) v1.12.0
— Multicore Manager (MCMgr) v4.1.5
— RPMsg-Lite v5.1.1

82 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.14.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.11.0
eRPC generator (erpcgen) v1.11.0
Multicore Manager (MCMgr) v4.1.4
RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.10.0
— eRPC generator (erpcgen) v1.10.0
— Multicore Manager (MCMgr) v4.1.3
— RPMsg-Lite v5.0.0

[2.13.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.10.0
— eRPC generator (erpcgen) v1.10.0
— Multicore Manager (MCMgr) v4.1.3
— RPMsg-Lite v5.0.0

[2.12.0_imx93]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.9.1
eRPC generator (erpcgen) v1.9.1
Multicore Manager (MCMgr) v4.1.2
RPMsg-Lite v4.0.1

[2.12.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.9.1
— eRPC generator (erpcgen) v1.9.1
— Multicore Manager (MCMgr) v4.1.2
— RPMsg-Lite v4.0.0

1.6. MultiCore 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.1]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.9.0
eRPC generator (erpcgen) v1.9.0
Multicore Manager (MCMgr) v4.1.1
RPMsg-Lite v3.2.1

[2.11.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.9.0
— eRPC generator (erpcgen) v1.9.0
— Multicore Manager (MCMgr) v4.1.1
— RPMsg-Lite v3.2.0

[2.10.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.8.1
— eRPC generator (erpcgen) v1.8.1
— Multicore Manager (MCMgr) v4.1.1
— RPMsg-Lite v3.1.2

[2.9.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.8.0
eRPC generator (erpcgen) v1.8.0
Multicore Manager (MCMgr) v4.1.1
RPMsg-Lite v3.1.1

[2.8.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.7.4
— eRPC generator (erpcgen) v1.7.4
— Multicore Manager (MCMgr) v4.1.0
— RPMsg-Lite v3.1.0

84 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.7.3
eRPC generator (erpcgen) v1.7.3
Multicore Manager (MCMgr) v4.1.0
RPMsg-Lite v3.0.0

[2.6.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.7.2
— eRPC generator (erpcgen) v1.7.2
— Multicore Manager (MCMgr) v4.0.3
— RPMsg-Lite v2.2.0

[2.5.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.7.1
— eRPC generator (erpcgen) v1.7.1
— Multicore Manager (MCMgr) v4.0.2
— RPMsg-Lite v2.0.2

[2.4.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.7.0
eRPC generator (erpcgen) v1.7.0
Multicore Manager (MCMgr) v4.0.1
RPMsg-Lite v2.0.1

[2.3.1]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.6.0
— eRPC generator (erpcgen) v1.6.0
— Multicore Manager (MCMgr) v4.0.0
— RPMsg-Lite v1.2.0

1.6. MultiCore 85

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
* Multicore SDK component versions:
embedded Remote Procedure Call (eRPC) v1.5.0
eRPC generator (erpcgen) v1.5.0
Multicore Manager (MCMgr) v3.0.0
RPMsg-Lite v1.2.0

[2.2.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.4.0
— eRPC generator (erpcgen) v1.4.0
— Multicore Manager (MCMgr) v2.0.1
— RPMsg-Lite v1.1.0

[2.1.0]
* Multicore SDK component versions:
- embedded Remote Procedure Call (eRPC) v1.3.0
— eRPC generator (erpcgen) v1.3.0

[2.0.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.2.0
— eRPC generator (erpcgen) v1.2.0
— Multicore Manager (MCMgr) v2.0.0
— RPMsg-Lite v1.0.0

[1.1.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.1.0
— Multicore Manager (MCMgr) v1.1.0
— Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev01l

[1.0.0]
* Multicore SDK component versions:
— embedded Remote Procedure Call (eRPC) v1.0.0
— Multicore Manager (MCMgr) v1.0.0
— Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

86 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For overview please read RPMSG-Lite VirtIO Overview.

For RPMSG-Lite Design Considerations please read RPMSG-Lite Design Considerations.

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

1.6. MultiCore 87

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://nxp-mcuxpresso.github.io/rpmsg-lite/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static APIin RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352

Relative Difference [%] ~52.7% ~77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

RPMsg-Lite Architecture

main.c

rpmsg_ns.c / \\)

rpmsg_gqueue.c
rpmsg_lite_release_rx_buffer|
rpmsg_lite_*_ept()
rpmsg_format_message() - internal

env_*_queue()

rpmsg_lite.c

virtqueue_*() \v_"()

platform_init_interrupt()
platform_deinit_interrupt()
platform_notify()

virtqueue_notification() rpmsg_env_bm.c platform_*(}
virtqueue.c < ! A rpmsg_platform.c

rpmsg_env_freertos.c

D application D media access layer

D RPMsg-Lite base D porting layer

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.

88 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

RFMsg Lite,
OpenAMFP RFMsqg, RPMsqg Transport Layet

Virtlo, Virtqueue,

Vring VirtIo / Virtqueue MALC Layer
Shmem, MU, Shared Memory -

: Physical Layer
Mailbox Inter-core Interrupts Y Y

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action
in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL,_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_cb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

1.6. MultiCore 89

MCUXpresso SDK Documentation, Release 25.12.00

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

* Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

* Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

* Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

* Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

* Read received data directly from the shared memory.

* Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

90 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Core A

rpmsg_lite_master/remote_init()

rpmsg_lite_master/remote_init()

rpmsg_lite_send{app_buf) [—

rpmsg_queue_recv(app_buf) € —

Y

buf = rpmsg_lite_alloc_tx_buffer()

L7

Fill in the buf, which is a buffer
allocated in shared memory

L7

rpmsg_lite_send_nocopy(buf) |—

rpmsg_queue_recv_nocopy(&data)

v

Process data, which is a pointer
indicating to shared memory

v

rpmsg_queue_nocopy_free(data)

buf = rpmsg_lite_alloc_tx_buffer()

— >

v

Fill in the buf, which is a buffer
allocated in shared memory

— rpmsg_lite_send_nocopy(buf)

v

rpmsg_queue_recy_nocopy(&data)

v

Process data, which is a pointer
indicating to shared memory

v

rpmsg_queue_nocopy_free(data)

Core A sends data to Core B via

a copy mechanism, and Core B
receives it exposing directly shared
memory data to the application,
which is responsible for calling
rpmsg_queue_nocopy_free()
function to free the received data.

Core B first allocates

the transmit buffer in the
shared memory, then fills it
with the payload and finally
sends it using the nocopy
mechanism. Core A receives
the message using the copy
mechanism copying the data
to private application buffer.

Both cores use the nocopy
mechanisms for both receiving
and sending a message. This

is the most efficient way, since

no buffer-copying is involved.
Howewver when the application
(here represented by white boxes)
holds the buffer for a long time,
rpmsg will have less memory
available for other communicating
tasks and can thus suspend them
until a transmit/receive buffer is
available.

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

1.6. MultiCore 91

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

see

<MCUXpressoSDK _install _dir>/boards/<board name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

* rpmsg_env_bm.c
* rpmsg_env_freertos.c
* rpmsg_env_xos.C
* rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

92 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme

MCUXpresso SDK Documentation, Release 25.12.00

Config- De- Usage
uration fault
option value

RL_MS_PE (1) Delay in milliseconds used in non-blocking API functions for polling.

RL_BUFFE (496) Size of the buffer payload, it must be more than 1 byte, and has to be word
align (including rpmsg header size 16 bytes), if not it will be aligned up

RL_BUFFE (2) Number of the buffers, it must be power of two (2, 4, ...)

RL_API H (1) Zero-copy API functions enabled/disabled.

RL_USE_S (0) Static API functions (no dynamic allocation) enabled/disabled.

RL_USE_D (0) Memory cache management of shared memory. Use in case of data cache
is enabled for shared memory.

RL_CLEAF (0) Clearing used buffers before returning back to the pool of free buffers en-
abled/disabled.

RL_USE_NV (0) When enabled IPC interrupts are managed by the Multicore Manager (IPC
interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_E (0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some

RAM).
RL_DEBU((0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by

RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOV (0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOV (0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RIL_ASSER see Assert implementation.

rpmsg

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvm project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_ clang format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.6. MultiCore 93

http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

[v5.3.0]

Added

* RT700 porting layer added support to send rpmsg messages between CM33_0 <-> Hifil and
CM33_1 <-> Hifi4 cores.

* Add new platform macro RL._ PLATFORM_MAX_ ISR__COUNT this will set number of IRQ
count per platform. This macro is then used in environment layers to set isr_table size
where irq handles are registered. It size should match the bit length of VQ_ID so all combi-
nations can fit into table.

» Unit tests updated to improve code coverage, new unit tests added covering static alloca-
tions in rtos environment layers.

Fixed

* virtio.h removed typedef uint8_t boolean and in its place use standard C99 bool type to avoid
potential type conflicts.

* env_acquire_sync_lock() and env_release_sync_lock() synchronization primitives removed

* Kconfig consolidation, when RL_ALLOW_CUSTOM_SHMEM_CONFIG enabled the plat-
form_get_custom_shmem_config() function needs to be implemented in platform layer to
provide custom shared memory configuration for RPMsg-Lite instance.

v5.2.1

Added
* Doc added RPMSG-Lite VirtIO Overview
* Doc added RPSMG-Lite Design Considerations
* Added frdmimxrt1186 unit testing

Changed

* Remove limitation that RL_ BUFFER_ SIZE needs to be power of 2. It just has to be more
than 16 bytes, e.g. 16 bytes of rpmsg header and payload size at least 1 byte and word
aligned, if not it will be aligned up.

Fixed

* Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for
imxrt700_m33, imxrt700_hifi4, imxrt700_hifi1 platforms

v5.2.0

Added
* Add MCXL20 porting layer and unit testing

* New utility macro RL_CALCULATE_BUFFER_COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

* RT700 platform add support for MCMGR in DSPs

94 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed

* Change rpmsg_ platform.c to support new MCMGR API

* Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

* Refactored repeated buffer count calculation pattern for better code maintainability.

* To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed

e Fixed env_ wait_ for_link_up function to handle timeout in link state checks for baremetal
and gqnx environment, RL,_ BLOCK mode can be used to wait indefinitely.

Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST_LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_ config.vring_ size
expressions.

Fixed CERT INT31-C violation in platform_ interrupt_ disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

Fixed unsigned integer underflow in rpmsg_lite_alloc_tx_buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

Fixed CERT-C INT31-C violation in rpmsg_ lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

— Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& OxFFFFU).

— This fix prevents potential data loss when size values exceed 65535.

Fixed CERT INT31-C violation in env_ memset functions by explicitly converting int32_t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

— rpmsg_env_ freertos.c: Added validation before converting int32_t to UBaseType_t.

— rpmsg__env__gnx.c: Fixed format string and added validation before assigning to mqstat
fields.

— rpmsg_env_ threadx.c: Added validation to prevent integer overflow and negative val-
ues.

— rpmsg__env_xos.c: Added range checking before casting to uint16_t.

— rpmsg_env_zephyr.c: Added validation before passing values to k_msgq_init.

Fixed a CERT INT31-C compliance issue in env_ get_current_queue_size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

Fixed CERT INT31-C violation in rpmsg_ platform.c where memcmp() return value (signed int)
was compared with unsigned constant without proper type handling.

1.6.

MultiCore 95

MCUXpresso SDK Documentation, Release 25.12.00

 Fixed CERT INT31-C violation in rpmsg_ platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

* Fixed potential integer overflow in env_ sleep_ msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

» Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

» Added RL_MAX BUFFER _COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

* Fixed CERT INT31-C violation in vring_need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
* Add KW43B43 porting layer

Changed

* Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

Added

* Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg__config.h in case of data cache is used.

* Cmake/Kconfig support added.

* Porting layers for imx95, imxrt700, mecmxw71x, mecmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
* Zephyr-related changes.

¢ Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
¢ Test suite provided.

* Zephyr support added.

96 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed

* Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
* RPMsg-Lite: Added aarch64 support.

Changed
* RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.
* Code formatting using LLVM16.

Fixed

* Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added

* Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

Changed

* Improved debug check buffers implementation - instead of checking the pointer fits into
shared memory check the presence in the VirtIO ring descriptors list.

» VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
* Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

» Misra corrections.

v4.0.0 - 20-Jun-2022

Added
* Added support for custom shared memory arrangement per the RPMsg_Lite instance.

* Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
* Adjusted rpmsg_lite_is_link_up() to return RL_TRUE/RL_FALSE.

1.6. MultiCore 97

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21

MCUXpresso SDK Documentation, Release 25.12.00

v3.2.0 - 17-Jan-2022

Added
* Added support for i. MX8 MP multicore platform.

Changed

* Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR
#14.

» Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
* Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added

* Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK
examples, otherwise stdio printf is used).

* Added environment layers for XOS.
* Added support for i. MX RT500, i.MX RT1160 and i.MX RT1170 multicore platform:s.

Fixed

* Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
* Updated RL_BUFFER_COUNT documentation (issue #10).
» Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added

* Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-
site side notification sending each time received buffers are consumed and put into the
queue of available buffers.

* Added environment layers for Threadx.

* Added support for i MX8QM multicore platform.

Changed
» Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

98 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20
https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10

MCUXpresso SDK Documentation, Release 25.12.00

Added

* Added support for several new multicore platforms.

Fixed
MISRA C-2012 violations fixed (7.4).

* Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

* Correction of rpmsg_lite_instance structure members description.

Address -Waddress-of-packed-member warnings in GCC9.

Changed
* Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added

* Added support for several new multicore platforms.

Fixed
* MISRA C-2012 violations fixed, incl. data types consolidation.

* Code formatted.
v2.2.0 - 20-Mar-2019
Added

* Added configuration macro RL,_ DEBUG_CHECK_BUFFERS.
Several MISRA violations fixed.

Added environment layers for QNX and Zephyr.

» Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

* Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
* Supporting . MX6SX and i.MX7D MPU platforms.
* Supporting LPC5411x MCU platform.
* Baremental and FreeRTOS support.
* Support of copy and zero-copy transfer.

* Support of static API (without dynamic allocations).

1.6. MultiCore 99

MCUXpresso SDK Documentation, Release 25.12.00

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview Thisrepository is for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK__install _dir>/middleware/multicore/
mcmgr directory.

100 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://nxp-mcuxpresso.github.io/mcux-mcmgr/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

Multicore
Manager

RPMsg-Lite

MCUXpressoSDK Drivers

Hardware

The Multicore Manager provides the following major functions:
* Maintains information about all cores in system.
* Secondary/auxiliary core(s) startup and shutdown.

* Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

Example of MCMGR usage to start secondary core:

F#include "mcmgr.h”

void main()
{
/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */
MCMGR._ EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR._ Init();

(continues on next page)

1.6. MultiCore 101

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Boot secondary core application from the CORE1_BOOT ADDRESS, pass ”1” as startup data,,,
—starting synchronously. */

MCMGR_ StartCore(kMCMGR_ Corel, CORE1_BOOT__ADDRESS, 1, kMCMGR_ Start_ Synchronous);

/* Stop secondary core execution. */
MCMGR,_ StopCore(kMCMGR,_ Corel);
}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

It could also happen that the secondary core application stops running correctly and the primary
core application does not know about that situation. Therefore, it is beneficial to implement a
mechanism for core health monitoring. The test_heartbeat unit test can serve as an example
how to ensure that: secondary core could periodically send heartbeat signals to the primary
core using MCMGR_TriggerEvent() API to indicate that it is alive and functioning properly.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() APIL Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include "mcmgr.h”

#define APP_ RPMSG_READY_EVENT_DATA (1)
#define APP_ NUMBER,_ OF _CORES (2)
#define APP__ SECONDARY_CORE kMCMGR,_Corel

/* Callback function registered via the MCMGR, RegisterEvent() and triggered by MCMGR,_ TriggerEvent(),
—called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_core_t coreNum, uint16_t eventData, void *context)

{

uintl6 t *data = &((uintl6_t *)context)[coreNuml];

*data = eventData;

}

void main()

{
uint16_t RPMsgRemoteReadyEventData[NUMBER_OF CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR,_ Earlylnit();

/* Initialize MCMGR, install generic event handlers */
MCMGR,_ Init();

/* Register the application event before starting the secondary core */
MCMGR,_ RegisterEvent(kMCMGR,_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void,,
—*)RPMsgRemoteReadyEventData);

(continues on next page)

102 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* Boot secondary core application from the CORE1_BOOT__ADDRESS, pass rpmsg_ lite_base address

—as startup data, starting synchronously. */

MCMGR_ StartCore(APP_SECONDARY__CORE, CORE1_BOOT__ADDRESS, (uint32_t)rpmsg_lite__
—base, KMCMGR,__Start_ Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to,

—communicate. */

while(APP_RPMSG_READY_EVENT DATA !|= RPMsgRemoteReadyEventData]APP__ SECONDARY
—CORE)) {};

)

Code for the secondary side:

#include "memgr.h”

#define APP_ RPMSG_READY_EVENT_DATA (1)

void main()

{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */
MCMGR,_Earlylnit();

/* Initialize MCMGR, install generic event handlers */
MCMGR,_Init();

/* Signal the to other core that we are ready by triggering the event and passing the APP_ RPMSG__

—-READY_EVENT_DATA */
MCMGR,_ TriggerEvent(kMCMGR,_Core0, kMCMGR,_RemoteApplicationEvent, APP_ RPMSG__

—~READY_EVENT_DATA);

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

1.6. MultiCore 103

MCUXpresso SDK Documentation, Release 25.12.00

Initialize the multicore
manager, early init. Call this
function as close to the reset

entry as possible, {into the
startup sequence) to allow
CorelUp event triggering.

Multicore manager init
function to be called in the
application main. It registers
critical and generic event
handlers.

Register the application
event before starting the
secondary core.

Trigger the secondary core
application execution. Pass the
startupData to the secondary
core application. Either wait
until the secondary core reads
and confirms the startup data
(KMCMGR_Start_Synchronous
mode) or does not wait
(KMCMGR_Start_Asynchronous
mode).

Reqgister the
RemoteExceptionEvent
handler.

Primary core

MCMGR_Earlylnit() I

1 RemoteCoreUpEvent message

Secondary core

Y

MCMGR_Init()

MCMGR_RegisterEvent() |

release the secondary core

MCMGR_StatCore()

| from the reset

>

Initialize the multicore
manager, early init. Call this
function as close to the reset

MCMGR_Earlylnit()

entry as possible, (into the
| startup sequence) to allow

CorelUp event triggering.

MCMGR_Init()

Multicore manager init
| function to be called in the

application main. It registers
critical and generic event

MCMGR_GetStartupDatal)

handlers.

Trigger a mechanism to get
the startup data from the
primary core to the
secondary core.

Trigger the application event

MCMGR_TriggerEvent() |

to signal the primary core

o RemoteCorelUpEvent ge T
- L
ISR ISR
. FeedStartupDataEvent ige
|
StartupDataEvent message
L
o
£53
B0
EE . FeedStartupDataEvent message % 5
N £E
% = StartupDataEvent message o g £
35 'E
2
=]
. FeedStartupDataEvent message |=
el
c la RemoteApplicationEvent ge |
s [1
T
2D
E_ [=
2
ZE
=
g in]
o

MCMGR_RegisterEvent() |

RemoteException

Event handler

RemoteExceptionEvent message

4
el

DefaultlSR
(exception)

some application state and
to pass the accompany data.

104

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[v5.0.2]

Added
* Added gcov options and configs to support mcmgr code coverage
* Added new test_weak_mu_isr testcase for devices with MU peripheral

* Added new test_heartbeat testcase showing heartbeat mechanism between primary and
secondary cores using the MCMGR

v5.0.1

Added
* Added frdmimxrt1186 unit testing

Changed

* [KW43] Rename core#1 reset control register

Fixed
* Added CX flag into CMakeLists.txt to allow c++ build compatibility.

* Fix path to mcmgr headers directory in doxyfile

v5.0.0

Added

* Added MCMGR_BUSY_POLL_COUNT macro to prevent infinite polling loops in MCMGR
operations.

* Implemented timeout mechanism for all polling loops in MCMGR code.

* Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

— MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

— MCMGR_TriggerEvent(mcmgr_event_type_t type, uintl6_t eventData, mcmgr_core_t
coreNum)

— MCMGR_TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

- typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

1.6. MultiCore 105

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

When registering the event with function MCMGR_ RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

Updated all porting files to support new MCMGR APL

Added new platform specific include file memgr_ platform.h. It will contain common plat-
form specific macros that can be then used in memgr and application. e.g. platform core
count MCMGR__CORECOUNT 4.

Move all header files to new inc directory.

Added new platform-specific include files inc/platform/<platform_name>/memgr_ platform.
h.

Added
* Add MCXL20 porting layer and unit testing

v4.1.7

Fixed

* memgr_stop_ core_internal() function now returns kStatus_ MCMGR_ NotImplemented status
code instead of kStatus. MCMGR._Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mexw716, mexw727.

[v4.1.6]

Added
* Multicore Manager moved to standalone repository.
* Add porting layers for imxrt700, mcmxw727, kw47b42.
* New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added

* Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid
using uninitialized data in their implementations.

[v4.1.4]

Fixed

* Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable
flag is not set in the CR/TCR register.

» Messaging Unit RX and status registers are cleared after the initialization.

106 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[v4.1.3]

Added
» Add porting layers for imxrt1180.

Fixed

* mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-

able flag is not set in the CR/TCR register.

* mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed

* Update mcmgr_stop_core_internal() implementations to set core
CMGR_ResetCoreState.

[v4.1.0]

Fixed
* Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
* Documentation updated to describe handshaking in a graphic form.
* Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
* Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed

* Code formatting, removed unused code

[v4.0.0]

state to kM-

1.6. MultiCore

107

MCUXpresso SDK Documentation, Release 25.12.00

Added
* Add new MCMGR_TriggerEventForce() APIL.

[v3.0.0]

Removed
* Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
* Modified MCMGR_GetStartupData()

Added
* Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()
* Added the ability for remote core monitoring and event handling

[v2.0.1]

Fixed
» Updated to be Misra compliant.

[v2.0.0]

Added
* Support for Ipcxpresso54114 board.

[v1.1.0]

Fixed
» Ported to KSDK 2.0.0.

[v1.0.0]

Added

 Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

108 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

eRPC

* MCUXpresso SDK : mcuxsdk-middleware-erpc
— Overview
— Documentation
- Setup
— Contribution
* eRPC
— About
— Releases
% Edge releases
— Documentation
— Examples
— References
— Directories
— Building and installing
* Requirements
- Windows
- Mac OS X
* Building
- CMake and KConfig
- Make

1.6. MultiCore 109

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

* Installing for Python
— Known issues and limitations

— Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the
internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {
// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void
}

Client side usage:

void example_client(void) {
erpc_ transport_ t transport;
erpc_mbf_t message_buffer_factory;
erpc_ client_t client manager;

/* Init eRPC client infrastructure */

transport = erpc_ transport__cmsis__uart__init(Driver_ USARTO);
message_ buffer_ factory = erpc_mbf dynamic__init();

client_ manager = erpc_ client_ init(transport, message buffer factory);

/* init eRPC client 1O service */
initIO_ client(client manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */
deinitIO__client();
erpc__client_ deinit(client_ manager);
erpc_mbf dynamic_ deinit(message_buffer_factory);
(continues on next page)

110 Chapter 1. Middleware

http://thrift.apache.org

MCUXpresso SDK Documentation, Release 25.12.00

}

erpc__transport__tcp_ deinit(transport);

void example_ client(void) {

}

erpc_ transport_ t transport;
erpc_mbf t message buffer factory;
erpc_ client_ t client_ manager;

/* Init eRPC client infrastructure */
transport = erpc__transport__cmsis_ uart__init(Driver_ USARTO);
message_buffer_factory = erpc_mbf dynamic_ init();

client_ manager = erpc_ client__init(transport, message buffer_factory);

/* scope for client service */

{
/* init eRPC client IO service */
IO__client client(client_ manager);

// Now we can call the remote function to turn on the green LED.

client.set_ led(kGreen, true);

}

/* deinit objects */

erpc_ client_ deinit(client_ manager);
erpc_mbf_dynamic_ deinit(message_buffer_factory);
erpc__transport_tcp_ deinit(transport);

Server side usage:

// Implement the remote function.
void set_ led(LEDName whichLed, bool onOrOff) {

}

// implementation goes here

void example_ server(void) {

erpc_ transport_ t transport;

erpc_mbf t message buffer factory;
erpc_server__t server;

erpc_ service_t service = createiloiservice();

/* Init eRPC server infrastructure */

transport = erpc_ transport_cmsis_ uart_ init(Driver USARTO);
message_ buffer_ factory = erpc_ mbf_dynamic__init();

server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */

destroy IO _service(service);

erpc_server_ deinit(server);
erpc_mbf_dynamic_ deinit(message buffer_factory);
erpc__transport__tcp_ deinit(transport);

// Implement the remote function.
class 1O : public IO__interface

(continued from previous page)

(continues on next page)

1.6. MultiCore

111

MCUXpresso SDK Documentation, Release 25.12.00

}

/* eRPC call definition */
void set_ led(LEDName whichLed, bool onOrOff) override {

// implementation goes here

void example_server(void) {

}

erpc_ transport_ t transport;
erpc_mbf_t message buffer_factory;
erpc_server_t server;

10 IOImpl;

10 __service io(&IOImpl);

/* Init eRPC server infrastructure */

transport = erpc__transport__cmsis__uart__init(Driver_ USARTO);
message_buffer factory = erpc_mbf dynamic_ init();

server = erpc_server_ init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_ service_to_ server(server, &io);

/* poll for requests */
erpc_status_t err = server.run();

/* deinit objects */

erpc_server_ deinit(server);

erpc_mbf dynamic_ deinit(message buffer factory);
erpc_transport_ tcp_ deinit(transport);

(continued from previous page)

A number of transports are supported, and new transport classes are easy to write.

Supported transports can be found in erpc/erpc_c/transport folder. E.g:

o CMSIS UART

* NXP Kinetis SPI and DSPI

* POSIX and Windows serial port
» TCP/IP (mostly for testing)

* NXP RPMsg-Lite / RPMsg TTY

* SPIdev Linux

» USB CDC

* NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

112

Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc

MCUXpresso SDK Documentation, Release 25.12.00

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK _install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and
update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in
mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

* erpc (EmbeddedRPC) getting started notes
¢ ERPC Linux Local Environment Construction and Use

¢ The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c- Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.
erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.
examples - Several example IDL files.
mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

1.6. MultiCore 113

https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd

MCUXpresso SDK Documentation, Release 25.12.00

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

* CMake (minimal version 3.20.0)

* Generator - Make, Ninja, ...

* C/C++ compiler - GCC, CLANG, ...

* Binson - https://www.gnu.org/software/bison/

* Flex - https://github.com/westes/flex/
Requirements when using Make:

* Make

* C/C++ compiler - GCC, CLANG, ...

* Binson - https://www.gnu.org/software/bison/

* Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_ v14/readme_ erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install _dependencies.psl

HHH4 Linux

" “bash
./install _dependencies.sh

Mandatory for case, when build for different architecture is needed

* gcc-multilib, g++-multilib

Mac OS X

114 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

./install__dependencies.sh

Building

CMake and KConfig eRPCuse CMake and KConfigto configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc¢/ execute:

cmake -B ./build # in erpc/build generate cmake project

cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and,
—examples

cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers

cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_ lib, tests and,
—examples

cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:
* erpc: build the liberpc.a static library
* erpcgen: build the erpcgen tool
e erpcsniffer: build the sniffer tool
* test: build the unit tests under the test directory
* all: build all of the above
* install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

1.6. MultiCore 115

MCUXpresso SDK Documentation, Release 25.12.00

Known issues and limitations

» Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully
supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor, Inc.
Copyright 2016-2025 NXP

eRPC Getting Started

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK install dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:

1. Create two projects, where one project is for the client side (primary core) and the
other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.
4. Add user code for client and server applications.
5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar,

The project files for the eRPC server have the _c¢m4 suffix.

116 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install _dir>/boards/<board_name>/multicore_examples/<example_name>/

1.6. MultiCore 117

MCUXpresso SDK Documentation, Release 25.12.00

e erpc_matrix_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1
File Edit Wiew Project CMsI5-DAP Tools Window Help

Workspace - 1 X

|debug

Files

B @ erpc_matrix_multiply_rpms...
=1 B hoard

board.c

[&] board.h
clock_config.c
clock_canfig h
ded.c

[dedh
pin_mux.c

(] pin_rmu h
ChSIS
component
device

drivers
fsl_anatop_ai.c
[0 fsl_anatop_aih
fsl_cache.c
[fsl_cache.h
fsl_clock.c
[l fsl_clack.h
[£] fsl_comman.c
[l fs|_commaon.h
fs|_common_arm.c
[f=]_common_arm.h
[fsl_dedc.e
[fsl_dedeh
[£] fs|_gpio.c
[f5]_gpio.h
[+] f=]_iomuxc.h
] fsl_lpuartc
[fsl_lpuarth
Elfslmu.c
[fsl_rriuh
Elfsl_pmu.c
— [l fsl_pmuh
= o erpc
= B evkmimxrt1170
- & oo
= W rpmsg_lite
B source
21 8 startup
) startup_tIMXFET1176_cm...
21 6 utilities
[£]fs]_aszerc
[£] fsl_debug_console ¢
I— [+] fsl_debug_console.h
[fsl_strc
L— Rzl strh
B xip
B Output

T TR T A e e R ET BRI

cHCRENGRE

-_3_[_p-::_m_atriu_m_l._lll_iply__rpmsgft:m-‘l

118

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server related generated files The server-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_multiply_server.h
* erpc_matrix_multiply_ server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

1.6. MultiCore 119

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm4 - |AR Embedded Workbench |DE - Arrn 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO A = R0 OC -

Workspace -

debug

Files

2 @ erpc_matrix_multiply_rpmsg_cm4 - d__.
M hoard

i CMSIS

B component

M device

M doc

1 W erpc

Ml infra

B port

—E W service

— [erpc_matrix_multiply.erpc
— [erpc_matrix_multiply. h

[erpc_matrix_multiply_serser.cpp
— [u] erpc_matrix_multiphy_serser.h
B setup

Bl transparts

B evkmimmt1 1720

B momgr

M rpmsg_lite

Bl source

B startup

M utilities

M xip

B Output

+

+

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

120 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

— Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

— Three files (erpc__codec.hpp, erpc_basic_ codec.hpp, and erpc_ basic_ codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

— The erpc_ common.hpp file is used for common eRPC definitions, typedefs, and enums.

— The erpc_manually constructed.hpp file is used for allocating static storage for the used
objects.

— Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_ message_ buffer.cpp.

— The erpc_ transport.h file defines the abstract interface for transport layer.
» The port subfolder contains the eRPC porting layer to adapt to different environments.
— erpc_port.h file contains definition of erpc_malloc() and erpc_ free() functions.
— erpc_ port_ stdlib.cpp file ensures adaptation to stdlib.
— erpc_ config internal.h internal erpc configuration file.

* The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

— The erpc_server setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

— The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

— The erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

» The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

— RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite base_transport.hpp, erpc_rpmsg lite transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.6. MultiCore 121

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm4 - [4R Embedded Workbench IDE - &rm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

G e = iR W

Workspace w 0 X
|debug V|
Files » 2o

B @ erpc_matrix_multiply_rpmsg_cm4 - debug ~
B board

B CMSIS

B component

M device

B doc

=1 8 erpe

=1 Wl infra

[erpr_basic_codec.cpp

— Olerpc_basic_codechpp

— [lerpc_client_serser_common.hpp
— Clerpc_codechpp

— [l erpc_common.h

[& erpc_crclB.opp

— [erpe_crcl6hpp

— [erpc_manually_constructed hpp
[l erpc_message_buffer.cpp

—— [erpe_message_buffer hpp

[erpc_message_loggers.cpp
— [Clerpc_message_loggers.hpp

[2) erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h
BIpC_Ser/er.cpp

— Dlerpc_sererhpp

[] erpc_simple_server.cpp

— [erpc_simple_serverhpp

— Derpc_static_queue.hpp

—— [erpc_transporthpp

'— [erpc_wersionh

21 port

— [erpc_config_internal.h

— [l erpc_endianness_agnostic_example.h
— [l erpc_endianness_undefined.h
— [l erpc_porth

[erpc_port_stdlib.cpp

— il erpc_setup_extensions.h

B service

£ B setup

— [erpe_mbi_setuph

[£ erpr_serser_setup.cpp

— [erpc_server_setuph

[erpc_setup_mbt_rpmsg.cpp

[& erpc_setup_rpmsg_lite_remote.cpp
— [i] erpc_transport_setuph

L5 W transparts

— [erpc_rpmsg_lite_hase_transporthpp
[l erpc_rpmsg_lite_transport.cpp
— Llerpc_rpmsg_lite_transporthpp
B evkmimxrt1 171

B mcmgr

B rpmso_lite

B source

EIpc__matlix__multiply_l_pmsg_cm-ll

122

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.6. MultiCore 123

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrz_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace i gt

x
|de|:uug V|
Files k-
El @ erpc_matrix_multiply_rpmsg_cm4 - debug o

M board
i CMSIS

B component
M device
M doc
M erpc
B evkmimxrt1170
21 W memgr
momgr.c
— [memagrh
— kI memgr_internal_core_apih
momgr_internal_core_api_imxt1170.c
mcmgr_mu_internal.c
-2 M rpmsg_lite
2 B comman
llist.c
-2 W include
21 B envviranment
L= & brn

L— B rpmsg_env_specifich
21§ platform
L= wl irriert1170

L— &) rpmsg_platform.h
— [=1llisth
— [l romsg_compilerh
— [l romsg_defauli_config.h
— [l ramsg_env.h
— [rpmsg_lite h
— [rpmsg_nsh
— [wittio_ring.h
— [wvingueue.h
21 W rpmsg_lite
1 B parting

B enviranment
| rpmsg_eny_hm.c
L3 & platfarm
Bl 1170

rpmsg_lite.c
FpMsg_hs.c
L= W virtio

[wvingueue .
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply_rpmzg_cmd

124

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main corel.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply rpmsg/cm4
The main_corel.c file contains two functions:

* The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

* The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

» There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error__handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_ matrix)

{
=

int main()

{

/* RPMsg-Lite transport layer initialization */

erpc__transport_ t transport;

transport = erpc_ transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_ LINK_ID, SignalReady, NULL);

/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_ factory;
message_buffer_factory = erpc_ mbf rpmsg_ init(transport);

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_ buffer_factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service to_ server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_ poll(server);
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc__error__handler(status, 0);

1.6. MultiCore 125

MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
S0SDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

File Edit View Project CMSIS-DAP Tools Window Help

DO e KD -

Workspace v 0 X

debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm4 - debug +
M bhoard
B CMSIS
B component
M device
M doc
M erpc
B evlmimet1 170
Bl rcimor
Bl rpmsg_lite
-2 W source
F— [erpe_config.h
[erpc_error_handler.cpp
I— k] erpc_errar_handler.h
main_corel.c
L— [rpmsg_config.h
Bl startup
B utilities
Bl xip
B Output

erpc_matrix_multiply_rpmzg_cmd4

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar,

Project files for the eRPC client have the _cm?7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

126 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

a erpc_matrze_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools

| Flexspi_nor_dehug

Files

.)
—=1 B board
hoard.c
k] hoard.h
clock_config .o
clock_config.h
dod.c
o] dcd.h
pin_rux.c
] pin_muxh
ChEIS
companent
device
doc
drivers
fzl_anatop_aic
[f=l_anatop_aih
fsl_cache.c
fsl_cache.h
fsl_clock.c
[fsl_clock.h
fsl_commaon.c
[fsl_cammon.h
fsl_comman_arm.c
fs|_comman_arm.h
fsl_dcdc.c
fzl_dedeh
fsl_gpio.c
fzl_gpio.h
fsl_iamuxc.h
fsl_lpuart.c
o] f2l_lpuarth
fsl_mu.c
8l f5l_rmu.h
fzl_pmu.c
— [fsl_pmu.h
= B erpc
- B evkmirmxrt 170
= 8 mcmgr
= W rpmsg_lite
B source
-£1 1 startup

&) startup_MIMXRT1176_cm...
=1 W utilities

[fsl_assertc

[c] fzl_debug_console .

F— B fsl_debug_console h

2] fsl_str.c

L— Rzl _strh
B xip
B Output

¥

T T T T e T T T E T e T T

H H H #H

[n_:_r_p,t:_m_atri:;_m_l._lll_iply__rpm_sgfcr_l_‘n?

Window Help

1.6. MultiCore

127

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_ multiply_ client.cpp

These files contain the shim code for the functions and data types declared in the IDL

file. These functions also call methods for codec initialization, data serialization, per-

forming eRPC requests, and de-serializing outputs into expected data structures (if re-

turn values are expected). These shim code files can be found in the <MCUXpres-
SoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

128 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm7 - Master - IAR Embedded Workbench |DE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO ER = RO OC - < Q
Workspace w 0 X
flexspi_nor_debug e
Files i

= @ erpc_matrix_multiply_rpmsg_cm7? - flexsp_.. +
Ml board

B CMEIS

B component

Ml device

M doc

—=] W erpc

Ml infra

Ml port

] Wl service

L [erpc_matrix_rmultiphy.erpc
— [erpo_matrix_multiphyh
erpc_matrix_muliphy_clent.cpp
M setup

Bl fransports

B evkmimunt1170

B momgr

B rpmsg_lite

B source

B startup

M utilities

W xip

B Output

erpc_matrnix_multiply_rpmsg_cm?

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.6. MultiCore 129

MCUXpresso SDK Documentation, Release 25.12.00

» Two files, erpc_client_manager.h and erpc_ client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

e Three files (erpc_ codec.hpp, erpc_ basic_codec.hpp, and erpc_basic_ codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

* erpc_ common.h file is used for common eRPC definitions, typedefs, and enums.
* erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

* Message buffer files are used for storing serialized data: erpc_message buffer.hpp and
erpc_ message_ buffer.cpp.

* erpc_ transport.hpp file defines the abstract interface for transport layer.
The port subfolder contains the eRPC porting layer to adapt to different environments.
* erpc_ port.h file contains definition of erpc_malloc() and erpc_free() functions.
* erpc_port_stdlib.cpp file ensures adaptation to stdlib.
* erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

* erpc_client setup.h and erpc_ client setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

* erpc_transport_setup.h and erpc_setup_rpmsg_lite master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

* erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

* RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_ base_ transport.hpp, erpc_rpmsg_ lite_ transport.hpp, and
erpc_rpmsg_ lite_ transport.cpp files needs to be added into the client project.

130 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

e erpc_rnatr_multiply_rpmsg_cm7 - Master - AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 x
| flexspi_nor_debug w~ |
Files + Yol

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_n... +
B board

M ChMEIS

B compaonent

B device

B doc

H drivers

£ 8 erpe

1 Bl infra

[l erpc_basic_codec.cpp

— [lerpc_basic_codechpp

[l erpc_client_manager.cpp

— [&] erpc_client_manager.h

— Derpc:_c:lient_sewer_u:nmmu:un.hpp
— Olerpc_codechpp

— [l erpc_common.h

[erpc_crclB.opp

— Clerpc_crol6.hpp

— [Clerpc_manually_constucted hpp
[l erpc_message_buffer.cpp

M [Clerpc_message_bufferhpp

[] etpc_message_logoers.cpp
— Clerpc_message_loggers.hpp

[l erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h

— [Clerpc_static_gueus.hpp

— [Clerpc_transporthpp

— [l erpc_wersionh

=1 B port

— [l erpc_config_internal h

— [l erpc_endianness_agnostic_example h
— [erpc_endianness_undefined h
— [kl erpc_porth
erpc_paott_stdlib.cpp

— [erpc_setup_extensions.h

M senvice

£ B setup

[erpc_client_setup.cpp

— [l erpc_client_setup.h
erpc_mhbi_setup.h

[l erpc_setup_mbf_rpomso.cpp

[l erpc_setup_rpmsg_lite_master.cpp
[l erpc_transport_setup.h

ey

— [lerpc_rpmsg_lite_base_fransporthpp

[l erpc_rpmsg_lite_transport.cpp

L— [erpc_rprmsg_lite_transport hpp

B evkmimrt! 170

B momor

B romsg_ite

B source

B startup

B utilities v

| EIpc__mallix__multiply_l_pmsg_cm?

1.6. MultiCore

131

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

132 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matroe_multiply_rpmsg_cm7 - Master - [AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 X

| flexzpi_nor_debug

Files

B board
B CMSIS
B component
B device
B doc
B drivers
M erpc
B evkmirmxrt] 170
1 B rmemgr
momgr.c
— [momagrh
— [meomogr_intemal_core_api h
mcmgr_internal_core_api_imxrt1170.c
momgr_mu_internal.c
£ 8 rpmsg_lite
=1 B commaon
llist.c
£ M include
21 B environment
L= ol brn

L— B rpmsg_env_specifich
51 1 platfarm
L3 ol irreert1 170

L— B rpmsg_platform h
— [llisth
— k1 rpmsg_compiler b
— &1 romso_default_config.h
— [rpmsg_envh
— [rpmsg_lite.h
— [kl rpmsg_ns.h
— [wirtio_ring.h
L— B wirqueueh
=1 W rpmsg_ite
21 W porting

B environment
| rpmsg_eny_bm.c
L3 & platform
B imert1170

rpmsg_lite.c
FRMsg_ns.c

[&] virtqueus.c
B source
B startup
B utilities
B xip
B Output

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_...

o o

2
o
v

erpc_matnx_multiply _rpmsg_cm?

1.6. MultiCore

133

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7
The main_ core0.c file contains the code for target board and eRPC initialization.

 After initialization, the secondary core is released from reset.

* When the secondary core is ready, the primary core initializes two matrix variables.

* The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error__handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_ matrix = {0};

/* RPMsg-Lite transport layer initialization */

erpc_ transport_ t transport;

transport = erpc_ transport_rpmsg_ lite_ master_ init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_ factory = erpc_mbf_ rpmsg_ init(transport);

/* eRPC client side initialization */
erpc__client_ t client;
client = erpc_ client_ init(transport, message buffer factory);

/* Set default error handler */
erpc_ client_set_error_handler(client, erpc_error handler);

while (1)
{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_ config.h) and eRPC (erpc_ config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

134 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

File Edit View Project CMSIS-DAP Tools Window Help

Warkspace w 0 X
fleszpi_nor_debug w
Files o
= @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor____ +~

B board

B CHSIS

Bl component

M device

Bl doc

Bl drivers

M erpc

B evkmirmat] 170

B meomgr

B rpmsg_lite

—=1 Bl source

F— [erpc_configh

[] erpc_errar_handler.cpp
F— & erpc_error_handlerh
main_carel.c

L— [rpmsg_configh

B startup

B Utilities

M xip

B Output

erpc_matnix_multiply_rpmzg_cm?

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply”
project for multiprocessor applications is located in
pressoSDK_install _dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

—~h

eRPC server
the <MCUX-

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each

transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_slave.cpp
<eRPC base directory>/erpc_ c/transports/erpc_ (d)spi_slave transport.hpp
<eRPC base directory> /erpc__c/transports/erpc_ (d)spi_slave_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup uart_ cmsis.cpp

1.6. MultiCore

135

MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc__c/transports/erpc_uart_cmsis__transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrixl, Matrix matrix2, Matrix result_ matrix)

{
=

int main()

{

/* UART transport layer initialization, ERPC_DEMO_ UART is the structure of CMSIS UART driver
—operations */

erpc_ transport_ t transport;

transport = erpc__transport_cmsis_uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf_t message buffer_factory;
message_ buffer_ factory = erpc_mbf_dynamic__init();

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_buffer factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service_to_server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_ status_t status = erpciserveripoll(server)
/* handle error status */
if (status != kErpcStatus_ Success)

{
/* print error description */
erpc__error__handler(status, 0);

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

136 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_master.cpp
<eRPC base directory>/erpc__c/transports/ erpc_ (d)spi_master_transport.hpp
<eRPC base directory>/erpc_ c/transports/ erpc_ (d)spi_master_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup_uart_ cmsis.cpp
<eRPC base directory>/erpc_ c/transports/erpc_uart_cmsis_ transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Client user code The client’s user code is stored in the main client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_matrix = {0};

/* UART transport layer initialization, ERPC_DEMO__UART is the structure of CMSIS UART driver,
—operations */

erpc_ transport_ t transport;

transport = erpc_transport_ cmsis_ uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_factory = erpc_mbf_dynamic__init();

/* eRPC client side initialization */
erpc_client__t client;
client = erpc__client__init(transport,message_ buffer_ factory);

/* Set default error handler */
erpc__client_set__error__handler(client, erpc_error__handler);

while (1)

{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */

if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.6. MultiCore 137

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

‘L COM4%:115200baud - Tera Term VT [=] @] ==

Eile Edit Setup Control Window KanjiCode Help

s

Primary core started

Matrix #1

23 4D 43 o 32
18 18 38 44 16

11 23 21 4 11

119 23 24 6
32 26 49 43 16
22 48 36 3% 4l
21 28 32 31 1

eRPC request is sent to the serwver
Secondary core is running

Result matrix

2103 4028 4759 4865 2631
2808 3142 4787 4956 1563
2284 3308 4122 4736 1821
2940 4176 4808 4868 2894
1428 2987 2715 3051 2015

Press the SW2 button to initiate the next matrix multiplication -

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

* The primary core (CM7) runs the eRPC client.
* The secondary core (CM4) runs the eRPC server.

* RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

138 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

| Multicore application source and project files | <MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore
| Multiprocessor application source and project files | <MCUXpressoSDK_install_dir>/boards/<board_name>/multi

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<tr

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files| <MCUXpressoSDK _install dir>/middleware/multicore/rpmsg_lite/ |

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:
<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

The created IDL file contains the following code:

program erpc_ matrix_ multiply

/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

const int32 matrix_ size = 5;

/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

type Matrix = int32[matrix_size][matrix_size];

interface MatrixMultiplyService {

erpcMatrixMultiply (in Matrix matrix1, in Matrix matrix2, out Matrix result_ matrix) ->
void

}

Details:

» The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

» The declaration and definition of the constant variable named matrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

* The alias name for the two-dimensional array type (Matrix) is declared.

* The interface group MatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

» As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_ matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

1.6. MultiCore 139

MCUXpresso SDK Documentation, Release 25.12.00

When writing the IDL file, the following order of items is recommended:
1. Program name at the top of the IDL file.
2. New data types and constants declarations.
3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPC generator tool |Windows OS | <MCUXpressoSDK_install_dir>/middleware/multicore/tools/ery
| Linux OS | <MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86
| |Mac OS |<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac |

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

* The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_ file>.erpc
* In the “Matrix multiply” example, the command should look like:
erpcgen erpc_ matrix_ multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

o “-?”/*—help” — Shows supported commands.
» “-0 <filePath>”/"—output<filePath>” — Sets the output directory.

For example,

<path__to_erpcgen> /erpcgen —o <path_to_output>
<path_to_IDL>/<IDL_ file_ name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:
erpcgen —o

Sof] /boards/evkmimxrtl170/multicore_examples/erpc_common/erpc_matrix_multiply/service
J-f-///boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_mi

In both cases, the following four files are generated into the <MCUXpres-
SoSDK_install _dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

* erpc_ matrix_ multiply.h

* erpc_matrix_ multiply_ client.cpp
* erpc_matrix_ multiply_ server.h

* erpc_matrix_ multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/sen
folder.

For Linux OS users:
* Do not forget to set the permissions for the eRPC generator application.

* Run the application as ./erpcgen... instead of as erpcgen

140 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:

1. Create two projects, where one project is for the client side (primary core) and the
other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.
4. Add user code for client and server applications.
5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar,

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install _dir>/boards/<board_name>/multicore_examples/<example_name>/

1.6. MultiCore 141

MCUXpresso SDK Documentation, Release 25.12.00

e erpc_matrix_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1
File Edit Wiew Project CMsI5-DAP Tools Window Help

Workspace - 1 X

|debug

Files

B @ erpc_matrix_multiply_rpms...
=1 B hoard

board.c

[&] board.h
clock_config.c
clock_canfig h
ded.c

[dedh
pin_mux.c

(] pin_rmu h
ChSIS
component
device

drivers
fsl_anatop_ai.c
[0 fsl_anatop_aih
fsl_cache.c
[fsl_cache.h
fsl_clock.c
[l fsl_clack.h
[£] fsl_comman.c
[l fs|_commaon.h
fs|_common_arm.c
[f=]_common_arm.h
[fsl_dedc.e
[fsl_dedeh
[£] fs|_gpio.c
[f5]_gpio.h
[+] f=]_iomuxc.h
] fsl_lpuartc
[fsl_lpuarth
Elfslmu.c
[fsl_rriuh
Elfsl_pmu.c
— [l fsl_pmuh
= o erpc
= B evkmimxrt1170
- & oo
= W rpmsg_lite
B source
21 8 startup
) startup_tIMXFET1176_cm...
21 6 utilities
[£]fs]_aszerc
[£] fsl_debug_console ¢
I— [+] fsl_debug_console.h
[fsl_strc
L— Rzl strh
B xip
B Output

T TR T A e e R ET BRI

cHCRENGRE

-_3_[_p-::_m_atriu_m_l._lll_iply__rpmsgft:m-‘l

142

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server related generated files The server-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_multiply_server.h
* erpc_matrix_multiply_ server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/:

1.6. MultiCore 143

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm4 - |AR Embedded Workbench |DE - Arrn 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO A = R0 OC -

Workspace -

debug

Files

2 @ erpc_matrix_multiply_rpmsg_cm4 - d__.
M hoard

i CMSIS

B component

M device

M doc

1 W erpc

Ml infra

B port

—E W service

— [erpc_matrix_multiply.erpc
— [erpc_matrix_multiply. h

[erpc_matrix_multiply_serser.cpp
— [u] erpc_matrix_multiphy_serser.h
B setup

Bl transparts

B evkmimmt1 1720

B momgr

M rpmsg_lite

Bl source

B startup

M utilities

M xip

B Output

+

+

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

144 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

— Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

— Three files (erpc__codec.hpp, erpc_basic_ codec.hpp, and erpc_ basic_ codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

— The erpc_ common.hpp file is used for common eRPC definitions, typedefs, and enums.

— The erpc_manually constructed.hpp file is used for allocating static storage for the used
objects.

— Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_ message_ buffer.cpp.

— The erpc_ transport.h file defines the abstract interface for transport layer.
» The port subfolder contains the eRPC porting layer to adapt to different environments.
— erpc_port.h file contains definition of erpc_malloc() and erpc_ free() functions.
— erpc_ port_ stdlib.cpp file ensures adaptation to stdlib.
— erpc_ config internal.h internal erpc configuration file.

* The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

— The erpc_server setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

— The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

— The erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

» The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

— RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite base_transport.hpp, erpc_rpmsg lite transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.6. MultiCore 145

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm4 - [4R Embedded Workbench IDE - &rm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

G e = iR W

Workspace w 0 X
|debug V|
Files » 2o

B @ erpc_matrix_multiply_rpmsg_cm4 - debug ~
B board

B CMSIS

B component

M device

B doc

=1 8 erpe

=1 Wl infra

[erpr_basic_codec.cpp

— Olerpc_basic_codechpp

— [lerpc_client_serser_common.hpp
— Clerpc_codechpp

— [l erpc_common.h

[& erpc_crclB.opp

— [erpe_crcl6hpp

— [erpc_manually_constructed hpp
[l erpc_message_buffer.cpp

—— [erpe_message_buffer hpp

[erpc_message_loggers.cpp
— [Clerpc_message_loggers.hpp

[2) erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h
BIpC_Ser/er.cpp

— Dlerpc_sererhpp

[] erpc_simple_server.cpp

— [erpc_simple_serverhpp

— Derpc_static_queue.hpp

—— [erpc_transporthpp

'— [erpc_wersionh

21 port

— [erpc_config_internal.h

— [l erpc_endianness_agnostic_example.h
— [l erpc_endianness_undefined.h
— [l erpc_porth

[erpc_port_stdlib.cpp

— il erpc_setup_extensions.h

B service

£ B setup

— [erpe_mbi_setuph

[£ erpr_serser_setup.cpp

— [erpc_server_setuph

[erpc_setup_mbt_rpmsg.cpp

[& erpc_setup_rpmsg_lite_remote.cpp
— [i] erpc_transport_setuph

L5 W transparts

— [erpc_rpmsg_lite_hase_transporthpp
[l erpc_rpmsg_lite_transport.cpp
— Llerpc_rpmsg_lite_transporthpp
B evkmimxrt1 171

B mcmgr

B rpmso_lite

B source

EIpc__matlix__multiply_l_pmsg_cm-ll

146

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.6. MultiCore 147

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrz_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace i gt

x
|de|:uug V|
Files k-
El @ erpc_matrix_multiply_rpmsg_cm4 - debug o

M board
i CMSIS

B component
M device
M doc
M erpc
B evkmimxrt1170
21 W memgr
momgr.c
— [memagrh
— kI memgr_internal_core_apih
momgr_internal_core_api_imxt1170.c
mcmgr_mu_internal.c
-2 M rpmsg_lite
2 B comman
llist.c
-2 W include
21 B envviranment
L= & brn

L— B rpmsg_env_specifich
21§ platform
L= wl irriert1170

L— &) rpmsg_platform.h
— [=1llisth
— [l romsg_compilerh
— [l romsg_defauli_config.h
— [l ramsg_env.h
— [rpmsg_lite h
— [rpmsg_nsh
— [wittio_ring.h
— [wvingueue.h
21 W rpmsg_lite
1 B parting

B enviranment
| rpmsg_eny_hm.c
L3 & platfarm
Bl 1170

rpmsg_lite.c
FpMsg_hs.c
L= W virtio

[wvingueue .
B source
B startup
B utilities
B xip
B Output

erpc_matnx_multiply_rpmzg_cmd

148

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main corel.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply rpmsg/cm4
The main_corel.c file contains two functions:

* The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

* The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

» There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error__handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_ matrix)

{
=

int main()

{

/* RPMsg-Lite transport layer initialization */

erpc__transport_ t transport;

transport = erpc_ transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_ LINK_ID, SignalReady, NULL);

/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_ factory;
message_buffer_factory = erpc_ mbf rpmsg_ init(transport);

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_ buffer_factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service to_ server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_ poll(server);
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc__error__handler(status, 0);

1.6. MultiCore 149

MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
S0SDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

File Edit View Project CMSIS-DAP Tools Window Help

DO e KD -

Workspace v 0 X

debug e

Files o
= @ erpc_matrix_multiply_rpmsg_cm4 - debug +
M bhoard
B CMSIS
B component
M device
M doc
M erpc
B evlmimet1 170
Bl rcimor
Bl rpmsg_lite
-2 W source
F— [erpe_config.h
[erpc_error_handler.cpp
I— k] erpc_errar_handler.h
main_corel.c
L— [rpmsg_config.h
Bl startup
B utilities
Bl xip
B Output

erpc_matrix_multiply_rpmzg_cmd4

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar,

Project files for the eRPC client have the _cm?7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

* <MCUXpressoSDK_install _dir>/devices/<device>

* <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

150 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

a erpc_matrze_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools

| Flexspi_nor_dehug

Files

.)
—=1 B board
hoard.c
k] hoard.h
clock_config .o
clock_config.h
dod.c
o] dcd.h
pin_rux.c
] pin_muxh
ChEIS
companent
device
doc
drivers
fzl_anatop_aic
[f=l_anatop_aih
fsl_cache.c
fsl_cache.h
fsl_clock.c
[fsl_clock.h
fsl_commaon.c
[fsl_cammon.h
fsl_comman_arm.c
fs|_comman_arm.h
fsl_dcdc.c
fzl_dedeh
fsl_gpio.c
fzl_gpio.h
fsl_iamuxc.h
fsl_lpuart.c
o] f2l_lpuarth
fsl_mu.c
8l f5l_rmu.h
fzl_pmu.c
— [fsl_pmu.h
= B erpc
- B evkmirmxrt 170
= 8 mcmgr
= W rpmsg_lite
B source
-£1 1 startup

&) startup_MIMXRT1176_cm...
=1 W utilities

[fsl_assertc

[c] fzl_debug_console .

F— B fsl_debug_console h

2] fsl_str.c

L— Rzl _strh
B xip
B Output

¥

T T T T e T T T E T e T T

H H H #H

[n_:_r_p,t:_m_atri:;_m_l._lll_iply__rpm_sgfcr_l_‘n?

Window Help

1.6. MultiCore

151

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:
* erpc_matric_ multiply.h
* erpc_matrix_ multiply_ client.cpp

These files contain the shim code for the functions and data types declared in the IDL

file. These functions also call methods for codec initialization, data serialization, per-

forming eRPC requests, and de-serializing outputs into expected data structures (if re-

turn values are expected). These shim code files can be found in the <MCUXpres-
SoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

152 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matrix_multiply_rpmsg_cm7 - Master - IAR Embedded Workbench |DE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

MO ER = RO OC - < Q
Workspace w 0 X
flexspi_nor_debug e
Files i

= @ erpc_matrix_multiply_rpmsg_cm7? - flexsp_.. +
Ml board

B CMEIS

B component

Ml device

M doc

—=] W erpc

Ml infra

Ml port

] Wl service

L [erpc_matrix_rmultiphy.erpc
— [erpo_matrix_multiphyh
erpc_matrix_muliphy_clent.cpp
M setup

Bl fransports

B evkmimunt1170

B momgr

B rpmsg_lite

B source

B startup

M utilities

W xip

B Output

erpc_matrnix_multiply_rpmsg_cm?

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.6. MultiCore 153

MCUXpresso SDK Documentation, Release 25.12.00

» Two files, erpc_client_manager.h and erpc_ client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

e Three files (erpc_ codec.hpp, erpc_ basic_codec.hpp, and erpc_basic_ codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

* erpc_ common.h file is used for common eRPC definitions, typedefs, and enums.
* erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

* Message buffer files are used for storing serialized data: erpc_message buffer.hpp and
erpc_ message_ buffer.cpp.

* erpc_ transport.hpp file defines the abstract interface for transport layer.
The port subfolder contains the eRPC porting layer to adapt to different environments.
* erpc_ port.h file contains definition of erpc_malloc() and erpc_free() functions.
* erpc_port_stdlib.cpp file ensures adaptation to stdlib.
* erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

* erpc_client setup.h and erpc_ client setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

* erpc_transport_setup.h and erpc_setup_rpmsg_lite master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

* erpc_mbf_setup.h and erpc_setup_ mbf rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

* RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_ base_ transport.hpp, erpc_rpmsg_ lite_ transport.hpp, and
erpc_rpmsg_ lite_ transport.cpp files needs to be added into the client project.

154 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

e erpc_rnatr_multiply_rpmsg_cm7 - Master - AR Embedded Workbench IDE - Arm 9.30.1

File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 x
| flexspi_nor_debug w~ |
Files + Yol

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_n... +
B board

M ChMEIS

B compaonent

B device

B doc

H drivers

£ 8 erpe

1 Bl infra

[l erpc_basic_codec.cpp

— [lerpc_basic_codechpp

[l erpc_client_manager.cpp

— [&] erpc_client_manager.h

— Derpc:_c:lient_sewer_u:nmmu:un.hpp
— Olerpc_codechpp

— [l erpc_common.h

[erpc_crclB.opp

— Clerpc_crol6.hpp

— [Clerpc_manually_constucted hpp
[l erpc_message_buffer.cpp

M [Clerpc_message_bufferhpp

[] etpc_message_logoers.cpp
— Clerpc_message_loggers.hpp

[l erpc_pre_post_action.cpp

— [l erpc_pre_post_action.h

— [Clerpc_static_gueus.hpp

— [Clerpc_transporthpp

— [l erpc_wersionh

=1 B port

— [l erpc_config_internal h

— [l erpc_endianness_agnostic_example h
— [erpc_endianness_undefined h
— [kl erpc_porth
erpc_paott_stdlib.cpp

— [erpc_setup_extensions.h

M senvice

£ B setup

[erpc_client_setup.cpp

— [l erpc_client_setup.h
erpc_mhbi_setup.h

[l erpc_setup_mbf_rpomso.cpp

[l erpc_setup_rpmsg_lite_master.cpp
[l erpc_transport_setup.h

ey

— [lerpc_rpmsg_lite_base_fransporthpp

[l erpc_rpmsg_lite_transport.cpp

L— [erpc_rprmsg_lite_transport hpp

B evkmimrt! 170

B momor

B romsg_ite

B source

B startup

B utilities v

| EIpc__mallix__multiply_l_pmsg_cm?

1.6. MultiCore

155

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

156 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

@ erpc_matroe_multiply_rpmsg_cm7 - Master - [AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace v 0 X

| flexzpi_nor_debug

Files

B board
B CMSIS
B component
B device
B doc
B drivers
M erpc
B evkmirmxrt] 170
1 B rmemgr
momgr.c
— [momagrh
— [meomogr_intemal_core_api h
mcmgr_internal_core_api_imxrt1170.c
momgr_mu_internal.c
£ 8 rpmsg_lite
=1 B commaon
llist.c
£ M include
21 B environment
L= ol brn

L— B rpmsg_env_specifich
51 1 platfarm
L3 ol irreert1 170

L— B rpmsg_platform h
— [llisth
— k1 rpmsg_compiler b
— &1 romso_default_config.h
— [rpmsg_envh
— [rpmsg_lite.h
— [kl rpmsg_ns.h
— [wirtio_ring.h
L— B wirqueueh
=1 W rpmsg_ite
21 W porting

B environment
| rpmsg_eny_bm.c
L3 & platform
B imert1170

rpmsg_lite.c
FRMsg_ns.c

[&] virtqueus.c
B source
B startup
B utilities
B xip
B Output

2 @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_...

o o

2
o
v

erpc_matnx_multiply _rpmsg_cm?

1.6. MultiCore

157

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7
The main_ core0.c file contains the code for target board and eRPC initialization.

 After initialization, the secondary core is released from reset.

* When the secondary core is ready, the primary core initializes two matrix variables.

* The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error__handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_ matrix = {0};

/* RPMsg-Lite transport layer initialization */

erpc_ transport_ t transport;

transport = erpc_ transport_rpmsg_ lite_ master_ init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_ factory = erpc_mbf_ rpmsg_ init(transport);

/* eRPC client side initialization */
erpc__client_ t client;
client = erpc_ client_ init(transport, message buffer factory);

/* Set default error handler */
erpc_ client_set_error_handler(client, erpc_error handler);

while (1)
{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_ config.h) and eRPC (erpc_ config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

158 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

File Edit View Project CMSIS-DAP Tools Window Help

Warkspace w 0 X
fleszpi_nor_debug w
Files o
= @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor____ +~

B board

B CHSIS

Bl component

M device

Bl doc

Bl drivers

M erpc

B evkmirmat] 170

B meomgr

B rpmsg_lite

—=1 Bl source

F— [erpc_configh

[] erpc_errar_handler.cpp
F— & erpc_error_handlerh
main_carel.c

L— [rpmsg_configh

B startup

B Utilities

M xip

B Output

erpc_matnix_multiply_rpmzg_cm?

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply”
project for multiprocessor applications is located in
pressoSDK_install _dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

—~h

eRPC server
the <MCUX-

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each

transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_slave.cpp
<eRPC base directory>/erpc_ c/transports/erpc_ (d)spi_slave transport.hpp
<eRPC base directory> /erpc__c/transports/erpc_ (d)spi_slave_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup uart_ cmsis.cpp

1.6. MultiCore

159

MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc__c/transports/erpc_uart_cmsis__transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrixl, Matrix matrix2, Matrix result_ matrix)

{
=

int main()

{

/* UART transport layer initialization, ERPC_DEMO_ UART is the structure of CMSIS UART driver
—operations */

erpc_ transport_ t transport;

transport = erpc__transport_cmsis_uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf_t message buffer_factory;
message_ buffer_ factory = erpc_mbf_dynamic__init();

/* eRPC server side initialization */
erpc_server__t server;
server = erpc_server__init(transport, message_buffer factory);

/* Adding the service to the server */
erpc_service_t service = create_ MatrixMultiplyService_service();
erpc_add_ service_to_server(server, service);

while (1)
{
/* Process eRPC requests */
erpc_ status_t status = erpciserveripoll(server)
/* handle error status */
if (status != kErpcStatus_ Success)

{
/* print error description */
erpc__error__handler(status, 0);

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

160 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

| SPI| <eRPC base directory>/erpc_c/setup/erpc_setup_ (d)spi_master.cpp
<eRPC base directory>/erpc__c/transports/ erpc_ (d)spi_master_transport.hpp
<eRPC base directory>/erpc_ c/transports/ erpc_ (d)spi_master_transport.cpp
| |UART | <eRPC base directory>/erpc_c/setup/erpc_setup_uart_ cmsis.cpp
<eRPC base directory>/erpc_ c/transports/erpc_uart_cmsis_ transport.hpp

<eRPC base directory>/erpc_c / transports/erpc_uart_ cmsis__transport.cpp

Client user code The client’s user code is stored in the main client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

extern bool g_erpc_ error_ occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result_matrix = {0};

/* UART transport layer initialization, ERPC_DEMO__UART is the structure of CMSIS UART driver,
—operations */

erpc_ transport_ t transport;

transport = erpc_transport_ cmsis_ uart__init((void *)&ERPC_DEMO_ UART);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message_ buffer_factory = erpc_mbf_dynamic__init();

/* eRPC client side initialization */
erpc_client__t client;
client = erpc__client__init(transport,message_ buffer_ factory);

/* Set default error handler */
erpc__client_set__error__handler(client, erpc_error__handler);

while (1)

{

/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrix1, matrix2, result_ matrix);

/* Check if some error occured in eRPC */

if (g_erpc_error_occurred)

{

/* Exit program loop */
break;
}

.

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.6. MultiCore 161

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

‘L COM4%:115200baud - Tera Term VT [=] @] ==

Eile Edit Setup Control Window KanjiCode Help

s

Primary core started

Matrix #1

23 4D 43 o 32
18 18 38 44 16

11 23 21 4 11

119 23 24 6
32 26 49 43 16
22 48 36 3% 4l
21 28 32 31 1

eRPC request is sent to the serwver
Secondary core is running

Result matrix

2103 4028 4759 4865 2631
2808 3142 4787 4956 1563
2284 3308 4122 4736 1821
2940 4176 4808 4868 2894
1428 2987 2715 3051 2015

Press the SW2 button to initiate the next matrix multiplication -

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

162 Chapter 1. Middleware

https://github.com/EmbeddedRPC

MCUXpresso SDK Documentation, Release 25.12.00

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed

» Python code of the eRPC infrastructure was updated to match the proper python code style,
add type annotations and improve readability.

1.14.0

Added
* Added Cmake/Kconfig support.
* Made java code jdk11 compliant, GitHub PR #432.
* Added imxrt1186 support into mu transport layer.
» erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
* eRPC: Sources reformatted.

 erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

» erpc: Free the arbitrated client token from client manager, GitHub PR #444.

1.6. MultiCore 163

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

* erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

» erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

* Examples and tests consolidated.

1.13.0

Added
* erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.
* eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).
* eRPC: Add new Zephyr-related examples.

Fixed
* eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.
* eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.
* eRPC,erpcgen: Align switch brackets, GitHub PR #396.
* erpc: Fix zephyr uart transport, GitHub PR #410.

» erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
* eRPC,erpcgen: Remove csthool library, GitHub PR #403.

1.12.0

Added
* eRPC: Add dynamic/static option for transport init, GitHub PR #361.
» eRPC,erpcgen: Winsock2 support, GitHub PR #365.
* eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

* eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

* eRPC,erpcgen: Add experimental Java support.

Fixed
» eRPC: Fix receive error value for spidev, GitHub PR #363.
* eRPC: UartTransport::init adaptation to changed driver.
* eRPC: Fix typo in assert, GitHub PR #371.
* eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

* eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

164 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

1.11.0

Fixed

eRPC:
eRPC:
eRPC:
eRPC:
eRPC:
eRPC:
eRPC:
eRPC:
eRPC:
eRPC:

eRPC

Makefiles update, GitHub PR #301.

Resolving warnings in Python, GitHub PR #325.

Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.
Improved codec function to use reference instead of address, GitHub PR #324.
Fix NULL check for pending client creation, GitHub PR #341.

Replace sprintf with snprintf, GitHub PR #343.

Use MU_SendMsg blocking call in MU transport.

New LPSPI and LPI2C transport layers.

Freeing static objects, GitHub PR #353.

Fixed casting in deinit functions, GitHub PR #354.

: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.

erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

erpcgen: Add check that string read is not more than max length, GitHub PR #328.

erpcgen: Move to g++ in pytest, GitHub PR #335.

erpcgen: Use build=release for make, GitHub PR #334.

erpcgen: Removed boost dependency, GitHub PR #346.

erpcgen: Mingw support, GitHub PR #344.
erpcgen: VS build update, GitHub PR #347.

erpcgen: Modified name for common types macro scope, GitHub PR #337.

erpcgen: Fixed memcpy for template, GitHub PR #352.

eRPC
eRPC
eRPC

1.10.0

Fixed
* eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added
* eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.
.erpcgen: Remove redundant includes, GitHub PR #338.

.erpcgen: Many minor code improvements, GitHub PR #323.

1.6. MultiCore 165

MCUXpresso SDK Documentation, Release 25.12.00

Fixed

1.9.1

eRPC: MUTransport adaptation to new supported SoCs.
eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

eRPC: Endianness agnostic update, GitHub PR #276.

eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.
eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker;, GitHub
PR #266.

eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.
erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.
erpcgen: Several fixes for tests and CI, GitHub PR #289.

erpcgen: Refactoring erpcgen code, GitHub PR #302.

erpcgen: Fixed assigning const value to enum, GitHub PR #309.

erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

Fixed

eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

eRPC: Improve python detection in make, GitHub PR #225.

eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.
eRPC: Fix making test under Linux, GitHub PR #229.

eRPC: Assert costumizing, GitHub PR #148.

eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

eRPC: Fix inout cases, GitHub PR #237.

166

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

1.9.0

eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

eRPC: MessageBuffer usage improvement, GitHub PR #258.

eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

eRPC: Several MISRA violations addressed.

eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.
eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

erpcgen: Fix serialization of list/binary types, GitHub PR #240.
erpcgen: Fix empty list parsing, GitHub PR #72.
erpcgen: Fix templates for malloc errors, GitHub PR #110.

erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #249, #250.

erpcgen: Fix compile error:UniqueldChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

Added

eRPC: Allow used LIBUSBSIO device index being specified from the Python command line
argument.

Fixed

1.8.1

eRPC: Improving template usage, GitHub PR #153.

eRPC: run_clang_format.py cleanup, GitHub PR #177.

eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.
eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APj,
GitHub PR #168, #169.

erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

Added

eRPC: New i2c_slave_transport trasnport introduced.

1.6. MultiCore 167

MCUXpresso SDK Documentation, Release 25.12.00

Fixed

1.8.0

eRPC: Fix misra erpc c, GitHub PR #158.

eRPC: Allow conditional compilation of message_loggers and pre_post_action.
eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.
erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

erpcgen: Fix bison file, GitHub PR #156.

Added

eRPC: Support win32 thread, GitHub PR #108.

eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.
eRPC: Introduced new USB CDC transport.

eRPC: Introduced new Linux spidev-based transport.

eRPC: Added formatting extension for VSC, GitHub PR #134.

erpcgen: Introduce ustring type for unsigned char and force cast to char* GitHub PR #125.

Fixed

eRPC: Update makefile.
eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.
eRPC: Extend error msg for python server service handle function, GitHub PR #132.

eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

eRPC: SPI transport update to allow usage without handshaking GPIO.
eRPC: Native _ZWIN32 erpc serial transport and threading.

eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

eRPC: Update of matrix_multiply.py example: Add —serial and —-baud argument, GitHub PR
#137.

eRPC: Update of .clang-format, GitHub PR #140.

eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

eRPC, erpcgen: Core re-formatted using Clang version 10.

erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

168

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

* erpcgen: Python generator improvements, GitHub PR #100, #118.

* erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.7.4

Added
* eRPC: Support MU transport unit testing.
* eRPC: Adding mbed os support.

Fixed
* eRPC: Unit test code updated to handle service add and remove operations.
* eRPC: Several MISRA issues in rpmsg-based transports addressed.
* eRPC: Fixed Linux/TCP acceptance tests in release target.
* eRPC: Minor documentation updates, code formatting.

* erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed

* eRPC: Improved the test_callbacks logic to be more understandable and to allow requested
callback execution on the server side.

* eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

* eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

» erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added

* eRPC: Add missing doxygen comments for transports.

Fixed
» eRPC: Improved support of const types.
* eRPC: Fixed Mac build.
* eRPC: Fixed serializing python list.

* eRPC: Documentation update.

1.6. MultiCore 169

MCUXpresso SDK Documentation, Release 25.12.00

1.7.1

Fixed
» eRPC: Fixed semaphore in static message buffer factory.
* erpcgen: Fixed MU received error flag.

» erpcgen: Fixed tcp transport.

1.7.0

Added
* eRPC: List names are based on their types. Names are more deterministic.
» eRPC: Service objects are as a default created as global static objects.
* eRPC: Added missing doxygen comments.
* eRPC: Added support for 64bit numbers.

» eRPC: Added support of program language specific annotations.

Fixed
* eRPC: Improved code size of generated code.
* eRPC: Generating crc value is optional.
» eRPC: Fixed CMSIS Uart driver. Removed dependency on KSDK.
» eRPC: Forbid users use reserved words.
* eRPC: Removed outByref for function parameters.

* eRPC: Optimized code style of callback functions.

1.6.0

Added
* eRPC: Added @nullable support for scalar types.

Fixed
» eRPC: Improved code size of generated code.
* eRPC: Improved eRPC nested calls.

* eRPC: Improved eRPC list length variable serialization.

1.5.0

170 Chapter 1

. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Added

* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:

Added support for unions type non-wrapped by structure.
Added callbacks support.

Added support @external annotation for functions.
Added support @name annotation.

Added Messaging Unit transport layer.

Added RPMSG Lite RTOS TTY transport layer.

» eRPC: Added version verification and IDL version verification between eRPC code and eRPC
generated shim code.

* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:
* eRPC:

1.4.0

Added

¢ eRPC:

Fixed

* eRPC:
* eRPC:

[1.3.0]

Added

* eRPC:
* eRPC:
* eRPC:
* eRPC:

[1.2.0]

Added

Added support of shared memory pointer.

Added annotation to forbid generating const keyword for function parameters.
Added python matrix multiply example.

Added nested call support.

Added struct member “byref” option support.

Added support of forward declarations of structures

Added Python RPMsg Multiendpoint kernel module support

Added eRPC sniffer tool

New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

win_flex_bison.zip for windows updated.

Use one codec (instead of inCodec outCodec).

New annotation types introduced (@length, @max_length, ...).
Support for running both erpc client and erpc server on one side.
New transport layers for (LP)UART, (D)SPL.

Error handling support.

* eRPC source directory organization changed.

* Many eRPC improvements.

1.6. MultiCore

171

MCUXpresso SDK Documentation, Release 25.12.00

[1.1.0]

Added
* Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added

 Initial Release

1.7 Multimedia

1.7.1 Audio Voice
Audio Voice Components

MCUXpresso SDK : audio-voice-components

Overview This repository is for MCUXpresso SDK audio-voice-components middleware deliv-
ery and it contains the components officially provided in NXP MCUXpresso SDK. This repos-
itory is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Audio Voice Components - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Overview This repository allows users to add additional functionality to the Maestro Audio
framework. This structure is designed for integration with Maestro and is not intended for stan-
dalone use. For information on the use of individual components, please refer to the Maestro
programmer’s guide.

This repository acts as Zephyr module, to be able to use these libraries in Zephyr build system.

172 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/components/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro/blob/main/doxygen/ProgrammersGuide.md

MCUXpresso SDK Documentation, Release 25.12.00

Content
* asrc - Libraries and public files of Asynchronous Sample Rate Converter, version 1.0.0
* ssrc - Libraries and public files of Synchronous Sample Rate Converter, version 1.0.0
* opus - Source files of Opus decoder and encoder, version 1.3.1
* opusfile - Source files for Opus streams in the Ogg container, version 0.12
* 0gg - Source files of Ogg container, version 1.3.5
* decoders - Libraries and public files of following audio decoders:
— aac - AAC decoder, version 1.0.0
— flac - FLAC decoder, version 1.0.0
— mp3 - MP3 decoder, version 1.0.0
— wav - WAV decoder, version 1.0.0
* zephyr/ - Files allowing usage of the libraries in Zephyr build
Following table contains information about libraries and source files availability:

Asynchronous Sample Rate Converter The Asynchronous Sample Rate Converter (ASRC) soft-
ware module compensates the drift between two mono audio signals. This is not a frequency
converter and so the nominal signal frequency is the same before and after the ASRC. More de-
tails about ASRC are available in the User Guide, which is located in asrc\doc\.

Synchronous Sample Rate Converter The Synchronous Sample Rate Converter (SSRC) soft-
ware module converts an audio signal (mono or stereo) with a certain sampling frequency to
an audio signal with another sampling frequency. More details about SSRC are available in the
User Guide.

Opus For Opus decoder and encoder documentation please see following link: opus.

Opus File The Opus File provides a API for decoding and basic manipulation of Opus streams
in Ogg container and depends on Opus and Ogg libraries. For Opus File documentation please
see following link: opusfile.

Ogg Container For Ogg container documentation please see following link: ogg.

Decoders Each decoder contains libraries for supported processor and toolchain (see table
above), corresponding Public API file and documentation folder.

AAC For decoder features please see aacdec, for API Usage please see aacd_ug.

FLAC For decoder features please see flacdec, for API Usage please see flacd_ug.

MP3 For decoder features please see mp3dec, for API Usage please see mp3d_ug.

WAV For decoder features please see wavdec, for API Usage please see wavd_ug.

1.7. Multimedia 173

https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opusfile_api-0.12/index.html
https://xiph.org/ogg/doc/

MCUXpresso SDK Documentation, Release 25.12.00

Zephyr build To add library into the Zephyr build, add CON-
FIG_NXP_AUDIO_VOICE_COMPONENTS_* for specific libraries into your prj.conf. For
all configuration options, see zephyr/Kconfig.

List of supported libraries in Zephyr:
* Decoders:
- AAC
- FLAC
- MP3
- FLAC
- OPUS
* Encoders
- OPUS

AAC decoder

AAC decoder features
» The AAC decoder implementation supports the following:
» Supported profile : AAC-LC

* Sampling rate : 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48
kHz

* Channel : stereo and mono
* Bits per samples : 16 bit
* Container format : (MPEG-2 Style)AAC transport format - ADTS and ADIF.

Specification and reference
Performance
Memory information The memory usage of the decoder in bytes is:

* Code/flash = 26332 + 19264 = 45596
* Data/RAM = 26832

Section Size

text 26332
ro & .const 19264
.bss 26832

174 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
* CPU core clock in MHz: 20.97.

Track type Duration of track in sec- Frame size in Performance MIPS of codec (in
ond bytes MHz)

48 kHz, 38s 4096 12.2 MHz

stereo

API Usage of AAC Decoder

Overview

» This section describes the integration steps to call AAC decoder APIs by the application code.
During each step, the used data structures and functions are explained. All CCI public APIs
are defined in aac_cci.h header file. This file is located at \decoders\aac.

Configuration

Build Options AAC Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the AAC decoder.

Buffer Allocation

* The AAC decoder does not perform dynamic memory allocation. The application calls
the function AACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

* The application first gets the required memory size for the decoder, then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

» This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* AACDecoderInit() function must be called before decode API. This API allocates the memory
to decoder main structure and also initializes the decoder main structure parameters.

* It also registers the call back functions to the decoder, which is used by the decoder to read
or seek the input stream.

Decoding

* AACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

 This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

1.7. Multimedia 175

MCUXpresso SDK Documentation, Release 25.12.00

Seeking

* AACDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions are assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API AAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

FLAC decoder

FLAC decoder features
* The FLAC decoder implementation support the following:
* Sampling rate: 8 kHz, 11.05 kHz, 12 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.
* Channel : stereo and mono

* Bits per samples : 16 bits

Specification and reference

Official website
* FLAC lossless audio codec is at https://xiph.org/flac.

Inbound licensing

* For licensing information please refer to FLACs official website:
https://xiph.org/flac/license.html.

Performance

Memory information The memory usage of the decoder in bytes is:
* Code/flash = 15744 + 2080 = 17824
» Data/RAM = 27936

Section Size
text 15744
.ro & .const 2080
.bss 27936

176 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
* Output frame size: 16384 bytes.
* CPU core clock in MHz: 20.97.

Track type Duration of track in second Performance MIPS of codec (in MHz)
48 kHz, stereo 76 s 30.7 MHz
32 kHz, stereo 76 20.3 MHz
8 kHz, stereo 37s 5.34 MHz

Following test cases are performed:
* Audio format listening test
* Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of FLAC Decoder

Overview

» This section describes the integration steps to call FLAC decoder APIs by the application
code. During each step the used data structures and functions are explained. All cci public
APIs are defined in flac_cci.h header file. This file is located at \decoders\flac\include.

Configuration

Build Options
* SUPPORT_16_BITS_ONLY :- This macro is used to enable 16bits per sample flac decoder.

* ASM :- This macro is used to enable ARM assembly macros for 24bits per sample flac de-
coder.

Buffer Allocation

* The FLAC decoder does not perform dynamic memory allocation. The application calls
the function FLACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

* This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* FLACDecoderInit() function must be called before decode API. This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

* It alsoregisters the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 177

MCUXpresso SDK Documentation, Release 25.12.00

Decoding

* FLACDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

* This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

* FLACDecoderSeek() function calculates the actual frame boundary align offset from the
unalign seek offset and returns the actual seek offset. It also resets the decoder internal
states and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API FLAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

MP3 decoder

MP3 decoder features
* MP3 decoder supports mpeg-1, mpeg-2, mpeg-2.5.

» All MP3 features supported , including joint stereo, mid-side stereo, intensity stereo, and
dual channel.

* Supported sampling rate: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1
kHz and 48 kHz.

* Supported channel: stereo and mono
» Supported bits per samples: 16 bit

» Supported bit rate: 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256,
320, 384, 416, and 448.

Performance

Memory information The memory usage of the decoder (data obtained from IAR compiler) in
bytes is:

* Code/flash = 26884 + 18372 = 45256
*« RAM = 16200

178 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Section Size

text 26884
ro & .const 18372
.bss 16200

CPU usage The performance of the decoder was measured using the real hardware platform
(RT1060).

* CPU core clock in MHz: 600.

Track type Duration of track in Frame size in Performance MIPS of codec
second bytes (in MHz)

320 Kbps, 44.1 kHz, 358s 2304 ~24 MHz

stereo

192 Kbps, 48 kHz, 10s 2304 ~18 MHz

stereo

API Usage of MP3 Decoder

Overview

* This section describes the integration steps to call MP3 decoder APIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in mp3_cci.h header file. This file is located at \decoders\mp3.

Configuration

Build Options MP3 Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the MP3 decoder.

Buffer Allocation

* The MP3 decoder does not perform dynamic memory allocation. The application calls
the function MP3DecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

» This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* MP3DecoderInit() function must be called before decode API. This API allocates the memory
to decoder main structure and also initializes the decoder main structure parameters.

* It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 179

MCUXpresso SDK Documentation, Release 25.12.00

Decoding

» MP3DecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

* This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

» MP3DecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API MP3 Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

WAV decoder

WAV decoder features
* The WAV decoder implementation support the following:
» Sampling rate: 8 kHz, 11.025kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.
* Channel: stereo and mono
* PCM format with 8/16/24 bits per sample.

Performance
Memory information The memory usage of the decoder in bytes is:

* Code/flash = 6260 + 342 = 6602
» Data/RAM =16 + 20696 = 20712

Section Size
text 6260
.ro & .const 342
.bss 20696
.data 16

180 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

CPU usage The performance of the decoder was measured using the decoder standalone unit
test.

* CPU core clock in MHz: 20.97 MHz.

Track type Duration of track in Frame size in Performance MIPS of codec (in
second bytes MHz)

48 kHz, stereo, 12s 4096 9.68 MHz

PCM

Following test cases were performed:
* Audio format listening test
* Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of WAV Decoder

Overview

» This section describes the integration steps to call MP3 decoder APIs by the application code.
During each step the used data structures and functions are explained. All cci public APIs
are defined in wav_cci.h header file. This file is located at \decoders\wav.

Configuration

Build Options WAV Decoder library is built with the following defined/enabled macros.

» There is no macro or define used to build the WAV decoder.

Buffer Allocation

* The WAV decoder does not perform dynamic memory allocation. The application calls
the function WAVDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

» The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

* This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization

* WAVDecoderInit() function must be called before decode API This API allocates the mem-
ory to decoder main structure and also initializes the decoder main structure parameters.

* It alsoregisters the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 181

MCUXpresso SDK Documentation, Release 25.12.00

Decoding

» WAVDecoderDecode() function is main decoding API of the decoder. This API decodes the
encoded input stream and fills the PCM output samples into decoder output PCM buffer.

* This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking

» WAVDecoderSeek() function calculates the actual frame boundary align offset from the un-
align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API WAV Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

Synchronous Sample Rate Converter

Introduction The Synchronous Sample Rate Converter (SSRC) software module converts a
mono or stereo audio signal with a certain sampling frequency to an audio signal with a differ-
ent sampling frequency. The sample rate converter works synchronously, meaning that input
and output sampling rates are exactly known for a mutual clock reference.

To accomplish a professional sampling conversion quality and minimal system footprint, the
SRC SW module contains highly optimized components.

The SSRC module supports the following features.
» Multiple instances of the sample rate converter can run at the same time.

* Supported sampling frequencies: 32 kHz, 44.1 kHz, and 48 kHz plus the halves and the quar-
ters of these three sample rates. The input and output sample rates are freely selectable out
of the supported sampling rates

* Selectable Mono/Stereo Input/Output.
* Selectable quality level: high quality/ very high quality.

Acronyms Table 1 lists the acronyms used in this document.

182 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Acror Description

Fs Sampling Frequency
Fs- Lowest sample rate used for the conversion Note: Input sample rate for up sampling
LOW(and the output sample rate for down sampling

FSIN Input sample rate

FsOU Output sample rate
MIPS Million Instructions Per Second
SSRC Synchronous sample rate converter
THD+ Total Harmonic Distortion plus Noise Note: The THD+N is defined as the total power of
the unwanted signal divided by the power of the wanted signal. The wanted signal is
defined as a full scale, 1 kHz sine wave.

Parent topic:Introduction

Performance figures The Total Harmonic Distortion Plus Noise (THD+N) of the converted sig-
nals is below - 76 (high-quality mode) and - 85 (very high-quality mode) for signal frequencies
below 0.45*FSLOW (=90 % of the Nyquist range of the lowest sample clock)

Table 1 and Table 2 give the THD+N performance (FsSIN on the vertical axis and FsOUT on the
horizontal axis) for the two supported quality levels. The numbers in the tables give the worst-
case THD+N measured for signal frequencies below 0.45*FsLOW. For each conversion ratio, 100
THD+N measurements were executed with signal frequencies linearly spread over the complete

Nyquist range.

FSIN/ FSOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -79.7 -801 -80.1 -79.6 -80.2 -794 -79.1 -79.2
11025 -79 -92.9 -80 -79.9 -80.2 -79.8 -799 -79.5 -789
12000 -79 -79.2 927 -80.1 -798 -803 -79.8 -79.8 -795
16000 -81.7 -788 -80.2 -93 -783 -77.7 -783 -783 -779
22050 -77.5 -81.8 -782 -79 -93 -79.9 -79.8 -80.3 -79.9
24000 -774 -779 -81.2 -79.1 -79.2 925 -80.1 -79.8 -79.9
32000 -81 -77.5 -789 -81.2 -787 -80.1 -929 -79.7 -79.2
44100 -79.1 -81.2 -76.7 -77.8 -82 -78.2 -79.1 93 -79.7
48000 -78.7 -788 -811 -776 -779 -81.8 -79.1 -79.3 -93
FSIN/ FSOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 921 -86.6 -886 -91.5 -864 -89 -89.7 -89.3 -89.3
11025 -89.1 -929 -863 -863 -91.6 -86.3 -865 -89.7 -89.3
12000 914 -884 -927 -896 -86.6 -91.5 -86.8 -86.6 -89.7
16000 -93.1 -884 -904 -93 -86.6 -888 -91.5 -865 -894
22050 -90.7 -935 -89.7 -89.3 -93 -86.5 -86.3 -91.5 -86.6
24000 -93.8 -905 -935 -91.7 -884 -925 -89.7 -86.6 -91.5
32000 -93.8 -91 -91.2 933 -84 -90.5 929 -86.7 -89
44100 -93.7 -936 -915 -90.6 -93.8 -89.8 -89.3 93 -86.5
48000 941 -926 -94 -94 -90.1 -93.7 -91.8 -884 -93

Parent topic:/ntroduction

Resource usage This section lists the memory and processing requirements for the SSRC mod-

ule.

1.7. Multimedia

183

MCUXpresso SDK Documentation, Release 25.12.00

Memory requirements The following are the memory requirements for the SSRC module.

Memory item

Size in bytes

Instance memory (persistent)
Scratch memory (non-persistent)

Program memory for Arm9E and XScale

Program memory for Arm7

548

15.536 1

14k
15k

Parent topic:Resource usage

1 Worst case number for I/O buffers of 40 ms. If smaller I/O buffers are used, this number is
smaller. The required scratch memory is roughly equal to 2 times the buffer size on the highest

sample rate.

Processing requirements

The cycles are measured with zero wait state memory and for I/O buffers of 40 ms.

The following tables give the MIPS performance of the SSRC module.

Note: The user processing 32-bit processing must refer to the very high-quality MIPS results.

On Arm7 and Arm9
FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 4.77 5.17 1.84 6.75 7.33 3.55 9.1 9.89
11025 542 0.18 5.58 6.84 2.53 7.75 9.71 4.89 10.31
12000 585 6.39 0.2 7.01 8.97 2.76 9.89 12.94 5.32
16000 1.69 7.74 7.99 0.26 9.54 10.33 3.68 13.5 14.65
22050 7.2 2.33 10.09 10.83 0.36 11.17 13.67 5.07 15.49
24000 7.79 8.33 2.53 11.7 12.78 0.39 14.03 1794 5.51
32000 312 10.32 10.58 3.38 15.48 1598 0.52 19.08 20.66
44100 9.96 43 13.65 144 4.65 20.18 21.67 0.72 22.34
48000 10.8 11.34 4.68 15.58 16.67 5.06 234 25.56 0.78
FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.07 7.71 8.24 2.28 10.5 11.28 441 13.44 14.48
11025 819 0.1 8.96 11.04 3.14 12 15.09 6.08 15.2
12000 8.76 9.52 0.1 11.3 1448 341 15.36 20.07 6.61
16000 214 11.73 12.01 0.14 1541 16.48 4.55 21 22.56
22050 10.78 2.94 15.39 16.38 0.19 17.92 22.08 6.27 24
24000 11.57 12.34 3.2 17.51 19.04 0.21 22.61 2897 6.83
32000 419 1548 15.77 4.27 23.46 24.01 0.28 30.83 32.96
44100 14.78 5.77 20.56 21.56 5.89 30.77 3275 0.38 35.83
48000 15.92 16.7 6.28 23.15 24.69 641 35.02 38.08 042
184 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 13.61 1452 4.43 19.03 2043 838 25.06 26.99
11025 14.85 0.18 1591 1947 6.1 21.82 2735 1213 28.38
12000 1584 17.36 0.2 19.97 254 6.64 27.85 36.26 13.21
16000 425 21.24 21.79 0.26 27.22 29.03 8.86 38.07 40.85
22050 20.02 5.85 27.72 29.7 0.36 31.81 3894 122 43.63
24000 2145 2298 6.37 31.68 3471 0.39 39.94 5038 13.28
32000 839 2874 29.29 85 4248 4358 0.52 54.43 58.07
44100 28.11 11.57 38.05 40.03 11.71 5543 594 0.72 63.62
48000 30.19 31.71 1259 429 4596 12.74 63.36 69.42 0.78
Parent topic:Processing requirements
On Arm9e and XScale
FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 43000
8000 0.03 1.14 1.25 0.54 1.95 2.14 1.04 3.85 4.23
11025 1.31 0.05 1.36 1.62 0.75 2.23 2.78 1.44 4.38
12000 143 1.57 0.05 1.68 2.13 0.82 2.84 3.72 1.57
16000 0.5 1.86 1.93 0.07 2.27 2.5 1.09 3.9 4.29
22050 2.19 0.69 2.42 2.61 0.1 2.72 3.24 1.5 4.46
24000 2.4 2.52 0.75 2.86 3.15 0.1 3.35 4.25 1.63
32000 092 3.12 3.18 1.01 3.72 3.86 0.14 4.55 4.99
44100 428 1.27 4.15 4.37 1.39 4.83 5.23 0.19 5.43
48000 4.7 4.9 1.39 4.8 5.03 1.51 5.72 6.3 0.21
FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 43000
8000 0.06 1.87 2.02 1.07 3.09 3.36 2.07 6.09 6.63
11025 2.27 0.09 2.25 2.66 1.47 3.56 44 2.85 7.01
12000 245 2.76 0.09 2.75 3.43 1.6 4.5 5.83 3.1
16000 099 3.23 3.36 0.13 3.73 4.05 2.14 6.17 6.72
22050 3.69 1.36 4.14 4.55 0.17 4.51 5.31 2.95 7.13
24000 401 4.28 1.48 4.9 5.51 0.19 5.51 6.85 3.21
32000 1.83 5.26 5.39 1.98 6.46 6.71 0.25 7.47 8.09
44100 7.22 252 6.94 7.38 2.72 8.27 9.1 0.35 9.02
48000 7.85 8.33 2.74 8.02 8.57 2.97 9.81 11.03 0.38
FSIN/FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 43000
8000 0.03 1.21 1.33 0.61 2.08 2.29 1.17 4.1 4.51
11025 1.47 0.05 1.44 1.72 0.84 2.38 2.97 1.61 4.66
12000 1.62 1.76 0.05 1.78 2.26 0.91 3.03 3.98 1.75
16000 055 2.1 2.17 0.07 2.42 2.65 1.22 4.16 4.57
22050 249 0.76 2.73 2.95 0.1 2.88 3.45 1.68 4.75
24000 2.75 2.86 0.83 3.23 3.52 0.1 3.56 4.53 1.83
32000 1 3.56 3.63 1.11 4.2 4.34 0.14 4.84 5.3
44100 486 1.38 4.74 4.98 1.53 5.46 5.89 0.19 5.75
48000 5.38 5.55 1.5 5.5 5.71 1.66 6.47 7.05 0.21
1.7. Multimedia 185

MCUXpresso SDK Documentation, Release 25.12.00

FSIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 0.06 2.11 2.29 1.2 3.55 3.86 2.31 6.99 7.61
11025 2.62 0.09 2.52 3.01 1.66 4.07 5.07 3.19 8

12000 285 3.15 0.09 3.11 3.9 1.81 5.17 6.75 3.47
16000 1.09 3.73 3.85 0.13 4.22 4.57 241 7.1 7.72
22050 432 1.5 4.79 5.23 0.17 5.05 6.02 3.32 8.15
24000 474 4.99 1.64 5.69 6.3 0.19 6.22 7.8 3.61
32000 198 6.18 6.3 2.18 7.45 7.71 0.25 8.44 9.14
44100 843 272 8.18 8.64 3.01 9.59 1047 0.35 10.1
48000 9.26 9.66 2.97 9.49 9.97 3.27 11.39 1259 0.38

Parent topic:Processing requirements

On Cortex-A8 for worst case of 48000 Hz to 44100 Hz

Mode MIPs
Mono at High Quality 3.13
Stereo at High Quality 3.61

Mono at Very High Quality 4.13
Stereo at Very High Quality 6.52

Parent topic:Processing requirements
Parent topic:Resource usage

Parent topic:Introduction

Application programmers interface (API) This section describes the application program-
ming interface (API) libraries of the SSRC module.

Type definitions This section describes the type definitions of the SSRC module.

Types for allocation of instance and scratch memory The instance memory is the memory
that contains the state of one instance of the SSRC module. Multiple instances of the SSRC mod-
ule can exist, each with it is own instance memory. S memory is the memory that is only used
temporarily by the process function of the SSRC module. This memory can be used as scratch
memory by any other function running in the same thread as the SSRC module. Different threads
cannot share the scratch memories.

The application must allocate both the instance and the scratch memory. The SSRC module does
not allocate memory.

There is a data type available for both the instance and the scratch memory, namely
SSRC_ Instance_t and SSRC_ Scratch_t. The instance type is defined as structures of the correct
size in the SSRC header file. Both the instance and the scratch memory must be 4 bytes aligned.

Parent topic:Type definitions

LVM_Fs en Definition:

typedef enum

LVM_FS 8000 =0,
LVM_FS_ 11025 =1,
(continues on next page)

186 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

LVM_FS_ 12000
LVM_FS_ 16000
LVM_FS_ 22050
LVM__FS_ 24000
LVM_FS_ 32000
LVM_FS_ 44100
LVM__FS_ 48000
} LVM_Fs_en;

| e |
0N ST W

Description:

Used to pass the input and the output sample rate to the SSRC.

Parent topic:Type definitions

LVM_Format_en Definition:

typedef enum

LVM_STEREO =0,
LVM_MONOINSTEREO =1,
LVM__MONO =2

} LVM_ Format_ en;

Description:

(continued from previous page)

The LVM_ Format_ en enumerated type is used to set the value of the SSRC data format.

The SSRC supports input data in two formats Mono and Stereo. For an input buffer of NumSamples
= N (meaning N sample pairs for Stereo and MonoInStereo or N samples for Mono), the format
of data in the buffer is as listed in Table 1:

Sample Number Stereo MonolInStereo Mono

0 Left(0) Mono(0) Mono(0)

1 Right(0) Mono(0) Mono(1)

2 Left(1) Mono(1) Mono(2)

3 Right(1) Mono(1) Mono(3)

4 Left(2) Mono(2) Mono(4)
N-2 Left(N/2-1) Mono(N/2-1) Mono(N-2)
N-1 Right(N/2-1) Mono(N/2-1) Mono(N-1)
N Left(N/2) Mono(N/2) Not Used
N+1 Right(N/2) Mono(N/2) Not Used
N+2 Left(N/2+1) Mono(N/2+1) Not Used
N+3 Right(N/2+1) Mono(N/2+1) Not Used

« “ « Not Used

« “ « Not Used
2*N-2 Left(N-1) Mono(N-1) Not Used

Parent topic:Type definitions

SSRC_Quality_en Definition:

typedef enum

SSRC_QUALITY_ HIGH =

0,

(continues on next page)

1.7. Multimedia

187

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

SSRC_QUALITY_VERY_HIGH =1
SSRC_QUALITY_DUMMY = LVM_MAXENUM
} SSRC__Quality_ en;

Description:

Used to select the quality level of the SSRC. For details, see Performance figures. Selecting the
highest-quality level, comes with a cost in the SSRC processing requirements. Therefore, it should
only be done for critical applications.

Parent topic:Type definitions

Instance parameters Definition:

typedef struct

{
SSRC_ Quality_en Quality;
LVM_ Fs en SSRC__Fs_ In;
LVM_Fs_en SSRC__Fs_ Out;
LVM_ Format_ en SSRC__ NrOfChannels;
short NrSamplesIn;
short NrSamplesOut;

} SSRC_ Params__t;

Description:

Used to pass the SSRC instance parameters to the SSRC module. It is a structure that contains the
members for input sample rate, output sample rate, the number of channels, and the number of
samples on the input and output audio stream.

Parent topic:Type definitions

Nr of samples mode Definition:

typedef enum

SSRC_NR_SAMPLES DEFAULT =0,
SSRC_NR_SAMPLES MIN ="
SSRC_NR_SAMPLES DUMMY = LVM__MAXENUM

} SSRC_NR_SAMPLES MODE _en;

Description:

The SSRC_NR,_SAMPLES_MODE_ en enumerated type specifies the two different modes that
can be used to retrieve the number of samples using the SSRC GetNrSamples function.

Parent topic:Type definitions

Function return status Definition:

typedef enum

{
SSRC__ OK = 0,
SSRC_INVALID_FS = 1,
SSRC_INVALID_NR_CHANNELS = 2,
SSRC_NULL_ POINTER =3
SSRC_WRONG__NR_SAMPLES =4,
SSRC_ALLINGMENT _ERROR ="

(continues on next page)

188 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

SSRC_INVALID MODE =6,
SSRC_INVALID VALUE =7,
SSRC_ALLINGMENT ERROR =8,

LVXXX RETURNSTATUS DUMMY = LVM_MAXENUM
} SSRC_ ReturnStatus_ en;

Description:

The SSRC_ReturnStatus_en enumerated type specifies the different error codes returned by the
API functions. For the exact meaning, see the individual function descriptions.

Parent topic:Type definitions

Parent topic:Application programmers interface (API)

Functions This section lists all the API functions of the SSRC module and explains their param-
eters.

SSRC_GetNrSamples Prototype:

SSRC__ReturnStatus_en SSRC__GetNrSamples
(SSRC_NR_SAMPLES_MODE_en Mode,
SSRC_Params_t* pSSRC_ Params);

Description:

This function retrieves the number of samples or sample pairs for stereo used as an input and
as an output of the SSRC module.

Namr Type Description

Mod SSRC_N: There are two modes: - SSRC_NR_SAMPLES_DEFAULT: In this
mode, the function returns the number of samples for 40 ms blocks -
SSRC_NR_SAMPLES_ MIN: the function returns the minimal number of sam-
ples supported for this conversion ratio. The SSRC_Init function accepts each
integer multiple of this ratio. Formula: blocksize (ms) = 1/gcd(Fs_In,Fs Out)

PSSE SSRC_P: Pointer to the instance parameters. The application fills in the values of the in-
put sample rate, the output sample rate, and the number of channels. Based on
this input, the SSRC__GetNrSamples fills in the values for the number of samples
for the input and the output audio stream.

Returns:
SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.

SSRC_INVALID_NR_CHANN When the channel format is not equal to LVvM_MONO or
LVM__STEREO.

SSRC_NULL_ POINTER When pSSRC__Params is a NULL pointer.

SSRC_INVALID MODE When mode is not a valid setting.

Note: The SSRC_GetNrSamples function returns the values from the following tables. Instead of
calling the SSRC_GetNrSamples function, use the values from these tables directly.

1.7. Multimedia 189

MCUXpresso SDK Documentation, Release 25.12.00

Sample rate Nr of samples

8000 320
11025 441
12000 480
16000 640
22050 882
24000 960
32000 1280
44100 1764
48000 1920

In/Out 8000 11025 12000 16000 22050 24000 32000 44100 48000

8000 11 320441 23 12 160441 13 14 80441 16
11025 441320 11 147160 441640 12 147320 4411280 14 147640
12000 32 160147 11 34 80147 12 38 40147 14
16000 21 640441 43 11 320441 23 12 160441 13
22050 441160 21 14780 441320 11 147160 441640 12 147320
24000 31 320147 21 32 160147 11 34 80147 12
32000 41 1280441 83 21 640441 43 11 320441 23
44100 44180 41 14740 441160 21 14780 441320 11 147160
48000 61 640147 41 31 320147 21 32 160147 11

Parent topic:Functions

SSRC_GetScratchSize Prototype:

SSRC_ReturnStatus _en SSRC GetScratchSize
(SSRC_Params_t* pSSRC_ Params,
LVM_ INT32* pScratchSize);

Description:

This function retrieves the scratch size for a given conversion ratio and for given buffer sizes at
the input and at the output.

Name Type Description

pSSRC_ Par: SSRC_ Param Pointer to the instance parameters. All members should have a
valid value.

pScratch- LVM_INT32* Pointer to the scratch size. The SSRC GetScratchSize function fills

Size in the correct value (in bytes).

Returns:

190 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK

When the function call succeeds.

SSRC_INVALID FS When the requested input or output sampling rates are in-

valid.

SSRC_INVALID_NR_CHANN When the channel format is not equal to LVM_MONO or

LVM__STEREO.

SSRC_NULL_ POINTER When pSSRC_ Params or pScratchSize is a NULL pointer.
SSRC_ WRONG_NR_SAMPL! When the number of samples on the input or on the output are

incorrect.

Parent topic:Functions

SSRC_Init Prototype:

SSRC ReturnStatus_en SSRC Init
(SSRC__Instance_t* pSSRC_ Instance,
SSRC_ Scratch_ t* pSSRC_ Scratch,
SSRC_ Params_ t* pSSRC_ Params,

LVM_INT16**
LVM_INT16**

Description:

ppInputInScratch,
ppOutputInScratch);

The SSRC_Init function initializes an instance of the SSRC module.

Name Type Description

pSSRC. SSRC__ Pointer to the instance of the SSRC. This application must allocate the memory
before calling the SSRC_ Init function.

pSSRC. SSRC__ Pointer to the scratch memory. The pointer is saved inside the instance and is
used by the SSRC_ Process function. The application must allocate the scratch
memory before calling the SSRC_ Init function.

pSSRC. SSRC__ Pointer to the instance parameters.

ppIn- LVM_TI The SSRC module can be called with the input samples located in scratch.

putIn- This pointer points to a location that holds the pointer to the location in the

Scratch scratch memory that can be used to store the input samples. For example, to

ppOut- LVM_ I
putln-
Scratch

save memory.

The SSRC module can store the output samples in the scratch memory. This
pointer points to a location that holds the pointer to the location in the scratch
memory that can be used to store the output samples. For example, to save
memory.

Returns:

1.7. Multimedia

191

MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK

SSRC_INVALID_FS

SSRC_INVALID_NR_ CHANN

SSRC_NULL_ POINTER

SSRC_ WRONG_NR_SAMPLI

SSRC__ALIGNMENT ERROR

When the function call succeeds.

When the requested input or output sampling rates are in-
valid.

When the channel format is not equal to LVvM_MONO or
LVM__STEREO.

When pSSRC_ Params or pScratchSize is a NULL pointer.

When the number of samples on the input or on the output are
incorrect.

When the instance memory or the scratch memory is not 4
bytes aligned.

Parent topic:Functions

SSRC_SetGains Prototype:

SSRC_ReturnStatus__en SSRC _SetGains
(SSRC__Instance_t* pSSRC_ Instance,

LVM_Mode en
LVM_Mode en

LVM_INT16

Description:

OutputGain);

bHeadroomGainEnabled,
bOutputGainEnabled,

This function sets headroom gain and the post gain of the SSRC. The SSRC_ SetGains function is
an optional function that should be used only in rare cases. Preferably, use the default settings.

Name Type

Description

pSSRC SSRC Pointer to the instance of the SSRC.
bHead- LVM_ Parameter to enable or disable the headroom gain of the SSRC. The default
value is LVM__MODE_ON. LVM_MODE_ OFF can be used if it can be guaran-

room-

GainErx teed that the input level is below - 6 in all cases (the default headroom is -6 dB).

abled

bOut- LVM_ Parameter to enable or disable the output gain. The default value is

put- LVM_ MODE ON.

GainEr

abled

Out- LVM_ The value of the output gain. The output gain is a linear gain value. 0x7FFF

put- is equal to +6 dB and 0x0000 corresponds to -inf dB. By default, a 3 dB gain is

Gain applied (OutputGain = 23197), resulting in an overall gain of -3 dB (-6 dB head-
room +3 dB output gain). Unit Q format Data Range Default value Linear gain
Q1.14 [0;32767] 23197

Returns:
SSRC_OK When the function call succeeds

SSRC_NULL_ POINT When pSSRC Instance is @ NULL pointer

SSRC_INVALID MO: Wrong value used for the bHeadroomGainEnabled or the OutputGainEn-
abled parameters.

SSRC_INVALID VAI When OutputGain is out of the range [0;32767].

192

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

SSRC_Process Prototype:

SSRC ReturnStatus _en SSRC Process
(SSRC__Instance_t* pSSRC_ Instance,
LVM_INT16* pSSRC__Audioln,
LVM_INT16* pSSRC__ AudioOut);

Description:

Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 16-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC__Instance SSRC_ Instance_t* Pointer to the instance of the SSRC.
pSSRC__Audioln LVM_INT16* Pointer to the input samples.
pSSRC__AudioOut LVM__INT16* Pointer to the output samples.
Returns:
SSRC_OK When the function call succeeds.
SSRC_NULL_POINTE! When one of pSSRC_ Instance, pSSRC__Audioln, or pSSRC_ AudioOut is
NULL.

Parent topic:Functions

SSRC_Process_D32 Prototype:

SSRC ReturnStatus__en SSRC Process D32
(SSRC__Instance_ t* pSSRC_ Instance,
LVM_ INT32* pSSRC__Audioln,
LVM_INT32* pSSRC__AudioOut);

Description:

Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 32-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description

pSSRC_ Instance SSRC_ Instance_t* Pointer to the instance of the SSRC.
pSSRC_ Audioln LVM_ INT32* Pointer to the input samples.
pSSRC_ AudioOut LVM_INT32* Pointer to the output samples.

Returns:

|SSRC_OK|When the function call succeeds.| |SSRC_NULL_POINTER|When one of
pSSRC_ Instance, pSSRC__ Audioln, or pSSRC__AudioOut is NULL. |

1.7. Multimedia 193

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

Parent topic:Application programmers interface (API)

Dynamic function usage This chapter explains how and when the SSRC functions are or can
be used.

Define the number of samples to be used on input and output Call the function
SSRC__GetNrSamples. Each integer multiple of the returned number of samples can be used.

Parent topic:Dynamic function usage

Allocate scratch memory To calculate the required size of the scratch memory, call the
SSRC__GetScratchSize function. Allocate memory for the returned size.

Parent topic:Dynamic function usage

Initialize the SSRC instance Call the SSRC_Init function.

Parent topic:Dynamic function usage

Process samples The SSRC_ Process function can now be called any number of times.

Parent topic:Dynamic function usage

Destroy the SSRC instance When the processing is completed, the allocated memory for the
instance and the scratch can be freed.

Parent topic:Dynamic function usage

Parent topic:Application programmers interface (API)

Reentrancy None of the SSRC functions are re-entrant.

Parent topic:Application programmers interface (API)

Additional user information This section provides information on the Attenuation of the sig-
nal and Notes on integration.

Attenuation of the signal When a fully saturated or clipped input is applied to an SRC module,
the aliases after the sample rate conversion, although sufficiently suppressed, can still result in
a clipped output. To prevent clipped output, the output of the SSRC module is by default atten-
uated with 3 dB. Although not advised, this gain value can be changed using the SSRC_SetGains
function.

Parent topic:Additional user information

194 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Notes on integration Although the sample rate converter module works with audio signals on
different sampling rates, it is a synchronous module. The module takes a block of input samples,
consumes the input completely, and produces a full buffer with output samples. As a result, the
SSRC only accepts a limited number of input and output block sizes. To flush last, incomplete,
block of an audio stream, the block is padded with zeros until it is full before the SSRC processes
it.

Parent topic:Additional user information

Example application The source code of the example application can be found in the .
\EX_APP\APP_FileIO\SRC directory of the release package. The \EX_APP\APP_FileIO\
MAKE directory contains a make file that can be used to build the example application. When
building the application, an executable is generated in the \EX_ APP\APP_ FileIO\EXE direc-
tory.

The example application takes as command-line input parameters:

1. The path toward the input PCM file. It assumes raw 16 bit signed little-endian put. Stereo
input samples should be interleaved (L1, L2 R1, R2,...), mono samples should be deinter-
leaved (L1, L2, and so on).

The path toward the output PCM file.
The input sample rate.

The output sample rate.

AR

The channel format (mono or stereo).

Integration test A correct integration of the SSRC module can be verified in two ways.
* Bit accurate test

e THD+N measurement

Bit accurate test The TestFiles directory of the release package contains a test input (sampled
at 44,100 Hz) and several expected output files (sample rates from 8000 Hz to 48,000 Hz). If the
same test input file is applied to the SRC after integration in the target platform, the output is bit
accurate with the expected output file that matches the output-sample rate

Parent topic:Integration test

THD+N measurement Produce a swept sine and feed it through the SSRC module. Do a THD+N
measurement on the obtained output signal. The THD+N of the converted signals should be
below - 77 in the interval [0 - 0.45] FSLOW.

Parent topic:/ntegration test

Maestro Audio Framework

MCUXpresso SDK : Maestro

Overview Thisrepository is for MCUXpresso SDK maestro middleware delivery and it contains
the components officially provided in NXP MCUXpresso SDK. This repository is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to
the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

1.7. Multimedia 195

MCUXpresso SDK Documentation, Release 25.12.00

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Maestro - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
Maestro project placed on github. Contributing can be managed via pull-requests.

Introduction Maestro audio framework intends to enable chaining of basic audio processing
blocks, called elements. These blocks then form stream processing objects, called pipeline. This
pipeline can be used for multiple audio processing use cases.

The processing blocks can include (but are not limited to) different audio sources (for exam-
ple file or microphone), decoders or encoders, filters or effects, and audio sinks. Framework
overview is depicted in the following picture:

Aeelication

Audio source | Media codec || Voice processing|—| Post processing |+ Audio sink
Microphone(s) MP3 decoder ‘ VIT or 3 party SSRC or 3 ™ party Speaker(s)
Filesystem Opus decoder ASRC or 3 party Filesystem
Network / ring %ﬁ%s di’l‘é)%i?r Memory‘
Memory Flac decoder USB audio class
USB audio class e
OS Abstraction Layer
FreeRTOS Zephyr*

*not all elements and libraries are supported in Zephyr port. For more information, see Maestro
on Zephyr

The Maestro audio framework is an open-source component developed by NXP Semiconductors
and released under the BSD-compatible license. It is running on RTOS (Zephyr or FreeRTOS),
abstracted by OSA layer.

For detailed description of the audio Maestro framework, please refer to the programmer’s guide.

To see what is new, see changelog.

Maestro on Zephyr Getting started guide and further information for Maestro on Zephyr may
be found here.

Maestro on FreeRTOS Maestro on FreeRTOS is supported in NXP’s SDK. To get started, see
mcuxsdk doc.

196 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/maestro/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Supported examples The current version of the Maestro audio framework supports several
optional features, some of which are used in these examples:

* maestro_playback

* maestro_record

* maestro_usb_mic

* maestro_usb_speaker

The examples can be found in the audio_examples folder of the desired board. The demo ap-
plications are based on FreeRTOS and use multiple tasks to form the application functionality.

Example applications overview To set up the audio framework properly, it is necessary to
create a streamer with streamer_ create APL It is also essential to set up the desired hardware
peripherals using the functions described in streamer_ pcm.h. The Maestro example projects con-
sist of several files regarding the audio framework. The initial file is main.c with code to create
multiple tasks. For features including SD card (in the maestro_playback examples, reading a
file from SD card is supported and in maestro_record writing to SD card is currently supported)
the APP__SDCARD_ Task is created. The command prompt and connected functionalities are
handled by APP_ Shell_ Task.

One of the most important parts of the configuration is the streamer pcm.c where the initial-
ization of the hardware peripherals, input and output buffer management can be found. For
further information please see also streamer pcm.h

In the Maestro USB examples (maestro_usb_mic and maestro_usb_speaker), the USB configura-
tionislocated in the usb device descriptor.c, audio microphone.c and audio speaker.c files. For fur-
ther information please see also usb_ device descriptor.h, audio_ microphone.h and audio_ speaker.h.

In order to be able to get the messages from the audio framework, it is necessary to create a
thread for receiving the messages from the streamer, which is usually called a Message Task. The
message thread is placed in the app_ streamer.c file, reads the streamer message queue, and reacts
to the following messages:

* STREAM_MSG_ERROR - stops the streamer and exits the message thread
STREAM_MSG_EOS - stops the streamer and exits the message thread
STREAM_MSG_UPDATE_DURATION - prints info about the stream duration
STREAM_MSG_UPDATE_POSITION - prints info about current stream position
STREAM_MSG_CLOSE_TASK - exits the message thread

File structure

1.7. Multimedia 197

MCUXpresso SDK Documentation, Release 25.12.00

Folder Description

src Maestro audio framework sources

src/inc Maestro include files

src/core Maestro core sources

src/cci Common decoder interface sources

src/cei Common encoder interface sources

src/elements Maestro elements sources

src/devices External audio devices implementation (audio source & audio sink ele-
ments)

src/utils Helper utilities utilized by Maestro

docs Generated documentation

doxygen Documentation sources

components Glue for audio libraries, so they can be used in elements

tests Maestro tests

zephyr/ Zephyr related files

zephyr/samples/ Zephyr samples

zephyr/tests/ Zephyr tests

zephyr/audioTracks, Audio tracks for testing

zephyr/wrappers/ Zephyr NXP SDK Wrappers

zephyr/doc/ Zephyr documentation configuration for Sphinx

zephyr/scripts/ Zephyr helper scripts, mostly for testing

Maestro Audio Framework Programmer’s Guide

Introduction Maestro audio framework provides instruments for playback and capture of dif-
ferent audio streams. In order to do that the framework uses API for creating various audio and
voice pipelines with the support of media and track information. This document describes the
framework in its detail, and the usage of API for pipeline creation using different elements. The
framework needs an operating system in order to create different tasks for audio processing and
communication with the application.

Architecture overview A high-level block diagram of the streamer used in Maestro is shown
below. An element is the most important class of objects in the streamer (see streamer__element.c).
A chain of elements will be created and linked together when a pipeline is created. Data flows
through this chain of elements in form of data buffers. An element has one specific function,
which can be the reading of data from a file, decoding of this data, or outputting this data to
a sink device. By chaining together several such elements, a pipeline is created that can do a
specific task, for example, the playback.

Audio source

Media codec [~ Voice processing| * Post processing [—| Audio sink

Pipeline

Microphone(s) MP3 decoder VIT or 3¢ party SSRC or 3 " party Speaker(s)
Filesystem Opus decoder ASRC or 3 ™ party Filesystem
Network / ring Opus encoder Memory
Memory WAV decoder USB audio class

USB audio class

OS Abstraction Layer

FreeRTOS

198

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The pipeline is created within the streamer_create API using the streamer_create_ pipeline call.
In the example applications provided in the MCUXpresso SDK the pipeline is created in the
app_ streamer.c file. In order to create a pipeline user needs to provide a PipelineElements struc-
ture consisting of array of element indexes ElementIndex and the number of elements in the
pipeline. Then the pipeline is built automatically and user can specify the properties of the
elements using the streamer_set_ property API. All the element properties can be found in the
streamer__element_ properties.h file.

The streamer can handle up to two pipelines within a single task. The first pipeline with
index 0 can be created using the streamer create function as described above. Then the
streamer__create_ pipeline function should be used to create the second pipeline (pipeline with in-
dex 1). Both pipelines are processed sequentially, so after the first pipeline is processed, the
second pipeline is processed.

After the pipeline is sucessfully created, all elements and entire pipeline are in STATE NULL
state. A user can start the streamer by setting the pipeline state to STATE_PLAYING using the
streamer__set_ state function. The pipeline can also be paused or stopped using the same function.
Use the STATE_ PAUSED to pause and use STATE_ NULL to stop. The function changes the state
of each element thatis in the pipeline in turn, and after all the elements have obtained the desired
state, the state of entire pipeline is changed.

Elements The current version of the Maestro framework supports several types of elements
(StreamElement Type). In each pipeline should be used one source element (elements with the
~ SRC suffix) and one sink element (elements with the SINK suffix). A decoder, encoder or au-
dio_ proc element can be connected between these two elements. The audio_ proc element can be
used more than once within the same pipeline.

Each element type (StreamElement Type) has several functions that are determined by a unique el-
ement index (ElementIndex). These indexes are used to create a pipeline, and each element index
can only be used once in the same pipeline. The type_lookup_ table shows which StreamElement-
Type supports which ElementIndex.

Each element index (ElementIndex) has its own properties and a list of these properties can be
found in the streamer__element_ properties.h file. These properties are divided into groups and each
group is identified by a property mask (e.g. for speaker it is PROP_SPEAKER__MASK). Then
the property_lookup_ table in the streamer_msg.c file determines which property group relates to
which element index (ElementIndex). When an element is created and added to the pipeline, its
properties are set to their defalut values. Default values can be seen in the initialization function
of a particular element. The initialization functions are specified in the element_ list array in the
streamer__element.c file (e.g. for the audio_ proc element it is the audio_ proc_ init_ element function).
The user can get the value of the property using the streamer_get_ property function or change its
value using the streamer_set_ property function.

The source code of the elements can be found in the middleware\audio_ voice\maestro\src\elements\
folder.

Add a new element type The user can add a new element type (StreamElementType) to the
Maestro audio framework. For this, the following steps need to be done.

* Add a new element type to the StreamElementType enum type in the streamer_ api.h.

* Create a new *c and *h files for the new element type in the middleware\audio_ voice\
maestro\src\elements\ folder. All necessary structures and functions (functions for src pads,
sink pads and element itself) needs to be defined in these files. Inspiration can be found in
other elements.

* Link the initialization function to the element type in the element_list array in the
streamer element.c file. To do this, a new definition that enables the element needs to be
created (e.g. there isa STREAMER._ENABLE_AUDIO_PROC definition for the audio_ proc
element).

1.7. Multimedia 199

MCUXpresso SDK Documentation, Release 25.12.00

* Associate the newly created element type with an element index (ElementIndex) by adding
a new pair to the type_lookup_ table in the streamer.c file.

« If the user wants to use the newly created element in an application, the definiton that
enables the element must be defined at the project level.

Mostly the user doesn’t need to create a new element type, but just create an element index.

Add a new element index To create a new element index in the Maestro audio framework,
follow these steps:

* Add a new element index to the ElementIndex enum type in the streamer__api.h.

* Create the required properties for the newly created element index in the
streamer_element_ properties.h file.

» Associate the newly created property group with newly created element index by adding a
new pair to the property_ lookup_ table in the streamer msg.c file.

» Associate the newly created element index with an element type (StreamElementType) by
adding a new pair to the type_lookup_ table in the streamer.c file.

» Add support for the created properties to functions of the associated element type. These
functions are defined in files that correspond to a particular element type. The files are
located in the middleware\audio_ voice\maestro\src\elements\ folder.

It is important to know that each element type (StreamElementType) can be associated with
more than one element index (ElementIndex), but each element index (ElementIndex) can be
associated with only one element type (StreamElementType).

Pads Pads are elements’ inputs and outputs. A pad can be viewed as a “plug” or “port” on an
element where links may be made with other elements, and through which data can flow to or
from those elements. Data flows out of an element through a source pad, and elements accept
incoming data through a sink pad. Source and sink elements have only source and sink pads,
respectively. For detailed information about pads, please see the API reference from pad.c.

Application

Streamer Pipeline

Source element Processing element Sink element
Source pad Sink pad Source pad Sink pad
link link
Data flow

200 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Internal communication The streamer (the core of the framework) provides several mecha-
nisms for communication and data exchange between the application, a pipeline, and pipeline
elements:

» Buffers are objects for passing streaming data between elements in the pipeline. Buffers
always travel from sources to sinks (downstream).

» Messages are objects sent from the application to the streamer task to construct, configure,
and control a streamer pipeline.

* Callbacks are used to transmit information such as errors, tags, state changes, etc. from the
pipeline and elements to the application.

* Events are objects sent between elements. Events can travel upstream and downstream.
Events may also be sent to the application

* Queries allow applications to request information such as duration or current playback
position from the pipeline. Elements can also use queries to request information from their
peer elements (such as the file size or duration). They can be used both ways within a
pipeline, but upstream queries are more common

Application

Streamer Pipeline

Source element Processing element | Sink element
<>

Source pad 0 Sink pad Source pad
link link

>

Sink pad

i il

{

- Data flow

Decoders and encoders Maestro framework uses a common codec interface for decoding pur-
poses and a common encoder interface for encoding. Those interfaces encapsulate the usage
of specific codecs. Reference codecs are available in audio-voice-components repository which
should be in \middleware\audio_voice\components\ folder.

Common codec interface The Common Codec Interface is the intended interface for all used
decoders. The framework will integrate a CCI decoder element into the streamer to interface
with all decoders.

Using the CCI to interface with Metadata

* cci_extract_meta_data must be called before any other Codec Interface APIs. This
API extracts the metadata information of the codec and fills this information in the

1.7. Multimedia 201

MCUXpresso SDK Documentation, Release 25.12.00

file_meta_data_t structure. The file_meta_data_t structure must be allocated by the appli-
cation.

 This function first extracts the input file extension and based on that it calls the specific

codec’s metadata extraction function. If it finds an invalid extension or unsupported ex-
tension then it returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

 If this API finds the valid metadata then it returns with META_DATA_FOUND code. If this

API does not find any metadata information then it returns with META_DATA_NOT_FOUND
code. It also returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

Using the CCI to interface with Decoders

* codec_get__mem_ info gets the memory requirement based on the specific decoder stream

type. It returns the size in bytes of the specific codec. The user of the decoders must al-
locate memory of this size and this memory is used by the initialization API. The user or
application must pass this allocated memory pointer to the init API.

codec__init must be called before the codec’s decode API. This API calls the codec-specific
initialization function based on the codec stream type. This API allocates the memory to
the codec main structure and also initializes the codec main structure parameters. It also
registers the call back functions to the codec which will be used by the codec to read or seek
the input stream.

codec__decode is the main decoding API of the codec. This API calls the codec-specific decod-
ing function based on the codec stream type. This API decodes the input raw stream and
fills the PCM output samples into codec output PCM buffer. This API gives the information
about the number of samples produced by the codec and also gives the pointer of the codec
output PCM samples buffer.

codec__get_ pcm__samples must be called after the codec’s decode API. This API calls the codec
specific Get PCM Sample API based on the codec stream type. This API gets the PCM samples
from the codec in constant block size and fills them into the output PCM buffer. It returns
the number of samples get from the codec and also gives the pointer of the output PCM
buffer.

codec__reset calls the codec specific reset API base on stream type and resets the codec.

codec__seek accepts the seek bytes offset converted from the time by application. This API
calls the decoder’s internal seek API to calculate the actual seek offset which frame bound-
ary aligns. This API returns the actual seek offset.

The basic sequence to use a decoder with the CCI is shown below:

202

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Start Codec Test I

FaILURE < Open 1/0 Files

.

SUCCESS

I

FAILURE < Metadata Extraction

|

SUCCESS

l

Get Codec Memory

Reguirements & &llocate

Memary

b |

| Init Failure le— CodecInitialization

!

Init Done

!

End Of Decode - Codec Decode

!

Write Output Data

More Data Reguired

v

Critical Error

v

Y

Close |/ Files

l

:I(End Codec Test]
"\

Adding new decoders to the CCI This section explains how to integrate a new decoder in the
Common Codec Interface. The CCI assumes the decoder library to be used is in the \middleware\
audio_ voice\audiocomponents\decoders\ *decoder*\libs\ folder of the maestro framework. The CCI
is just a wrapper around a specific implementation. The decoder is expected to be extended as
needed to meet the APIs described above.

* Register Decoder Top level APIs in Common Codec Interface
— Place the decoder lib in libs folder.

— Add prototypes of the decoder top level APIs in codec_interface.h file (located at
maestro\src\cci\inc\ folder).

— In codec_interface.c file (located at maestro\src\cci\src\), add top level Decoder APIs in
decoder function table.

— Pseudo code for this is as described below.

const codec_interface function table t g codec function tablefSTREAM TYPE COUNT] = {
#ifdef VORBIS CODEC
{
& VORBISDecoderGetMemorySize,
& VORBISDecoderlnit,
& VORBISDecoderDecode,
NULL,

(continues on next page)

1.7. Multimedia 203

MCUXpresso SDK Documentation, Release 25.12.00

NULL,
&VORBISDecoderSeek,

&VORBISDecoderGetlOFrameSize,

h
Felse

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
}
F#endif
b

* Enable or Disable Decoder
— Define VORBIS_ CODEC macro in audio_cfg.h file.

— Comment this macro if you want to disable VORBIS Decoder otherwise keep it defined
in order to enable the decoder.

» Add Extract Metadata API for the decoder

- Add extract

(continued from previous page)

metadata API source file for the
streamer/cci/metadata/src/vorbis folder.

— Add this code in extract metadata lib project space.

— Build the extract metadata lib and copy that lib to libs folder.

decoder at

— Add the desired stream type into ccidec_ extract_ meta_data API (in codecextractmeta-
data.c file) to call VORBIS Decoder extract metadata API.

* Add stream type of the new decoder in the stream type enum audio_stream_type_t in
codec_interface_public_api.h

— Stream type of the decoder in stream type enum and decoder APIs in decoder function
table must be in the same sequence.

Common encoder interface Please see the following section about the cei.

Maestro performance

Memory information The memory usage of the framework components using reference
codecs (data obtained from GNU ARM compiler) in bytes is:

component

text data bss
48790 2752 4
4348 16400 212
15512 O 4
76462 16 5013
34211 0 4
211974 O 0
65446 O 4

5850 16 12

aac decoder
asrc

flac decoder
maestro
mp3 decoder
opus

ssrc

wav decoder

204

Chapter 1

. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Maestro framework uses dynamic allocation of audio buffers. The total amount of memory al-
located for the pipeline depends on the following parameters:

* Number of elements in the pipeline
* Element types
* Audio stream properties

— Sampling rate

- Bit width

— Channel number

— Frame size

CPU usage The performance of the pipeline was measured using the real hardware platform
(RT1060).

* CPU core clock in MHz: 600.

Pipeline type Performance MIPS of pipeline (in MHz)
audio source -> audio sink ~10.26 MHz
audio source -> file sink ~9.84 MHz

file source (8-channel PCM) -> audio sink ~16.5 MHz

For performance details about the supported codecs please see audio-voice-components reposi-
tory documentation.

CEIencoder The Maestro streamer contains an element adapting an extensible set of audio en-
coders in the form of functions conforming to the CEI (Common Encoder Interface). This element
enables the user to choose and configure a suitable encoder at runtime.

Header files CElitself and the CEI encoders are using following header files, in which you may
be interested:

* cei.h - contains types used by the element itself and an encoder implementing the CEI

* cei_enctypes.h - contains a list of possible encoders and types used for interfacing with a CEI
encoder

* cei_table.h - contains a table of functions implementing integrated CEI encoders

Instantiating the element This element’sindex is ELEMENT_ENCODER_INDEX and its type
is TYPE_ELEMENT_ENCODER, as defined in streamer_api.h. It has one source pad (data in-
put) and one sink pad (data output). It is initialized like any other element, meaning that
it is instantiated and inserted into the pipeline using the create_element, add__element_ pipeline
and link_elements functions. Inversely, for destroying the element, the unlink_elements, re-
move__element_ pipeline and destroy__element are used. This element alone does not depend on
any additional software layers other than these required by the Maestro streamer itself, so no
pre-initialization before this element instantiation is necessary.

Element properties Use Maestro streamer property API (streamer_ set property and
streamer__get_ property) for setting or getting these. The constants are defined in
streamer__element_ properties.h.

* PROP_ENCODER_CHUNK_ SIZE

1.7. Multimedia 205

MCUXpresso SDK Documentation, Release 25.12.00

— Synopsis: Determines the length of a chunk pulled from the sibling of the source pad
and essentially influences the size of allocated buffers. If the actual amount of data
pulled is smaller, the rest is zero-filled.

— Type: unsigned 32-bit integer
— Default value: 1920
— Constraints:
* Must be bigger than zero, otherwise STREAM_ERR,_ INVALID_ARGS is returned.

% Cannot be changed if the actual encoder has been created. If done so,
STREAM ERR ELEMENT BAD STATUS is returned.

* PROP_ENCODER_TYPE
— Synopsis: Determines the exact encoder (CEI implementation) to be used.
— Type: CeiEncoderType (cei_enctypes.h)
— Default value: CEIENC_LAST
- Constraints:

* Must not be equal to CEIENC_LAST, otherwise STREAM__ERR_ INVALID_ARGS
will be returned.

* Selected encoder must be implemented, otherwise
STREAM__ERR_ INVALID__ARGS will be returned.

% Cannot be changed if the actual encoder has been created. If done so,
STREAM_ ERR ELEMENT BAD STATUS will be returned.

— Behaviour influenced: The encoder element process function will return
FLOW_ ERROR if this property isn’t set.

* PROP_ENCODER_ CONFIG
— Synopsis: Determines encoder-specific configuration (application, bitrate, ...).
- Type: Pointer to the encoder-specific configuration structure.
— Default value: Determined by the encoder.
— Constraints:

* The encoder has to be configurable. If it is not, STREAM_ERR,_ ERR_ GENERAL
will be returned on any access.

* The structure has to conform to the encoder requirements. If the encoder returns
an error code, STREAM ERR GENERAL will be returned.

« PROP_ENCODER_BITSTREAMINFO

— Synopsis: Specifies information about the incoming bitstream (sample rate, sample
depth, ...).

— Type: Pointer to CeiBitstreamInfo (cei enctypes.h).

— Default value:

(CeiBitstreamInfo) {
.sample_rate = 0,
.num__channels = 0,
.endian = AF_LITTLE_ENDIAN,
.sign = TRUE,
.sample_size = 0,
.interleaved = TRUE

206 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

— Constraints:

Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT BAD_STATUS will be returned.

* As of now, only bitstreams containing 16-bit interleaved (if 2 or more channels will
be encoded) samples are supported. If anything else was set to the sample_ size and
interleaved members, STREAM__ERR,_ INVALID__ ARGS will be returned.

— Behaviour influenced:

* Given the characteristics of some elements available, different packets of data
(header and payload, referred to as “chunk” above) may be pulled by this element.
Each packet can contain a different header, which may or may not contain useful
information about the bitstream. If a packet with the AudioPacketHeader (todofile.h)
is pulled at first and any other iteration of the streamer pipeline, the bitstream pa-
rameters configured by this property are implicitly available and are not expected
to be specified by the user. Other packet header types (such as RawPacketHeader)
don’t contain any bhitstream parameters and require the user to specify the param-
eters manually using this property. Failure to do so will result in the element’s
process function returning FLOW__ERROR. Same situation will occur if a packet
with the AudioPacketHeader is received and its contents differ from the already ac-
quired bitstream parameters.

* As of now, CEI is defined to work with 16-bit signed little-endian (s16le) samples,
which are interleaved if the bitstream contains more than one channels. This ele-
ment handles endianness and unsigned to signed conversion.

CEI definition - implementing your own encoder The CEI defines following function pointer
types:

* CeiFnGetMemorySize: Returns number of bytes required for encoder state for a given num-
ber of channels.

* CeiFnEncoderInit: Initialize an encoder for a given sample rate and channel count.

* CeiFnEncoderGetConfig: Copy current or default configuration to a given structure pointer.
* CeiFnEncoderSetConfig: Configure the encoder from a given structure pointer.

* CeiFnEncode: Encode a given buffer to a given output buffer.

Detailed descriptions of function behaviour, parameters and expected return values are avail-
able as docblocks in the cei.h file.

Each encoder is implemented as a set of pointers pointing to functions conforming to these types,
grouped in the CeiEncoderFunctions structure. Specifying the CeiEncoderGetConfig fnGetConfig and
CeiFnEncoderSetConfig fnSetConfig members is optional, as an encoder does not have to be con-
figurable. If so desired, specify NULL. Implementation of the remaining functions is mandatory,
however. If at least one of these functions isn’t implemented and NULL is specified instead, the
encoder will be considered as not implemented.

To register an implemented encoder with the element, add a new entry to the CeiEncoderType
enum and add the CeiEncoderFunctions struct value to the table CeiEncoderFunctions ceiEncTable]]
located in the cei table.h header file. Note and match the order of items in that table, as a CeiEn-
coderType value is used as an index. Same goes for the size_t ceiEncConfigSizeTable]]. If configura-
tion is not applicable, specify 0 at the appropriate index. If configuration is applicable, describe
the configuration structure in the cei_enctypes.h header file and add its size to that table.

Maestro playback example

1.7. Multimedia 207

MCUXpresso SDK Documentation, Release 25.12.00

Table of content
* Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
« Example configuration
» Functionality
» States
* Commands in detail

* Processing Time

Overview The Maestro playback example demonstrates audio processing on the ARM cortex
core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console and the
audio files are read from the SD card.

Depending on target platform or development board there are different modes and features of
the demo supported.

» Standard - The mode demonstrates playback of encoded files from an SD card with up to 2
channels, up to 48 kHz sample rate and up to 16 bit width. This mode is enabled by default.

* Multi-channel - The mode demonstrates playback of raw PCM files from an SD card with 2
or 8 channels, 96kHz sample rate and 32 bit width. The decoders and synchronous sample
rate converter are not supported in this mode. The Multi-channel mode is only supported
on selected platforms, see the table below. The Example configuration section contains in-
formation on how to enable it.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:
— LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost
* Decoder:
- AAC:
* The reference decoder is supported only in the MCUXpresso IDE and ARMGCC.
- FLAC:

* LPCXpresso55s69 - When playing FLAC audio files with too small frame size (block
size), the audio output may be distorted because the board is not fast enough.

- OPUS:

* LPCXpresso55s69 - The decoder is disabled due to insufficient memory may be dis-
torted because the board is not fast enough.

 Sample rate converter:
— SSRC:

208 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

% LPCXpresso55s69 - When a memory allocation ERROR occurs, it is necessary to
disable the SSRC element due to insufficient memory.

Known issues:
* Decoder:
- MP3:

* The reference decoder has issues with some of the files. One of the channels can
be sometimes distorted or missing parts of the signal.

- OPUS:

The decoder doesn’t support all the combinations of frame sizes and sample rates.
The application might crash when playing an unspupported file.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* Micro USB cable
* Headphones with 3.5 mm stereo jack
* SD card with supported audio files
* Personal computer
* Optional:
— Audio expansion board AUD-EXP-42448 (REV B)

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

* EVKB-MIMXRT1170:
1. Please remove below resistors if on board wifi chip is not DNP:
- R228,R229, R232, R234
2. Please make sure R136 is weld for GPIO card detect.

Preparation

1. Connect amicro USB cable between the PC host and the debug USB port on the development
board.

2. Open a serial terminal with the following settings:
* 115200 baud rate
» 8 data bits
* No parity
* One stop bit
* No flow control
3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

1.7. Multimedia 209

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.12.00

5. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio playback demo start
3K 3k 3k >k 3k ok ok 3k 3k ok sk ok ok Sk ok ok R sk ok ok R sk skok R sk skok ok sk kokok

[APP_ Main_ Task]| started

Copyright 2022 NXP
[APP_SDCARD_ Task] start
[APP_ Shell Task] start

>> [APP_SDCARD_ Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console (If
multi-channel playback mode is enabled, the description is slightly different):

>> help

"help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

"file”: Perform audio file decode and playback

USAGE: file [stop|pause|volume|seek|play|list|info]
stop Stops actual playback.
pause Pause actual track or resume if already paused.
volume <volume> Set volume. The volume can be set from 0 to 100.
seek <seek time> Seek currently paused track. Seek time is absolute time in milliseconds.
play <filename> Select audio track to play.
list List audio files available on mounted SD card.
info Prints playback info.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

* Enable Multi-channel mode:
— Add the MULTICHANNEL_EXAMPLE symbol to preprocessor defines on project level.
— Connect AUD-EXP-42448 (see the point below).
* Connect AUD-EXP-42448:
— EVKC-MIMXRT1060:
1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.
4. Set the DEMO__CODEC_WMS8962 macro to 0 in the app_ definitions.h file

210 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

5. Set the DEMO_ CODEC_ (CS42448 macro to 1 in the app_ definitions.h file.

Functionality The file play <filename> command calls the STREAMER._file Create oOr
STREAMER_ PCM_ Create function from the app_ streamer.c file depending on the selected mode.

* When the Standard mode is enabled, the command calls the STREAMER, file Create func-
tion that creates a pipeline with the following elements:

— ELEMENT_FILE_SRC_INDEX
— ELEMENT_DECODER_INDEX
— ELEMENT_SRC_INDEX (If SSRC_PROC is defined)
— ELEMENT_SPEAKER_INDEX

» When the Multi-channel mode is enabled, the command calls STREAMER PCM _Create
function, which creates a pipeline with the following elements:

— ELEMENT_FILE_SRC_INDEX (PCM format only)
— ELEMENT _SPEAKER_INDEX
— Note:

% If the input file is an 8 channel PCM file, output to all 8 channels is available. The
properties of the PCM file are set in the app_ streamer.c file using file source prop-
erties sent to the streamer:

- PROP_FILESRC_SET_SAMPLE_RATE - default value is 96000 [Hz]
- PROP_FILESRC_SET_NUM_ CHANNELS - default value is 8
- PROP_FILESRC_SET_BIT_ WIDTH - default value is 32

Playback itself can be started with the STREAMER __ Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_ element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY_T prop;

EXT PROCESS_DESC_T ssrc_proc = {SSRC_Proc_ Init, SSRC_Proc_ Execute, SSRC_ Proc_ Deinit,
—&get_app_ data()->proc_args};

prop.prop = PROP_SRC_PROC_FUNCPTR;
prop.val = (uintptr_t)&ssrc_ proc;

if (streamer_set_ property(streamer, 0, prop, true) != 0)

{
}

prop.prop = PROP__AUDIOSINK_SET_VOLUME;
prop.val = volume;
streamer__set_ property(streamer, 0, prop, true);

return -1;

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 3 different states:
* Idle

1.7. Multimedia 211

MCUXpresso SDK Documentation, Release 25.12.00

* Running
» Paused

In each state, each command can have a different behavior. For more information, see Com-
mands in detail section.

Commandsindetail The applicatiniscontrolled by commands from the shell interface and the
available commands for the selected mode can be displayed using the help command. Commands
are processed in the cmd.c file.

* help, version

* file stop

s file pause

* file volume <volume>
s file seek <seek_time>
* file play <filename>

o file list

s file info

Legend for diagrames:

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> D[Write help or version]:::function
B((Running)):::state --> D

C((Paused)):::state --> D

D-->E((No state

change)):::state

file stop

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill:#F54D4D

212 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

B((Idle)):::state --> B
C((Running)):::state -->E((Idle)):::state
D((Paused)):::state -->E

file pause

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Paused)):::state
D((Paused)):::state -->F((Running)):::state

file volume <volume>

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> M[Error: Play a track first]:::error
C((Running)):::state --> G{Volume

parameter

empty?}::condition

D((Paused)):::state --> G

G -- Yes -->H[Error: Enter volume parameter]:::error
G -- No -->I{Volume

in range?}:::condition

I -- No -->J[Error: invalid value]:::error

I -- Yes -->K]Set volume]:::function

J --> L((No state

change)):::state

K->L

H-> L

file seek <seek_time> The seek argument is only supported in the Standard mode.

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> E[Error: First select
an audio track to play]:::error

E-->B

C((Running)):::state --> F[Error: First
pause the track]:::error

F-->C

D((Paused)):::state --> G{Seek
parameter

empty?}::condition

G --No --> H{AAC file?}:::condition

1.7. Multimedia 213

MCUXpresso SDK Documentation, Release 25.12.00

G --Yes --> I|Error: Enter

a seek time value]:::error
I-->N((Paused)):::state;

H --Yes -->J[Error: The AAC decoder
does not support

the seek command]:::error
J-->N

H --No -->K{Seck
parameter

positive? }:::condition

K --No -->L[Error: The seek
time must be

a positive value]:::error

L-->N
K --Yes -->M]Seek the file]:::function
M-->N

file play <filename>

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

C((Running)):::state --> Z[Error: First stop
current track]:::error
D((Paused)):::state --> Z
B((Idle)):::state --> E{SD Card
inserted?}:::condition

E -- No -->F|[Error: Insert SD
card]:::error

E -- Yes -->G{File

name

empty?}::condition

G -- Yes -->H[Error: Enter

file name]:::error

G -- No -->I{File exists?}:::condition
I -- No -->OlError: File

doesn't exist]:::error

I -- Yes -->J{Supported
format?}:::condition

J - Yes -->K|Play the track]:::function
J -- No -->L[Error: Unsupported
file]:::error

K -->M((Running)):::state

L --> W((No state

change)):::state

O->W

H->W

F->W

Z-->W

file list

flowchart TD
classDef function fill:#69CA00

214 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> G{SD Card
inserted?}:::condition

C((Running)):::state --> G
D((Paused)):::state --> G

G -- Yes -->H][List supported files]:::function
G -- No -->I[Error: Insert SD card]:::error
I--> J((No state

change)):::state

H-->1J

file info

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state -->E[Write file infol:::function
C((Running)):::state -->E
D((Paused)):::state -->E
E --> F((No state
change)):::state

Processing Time Typical streamer pipeline execution times and their individual elements for
the EVKC-MIMXRT1060 development board are presented in the following tables. The time spent
on output buffers is not included in the traversal measurements. However, file reading time
is accounted for. In the case of the WAV codec, the audio file was accessed in every pipeline
run. Therefore, during each run, the file was read from the SD card. However, for the MP3
codec, where data must be processed in complete MP3 frames, the file was not read in every
run. Instead, it was read periodically only when the codec buffer did not contain a complete
frame of data.

For further details, please refer to the Processing Time document.

WAV streamer file_src codec SSRC_proc speaker

48kHz 1.1 ms 850 us 150 pus 70 us 40 ps

44kHz 1.75ms 850us 180ps 670 ys 40 ys
MP3 streamer file_src codec SSRC_proc speaker
48 kHz with file read 2.9 ms 2.3us 450 pus 60 pus 50 us
48 kHz without fileread 0.5 ms X 400 us 40 ys 40 ys
44 kHz with file read 3.2ms 2.3us 440 pus 400 pus 50 us
44 kHz without file read 0.9 ms X 440 us 390 ps 40 ys

Maestro record example

1.7. Multimedia 215

MCUXpresso SDK Documentation, Release 25.12.00

Table of content

* Overview

* Hardware requirements
* Hardware modifications
* Preparation

* Running the demo

« Example configuration

» Functionality

» States

* Commands in detail

* Processing Time

Overview The Maestrorecord example demonstrates audio processing on the ARM cortex core
utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

Depending on target platform or development board there are different modes and features of

the

demo supported.

* Loopback - The application demonstrates a loopback from the microphone to the speaker
without any audio processing. Mono, stereo or multichannel mode can be used, depending
on the hardware, see table below.

* File recording - The application takes audio samples from the microphone inputs and
stores them to an SD card as an PCM file. The PCM file has following parameters:

— Mono and stereo : 2 channels, 16kHz, 16bit width
— Multi-channel (AUD-EXP-42448): 6 channels, 16kHz, 32bit width

* Voice control - The application takes audio samples from the microphone input and uses
the VIT library to recognize wake words and voice commands. If a wake word or a voice
command is recognized, the application write it to the serial terminal.

* Encoding - The application takes PCM samples from memory and sends them to the Opus
encoder. The encoded data is stored in memory and compared to a reference. The result of
the comparison is finally written into the serial terminal.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please

che

ck the supported features and Hardware modifications or Example configuration sections be-

fore running the demo.

Limitations:

* Note:
— LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost
» Addition labraries
- VIT:
* The VIT is supported only in the MCUXpresso IDE and ARMGCC.

* LPCXpresso55s69 - The VIT is disabled by default due to insufficient memory. To
enable it, see the Example configuration section.

216

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* EVK-MCXN5XX - Some VIT models can’t fit into memory. In order to free some
space it is necessary to disable SD card handling and opus encoder. To disable it,
see the Example configuration section.

* Encoder
- OPUS:
* LPCXpresso55s69 - The encoder is not supported due to insufficient memory.

* The File recording mode is not supported on RW612BGA development board due to missing
SD card slot.

Known issues:

* EVKB-MIMXRT1170 - After several tens of runs (the number of runs is not deterministic),
the development board restarts because a power-up sequence is detected on the RESET pin
(due to a voltage drop).

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* Micro USB cable
* Headphones with 3.5 mm stereo jack
* Personal computer
* Optional:
— SD card for file output
— Audio expansion board AUD-EXP-42448 (REV B)
* LPCXpresso55s69:

— Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

» EVKB-MIMXRT1170:
1. Please remove below resistors if on board wifi chip is not DNP:
- R228,R229, R232, R234
2. Please make sure R136 is weld for GPIO card detect.
* EVK-MCXN5XX:
— Short: JP7 2-3, JP8 2-3, JP10 2-3, JP11 2-3
* RW612BGA:
— Connect: JP50; Disconnect JP9, JP11

Preparation

1. Connect a micro USB cable between the PC host and the debug USB port on the development
board

2. Open a serial terminal with the following settings:
* 115200 baud rate

1.7. Multimedia 217

https://www.nxp.com/part/AUD-EXP-42448#/

MCUXpresso SDK Documentation, Release 25.12.00

8 data bits
* No parity
* One stop bit
* No flow control
3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. LPCXpresso55s69:

* Insert source of sound to audio Line-In connector (headphone jack) on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

>k >k sk ok ok ok sk ok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk okokoskokoskok ok

Maestro audio record demo start
Sk >k sk sk sk sk sk sk sk sk sk sk sk skosk sk sk skosk sk skosk skosk sk skok skoksk

Copyright 2022 NXP
[APP_SDCARD_ Task] start
[APP_ Shell Task] start

>> [APP_SDCARD_ Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console:

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

“record__mic”: Record MIC audio and perform one (or more) of following actions:
- playback on codec

- perform voice recognition (VIT)

- store samples to a file.

USAGE: record_mic [audiolfile|<file _name>|vit] 20 [<language>]
The number defines length of recording in seconds.

Please see the project defined symbols for the languages supported.

Then specify one of: en/cn/de/es/fr/it/ja/ko/pt/tr as the language parameter.

For voice recognition say supported WakeWord and in 3s frame supported command.
Please note that this VIT demo is near-field and uses 1 on-board microphone.

NOTES: This command returns to shell after the recording is finished.
To store samples to a file, the "file” option can be used to create a file
with a predefined name, or any file name (without whitespaces) can be specified
instead of the "file” option.

“opus__encode”: Initializes the streamer with the Opus memory-to-memory pipeline and
encodes a hardcoded buffer.

218 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Details of commands can be found here.

Example configuration The example canbe configured by user. There are several options how
to configure the example settings, depending on the environment. For configuration using west
and Kconfig, please follow the instructions here. Before configuration, please check the table to
see if the feature is supported on the development board.

* Connect AUD-EXP-42448:
— EVKC-MIMXRT1060:
1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.
4. Set the DEMO__CODEC_WM8962 macro to 0 in the app_ definitions.h file
5. Set the DEMO_CODEC_(CS42448 macro to 1 in the app_ definitions.h file.
— Note:
* The audio stream is as follows:
- Stereo INPUT 1 (J12) -> LINE 1&2 OUTPUT (J6)
- Stereo INPUT 2 (J15) -> LINE 3&4 OUTPUT (J7)
- MIC1 & MIC2 (P1, P2) -> LINE 5&6 OUTPUT (J8)
- Insert the headphones into the different line outputs to hear the inputs.
- To use the Stereo INPUT 1, 2, connect an audio source LINE IN jack.
* Enable VIT:
— LPCXpresso55s69 and MCX-N5XX:
* In MCUXPresso IDE (SDK package):

1. Remove SD__ENABLED and STREAMER,_ ENABLE_ FILE_ SINK symbols from
preprocessor defines on project level.

2. Add VIT PROC symbol to preprocessor defines on project level:

- (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Prepro-
cessor)

* In armgcc in SDK package:

1. Remove SD_ENABLED and STREAMER, ENABLE_FILE_ SINK symbols from
preprocessor defines in flags.cmake file.

2. Remove OPUS_ENCODE=1 and STREAMER_ENABLE_ ENCODER prepro-
cessor defines in flags.cmake file.

3. Add VIT PROC symbol to preprocessor defines in flags.cmake file.
4. Remove sdmmc_config.c,.h files from CMakeLists.txt file.
* In Kconfig:

1. Disable File sink MCUX COMPONENT middleware.audio voice.maestro.
element.file sink.enable

2. Make sure SD card support is disabled MCUX COMPONENT middleware.
sdmme.sd and MCUX COMPONENT middleware.sdmmec.host.usdhc

3. Make sure sdmmc_config files (.c, .h) is excluded from project build

1.7. Multimedia 219

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/Configuration_System.html

MCUXpresso SDK Documentation, Release 25.12.00

- remove mcux_add_source function that adds the sources in reconfig.cmake
in maestro_record/cm33_core0 folder

4. Disable fatfs MCUX_COMPONENT middleware.fatfs and
MCUX_COMPONENT middleware.fatfs.sd

5. Disable file wutils MCUX COMPONENT middleware.audio voice.maestro.
file utils.enable

6. Make sure Opus encoder is disabled MCUX COMPONENT middleware.

audio_ voice.maestro.element.encoder.opus.enable
7. Make sure VIT_PROC symbol is defined

- remove mcux_ remove_ macro function that removes the VIT_PROC preproces-
sor definition in reconfig.cmake in maestro_record folder

8. Make sure VIT processing is enabled MCUX_PRJSEG_ middleware.audio_ voice.
components.vit

* VIT model generation:

— For custom VIT model generation (defining own wake words and voice commands)
please use https://vit.nxp.com/

* Disable SD card handling:
— In MCUXPresso IDE:

* Remove SD_ENABLED and STREAMER_ ENABLE_ FILE_ SINK symbols from
preprocessor defines on project level:

- (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

— In armgcc in SDK package:

* Remove SD_ENABLED and STREAMER,_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

— In Kconfig:

1. Disable File sink MCUX_ COMPONENT middleware.audio_voice.maestro.element.
file sink.enable

2. Make sure SD card support is disabled MCUX COMPONENT _middleware.sdmmec.
sd

Functionality The record_mic or opus_encode command calls the STREAMER, mic_ Create Or
STREAMER_ opusmem?2mem_ Create function from the app_ streamer.c file depending on the se-
lected mode.

* When the Loopback mode is selected, the command calls the STREAMER, _mic_ Create func-
tion that creates a pipeline with the following elements:

— ELEMENT_MICROPHONE_INDEX
— ELEMENT_SPEAKER_INDEX

* When the File recording mode is selected, the command calls the STREAMER_ mic_ Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_FILE_SINK_INDEX

* When the Voice control mode is selected, the command calls the STREAMER_ mic_ Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_VIT_INDEX

220 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* When the Encoding mode is selected, the command calls the
STREAMER_ opusmem2mem_ Create function that creates a pipeline with the fol-
lowing elements: - ELEMENT _MEM_SRC_INDEX - ELEMENT_ENCODER_INDEX - ELE-
MENT_MEM_SINK_INDEX

Recording itself can be started with the STREAMER, Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_ element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY T prop;

prop.prop — PROP_ MICROPHONE_SET NUM_CHANNELS;
prop.val = DEMO_MIC_CHANNEL_NUM;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_BITS_PER_SAMPLE;
prop.val = DEMO__AUDIO_BIT WIDTH;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP__MICROPHONE_SET FRAME_MS;
prop.val = DEMO_MIC_FRAME_ SIZE;
streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_SAMPLE_RATE;
prop.val = DEMO__AUDIO_SAMPLE_RATE;
streamer__set_ property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 2 different states:
 Idle

* Running

Commands in detail
* help, version
e record_mic audio <time>
» record_mic file <time>
* record_mic <file_name> <time>
* record_mic vit <time> <language>
* opus_encode
Legend for diagrames:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error messagel:::error
D[Process function]:::function

1.7. Multimedia 221

MCUXpresso SDK Documentation, Release 25.12.00

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

C --> E((No state

change)):::state

record_mic audio <time>

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> D{time

> 0 ?}:::condition

D -- Yes --> F[recording]:::function
D -- No --> E[Error: Record length
must be greater than 0]:::error
E->B

F --> C((Running)):::state

C -->G{time

expired? }:::condition
G--No-->C

G --Yes-->B

record_mic file <time>/record_mic <file_ name> <time>

flowchart TD
classDef function fill: #69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> C{time

> 0 7}::condition

C -- Yes --> D{SD card
inserted?}:::condition

C -- No --> El[Error: Record length
must be greater than 0]:::error
E-->B

D -- Yes --> G{Custom

file name?}:::condition

G -- Yes --> H|Create custom
file name]:::function

G -- No --> I|Create default
file name]:::function

H --> J[Recording]:::function
I-->1J

J --> K((Running)):::state

222 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

K -->L{time
expired?}:::condition
L--No->K

L -- Yes-> B

D -- No --> F[Error: Insert SD
card first]:::error

F-->B

record_mic vit <time> <language>

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state --> C{time

> 0 7}::condition

C -- Yes --> E{Selected
language?}:::condition

C -- No --> D[Error: Record length
must be greater than 0]:::error
D-->B

E -- Yes --> G{Supported
language?}:::condition

E -- No --> F[Error: Language
not selected]:::error

F-->B

G -- Yes -->I[Recording with
voice recognition]:::function

G -- No -->H|Error: Language not supported]:::error
H-->B

I --> J((Running)):::state

J ->K{time
expired?}:::condition
K--No->1J

K -- Yes --> B

opus_encode

flowchart TD
classDef function fill:#69CA00
classDef condition fill: #0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

B((Idle)):::state -->C[Encode file]:::function
C -->D][Check result]:::function
D-->B

Processing Time Typical execution times of the streamer pipeline for the EVKC-MIMXRT1060
development board are detailed in the following table. The duration spent on output buffers
and reading from the microphone is excluded from traversal measurements. Three measured

1.7. Multimedia 223

MCUXpresso SDK Documentation, Release 25.12.00

pipelines were considered. The first involves a loopback from microphone to speaker, support-
ing both mono and stereo configurations. The second pipeline is a mono voice control setup,
comprising microphone and VIT blocks. The final pipeline is a stereo voice control setup, inte-
grating microphone and VIT blocks.

For further details of execution times on individual elements, please refer to the Processing Time
document.

streamer

microphone -> speaker 1 channel 40 pys
microphone -> speaker 2 channels 115 ps
microphone -> VIT 7.4 ms

Maestro USB microphone example

Table of content
* Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
» Example configuration
» Functionality
» States

e Commands in detail

Overview The Maestro USB microphone example demonstrates audio processing on the ARM
cortex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host. The
application takes audio samples from the microphone inputs and sends them to the USB host
via the USB bus. User will see the volume levels obtained from the USB host but this is only an
example application. To leverage the volume values, the demo has to be modified.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
* Note:

1. When connected to MacBook, change the PCM format from (0x02,0x00,) to (0x01,0x00,
)inthe g_config_descriptor[CONFIG_DESC_SIZE] in the usb_ descriptor.c file. Otherwise,
it can’t be enumerated and noise is present when recording with the QuickTime player
because the sampling frequency and bit resolution do not match.

224 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

2. When device functionality is changed, please uninstall the previous PC driver to make
sure the device with changed functionality can run normally.

3. If you’re having audio problems on Windows 10 for recorder, please disable signal
enhancement as the following if it is enabled and have a try again.

Known issues:
* No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* 2x Micro USB cable
* Personal Computer
* LPCXpresso55s69:

— Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation

1. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board

2. Open a serial terminal with the following settings:
* 115200 baud rate
» 8 data bits
* No parity
* One stop hit
* No flow control
3. Download the program to the target board.
4. LPCXpresso55s69:

* Insert source of sound to Audio Line-In connector (headphone jack) on the develop-
ment board.

5. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio USB microphone solutions demo start

Copyright 2022 NXP
(continues on next page)

1.7. Multimedia 225

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
[APP_ Shell Task] start

>> usb_mic -1

Starting maestro usb microphone application
The application will run until the board restarts
[STREAMER] Message Task started

Starting recording

[STREAMER] start usb microphone

Set Cur Volume : 1f00

Type help to see the command list. Similar description will be displayed on serial console:

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

“usb_mic”: Record MIC audio and playback to the USB port as an audio 2.0
microphone device.

USAGE: usb_ mic <seconds>
<seconds> Time in seconds how long the application should run.
When you enter a negative number the application will
run until the board restarts.
EXAMPLE: The application will run for 20 seconds: usb_ mic 20

Details of commands can be found here.

Example configuration The example only supports one mode and do not support any addi-
tional libraries, so the example can’t be configured by user.

Functionality The wusb_mic command calls the STREAMER mic Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_USB_SINK_INDEX

Recording itself can be started with the STREAMER._ Start function.

Each of the elements has several properties that can be accessed using the streamer_ get_ property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY T prop;

prop.prop = PROP_ MICROPHONE_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_ MICROPHONE_SET_NUM_CHANNELS;
prop.val = 1;

streamer__set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_ MS;
(continues on next page)

226 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
prop.val = 1;

streamer__set_ property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_ api.h.

States The application can be in 2 different states:
* Idle

* Running

Commands in detail

* help, version

* usb_mic <seconds>
Legend for diagrames:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error messagel:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C

C --> E((No state

change)):::state

usbh_mic <seconds>

flowchart TD
classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill: #FF999C

B((Idle)):::state -->C{seconds
== (7}:::condition

C -- No --> E{seconds

< 07}:::condition

C -- Yes --> DJError: Incorrect

1.7. Multimedia 227

MCUXpresso SDK Documentation, Release 25.12.00

command parameter]:::error
D-->B

E -- Yes --> Glrecording]:::function
G --> H((Running)):::state
H->H

E -- No --> F[recording]:::function
F --> I((Running)):::state

I --> J{seconds
expired?}:::condition

J - No -->1

J--Yes -> B

Maestro USB speaker example

Table of content
* Overview
* Hardware requirements
* Hardware modifications
* Preparation
* Running the demo
» Example configuration
» Functionality
 States

¢« Commands in detail

Overview The Maestro USB speaker example demonstrates audio processing on the ARM cor-
tex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host.
The application takes audio samples from the USB host and sends them to the audio Line-Out
port. User will see the volume levels obtained from the USB host but this is only an example
application. To leverage the volume values, the demo has to be modified.

Depending on target platform or development board there are different modes and features of
the demo supported.

« Standard - The mode demonstrates playback with up to 2 channels, up to 48 kHz sample
rate and up to 16 bit width. This mode is enabled by default.

¢ Multi-Channel - In this mode the device is enumerated as a UAC 5.1. This mode is disabled
by default. See the Example configuration section to see how to enable the mode.

— When playing an 5.1 audio file, the example sends only the front-left and front-right
channels to the audio Line-Out port (the other channels are ignored), since this exam-
ple only supports on-board codecs with stereo audio output.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:

228 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* Note:

— If the USB device audio speaker example uses an ISO IN feedback endpoint, please
attach the device to a host like PC which supports feedback function. Otherwise, there
might be attachment issue or other problems.

Known issues:
* No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
* Desired development board
* 2X Micro USB cable
* Personal Computer

* Headphones with 3.5 mm stereo jack

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation

1. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board

2. Open a serial terminal with the following settings:
* 115200 baud rate
* 8 data bits
* No parity
* One stop hit
* No flow control
3. Download the program to the target board.

4. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

5. Insert the headphones into Line-Out connector (headphone jack) on the development
board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

Maestro audio USB speaker solutions demo start

Copyright 2022 NXP
[APP_ Shell Task] start

>> usb__speaker -1
(continues on next page)

1.7. Multimedia 229

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

Starting maestro usb speaker application

The application will run until the board restarts
[STREAMER] Message Task started

Starting playing

[STREAMER)] start usb speaker

Set Cur Volume : fbdb

Type help to see the command list. Similar description will be displayed on serial console:

>> help

“help”: List all the registered commands
“exit”: Exit program

“version”: Display component versions

"usb_speaker”: Play data from the USB port as an audio 2.0
speaker device.

USAGE: usb__speaker <seconds>

<seconds> Time in seconds how long the application should run.
When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb__speaker 20

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

* Enable Multi-channel mode:

— The feature can be enabled by set the USB_ AUDIO_ CHANNEL5_ 1 macro to 1U in the
usb_device descriptor.h file.

— Note: When device functionality is changed, such as UAC 5.1, please uninstall the pre-
vious PC driver to make sure the device with changed functionality can run normally.

Functionality The Usb_speaker command calls the STREAMER_ speaker_ Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_USB_SRC_INDEX - ELEMENT_SPEAKER_INDEX

Playback itself can be started with the STREAMER _ Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_ property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer element_ properties.h. See
the example of setting property value in the following piece of code from the app_ streamer.c file:

ELEMENT PROPERTY_ T prop;

prop.prop = PROP_USB_SRC_SET_SAMPLE_RATE;
prop.val = AUDIO_ SAMPLING_RATE;

streamer_set_ property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET NUM__CHANNELS;
prop.val = 2;

(continues on next page)

230 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

streamer__set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_ FRAME_ MS;

prop.val = 1;

streamer__set_ property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer__api.h.

States The application can be in 2 different states:

* Idle

* Running

Commands in detail

* help, version

* usb_speaker <seconds>
Legend for diagrams:

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version

flowchart TD
classDef function fill: #69CA00
classDef condition fil:#0EAFEQ
classDef state fill: #F9B500
classDef error fill: #F54D4D

A((Idle)):::state --> C[Write help or version)]
B((Running)):::state --> C

C --> E((No state

change)):::state

usb_speaker <seconds>

flowchart TD
classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill: #FF999C

B((Idle)):::state -->C{Duration
== 07}:::condition

:::function

(continued from previous page)

1.7. Multimedia

231

MCUXpresso SDK Documentation, Release 25.12.00

C -- No --> E{Duration

< 07}:::condition

C -- Yes --> DIError: Incorrect
command parameter]:::error
D-->B

E -- Yes --> Glplaying]:::function
G --> H((Running)):::state
H-->H

E -- No --> F[playing]:::function
F --> I((Running)):::state

I --> J{Duration
expired?}:::condition

J -- No -->I

J--Yes --> B

Supported features The current version of the audio framework supports several optional
features. These can be limited to some MCU cores or development boards variants. More infor-
mation about support can be found on the specific example page:

* maestro_playback

e maestro_record

* maestro_usb_mic

* maestro_usb_speaker

Some features are delivered as prebuilt library and the binaries can be found in the \middleware\
audio_ voice\components*component*\libs folder. The source code of some features can be found
in the \middleware\audio_ voice\maestro\src folder.

Decoders Supported decoders and its options are:

Decoder Sample rates [kHz] Number of channels Bit depth
AAC 8,11.025,12, 16, 22.05, 24, 32, 44.1,48 1, 2 (mono/stereo) 16

FLAC 8,11.025,12, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 16

MP3 8,11.025, 12, 16, 22.05, 24, 32, 44.1,48 1, 2 (mono/stereo) 16

OPUS 8, 16, 24, 48 1, 2 (mono/stereo) 16

WAV 8,11.025, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 8,16, 24

For more details about the reference decoders please see audio-voice-components repository
documentation \middleware\audio_ voice\components\.

Encoders

* OPUS encoder - The current verion of the audio framework only supports a OPUS encoder.
For more details about the encoder please see the following link.

Sample rate converters

* SSRC - Synchronous sample rate converter. More details about SSRC are available in the
User Guide, which is located in middleware\audio_ voice\components\ssrc\doc\.

* ASRC- Asynchronous sample rate converter is not used in our examples, but it is part of the
maestro middleware and can be enabled. To enable ASRC, the maestro framework asrc and
CMSIS_DSP_ Library_ Source components must be added to the project. Furthermore, it is
necessary to switch from Redlib to Newlib (semihost) library and add a platform definition

232 Chapter 1. Middleware

https://opus-codec.org/docs/opus_api-1.3.1/

MCUXpresso SDK Documentation, Release 25.12.00

to the project (e.g. for RT1170: PLATFORM_RT1170_CORTEXMY). Supported platforms
can be found in the PL_ platformTypes.h file. More details about ASRC are available in the
User Guide, which is located in middleware\audio_ voice\components\asrc\doc\.

Additional libraries

* VIT - Voice Intelligent Technology (VIT) Wake Word and Voice Command Engines pro-
vide free, ready to use voice Ul enablement for developers. It enables customer-defined
wake words and commands using free online tools. More details about VIT are available
in the VIT package, which is located in middleware\audio_ voice\components\vit\{platform}\
Doc\(depending on the platform) or via following link.

Processing Time

Table of content
* Maestro playback example
* Maestro record example

The individual time measurements were conducted using a logic analyzer by monitoring
changes in the GPIO port levels on the EVKC-MIMXRT1060 development board. These measure-
ments were executed for each individual pipeline run, capturing the timing at each correspond-
ing element, and, when relevant, the interconnections between these elements.

Maestro playback example For the Maestro playback example the following reference audio
file was used: test_48khz_16bit_2ch.wav. In this example, the pipeline depicted in the diagram
was considered. Media codecs WAV and MP3 were taken into account. To compare the times
spent on the SSRC block, sampling rates for both codecs were selected: 44.1 kHz and 48 kHz.

Streamer pipeline

Filesystem — WAV / MP3 decoder— SSRC — Speaker

The measurement of streamer pipeline run started at the beginning of
streamer__process_ pipelines(): streamer.c and ended in the function streamer pcm_ write():
streamer__pcm.c just before the output buffer.

In the scenario involving the WAV codec, the audio file was accessed in every iteration of the
streamer pipeline. Meaning, during each run, the file was read directly from the SD card. How-
ever, in the case of the MP3 codec, where data processing necessitates complete MP3 frames,
the file wasn’t read during every run. Rather, it was accessed periodically, triggered when the
codec buffer lacked a complete MP3 frame of data. The total time spent on codec processing
varies significantly depending on the type and implementation of the codec. For certain types of
codecs, like FLAC, there may be multiple file accesses during a single pipeline run. The provided
values are specific to the reference implementation. For details about the codecs please see see
audio-voice-components documentation middleware\audio_ voice\components\.

The duration of the streamer pipeline illustrates that with a sampling frequency of 48 kHz, there
is no resampling occurring at the SSRC element. Consequently, the overall pipeline time is lower
than in the case of 44.1 kHz audio, where resampling takes place.

To enhance comprehension of the system’s behavior, histograms of the pipeline run times and
its elements are included. The greater time variance with the MP3 codec is precisely due to

1.7. Multimedia 233

https://nxp.com/vit

MCUXpresso SDK Documentation, Release 25.12.00

the absence of file reads in every run. In clusters with shorter times, there are no file accesses,
while in clusters with longer times, file reads occur. This indicates that the majority of runs do
not involve file access.

WAV 48 WAV 44 MP3 48 kHz MP3 48 kHzw/o MP3 44 kHz MP3 44 kHz w/o

kHz kHz file read file read file read file read
mear 1.11ms 1.76 ms 2.87 ms 0.51 ms 3.22 ms 0.89 ms
min 1.03ms 1.60ms 2.74 ms 0.41 ms 2.33 ms 0.74 ms
max 1.29ms 2.23ms 3.24ms 1.83 ms 3.73 ms 1.12 ms

Histograms of playback streamer runs

80 WAV 48kHz WAV 44.1kHz MP3 48kHz 250 MP3 44.1kHz

60 300

60 200

40 200 150
100

20 20 100 50 [
{ J —L L oL i

40

Time on each element In the tables and histograms below, the timings for individual elements
and their connections are provided. Given that the file reading function was invoked during the
codec’s operation, the tables for individual elements display the total time on the codec element,
the time on the codec element before the file read, and the time on the codec element after the
file read. The individual blocks in the tables are as follows:

 streamer - total time of one pipeline run without time on output buffers
* codec start - time on decoder before file read

* codec end - time on decoder after file read

* codec total - codec_start+codec_end

« file_src - file reading time

SSRC_proc - time on SSRC element

* audio_sink - time on audio sink without ouput buffers
* pcm_write - time on output buffers

¢ link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

* streamer - streamer__process_ pipelines():streamer.c

* codec - decoder sink pad_process_handler():decoder pads.c

* file_src - filesrc_read():file_src_ rtos.c

* SSRC_proc - SSRC__Proc_ Execute():ssrc__proc.c

* audio_sink - audiosink_sink pad_ chain_handler():audio_ sink.c
* pcm_write - streamer__pcem_ write():streamer__pem.c

* link - pad_ push():pad.c

234 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

WAV strean codec codec file_sr codec link SSRC_ link SSRC- au- pcm_write
48kHz total start end codec- audio_sink dio_sin
SSRC
mean 1.119 152 31us 0.843 120 5us 64 us 2 pus 40 us 20.228
ms us ms us ms
min 1.026 125 21ps 0.773 104 <1 s 47 us <luys 30 us 19.805
ms us ms us ms
max 1.290 193 49us 1.311 144 23 us 93 us 14 us 91 us 20.324
ms us ms us ms
WAV strean codec codec file_sr codec link SSRC_ g link SSRC- au- pcm_write
44kHz total start end codec- audio_sink dio_sin
SSRC
mean 1.765 178 44 us 0.853 134 S us 671 3 us 42 us 21.472
ms us ms us us ms
min 1.604 145 33us 0.770 112 <1 us 574 <1 us 33us 18.163
ms us ms us us ms
max 2.233 218 57us 1.335 161 18 us 715 5 us 89 us 21.746
ms us ms us us ms
WAV 48kHz - histograms of streamer runs
codec total codec_start file_src codec_end 80 link codec-SSRC SSRC link SSRC-audio_sink audio_sink 80 pem_write
o 20} 100} 30y | % . GOlmNL\ 60|
0 wﬂﬂl} 1JJ’1}§B 020 08 ’-H; 1.2 QDI}J{{» 120% 0 0 50 60 70 80 90 E)0 ‘m; 10 0 40 60 80 QBE 20 202

ps

codec total

file_src

codec_end

s ps
WAV 44kHz - histograms of streamer runs

link codec-SSRC

ps

SSRC

link SSRC-audio_sink
= 80

ps

sink

ms

pem_write

25 5 = 25 60 Audie 150
15 15 15 40 40| 2 B M 100 J‘
150 200 B ¢ 35 40 45 50 55 - 0.8 H‘L‘ 12 0 120 140 160 0 0 5 10 15 0 600 650 700 0 Hl] 2 3 45 0 40 60 80 G1E 20
MP348kHz strear codec codec file_sr codec link SSRC_| link SSRC- au- pcm_write
w/ file read total start end codec- audio_sink dio_sir
SSRC
mean 2.871 441 279 2.271 162 6 us 56 us 3 us 50us 11.019
ms us us ms us ms
min 2.739 353 74 us 1.353 26 <1 us 40pus <1 pus 34pus 10.091
ms us ms us ms
max 3.244 570 409 2.728 467 18 us 80us 14 pus 62 us 12.910
ms us us ms us ms
1.7. Multimedia 235

MCUXpresso SDK Documentation, Release 25.12.00

MP3 48 strear codec codec file_s codec link SSRC_| link SSRC- au- pcm_write
kHz w/o file total start end codec- audio_sink dio_sir
read SSRC
mean 0.508 403 X X X 8 us 39us 3 us 36 us 11.326
ms us ms
min 0.407 208 X X X <1 us 25pus <lys 21pus 7.715
ms us ms
max 1.834 563 X X X 41 ys 69us 16 us 104 12.941
ms us us ms
codec total codec_start file_src 20 codec_end link codec-SSRC 5 SSRC 2I(i)nk SSRC-audio_sink audio_sink 20 pcm_write
z 2 10 5 2 j 5 2 5
TEN SRR Y
"~ " ";:IPH 48kHz - hi;tsograms of str(;;mer runs wiir;;ul file read "~ " "
codec link codec-SSRC SSRC link SSRC-audio_sink audio_sink pcm_write
- 00 250 100
60 L 60 200 | 150
40 50 40 150 50 100
20 20 50
Jilk..) | I
0 0 — 0 nl UMl oo 0 on L o
200 400 0 20 40 30 40 50 60 70 0 a5 10 15 50 100 8 10 12
M5 [i<] 1S 1S 1S ms
MP344kHz strear codec codec file_sr codec link SSRC_| link SSRC- au- pcm_write
w/ file read total start end codec- audio_sink dio_sir
SSRC
mean 3.217 436 367 2.300 66 7 us 403 3us 51us 12.188
ms us us ms us us ms
min 2.329 383 73us 1411 26 2 us 318 <1 us 35us 9.119
ms us ms us us ms
max 3.726 547 464 2.801 441 27 ys 454 12 us 65us 12.529
ms us us ms us us ms
MP3 44 strear codec codec file_s codec link SSRC_| link SSRC- au- pcm_write
kHz w/o file total start end codec- audio_sink dio_sir
read SSRC
mean 0.891 437 X X X 9 us 388 3us 38us 11.934
ms us us ms
min 0.738 268 X X X <1 us 290 <1 us 22 us 8.964
ms us us ms
max 1.115 620 X X X 45 us 438 17 ps 92 us 12.624
ms us us ms
236 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

MP3 44kHz - histograms of streamer runs with file read

codec total codec_start 25 file_src 5 codec_end link codec-SSRC SSRC link SSRC-audio_sink 6 audio_sink pem_write
10 20 20 6 10 10 30
4 15 15 4 4 20
5 10 10 5 5
2 2 2 10
5 5
0 0 0 0 0 0 0 0 0
400 500 200 400 15 2 25 0 200 400 0 10 20 350 400 450 o 5 10 40 50 60 10 12
s us ms us us s us us ms
MP3 44kHz - histograms of streamer runs without file read
codec link codec-SSRC SSRC link SSRC-audio_sink audio_sink pcm_write
60 80 80 150 60 150
60 60
40 100 40 100
40 40
20 50 20 50
20 20
0 0 0 0 0 0
400 600 0 20 40 300 350 400 0 5 10 15 20 40 60 80 10 12
Ji] s us it s ms

Maestro record example Typical execution times of the streamer pipeline and its individual
elements for the EVKC-MIMXRT1060 development board are detailed in the following tables. The
duration spent on output buffers and reading from the microphone is excluded from traversal
measurements. Three measured pipelines are depicted in the figure below. The first involves
a loopback from microphone to speaker, supporting both mono and stereo configurations. The
second pipeline is a mono voice control setup, comprising microphone and VIT blocks. The final
pipeline is a stereo voice control setup, integrating microphone and VIT blocks. The measure-
ment of streamer pipeline run started at the beginning of streamer_ process_ pipelines():streamer.c
and ended in the function streamer__pcm_ write(): streamer__pcm.c just before the output buffer.

Streamer pipeline Streamer pipeline
Microphone— Speaker Microphone— VIT
Histograms of record streamer runs
mic->speaker 1 channel mic->speaker 2 channels 250 mic->VIT mic->voice seeker->VIT
100 100 200
100
50 50 100 50
50
0 30 40 50 60 0100 120 140 o 4 6 8 o 6 8 10

The individual blocks in the tables are as follows:

» streamer - total time of one pipeline run without time on output buffers and without time
reading from the microphone

» audio_src_start - time on audio src before reading from the microphone
» audio_src_end - time on audio src after reading from the microphone

* pcm_read - reading from the microphone

* vit - time on VIT element

» audio_sink - time on audio sink without ouput buffers

1.7. Multimedia 237

MCUXpresso SDK Documentation, Release 25.12.00

* pcm_write - time on output buffers

* link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

* streamer - streamer__process_ pipelines():streamer.c

* audio_src - audiosrc_ src_ process():audio_ src.c

* pcm_read - streamer__pcm_ read():streamer _pem.c

* Vit - vitsink_sink_pad_ chain__handler():vit_sink.c

* audio_sink - audiosink_sink__pad_ chain__handler():audio_sink.c

* pcm_write - streamer pcm_ write():streamer _pcm.c

¢ link - pad_ push():pad.c

Pipeline Microphone -> Speaker

microphone -> stream au- pcm_re au- link audio_src- au- pcm_write
speaker mono dio_src_ste dio_src_er audio_sink dio_sink
mean 43 pus 3 pus 29.938 29 ps <1 us 10 us 18 us
ms
min 26 us <1uyus 29.350 19 pus <1 us 5us 12 ys
ms
max 72 ps 12 ps 29.957 44 ps 1 us 15us 25us
ms
microphone -> stream au- pcm_re au- link audio_src- au- pcm_write
speaker stereo dio_src_ste dio_src_er audio_sink dio_sink
mean 115 5 us 29.861 54 pus 2 us 55us 23 ups
us ms
min 94 pus <1us 29.768 43 pus <1 us 50us 12 ps
ms
max 154 14 ps 29.880 67 us 8 us 65us 49 pus
us ms
peaker 1 channel - hi of streamer runs
audio_src start+end auiliofsrc start 600 pem_read audio_src end link audio_src-audio_sink audio_sink 100 pem_write
80 il 150 80 _’ 300 I 80 M
601 w0t 400 60, l 60, (i
L - 200 M
40 L Hh 40, J ™ 40, 50 dll {1
50, 200 100 mﬂ_{' I
20 20| 20
/ HE' TN ET N J ol il
20 30 40 50 0 5 10 294 296 29.8 20 30 40 04 06 08 1 12 14 5 10 15 15 20 25
s s ms s s s s
il 2 of streamer runs
audio_src start+end audio_src start 250 pem_read audio_src end link audio_src-audio_sink audio_sink - pem_write
100 100 200 100 300 100
150 200 100
50 50 100 50 50
100 50
50
0 50 60 70 00 5 10 293,75 29.8 29.84 29.88 0 45 50 55 60 65 0 4 6 8 0 50 55 60 65 0 20 30 40 650
s s ms s s s e
238 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Pipeline Microphone -> VIT

microphone -> streamer au- pcm_read au- link audio_src- vit

VIT dio_src_start dio_src_end it

mean 7.380 30 ys 22.624 78 us 2 us 7.261
ms ms ms

min 2.641 10 ps 2.2265 58 us <1 pus 2.559
ms ms ms

max 7.780 42 ps 2.7341 94 us S us 7.624
ms ms ms

mic->VIT - histograms of streamer runs

audio_src start+end audio_src start pcm_read audio_src end link audio_src-VIT

vIT

100 200 80
60
100

80,
150

40!
50 100 0 50
20! 50 20

300

200

100

0 0 0 0)
90 100 110 120 130 20 30 40 22 24 26 70 80 90 0 2 4

ns /s ms ns ps

Maestro on Zephyr
* Based on and tested with Zephyr version, given by tag v4.0.0
* Tested with Zephyr SDK version 16.4

* To see the pre-built documentation, see: README.html. Also see the documentation section.

Maestro sample for recording data from microphone to RAM

Description This sample records data from microphone (alias dmic0 in devicetree) and stores

them to a buffer in RAM.

Currently one PDM channel with fixed 16 kHz sample rate and 16 bit sample width is supported.

For configuration options, see Kconfig and prj.conf.

User Input/Output
* Input:
None.
* Output:
UART Output:
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

Supported platforms Currently tested for:
* RD_RW612_BGA.

Maestro voice detection sample using VIT

1.7. Multimedia

239

doc/doc/README.html

MCUXpresso SDK Documentation, Release 25.12.00

Description Records data from microphone (alias dmic0 in devicetree) and detects voice com-
mands from selected language model. Detected commands are printed via UART.

Language model may be changed via Kconfig using CONFIG _MAESTRO_EXAMPLE VIT LANGUAGE
selection. For other configuration options, see example’s Kconfig and prj.conf.

This project requires an NXP board supported by the VIT library.

The example has to be modified if a new board needs to be added. Please create an issue in that
case.

User Input/Output
* Input:
None.
* Output:
UART Output:
— List of voice commands the model can detect (printed immediately after start)
— <Specific voice command> if voice command was detected

— Demo result: FAIL otherwise

Dependencies

o VIT library: https://www.nxp.com/design/design-center/software/embedded-software/
voice-intelligent-technology-wake-word-and-voice-command-engines:
VOICE-INTELLIGENT-TECHNOLOGY

Supported platforms Currently tested for:
* RD_RW612_BGA.

Maestro decoder sample

Description Tests and demonstrates decoder functionality in Maestro pipeline.
Supported decoders:
* MP3
* WAV
* AAC
* FLAC
* OPUS with OGG envelop
(RAW OPUS - TBD)
Data Input:

» Prepared encoded audio data (part of Maestro repository, folder zephyr/audioTracks)

* Prepared decoded audio data (RAW PCM format, part of Maestro repository, folder zephyr/
audioTracks)

Function:

1. Loads encoded data into source buffer stored in RAM

240 Chapter 1. Middleware

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.12.00

2. Decodes audio data using selected decoder and stores data in RAM
3. Compares prepared data with decoded data to check if its the same
4. Prints Demo result: OK or Demo result: FAIL via UART

User Input/Output
* Input:
None
* Output:
UART Output
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

Dependencies

* Audio voice component library (pulled in by Maestro’s west), containing Decoder libraries

Configuration
* See prj.conf for user input sections

— Selecting decoder may be done by enabling CONFIG_MAESTRO_EXAMPLE_DECODER_SELECTET
in prj.conf file. When no decoder is selected, default one (WAV) is used instead.

— System settings should be modified (stack size, heap size) based on selected decoder
and system capabilities/requirements in prj.conf.

* For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:
* RD_RW612_BGA - Working decoders: FLAC, WAV, OPUS OGG

Maestro encoder sample

Description Tests and demonstrates encoder functionality in Maestro pipeline.
Supported encoders:
* OPUS with OGG envelop - TBD
* RAW OPUS - TBD
Input:
* Prepared decoded audio data (RAW PCM format, part of Maestro repository)
* Prepared encoded audio data (part of Maestro repository)
Function:
1. Loads RAW data into source buffer stored in RAM
2. Encodes audio data using selected encoder and stores data in RAM
3. Compares prepared data with decoded data if same
4. Prints Demo result: OK or Demo result: FAIL via UART

1.7. Multimedia 241

MCUXpresso SDK Documentation, Release 25.12.00

Dependencies

* Audio voice component library (pulled in by Maestro’s west), containing Encoder libraries

User Input/Output Input:
* None
Output:
* UART Output
— Demo result: OK if everything went OK

— Demo result: FAIL otherwise

Configuration
* See prj.conf for user input sections

— Selecting encoder may be done by enabling CONFIG_ MAESTRO_EXAMPLE ENCODER_ SELECTET
in prj.conf file. When no encoder is selected, default one (OPUS) is used instead.

— System settings should be modified (stack size, heap size) based on selected encoder
and system capabilities/requirements in prj.conf file.

* For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:
*« RD_RW612_BGA - Working encoders: None.

Maestro mem2mem sample

Description Tests basic memory to memory pipeline.

Function:
1. Moves generated data with fixed size of 256B from memory source to memory sink.
2. Compares copied data to check if they’re the same.
3. Returns Demo result: OK or Demo result: FAIL via UART.

* Maestro environment setup
* Build and run Maestro example
— Using command line
- Using MCUXpresso for VS Code
* Folder structure
* Supported elements and libraries
* Examples support

* Creating your own example

* Documentation
« FAQ

242 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Maestro environment setup Follow these steps to set up a Maestro development environment
on your machine.

1. If youhaven’t already, please follow this guide to set up a Zephyr development environment
and its dependencies first:

* Cmake

* Python

* Devicetree compiler
* West

o Zephyr SDK bundle

2. Get Maestro. You can pick either of the options listed below. If you need help deciding
which option is the best fit for your needs, please see the FAQ.

* Freestanding Maestro - This option pulls in only Maestro’s necessary dependencies.

Run:

1. west init -m <maestro repository url> --mr <revision> --mf west-freestanding.yml
— <foldername>

2. cd <foldername>

3. west update

* Maestro as a Zephyr module

To include Maestro into Zephyr, update Zephyr’s west.yml file:

projects:

name: maestro

url: <maestro repository url>

revision: <revision with Zephyr support>
path: modules/audio/maestro

import: west.yml

Then run west update maestro command.

Build and run Maestro example These steps will guide you through building and running
Maestro samples. You can use either the command line utilizing Zephyr’s powerful west tool or
you can use VS Code’s GUI. Detailed steps for both options are listed below.

Using command line See Zephyr’s Building, Flashing and Debugging guide if you aren’t famil-
iar with it yet.

1. To build a project, run:

west build -b <board> -d <output build directory> <path to example> -p

For example, this compiles VIT example for rd_rw612_bga board:

1. c¢d maestro/zephyr
2. west build -b rd_rw612_ bga -d build samples/vit -p

2. To run a project, run:

west flash -d <directory>

e.g.

1.7. Multimedia 243

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html

MCUXpresso SDK Documentation, Release 25.12.00

west flash -d build

3. To debug a project, run:

west debug -d <directory>

e.g.
west debug -d build

Using MCUXpresso for VS Code For this you have to have NXP’s MCUXpresso for VS Code
extension installed.

1. Import your topdir as a repository to MCUXPresso for VS Code:
* Open the MCUXpresso Extension. In the Quickstart Panel click Import Repository.
* In the displayed menu click LOCAL tab and select the folder location of your topdir.
* Click Import.

* The repository is successfully added to the Installed Repositories view once the import
is successful.

2. To import any project from the imported repository:
 In the Quickstart Panel click Import Example from Repository.
» For Repository select your imported repository.
* For Zephyr SDK the installed Zephyr SDK is selected automatically. If not, select one.
* For Board select your board (make sure you’ve selected the correct revision).

» For Template select the folder path to your project.

Click the Create button.

3. Build the project by clicking the Build Selected icon (displayed on hover) in the extension’s
Projects view. After the build, the debug console window displays the memory usage (or
compiler errors if any).

4. Debug the project by clicking the Debug (play) icon (displayed on hover) in the extension’s
Projects view.

5. The execution will pause. To continue execution click Continue on the debug options.

6. In the SERIAL MONITOR tab of your console panel, the application prints the Zephyr boot
banner during startup and then prints the test results.

Folder structure

maestro/
zephyr/ All Zephyr related files
samples/ Sample examples
tests/ Tests
audioTracks/ Audio tracks for testing
doc/ Documentation configuration for Sphinx
wrappers/ NXP SDK Wrappers
scripts/ Helper scripts, mostly for testing
module.yml Defines module name, Cmake and Kconfig locations
CMakeList.txt Defines module's build process
Kconfig Defines module's configuration
osa/ Deprecated. OSA port for Zephyr

244 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/vscode-for-mcux
https://github.com/nxp-mcuxpresso/vscode-for-mcux

MCUXpresso SDK Documentation, Release 25.12.00

Supported elements and libraries Here is the list of all features currently supported in Mae-
stro on Zephyr. Our goal is to support all features in Maestro on Zephyr that are already sup-
ported in Maestro on NXP’s SDK and to extend them further.

Supported elements:
* Memory source
* Memory sink
* Audio source
* Audio sink
* Process sink
* Decoder
* Encoder
Supported decoders:
» WAV
* MP3
* FLAC
OPUS 0GG
* AAC
Supported encoders:
* OPUS RAW

Supported libraries:
o VIT

Examples support All included examples use UART as output. Examples are located in zephyr/
tests and zephyr/samples directories.

List of included examples:
* Maestro sample for recording data from microphone to RAM
* Maestro voice detection sample using VIT
* Maestro encoder sample
* Maestro decoder sample
* Maestro mem2mem sample

Examples support for specific boards:

Example = RDRW612BGA LPCx- MIMXRT1060EVKE MIMXRT1170EVKB
presso55s69

Record YES TO BE TESTED TO BE TESTED TO BE TESTED

VIT YES TO BETESTED TO BE TESTED TO BE TESTED

Encoder In progress: OPUS RAW TO BE TESTED TO BE TESTED TO BE TESTED

Decoder YES - WAV, FLAC, OPUS TO BETESTED TO BE TESTED TO BE TESTED

0GG

MemZmem YES TO BETESTED TO BE TESTED TO BE TESTED

1.7. Multimedia 245

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY

MCUXpresso SDK Documentation, Release 25.12.00

Creating your own example There are two ways to create your own example - you can either
one of the included examples as a reference or you can create your own example from scratch
by hand.

When creating your own example from scratch, set CONFIG_ MAESTRO_AUDIO_FRAMEWORK=y
in your prj.conf file. Then you can start enabling specific elements by setting CON-
FIG_MAESTRO_ELEMENT <NAME> ENABLE=y.

However, the recommended way to edit config options is to open gui-config (or menuconfig) by
calling west build -t guiconfig. Then you can use the graphical interface to interactively turn on/off
the features you need.

Documentation Please note, Maestro documentation is under reconstruction. It is currently
mixing several tools and formats.

To see the pre-generated Maestro Zephyr documentation, see zephyr/doc/doc/README.html

To generate the Zephyr documentation, go under zephyr/doc folder and execute make html.
Sphinx version sphinx-build 8.1.3 must be installed. Open doc/doc/html/README.hml afterwards.

To see Maestro core documentation, go to the Maestro top directory and see README.md.

FAQ

1. Should I choose the freestanding version of Maestro or should integrate it into my west
instead?

* Freestanding version of Maestro pulls in all the dependencies it needs including
Zephyr itself.

 Integrating it as a module is easier if you already have your Zephyr environment set
up.

Maestro Audio Framework changelog

2.0.2
* Removed VoiceSeeker support

2.0.1

* Fixed filesrc buffer alignment

2.0.0 (newest)
* Added Zephyr port, see Zephyr README.
— Possible to use standalone version, pulling its own Zephyr and dependencies

— Possible to import it as a module in your Zephyr project

Changed build system - newly uses Kconfig and Cmake
* Supports NXP MCUXSDK (previously 2.x)

Changed folder structure and names to improve readability (description may be found in
README)

* Removed audio libraries and placed into audio-voice-components repository

Added libraries are pulled into the build via Kconfig and Cmake

246 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* Changed Maestro library core - minor changes

1.8.0
* New platforms support: MCX-N5XX-EVK, FRDMMCXN236 and RD-RW612-BGA
* Fixed compilation warnings
* Documentation improvements and updates
— Added section with processing time information
— Added application state diagrams

* Various updates and fixes

1.7.0
* Removed EAP support for future SDK releases
* Created new API for audio_sink and audio_src to support USB source, sink
* ASRC library integrated
* License changed to BSD 3-Clause
* Improved pipeline creation API
* Fixed compilation warnings in Opus

* Various other improvements and bug fixes

1.6.0
» Up to 2 parallel pipelines supported
* Synchronous Sample Rate Converter support Added

* Various improvements and bug fixes

1.5.0
* Enabled switching from 2 to 4 channel output during processing
» PadReturn type has been replaced by FlowReturn
» Support of AAC, WAV, FLAC decoders

* Renamed eap element to audio_proc element

Added audio_proc to VIT pipeline to support VoiceSeeker

Minor bug fixes

1.4.0
» Use Opusfile lib for Ogg Opus decoder
» Refactor code, fix issues found in unit tests

* Various bug fixes

1.7. Multimedia 247

MCUXpresso SDK Documentation, Release 25.12.00

1.3.0
» Make Maestro framework open source (except mp3 and wav decoder)

» Refactor code, remove unused parts, add comments

1.2.0
¢ Unified buffering in audio source, audio sink

* Various improvements and bug fixes

1.0_rev0

* Initial version of framework with support for Cortex-M7 platforms

1.7.2 VGLite Graphics Driver
IMXRTVGLITEAPIRM

Introduction The VGLite Graphics API (Application Programming Interface) is designed to sup-
port 2D vector and 2D raster-based operations for rendering the interactive user interface that
may include menus, fonts, curves, and images. The goal is to provide the maximum 2D vec-
tor/raster rendering performance, while keeping the memory footprint to the minimum.

Note: This document contains proprietary information of VeriSilicon Holdings Co., Ltd, and Vi-
vante Corporation.

VGLite Graphics API The Vivante VGLite Graphics API is used to control the Vivante vector
graphics hardware units that provide accelerated vector and raster operations.

The Vivante VGLite API is developed for use with Vivante GCNanoLiteV, GCNanoUltraV, GCNanoV,
GC355, and GC555 hardware. GC355 and GC555 support the Khronos OpenVG 1.1 feature set,
while GCNanoLiteV, GCNanoUltraV and GCNanoV have a feature set smaller than that required
to pass Khronos OpenVG CTS.

The VGLite API driver V4 is a new design and implementation of the driver (from 2023Q1) to sup-
port the new generation 2.5D GPU (GC555), and the previous 2.5D GPU releases (GC255, GC265,
GC355). The new V4 driver supports the new and improved VGLite API (version 3.0) and can
generate the most CPU-efficient, customized driver build for a specific 2.5D GPU release based
on the hardware feature set.

VGLite API supported features include: Porter-Duff Blending, Gradient Controls, Fast Clear, Ar-
bitrary Rotations, Path Filling rules, Path painting, and Pattern Path Filling.

By default, VGLite API driver V4 supports one implicit global application context in a single
thread. VGLite V4 driver does not support multithreaded applications, which is not suitable
for embedded IoT devices.

Parent topic:Introduction

API function group The VGLite Graphics API has been designed to have independent function
groups. It is permissible for a user to use only one of the function groups in the VGLite applica-
tion:

* Initialization is used for initializing hardware and software structures
* Blit API is used for the raster part of rendering

* Draw API is used for 2D vector-based draw operations

248 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:/ntroduction

API files The VGLite source code is available as part of the NXP MCUXpresso SDK:
The VGLite graphics API functions are defined in the header file VGLite/inc/vg_ lite.h.
All VGLite enumerations and data types are defined in VGLite/inc/vg_ lite.h.

Parent topic:/ntroduction

Hardware versions The Vivante VGLite API is compatible with a range of Vivante Vector
Graphics IPs including: GCNanoLiteV, GCNanoUltraV, GCNanoV, GC355, and GC555.

Note: A specific hardware version has customized feature set that may limit hardware support
for some VGLite API options. The VGLite application can use the vg lite query feature API to
query specific VGLite feature availability.

Users can also check the VGLite/VGLite/vg_ lite_options.h file which includes CHIPID, REVISION,
CID to identify specific HW releases, and the gcFEATURE_ VG_ * macros to define the feature set
for the HW release.

The gcFEATURE_VG_* macro values (except a few SW features) should NOT be changed. Other-
wise, the VGLite driver does not function correctly on the specific HW release. Users can change
the “SW Features” macro values to disable some software features, unnecessary error checks, or
enable VGLite API trace for debug purposes.

Parent topic:/ntroduction

Common parameters and error values This chapter provides an overview of the common
parameter types and the enumeration used for error reporting.

Common parameter types The VGLite graphics API uses a naming convention scheme
wherein definitions are preceded by vg_ lite.

Below is the list of types and structures in the driver implementation.

1.7. Multimedia 249

MCUXpresso SDK Documentation, Release 25.12.00

Narr Type-
def

Value

vg_li int
vg_li char
vg_li un-
signe
char
vg_li short
vg_li un-
signe
short
vg_li int
vg_li un-
signe
int
vg_li un-
signe
long
long
vg_li float
vg_li dou-
ble
vg_li char
vg_li char*
vg_li void*

vg_li void
vg_li vg_lit

VG_] enunr
vg_lit
VG_] enurr
vg_lit
VG_] enurr
vg_lit
VG_] enunr
vg_lit

A signed 32-bit integer 0: FALSE; 1: TRUE.
A signed 8-bit integer
An unsigned 8-bit integer

A signed 16-bit integer
An unsigned 16-bit integer

A signed 32-bit integer
An unsigned 32-bit integer

An unsigned 64-bit integer

A 32-bit single precision floating point number
A 64-bit double precision floating point number

A signed 8-bit integer

A pointer to a character string

A generic address pointer (void *). On 32-bit OS, it is a 32-bit address pointer. On
64-bit OS, it is a 64-bit address pointer.

The void type

A 32-bit color value The color value specifies the color used in various func-
tions. The color is formed using 8-bit RGBA channels. The red chan-
nel is in the lower 8-bit of the color value, followed by the green and
blue channels. The alpha channel is in the upper 8-bit of the color value.

31:24 | 23:1e 15:8 FEY

vg_lite_color_t i)
--- For 18 target formats, the RGB

color is converted to L8 by using the default ITU-R BT.709 conversion rules.
A signed 8-bit integer coordinate

A signed 16 bit integer coordinate
A signed 32-bit integer coordinate

A 32-bit floating point coordinate

Parent topic:Common parameters and error values

Enumerations for error reporting This section describes enumerations used for error report-

ing.

vg lite error t enumeration Most functions in the API include an error status via the
vg_lite_error_tenumeration. API functions return the status of the command and will report
VG_LITE_ SUCCESS if successful with no errors. Possible error values include the values in
the table below. vg_lite_error_ tenumeration is used in many functions, including initialization,
flush, blit, draw, gradient, and pattern functions.

250

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t string values Description

VG_LITE_GENERIC_IO

Cannot communicate with the kernel driver

VG_LITE_INVALID_ ARGUMEN An invalid argument was specified

VG_LITE MULTI THREAD FA

VG_LITE NO_ CONTEXT

VG_LITE NOT SUPPORT
available.

VG_LITE OUT_OF_MEMORY

VG_LITE_OUT_OF_RESOURC

VG_LITE SUCCESS

VG_LITE TIMEOUT

VG_LITE ALREADY EXISTS

VG_LITE NOT ALIGNED

Timeout

Multi-thread/tasks fail (available from June 2020)
No context specified
Function call is not supported. Hardware support is not

Out of memory (driver heap)
Out of resources (OS heap)
Successful with no errors

Object exists (available from August 2021)
Data alignment error (available from August 2021)

Parent topic:Enumerations for error reporting

Parent topic:Common parameters and error values

Hardware product and feature information These query functions can be used to identify
the product and its key features and to get VGLite driver information.

Enumerations for product and feature queries This section describes enumerations used for

product and feature queries.

veg_lite_feature_t enumeration The following feature values may be queried for availability in
compatible hardware. (expanded March 2023 to support additional hardware for driver V4)

Used in information function: vg_lite_query_ feature.

vg_lite_feature_t string values

Description

gcFEATURE_BIT_VG_16PIXELS_ALIGN
gcFEATURE_BIT_VG_24BIT
gcFEATURE_BIT_VG_24BIT_PLANAR
gcFEATURE_BIT_VG_AYUV_INPUT
gcFEATURE_BIT_VG_BORDER_CULLING
gcFEATURE_BIT_VG_COLOR_KEY
gcFEATURE_BIT_VG_COLOR_TRANSFORMATION
gcFEATURE_BIT_VG_DEC_COMPRESS
gcFEATURE_BIT_VG_DITHER
gcFEATURE_BIT_VG_DOUBLE_IMAGE
gcFEATURE_BIT_VG_FLEXA
gcFEATURE_BIT_VG_GAMMA
gcFEATURE_BIT_VG_GAUSSIAN_BLUR
gcFEATURE_BIT_VG_GLOBAL_ALPHA
gcFEATURE_BIT_VG_HW_PREMULTIPLY
gcFEATURE_BIT_VG_IM_DEC_INPUT
gcFEATURE_BIT_VG_IM_FASTCLEAR
gcFEATURE_BIT_VG_IM_INDEX_FORMAT
gcFEATURE_BIT_VG_IM_INPUT
gcFEATURE_BIT_VG_IM_REPEAT_REFLECT
gcFEATURE_BIT_VG_INDEX_ENDIAN
gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT

Require 16 pixels aligned for the input pixel buffer
RGB888 or RGBA5658 formats support
24-bit planar format support

AYUV input format support

Border culling support

Color key support.

Color transform support.

DEC compression format output support
Dither support

Support two image source inputs

FLEXA interface support

Gamma support

Gaussian blur sampling support

Global alpha support

HW supports alpha premultiply for image
DEC compressed format input support
Fast Clear support

Index format support for image

Blit and draw API support

Image repeat reflect mode support

Index format endian support

Support for extended linear gradient capabilities

continues on next page

1.7. Multimedia

251

MCUXpresso SDK Documentation, Release 25.12.00

Table 1 - continued from previous page

vg_lite_feature_t string values Description
gcFEATURE_BIT_VG_LVGL_SUPPORT LVGL blend mode support
gcFEATURE_BIT_VG_MASK Mask support
gcFEATURE_BIT_VG_MIRROR Mirror support
gcFEATURE_BIT_VG_NEW_BLEND_MODE New blend mode DARKEN/LIGHTEN support
gcFEATURE_BIT_VG_NEW_IMAGE_INDEX New CLUT image index support
gcFEATURE_BIT VG_PARALLEL_PATHS New parallel path HW support
gcFEATURE BIT VG_PE_CLEAR Pixel engine clear support
gcFEATURE_BIT_VG_PIXEL_MATRIX Pixel matrix support
gcFEATURE_BIT_VG_QUALITY_8X 8x anti-aliasing path support
gcFEATURE_BIT_VG_RADIAL_GRADIENT Radial gradient support
gcFEATURE_BIT_VG_RECTANGLE_TILED_OUT Rectangle tiled output support
gcFEATURE_BIT_VG_RGBA2_FORMAT RGBA2222 format support
gcFEATURE_BIT_VG_RGBA8_ETC2_EAC ETC2/EAC compressed image format support
gcFEATURE_BIT_VG_SCISSOR Scissor support
gcFEATURE_BIT_VG_SRC_PREMULTIPLIED Source image alpha premultiplied
gcFEATURE_BIT_VG_STENCIL Stencil image mode support
gcFEATURE_BIT_VG_STRIPE_MODE Stripe mode support
gcFEATURE_BIT_VG_TESSELLATION_TILED_OUT Tessellation tiled output support
gcFEATURE_BIT_VG_USE_DST Read destination pixel support
gcFEATURE_BIT_VG_YUV_INPUT YUV input format support
gcFEATURE_BIT _VG_YUV_OUTPUT YUV format output support
gcFEATURE_BIT_VG_YUV_TILED_INPUT YUV tiled input format support
gcFEATURE_BIT VG_YUY2_INPUT YUY2 input format support

Parent topic:Enumerations for product and feature queries

Parent topic:Hardware product and feature information

Structures for product and feature queries This section describes structures used for prod-
uct and feature queries.

vg_lite_info_t structure This structure is used to query VGLite driver information.

Used in function: vg_lite_ get_info_ t.

vg_lite_info_t member Type Description

api_version vg_lite_uint32_t VGLite API version
header_version vg_lite_uint32_t VGLite header version
release_version vg_lite_uint32_t VGLite driver release version
reserved vg_lite_uint32_t Reserved for future use

Parent topic:Structures for product and feature queries

Parent topic:Hardware product and feature information

Functions for product and feature queries This section describes functions used for product
and feature queries.

vg lite get product info Description:
This function is used to identify the VGLite-compatible product.
Syntax:

252 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t vg_lite_get_ product_info (

char *name,
uint32 t *chip_ id,
uint32 t *chip_ rev
);
Parameters:
Name Description
name A character array to store the name of the chip.

chip_id Stores an ID number for the chip.
chip_rev Stores a revision number for the chip.

Parent topic:Functions for product and feature queries

vg_ lite get_info Description:

This function is used to query the VGLite driver information.

Syntax:

vg_lite_error_t vg_lite_get_ info (
vg_lite_info_t *info

i

Parameters:

Name Description

info Points to the VGLite driver information structure, which includes the API version,
header version, and release version

Parent topic:Functions for product and feature queries

vg_liteget_register Description:

This function can be used to read a GPU AHB register value given the AHB byte address of a
register. Refer to the appropriate Vivante GPU AHB register specification documents for register
descriptions. The value range of AHB accessible addresses for VGLite cores is usually 0x0 to 0x1FF
and 0xA00 to OxATF.

Syntax:

vg_lite_error_t vg_lite_get_register (
vg_lite_uint32_t address,
vg_lite_ uint32_t *result

);

Parameters:

Name Description

address Byte Address of the register which value you want.
*result The registers value.

Parent topic:Functions for product and feature queries

1.7. Multimedia 253

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_query_feature Description:

This function is used to query if a specific feature is available.

Syntax:

vg_lite_ uint32_t vg_lite _query_ feature (
vg_ lite_ feature_t feature

JiE

Parameters:

Name Description

feature Feature to be queried, as detailed in enum vg_lite_feature_t

Returns:
The feature is either not supported (0) or supported (1).

Parent topic:Functions for product and feature queries

vg_lite_ get_ mem_ size Description:

This function queries whether there is any remaining allocated contiguous video memory.
(available from June 2020)

Syntax:

vg_lite_error_t vg_lite_ get mem_ size(
vg_lite_ uint32_t *size

)i

Parameters:

Name Description

size Pointer to the remaining allocated contiguous video memory.

Returns:

Returns VG_LITE_SUCCESS if the query is successful and memory is available. Returns
VG_LITE_NO_CONTEXT if the driver is not initialized or there is no available memory.

Parent topic:Functions for product and feature queries

Parent topic:Hardware product and feature information

API control Before calling any VGLite API function, the application must initialize the VGLite
implicit (global) context by calling vg lite_init(), which will fill in a features table, reset the fast-
clear buffer, reset the compositing target buffer and allocate the command and tessellation
buffers.

The VGLite driver only supports one current context and one thread to issue commands to the
Vivante Vector Graphics hardware. The VGLite driver does not support multiple concurrent
contexts running simultaneously in multiple threads/processes, as the VGLite kernel driver does
not support context switching. A VGLite application can only use a single context at any time to
issue commands to the Vivante Vector Graphics hardware. If a VGLite application must switch
contexts, vg_lite_ close() must be called to close the current context in the current thread, then

254 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init() can be called to initialize a new context either in the current thread or from another
thread/process.

Contextinitialization and control functions This section provides an overview of the context
initialization and control functions.

vg lite init Description:

This function initializes the memory and data structures needed for VGLite draw/blit functions,
by allocating memory for the command buffer and a tessellation buffer of the specified size.

GC555 has a newly designed hardware tessellation module that requires less memory for the
tessellation buffer than GC355 and GNanoLite-V. Specifically, the GC555 required tessellation
buffer size is “buffer_height * 128 byte”. vg_lite_init API can simply be called with the render
buffer “width” and “height” as the input parameters for GC555. This results in the best path to
tessellation performance.

GC355 and GCNanoLiteV hardware tessellation module requires a tessellation buffer with size
“buffer_height * buffer_width * 8 byte”. If system memory is limited, the application can define
a smaller tessellation window based on the amount of memory available. GPU hardware can
process the entire render buffer path tessellation in multiple passes with the tessellation window
sliding across the render buffer. The multi-pass path tessellation with the smaller tessellation
window has a certain performance overhead.

The minimum tessellation window that can be used is 16x16. If tess_height or tess_width is less
than 0 in vg_lite_init APL then no path tessellation buffer is created and path drawing APIs do
not work, only blit APIs can be used after vg_lite_ init.

If this would be the first context that accesses the hardware, the hardware is turned on and
initialized. If a new context must be initialized, vg_lite_ close must be called to close the current
context. Otherwise, vg_lite_init will return an error.

Syntax:
vg_lite_error_t vg_lite_init (
vg_lite_ int32_t tess_ width,
vg_lite_int32_t tess_ height
f5
Parameters:

Name Description

tess_v Width of tessellation window. Maximum cannot be greater than render buffer width.
If less than or equal to 0, then no tessellation buffer is created, in which case only blit
APIs can be used afterward.

tess_ I Height of tessellation window. Maximum cannot be greater than render buffer height.
If less than or equal to 0, then no tessellation buffer is created, in which case blit APIs
can be used afterward.

Returns:

Returns VG_ LITE SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

1.7. Multimedia 255

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_close Description:

This function deallocates all the resources and free up all the memory that was initialized earlier
by the vg_ lite_ init function. It will also turn OFF the hardware automatically if this was the only
active context.

Syntax:

vg lite_error_t vg_lite close (
void

)i

Returns:

Returns VG_ LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg_lite flush Description:

This function explicitly submits the command buffer to the GPU without waiting for it to com-
plete. (From Dec 2019, return type is vg_lite_error._t, previously was void.)

Syntax:

vg_lite_error_t vg_lite_flush (
void

5

Returns:

Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite finish Description:
This function explicitly submits the command buffer to the GPU and waits for it to complete.

Syntax:

vg_lite_error_t vg_lite_finish (
void

s

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg lite frame delimiter Description:

This function sets a flag for GPU to signal the completion of current frame. A vg_lite_finish is
called by default within this API. The enum VG_LITE FRAME END_ FLAG is the only value
that can be set by flag parameter.

Syntax:

256 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_ frame_ delimiter (
vg_lite frame_flag t flag
f5

Returns:

Returns VG_LITE_ SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_set_command_buffer_size Description:

This function is optional. If used, call it before vg_lite init if you want to change the command
buffer size. (available from March 2020)

Syntax:

vg_lite_error_t vg_lite_set_command_buffer_size (
vg_lite_ uint32_t size

i

Parameters:

Name Description
size Size of the VGLite Command buffer. Default is 64K.

Returns:

Returns VG_LITE_ SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite set command buffer Description:

This function sets a user-defined external memory buffer (physical, 64-byte aligned) as the VGLite
command buffer. By default, the VGLite driver allocates a static command buffer internally.
Thus, it is not necessary for an application to allocate and set the command buffer. This function
is only used for devices where an application needs to allocate the command buffer dynamically.
(from December 2021)

Syntax:

vg_lite_error_t vg_lite_set_command_ buffer (
vg_lite_ uint32_t physical,
vg_lite_uint32_t size

)i

Parameters:

Name Description

physical The physical address of a memory buffer. The address must be 64-byte aligned.
size The size of memory buffer. The size must be 128-byte aligned.

Returns:

Returns VG_LITE_SUCCESS if the command buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

1.7. Multimedia 257

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Context initialization and control functions

vg_lite_set_tess buffer Description:

This function specifies a memory buffer from an application as the VGLite driver’s tessellation
buffer. By default, the VGLite driver allocates a static tessellation buffer internally. Thus, it is not
necessary for an application to allocate and set the tessellation buffer. This function is only used
for devices where the application needs to allocate the tessellation buffer dynamically. (from
December 2021)

Syntax:

vg_lite_error_t vg_lite_set_tess_buffer (
vg_lite_uint32_t physical,
vg_lite_ uint32_t size

JiE

Parameters:

Name Description

physi- The physical address of a tessellation buffer. The address must be 64-byte aligned.
cal
size The size of tessellation buffer. tessellation buffer size = target buffer’s height * 128B.

Returns:

Returns VG_LITE_SUCCESS if the tessellation buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

Parent topic:Context initialization and control functions

vg_lite_set__memory_pool Description:

This function sets the specific memory pool from which certain type of
buffers, VG_LITE_ COMMAND_BUFFER, VG_LITE TESSELLATION_ BUFFER, or
VG_LITE_RENDER_BUFFER, should be allocated. By default, all types of buffers are al-
located from VG_LITE_MEMORY_POOL_1. This API must be called before vg lite_init()
for setting VG_LITE_ COMMAND_BUFFER or VG_LITE_TESSELLATION_BUFFER memory
pools. This API can be called anytime for VG_LITE_ RENDER_ BUFFER to affect the following
vg_lite_allocate() calls.(from December 2023)

Syntax:

vg_lite_error_t vg_lite_set__memory_ pool (
vg_ lite_ buffer_type_t type,
vg_lite__memory_ pool_t pool

)i

Parameters:

Nam Description

type Thebuffertype (VG _LITE COMMAND_ BUFFER, VG_LITE TESSELLATION BUFFER,
or VG_LITE RENDER_BUFFER) to be allocated from memory pool.

pool The memory pool (VG _LITE MEMORY POOL_1, VG _LITE MEMORY_ POOL_2)
from which the buffer type should be allocated.

258 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Returns:

Returns VG_LITE_SUCCESS if the memory pool set is successful. See vg_lite_error_t enumera-
tion for other return codes.

Parent topic:Context initialization and control functions

Parent topic:API control

Pixel buffers This chapter provides an overview of the pixel buffer alignment, cache, internal
representation, enumerations, structures, and functions.

Pixel buffer alignment The VGLite hardware requires the pixel buffer start address and
stride to be properly byte-aligned to work correctly. The start address and stride align-
ment requirement for a pixel buffer depends on the specific pixel format, and gcFEA-
TURE_VG_16PIXELS_ALIGNED value (0/1) in vg_lite options.h file.

Parent topic:Pixel buffers

Pixel cache The Vivante Imaging Engine (IM) includes two fully associative caches. Each cache
has 8 lines. Each line has 64 bytes. In this case, one cache line can hold either a 4x4-pixel tile or
a 16x1-pixel row.

Parent topic:Pixel buffers

Internal representation For non-32-bit color formats, each pixel is extended to 32 bits as fol-
lows:

If the source and destination formats have the same color format, but differ in the number of
bits per color channel, the source channel is multiplied by (2d- 1)/(2s- 1) and is rounded to the
nearest integer, where:

* d is the number of bits in the destination channel
* s is the number of bits in the source channel
Example: a b11111 5-bit source channel gets converted to an 8-bit destination b11111000.

The YUV formats are internally converted to RGB. The pixel selection is unified for all formats
by using the LSB of the coordinate.

Parent topic:Pixel buffers

Pixel buffer enumerations This section provides an overview of the pixel buffer enumera-
tions.

vg_lite_buffer_format_t enumeration This enumeration specifies the color format to use for
a buffer. This applies to both image and Render Target. Formats include supported swizzles for
RGB. For YUV swizzles, use the related values and parameters in vg_lite swizzle_t.

The application shall use the vg_lite_query_feature API to determine support for some
hardware-specific formats. For example, related vg_lite_feature_t enum values include gcFEA-
TURE_BIT VG _RGBA2 FORMAT and gcFEATURE_BIT_ VG_IM_INDEX_ FORMAT.

(Alignment columns refined March and Sept 2023)
Used in structure: vg_lite_ buffer t.

See also vg_lite_ blit, vg_lite_ clear, vg_ lite_ draw.

1.7. Multimedia 259

MCUXpresso SDK Documentation, Release 25.12.00

Attention: OpenVG VGImageFormat Note: The bits for each color channel are stored within
a machine word from MSB to LSB in the order indicated by the pixel format name. This is the
opposite of the original VG_ LITE_ * formats that are ordered from LSB to MSB. The formats with
the same organization are listed in the same row as their VG__Lite counterparts.

Attention: Original VGLite API Image Format Note: The bits for each color channel are stored
within a machine word from LSB to MSB in the order indicated by the pixel format name. This
is the opposite of the OPENVG VG_ * formats that are ordered from MSB to LSB.

The following codes, as also used in OpenVG 1.1 Specification Table 11, are used for format de-
scription:

A - Alpha channel

B - Blue color channel

G - Green color channel

R - Red color channel

X - Uninterpreted padding byte or bit
L - Grayscale

BW - 1-bit black and white

1- Linear color space

s - Non-linear (sRGB) color space

PRE - Alpha values are premultiplied

260

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_format_t String Value Description Sup- Sup- Start ad-
ported ported dress/ Stride
as as desti- alignment:
source nation bytes

VG LITE ABGRS888 os MMM - Yes Yes Start 4B /

VG _sRGBA_ 8888 Stride 64B

VG _sRGBA 8888 PRE

VG IRGBA 8888

VG _1RGBA_ 8883 PRE

VG LITE ARGBSS8S8 e i © YeS Yes Start 4B /

VG _sBGRA_ 8888 Stride 64B

VG sBGRA 88838 PRE

VG IBGRA 8888

VG IBGRA 8888 PRE

VG_LITE BGRASSS8 Yes Yes Start 4B /

VG_sARGB_ 8888 Stride 64B

VG _sARGB_ 8888 PRE

VG _1ARGB_ 8888

VG _1ARGB_ 8888 PRE

VG_LITE RGBASSS8 Yes Yes Start 4B /

VG sABGR_ 8888 Stride 64B

VG_sABGR,_ 88388 PRE

VG _1ABGR_ 8888

VG _1ABCGR_8888 PRE

VG_LITE_BGRX8888) m—— Yo Yes Start 4B |

VG sXRGB 8888 VG IXRGB 8888 Stride 64B

VG_LITE RGBX8888 o) i Yes Yes Start 4B |

VG _sXBGR_ 88838 VG IXBGR._ 8888 Stride 64B

VG_LITE XBGRSSSS RGBX oo miimsiimiin © Yes Yes Start 4B |

VG _sRGBX 8888 VG IRGBX 8888 Stride 64B

VG_LITE XRGBS883 o Wi © Yo Yes Start 4B |

VG _sBGRX 8888 VG IBGRX 8888 Stride 64B

VG_LITE_ABGRI1555 - Yes Yes Start 4B |

VG _sRGBA 5551 Stride 32B

VG_LITE_ARGB1555 o mimmimim © YeS Yes Start 4B |

VG _sBGRA_ 5551 Stride 32B

VG_LITE_BGRA5551 o i YeS Yes Start 4B |/

VG_sARGB_ 1555 Stride 32B

VG_LITE RGBA5551 Yes Yes Start 4B /

VG_sABGR_ 1555 Stride 32B

1.7. Multimedia e e 49 g s 108 and h s 261

VG_LITE BGR565 VG_sRGB_ 565 vors N Yes Yes Start 4B /

16-bit RGB format with 5 or 6 bits per color

Stride 32B

MCUXpresso SDK Documentation, Release 25.12.00

Hardware-dependent

formats for

vg_lite_buffer_format_t

Description

Sup-
ported
as
source

Supported
as destina-

tion

Alignment
(bytes)

VG_LITE ABGR2222

VG_LITE_ARGB2222

VG_LITE BGRA2222

VG_LITE _RGBA2222
VG_LITE_INDEX 1
VG_LITE_INDEX_2
VG_LITE_INDEX_ 4

8-bit BGRA format with 2 bits per color channel.
Alpha is in bits 1:0, blue in bits 3:2, green in bits
5:4 and the red channel is in bits 7:6.

7:6 5:4 3:2 10

8-bit BGRA format with 2 bits per color channel.
Alphais in bits 1:0, red in bits 3:2,green in bits 5:4
and the blue channel is in bits 7:6.

7:6 5:4 3:2 1:0

8-bit BGRA format with 2 bits per color channel.
Blue is in bits 1:0, green in bits 3:2, red in bits 5:4
and the alpha channel is in bits 7:6.

7:6 5:4 3:2 1.0

soazzz A (G

8-bit RGBA format with 2 bits per color channel
Red is in bits 1:0, green in bits 3:2, blue in bits 5:4
and the alpha channel is in bits 7:6.

7:6 5:4 3:2 1:0

voonzzz A G

1-bit index format
2-bit index format
4-bit index format

Yes

Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes

Yes

No
No
No
No

Start 4B / Stride
16B

Start 4B / Stride
16B

Start 4B / Stride
16B

8B
8B
both 8B
both 8B

8-bit index format Yes No both 16B

Supertiled (8x8 pixels), planar YUV format, 96-bit
for 4 pixels. Y plane is 32 bits for 4 pixels and is
organized in 64 pixel super tiles (8x8 Y); UV plane
is 64 bits for 4 pixels. Pixels are organized in super
tiles are (4x4 UV pairs), available for Source
IMAGE only on the supporting hardware.

324 | 2306 158 7:0

VG_LITE INDEX 8

Y Buffer ¥3 V2 vl Y0
Y Buffer

3124 | 2316 158 7:0

vi u1 Vo uo

UV Buffer V3 u3 vz uz

VG_LITE_NV12_ TILED Yes No Y: both 16
Bytes UV: both
8 Bytes

Pixel organization as NV12_TILED but with an

Alpha Buffer is also supertiled, available for
Source IMAGE only on the supporting hardware.

3124 23116 158 7:0

Alpha Butfer L A2 Al A

3124 2316 158 70

¥ Buffer ¥3 Y2 ¥1 Yo
¥ Buffer

3124 23116 1538 7:0

V1 UL Vo uo

UV Buffer V3 u3 V2 uz

VG_LITE ANV12 TILEL : Yes No A, Y: both 16

Bytes UV: both
8 Bytes

Supertiled (8x8) and packed YUV format a with
separate tiled Alpha Buffer.

YO is in bits 7:0 and V is in bits 31:23, available for
Source IMAGE only on the supporting hardware.

3124 | 2316 | 158 70
Alpha Buffer a2 A o
3124 | 2316 | 158 7:0

vo Y1 wo Yo

YUY2Buffer | \2 ¥3 U2 vz

VG_LITE_AYUY2_ TILEI weE Yes No both 32B

24-bit RGB format with 8 bits per color channel.
Red is in bits 7:0, green in bits 15:8, blue in bits
23:16.

VG_LITE RGBS888 e

23:16 15:8 7:0

£ - EEm Yes Yes Start 4B / Stride

32B

24-bit RGB format with 8 bits per color channel.
Blue is in bits 7:0, green in bits 15:8, red in bits
23:16.

VG_LITE_BGR888 BGRESS:

23116 15:8 7:0

I« Yes Yes

24-bit RGBA format with 4 and 5 bits per color

channel. The alpha channel is in bit 7:0, red in bits

12:8, green in bits 18:13 and the blue in bits 23:19.
23:19 | 1813 128 70

VG_LITE ARGBS8565 e Yes Yes

262

24-bit RGBA format with 4 and 5 bits per color
channel. Blue is in bits 4:0, green in bits 10:5, red
in bits 15:11,alpha channel is in bit 23:16.

2316 15111 10:5 4.0

BGRAS658 A e 8] Yes Yes

Chapter 1. Middleware

VG_LITE BGRA5658 Start 4B / Stride

32B

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

Image buffer alignment requirement The image (or source) buffer alignment requirement
depends on the specific pixel format, and some gcFEATURE * ALIGNED defines in the
vg_lite_options.h file.

Image format Bits per pixel Source tile mode Start address alignment requirement in bytes Stric
VG_LITE_INDEX1 1 linear 8B 2B
VG_LITE_INDEX1 1 tile 8B 1B
VG_LITE_INDEX2 2 linear 8B 4B
VG_LITE_INDEX2 2 tile 8B 1B
VG_LITE_INDEX4 4 linear 8B 8B
VG_LITE_INDEX4 4 tile 8B 2B
VG_LITE_INDEXS8 8 linear 16B 16B
VG_LITE_INDEXS8 8 tile 16B 4B
VG_LITE A4 4 linear 8B 8B
VG_LITE_A4 4 tile 8B 2B
VG_LITE_AS8 8 linear 16B 16B
VG_LITE_AS8 8 tile 16B 4B
VG_LITE_LS8 8 linear 16B 16B
VG_LITE L8 8 tile 16B 4B
VG_LITE_ARGB2222 8 linear 16B 16B
VG_LITE_ARGB2222 8 tile 16B 4B
VG_LITE_RGB565 16 linear 32B 32B
VG_LITE_RGB565 16 tile 32B 8B
VG_LITE_ARGB1555 16 linear 32B 32B
VG_LITE_ARGB1555 16 tile 32B 8B
VG_LITE_ARGB4444 16 linear 32B 32B
VG_LITE_ARGB4444 16 tile 32B 8B
VG_LITE_ARGB8888 32 linear 64B 64B
VG_LITE_ARGB8888 32 tile 64B 16B
VG_LITE_XRGB8888 32 linear 64B 64B
VG_LITE_XRGBS8888 32 tile 64B 16B
VG_LITE_ARGBS8565 24 linear 64B 48B
VG_LITE_ARGBS8565 24 tile 64B 12B
VG_LITE_RGB888 24 linear 64B 48B
VG_LITE_RGB888 24 tile 64B 12B
VG_LITE_YUY2/UYVY 16 linear 32B 32B
VG_LITE_YUY2/UYVY 16 tile 32B 8B
VG_LITE_NV12 12 linear Y: 32B UV: 32B Y:3
VG_LITE_YV12 12 linear Y:32B U: 16B V: 16B Y:3
VG_LITE_NV16 16 linear Y: 32B UV: 32B Y:3
VG_LITE_YV16 16 linear Y:32BU: 16B V: 16B Y: 3
VG_LITE_YV24 24 linear Y: 32B U: 32B V: 32B Y: 3
VG_LITE_ETC2 8 tile 16B 4B

Note:

1. The valuesin the table reflect the alignment requirements of the data in memory. The stride
of ARGB8888 / ARGB8565 is seen as 4Byte per pixel when configuring the hardware.

2. For tile mode, the stride is still the byte size of a row of pixels in the buffer instead of 4 rows.

3. When DECNano function is enabled for the buffer, the total buffer size need align to
64Byte*compression rate for ARGB8888 or XRGB8888 format, align to 48Byte*compress rate
for RGB888 format.

Additional Alignment Requirement

1.7. Multimedia 263

MCUXpresso SDK Documentation, Release 25.12.00

1. Buffer starting address must be 16 pixel-byte-size aligned, that is 8 bit-per-pixel format
buffer must be 16 bytes aligned; 16 bit-per-pixel format buffer must be 32 bytes aligned;
24 and 32 bit-per-pixel format buffer must be 64 bytes aligned.

2. For linear mode buffer, the buffer stride must be 16 pixel-byte-size aligned.

3. For tile mode buffer, buffer width and height must be 4 pixel aligned so buffer width and
height end at tile boundary.

Parent topic:Pixel buffer enumerations

Destination buffer alignment requirement The destination (or render target) buffer align-
ment requirement depends on the specific pixel format, and some gcFEATURE_*_ALIGNED
defines in the vg_lite_ options.h file.

Target format Bits per pixel Target tile mode VG tile mode Start address alignment requirement i
VG_LITE_AS8 8 linear linear 4B
VG_LITE_AS8 8 linear tile 64B
VG_LITE_AS8 8 tile linear 64B
VG_LITE_AS8 8 tile tile 64B
VG_LITE_LS8 8 linear linear 4B
VG_LITE_L8 8 linear tile 64B
VG_LITE_L8 8 tile linear 64B
VG_LITE_LS8 8 tile tile 64B
VG_LITE_ARGB2222 8 linear linear 4B
VG_LITE_ARGB2222 8 linear tile 64B
VG_LITE_ARGB2222 8 tile linear 64B
VG_LITE_ARGB2222 8 tile tile 64B
VG_LITE_RGB565 16 linear linear 4B
VG_LITE_RGB565 16 linear tile 64B
VG_LITE_RGB565 16 tile linear 64B
VG_LITE_RGB565 16 tile tile 64B
VG_LITE_ARGB1555 16 linear linear 4B
VG_LITE_ARGB1555 16 linear tile 64B
VG_LITE_ARGB1555 16 tile linear 64B
VG_LITE_ARGB1555 16 tile tile 64B
VG_LITE_ARGB4444 16 linear linear 4B
VG_LITE_ARGB4444 16 linear tile 64B
VG_LITE_ARGB4444 16 tile linear 64B
VG_LITE_ARGB4444 16 tile tile 64B
VG_LITE_ARGB8888 32 linear linear 4B
VG_LITE_ARGB8888 32 linear tile 64B
VG_LITE_ARGB8888 32 tile linear 64B
VG_LITE_ARGB8888 32 tile tile 64B
VG_LITE_XRGB8888 32 linear linear 4B
VG_LITE_XRGB8888 32 linear tile 64B
VG_LITE_XRGB8888 32 tile linear 64B
VG_LITE_XRGB8888 32 tile tile 64B
VG_LITE_ARGBS8565 24 linear linear 64B
VG_LITE_ARGB8565 24 linear tile 64B
VG_LITE_ARGB8565 24 tile linear 64B
VG_LITE_ARGB8565 24 tile tile 64B
VG_LITE_RGB888 24 linear linear 64B
VG_LITE_RGB888 24 linear tile 64B
VG_LITE_RGB888 24 tile linear 64B
VG_LITE_RGB888 24 tile tile 64B

264 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Note:

1.

The values in the table reflect the alignment requirements of pixel data in memory. The
stride of ARGB8888/ARGB8565 is seen as 4 Bytes per pixel when configuring the hardware.

For tile mode, the buffer stride is still the byte size of a row of pixels instead of 4 rows of
pixels.

For PE clear function, the clear size must align to 48 Bytes for the RGB888 or ARGB8565
format.

For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for
RGB888, align to 64 Bytes for ARGB8888 or XRGB8888.

If the DECNano function is enabled for the buffer, the target buffer start address needs to
align to 64 Bytes.

If the DECNano function is enabled for the buffer, the total buffer size needs to align
to a 64-byte compression rate for ARGB8888 or XRGB8888 format and align to a 48
Byte*compression rate for RGB888 format.

Additional Alignment Requirement

1.

Buffer starting address must be at least 4-byte aligned. Buffer stride must be at least one
pixel size aligned.

Buffer starting address must be 64-byte aligned for 24 bit-per-pixel format, or tile mode, or
DECNano enabled.

3. Buffer height must be 4-pixel aligned for tile mode buffer.

For tile mode buffer, the buffer stride must be 16-byte aligned for non-24bit-per-pixel for-
mats. So, 8 bits-per-pixel format buffer width must be 16-pixel aligned; 16 bits-per-pixel
format buffer width must be 8-pixel aligned; 32 bit-per-pixel format buffer width must be
4 pixel aligned.

For tile mode buffer, the buffer stride must be 12-byte aligned for 24 bits-per-pixel formats,
that is, the buffer width must be 4-pixel aligned.

For PE clear function, the clear size must align to 48 Bytes for 24-bits-per-pixel formats.

For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for 24
bits-per-pixel formats and align to 64 Bytes for 32 bits-per-pixel formats.

If source buffer tile mode is different from destination buffer tile mode, buffer starting
address must be 64 Byte aligned, buffer stride must be 64 Byte aligned for non-24 hits-per-
pixel formats, buffer stride must be 48-Byte aligned for 24 bits-per-pixel formats.

VGLite hardware requires the raster image width to be a multiple of 16 pixels for linear gradient
and radial gradient operations. This requirement applies to all image formats. Therefore, the
user must pad an arbitrary image width to a multiple of 16 pixels for VGLite linear gradient and
radial gradient APIs.

Parent topic:Pixel buffer enumerations

vg_lite_buffer layout t enumeration Specifies the buffer data layout in memory.

Used in structure: vg_ lite_ buffer.

1.7. Multimedia 265

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_layout_t Description
String Value

VG_LITE LINEAR Linear (scanline) layout.
VG_LITE_TILED Data is organized in 4x4 pixel tiles. Note: for this layout, the buffer
start address and stride must be 64-byte aligned

Parent topic:Pixel buffer enumerations

vg_lite_compress_ mode t enumeration Specifies the DECNano comprssion mode. (from
March 2023)

Used in structure: vg_lite_ buffer_t.

vg_lite_compress_mode_t string Description

value

VG_LITE_DEC_DISABLE Disable compression.

VG_LITE DEC NON_ SAMPLE compression ratio is 1.6 for ARGB8888, 2.0 for
XRGB8888

VG_LITE_DEC_HSAMPLE compression ratio is 2.0 for ARGB8888, 2.6 for
XRGB8888

VG _LITE DEC HV SAMPLE compression ratio is 2.6 for ARGB8888, 4.0 for
XRGB8888

Parent topic:Pixel buffer enumerations

vg_lite__gamma_ conversion_t enumeration Specifies the gamma conversion mode (from Sept
2022)

Used in function: vg_lite set_ gamma.

vg_lite_gamma_conversion_t string value Description

VG LITE GAMMA NO CONVERSION Leave the color as it is.
VG_LITE GAMMA_ LINEAR Convert from sRGB to linear.
VG_LITE_GAMMA_NON_LINEAR Convert from linear to SRGB space.

Parent topic:Pixel buffer enumerations

vg_lite index endian t enumeration Specifies the endian order parsing mode for index for-
mats (from March 2023).

Used in structure: vg_ lite_ buffer_t.

vg_lite_index_endi. Description
string value

VG_LITE_INDEX Parse the index pixel from low to high, when using index1, the
parsing order is bitO~bit7. when using index2, the parsing order
is bit0:1,bit2:3,bit4:5.bit6:7. when using index4, the parsing order is
bit0:3,bit4:7.

VG_LITE_INDEX Parse the index pixel from low to high, when using index1, the
parsing order is bit7~bit0. when using index2, the parsing order
is bit7:6,bit5:4,bit3:2.bit1:0. when using index4, the parsing order is
bit4:7,bit0:3.

266 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

vg_lite_image_mode_t enumeration Specifies how an image is rendered onto a buffer (prior
to Sept 2022 name was vg_lite_ buffer image mode_ t).

Used in structure: vg_lite_buffer_t.

vg_lite_image_mode_t string value Description
VG_LITE ZERO

VG_LITE_NORMAL_IMAGE_MODE Image drawn with blending mode
VG_LITE MULTIPLY IMAGE MODE Image is multiplied with paint color
VG_LITE _STENCIL_MODE

VG_LITE _NONE_IMAGE_ MODE Image input is ignored.
VG_LITE_RECOLOR_MODE

Parent topic:Pixel buffer enumerations

vg_ lite_ map flag t enumeration Specifies whether mapping is for user memory or the DMA
buffer (from March 2023).

Used in function: vg_ lite_ map.

vg_lite_map_flag_t string value Description
VG_LITE_MAP_USER_MEMORY Mapping is for user memory.
VG_LITE_MAP_DMABUF Mapping is for the DMA buffer.

Parent topic:Pixel buffer enumerations

vg_lite_ paint_type t enumeration Specifies paint type (from May 2023).

Used in structure: vg_ lite_ buffer_ t.

vg_lite_paint_type_t string value Description
VG_LITE_PAINT ZERO

VG_LITE PAINT COLOR Color

VG _LITE PAINT LINEAR GRADIENT Linear Gradient
VG LITE PAINT RADIAL GRADIENT Radial Gradient
VG _LITE PAINT PATTERN Pattern

Parent topic:Pixel buffer enumerations

vg lite transparency t enumeration Specifies the transparency mode for a buffer (prior to
Sept 2022 name was vg_lite_buffer_transparency_mode_t).

Used in structure:vg_lite_ buffer.

1.7. Multimedia 267

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_trans| Description
string value

VG_LITE_I! Opaque image: all image pixels are copied to the VG PE for rasterization

VG_LITE Il Transparent image: only the non-transparent image pixels are copied
to the VG PE. Note: This mode is only valid when IMAGE_MODE
(vg_lite_image_mode_t) is either VG_LITE_NORMAL_IMAGE_MODE or
VG_LITE_MULTIPLY IMAGE_MODE.

Parent topic:Pixel buffer enumerations

vg lite swizzle tenumeration This enumeration specifies the swizzle for the UV components
of YUV data.

Used in structure: vg_ lite_ yuvinfo.

vg_lite_swizzle_t string value Description

VG_LITE SWIZZLE UV U in lower bits, V in upper bits
VG_LITE_SWIZZLE VU V in lower bits, U in upper bits

Parent topic:Pixel buffer enumerations

vg_lite_yuv2rgh_t enumeration This enumeration specifies the standard for conversion of
YUV data to RGB data.

Used in structure: vg_lite_yuvinfo.

vg_lite_yuv2rgb_t string value Description

VG_LITE_YUV601 YUV Converting with ITC.BT-601 standard
VG_LITE_YUVT709 YUV Converting with ITC.BT-709 standard

Parent topic:Pixel buffer enumerations

Parent topic:Pixel buffers

Pixel buffer structures This section provides an overview on the pixel buffer structures.

vg_lite buffer t structure This structure defines the buffer layout for a VGLite image or mem-
ory data.

Used in structures: vg_lite_linear_gradient_t, vg_ lite_radial gradient__t.

Used in init functions: vg_lite_ allocate, vg lite_free, vg_lite_upload_buffer, vg lite_map,
vg_ lite_ unmap.

Used in blit functions:vg lite blit, vg lite blit_rect, vg lite clear, vg lite create_masklayer,
vg_lite_ fill__masklayer, vg_lite_ blend_masklayer, vg_lite_set_ masklayer,
vg_lite_render_ masklayer, vg lite destroy masklayer

Used in draw functions: vg lite_draw, vg_lite_draw_pattern, vg_lite_draw_ grad,
vg_lite_ draw_ radial grad

268 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_t Type Description

member

width vg_lite_int32_t Width of buffer in pixels

height vg_lite_int32_t Height of buffer in pixels

stride vg_lite_int32_t Stride in bytes

tiled vg_lite_buffer_layor Linear or tiled format for buffer enum
format vg_lite_buffer_formr color format enum

handle vg_lite_pointer memory handle

memory vg_lite_pointer pointer to the start address of the memory
address vg_lite_uint32_t GPU address

yuv vg_lite_yuvinfo_t YUV format info struct

image_mode
trans-
parency__mode
fc_ buffer(3]

compress__mode
index_endian

paintType
fc_enable

scissor__layer

premulitplied

vg_lite_image_mod
vg_lite_transparenc

vg_lite_fc_buffer_t

vg_lite_compress_n
vg_lite_index_endic¢

vg_lite_paint_type_t

vg_lite_int8_t
vg_lite_int8_t

vg_lite_int8_t

Blit image mode enum
Image transparency mode enum

Three (3) fast clear buffers, reserved YUV format
(from March 2023)

Compression mode (from March 2023)

Big/Little Endian setting for index formats (from
March 2023)

Paint type enum (from May 2023)

Enable Image fast clear (moved from Aug 2023)

Get paintcolor from different paint types (from Aug
2023)

The RGB pixel values are alpha-premultipled (from
Aug 2023)

Parent topic:Pixel buffer structures

vg_lite_fc_buffer_t structure This structure defines the organization of a fast clear buffer.

(from March 2023)

Used in structure: vg_ lite_ buffer_ t.

vg_lite_fc_buffer_t Type Description

members

width vg_lite_int32_t Width of buffer in pixels

height vg_lite_int32_t Height of buffer in pixels

stride vg_lite_int32_t Stride in bytes

handle vg_lite_pointel memory handle as allocated by the VGLite kernel

memory vg_lite_pointe1 logical pointer to the start address of the memory
for the CPU

address vg_lite_uint32, address to the buffer’s memory for the GPU hard-
ware

color vg_lite_uint32_ The fast clear color value

Parent topic:Pixel buffer structures

vg_lite_yuvinfo t structure This structure defines the organization of VGLite YUV data.

Used in structure: vg_ lite_ buffer_t.

1.7. Multimedia

269

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_yuvinfo_t Type Description

member

swizzle vg lite_swizzle i UV swizzle enum

yuv2rgb vg_lite_yuv2rgb_ YUV conversion standard enum

‘uv_planar vg_lite_uint32_t UV (U) planar address for GPU, generated by driver

v_planar vg_lite_uint32_t V planar address for GPU, generated by driver

‘alpha_planar vg_lite_uint32_t Alpha planar address for GPU, generated by driver

‘uv_stride vg_lite_uint32_t UV (U) stride in bytes

‘v_stride vg_lite_uint32_t V planar stride in bytes

alpha_ stride vg_lite_uint32_t Alpha stride in bytes

‘uv_height vg_lite_uint32_t UV (U) height in pixels

‘v_height vg_lite_uint32_t V stride in bytes

uv__memory vg_lite_pointer Logical pointer to the UV (U) planar memory

‘v_memory vg_lite_pointer Logical pointer to the V planar memory

uv__handle vg_lite_pointer Memory handle of the UV (U) planar, generated by
the driver

v__handle vg_lite_pointer Memory handle of the V planar, generated by the
driver

Parent topic:Pixel buffer structures

Parent topic:Pixel buffers
Pixel buffer functions This section provides an overview of the pixel buffer functions.

vg_lite allocate function Description:
This function is used to allocate a buffer before it is used in either blit or draw functions.

To allow the hardware to access some memory, such as a source image or target buffer, you
must first allocate the memory. The supplied vg_lite_buffer_t structure must be initialized with
the size (width and height) and format of the requested buffer. If the stride is set to zero, then
this function fills it in. The only input parameter to this function is the pointer to the buffer
structure. If the structure has all the information needed, then appropriate memory is allocated
for the buffer.

This function calls the kernel to allocate the memory. The kernel fills in the memory handle,
logical address, and hardware addresses in the vg_lite_buffer_t structure.

Alignment note:

Vivante GPUs have an alignment requirement of 64 bytes. However, to meet the alignment re-
quirements of the Vivante display controller, the VGLite driver sets the render target buffer align-
ment to 128 bytes. For source image buffer alignment requirements, see the alignment notes
available in Table 1.

The vg_lite_buffer_format_t value descriptions:

Syntax:

vg_lite_error_t vg_lite_allocate (
vg_lite_buffer_t *buffer
it

Parameters:

270 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Namr Description

buffe Pointer to the buffer that holds the size and format of the buffer being allocated. Either
the memory or address field must be set to a non-zero value to map either a logical or
physical address into hardware accessible memory.

Returns:
* VG_LITE_SUCCESS if the contiguous buffer was allocated successfully.

* VG_LITE_OUT_OF_RESOURCES if there is insufficient memory in the host OS heap for
the buffer.

* VG_LITE OUT_OF_MEMORY if allocation of a contiguous buffer failed.

Parent topic:Pixel buffer functions

vg_lite free function Description:

This function is used to deallocate the buffer that was previously allocated. It frees up the mem-
ory for that buffer.

Syntax:

vg_lite_error_t vg_lite_free (
vg_lite_ buffer_t *buffer

);

Parameters:

Name Description

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite upload buffer function Description:

The function uploads the pixel data to a GPU memory buffer object. The format of the data
(pixel) to be uploaded must match the format defined for the buffer object. The input data mem-
ory buffer should contain enough data to be uploaded to the GPU buffer pointed by the input
parameter buffer.

Note: Vivante Vector Graphics IP only uses data[0] and stride[0] as it does not support planar
YUV formats..

Syntax:

vg_lite_error_t vg_lite_ upload_ buffer (
vg_lite_ buffer_t *buffer,
vg_lite_ uint8_t *datal[3],
vg lite_ uint32_+t stride[3]

);

1.7. Multimedia 271

MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Name Description

buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() func-
tion

data[3] Pointer to pixel data. For the YUV format, there may be up to 3 pointers.

stride[3] Stride for the pixel data

Returns:

Returns VG_LITE SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite. map function Description:

This function is used to map the memory appropriately for a particular buffer. For some oper-
ating systems, it is used to get proper translation to the physical or logical address of the buffer
needed by the GPU.

To use a frame buffer directly as a target buffer:
» Wrap a vg_lite_buffer_t structure around the buffer

* Call the kernel to map the supplied logical or physical address into hardware accessible
memory

For example, if you know the logical address of the frame buffer, set the memory field of the
vg_lite_buffer_t structure with that address and call this function. If you know the physical ad-
dress, set the memory field to NULL and program the address field with the physical address.

Syntax:

vg_lite_error_t vg_lite_map (
vg_lite_ buffer_t *buffer,
vg_lite__map_flag t flag,
int32_t fd
);

Parameters:

Name Description

*buffe Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function

flag Enumerate the vg_lite_map_flag t value that specifies whether the mapping is for user
memory or DMA buffer. (from March 2023)

fd File descriptor for dma_ buf if the flag is VG_LITE_MAP_DMABUF. Otherwise, this
parameter is ignored. (from March 2023)

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_unmap function Description:

This function unmaps the buffer and frees any memory resources allocated by a previous call to
the vg_lite_ map() function.

272 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_ unmap (
vg_lite_ buffer_t *huffer

)i

Parameters:

Name Description

buffer ~ Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite flush mapped buffer function Description:

This function flushes the CPU cache for the mapped buffer to make sure the buffer contents are
written to GPU memory.

Syntax:

vg_lite_error_t vg_lite_ flush_ mapped_ buffer (
vg_lite_ buffer_t *buffer

f5

Parameters:

Name Description

*puffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set CLUT function Description:

This function sets the Color Lookup Table (CLUT) in the context state for index color image. Once
the CLUT is set (Not NULL), the image pixel color for index format image rendering is obtained
from the Color Lookup Table (CLUT) according to the pixel’s color index value.

Note: Available only for IP with Indexed color support..

Syntax:

vg lite_error_t vg_lite_set CLUT (
vg_lite_uint32_t count,
vg_lite_ uint32_t *colors

it

Parameters:

1.7. Multimedia 273

MCUXpresso SDK Documentation, Release 25.12.00

Namr Description

coun This is the count of the colors in the color look-up table: - For INDEX_1, there can be up to
2 colors in the table - For INDEX_2, there can be up to 4 colors in the table - For INDEX 4,
there can be up to 16 colors in the table - For INDEX_8, there can be up to 256 colors in
the table

*col- The Color Lookup Table (CLUT) pointed by “colors” will be stored in the context and

ors programmed to the command buffer when needed. The CLUT will not take effect until
the command buffer is submitted to HW. The color is in ARGB format with A located in
the upper bits. Note: The VGLite driver does not validate the CLUT contents from the
application.

Returns:
VG_LITE_SUCCESS as no checking is done.

Parent topic:Pixel buffer functions

vg_lite enable dither function Description:

This function is used to enable the dither function. Dither is turned off by default. The application
can use the VGLite API vg_lite_query_ feature (CFEATURE_BIT_VG_DITHER) to determine HW
support for dither.

Syntax:

vg_lite_error_t vg_lite_enable_ dither (
);

Parameters: None

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite disable dither function Description:
This function is used to disable the dither function. Dither is turned off by default.

Syntax:

vg_lite_error_t vg_lite_disable_dither (

);

Parameters: None
Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set_gamma function Description:

This function sets a gamma value.

274 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Application can use the VGLite APIvg_lite_ query_ feature(§cCFEATURE_BIT_VG_GAMMA) to deter-
mine HW support for gamma.

Syntax:

vg_lite_error_t vg_lite_set_gamma (
vg_lite__gamma,_ conversion_t gamma,_ value
5

Parameters:

Name Description

gamma,_ value Sets a gamma value. See enum vg_lite_gamma_conversion_t.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

Parent topic:Pixel buffers

Matrices This part of the API provides matrix controls.

Note: All the transformations in the driver/API are actually the final plane/surface coordinate
system. There is no transformation of different coordinate systems with VGLite.

Matrix control float parameter type

Name Typedef Value

vg_lite float_t float A single-precision floating-point number

Pixel transform matrix m[20], which transforms each
pixel as follows:

EM [m@ ml m2 m3 ms | |al
[r] [mS mé m7 mE m2 | |r|
lg"] = [ml6 mil ml2 ml3d mld4|.|g|
B | |mlt mie ml17 mi8 mi%| |b]
[1] @ @ & @ 1 | |1]

vg_lite_ pixel matrix_t [20] vg_lite_float_t

Parent topic:Matrices

Matrix control structures This section provides an overview of the graphic transformation
matrix control structures.

vg lite matrix_t structure This structure defines a 3x3 floating point matrix.
Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.
Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient,
vg_lite_draw_pattern, vg_lite_identity, vg_lite_scale, vg_lite_translate.

1.7. Multimedia 275

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_matrix_t member Type Description

m([3][3] vg_lite float_t 3x3 matrix, in [row] [column] order

Parent topic:Matrix control structures

vg_lite pixel channel enable tstructure Thisstructure providesenable disable flags for hard-
ware pixel channels A,R,G,B.

Used in function: vg_lite_set_ pixel matrix_ t.

vg_lite_pixel_channel_enable_t members Type Description

enable a vg_lite_uint8 t Enable A channel
enable b vg_lite_uint8 t Enable B channel
enable_g vg_lite_uint8 t Enable G channel
enable r vg_lite_uint8 t Enable R channel

Parent topic:Matrix control structures

Parent topic:Matrices

Matrix control functions This section provides an overview of the matrix control functions.

vg_lite identity function Description:

This function loads an identity matrix into a matrix variable.

Syntax:
vg_lite_error_t vg_lite_identity (
vg lite_ matrix_t *matrix,
)i
Parameters:

Name Description

*ma- Pointer to the vg_lite_matrix_t structure that will be loaded with an identity matrix.
trix

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_set_pixel matrix function Description:

This function sets up a pixel transform matrix m[20] which transforms each pixel as follows:

276 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

EN Imé ml1 m2 m3 m4 |
|r| Im5 mé6 m7 m8 m9 |
lg'| = |m1e mll ml1l2 ml3 ml4
|b" |
|11 |

|m15 m16 ml1l7 ml8 ml9|
le o o o 1 |

B oMm S5 o

The pixel transform for the A, R, G, B channels can be enabled/disabled individually with the
channel parameter.

Applications can use VGLite API vg_lite query_ feature (eccFEATURE_BIT VG_PIXEL MATRIX)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_set_ pixel matrix (
vg_lite_pixel matrix_t matrix,
vg_ lite_ pixel channel enable_t *channel

);

Parameters:

Name Description

*ma- Specifies the vg lite pixel matrix_t pixel transform matrix that will be loaded.

trix

*chan- Pointer to the vg_lite_ pixel channel enable_t structure used to enable/disable indi-
nel vidual channels.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_rotate function Description:

This function rotates a matrix a specified number of degrees.

Syntax:

vg_lite_error_t vg_lite_rotate (
vg_lite_ float_t degrees,
vg_ lite_ matrix_t *matrix

5

Parameters:

Namr Description

de- Number of degrees to rotate the matrix. Positive numbers rotate clockwise.The coordi-

grees nates for the transformation are given in the surface coordinate system (top-to-bottom
orientation). Rotations with positive angles are in the clockwise direction.

*ma- Pointer to the vg_lite_matrix_t structure that has to be rotated

trix

Returns:

1.7. Multimedia 277

MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg lite scale function Description:

This function scales a matrix in both horizontal and vertical directions.

Syntax:

vg lite_error_t vg_lite scale (
vg_lite float_t scale_ x,
vg_ lite_float_t scale_y,
vg_ lite_ matrix_t *matrix

i

Parameters:

Name Description

scale_x Horizontal scale
scale_y Vertical scale
matrix Pointer to the vg_lite_matrix_t structure that will be scaled.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_translate function Description:

This function translates a matrix to a new location.

Syntax:

vg_lite_error_t vg_lite_translate (
vg_lite_float_t X,
vg_lite float_t Yy,
vg lite_ matrix_t *matrix

)i

Parameters:

Name Description

x X location of the transformation.
y Y location of the transformation.
matrix Pointer to the vg_lite_matrix_t structure that will be translated.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

Parent topic:Matrices

278 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Blits for compositing and blending This part of the API performs the hardware accelerated
blit operations.

Compositing rules describes how two areas are combined to form a single area. Blending rules
describes how combining the colors of the overlapping areas are combined. VGLite supports two
blending operations and a subset of the Porter-Duff operations [PD84]. The Porter-Duff operators
assume that the pixels have the alpha associated (premultiplied), it means that the pixels are
premultiplied prior to the blending operation. GC555, GC355, and some GCNanoUltraV hardware
support alpha premultiply for RGB image, but GCNanoLiteV does not.

The source image is copied to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction.

 The blit function can be used with or without the blend mode.
» The blit function can be used with or without specifying any color value.

* The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Blit enumerations This section gives details on blit enumerations.

vg_lite_blend_t enumeration This enumeration defines the blending modes supported by
some VGLite API functions. S and D represent source and destination non-premultiplied RGB
color channels. Sa and Da represent the source and destination alpha channels. SP and DP rep-
resent source and destination alpha-premultiplied RGB color channels (SP = S*Sa, DP = D*Da).

Note: VG_LITE_BLEND_ * LVGL modes are supported on all VG cores. On VG cores that do
not support gcFEATURE_BIT VG _LVGL_ SUPPORT, the LVGL blend modes are supported by
a combination of software and hardware operations. OPENVG_BLEND_ * modes can only be
supported on GC355 and GC555 cores.

Used in blit functions: vg_lite blit, vg_lite_blit2, vg lite_blit_ rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite draw_radial_grad,
vg_lite_ draw_ pattern.

1.7. Multimedia 279

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_blend_t String Values

Description

VG_LITE_BLEND_NONE
VG_LITE_BLEND_SRC_OVER
VG_LITE_BLEND_DST OVER
VG_LITE_BLEND_SRC_IN
VG_LITE_BLEND_DST_IN
VG_LITE_BLEND_MULTIPLY
VG_LITE_BLEND_SCREEN
VG_LITE_BLEND_DARKEN
VG_LITE_BLEND_LIGHTEN
VG_LITE_BLEND_ADDITIVE
VG_LITE_BLEND_SUBTRACT

VG_LITE_BLEND_NORMAL_LVGL
VG_LITE_BLEND_ADDITIVE LVGL

VG_LITE_BLEND_SUBTRACT_LVGL
VG_LITE_BLEND_MULTIPLY_LVGL

OpenVG Porter-Duff Blend String

Values

OPENVG_BLEND NONE
OPENVG_BLEND_SRC_OVER
OPENVG_BLEND_DST_OVER
OPENVG_BLEND_SRC_IN
OPENVG_BLEND_DST_IN
OPENVG_BLEND MULTIPLY

OPENVG_BLEND_SCREEN
OPENVG_BLEND_DARKEN
OPENVG_BLEND_LIGHTEN
OPENVG_BLEND_ADDITIVE

S, no blending Non-premultiplied

S +D * (1 - Sa) Non-premultiplied

S * (1-Da) + D Non-premultiplied

S * Da Non-premultiplied

D * Sa Non-premultiplied
S*(1-Da)+D*(1-Sa)+S*D Non-premultiplied

S +D - S * D Non-premultiplied

min(SRC_OVER, DST_OVER) Non-premultiplied
max(SRC_OVER, DST OVER) Non-premultiplied

S + D Non-premultiplied

D * (1 - Sa) Non-premultiplied

S*Sa+D *(1-Sa) Non-premultiplied (from March 2023)
(S+D)*Sa+D*(1-Sa) Non-premultiplied (from March
2023)

(S-D) *Sa+D * (1-Sa) Non-premultiplied (from March
2023)

(S*D)*Sa+D*(1-Sa) Non-premultiplied (from March
2023)

(from Aug 2023)

SP, no blending Premultiplied

(SP +DP * (1-Sa)) /(Sa + Da * (1 - Sa)) Premultiplied
(SP *(1-Da) + DP) /(Sa * (1 - Da) + Da) Premultiplied
(SP *Da) / (Sa * Da) Premultiplied

(DP * Sa) / (Sa * Da) Premultiplied

(SP*DP + SP*(1 - Da) + DP*(1 - Sa)) / (Sa + Da*(1 - Sa))
Premultiplied

(SP + DP - (SP*DP)) / (Sa + Da*(1 - Sa)) Premultiplied
min(SRC_OVER, DST_OVER) Premultiplied
max(SRC_OVER, DST_OVER) Premultiplied

(SP + DP) / (Sa + Da) Premultiplied

Parent topic:Blit enumerations

vg lite color t parameter The common parameter vg lite color tis described in Table 1.

Parent topic:Blit enumerations

vg lite color transform t structure Specifies the pixel color_transform values for scale and

bias.

Used in functions: vg_lite_set_ color_ transform.

vg_lite_color_transform_t members Type

Description

a_ scale
a_ bias
r_scale
r bias
g_scale
g_bias
b_scale
b _bias

vg_lite float_t Scale value for alpha.
vg_lite_float_t Bias value for alpha.
vg_lite_float_t Scale value for red.
vg_lite_float_t Bias value for red.
vg_lite_float_t Scale value for green.
vg_lite float_t Bias value for green.
vg_lite float_t Scale value for blue.
vg_lite_float_t Bias value for blue.

280

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Blit enumerations

veg_lite_filter_t enumeration Specifies the sample-filtering mode in VGLite blit and draw APIs.

Used in blit functions: vg_lite_ blit, vg_ lite_ blit_ rect.

Used in draw functions: vg_lite_draw_ radial_gradient, vg_lite_draw_ pattern.

vg_lite_filter_t string val- Description
ues

VG_LITE_FILTER_POIN" Fetch only the nearest image pixel

VG_LITE_FILTER_LINE/ Use linear interpolation along a horizontal line
VG_LITE FILTER BI LI Use a 2x2 box around the image pixel and perform an interpola-

tion

VG_LITE_FILTER_GAUS Perform 3x3 gaussian blur with the convolution for image pixel.

(from March 2023)

Parent topic:Blit enumerations

vg_lite color transform_t structure Specifies the pixel color_transform values for scale and

bias.

Used in functions: vg_lite_set_ color_ transform.

vg_lite_color_transform_t members

Type

Description

a_ scale
a_ bias
r scale
r_bias
g scale
g _bias
b scale
b _bias

vg_lite float t
vg_lite_ float_t
vg_lite float_t
vg_lite_float_t
vg_lite float_t
vg_lite_ float_t
vg_lite float_t
vg_lite_ float_t

Scale value for alpha.
Bias value for alpha.
Scale value for red.
Bias value for red.
Scale value for green.
Bias value for green.
Scale value for blue.
Bias value for blue.

Parent topic:Blit enumerations

veg_lite_mask_operation_t enumeration Specifies the mask operation mode in VGLite blit APIs.

Used in functions: vg_liteblend_masklayer, vg_lite_render masklayer.

1.7. Multimedia

281

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_mask_o
string values

Description

VG_LITE CLI
VG_LITE_FIL
VG_LITE SEI]

VG_LITE_UN

VG_LITE_INT

VG_LITE_SUI

This operation sets all mask values in the region of interest to 0, ignoring the
new mask layer.

This operation sets all mask values in the region of interest to 1, ignoring the
new mask layer.

This operation copies values in the region of interest from the new mask layer,
overwriting the previous mask values.

This operation replaces the previous mask in the region of interest by its union
with the new mask layer. The resulting values are always greater than or
equal to their previous value.

This operation replaces the previous mask in the region of interest by its in-
tersection with the new mask layer. The resulting mask values are always less
than or equal to their previous value.

This operation subtracts the new mask from the previous mask and replaces
the previous mask in the region of interest by the resulting mask. The result-
ing values are always less than or equal to their previous value.

Parent topic:Blit enumerations

vg lite orientation t enumeration Specifies the mirror orientation in VGLite blit APIs.

Used in functions: vg_ lite_set_ mirror.

vg_lite_orientation_t string values Description

VG_LITE_ORIENTATION TOP_ BOTT' Target output orientation is from top to bottom (de-

fault).

VG_LITE_ORIENTATION_BOTTOM_T Target output orientation is from bottom to top.

Parent topic:Blit enumerations

vg_lite _param_type tenumeration Specifies the parameter type in VGLite blit APIs.

Used in functions: vg_ lite_ get_ parameter.

vg_lite_param_type_t string value Description

VG_LITE GPU_IDLE STATE The count must be 1 for GPU idle state TRUE or FALSE.
VG _LITE SCISSOR_ RECT The count must be 4n for X, y, right, bottom.

Parent topic:Blit enumerations

Parent topic:Blits for compositing and blending

Blit structures

vg_lite_ buffer t

This section provides details about blit structures.

structure Defined under the <“Pixel buffer structures” section (see

vg_lite_buffer_t structure).

Parent topic:Blit structures

282

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_color_key_ t structure A “color key” have two sections, where each section contains
R,G,B channels, which are noted as high_rgb and low_rgh respectively. (from April 2022)

When the enable value is true, the color key specified is effective and the alpha value is used to
replace the alpha channel of the destination pixel when its RGB channels are in range [low_ rgb,
high_rgb]. After the color key is used in the current frame, if the color key is not needed for the
next frame, it should be disabled before the next frame.

Used in structure: vg_lite_ color_key4_t

vg_lite_color_key_t Type Description

members

enable vg_lite_uint! When set (true), this color key is enabled

low r vg_lite_uint! The R channel of low_rgb

low_g vg_lite_uint! The G channel of low_rgb

low b vg_lite_uint! The B channel of low_ rgb

alpha vg_lite_uint! The alpha value to replace the destination pixel alpha
channel value with

high_r vg_lite_uint{ The R channel of high rgb

high g vg_lite_uint! The G channel of high rgb

high_b vg_lite_uint{ The B channel of high_rgb

Parent topic:Blit structures

vg_lite_color_key4 t structure The priority order is: color_key_0 > color_key_1 > color_key_2
> color_key_3. (from April 2022)

Used in blit function: vg_lite_set_ color_key

vg_lite_color_key4 t members Type Description

color_key 0 high_rgb_0, low_rgb_0, alpha_0, enable_0
color_key_1 high rgb_1, low_rgh_1, alpha_1, enable_1
color_key_ 2 high_rgb_2, low_rgb_2, alpha_2, enable_2
color_key 3 high_rgb_3,low_rgb_3, alpha_3, enable_3

Parent topic:Blit structures

vg lite matrix_t structure Defined under the “Matrix control structures” section (see
vg_lite_matrix_t structure).

Parent topic:Blit structures

vg_lite path tstructure Defined under the “Vector path structures” section (see vg_lite_path_t
structure).

Parent topic:Blit structures

vg_lite_rectangle t structure This structure defines a rectangle by using coordinates.

Used in blit function: vg_lite_clear.

1.7. Multimedia 283

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_rectangle_t member Type Description

X vg_lite_int32_t X origin of rectangle, left coordinate in pixels
y vg_lite_int32_t Y origin of rectangle, top coordinate in pixels
width vg_lite_int32_t X Width of rectangle in pixels

height vg_lite_int32_t Y Height of rectangle in pixels

Parent topic:Blit structures

veg_lite_point_t structure This structure defines a 2D point (from March 2021).

Used in structure: vg_ lite_ point4_ t.

vg_lite_point_t member Type Description
X vg_lite_int32_t X value of coordinate
Y vg_ lite_int32_t Y value of coordinate

Parent topic:Blit structures

vg lite point4 t structure This structure defines four 2D points that form a polygon. The
points are defined by structure vg_lite point_ t. (from March 2021)

vg_lite_point4_t member Type Description

veg_lite_ point_ t[4 vg lite_int32_t each a set of four points
g p g P

Parent topic:Blit structures

vg lite float point_t structure This structure defines a 2D float point (from March 2024).

Used in structure: vg_lite_float_ point4_t.

vg_lite_float_point_t members Type Description
X vg_lite_float_ t X value of coordinate
y vg_lite_float_t Y value of coordinate

Parent topic:Blit structures

vg lite float point4 t structure This structure defines four 2D float points that form a poly-
gon. The points are defined by structure vg_lite_float_ point_t. (from March 2024)

Used in blit function: vg_lite_ get_ transform_ matrix.

vg_lite_float_point4_t members Type Description

vg_lite_float_point[4] vg_lite_float_t each a set of four points

Parent topic:Blit structures

Parent topic:Blits for compositing and blending

284 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Blit functions This section provides an overview on blit functions.

vg_lite_blit function Description:

This is the blit function. The blit operation is performed using a source and a destination buffer.
The source and destination buffer structures are defined using the vg_lite buffer t structure.
Blit copies a source image to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does not
support coverage sample anti-aliasing so the destination buffer edge may not be smooth, espe-
cially with a rotation matrix. VGLite path rendering can be used to achieve high-quality coverage
sample anti-aliasing (16X, 8%, 4X) rendering effect.

Note:
* The blit function can be used with or without the blend function (vg_lite_blend_t)

* The blit function can be used with or without specifying a foreground color value
(vg_lite_color_t)

* The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Syntax:

vg_lite_error_t vg_lite_blit (
vg_lite_buffer_t *target,
vg_lite_ buffer_t *source,
vg_lite._ matrix_t *matrix,
vg_ lite_blend_t blend,
vg_ lite_ color_t color,
vg_lite_filter t filter

)i

Parameters:

1.7. Multimedia 285

MCUXpresso SDK Documentation, Release 25.12.00

Namr Description

*tar- Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Image

get Source Alignment Requirement for valid destination color formats for the blit functions.

*sow Points to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

*ma- Points to a vg_lite_matrix_t structure that defines the transformation matrix of source

trix pixels into the target. If the matrix is NULL, then an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blenc Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE BLEND_ NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE_BIT_VG_BORDER_CULLING (vg lite feature t) is sup-
ported, then Transparency mode is always set to TRANSPARENT- If gcFEA-
TURE_BIT VG_BORDER_CULLING (vg_lite feature_t) is not supported, then Blend
mode is always set to VG_LITE_ BLEND_SRC_ OVER. It happens due to some limita-
tions in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mixed color gets mul-
tiplied with each source pixel before blending happens. If you don’t need a
mix color, set the color parameter to 0.Note: this parameter has no effect if the
source vg_lite buffer_t structure member image mode is set to VG_LITE_ZERO or
VG_LITE_ NORMAL_IMAGE_MODE.

fil- Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-

ter mats for this function. A value of zero (0) indicates VG_LITE_ FILTER_ POINT.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_blit2 function Description:

This is the blit function for use with two sources. The blit2 operation is performed using two
source buffers and one destination buffer. The source and destination buffer structures are de-
fined using the vg_lite_buffer_t structure. Source0 and Sourcel are first blended according to
the blend mode with a specific transformation matrix for each image. Sourcel is used as the
source while Source0 is used as the dest and is directly output to the render target buffer.

The specified matrices can include translation, rotation, scaling, and perspective correction.
Note that vg_lite_buffer_t does not support coverage sample anti-aliasing so the destination
buffer edge may not be smooth, especially with a rotation matrix. VGLite path rendering can
be used to achieve high-quality coverage sample anti-aliasing (16X, 8%, 4X) rendering effect.

Application can use VGLite API vg_ lite_ query_ feature(gcFEATURE_BIT_VG_DOUBLE_IMAGE)
to determine HW support for double image.

Note:

e The vg_lite_blit function can be used for color conversion for Source0 or Sourcel before
merging sources with vg_lite_blit2.

Syntax:

vg_lite_error_t vg_lite_ blit2 (
vg_ lite_ buffer_t *target,
(continues on next page)

286 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

vg_lite_ buffer t *source0,
vg_ lite_ buffer_t *sourcel,
vg lite_ matrix_t *matrix0,
vg_lite_ matrix_t *matrix1,
vg_lite_blend_t blend,
vg_lite_filter_t filter

)i

Parameters:

Narr Description

*tar- Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Align-

get ment notes for valid destination color formats for the blit functions

*sow Points to the vg_lite_buffer_t structure for the source0 and sourcel buffers. All color
formats available in the vg_lite_buffer_format_t‘ enum are valid source formats for the

*sow blit functions.

*mat Pointsto a vg_lite_matrix_t structure that defines the 3x3 transformation matrix0 for the
source0 pixels and matrix1 for the sourcel pixels. If matrix0 and matrix1 are both NULL,

*ma- the identity matrix is assumed, meaning the blending result of Source0 and Sourcel is

trix] copied directly on the target at location(0,0).

blenc Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the “matrix” parameter is specified with rotation
or perspective, and the “blend” parameter is specified as VG_LITE BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN, the VGLite driver
overwrites the application’s setting for the BLIT operation as follows: - If
¢cFEATURE_BIT_VG_BORDER_ CULLING (vg_lite_feature_t) is supported,
the transparency mode will always be set to TRANSPARENT. - If gcFEA-
TURE_BIT VG_BORDER_CULLING (vg_lite_feature_t) is not supported, the blend
mode will always be set to VG_LITE_ BLEND SRC_OVER. This is due to some limita-
tions in the VGLite hardware.

fil- Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-

ter mats for this function. A value of zero (0) indicates VG_LITE_ FILTER_ POINT.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite blit_rect function Description:

This is the blit rectangle function. The blit operation is performed using a source and a destina-
tion buffer. The source and destination buffer structures are defined using the vg_lite_buffer_t
structure. Blit copies a source image to the destination window with a specified matrix that can
include translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does
not support coverage sample anti-aliasing so the destination buffer edge may not be smooth,
especially with a rotation matrix. VGLite path rendering can be used to achieve high-quality
coverage sample anti-aliasing (16X, 8%, 4X) rendering effect.

Note:
* The blit_ rect function can be used with or without the blend function (vg_lite_blend_t).

* The blit_rect function can be used with or without specifying any color value
(vg_lite_color._t).

1.7. Multimedia 287

MCUXpresso SDK Documentation, Release 25.12.00

* The blit_rect function can be used for color conversion with an identity matrix and appro-
priate formats specified for the source and destination buffers. In this case, do not specify
blend mode and color value.

* Thevg lite_blit_rect rectangle start origin point is always (0,0) for hardware versions prior
to GCNanoLiteV 1311p that do not support a non-zero rectangle origin.

Syntax:
vg_lite_error_t vg_lite_blit_rect (
vg lite_ buffer_t *target,
vg_lite_ buffer_t *source,
vg_lite_rectangle_t *rect,
vg lite_ matrix_t *matrix,
vg_lite blend_t blend,
vg_lite_color_t color,
vg_lite_ filter_t filter
)i
Parameters:
Namr Description
*tar- Points to the vg_lite_buffer_t structure that defines the destination buffer.
get
*sow Points to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit_rect function.
*rect Specifies the rectangle area of the source image to blit. rect[0]/[1]/[2]/[3] are X, y, width,
and height of the source rectangle respectively. Note: Non-zero source origins are sup-
ported.
*ma- Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of
trix source pixels into the target. If the matrix is NULL, then an identity matrix is assumed,
which means that the source is copied directly at 0,0 location on the target.
blenc Specifies one of the enum vg lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_ NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND SRC IN, or VG _ LITE BLEND_ DST IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE BIT VG BORDER_ CULLING (vg_lite_feature_t) is sup-
ported, then Transparency mode is always set to TRANSPARENT - If gcFEA-
TURE_BIT VG_BORDER_CULLING (vg_lite_feature_t) is not supported, then Blend
mode is always set to VG_LITE BLEND_SRC_OVER. It happens due to some limita-
tions in the VGLite hardware.
color If non-zero, this color value is used as a mix color. The mixed color gets multi-
plied with each source pixel before blending happens. If you do not need a mix
color, then set the color parameter to 0. Note: This parameter has no effect if the
source vg_lite buffer t structure member image mode is set to VG_LITE_ZERO or
VG_LITE_NORMAL_IMAGE_MODE.
fil- Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
ter mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.
Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

288

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_copy_image function Description:

This API copied a pixel rectangle with dimension (width, height) from source buffer to destina-
tion buffer. The source image pixel (sx *+ i,*sy + j) is copied to the destination image pixel (dx
*+1,*dy +), for *0 0 i <*width and *0 0 j <*height. Pixels whose source or destination lie outside
the bounds of the respective image are ignored. Pixel format conversion is applied as needed.

No pre-multiply, transformation, blending, filtering operations are applied to the pixel copy.

Syntax:

vg_lite_error_t vg_lite_ copy_ image (
vg_lite_ buffer_t *target,
vg_lite_ buffer t *source,
vg_lite_int32_t SX,
vg_lite_int32_t sy,
vg_lite int32_t dx,
vg_lite_int32_t dy,
vg_lite_int32_t width,
vg_lite int32_t height

/5

Parameters:

Nam Description

*tar- Points to the vg_lite_buffer_t structure that defines the destination buffer.

get

*sour Points to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

sx, Pixel coordinates of the lower-left corner of a pixel rectangle within the source buffer.

sy

dx, Pixel coordinates of the lower-left corner of a pixel rectangle within the target buffer.

dy

widtt Width of the copied pixel rectangle.

heigh Height of the copied pixel rectangle.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_get_transform_ matrix function Description:

This function generates a 3x3 homogenous transform matrix from 4 float point source coordi-
nates and 4 float point target coordinates. (from March 2021)

Syntax:

vg_lite_error_t vg_lite_get_transform matrix (
vg_lite float_ point4d_t src,
vg_lite_ float_ point4d_t dst,
vg_lite_ matrix_t *mat

JiE

Parameters:

1.7. Multimedia 289

MCUXpresso SDK Documentation, Release 25.12.00

Name Description

sre Pointer to the four 2D points that form a source polygon

dst Pointer to the four 2D points that form a destination polygon

mat Output parameter, pointer to a 3x3 homogenous matrix that transforms the source
polygon to a destination polygon.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_clear function Description:

This function performs the clear operation, clearing/filling the specified buffer (entire buffer or
partial rectangle in a buffer) with an explicit color.

Syntax:

vg_lite_error_t vg_lite_ clear (
vg_lite_ buffer_t *target,
vg_lite_rectangle t *rect,
vg_lite_color_t color

i

Parameters:

Nanr Description

*tar- Pointer to the vg lite_buffer t structure for the destination buffer. All color formats

get available in the vg_lite_buffer_format_t enum are valid destination formats for the clear
function.

*rect Pointer to the vg_lite_rectangle_tstructure that specifies the area to be filled. If the rect-
angle is NULL, the entire target buffer is filled with the specified color.

color Clear color; as specified in the vg_lite_color_t enum that is the color value to use for filling
the buffer. If the buffer is in L8 format, the RGBA color is converted into a luminance
value.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_set_color_key function Description:

This function sets a color key. Color key can be used for blit or for draw pattern operations. (from
April 2022)

A “color key” have two sections, where each section contains R,G,B channels which are noted as
high_rgb and low_ rgb respectively.

When the vg_lite_color_key_ t structure value enable is true, the color key specified is effective
and the alpha value is used to replace the alpha channel of the destination pixel when its RGB

290 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

channels are within range [low_rgb, high_rgb]. After the color key is used in the current frame,
if the color key is not needed for the next frame, it should be disabled before the next frame.

Hardware support for color key is not available for GCNanoLiteV. Application can use VGLite
API vg_lite_query_ feature(gcFEATURE_BIT_VG_COLOR_KEY) to determine HW support for
color key.

Syntax:

vg_lite_error_t vg_lite_set_color_key (
vg_lite_color_key4 t colorkey

)i

Parameters:

Parameter Description

colorkey Color keying parameters as defined by vg_lite_color_key4 _t.

Here are 4 groups of color key states:
* color_key_0, high_rgb_0,low_rgb_0, alpha_0, enable_0
* color_key_1, high_rgb_1, low_rgb_1, alpha_1, enable_1
* color_key_2, high rgb_2 low_rgb_2, alpha_2, enable_2
 color_key_3, high_rgb_3,low_rgb_3, alpha_3, enable_3
The priority order of these states is:
color_key_0 > color_key_1 > color_key_2 > color_key_3.
Returns:

VG_LITE_SUCCESS if successful. VG_LITE_NOT_SUPPORT if color key is not supported in
hardware.

Parent topic:Blit functions

vg_lite gaussian_filter function Description:
This function sets 3x3 gaussian blur weighted values to filter an image pixel. (from March 2023)

The parameters w0, w1, w2 define a 3x3 gaussian blur weight matrix as:

| w2 wl w2 |
| wl we wl |
| w2 wl w2 |

The sum of the 9 kernel weights must be 1.0 to avoid convolution overflow (w0 + 4*w1 + 4*w2 =
1.0).

The 3x3 weight matrix applies to a 3x3 pixel block:

| pixel[i-1][j-1] pixel[i][j-1] pixel[i+1][j-1]|
| pixel[i-1][]] pixel[i][]] pixel[i+1][]j] |
| pixel[i-1][j+1] pixel[i][j+1] pixel[i+1][j+1]|

With the following dot product equation:

1.7. Multimedia 291

MCUXpresso SDK Documentation, Release 25.12.00

color[i][j] = w2*pixel[i-1][j-1] + wl*pixel[i][j-1] + w2*pixel[i+1][j-1]
wl*pixel[i-1][]j] + w@*pixel[i][]j] + wl*pixel[i+1][j]

w2*pixel[i-1][j+1] + wl*pixel[i][J+1] + w2*pixel[i+1][]j+1];

+ +

Applications can use VGLite API vg_lite query feature (ccFEATURE_BIT_ VG_GAUSSIAN_ BLUR)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_gaussian_filter (
vg_lite float_t w0
vg_lite float_t wl
vg_lite_float_t w2

it

Parameters:

Parameter Description

| w2 Wl w2 |
| wl w@ wl |
| w2 wl w2 |

w0, wl, w2 w0, wl, w2 define a 3x3 gaussian blur weighted matrix as:

Returns:

VG_LITE SUCCESS if successful. Otherwise, VG_LITE NOT_SUPPORT if gaussian blur is not
supported in hardware.

Parent topic:Blit functions

Parent topic:Blits for compositing and blending

Blit/Draw extended functions The following BLIT or DRAW-related functions typically re-
quire GC355 or GC555 hardware and are not available for all Vivante Vector Graphics hardware
configurations.

Applications can use the VGLite API vg_ lite_ query__feature to determine HW support for the re-
lated functionality.

vg lite get parameter function Description:

This function returns the selected VGLite / GPU states to the application.

(from Aug 2023)

Syntax:

vg_lite_error_t vg_lite_ get_ parameter (
vg_lite_param_ type_t type,
vg_lite_int32_t count,
vg_ lite_ pointer params

)i

Parameters:

292 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parame- Description

ter

type The parameter type to be queried (VG_LITE GPU_IDLE_STATE,
VG_LITE SCISSOR_RECT)

count The number of returned parameters

params The pointer to the array of returned parameters

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable scissor function Description:

This function enables scissor rectangle operation for the rectangle regions defined by
vg_lite scissor rects APL. (from March 2020, modified August 2020, requires GC355 or GC555 hard-
ware)

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_SCISSOR) to deter-
mine HW support for scissoring. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_enable_ scissor (
void

it

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite disable scissor function Description:

This function disables scissor operation for the rectangle regions defined by the
vg_lite_scissor_rects APL (from March 2020, modified August 2020, requires GC355 or GC555
hardware).

Syntax:

vg_lite_error_t vg_lite_disable_scissor (
void

);

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_scissor_rects function Description:

This function defines scissor rectangle regions on the hardware mask layer. But the scissor func-
tion is enable/disabled by vg lite enable scissor and vg_lite_disable scissor APIs. (from August
2022, requires GC355 or GC555 hardware).

1.7. Multimedia 293

MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_scissor_rects (
vg_lite_ buffer_t *target,
vg_lite_ uint32_t nums,
vg_lite_rectangle_t rect]

i

Parameters:

Parameter Description

target Target render buffer that has the scissor mask layer.
nums Number of scissor rectangles.
rect|] The scissor rectangle array.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_ scissor function Description:

This is alegacy scissor API function that can be used to set a single scissor rectangle for the render
target. This scissor API is supported by a different hardware mechanism other than the mask
layer and it has better performance than the mask layer scissor function.

This API is not enabled/disabled by vg_lite_enable_scissor and vg_ lite_ disable_scissor APIs. In-
stead, the vg_lite set_scissor API calls with a valid scissor rectangle input (%, y, right, bottom)
enables the scissor function by default. The vg_ lite_set_ scissor API call with input parameter (-1,
-1, -1, -1) disables the scissor function. (requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_ scissor (
vg_lite_int32_t X,
vg_lite_int32_t Y,
vg_ lite_int32_t right,
vg_lite int32_t bottom

it

Parameters:

Parameter Description

b'e X Origin of rectangle, left coordinate in pixels
Y Y Origin of rectangle, top coordinate in pixels
right X rightmost pixel of the rectangle

bottom Y bottom pixel of the rectangle

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

294 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_disable_color_transform function Description:

This function is used to disable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Applications can use the VGLite APIvg_lite_query_feature(gcFEATURE_BIT_VG_COLOR_TRANSFORMATION)
to determine HW support for color transformation. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_disable_color_ transform (

);

Parameters: None
Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite enable color_transform function Description:

This function is used to enable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_enable color_transform (

);

Parameters: None
Returns:

Returns VG_LITE_ SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

veg_lite_set_ color_transform function Description:

This function is used to set pixel scale and bias values for color transformation for each pixel
channel. (from August 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_color_transform (
vg_lite_color_transform_t *values

);

Parameters:

Parame- Description

ter

*values Pointer to the color transformation values to set. See enum
vg_lite_color_transform_ t.

Returns:

1.7. Multimedia 295

MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg lite enable masklayer function Description:

This function controls the availability of mask functionality. The mask is turned off by default.
(from August - Sept mber 2022, requires GC555 hardware)

Applications can use VGLite APIvg_lite_query_feature (gcFEATURE_BIT_VG_MASK) to determine
HW support for mask. The blit and draw mask functions below require GC555 hardware support.
These functions were introduced in August 2022 and the syntax or name was further refined in
September 2022.

Syntax:

vg_lite_error_t vg_lite_enable_masklayer (
void
)i
Returns:

Returns VG_LITE SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_disable masklayer function Description:

This function controls the availability of mask functionality. The mask is turned off by de-
fault. (from August -September 2022, requires GC555 hardware, prior to Sept 2022 name was
vg_lite_disable_mask_layer)

Syntax:

vg_lite_error_t vg_lite_disable_masklayer (
void

);

Returns:

Returns VG_LITE SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_create_masklayer function Description:

This function creates a mask layer with the specified width and height. The mask format defaults
to A8 and the default mask value is 255. (from August 2022-September; requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_ create_masklayer (
vg_lite_ buffer_t *masklayer,
vg_lite_ uint32_t width,
vg_ lite_uint32_t height

);

296 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Parameter Description

*masklayer Points to the address of the buffer of the mask layer to be created.

width Mask layer width (in pixels).
height Mask layer height (in pixels).
Returns:

Returns VG_LITE SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_blend_masklayer function Description:

This function blends the specified area of the source mask layer with the destination mask layer
according to an vg_lite_mask_operation_t enumeration value, to create a blended destination
mask layer. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite blend masklayer (
vg_lite_ buffer_t *dst__masklayer,
vg_lite_ buffer_t *src__masklayer,
vg_lite_mask operation operation,
vg_lite_rectangle_t *rect,

¥

Parameters:

Parameter Description

*dst_ masklay Points to the address of the buffer of the destination mask layer.
*src__masklay: Points to the address of the buffer of the source mask layer.

operation Blending mode to be applied to each image pixel, as defined by the enum
vg lite_mask_operation t.
*rect The rectangle area (x, y, width, height) of the blend operation.
Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set masklayer function Description:

This function sets the given mask layer to the hardware. (from August-September 2022, requires
GC555 hardware)

Syntax:

vg_lite_error_t vg_lite set_masklayer (
vg_lite_ buffer t *masklayer

Ji

Parameters:

1.7. Multimedia 297

MCUXpresso SDK Documentation, Release 25.12.00

Parameter Description

*masklayer Points to the address of the buffer of the mask layer to be set.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite render masklayer function Description:

This function draws the mask layer according to the specified path, color, and matrix informa-
tion. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_render_ masklayer (
vg_lite_ buffer_t *masklayer,
vg_lite__mask operation operation,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_color_t color,
vg_lite_ matrix_t *matrix

);

Parameters:

Pa- Description
ram-

e_

ter

*mas Points to the address of the buffer of the destination mask layer.
op- Blending mode to be applied to each image pixel, as defined by the enum
er- vg_lite_ mask_operation_t

*patl Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. Refer to Vector path opcodes for plotting paths in this document for opcode detail.

fill_r Specifies the vg_lite_fill t enum value for the fill rule for the path.

color Specifies the color vg_lite_color_t RGBA value to be applied to each pixel drawn by the
path.

*ma- Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the

trix path. If the matrix is NULL, an identity matrix is assumed, meaning the source is copied
directly on the target at 0,0 location. which is usually a bad idea since the path can be
anything.

Returns:

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite destroy masklayer function Description:

This function is used to free a mask layer. (from August-September 2022, requires GC555 hard-
ware)

298 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite destroy_ masklayer (
vg_lite_buffer_t masklayer

)i

Parameters:

Parameter Description

*masklayer Points to the address of the buffer of the mask layer to be destroyed.

Returns:

Returns VG_LITE SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_mirror function Description:
This function is used to control mirror functionality. By default, the mirror is turned off and the
default output orientation is from top to bottom. (from August 2022, only for GC555 hardware)

Application can use VGLite API [vg_lite\ query\ feature|(vg_ lite_ query feature function.md)
(ecFEATURE_BIT VG_MIRROR) to determine HW support for mirror. Mirror functions re-
quire GC555 hardware.

Syntax:

vg_lite_error_t vg_lite_set_ mirror (
vg_lite_orientation_t orientation

f5

Parameters:

Parameter Description

orientation ~ The orientation mode as defined by the enum vg_lite_orientation_t.¢

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if not supported.

Parent topic:Blit/Draw extended functions

vg_lite_source_global alpha function Description:

This function sets the image/source global alpha and return a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Application can use VGLite API vg_lite_query_feature (ScFEATURE_BIT_VG_GLOBAL_ALPHA) to
determine HW support for global alpha. The global alpha BLIT-related functions require GC-
NanoUltraV or GC555 hardware.

Syntax:

1.7. Multimedia 299

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_source_ global alpha (

vg_lite_global alpha_t alpha__mode,
vg_lite_ uint8 t alpha_ value

JiE

Parameters:

Parameter Description

alpha__mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The image/source global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE NOT_ SUPPORT if global alpha is not supported.

Parent topic:Blit/Draw extended functions

vg lite dest global alpha function Description:

This function sets the destination global alpha and returns a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_dest_ global alpha (
vg_lite global alpha_t alpha_ mode,
vg_lite_uint8_t alpha_ value

)i

Parameters:

Parameter Description

alpha_mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The destination global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if global alpha is not supported.
Parent topic:Blit/Draw extended functions

Parent topic:Blits for compositing and blending

Vector path control This chapter provides an overview of the vector path enumerations, struc-
tures, functions, and opcodes for plotting paths.

Vector path enumerations This section provides an overview of vector path enumerations.

vg lite format t enumeration Values for vg lite format_t enum are defined in Table 1.

If vg_lite_format_t Path data alignment in the array should be:

VG_LITE_S8 8 bit
VG_LITE_S16 2 bytes
VG_LITE_S32 4 bytes

300 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path enumerations

veg_lite_quality_t enumeration Specifies the level of hardware assisted anti-aliasing.
Used in structure: vg_lite_ path_t.

Used in function: vg_lite_init_ path, vg_lite_init_arc_ path.

vg_lite_que Description
string
values

VG_LITE High quality: 16x coverage sample anti-aliasing

VG_LITE Upper quality: 8x coverage sample anti-aliasing. Use vg_ lite_query_feature
to determine availability of 8x CSAA (feature enum value gcFEA-
TURE_BIT_VG_QUALITY_8X.(deprecated from June 2020, available with
supported hardware from August 2022).

VG_LITE Medium quality: 4x coverage sample anti-aliasing

VG_LITE Low quality: No anti-aliasing

Parent topic:Vector path enumerations

Parent topic:Vector path control

Vector path structures This section provides an overview of vector path structures.

vg_lite_hw_memory structure This structure gets the memory allocation information recorded
by the kernel.

Used in structure: vg_lite_path_ t.

vg_lite_hw_men Type Description

member

handle vg_lite_; GPU memory object handle

memory vg_lite 1 Logical memory address

address vg_lite_tv GPU memory address

bytes vg_ lite_t Size of memory

property vg_lite_ v Bit 0 is used for path upload: - 0: Disable path data uploading (al-
ways embedded into command buffer) - 1: Enable auto path data
uploading

Parent topic:Vector path structures

vg lite path tstructure This structure describes VGLite path data.

Path data is made of op codes and coordinates. The format for op codes is always VG_LITE_S8.
For more details on opcodes, see Vector path opcodes for plotting paths.

Used in init functions: vg_lite_init_path, wvg lite init_arc_path, vg_ lite_upload_ path,
vg_lite_ clear_path, vg_lite_ append_ path.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_ draw_radial grad,
vg_lite_draw_ pattern.

1.7. Multimedia 301

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_t Type Description

members

bound- vg_lite_float_ bounding box for path [0] left [1] top [2] right [3] bottom

ing_ box[4]

quality vg_lite_quality enum for quality hint for the path, anti-aliasing level

format vg_lite_formai enum for coordinate format

uploaded vg_lite_hw_me¢ struct with path data that has been uploaded into GPU ad-

path_ length
path

path_ changed
pdata__ internal
path__type
*stroke
stroke_path

stroke size

stroke_color
add__end

vg_lite_ uint32
vg_ lite_ pointe
vg_lite_int8 t
vg_lite_int8 t
vg_lite_path_t
vg_ lite_ stroke.
vg_lite_ pointe

vg_lite_ uint32

vg_lite_color_t
vg_lite_int8 t

dressable memory

number of bytes in the path

pointer to path data

0: not changed; 1: changed.

0: path data memory is allocated by application; 1: path data
memory is allocated by driver.

The draw path type as specified in enum vg_lite_path_type_t.
(added for stroke control, from March 2022)

As defined by structure vg_lite_stroke_t (added for stroke con-
trol, from March 2022)

Pointer to the physical description of the stroke path. (added
for stroke control, from March 2022)

Number of bytes in the stroke path data. (added for stroke con-
trol, from March 2022)

The stroke path fill color. (from Sept 2022)

Flag that add end_path in driver (from March 2023)

Special notes for path objects:

* Endianness has no impact, as it is aligned against the boundaries

» Multiple contiguous opcodes should be packed by the size of the specified data format. For
example, by 2 bytes for VG_LITE_S16 or by 4 bytes for VG_LITE_S32.

For example, because opcodes are 8-bit (1-byte), 16-bit (2-byte), or 32-bit (4-byte) data types:

<opcodel_that_ needs_data>
<align_ to_ data_ size>
<data_ for_opcodel>

<opcode2_ that_doesnt_need_ data>

<align_ to_ data_ size>
<opcode3_that_needs data>
<align_to_data_ size>

<data_ for_opcode3>

» Path data in the array should always be 1-, 2-, or 4-byte aligned, depending on the format:

For example, for 32-bit (4-byte) data types:

<opcodel__that_needs data>

<pad to 4 bytes>

<4 byte data_ for_opcodel>

<opcode2_that_doesnt_need data>

<pad to 4 bytes>

<opcode3_that_ needs_ data>

<pad to 4 bytes>

<4 byte data_ for_ opcode3>

Parent topic:Vector path structures

302

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector path functions When using a small tessellation window and depending on a path’s size,
a path might be uploaded to the hardware multiple times because the hardware scanline convert
path with the provided tessellation window size, so VGLite path rendering performance might
go down. That is why it is preferable to set the tessellation buffer size to the most common path
size, for example if you only render 24-pt fonts, you can set the tessellation buffer to be 24x24.

All the RGBA color formats available in the vg_lite_buffer_format_t are supported as the destina-
tion buffer for the draw function.

vg_ lite get path length function Description:
This function calculates the path command buffer length (in bytes).

The application is responsible for allocating a buffer according to the buffer length calculated
with this function. Then, the buffer is used by the path as a command buffer. The VGLite driver
does not allocate the path command buffer.

Syntax:

vg_lite_ uint32_t vg_lite_get_ path_length (
vg_lite_ uint8_t *opcode,
vg_ lite_ uint32_t count,
vg_lite_format_t format

)i

Parameters:

Param- Description
eter

*opcode Pointer to the opcode array to use to construct the path. (*opcode from March 2023)

count The opcode count

format The coordinate data format. All formats available in the vg_lite_format_t enum are
valid formats for this function.

Returns:
Returns the command buffer length in bytes.

Parent topic:Vector path functions

vg lite append path function Description:

This function assembles the command buffer for the path. The command buffer is allocated by
the application and assigned to the path. This function makes the final GPU command buffer for
the path based on the input opcodes (cmd) and coordinates (data). The application is responsible
for allocating a buffer large enough for the path* (from Jan 2022, returns a vg_lite_error_t status
code)*

Syntax:

vg_lite_error_t vg_lite_append_path (
vg lite_path_t *path
vg_lite_ uint8_t *opcode,
vg_lite_ pointer data,
vg_lite_ uint32_t seg_count

(continues on next page)

1.7. Multimedia 303

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

Parameters:
Parame- Description
ter
*path Pointer to the vg_lite_path_t structure with the path definition.
*opcode Pointer to the opcode array to use to construct the path. (*opcode from March
2023)
data Pointer to the coordinate data array to use to construct the path

seg_count The opcode count

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite_init_path function Description:

This function initializes a path definition with specified values. (From Dec 2019 returns
vg_lite_error._t, previous was void.)

Syntax:
vg lite_error_t vg_ lite init_path (
vg lite_path_t *path,
vg_lite_ format_t format,
vg_lite quality_t quality,
vg_lite_ uint32_t length,
vg_lite_ pointer *data,
vg_ lite_ float_t min_ x,
vg_lite float_t min__y,
vg_lite_ float_t max_ X,
vg_lite float_t max_y
)i
Parameters:
Parameter Description
*path Pointer to the vg_lite_path_t structure for the path object to be initialized
with the member values specified.
format The coordinate data format. All formats available in the vg_lite_format_t
enum are valid formats for this function.
quality The quality for the path object. All formats available in the
vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes)
*data Pointer to path data
min_ x min_y Minimum and maximum X and y values specifying the bounding box of
max_ X max_y the path
Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

304 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init_arc_path function Description:

This function initializes an arc path definition with specified values. (from February 2021)

Syntax:
vg_lite_error_t vg_lite_init_arc_path (
vg_lite_ path_t *path,
vg_lite_format_t format,
vg_lite_quality_t quality,
vg_ lite_ uint32_t length,
vg_lite_ pointer *data,
vg_lite float_t min_ x,
vg_lite float_t min__y,
vg_lite_float_t max_ X,
vg_lite float_t max_y
i
Parameters:
Parameter Function
*path Pointer to the vg_lite_path_t structure for the path object to be initialized
with the member values specified.
format The coordinate data format. The vg_lite_format_t enum value should be
FP32.
quality The quality for the path object. All formats available in the
vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes).
*data Pointer to path data.

min_ x min_y Minimum and maximum X and y values specifying the bounding box of
max_ X max_y the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite upload path function Description:
This function is used to upload a path to GPU memory.

In normal cases, the VGLite driver will copy any path data into a command buffer structure
during runtime. This does take some time if there are many paths to be rendered. Also, in an
embedded system the path data won’t change - so it makes sense to upload the path data into GPU
memory in such a form that the GPU can directly access it. This function will signal the driver to
allocate a buffer that will contain the path data and the required command buffer header and
footer data for the GPU to access the data directly. Call vg_lite_clear_path to free this buffer after
the path is used.

Syntax:

vg_lite_error_t vg_lite_ upload_ path (
vg_lite_path_t *path

i

Parameters:

Parameter Description

*path Pointer to a vg_lite_path_t structure that contains the path to be uploaded.

1.7. Multimedia 305

MCUXpresso SDK Documentation, Release 25.12.00

Returns:
VG_LITE_OUT_OF_MEMORY if not enough GPU memory is available for buffer allocation.

Parent topic:Vector path functions

vg_lite clear path function Description:

This function will clear and reset path member values. If the path has been uploaded, it frees
the GPU memory allocated when uploading the path. (From Dec 2019 returns vg _lite_error._t,
previous was void.)

Syntax:

vg_lite_error_t vg_lite_clear_path (
vg_lite_ path_t *path

it

Parameters:

Parameter Description

*path Pointer to the vg_lite_path_t path definition to be cleared.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.
Parent topic:Vector path functions

Parent topic:Vector path control

Vector path opcodes for plotting paths The following opcodes are path drawing commands
available for vector path data.

A path operation is submitted to the GPU as [Opcode | Coordinates]. The operation code is stored
as a VG_LITE_S8 while the coordinates are specified via vg_lite_format_t.

306 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Op-
code

Arguments

Description

0x00
0x01

0x02

0x03

0x04

0x05

0x06

0x07

None
None

x,y)

(Ox, Oy)

x,y)

(Ox, Oy)

(cx, cy) (X, V)

(Ocx, Ocy) (Ox, Oy)

VLC_OP_END. Finish tessellation. Close any open path.

VLC_OP_CLOSE. For VGLite driver internal use only. Applica-

tion should not use this OP directly.
VLC_OP_MOVE. Move to the given vertex.

Close any open path.
start, = x
start, =y

VLC_OP_MOVE_REL. Move to the given
relative point. Close any open path.

start, = start, + Ax

start, = start, + Ay
VLC_OP_LINE. Draw a line to the given point.

Line(start,, start,, x, y)

start, = x

start, =y

VLC_OP_LINE_REL. Draw a line to the given
relative point.

x = start, + Ax

y = start, + Ay

Line(start,, start,, x,y)

start, = x

start, =y
VLC_OP_QUAD. Draw a quadratic Bezier
curve to the given end point using the
specified control point.

@uﬂd(smrrr, start,,cx,cy, x, y]

start, = x

start, =y

VLC_OP_QUAD_REL. Draw a quadratic Bezier
curve to the given relative end point using the
specified relative control point.

cx = start, + Acx

cy = start, + Acy

x = start, + Ax

y = start, + Ay

Quﬂd(stﬂrtr, Stﬂ?‘f},, CX,CV, X, y]

start, = x

start, =y

VLC_OP_CUBIC. Draw a cubic Bezier curve to
the given end point using the specified

1.7. Multimedia

control points.
Cubic(start,, start,, cx,, €y,, €Xs, C¥3, X, V)
start, = x

I R

307

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector-dased draw operations This part of the API performs the hardware accelerated draw
operations.

Draw and gradient enumerations This section provides an overview of draw and gradient
enumerations.

vg lite blend tenumeration This enumeration is defined under the “Blit enumerations” sec-
tion (see vg_lite_blend_t enumeration).

Parent topic:Draw and gradient enumerations

vg_lite color t parameter The common parameter vg lite color_t is described in Common
parameter types.

Parent topic:Draw and gradient enumerations

veg_lite_fill_t enumeration Thisenumeration is used to specify the fill rule to use. For drawing
any path, the hardware supports both non-zero and odd-even fill rules.

To determine whether any point is contained inside an object, imagine drawing a line from that
point out to infinity in any direction such that the line does not cross any vertex of the path. For
each edge that is crossed by the line, add 1 to the counter if the edge is crossed from left to right,
as seen by an observer walking across the line towards infinity, and subtract 1 if the edge crossed
from right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that a point is inside the shape if the resulting sum is not equal to zero.
The even/odd rule says that a point is inside the shape if the resulting sum is odd, regardless of
sign.

Used in function: vg_lite_ render_ masklayer.

Used in draw functions: vg_lite_draw, vg_lite draw_grad, vg lite_draw_radial grad,
vg_lite_ draw_ pattern.

vg_lite_fill_t string Description
values
VG_LITE_FILL,_NON_ZEF Non-zero fill rule. A pixel is drawn if it crosses at least one path pixel.

VG_LITE_FILL_EVEN_OIL Even-odd fill rule. A pixel is drawn if it crosses an odd number of
path pixels.

Parent topic:Draw and gradient enumerations

vg_lite_filter t enumeration This enum is defined under the “Blit enumerations” section (see
vg_lite_filter_t enumeration).

Parent topic:Draw and gradient enumerations

308 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_gradient_spreadmode_t enumeration vg_lite_ gradient_spreadmode_t enum is
defined to match OpenVG enum VGColorRampSpreadMode (from March 2023, re-
placesvg_lite_radial_gradient_spreadmode®* requires GC355/GC555 hardware)*

The application may only define stops with offsets between 0 and 1. Spread modes define how
the given set of stops are repeated or extended in order to define interpolated color values for
arbitrary input values outside the [0,1] range.

Used in structure: vg_ lite_radial_gradient__t.

vg_lite_gradient_spreadi Description
String Values

VG_LITE_GRADIENT_ ¢ The current fill color is used for all stop values less than 0 or greater
than 1 respectively.

VG_LITE_GRADIENT_ ¢ Colors defined at 0 and 1 are used for all stop values less than 0 or
greater than 1 respectively.

VG_LITE_GRADIENT ¢ Color values defined between 0 and 1 are repeated indefinitely in
both directions.

VG_LITE_GRADIENT_¢ Color values defined between 0 and 1 are repeated indefinitely in
both directions but with alternate copies of the range reversed.

Parent topic:Draw and gradient enumerations

vg lite pattern__mode t enumeration Defines how the region outside the image pattern is
filled for the path.

Used in function: vg_lite_ draw_ gradient, vg_ lite_ draw__pattern.

vg_lite_pattern_ Description
string values

VG_LITE_PAT" Pixels outside the bounds of the source image should be taken as the color.

VG_LITE_PAT" Pixels outside the bounds of the source image should be taken as having
the same color as the closest edge pixel. The color of the pattern border is
expanded to fill the region outside the pattern.

VG_LITE PAT" Pixels outside the bounds of the source image should be repeated indefi-
nitely in all directions. (from March 2023)

VG_LITE_PAT" Pixels outside the bounds of the source image should be reflected indefi-
nitely in all directions. (from March 2023)

Parent topic:Draw and gradient enumerations

vg_lite_radial_gradient_spreadmode__t enumeration (Deprecated March 2023) use
vg_lite gradient spreadmode_t. Defines the radial gradient padding mode. (from Nov 2020,
requires GC355 hardware)

Used in structure: vg_lite_ radial_gradient_ t.

1.7. Multimedia 309

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_sprec Description
String Values

VG_LITE_RADIAL_ GRADI The current fill color is used for all stop values less than 0 or

=0 greater than 1 respectively.

VG_LITE_RADIAL_GRADI Colors defined at 0 and 1 are used for all stop values less than 0
or greater than 1 respectively.

VG_LITE_RADIAL_GRAD] Color values defined between 0 and 1 are repeated indefinitely
in both directions.

VG_LITE RADIAL GRADI Color values defined between 0 and 1 are repeated indefinitely
in both directions but with alternate copies of the range re-
versed.

Parent topic:Draw and gradient enumerations

Parent topic:Vector-dased draw operations

Draw and gradient structures This section provides an overview of the draw and gradient
structures.

vg lite buffer tstructure This structure is defined under the “Pixel buffer structures” section
(see vg_lite_buffer_t structure).

Parent topic:Draw and gradient structures

veg_lite_color_ramp_t structure This structure defines the stops for the radial gradient. The
five parameters provide the offset and color for the stop. Each stop is defined by a set of floating
point values which specify the offset and the SRGBA color and alpha values. Color channel values
are in the form of a non-premultiplied (R, G, B, alpha) quad. All parameters are in the range of
[0,1]. The red, green, blue, alpha value of [0, 1] is mapped to an 8-bit pixel value [0, 255].(from
November 2020, requires GC355 hardware)

The define for the max number of radial gradient stops is #define
MAX_COLOR_RAMP_STOPS256.

Used in radial gradient structure: vg_lite radial gradient_ t.

vg_lite_color_ramp_t mem- Type Description

bers

stop vg_lite_float_t Offset value for the color stop

red vg_lite_float_t Red color channel value for the color stop
green vg_lite float_t Green color channel value for the color stop
blue vg_lite_float_t Blue color channel value for the color stop
alpha vg_lite float_t Alpha color channel value for the color stop

Parent topic:Draw and gradient structures

vg_lite linear gradient t structure This structure defines the organization of a linear gradi-
ent in VGLite data. The linear gradient is applied to filling a path. It generates a 256x1 image
according to the specified settings.

Used in init and draw functions: vg_lite_init_grad, vg lite set_grad, vg lite update_grad,
vg_lite_ get_ grad_ matrix, vg_lite_clear_grad, vg_lite_draw_ grad.

310 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_linear_gradient_t con- Type Description

stants

VLC_MAX_ GRADIENT_STOP vg_lite int32_ Constant. Maximum number of gradient col-
ors = 16.

vg_lite_linear_gradient_t

members

colors vg_lite_uint32 Color array for the gradient

[VLC_MAX_ GRADIENT_STOF

count vg_lite_uint32 Number of colors

stops vg_lite_uint32 Number of color stops, from 0 to 255

[VLC_MAX_GRADIENT_ STOF

matrix vg_lite_matrix Struct for the matrix to transform the gradi-
ent color ramp

image vg_lite_buffer. Image object struct to represent the color
ramp

Parent topic:Draw and gradient structures

vg lite ext linear gradient structure This structure defines the organization of the extended
parameters possible for a linear gradient (from April 2022).

Used in functions: vg_lite_ draw_ linear_ grad.

vg_lite_ext_linear_gradient Type Description

members

count vg_lite_uint32_t Count of colors, up to 256.

matrix vg_lite_matrix_t The matrix to transform the gradient.

image vg_lite_buffer t The image for rendering as gradient pattern.

linear grad vg_lite_linear gra Linear gradient parameters. Includes center
point, focal point and radius.

ramp_ length vg_lite_ uint32_t Color ramp length for gradient paints provided

to the driver.
color__ramp[VLC_MAX_ C(vg_lite_color_ram Color ramp parameter for gradient paints pro-
vided to the driver.

converted_ length vg_lite uint32_t Converted internal color ramp length.

con- vg_lite_color_ram Converted internal color ramp.
verted_ramp[VLC_MAX_ (

pre-multiplied vg_lite_uint8_t If this value is set to 1, the color value of

color_ramp will be multiplied by the alpha
value of color_ ramp.

spread_ mode vg_lite_radial gra The spread mode that is applied to the pixels
out of the image after transformed.

Parent topic:Draw and gradient structures

vg lite linear gradient parameter structure This structure defines a radial direction for a lin-
ear gradient. (from April 2022)

Line0 connects point (X0, Y0) to point (X1, Y1) and represents the radial direction of the linear
gradient.

Linel is a line perpendicular to line0 which passes through point (X0, Y0).

Line2 is a line perpendicular to line0 which passes through point (X1, Y1)

1.7. Multimedia 311

MCUXpresso SDK Documentation, Release 25.12.00

The linear gradient paint is applied at the intersection of the path fill area and the plane starting
from line 1 and ending at line 2.

Used in structure: vg_lite _ext_linear_gradient.

Used in functions: vg_lite_set_ linear_grad.

vg_lite_linear_gradient_parameter_t Type Description

members

X0 vg_lite_float_ X origin of linear gradient radial di-
rection.

YO vg_lite_float_ Y origin of linear gradient radial di-
rection.

X1 vg_lite_float. X end point of linear gradient radial
direction.

Y1 vg_lite_float_ Y end point of linear gradient radial
direction.

Parent topic:Draw and gradient structures

vg_lite_matrix_t structure This structure is defined under the “Matrix control structures” sec-
tion (see vg_lite_matrix_t structure).

Parent topic:Draw and gradient structures

vg lite path t structure This structure is defined under the “Vector path structures” section
(see vg_lite_path_t structure).

Parent topic:Draw and gradient structures

vg_lite_radial _gradient_ parameter_t structure This structure defines the gradient radius and
the X and Y coordinates for the center and focal points of the gradient (from November 2020,
requires GC355 or GC555 hardware).

Used in radial gradient structure: vg_lite radial gradient_ t.

312 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_parameter_t Type Description
member

Coordinates x and y of the gradient color center point.
Center point refers to the center of the gradient color.

».

cxX vg_lite_ float_t
cy vg_lite_float_t

Radius of the gradient

r vg_lite_ float_t
Coordinates x and y of the gradient color focal point.
Facal point refers to the center of the gradient color.

fx vg_lite float_t
fy vg_lite_float_t

Parent topic:Draw and gradient structures

vg lite radial gradient_ tstructure Thisstructure defines the application of the radial gradient
to fill a path. (from November 2020, requires GC355 or GC555 hardware).

Used in radial gradient functions: vg_lite_draw_ grad, vg_lite_set_radial grad,
vg_lite_update_radial grad, vg_ lite get_radial grad, vg lite_clear_ radial grad.

1.7. Multimedia 313

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_t Type Description

member

count vg_lite_uint32_t Count of colors, up to 256

matrix vg_lite_matrix_t Structure that specifies the transform matrix
for the gradient

image vg_lite_buffer_t Structure that specifies the image for render-

radial _grad vg_lite_radial_grar

ramp__ length vg_lite_uint32_t
color_ramp[VLC_MAX_Ct
converted_ length

con-
verted_ramp[VLC_MAX_ (
pre_ multiplied

vg_lite_color_ram;
vg_lite_uint32_t
vg_lite_color_ram;

vg_lite_uint32_t

spread__mode vg_lite_radial_grar

ing as a gradient pattern

Structure that specifies the location of the gra-
dient’s center point (cx, cy), focal point(fx, fy)
and radius(r)

Color ramp parameters for gradient paints
provided to the driver

Structure that specifies the color ramp
Converted internal color ramp.

Structure that specifies the internal color ramp

If this value is set to 1, the color value of
color_ramp will be multiplied by the alpha
value of color_ramp.

Enum that specifies the tiling mode, which is
applied to the pixels out of the image after
transformation

Parent topic:Draw and gradient structures

Parent topic:Vector-dased draw operations

Draw functions This section provides an overview of the draw functions.

vg lite draw function Description:

This function performs a hardware accelerated 2D vector draw operation.

The size of the tessellation buffer can be specified at initialization and it is aligned with the min-
imum hardware alignment requirements of the kernel. Specifying a smaller size for tessellation
buffer allocates less memory but reduces performance. Because the hardware walks the target
with the provided tessellation window size, a path may be sent to the hardware multiple times.
It is a good practice to set the tessellation buffer size to the most common path size. For example,
if all you do is render up to 24-point fonts, you can set the tessellation buffer to 24x24.

Note:

» All the color formats available in the vg_lite_buffer_format_t enum are supported as the

destination buffer for the draw function

* The hardware does not support strokes; they must be converted to paths before you use

them in the draw API

Syntax:

vg_lite_error_t vg_lite_ draw (
vg_lite_buffer_t *target,
vg_lite_ path_t *path,
vg_lite_ fill_t fill_rule,
vg_lite__matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color

314

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa- Description

ram-

e_

ter

*tar- Pointer to the vg lite buffer_t structure for the destination buffer. All color formats

get availableinthe vg_lite buffer format_tenum are valid destination formats for the draw
function.

*pat] Pointer to the vg_lite_ path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths.

fill 1 Specifies the vg lite fill t enum value for the fill rule for the path

*ma- Pointer to a vg_lite_ matrix_t structure that defines the affine transformation matrix of

trix the path. If the matrix is NULL, an identity matrix is assumed. Note: Non-affine trans-
formations are not supported by vg_lite_ draw; therefore, a perspective transformation
matrix might have unexpected effects on path rendering.

blenc Select one of the hardware-supported blend modes in the vg lite blend t enum
to be applied to each drawn pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0).

color The color applied to each pixel drawn by the path.

Returns:

Returns VG_ LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_grad function Description:

This function is used to fill a path with a linear gradient according to the specified fill rules. The
specified path is transformed according to the selected matrix and is filled with the specified
color gradient.

Syntax:

vg_lite_error_t vg_lite_ draw_ grad (
vg_lite_ buffer t *target,
vg_lite_ path_t *path,
vg_lite fill_t fill_rule,
vg_lite_ matrix_t *matrix,
vg_lite_linear gradient_t *grad,
vg_lite_blend_t blend

)i

Parameters:

1.7. Multimedia 315

MCUXpresso SDK Documentation, Release 25.12.00

Pa- Description

ram-

eter

*tar- Pointer to the vg_lite_buffer_t structure containing data describing the target path.

get

*path Pointer to the vg lite path_t structure containing path data that describes the path to
draw and fill with the linear gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_ru Specifies the vg_lite_fill_t enum value for the fill rule for the path

*ma- Pointer to the vg_lite_ matrix_t structure that defines the 3x3 transformation matrix

trix of the path. If the matrix is NULL, an identity matrix is assumed; however, this option
is not preferable.

*arad Pointer to the vg_lite_linear_gradient_ t structure that contains the values to be used to
fill the path.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_ lite_draw_radial _grad function Description:

This function is used to fill a path with a radial gradient according to the specified fill

rules.

The specified path is transformed according to the selected matrix and is filled

with the radial color gradient. The application can use VGLite API vg_lite_query_feature
(ecFEATURE_BIT VG_RADIAL_GRADIENT) to determine HW support for radial gradient.

Syntax:

vg_lite_error_t vg_lite_draw_radial grad (
vg_lite_ buffer t *target,
vg lite_path_t *path,
vg_ lite_fill_t fill_rule,
vg_lite_ matrix_t *path__matrix,
vg lite_radial gradient_t *grad,
vg_lite_ color_t paint__color,
vg_lite_blend_t blend,
vg_lite_ filter_t filter

)i

Parameters:

316 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Pa- Description

ram-

e-

ter

*tar- Pointer to the vg_lite buffer_t structure containing data describing the target path.

get

*path Pointer to the vg_lite_ path_t structure containing path data that describes the path to
draw for and fill with the radial gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_r Specifies the vg_lite fill t enum value for the fill rule for the path

*path Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of
the path. If the matrix is NULL, an identity matrix is assumed; however, his option is
not preferable.

*orad Pointer to the vg lite radial gradient_t structure that contains the values to
be used to fill the path. Note: grad->image.image_mode does not support
VG_LITE_MULTIPLY_ IMAGE_MODE.

paint_ Specifies the paint color vg_lite_color_t RGBA value to be applied
by VG_LITE RADIAL GRADIENT_SPREAD_FILL set by the function
vg_lite_set_radial grad. When pixels are out of the image after transformation,
paint__color is applied to them. For details, see vg_lite_radial gradient_ spreadmode__t.

blend Specifies the blend mode in the vg_lite_blend__t enum to be applied to each drawn pixel.
If no blending is required, set this value to VG_LITE_BLEND_ NONE (0).

fil- Specified the filter mode vg lite filter t enum value to be applied to each drawn pixel.

ter If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Returns:

Returns VG__LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_ pattern function Description:

This function fills a path with an image pattern. The path is transformed according to the speci-
fied matrix and is filled with the transformed image pattern.

Syntax:

vg_lite_error_t vg_lite_ draw_ pattern (
vg_lite_ buffer t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_ rule,
vg lite_ matrix_t *path_ matrix,
vg_lite_buffer_t *pattern_image,
vg_ lite_ matrix_t *pattern_ matrix,
vg_lite_blend_t blend,
vg_lite_pattern__mode_t pattern__mode,
vg_ lite_color_t pattern__color,
vg_lite_color_t color,
vg_lite_filter_t filter

i

Parameters:

1.7. Multimedia 317

MCUXpresso SDK Documentation, Release 25.12.00

Pa- Description
ram-

e-

ter

*tar- Pointer to the vg_lite buffer t structure for the destination buffer. All color formats

get available in the vg lite_buffer format_t enum are valid destination formats for this
draw function.

*pat] Pointer to the vg_lite path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths

fill_1 Specifies the vg_lite_fill_t enum value for the fill rule for the path.

*pat] Pointer to the vg_lite_ matrix_t structure that defines the 3x3 transformation matrix of
the source pixels into the target. If the matrix is NULL, an identity matrix is assumed,
meaning the source is copied directly onto the target at 0,0 location.

*pat- Pointer to a vg lite_matrix_t structure that defines the 3x3 transformation matrix of the

tern_ path. If the matrix is NULL, an identity matrix is assumed.

*pat- Pointer to the vg_lite_buffer_t structure that describes the source of the image pattern

tern
Pointer to a vg_ lite_ matrix_ t structure that defines the 3x3 transformation matrix of the
source pixels into the target. If the matrix is NULL, an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blenc Specifies one of the vg_lite blend t enum values for hardware-supported blend modes
to be applied to each drawn pixel in the image. If no blending is required, set this value
to VG_LITE_BLEND_ NONE (0).

pat- Specifies the vg_lite pattern_mode_t value that defines how the region outside the im-

tern_ age pattern is to be filled.

pat- Specifies a 32bpp ARGB color (vg_lite_color_t) to be applied to the fill outside the image

tern_ pattern area when the pattern_mode value is VG_LITE_ PATTERN_ COLOR. (from Dec
2019, type now vg_lite_color._t, previously was uint32_t)

color Specifies a 32bpp ARGB color (vg_lite color_t) to be applied as a mix color. If non-zero,
the mix color value gets multiplied with each source pixel before blending happens. If a
mix color is not needed, set the color parameter to 0 (from May 2023). Note: This param-
eter has no effect if the pattern image vg_lite buffer_t structure member image_mode is
setto VG_LITE_ZERO or VG_LITE_ NORMAL_IMAGE_MODE.

fil- Specifies the filter type. All formats available in the vg lite_filter_ t enum are valid for-

ter mats for this function. A value of zero (0) indicates VG LITE FILTER POINT.

Returns:
Returns VG_LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.
Parent topic:Draw functions

Parent topic:Vector-dased draw operations

Linear gradient initialization and control functions This part of the API performs linear
gradient operations.

A color gradient (color progression, color ramp) is a smooth transition between a set of colors
(color stops) that is done along a line (linear, or axial color gradient) or radially, along concentric
circles (radial color gradient). The color transition is done by linear interpolation between two
consecutive color stops.

Note: VGLite supports linear color gradients for GCNanoLiteV and GCNanoUltraV. Both linear
and radial gradients are supported with GC355 and GC555.

vg_lite_init_grad function Description:

318 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

This function initializes the internal buffer for the linear gradient object with default settings for
rendering.

Syntax:

vg_lite_error_t vg_lite_init_grad (
vg_lite_linear_ gradient_t *grad
5

Parameters:

Param- Description
eter

*grad Pointer to the vg_lite_linear_gradient_t structure, which defines the gradient to be
initialized. Default values are used.

Returns:
Returns VG__LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg lite clear grad function Description:

This function is used to clear the values of a linear gradient object and free up the memory of
the image buffer.

Syntax:

vg_lite_error_t vg_lite clear_ grad (
vg_lite_linear_ gradient_t *grad
)i

Parameters:

Parameter Description

*grad Pointer to the vg_lite_linear_gradient_t structure that is to be cleared

Returns:
Returns VG_ LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg lite set grad function Description:
This function is used to set values for the members of the vg_lite linear gradient_t structure.

Note: The vg_lite_set_ grad API adopts the following rules to set the default gradient colors if the
input parameters are incomplete or invalid:

* Ifnovalid stops have been specified (for example, due to an empty input array, out-of-range
or out-of-order stops), a stop at 0 with (R, G, B, A) color (0.0, 0.0, 0.0, 1.0) (opaque black) and
a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are implicitly defined

« If at least one valid stop has been specified, but none has been defined with an offset of 0,
then an implicit stop is added with an offset of 0 and the same color as the first user-defined
stop

1.7. Multimedia 319

MCUXpresso SDK Documentation, Release 25.12.00

« If at least one valid stop has been specified, but none has been defined with an offset of 1,
then an implicit stop is added with an offset of 1 and the same color as the last user-defined

stop

Syntax:

vg_lite_error_t vg_lite_set_grad (
vg_lite_linear_ gradient_ t *grad,
uint32_t count,
uint32_t *colors,
uint32_t *stops
i

Parameters:

Param- Description
eter

*orad Pointer to the vg_lite_linear_gradient_t structure to be set

count The number of colors in the linear gradient. The maximum color stop count is de-
fined by VLC_MAX_GRAD which is 16.

*colors Specifies the color array for the gradient stops. The color is in ARGB8888 format
with alpha in the upper byte.

*stops Pointer to the gradient stop offset

Returns:
Always returns VG_LITE SUCCESS.

Parent topic:Linear gradient initialization and control functions

vg lite get grad matrix function Description:

This function is used to get a pointer to the transformation matrix of the gradient object. It allows
an application to manipulate the matrix to facilitate correct rendering of the gradient path.

Syntax:

vg_lite_error_t vg_lite get_grad_matrix (
vg_lite_linear gradient_t *grad

)i

Parameters:

Parame- Description

ter
*orad Pointer to the vg_lite_linear_gradient_t structure, which contains the matrix to be
retrieved
Returns:

Returns VG_ LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_update_grad function Description:

This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_linear gradient t object has an image buffer, which is used to render the gradient
pattern. The image buffer is created or updated with the corresponding gradient parameters.

320 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite update_grad (
vg_lite_linear_gradient_t *grad
)i

Parameters:
Pa- Description
rame-
ter

*grad Pointer to the vg_lite_linear_gradient_t structure, which contains the update values
to be used for the object to be rendered

Returns:
Returns VG_ LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.
Parent topic:Linear gradient initialization and control functions

Parent topic:Vector-dased draw operations

Linear gradient extended functions The following functions are available only with IP that
includes hardware support for extended linear gradient capabilities, such as GC355 and GC555.
These functions are not available with GCNanoLiteV, GCNanoUltraV, or GCNanoV. Applications
can use VGLite API vg_lite_query_ feature (gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT)
to determine HW support for linear gradient.

vg_lite_set_linear grad function Description:

This function is used to set the values that define the linear gradient. (from April 2022)

Syntax:

vg_lite_error_t vg_lite_set_linear_ grad (
vg_lite ext_ linear_ gradient_t *grad,
vg_lite_ uint32_t count,
vg_lite_color_ramp_t *color__ramp,

vg_lite linear gradient_parameter t grad_param,
vg_lite_radial gradient_spreadmode_t spread_ mode,
vg_lite_uint8_t pre__mult

Parameters:

1.7. Multimedia 321

MCUXpresso SDK Documentation, Release 25.12.00

Pa- Description
ram-

e_

ter

*orac Pointer to the vg_lite_ext_linear gradient_ t structure that is to be set.

coun Count of the colors in the gradient. The maximum color stop count is defined by
MAX COLOR_ RAMP STOPS, which is set to 256.

*colc It is the array of stops for the linear gradient. The number of parameters for each stop
is 5, and gives the offset and color of the stop. Each stop is defined by a floating-point
offset value and four floating-point values containing the sRGBA color and alpha value
associated with each stop, in the form of a non-premultiplied (R, G, B, alpha) quad. The
range of all parameters is [0,1].

grad. Gradient parameters as specified in the structure vg_lite_linear gradient_ parameter_t.

spree The fill mode is applied to the pixels out of the paint after transformation. Uses
the same spread mode enumeration types as radial gradient. For details, see
vg_lite_radial gradient_ spreadmode_ t enum.

pre_ This parameter controls whether color and alpha values are interpolated in premulti-
plied or non-premultiplied form.

Returns:
Returns VG_LITE_INVALID ARGUMENTS to indicate the parameters are wrong.

Parent topic:Linear gradient extended functions

vg_lite_get_linear_grad_matrix function Description:
This function returns a pointer to an extended linear gradient object’s matrix.(from March 2023).
Syntax:

vg_lite_matrix_t* vg_lite_get_linear grad_matrix (
vg_lite_ext_ linear_gradient_t *grad,

);

Parameters:

Parameter Description

*orad Pointer to the vg_lite_ext_linear gradient_ t structure.

Returns:
Returns a pointer to vg_ lite_ matrix_t for the specified extended linear gradient.

Parent topic:Linear gradient extended functions

vg lite draw_linear grad function Description:

This function returns a pointer to an extended linear gradient object’s matrix.(from March 2023).

Syntax:

vg_lite_error_t vg_lite draw_linear grad (
vg_lite_ buffer_t *target,
vg_ lite_ path_t *path,
vg_lite_fill_t fill _rule,

(continues on next page)

322 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

vg_lite_ matrix_t *path__matrix,
vg_lite_ext_ linear_ gradient_t *grad,
vg_lite_color_t paint__color,
vg_lite_blend_t blend,
vg_lite_filter t filter

)i

Parameters:

Pa- Description

ram-

e-

ter

*tar- Pointer to the vg_lite_ buffer_t structure containing data describing the target path.

get

*patl Pointer to the vg lite path_t structure containing path data that describes the path to
draw for the linear gradient. Refer to Vector path opcodes for plotting paths in this
document for opcode detail.

fill_r Specifies the vg_lite_fill_t enum value for the fill rule for the path.

*patlk Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of
the path. If the matrix is NULL, an identity matrix is assumed; however, this option is
not preferable.

*orad Pointer to the vg lite ext linear gradient t structure that contains the values
to be used to fill the path. Note: grad->image.image mode does not support
VG_LITE_MULTIPLY_IMAGE_MODE.

paint, Specifies the paint color vg_lite color_t RGBA value to be applied
by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL, set by function
vg_lite_set_linear grad. When pixels are out of the image after trans-
formation, this paint_color is applied to them. For details, see enum
vg_lite_radial_ gradient_ spreadmode_ t.

blend Specifies blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel. If
no blending is required, set this value to VG_LITE_BLEND_NONE (0).

fil- Specified the filter mode vg_lite filter t enum value to be applied to each drawn pixel.

ter If no filtering is required, set this value to VG_LITE_BLEND_ POINT (0).

Returns:

Returns VG__LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg lite update_linear grad function Description:

This function is used to update or generate the corresponding image object to render (from April

2022).

The vg_lite_ext_linear_gradient_t object has an image buffer that is used to render the linear
gradient paint. The image buffer is created/updated according to the specified grad parameters.

Syntax:

vg_lite_error_t vg_lite_update_linear grad (
vg_lite_ext_ linear_ gradient_t *grad,

);

Parameters:

1.7. Multimedia 323

MCUXpresso SDK Documentation, Release 25.12.00

Parame- Description
ter
*orad Pointer to the vg_lite_linear gradient_ ext_ t structure that is to be updated or cre-
ated.
Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg_lite clear linear grad function Description:

This function is used to clear the linear gradient object. This resets the grad members and free
the image buffer’s memory (from April 2022).

Syntax:

vg_lite_error_t vg_lite_clear_linear grad (
vg lite_ext_linear gradient_t *grad,

);

Parameters:

Parameter Description

*grad Pointer to the vg_lite_linear_gradient_ext_ t structure that is to be cleared.

Returns:
Returns VG__ LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.
Parent topic:Linear gradient extended functions

Parent topic:Vector-dased draw operations

Radial gradient functions initialization and control functions The following functions are
available only with IP that supports radial gradients, such as GC355 and GC555. These functions
are not available with GCNanoLiteV, or GCNanoUltraV or GCNanoV.

Note: There isno init function required for radial gradients. Buffer initialization is done through
the vg_lite_ update_ radial grad function. (from Nov 2020, requires GC355 or GC555 hardware)

vg_lite_set_radial_grad function Description:

This function is used to set the values for the radial linear gradient definition. (from November
2020, requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_radial grad (
vg_lite_radial gradient_t *grad,
vg_ lite_uint32_t count,
vg_ lite_ color_ramp_t *color__ramp,

vg_lite radial gradient_parameter_t grad_param,
vg_lite_radial gradient_spreadmode_t spread__mode,
vg_ lite_ uint8_t pre__mult

324 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa- Description
ram-

e_

ter

*grac Pointer to the vg_lite_radial gradient_t structure for the radial gradient that has to be
set

coun The number of color stops in the gradient. The maximum color stop count is defined by
MAX_COLOR_RAMP_STOPS, which is currently 256.

*colc Pointer to the vg_lite_color_ramp_t structure that defines the stops for the radial gradi-
ent. The five parameters provide the offset and color for each stop. Each stop is defined
by a set of floating point values that specify the offset and the sSRGBA color and alpha val-
ues. Color channel values are in the form of a non-premultiplied (R, G, B, alpha) quad.
All parameters are in the range of [0,1]. The red, green, blue, alpha value of [0, 1] is
mapped to an 8-bit pixel value [0, 255].

grad The radial gradient parameters are supplied as a vector of 5 floats. Parameters (cX, cy)
specify the center point, parameters (fX, fy) specify the focal point, and r specifies the
radius. See structure vg_lite_radial_gradient_parameter_t.

sprez The tiling mode that is applied to pixels out of the paint after transformation. See enum
vg_lite_radial _gradient_spreadmode_t.

pre_ Controls whether color and alpha values are interpolated in premultiplied or non-
premultiplied form. If this value is set to 1, the color value of vgColorRamp is multipled
by the alpha value of vgColorRamp.

Returns:
Returns VG_LITE_INVALID ARGUMENTS to indicate that the parameters are wrong.

Parent topic:Radial gradient functions initialization and control functions

vg lite update radial grad function Description:

This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_radial_gradient_t object has an image buffer that is used to render the gradient pat-
tern. The image buffer will be created or updated with the corresponding gradient parameters.
(from November 2020, requires GC355 or GC555 hardware)

Syntax:
vg_lite_error_t vg_lite_update_radial grad (
vg_lite_radial gradient_t *grad,

);

Parameters:

Pa- Description
rame-

ter

*orad Pointer to the vg_lite_radial _gradient_t structure, which contains the updated values
to be used for the object to be rendered

Returns:
Returns VG_ LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

1.7. Multimedia 325

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_get_radial _grad_matrix function Description:

This function is used to get a pointer to the radial gradient object’s transformation matrix. This
allows an application to manipulate the matrix to facilitate correct rendering of the gradient
path* (from Nov 2020, requires GC355 or GC555 hardware).*

Syntax:

vg_lite_error_t vg_lite get radial grad matrix (
vg_ lite_radial gradient_t *grad,

);

Parameters:

Parame- Description

ter
*grad Pointer to the vg_lite_radial_gradient_t structure, which contains the matrix to be
retrieved
Returns:

Returns VG__LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

vg_lite_clear_rad_grad function Description:

This function is used to clear the values of a radial gradient object and free the image buffer’s
memory* (from Nov 2020, requires GC355 or GC555 hardware)*

Syntax:

vg_lite_error_t vg_lite_clear_radial grad (
vg_lite_radial gradient_t *grad,
i

Parameters:

Parameter Description

*grad Pointer to the vg_lite_radial_gradient_t structure which is to be cleared

Returns:
Returns VG_ LITE_ SUCCESS if successful. See vg_lite_error_t enum for other return codes.
Parent topic:Radial gradient functions initialization and control functions

Parent topic:Vector-dased draw operations

Stroke operations This part of the API performs stroke operations. (from March 2022)

Stroke enumerations This section gives details on stroke enumerations.

326 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

veg_lite_cap_style_t enumeration Defines the style of cap at the end of a stroke (from March
2022).

Used in structure: vg_lite_stroke_t.

Used in function: vg_lite_set_ stroke.

vg_lite_cap Description
values

VG_LITE The butt end cap style terminates each segment with a line perpendicular to the
tangent at each endpoint.

VG_LITE_ The round end cap style appends a semicircle with a diameter equal to the line
width centered around each endpoint.

VG_LITE_ The square end cap style appends a rectangle with two sides of length equal to the
line width perpendicular to the tangent, and two sides of length equal to half the
line width parallel to the tangent, at each endpoint.

Parent topic:Stroke enumerations

vg lite path type tenumeration Defines the type of draw path (from March 2022).
Used in structure: vg_lite_ path_t, vg_lite_stroke_ t.

Used in function: vg_lite_set_ path_ type.

vg_lite_path_type_t string values Description
VG_LITE DRAW_FILL PATH Draw path is fill.
VG_LITE_DRAW_STROKE_PATH Draw path is stroke.

VG_LITE _DRAW_FILL STROKE_ PATH Draw path is both fill and stroke.

Parent topic:Stroke enumerations

veg_lite_join_style_t enumeration Defines the type of styles available for line joints. (from
March 2022)

Used in structure: vg_lite_ stroke_ t.

Used in function: vg_lite_set_ stroke.

vg_lite_joil Description
string
values

VG_LITE The miter join style appends a trapezoid with one vertex at the intersection point
of the two original lines, two adjacent vertices at the outer endpoints of the two
“thickened” lines and a fourth vertex at the extrapolated intersection point of the
outer perimeters of the two “thickened” lines.

VG_LITE_ The round join style appends a wedge-shaped portion of a circle, centered at the
intersection point of the two original lines, having a radius equal to half the line
width.

VG_LITE_ The bevel type join style appends a triangle with two vertices at the outer end-
points of the two “thickened” lines and a third vertex at the intersection point of
the two original lines.

Parent topic:Stroke enumerations

Parent topic:Stroke operations

1.7. Multimedia 327

MCUXpresso SDK Documentation, Release 25.12.00

Stroke structures This section gives details on stroke structures.

veg_lite_path_t structure Defined under Vector Path Structures - vg_lite_path_t structure.
(additional members added for stroke from March 2022)

Parent topic:Stroke structures

vg lite path list t structure The structure vg lite path_list_ptr points to the
vg_lite_path_list structure that provides divided path data according to MOVE/MOVE_ REL.
(from Aug 2023)

Used (vg_lite_path_list_ ptr) in structures: vg_lite_stroke_ t.

vg_lite_path_list_t members Type Description
path_points vg_lite_path_point_ptr

path_end vg_lite_path_point_ptr

point_count vg_lite_uint32_t

next vg_lite_path_list_ptr

closed vg_lite_uint8_t

Parent topic:Stroke structures

vg lite path point t structure The structure vg lite path point_ptr points to the
vg_lite_path_ point structure which provides path detail (from March 2022)

Used (vg_lite_path_point_ ptr) in structures: vg_ lite path_point_t, vg_lite_stroke_ conversion.
vg_lite_sub_ path_t.

vg_lite_path_point_.t mem- Type Description

bers

x vg_lite_float_t X coordinate

y vg_lite_float_t Y coordinate

flatten_ flag vg_lite _uint8 t Flatten flag for flattened path

curve_type vg_lite uint8 t Curve type for the stroke path

tangentX vg_lite float_t X tangent (Note: #define centerX tan-
gent)

tangentY vg_lite_float_t Y tangent (Note: #define centerX tan-
gent)

length vg_ lite_ float_t Line length

prev vg_lite_path_point_pt Pointer to the previous point node

Parent topic:Stroke structures

vg_lite_stroke_tstructure The structure provides stroke parameters and pointers to temp stor-
age for a stroke sub path. Refer to the function vg lite set stroke parameter descriptions for
additional description for some members. (from March 2022)

Used in structure: vg_lite_path_ t.

328 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_stroke_t members

Type

Description

cap_ style
join__style

line width
miter limit
*dash_pattern
pattern_ count
dash_ phase
dash_ length
dash index
half width
pattern_ length
miter_ square
path_ points
path__end
point__count
left_ point
right_ pont
stroke_ points
stroke end
stroke count
path_ list_ divide
cur_ list
add_end

dash reset
stroke_ paths
last stroke
swing_handling
swing_ deltax
swing_ deltay
swing start
swing_ stroke
swing_length
swing_ centlen
swing_count
need_ swing
swing ccw
stroke_ length
stroke size
fattened

closed

vg_lite_cap_style t
vg_lite_join_ style_t
vg_lite float_t
vg_lite_float_t
vg_lite_float_t

vg_lite_ uint32_t
vg_lite_ float_t
vg_lite_float_t

vg_lite_ uint32_t
vg_lite_float_t
vg_lite_float_t
vg_lite_float_t
vg_lite_ path_ point_ ptr
vg_lite_ path_ point_ ptr
unint32_t

vg_ lite_ path_ point_ ptr
vg_lite_ path_ point_ ptr
vg_lite_ path_ point_ ptr
vg_lite_ path_ point_ ptr
vg_lite_ uint32_t
vg_lite_ path_list_ ptr
vg_lite_ path_list_ ptr
vg_lite_ uint8_t
vg_lite_ uint8_t
vg_lite_sub_ path_ ptr
vg_lite_sub_ path_ptr
vg_lite_ uint32_t
vg_lite float_t

vg_lite float_t
vg_lite_ path_ point_ ptr
vg_lite_ path_ point_ ptr
vg_lite_float_t

vg_lite_ float_t

vg_ lite_ uint32_t
vg_lite_ uint8_t
vg_lite_ uint8_t
vg_lite_float_t

vg_lite_ uint32_t
vg_lite_ uint8_t
vg_lite_ uint8_t

Stroke cap style

Stroke joint style

Stroke line width

Stroke miter limit

Pointer to stroke dash pattern

Number of dash pattern repetitions

Stroke dash phrase

Stroke dash initial length

Stroke dash initial index

Half line width

Total length of stroke dash patterns.

For fast checking

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Temp storage for stroke sub path

Divide stroke path according to move or move_rel for
Pointer to current divided path data. (from Aug 2023)
Flag that adds end_path in driver (from Aug 2023)
(from Aug 2023)

The stroke line is a fat line.

Parent topic:Stroke structures

vg_lite_sub_path_t

structure The

structure

vg_lite_sub_ path_ ptr

points to the

vg_lite_sub_ path structure that provides sub path detail and a pointer to the next sub path.

(from March 2022)

Used in structure: vg_ lite_stroke_ conversion.

1.7. Multimedia

329

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_point_.t mem- Type Description
bers
next vg_lite_sub_path_ptr Pointer to the next sub path
point_count vg_lite_uint32_t Number of points in the sub path
point_list vg_lite_path_point_pt Pointer to the point list.
end_point vg_lite_path_point_pt Pointer to the last point.
closed vg_lite_uint8_t Indicates whether or not the path is
closed.
length vg_lite_float_t Length of the sub path.
Parent topic:Stroke structures
Parent topic:Stroke operations
Stroke functions All return vg_lite_error_t status.
veg_lite_set_path_type function Description:
This function sets the path type* (from March 2022)*
Syntax:
vg_lite_error_t vg_lite_set_path_type (
vg_lite_ path_t *path,
vg_lite_path_ type_t path__type
);
Parameters:
Parameter Description
*path Pointer to the vg_lite_path_t structure that describes the vector path.

path_type Pointer to a vg lite path_type t structure that describes the path type.

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_set_stroke function Description:

This function uses input parameters to set stroke attributes (from March 2022).

Syntax:
vg_lite_error_t vg_lite_set_ stroke (

vg_lite_path_t *path,

vg_lite_cap_style_t cap_ style,

vg_lite_join_ style_t join__style,

vg_lite_float_t line_ width,

vg_lite float_t miter_ limit,

vg lite_ float_t *dash_ pattern,

vg_lite_uint32_t pattern_ count,

vg_lite float_t dash_ phase,

vg_lite_color_t color

(continues on next page)

330 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

Parameters:

Pa- Description

ram-

e_

ter

*pat] Pointer to the vg lite path_t structure that describes the path.

cap_ The end cap style is defined by the vg_lite_ cap_ style_t enum.

join_ The line join style defined by the vg_lite_join_style_t enum.

line_ The line width of the stroke path. A line width less than or equal to 0 prevents stroking
from taking place.

mites When stroking using the Miter stroke vg_lite join_style t, the miter length (that is, the
length between the intersection points of the inner and outer perimeters of the two “fat-
tened” lines) is compared to the product of the user-set miter limit and the line width.
If the miter length exceeds this product, the Miter join is not drawn and a Bevel join is
substituted. Note: Miter limit values less than 1 are silently clamped to 1.

*das] Pointer to a dash pattern that consists of a sequence of lengths of alternating “on” and
“off” dash segments. The first value of the dash array defines the length, in user coordi-
nates, of the first “on” dash segment. The second value defines the length of the following
“off” segment. Each subsequent pair of values defines one “on” and one “off” segment.
Note: If the dash pattern has an odd number of elements, the final element is ignored.

pat- The count of dash on/off segments.

tern

dash Defines the starting point in the dash pattern that is associated with the start of the first
segment of the path. For example, if the dash pattern is [10 20 30 40] and the dash
phase is 35, the path is stroked with an “on” segment of length 25 (skipping the first
“on” segment of length 10, the following “off” segment of length 20, and the first 5 units
of the next “on” segment), followed by an “off” segment of length 40. The pattern is then
repeated from the beginning, with an “on” segment of length 10, an “off” segment of
length 20, an “on” segment of length 30.

color The stroke color.

Returns:

Returns VG_ LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_update_stroke function Description:

This function uses the path and stroke attributes as specified with the function vg_lite_set_ stroke
to update the stroke path’s parameters and generate stroke path data. (from March 2022)

Syntax:

vg_lite_error_t vg_lite_ update_ stroke (
vg_lite_path_t *path,

it

Parameters:

1.7. Multimedia 331

MCUXpresso SDK Documentation, Release 25.12.00

Parameter

Description

*path

Pointer to the vg_lite_path_t structure that describes the path.

Returns:

Returns VG__LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

Parent topic:Stroke operations

Deprecated and renamed APIs The following functions are deprecated and are either obso-
lete or replaced by a more efficient implementation. Their use is discouraged and will produce

unpredictable behaviors.

The names of some functions, enums and structures were modified during code refinements in
2022Q3. If the parameters did not change, the deprecated syntax detail is not provided below.
Changes to enums and structs are not mentioned here, instead refer to the item itself.

Deprecated or renamed API Recommended replacement Source Date depre-
API file cated
vg_lite_perspective n/a vg_liteh August 2022
vg_lite_set_dither vg_lite_enable_dither vg_liteh August 2022
vg_lite_disable_dither
vg_lite_append_path vg_lite_path_append vg_liteh Sept 2022
vg_lite_path_calc_length vg_lite_get_path_length vg_lite.h Sept 2022
vg_lite_set_image_global_alpha vg_lite_set_source_global alpha vg_lite.h Sept 2022
vg_lite_dest_global_alpha vg_lite_set_dest_global_alpha vg_liteh Sept 2022
vg_lite_mem_avail vg_lite_get_mem_size vg_liteh Sept 2022
vg_lite_enable_premultiply n/a vg_liteh Dec 2022
vg_lite_disable_premultiply n/a vg_liteh Dec 2022
vg_lite_set_premultiply n/a vg_liteh Aug 2023
vg_lite_radial_gradient_spreadmo vg_lite_gradient_spreadmode_t vg_liteh March 2023
enum enum
API Name Refinement (no change to parameters)
vg_lite_buffer_upload vg_lite_upload_buffer_ vg_lite.h Sept 2022
vg_lite_*mask* most vg_lite_*mask_layer vg_lite.h Sept 2022
vg_lite_*_grad vg_lite_*_gradient (parameters vg_liteh Sept 2022
unchanged)
vg_lite_*_radial_grad* vg_lite_* rad_grad* vg_liteh Sept 2022
vg_lite_buffer image_mode_t vg_lite_image_mode_t vg_lite.h Sept 2022
vg_lite_transparency_mode_t vg_lite_transparency_t vg_lite.h Sept 2022
vg_lite_set_update_stroke vg_lite_update_stroke vg_liteh Sept 2022
vg_lite_set_draw_path_type vg_lite_set_path_type vg_liteh Sept 2022

Deprecated vg_lite syntax Syntax for deprecated functions is provided below for reference.

Note: This list does not include items renamed during code refinement of Sept 2022.

vg_lite perspective (deprecated) Syntax:

332

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

void vg_lite_ perspective (

vg_lite_ float_t PX,
vg_lite float_t Py,
vg lite_ matrix_t *matrix

);

Parent topic:Deprecated vg_lite syntax

vg_lite_set_ dither (deprecated) Syntax:

vg lite_error_t vg_lite set_ dither (
int enable

);

Parent topic:Deprecated vg_lite syntax

vg_lite_enable premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite enable premultiply (
void

);

Parent topic:Deprecated vg_lite syntax

vg_lite_disable_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite disable_premultiply (
void
)i

Parent topic:Deprecated vg_lite syntax

vg_lite_set_ premultiply (deprecated) Syntax:

vg lite_error_t vg_lite set_ premultiply (
vg_lite_ uint8_t src__premult,
vg_ lite_uint8_t dst__premult,

f5

Parent topic:Deprecated vg_lite syntax

Parent topic:Deprecated and renamed APIs

VGLite API version 2.0 to 3.0 migration guide The VGLite API version 3.0 is not fully compat-
ible with VGLite API version 2.0. VGLite API version 3.0 includes some new API functions for the
new features in the latest VG GPU like GC555. Some VGLite API version 2.0 function interfaces
are changed in API version 3.0. So, the existing VGLite API version 2.0 applications must be mod-
ified to compile and run properly with the VGLite API version 3.0 driver. This chapter provides
guidance for migrating VGLite API version 2.0 applications to VGLite API version 3.0.

VGLite API name changes in API version 3.0 Some original VGLite API names are changed in
API version 3.0 for API naming consistency. In the VGLite API version 3.0 header file vg_lite.h, a
set of API name macros are defined for the equivalent API names between API version 3.0 and
APIversion 2.0, so it is not necessary to modify the VGLite API function names in API version 2.0
applications for the application to compile and run with the API version 3.0 driver.

1.7. Multimedia 333

MCUXpresso SDK Documentation, Release 25.12.00

The list of equivalent VGLite API functions between API version 3.0 and API version 2.0 is shown
below. These API functions’ parameters are the same between API version 3.0 and API version
2.0.

/* API name defines for backward compatibility to VGLite 2.0 APIs */

F#define vg_ lite_ buffer_upload vg_lite_upload_ buffer

#define vg_lite_path_append vg_lite_append_ path

#define vg_lite path calc_length vg_lite get path length
F#define vg_lite_set_ ts_buffer vg_lite_set_ tess buffer

#define vg_ lite_set_ draw_ path_ type vg_lite_set_ path_ type
#define vg_lite create mask layer vg_lite create masklayer
F#define vg_lite_fill mask layer vg_lite_fill masklayer

#define vg_lite_ blend__mask_ layer vg_ lite_ blend_masklayer
#define vg_lite_ generate mask layer by path vg_ lite_ render_ masklayer
F#define vg_lite_set_ mask_layer vg_ lite set_ masklayer

#define vg_ lite_destroy__mask_layer vg_lite_destroy masklayer
#define vg_lite_enable_ mask vg_ lite_enable_masklayer
#define vg_lite_enable_color__transformation vg_lite_enable_ color_transform
##define vg_lite_set_ color_ transformation vg_ lite_set_ color__transform
#define vg lite_set_image global alpha vg_lite source global alpha
#define vg_ lite_set_ dest_ global alpha vg_ lite_dest_ global alpha
#define vg_lite_clear rad_ grad vg_lite_ clear_radial grad
#define vg_lite _update rad grad vg lite update_radial grad
#define vg_lite_get_rad_ grad_matrix vg_lite_get_radial grad_matrix
##define vg_lite_set_ rad_ grad vg_lite_set_radial_grad
#define vg lite_ draw_ linear gradient vg_lite draw_ linear grad
#define vg_lite_ draw_ radial_gradient vg_lite_draw_ radial grad
#+define vg_lite_ draw_ gradient vg_ lite_draw_ grad

#define vg_lite._ mem_ avail vg_ lite get mem_ size

#define vg_lite_set_update_ stroke vg_lite_update_ stroke

The list of equivalent VGLite API structures and enumerations is shown below:

#define vg_lite_ buffer_image mode_t vg_ lite__image mode_t
#define vg_lite draw_ path_type t vg lite path_type t
#define vg_ lite_ linear gradient__ext_t vg_lite_ext_linear_gradient_ t
#+define vg_lite_ buffer_ transparency mode_t vg_ lite_ transparency_ t

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_set_scissor API interface change The VGLite API vg_lite_set_ scissor() function name
is not changed in API version 3.0, but the API parameters are defined differently in API version
3.0.

In VGLite API version 3.0, the vg_lite set_ scissor() function is defined as:

/* Set and enable a scissor rectangle for render target. */
vg_lite_error_t vg_lite_set_scissor(vg_lite_int32_t x, vg_lite_int32_t y,
vg_lite_int32_t right, vg_lite_int32_t bottom);
In VGLite API version 2.0, the vg_lite_set_ scissor() function is defined as:
vg_lite_error_t vg_lite_set_ scissor(int32_t x, int32_t y, int32_t width, int32_t height);
So, the vg_lite_set_ scissor() API parameters “width” and “height” in the VGLite API version 2.0
application must be changed to “right” x-coordinate value and “bottom” y-coordinate value.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_map APIinterface change The VGLite APIvg lite map() function name is not changed
in API version 3.0, but the API parameters are defined differently in API version 3.0.

334 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

In VGLite API version 3.0, the vg_lite_ map() function is defined as:

/* Map a buffer into hardware accessible address space. */
vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer, vg_lite. map_flag t flag, int32_t fd);

In VGLite API version 2.0, the vg_lite_ map() function is defined as:

vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer);

So, vg_lite_ map() in VGLite API version 3.0 API requires two extra parameters “flag” and “fd”,
which can simply be set as vg_lite._ map (buffer, 0, 0) in applications.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_enable_scissor / vg_lite_disable_scissor API The VGLite API vg lite_enable_ scissor()
and vg_ lite_ disable_scissor() functions are valid only for vg_lite_scissor_rects() API. They have
no effect for vg_lite_set_ scissor() in VGLite API version 3.0.

Although the behavior of vg lite enable scissor() and vg lite disable scissor() is changed in
VGLite API version 3.0, there is no need to change these functions in VGLite API version 2.0
applications to work with the VGLite API version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg lite_draw_pattern API interface change The VGLite API vg lite_ draw_ pattern() function
name is not changed in API version 3.0, but the API parameters are defined differently in API
version 3.0.

In VGLite API version 3.0, the vg_lite_ draw_ pattern() function is defined as:

/* Draw a path that is filled by a transformed image pattern. */
vg_lite_error_t vg_lite draw_ pattern(vg_lite_ buffer t *target,
vg_lite_ path_t *path,
vg_ lite_fill_t fill_ rule,
vg_lite_ matrix_t *path_matrix,
vg_lite_ buffer t *pattern_ image,
vg_ lite_ matrix_t *pattern_ matrix,
vg_lite_blend_ t blend,
vg_lite_pattern__mode_t pattern_mode,
vg_lite_ color_t pattern_ color,
vg_lite_color_t color,
vg_lite_filter_t filter);

Compared to the VGLite API version 2.0 vg_lite_draw_ pattern() function, “color” is a new addi-
tional parameter. It specifies a 32bpp ARGB color (vg_lite_color_t) to be applied as a mix color.
If nonzero, the mix color value gets multiplied with each source pixel before blending happens.
If a mix color is not needed, set the color parameter to 0.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

[New] vg_lite_copy_image in VGLite API version 3.0 The new API vg_lite_copy_image() is
added in VGLite API version 3.0 to support the OpenVG vgCopyImage API, which performs a pixel
rectangle copy without pixel transformation, blending, filtering operations.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

1.7. Multimedia 335

MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_set_dither APIis deprecated in API version 3.0 The original API version 2.0 function
vg_lite_set_ dither(int enable) API is removed from API version 3.0, it is replaced with two new
APIs for dither enable/disable:

/* Enable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_enable_ dither();
/* Disable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_disable_dither();

Therefore, the vg_lite_set_ dither(enable) function in the VGLite API version 2.0 application must
be replaced with vg_lite_enable_ dither() or vg_lite_ disable_ dither() to work with the VGLite API
version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Deprecated VGLite API version 2.0 functions The VGLite API vg lite perspective(),
vg_lite_enable_premultiply(), vg_lite_disable_premultiply() functions are removed from API
version 3.0. These API functions must be deleted from a VGLite API version 2.0 application to
work with the VGLite API version 3.0 driver.

In VGLite API version 3.0, the color premultiply setting is defined by the vg_lite blend_ t enu-
meration to replace the original vg_lite_enable_premultiply() and vg_lite_ disable_premultiply()
APIs.

* VG_LITE_BLEND_* enumeration values in vg_lite_ blend_t define non-premultiplied blend-
ing modes.

* OPEVG_BLEND_* enumeration values in vg_lite_blend_t define premultiplied Porter-Duff
blending modes.

So, the VGLite API version 3.0 application can set different blending modes to get the desired
premultiplied/non-premultiplied blending result.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Revision history

336 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Doc- Re- Description
u- lease
men date
ID
IMX 17 The document is updated to correspond to the API version 3.0
Rev. Jan-
1.2 uary
2025
IMX 22 - Paragraph 4.1.1 Updated Table 3 - vg lite feature_t enumeration. - Paragraph
Rev. Sept 6.6 Added documentation for new API vg lite set_dither - Paragraph 8.2 Blit
1.1 Dber structures- Added documentation for new data structure vg lite_color_key t -;
2022 added documentation for new data structure vg lite_color_key4 t - Paragraph
8.3.1, vg _lite_blit function- added note related to HW limitation on RT500 platform
- Paragraph 8.3.2, vg lite_blit_rect function -added note related to HW limitation
on RT500 platforms - Paragraph 8.3.3, vg_lite_get_transform_matrix function- ad-
justed function description, adjusted function parameters description - Paragraph
8.3, blit functions- added documentation for new API vg lite_set_color_key - Para-
graph 8.4.1, vg lite_enable_premultiply function- added note about limited support
on specific platforms - Paragraph 8.4.2, vg_lite_disable_premultiply function- added
note about limited support on specific platforms - Paragraph 10.1.3, vg lite fill ¢
enumeration- added note about crossing points buffer limitation - Paragraph
10.2, draw and gradient structures- added documentation for new data struc-
ture vg lite_gradient_parameter._t - done- added documentation for new data struc-
ture vg _lite_gradient_ext_t- Paragraph 10.3, draw functions- added documentation
for new API vg lite_draw_linear_gradient- Paragraph 10, vector-Based Draw Op-
erations - added new paragraph 10.5 Extended linear gradient initialization and
control functions; added documentation for new API vg lite_set _linear_gradient;
added documentation for new API vg lite_get_linear_grad_matrix; added docu-
mentation for new API vg lite_update_linear_grad; Added documentation for new
APIvg lite_clear_linear_grad - Paragraph 10.5, Radial gradient functions - adjusted
paragraph title - Added new Chapter Stroke Operations - Chapter Platform-Specific
Features -updated Table 41 - Platform-specific VGLite features
IMX 27 Introduction Added i.MX RT1160 to the list of NXP devices that support VGLite
Rev. Jan- graphics API vg lite_error_t enumeration Updated Table 1 vg_lite_feature_t enu-
1 uary merationUpdated Table 1 API control
2022
IMX 22 Initial release
Rev. Febr
0 ary
2021

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials must be
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

1.7. Multimedia 337

MCUXpresso SDK Documentation, Release 25.12.00

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.8 Wireless

1.8.1 NXP Wireless Framework and Stacks
Wi-Fi, Bluetooth, 802.15.4

Application notes
* Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i. MX-RT-SDK.pdf
* Link TNO0066-WFA-Derivative-Certification-Process.pdf

User manuals

* Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i. MX-RT-
Platforms.pdf

* UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i. MX-RT-Platforms.pdf

» Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i. MX-RT-
Platforms.pdf

e Link UM11567-WTFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i. MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.12.00 has been tested for the wireless SoCs listed in Supported prod-
ucts.

Supported products
» 88W8987
* IW416
» IW6111
» IW6122

338 Chapter 1. Middleware

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf

MCUXpresso SDK Documentation, Release 25.12.00

*« AW6113
* RW610
*« RW612

Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-

port is available only in i MX RT1180 EVKA

Features

Wi-Fi radio

Client mode

Features

Sub features

802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency

2.4 GHz band operation supported channel bandwidth: 201
2.4 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz
Short/long guard interval (400 ns/800 ns)

Data rates up to 72 Mbit/s (MCS 0 to MCS 7)

Data rates up to 150 Mbit/s (MCS 0 to MCS 7)

1 spatial stream (1x1)

HT protection mechanisms

Aggregated MAC protocol data unit (AMPDU) TX and RX suy
Aggregated MAC service data unit (AMSDU) 4k TX and RX st
TX MCS rate adaptation (BGN)

RX low density parity check (LDPC) 1x1 20 MHz and 40 MH:
HT Beamformee (explicit)

2.4 GHz band supported channel bandwidth: 20MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 80 MHz

Data rates up to 86.7 Mbps (MCSO0 to MCS 8)

Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1
MU-MIMO Beamformee (Explicit and Implicit)

RTS/CTS with BW signaling

Operation mode notification

Backward compatibility with non-VHT devices

TX VHT MCS rate adaptation

Low density parity check (LDPC)

2.4 GHz band supported channel bandwidth: 20MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidths: 80 MHz
OFDMA (UL/DL, 106 RU)

OFDMA (UL/DL, 484 RU)

1024 QAM

Target wake time (TWT)

256 QAM modulation — MCS8 and MCS9

1024 QAM modulation - MCS10 and MCS11, 2.4 GHz

1.8. Wireless

339

MCUXpresso SDK Documentation, Release 25.12.00

Table 5 - continued from

Features

Sub features

802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11ax - High efficiency
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11a/b/g features
802.11d

802.11e QoS

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

Power save mode

Power save mode

Power save mode

Power save mode

Power save mode
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
802.11w - PMF (protected management frames)
DPP functionality
General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

1024 QAM modulation — MCS10 and MCS11, 5 GHz

DCM

DCM

ER (extended range)

SU Beamforming

OMI (operating mode indication)

802.11b/g data rates up to 54 Mbit/s

802.11a data rates up to 54 Mbit/s

TX rate adaptation (BG)

Fragmentation/defragmentation

ERP protection, slot time, preamble

802.11d - Regulatory domain/operating class/country info
EDCA [enhanced distributed channel access] / WMM (wirele
Opensource WPA Supplicant Support

WPA2-PSK AES | WPA Supplicant

WPAS3-SAE (Simultaneous Authentication of Equals) | WPA
WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | W
Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encry
802.1x EAP Authentication Methods3 | WPA Supplicant
WPA2-Enterprise Mixed Mode3 | WPA Supplicant
WPA3-Enterprise3 (Suite-B) | National Security Algorithm (C
802.11w - PMF (Protected Management Frames) | WPA Sup
Embedded Supplicant Support

WPA2-PSK AES | Embedded Supplicant

WPA+WPA2 PSK Mixed Mode | Embedded Supplicant
WPA3-SAE (Simultaneous Authentication of Equals) | Embe
802.11w - PMF (Protected Management Frames) | Embedde
Wi-Fi Roaming

WPA3 Enterprise3

Deep sleep

IEEE power save

Host sleep/WoWLAN (inband)3

Host sleep/WoWLAN (outband)3

U-APSD

PMF require and capable

Unicast management frames - Encryption/decryption - usin,
Broadcast management frames - Encryption/decryption - us
SA query request/response

PMF support using embedded supplicant

Wi-Fi easy connect3

Embedded supplicant

Host sleep packet filtering

Host-based supplicant

Embedded MLME

EDMAC - EU adaptivity support (ETSI certification)

External coexistence

IPv6 NS offload

FIPS

TKIP1

RF test mode

802.11k

802.11v

DFS radar detection in peripheral mode (follow AP)5
Embedded roaming based on RSSI threshold beacon loss
ARP offload

340

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Table 5 - continued from

Features

Sub features

General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features
General features

Cloud keep alive

UNII-4 channel support

ClockSync using TSF

Auto reconnect

CSI (channel state information)3
Ambient Motion Index (AMI)3
Independent reset (in-band)3
Independent reset (out-band)3
Wi-Fi agile multiband

Network co-processor (NCP) mode
802.11mc - WLS (Wi-Fi location service)3
802.11az3

Parent topic:Wi-Fi radio
[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.
[2] Support available in host-base supplicant.

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Read more about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1 must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode

Features

Sub features

802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11n - High throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput
802.11ac - Very high throughput

2.4 GHz band operation supported channel bandwidth: 20 I
2.4 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz
Short/long guard interval (400 ns/800 ns)

Data rates up to 72 Mbit/s (MCS 0 to MCS 7)

Data rates up to 150 Mbit/s (MCS 0 to MCS 7)

1 spatial stream (1x1)

HT protection mechanisms

Aggregated MAC protocol data unit (AMPDU) Rx support
Aggregated MAC service data unit (AMSDU) -4k RX support
Max client support (up to 8 devices)

TX MCS rate adaptation (BGN)

RX low density parity check (LDPC)

5 GHz band supported channel bandwidth: 20 MHz

5 GHz band supported channel bandwidth: 40 MHz

5 GHz band supported channel bandwidth: 80MHz
Short/long guard interval (400ns/800ns)

Data rates up to 86.7 Mbps (MCS0 to MCS 8)

Data rates up to 433.3 Mbps (MCS 0 to MCS 9)

Single user- Aggregated MAC protocol data unit (SU-AMPDU
RTS/CTS with BW signaling

Backward compatibility with non-VHT devices

TX VHT MCS rate adaptation

MU-MIMO Beamformee (explicit and implicit)

Operation mode notification

1.8. Wireless

341

MCUXpresso SDK Documentation, Release 25.12.00

Table 6 - continued from prev

Features

Sub features

802.11ax - High efficiency

802.11ax - High efficiency

802.11ax — High efficiency

802.11ax - High efficiency

802.11ax - High efficiency

802.11d

802.11e -QoS

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11i security

802.11y

802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
802.11w - protected management frames (PMF)
General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

General features

2.4 GHz band operation (20 MHz channel bandwidth)

2.4 GHz band operation (40 MHz channel bandwidth)

5 GHz band operation (20MHz channel bandwidth)

5 GHz band operation (40MHz channel bandwidth)

5 GHz band operation (80 MHz channel bandwidth)
802.11d - Regulatory domain/operating class/country info
EDCA [enhanced distributed channel access] / WMM (wirele
Hostapd Support

WPA2-PSK AES | hostapd

WPA3-SAE (Simultaneous Authentication of Equals) | Hosta
WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | H
Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encry
802.1x EAP Authentication Methods | Hostapd
WPA2-Enterprise Mixed Model | Hostapd
WPA3-Enterprise (Suite-B)1 |National Security Algorithm (C
802.11w - PMF (Protected Management Frames) | Hostapd
Embedded Authenticator

WPA2-PSK AES | Embedded Supplicant

WPA+WPA2 PSK Mixed Mode | Embedded Supplicant
WPAS3-SAE (Simultaneous Authentication of Equals) | Embe
802.11w - PMF (Protected Management Frames) | Embedde
Extended channel switch announcement (ECSA)

PMF require and capable

Unicast management frames -Encryption/decryption - using
Broadcast management frames -encryption/decryption - usi
SA query request/response

Embedded authenticator

Embedded MLME

EU adaptivity support

Automatic channel selection (ACS)

External coexistence (software interface)

Independent reset (in-band)1

Network co-processor (NCP) mode2

Vendor specific IE (custom IE)

Hidden SSID (broadcast SSID disabled)

MAC address filter

Multiple external STA support

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in

References.
AP-STA mode
Features Sub features 88W8¢ IW41 IW611/IV RW610/R\ IW61 AW611
Simultaneous AP-STA oper- AP-STA func- Y Y Y Y Y Y
ation (same channel) tionality
SAD Software an- Y Y Y Y Y Y
tenna diver-
sityl

Parent topic:Wi-Fi radio

342

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

Fea- Sub features 88W89¢ IW41¢ IW611/IWE RW610/RWI IW61(AW611

tures

Generic Firmware download (paral- Y Y Y N N Y
leD1

Generil Secure boot N N Y Y Y Y

Generit Kconfig memory optimizer3 Y Y Y Y Y Y

Generit Firmware Compression2 N Y N N N N

Generic u-AP intra-BSS Y N Y Y Y Y

Generir Net Monitor Mode N N N Y Y N

Generic Net Monitor Mode with packet N N N Y Y N
transmission

Generit In-Channel Net Monitor mode N N N N N N

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W898 IW416 IW611/IW6 RW610/RWe IW610 AW6113
P2P basic func- P2P Auto GO Y Y Y Y Y Y
tionality1

P2P basic func- P2P GO Y Y Y Y Y Y
tionality1

P2P basic func- P2P GC Y Y Y Y Y Y
tionalityl

P2P basic func- P2P Persistent Y Y Y Y Y Y
tionality1 Group

P2P basic func- P2P Invitation Y Y Y Y Y Y
tionality1

P2P basic func- P2P Device Dis- Y Y Y Y Y Y
tionality1 covery

P2P basic func- P2PProvision Dis- Y Y Y Y Y Y
tionality1 covery

P2P basic func- P2P simultaneous Y Y Y Y Y Y
tionality1 GO + STA

P2P basic func- P2P simultaneous Y Y Y Y Y Y
tionality1 GC + uAP

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

1.8. Wireless 343

MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth radio

344 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth classic

Feature Sub feature 88W¢e IW4° IW611/ RW610/ IW6" AW611
General fea- Bluetooth Class 1.5 and Class 2 sup- Y Y Y N N Y
tures port
General fea- Scatternet support Y Y Y N N Y
tures
General fea- Maximum of seven simultaneous Y Y Y N N Y
tures ACL connections — Central links
General fea- Automatic packet type selection Y Y Y N N Y
tures
General fea- Bluetooth - 2.1 to 5.0 specification Y Y Y N N Y
tures support
General fea- Low power sniff Y Y Y N N Y
tures
General fea- Deep sleep using out-of-band Y Y N N N N
tures
General fea- Wake on Bluetooth (SoC to host) Y Y Y N N Y
tures
General fea- Independent reset (in-band)1 Y Y Y Y N Y
tures
General fea- Independentreset (out-band)1l Y Y N N N N
tures
General fea- Firmware download (parallel)1 Y Y N N N N
tures
General fea- RF testmode Y Y Y N N Y
tures
Bluetooth ACL (DM1, DH1, DM3, DH3, DM5, Y Y Y N N Y
packet type DHS5, 2-DH1, 2-DH3, 2-DHS5, 3-DH1,
supported 3-DH3, 3-DH5)
Bluetooth SCO (HV1, HV3) Y Y Y N N Y
packet type
supported
Bluetooth eSCO (EV3, EV4, EV5, 2EV3, 3EV3, Y Y Y N N Y
packet type 2EVS5, 3EV5)
supported
Bluetooth A2DP source/sink Y Y Y N N Y
profiles sup-
ported
Bluetooth AVRCP target/controller Y Y Y N N Y
profiles sup-
ported
Bluetooth HFP Dev/AG Y Y Y N N Y
profiles sup-
ported
Bluetooth OPP server/client Y Y Y N N Y
profiles sup-
ported
Bluetooth SPP server/client Y Y Y N N Y
profiles sup-
ported
Bluetooth HID target/device Y Y Y N N Y
profiles sup-
ported
Bluetooth au- PCM NBS central/peripheral Y Y Y N N Y
dio features
Bluetooth au- PCM WABS central/peripheral Y Y Y N N Y
dio features

1.8. Wireless 345

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE

Features

Sub features

Generic features

Generic features

Generic features

Generic features

Bluetooth profile support
Bluetooth profile support
Bluetooth profile support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth LE 4.0 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.1 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 4.2 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.0 support
Bluetooth 5.2 support
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2
Bluetooth LE audio supportl 2
Bluetooth LE audio support1 2

Maximum 16 Bluetooth LE connections (central role)

Deep sleep using out-of-band

Wake on Bluetooth LE (SoC to Host)

RF Test mode

Bluetooth LE GATT

Bluetooth LE HID over GATT

Bluetooth LE GAP

Low Energy physical layer

Low Energy link layer

Enhancements to HCI for Low Energy
Low energy direct test mode

Low duty cycle directed advertising
Bluetooth LE dual mode topology
Bluetooth LE privacy v1.1

Bluetooth LE link layer topology
Bluetooth LE secure connection
Bluetooth LE link layer privacy v1.2
Bluetooth LE data length extension

Link layer extended scanner filter policies
Bluetooth LE 2 Mbps support

High duty cycle directed advertising
Low Energy advertising extension

Low Energy long range

Low Energy periodic advertisement
Low Energy power control

Isochronous channel

Broadcast LE Audio BIS source
Broadcast LE Audio BIS sink

Broadcast LE Audio BIG Validation
Broadcast LE Audio Phy: 1M/2M/ coded
Broadcast LE Audio framed mode
Broadcast LE Audio unframed mode
Broadcast LE Audio sequential packing
Broadcast LE Audio: Mono and Stereo
Broadcast LE Audio BIS encrypted audio
Broadcast LE Audio BIS unencrypted audio
Unicast LE Audio CIS source

Unicast LE Audio CIS sink

Unicast LE Audio CIG validation

Unicast LE Audio CIS synchronization
Unicast LE Audio Phy: 1M/2M/ coded
Unicast LE Audio framed mode

Unicast LE Audio unframed mode
Unicast LE Audio sequential packing
Unicast LE Audio: mono and stereo
Unicast LE Audio CIS encrypted audio
Unicast LE Audio CIS unencrypted audio
Unicast LE Audio TX/RX and bidirectional traffic

346

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Table 7 - continued from pre\

Features

Sub features

Bluetooth LE audio supportl 2

Bluetooth LE audio supportl 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

Bluetooth LE audio support1 2

BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM Coexistence mode (shared antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)
BCA TDM coexistence mode (separate antenna)

ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms
Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kE
LE Audio Auracast use cases: Auracast streaming 2 BISes
LE Audio Unicast use cases: Unicast streaming 2 CISes
LE Audio Unicast Use cases: Unicast streaming 4 CISes
A2DP + Auracast/Unicast Bridge use cases — CIS/BIS

STA + Bluetooth coexistence

STA + Bluetooth LE coexistence

STA + Bluetooth + Bluetooth LE coexistence

AP + Bluetooth coexistence

AP + Bluetooth LE coexistence

AP + Bluetooth + Bluetooth LE coexistence

STA + Bluetooth coexistence

STA + Bluetooth LE coexistence

STA + Bluetooth + Bluetooth LE coexistence

AP + Bluetooth coexistence

AP + Bluetooth LE coexistence

AP + Bluetooth + Bluetooth LE coexistence

Note: Details of the tested Bluetooth LE Audio use cases:

e Number of streams:

— 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

— 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

— 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

PHY: 2M and 1M

* Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

» Packing: sequential and interleaved

* Bit rate: maximum 96kbps

— For 1-CIG with upto 3-CIS: maximum bit rate 96kbps
— For 1-CIG with 4-CIS: maximum bit rate 80kbps
— For 1-BIG with 4-BIS: maximum bit rate 80kbps

— For 2-CIG cases: maximum bit rate 80kbps

* Mode: unframed mode

* 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

» Bluetooth + Bluetooth LE Audio

* A2DP + Bluetooth LE Audio bridging support

* A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |

PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.

Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR and Wi-Fi co-
existence scenarios such as LE audio + BR/EDRlink or LE audio + Wi-Filink. From the perspective

1.8. Wireless

347

MCUXpresso SDK Documentation, Release 25.12.00

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea- Spinel over SPI Y N N
tures

General fea- OpenThread RCP Mode implementing Thread1.3 Y N N
tures

General fea- 802.15.4-2015 MAC/PHY as required by Thread Y Y Y
tures 1.3

General fea- OpenThread Border Router (OTBR) v1.1 Y Y Y
tures

General fea- Direct/indirect transmission with/without ACK Y Y Y
tures

General fea- 802.15.4 CSL parent feature implementation Y Y Y
tures

General fea- Enhanced Frame Pending Y Y Y
tures

General fea- Enhanced keep alive Y Y Y
tures

General fea- Router Y Y Y
tures

General fea- Leader Y Y Y
tures

General fea- Router Eligible End Device (REED) Y Y Y
tures

General fea- End Device (FED, MED) Y Y Y
tures

Zigbee features Coordinator

Zigbee features Router

Zigbee features End Device (RX ON)
Zigbee features R23

Zigbee features OTA Client

Zighee features OTA server

Matter features Matter over Wi-Fi
Matter features Matter over Thread

KRKZzZ22z222Z2Z
Z2zzzz2z2z22Z
HKZHKKKKAX

Parent topic:Features

Coexistence

348 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW6’ IW6" RW612
BCA_TDM separate antennal (lower and higher STA + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Mobile AP + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth LE + Wi-Fi Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 LE + Wi-Fi

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth LE2

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Blue- Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 tooth + Bluetooth LE

shared)

BCA_TDM separate antennal (lower and higher OpenThread + Wi-Fi Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4

shared)

BCA_TDM separate antennal (lower and higher Bluetooth + Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Bluetooth LE + Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Bluetooth + Bluetooth Y N N
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 LE + OpenThread + Wi-

shared) Fi

BCA_TDM separate antennal (lower and higher Single antenna configu- Y Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 ration

shared)

BCA_TDM separate antennal (lower and higher External Coexistence N Y Y
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4 PTA

shared)

Parent topic:Coexistence

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

1.8. Wireless 349

MCUXpresso SDK Documentation, Release 25.12.00

Features Macros to enable the feature Memory
impact
CSI CONTFIG_CSI Flash
- 60K,
RAM -
4K
AMI CONTFIG_CSI_AMI3 Flash -
2032K,
RAM -
772K
DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K
Independent CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal
reset
Parallel CONTFIG_WIFI_IND DNLD Minimal
firmware
download
Wi-Fi
Parallel CONTFIG_BT_IND_DNLD Minimal
firmware
download
Bluetooth
WPA3 enter- CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to Flash -
prise EAP-methods included] CONFIG_EAP TLS CONFIG _EAP PEAP 165K,
CONTFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON- RAM -
FIG_EAP_AKA CONFIG_EAP_AKA_ PRIME 18K
WPA2 enter- CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to Flash -
prise EAP-methods included] CONFIG_EAP TLS CONFIG_EAP_PEAP 165K,
CONTFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON- RAM -
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME 18K
Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash
- 10K,
RAM -
57K
802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON- Flash:
FIG_11AZ 52.78KB,
RAM :
121.1KB
802.11az CONTFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON- Flash:
FIG_11AZ 52.78KB,
RAM :
121.1KB
Non- CONFIG_FW_DNLD_ASYNC —
blocking
firmware
download
mechanism
Antenna di- CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -
versity
P2P CONFIG_WPA_SUPP_P2P -
Note:

» For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h

350

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory******

* Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.
[2] Prerequisite macros for 802.11mc and 802.11az features

[3] Enable PRINTF_FLOAT_ENABLE only for MCUXpresso IDE and specifically for the RT1060-
EVKC and RT1170-EVKB platforms

* Go to project properties > C/C++ Build > Settings > Preprocessor.
» Add PRINTF_FLOAT_ENABLE=1

88W8987 release notes

Package information
* SDK version: 25.12.00
Parent topic:88W8987 release notes

Version information
» Wireless SoC: 88W8987
» Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9
— 16 - Major revision
— 92 - Feature pack
— 21 - Release version
— p153.9 - Patch number
Parent topic:88W8987 release notes

Host platform
» All i MX RT platforms running FreeRTOS.
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
* Test tools
— iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1.8. Wireless 351

MCUXpresso SDK Documentation, Release 25.12.00

WFA certifications

STA | 802.11n

STA | 802.11ac

STA | PMF

STA | FFD

STA | SVD

STA | WPA3 SAE (R3)
STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup

Environment: Shield Room - Over the Air
External Access Point: ASUS AX88U

DUT: W8987 Murata (Module: 1ZM M.2) with EVK-MIMXRT1060 EVKC platform

DUT Power Source: External power supply
External Client: Apple MacBook Air
Channel: 6 | 36

Wi-Fi application: wifi_wpa_supplicant
Compiler used to build application: armgcc
Compiler Version: gcc-arm-none-eabi-13.2

iPerf commands used in test:

TCP TX

iperf -

¢ <remote_ip> -t 60

TCP RX

iperf -

S

UDP TX

iperf -

¢ <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

352

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

iperf -s -u -B <local__ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External APs: ASUS AX88U
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 52 60 63
WPA2-AES 50 51 60 62
WPA3-SAE 50 51 60 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

1.8. Wireless

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155
STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open security 124 119 228 235
WPA2-AES 118 107 228 204
WPA3-SAE 114 107 229 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 47 48 57 60
WPAZ2-AES 46 49 57 60
WPA3-SAE 47 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

354

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 127 141 227 217
WPAZ2-AES 124 127 227 198
WPA3-SAE 125 127 227 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests

» EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
* EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)
Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com- Description

po-
nent

Wi- WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Fi Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless

355

MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo- Description
nent

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo- Description
nent

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com- Description
ponent

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo- Description

nent

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo- Description

nent

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

356 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo- Description

nent

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues

Component Description
NA

Parent topic:88W8987 release notes

IW416 release notes

Package information
« SDK version: 25.12.00

Parent topic:/WW416 release notes

Version information
* Wireless SoC: IW416
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9
— 16 - Major revision

— 92 - Feature pack

1.8. Wireless 357

MCUXpresso SDK Documentation, Release 25.12.00

— 21 - Release version
— p153.9 - Patch number

Parent topic:/W416 release notes

Host platform
* All i MX RT platforms running FreeRTOS.
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
* Test tools
— iPerf (version 2.1.9)

Parent topic:/W416 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
* STA | 802.11n
STA | PMF
STA | FFD
STA | SVD
STA | WPA3 SAE (R3)
STA | QTT
Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.
Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.
Parent topic:Wi-Fi and Bluetooth certification

Parent topic:/W416 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u
* DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

* DUT Power Source: External power supply

358 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Client: Apple MacBook Air
* Channel: 6 | 36
» Wi-Fi application: wifi_wpa_supplicant
* Compiler used to build application: armgcc
* Compiler Version: gcc-arm-none-eabi-13.2
* iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local__ip>

Note: Read more about the throughput test setup and topology in 2.
Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 47 59 59
WPA2-AES 39 43 58 55
WPA3-SAE 39 45 57 53

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 72 59 95 87
WPA2-AES 69 58 116 92
WPA3-SAE 57 58 115 91

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 43 48 59 59
WPAZ2-AES 42 48 56 60
WPA3-SAE 42 47 57 58

1.8. Wireless

359

MCUXpresso SDK Documentation, Release 25.12.00

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 68 64 118 96
WPA2-AES 65 59 117 96
WPA3-SAE 69 59 118 96

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air
Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 41 45 52 54
WPA2-AES 42 45 53 53
WPA3-SAE 45 42 53 53

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 62 70 123 90
WPA2-AES 61 65 117 90
WPA3-SAE 61 65 118 87

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
Open security 44 45 58 57
WPA2-AES 42 45 55 56
WPA3-SAE 43 45 57 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 75 85 118 100
WPA2-AES 77 68 118 100
WPA3-SAE 77 69 118 100

Parent topic:Wi-Fi throughput
Parent topic:IW416 release notes

360 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

EU conformance tests
* EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
» EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:/W416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo- Description

nent

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo- Description
nent

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com- Description
ponent

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless 361

MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description

Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4

Component Description
= NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com- Description

ponent

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com- Description
ponent
Wi-Fi The DUT encounters a command response timeout during the execution of the wlan-

info command following UDP traffic tests.
Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW416 release notes

Known issues

Compo- Description

nent

Coex Wi-Fi connection in 2.4GHz is not stable, observed deauthentication within
10sec.

Parent topic:/W416 release notes

362 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in i. MX RT1170 EVKB
and . MX RT1060 EVKC.

Package information
* SDK version: 25.12.00
Parent topic:/W611/IW612 release notes

Version information
* Wireless SoC: IW611/IW612
» Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.10
— 18 - Major revision
— 99 - Feature pack
— 3 - Release version
— p27.10 - Patch number
Parent topic:/W611/IW612 release notes

Host platform
* .MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS
* Host interfaces
— Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)
— Bluetooth/Bluetooth LE over UART
— 802.15.4 over SPI (IW612 only)
* Test tools
— iPerf (version 2.1.9)
Parent topic:/W611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
* STA | 802.11n
* STA | PMF
* STA | FFD
*« STA | SVD
» STA | WPA3 SAE (R3)
* STA | 802.11ac
* STA | 802.11ax
« STA | QTT

1.8. Wireless 363

MCUXpresso SDK Documentation, Release 25.12.00

Refer to 6.
Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.
Parent topic:Wi-Fi and Bluetooth certification

Parent topic:/W611/IW612 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u
* DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform
* DUT Power Source: External power supply
* Client: Apple MacBook Air
* Channel: 6 | 36
» Wi-Fi application: wifi_wpa_supplicant
* Compiler used to build application: armgcc
* Compiler Version gcc-arm-none-eabi-13.2
¢ iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -¢ <remote_ip> -t 60 -u -B <local _ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

364 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

iPerfhost configuration and impact on throughput {#iperf host_configuration_and_impact_on_throughpt
To get the highest throughput, the throughput values shown in STA throughput and Mobile

AP throughput are measured with the maximum values of the default host configuration

macros. STA and AP throughput captured with the minimum values of the host configuration

macros shows the throughput numbers obtained when using the minimum values of the host

configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX SIZE 96 32

DEFAULT RAW_RECVMBOX SIZE 32 12

DEFAULT UDP_RECVMBOX_SIZE 64 12

DEFAULT _TCP_RECVMBOX SIZE 64 12

TCP_MSS 1460 536
TCP_SND_BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of the_host_configuration_macr
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

1.8. Wireless 365

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 51 64 63
WPA2-AES 51 50 62 62
WPA3-SAE 51 50 63 61

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 79 85 118 131
WPA2-AES 78 84 118 129
WPA3-SAE 78 83 118 130

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
Open security 50 52 63 64
WPA2-AES 49 51 63 63
WPA3-SAE 49 51 63 63

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 77 86 118 133
WPAZ2-AES 76 86 118 132
WPA3-SAE 79 86 118 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 56 59 76 76
WPA2-AES 56 59 74 75
WPA3-SAE 56 59 76 75

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX X RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (VHT)

366

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 88 95 118 177
WPA2-AES 87 94 118 175
WPA3-SAE 91 94 118 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (VHT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
Open security 121 102 118 200
WPA2-AES 121 103 118 200
WPA3-SAE 121 103 118 200

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 78 64 117 105
WPAZ2-AES 78 67 117 104
WPA3-SAE 79 65 117 97

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HE)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 95 91 118 199
WPA2-AES 93 90 118 200
WPA3-SAE 91 87 118 199

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HE)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
Open security 76 66 118 127
WPA2-AES 75 68 118 125
WPA3-SAE 75 68 118 126

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HE)

1.8. Wireless

367

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 105 69 118 200
WPA2-AES 104 70 118 200
WPA3-SAE 104 70 118 200

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open security 125 73 118 200
WPA2-AES 123 76 118 200
WPA3-SAE 123 76 118 200

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air
Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 54 61 60
WPA2-AES 50 55 61 60
WPA3-SAE 51 54 61 60

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open security 85 107 118 124
WPA2-AES 86 101 118 126
WPA3-SAE 84 102 118 126

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
Open security 51 43 63 60
WPA2-AES 50 43 62 60
WPA3-SAE 50 43 63 60

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 89 115 118 128
WPA2-AES 88 110 118 128
WPA3-SAE 88 115 118 128

368 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX

Open security 58 66 76 72
WPA2-AES 58 65 75 72
WPA3-SAE 58 65 75 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX

Open security 103 141 135 168
WPA2-AES 102 134 137 167
WPA3-SAE 102 134 139 167

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 137 180 182 218
WPA2-AES 130 174 181 218
WPA3-SAE 136 175 182 218

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 53 66 85 120
WPA2-AES 52 65 83 116
WPA3-SAE 52 65 83 118

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 86 100 133 132
WPA2-AES 83 100 135 134
WPA3-SAE 86 100 136 134

Mobile AP mode throughput - HE Mode

| 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 65 82 83
WPA2-AES 58 65 82 82
WPA3-SAE 58 65 81 81

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

1.8. Wireless

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 104 141 151 170
WPAZ2-AES 102 137 151 170
WPA3-SAE 103 136 150 170

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 138 180 189 219
WPA2-AES 135 175 190 218
WPA3-SAE 135 175 192 218

Parent topic:Wi-Fi throughput

Parent topic:I/W611/IW612 release notes

EU conformance tests

* EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)
* EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)
Parent topic:I/W611/IW612 release notes
Bug fixes and/or feature enhancements
Firmware version: 18.99.2.p7.19
Component Description
- NA
Parent topic:Bug fixes and/or feature enhancements
Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com- Description

po-

nent

Blue- Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
tooth streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming

sessions.

Parent topic:Bug fixes and/or feature enhancements

370

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com Description

po-
nent

Wi- 802.11R Fast BSS roaming works only with hostapd and does not work with standard

Fi APs (supporting 11R)

Blue DUT is not able to sustain a connection with the remote device that does extended ad-

tootl vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com Description

po-
nent

Wi- STAUT not sending Neighbor Advertisement packet after receiving Neighbor Solicitation

Fi packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Bluer When DUT works as CIS source and CIS Offset is 612us, high packet drops observed

tootl which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bhit rate.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com Description

po-
nent

Wi- After performing independent reset (out-of-band mode), the STAUT fails to connect to

Fi the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established

tootl with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo- Description

nent

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue- CIS Sink frequently fails to acknowledge CIS Source TX PDU.

tooth

1.8. Wireless 371

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16

Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com- Description
ponent

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,
with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
Component Description

Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:/W611/IW612 release notes

Known issues

Com Description

po-

nent

Blue Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-

tootl connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Parent topic:/W611/IW612 release notes

RW610/RW612 release notes

372 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Package information
* SDKversion: 25.12.00
Parent topic:RW610/RW612 release notes

Version information

» Wi-Fi firmware version: 18.99.6.p50
- rw61x_sb_wifi_a2.bin for A2
— 18 - Major revision
— 99 - Feature pack
— 6 - Release version
— p50 - Patch number

* Bluetooth LE firmware version: 18.25.6.p50
— rw61x_sb_ble_a2.bin for A2

— 18 - Major revision

25 - Feature pack

6 - Release version

p50 - Patch number
* 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p50

- rw61x_sb_ble_15d4_combo_a2.bin for A2
— 18 - Major revision
— 34 - Feature pack
— 6 - Release version
— p50 - Patch number

Parent topic:RW610/RW612 release notes

Host platform
* RW610/RW612 platform running FreeRTOS
* Test tools
— iPerf (version 2.1.9)
Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
* STA | 802.11n
* STA | PMF
* STA | FFD
« STA | SVD

1.8. Wireless 373

MCUXpresso SDK Documentation, Release 25.12.00

* STA | WPA3 SAE (R3)
» STA | 802.11ac
* STA | 802.11ax
« STA | QTT
Refer to 1.
Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: refer to 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio
Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread
Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u
* DUT: RW610/RW612
» External Client: Intel AX210
* Channel: 6 | 36
» Wi-Fi application: wifi_cli
* Compiler used to build application: armgcc

* Compiler version gcc-arm-none-eabi-13.2

374

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

* iPerf commands used in test:
TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -¢ <remote_ip> -t 60 -u -B <local ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.
Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

1.8. Wireless

375

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

376

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput
Parent topic:RW610/RWE612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com- Description
ponent

Zighee Zigbee Coordinator and Router are disconnected during BLE connection pairing and

bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo- Description

nent

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue- NCP cannot work after flash uart bins for both host and device side

tooth

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless

377

MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.6.p46 to 18.99.6.p47

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements
Parent topic:RW610/RW612 release notes

Known issues

Component Description
Wi-Fi —
Bluetooth LE —

Zigbee -

Coex =

Parent topic:RW610/RW612 release notes

IW610 release notes

Package information
* SDKversion: 25.12.00

Parent topic:I/W610 release notes

Version information
* Wireless SoC: IW610
* Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.5.p86
— 18 - Major revision
— 99 - Feature pack
— 5-Release version
— p86 - Patch number
Parent topic:I/W610 release notes

Host platform
* IW610 platform running FreeRTOS
* Test tools
— iPerf (version 2.1.9)

Parent topic:I/W610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

378 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:/WW610 release notes

Wi-Fi throughput

Throughput test setup
* Environment: Shield Room - Over the Air
* Access Point: Asus AX88u

DUT: IW610

External Client: Intel AX210

Channel: 6 | 36

» Wi-Fi application: wifi_cli

* Compiler used to build application: armgcc
* Compiler version gcc-arm-none-eahi-13.2
* iPerf commands used in test:

TCP TX

iperf -¢ <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.
UDP RX

iperf -s -u -B <local__ip>

Note: Read more about the throughput test setup and topology in 3.
Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u
STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

1.8. Wireless

379

MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 48 44 61 61
WPA2-AES 47 43 59 59
WPA3-SAE 47 43 59 59

380

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 49 46 64 63
WPA2-AES 48 45 62 61
WPA3-SAE 48 45 62 61

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction X RX X RX
Open security 54 50 73 73
WPA2-AES 53 49 73 72
WPA3-SAE 52 49 73 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 51 71 70
WPA2-AES 53 50 71 70
WPA3-SAE 52 50 71 70

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 59 56 93 90
WPA2-AES 57 53 94 84
WPA3-SAE 57 53 94 84

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz
Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 61 58 96 91
WPA2-AES 59 56 98 85
WPA3-SAE 59 55 98 85

Parent topic:Wi-Fi throughput

Parent topic:IWW610 release notes

Bug fixes and/or feature enhancements

1.8. Wireless

381

MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo- Description
nent

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.5.p76 to 18.99.5.p79

Component Description

Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:/W610 release notes

Known issues

Component Description
NA

Parent topic:/WW610 release notes

Abbreviations

Abbreviation Definition

A2DP Advanced audio distribution profile

AMPDU Aggregated MAC protocol data unit

AMSDU Aggregated MAC service data unit

AP Access point

BW Bandwidth

CCMP Counter mode CBC-MAC protocol

CSI Channel state information

CTS Clear To Send

DL Down link

EDCA Enhanced distributed channel access

ER Extended range

ERP Extended rate physical

GATT Generic attribute profile

HFP Hands free profile

HID Human interface device

HT High throughput

LDPC Low density parity check

MCS Modulation and coding scheme

MLME Mac layer management entity

OMI Operating mode indication

PMF Protected management frames

RTS Request to send

SAE Simultaneous authentication of equals

STA Station

continues on next page

382 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Table 8 - continued from previous page

Abbreviation Definition

TWT Target wake time

UL Up link

VHT Very high throughput

WEP Wired equivalent private
WEFD Wi-Fi direct

WMM Wireless multi-media

WPA Wi-Fi protected access
WPS Wi-Fi protected setup

WSC Wi-Fi Simple Configuration

References

1. Application note - AN13681 — Wi-Fi Alliance (WFA) Derivative Certification Process (avail-
able in the SDK package)

2. User manual - UM11442 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for i. MX
RT Platforms (available in the SDK package)

3. User manual - UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

4, Certification — Bluetooth controller - QDID (link)
5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

6. Technical note - TN00066 — Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page - Thread certified products (link)

8. Web page — Connectivity standard alliance (csa) - NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

9. Web page — Connectivity standard alliance (csa) - NXP RW610 Wireless MCU Development
Platform (link)

10. Application note - AN14634 — Kconfig Memory Optimizer (link)

1.8.2 EdgeFast Bluetooth

Currently we provide pdf version of those documentation, later release may convert the pdf
documentation to markdown for better review and aligned format.

» EdgeFast BT PAL API Reference Manual pdf.

MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction

Introduction Thisdocument provides an overview of the EdgeFast Bluetooth Protocol Abstrac-
tion Layer stack software based on FreeRTOS OS on the NXP board with variant wireless module
chipsets. This document covers hardware setup, build, and usage of the provided demo applica-
tions.

Stack API Reference EdgeFast Bluetooth Protocol Abstraction Layer is a wrapper layer on top
of the bluetooth host stack. Zephyr Bluetooth host stack API is used as the basis of the EdgeFast
Bluetooth Protocol Abstraction Layer with some enhancement on A2DP/SPP/HFP.

1.8. Wireless 383

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html

MCUXpresso SDK Documentation, Release 25.12.00

The APIs of the EdgeFast Bluetooth Protocol Abstraction Layer host stack are described in the
EdgeFast Bluetooth Protocol Abstraction Layer RM document.

Note: The online document of the Zephyr Bluetooth Host stack is available here: https://docs.
zephyrproject.org/latest/reference/bluetooth/index.html.

Parent topic:/ntroduction

Overview The EdgeFast Bluetooth Protocol Abstraction Layer host stack software is built based
on MCUXpresso SDK. The following chapter uses RT1060 as an example, other boards have sim-
ilar folder structure and corresponding document.

Folder structure The following figure shows the EdgeFast Bluetooth examples folder struc-
ture.
boards
evkmimxrt1060
edgefast_bluetooth_examples
a2dp_sink
a2dp_source
audio_profile
central_hpc
central_ht
central_ipsp
central_pxm
handsfree
handsfree_ag
peripheral_hps
peripheral_ht
peripheral_ipsp
peripheral_pxr
shell
spp
wifi_provisioning

wireless_uart

The following figure shows the EdgeFast Bluetooth Protocol Abstraction Layer host stack folder
structure.

384 Chapter 1. Middleware

https://docs.zephyrproject.org/latest/reference/bluetooth/index.html
https://docs.zephyrproject.org/latest/reference/bluetooth/index.html

MCUXpresso SDK Documentation, Release 25.12.00

v middleware
arm-pelion
canopen
Crank_Software
EAP

v edgefast_bluetooth
include
source

The following table provides information regarding the structure and description.

| Folder

| Description

| | | | |boards/
CMSIS/

devices/

docs/

middleware/

rtos/
tools/
| MCUXpresso SDK directory. Refer to Chapter 5

Release contents of MCUXpresso SDK Release Notes at root/docs/ MCUXpresso SDK Release Notes
for EVK-MIMXRT1060.pdf to know the details

| |boards/<board>/wireless/edgefast_bluetooth_examples

| EdgeFast Bluetooth Protocol Abstraction Layer host stack example projects| |middle-
ware/wireless/edgefast_bluetooth

| EdgeFast Bluetooth Protocol Abstraction Layer host stack source code

|
The EdgeFast Bluetooth folder includes two subfolders:
¢ include: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
headers.
* source: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
source code based on the Ethermind Bluetooth host stack APIs.

Parent topic:Overview

1.8. Wireless 385

MCUXpresso SDK Documentation, Release 25.12.00

Architecture The figure Architecture of EdgeFast Bluetooth Protocol Abstraction Layer demo
in MCUXpresso SDK below shows that the EdgeFast Bluetooth Protocol Abstraction Layer host
stack is integrated into the MCUXpresso SDK as a middleware component. It leverages the RTOS,
the board support, the peripheral driver/component, and other components in the MCUXpresso
SDK. The Bluetooth application is built on top of the EdgeFast Bluetooth Protocol Abstraction
Layer host stack and supports different peripheral features, Bluetooth features, and different
RTOSes required by the user.

MCUXpresso SDK has the dual-chip architecture defined by EdgeFast Bluetooth Protocol Abstrac-
tion Layer project, the Bluetooth application code, and the EdgeFast Bluetooth Protocol Abstrac-
tion Layer host stack running on the reference board. For example, MIMXRT1060-EVK and the
Linker Layer (LL) run on the Bluetooth modules like AW-AM457-USD, Murata Type 1XK, and Mu-
rata Type 1ZM and has single-chip architecture. Bluetooth Host stack and LL runs on the same
chip, and communicate with Internal Communication Unit IMU).

The communication between the host stack and the LL is implemented via the standard HCI
UART interface and PCM interface for voice, or the IMU interface.

For details about the different components in MCUXpresso SDK, see Getting Started with MCUX-
presso SDK User’s Guide (document MCUXSDKGSUG) at root/docs/Getting Started with MCUX-
presso SDK.pdf. For details on possible hardware rework requirements, see the hardware rework
guide document of the relative board. For example, Hardware Rework Guide for EdgeFast BT

MCUXpresso SDK

RTOS
(FreeRTOS)

Microcontroller Hardware

UART PCM

PAL.

386 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Overview

Features Thissection provides an overview of Bluetooth features, toolchain support, and RTOS
support.

Bluetooth features
* Bluetooth 5.0 compliant
* Protocol support
— L2CAP, GAP, GATT, RFCOMM, SDP, and SM

Note: The Enhanced Attribute (EATT) protocol is not supported in the current version.
However, the support will be available in a future version.

* Classic profile
- SPP, A2DP, and HFP
* LE profile
- HTP, PXP, IPSP, HPS
* Integrated the Fatfs based on USB Host MSD in SDK
* Digital Audio Interface including PCM interface for HFP

Parent topic:Features

Toolchain support
* JAR Embedded Workbench for ARM®
* MCUXpresso IDE
* Keil® MDK/uVision
» Makefiles support with GCC from Arm Embedded

Note: For details on IDE Development tools version details, see Section 3, Development tools
in MCUXpresso SDK Release Notes (document MCUXSDKMIMXRT106XRN). The Release Notes
document is available at root/docs/ MCUXpresso SDK Release Notes for EVK-MIMXRT1060.pdf.

Parent topic:Features

RTOS support
* FreeRTOSTMOS

Note: The FreeRTOS static allocation feature is required by Edgefast Bluetooth. The macro con-
figSUPPORT_STATIC_ALLOCATION needs to be set to enable this feature.

Parent topic:Features

Parent topic:Overview

Examples list

* The following examples are provided. Not all the examples are implemented on all the
boards. See the board package for a list of the implemented examples.

1.8. Wireless 387

MCUXpresso SDK Documentation, Release 25.12.00

— central_hpc (central http proxy service client): Demonstrates a basic Bluetooth Low

Energy Central role functionality. The application scans for other Bluetooth Low En-
ergy devices and establishes a connection to the peripheral with the strongest signal.
The application specifically looks for HPS Server and programs a set of characteristics
that configures a Hyper Text Transfer Protocol (HTTP) request, initiates request, and
reads the response once connected.

central_ht (central health thermometer): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for health thermometer sensor and reports the die tem-
perature readings once connected.

central_ipsp (central Internet protocol support profile): Demonstrates a basic Blue-
tooth Low Energy Central role functionality. The application scans for other Bluetooth
Low Energy devices and establishes connection to the peripheral with the strongest
signal. The application specifically looks for IPSP Service and communicates between
the devices that support IPSP. Once connected, the communication is done using IPv6
packets over the Bluetooth Low Energy transport.

central_pxm (central proximity monitor): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for Proximity Reporter.

peripheral beacon: Demonstrates the Bluetooth Low Energy Peripheral role, This ap-
plication implements types of beacon applications.

* beacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising Company Identifier; Beacon Identifier, UUID, A, B, C, RSSI.

* Eddystone: The Eddystone Configuration Service runs as a GATT service on the
beacon while it is connectable and allows configuration of the advertised data, the
broadcast power levels, and the advertising intervals.

* iBeacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising an Apple iBeacon.

peripheral_hps (peripheral http proxy service): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HTTP Proxy GATT Ser-
vice.

peripheral_ht (peripheral health thermometer): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HT (Health Ther-
mometer) GATT Service. Once a device connects, it generates dummy temperature
values.

peripheral_ipsp (peripheral Internet protocol support profile): Demonstrates the
Bluetooth Low Energy Peripheral role. The application specifically exposes the Inter-
net Protocol Support GATT Service.

peripheral_pxr (peripheral proximity reporter): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the Proximity Reporter
(including LLS, IAS, and TPS) GATT Service.

wireless uart: The application automatically starts advertising the wireless uart ser-
vice and connects to the wireless uart service after the role switch. The wireless UART
service is a custom service that implements a custom writable ASCII Char characteris-
tic (UUID: 01ff0101-ba5e-f4ee-5cal-eble5e4b1ce0) that holds the character written by
the peer device.

— spp (serial prot profile): Application demonstrates the use of the SPP feature.

- handsfree: Application demonstrating usage of the Hands-free Profile (HFP) feature.

388

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

handsfree_ag: Application demonstrating usage of the Hands-free Profile Audio Gate-
way (HFP-AG) feature.

a2dp_sink: Application demonstrating how to use the a2dp sink feature.

a2dp_source: Application demonstrating how to use the a2dp source feature.

audio_profile: Demonstrates the following functions.

* There are five parts working in the demo: AWS cloud, Android app, audio demo
(running on RT1060), U-disk, and Bluetooth headset.

% With an app running on the smartphone (Android phone), the end user connects
to the AWS cloud and controls the audio demo running on the RT1060 EVK board
through AWS cloud. Some operations like play, play next, and pause are used to
control the media play functionalities.

* Audio demo running on the RT1060 EVK board connects to the AWS through WiFi.
A connection establishes between the RT1060 EVK board and a Bluetooth headset.
To get the media resource (mp3 files) from the U-disk, an HS USB host is enabled,
and a U-disk with mp3 files is connected to RT1060 EVK board via the USB port. The
audio demo searches the root directory of the U-disk for the music files (only mp3
files are supported) and uploads the song file list to AWS. The song list is shown
in the app running on the smartphone. The music can then be played out via the
Bluetooth headset once end user controls the app to play the mps3 file.

— wifi_provisioning: Demonstrates the WiFi provisioning service that safely sends cre-
dential from phone to device over Bluetooth low energy. By default, AWS Wi-Fi pro-
visioning demo starts advertising if the Wi-Fi access point (AP) is not configured and
waits for the Wi-Fi AP configuration. After connecting to the Android APK, the demo
executes the request from cellphone and sends the response. When the Wi-Fi AP is con-
figured, the Shadow demo connects to the AWS via Wi-Fi and publishes the configured
Wi-Fi AP information.

— shell: Shell application demonstrating the shell mode of the simplified Adapter APIs.

Parent topic:Overview

Hardware For dual-chip implementation, the Bluetooth demo runs on a (reference board)
along with the ported EdgeFast Bluetooth Protocol Abstraction Layer API host stack. The Linker
Layer (LL) runs on a wireless module. A standard UART HCI and PCM is used to communicate
between the two boards, the IMU is used to communicate in between. The Bluetooth host and
controller stack run on different boards. The demo hardware requires two different boards; a
development board for host stack and application and a wireless module adapter board for con-
troller running. For example, the evkmimxrt1060 and uSD-15x15 Adapter Board for AW-AM457-
uSD board, or any of the supported Murata modules with the Murata uSD-M.2 adapter. For de-
tails on the board hardware requirement and board setting, see the following documents. For
one-chip implementation, the Bluetooth demo, EdgeFast Bluetooth Protocol Abstraction Layer
APTI host stack, and LL run on one chip and they communicate with IMU.

* Hardware rework guide document of the relative board, Hardware Rework Guide for
MIMXRT1060-EVK and AW-AM457-uSD, or Hardware Interconnection Guide for i. MX RT
EVKs and Murata M.2 modules.

* Readme file of the examples.

Reference boards list
* MIMXRT1170: For details, see the quick start guide of this reference board (MIMXRT1170).

* MIMXRT685-EVK: For details, see the quick start guide of this reference board (MIMXRT685-
EVK).

1.8. Wireless 389

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK

MCUXpresso SDK Documentation, Release 25.12.00

* MIMXRT595-EVK: For details, see the quick start guide of this reference board.
(MIMXRT595-EVK).

* MIMXRT1050-EVKB: For details, see the quick start guide of this reference board
(MIMXRT1050-EVKB).

Parent topic:Hardware

Dual-chip wireless module list

Module HCI

uSD-15x15 Adapter Board for AW-AM457-uSD UART
uSD-15x15 Adapter Board for AW-CM358-uSD UART
uSD-15x15 Adapter Board for AW-AM510-uSD UART
AW-CM358MA UART
AW-CM510MA UART
K32W061 UART

Murata uSD-M.2 Adapter (LBEEOZZ1WE-uSD-M2) and Embedded Artists 1ZM M.2 Mod- UART
ule (EAR00364)
Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1XK M.2 Mod- UART
ule (EAR00385)

For details on AzureWave module, see the quick start guide of this reference board AW-AM457-
uSD, AW-CM358-uSD, AW-CM358MA, AW-AM510-uSD, AW-CM510MA, and K32W061.

For Murata documentation, refer to the Quick Start Guide and User Guide here.

Note: The boards and wireless module lists are not random combination. For the wireless mod-
ule support list of specific board, see the readme.txt of each example.

Parent topic:Hardware

Demo This topic lists the steps to run a demo application using IAR, steps to run a demo ap-
plication using MCUXpresso IDE, and steps to download LL firmware from the reference board.
The following chapter uses RT1060 and peripheral_ht as an example.

Before you run the example, see the readme.txt in current the peripheral_ht directory and the
Hardware Rework Guide for EdgeFast BT PAL document to set the jumper and connect the wire-
less module with development board.

The uSD type wireless module is similar to the Development board connector in the Run an IAR
example section. If the module is M2 type, connect the module to the onboard M2 interface.

Run a demo application using IAR This document uses EVKRT1060 EdgeFast Bluetooth Proto-
col Abstraction Layer API example to describe the steps to open a project, build an example,
and run a project. For details, see Section 3 in Getting Started with MCUXpresso SDK User’s
Guide(document MCUXSDKGSUG) atroot/docs/Getting Started with MCUXpresso SDK.pdf.

Open an IAR example For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at:
<root>/boards/evkmimxrt1060/edgefast_bluetooth__examples/peripheral ht/iar
2. Open the IAR workspace file. For example, the highlighted *eww format file

390 Chapter 1. Middleware

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf
http://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_C_STD.pdf
https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf
https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_C_STD.pdf
https://www.nxp.com/products/wireless/thread/k32w061-41-high-performance-secure-and-ultra-low-power-mcu-for-zigbeethread-and-bluetooth-le-5-0-with-built-in-nfc-option:K32W061_41
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/nxp-imx

MCUXpresso SDK Documentation, Release 25.12.00

B ER

File Home Share View ~ @
= Cut = New item ~ L Open ~ Select all
ol moe | B & X =h B R0 [R
Pmat(nmcsl;nrk Copy Paste . Paste shortcut A:Iom:e (;zp‘y Da\'ete Rename fl:\z‘z,— Prop'ar‘ties B History EEInvart selection
Clipboard Organize New Open Select
« v 1 « boards > evkmimxrt1060 > edgefast_bluetooth_examples > peripheral_ht > iar ~ | O £ Search iar
~ Name - Date modified Type Size
3 Quick access
1] MIMXRT1062x0000¢_flexspi_nor.ick 2021/3/1 6:14 ICF File 7KB
fa nxp [peripheral_ntewd 2021/3/1 614 EWD File 395 KB
@ OneDrive - NXP ﬁ peripheral_htewp 2021/3/1 6:14 EWP File 192 KB
© peripheral_hteww 2021/3/1 6:14 EWW File 1KB
= This PC
P 3D Objects
[Desktop
Dacuments
‘ Downloads
) Music
=] Pictures
E Videos
9 0SDisk (C) .
4items 1item selected 956 bytes =

Parent topic:Run a demo application using IAR

Build an IAR example

1. Select flexspi_ nor_debug or flexspi_nor_ release configurations from the drop-down selector
above the project tree in the workspace.

File Edit View Project CMSIS-DAP Tools Window Help

N ORE S L%ELDC

flexspi_nor_debug

flexspi_ror_release
) @ peripheral_ht-flexspi_... +

W board ®
W bt_ble °
M CMSIS

2. Build the EdgeFast Bluetooth Protocol Abstraction Layer project.

1.8. Wireless 391

MCUXpresso SDK Documentation, Release 25.12.00

File Edit View Projet CMSIS-DAP Tools Window Help

N0 W@ = KK0 OC

Workspace v 0 X
flexspi_nor_debug -
Files L
SP b eripheral hi—ilcgaem
M board Options...
M bt_ble Mok
M CMSIS ake
M component Compile
= dlevice RebuldAl
W doc -
M drivers
M edgefast C-STAT Static Analysis >
i faifs
M framework Stop Build

Note: Wireless module does not have flash hardware and requires 512 KB image loaded
from board (such as RT1060) on system startup. The 512 KB image is kept on RT1060 side
and only flexspi_nor target is supported for Bluetooth examples. Other targets are not sup-
ported because memory size limit.

Parent topic:Run a demo application using IAR

Run an IAR example This document uses the peripheral_ht as an example to describe the
steps to run an example. For details on other projects and compilers, see the readme file in
the corresponding example directory.

The following figure shows the connection of RT1060 and the uSD wireless module.

1. Connect the USB debug console port to PC. For example, connect J14 of EVKRT1060 to the
PC.

2. Connect a 5V power source to the J1 jack in the Wireless module board.

3. Make the appropriate debugger settings in the project options window, as shown in the
figure below.

392 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Options for node “peripheral_ht"

Category. Factory Settings

General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver [Run to
Custom Build CMSIS DAP
Build Actions
Linker Setup macros
() Use mact fle()
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
TI Stellaris [1 Ovemide default

= main

Device description file

Mu-Link STOOLKIT_DIRS\CONFIG\debuggeriNXPIMIMXRT1062xxx6A.
PE micro

ST-LINK
Third-Party Driver
TI MSP-FET

TI XDS

Cancel

4. Click the Download and Debug button to flash the executable onto the board, as shown
in the following figure. After the download is complete, if you must test the function of
HFP, stop IAR debugging, and then connect the PCM interface. Reset the target board by

manually.
File Edit View Projet CMSIS-DAP Tools Window Help
Nome = XE0.DCc Je Qo> %2 B0 R0 RO = (0] -idh;
Workspace v 3 X
© Download and Debug (Ctri+D)
flexspi_nor_debug
Download the application and starf]
Files &G . - the debugger
ER peripheral ht-flexs [v | |
i board
bt ble

5. Linker layer (LL) Firmware running in wireless module loads from EVKRT1060 by SDIO
interface, so need take a bit time to download the LL firmware, “Initialize AW-AM457-uSD
Driver” prints in the debug console. For example, it depends on the firmware. For details,
see readme.txt.

Note: The projects are configured to use “CMSIS DAP” as the default debugger. Ensure that the
OpenSDA chip of the board contains a CMSIS. DAP firmware or that the debugger selection cor-
responds to the physical interface used to interface to the board.

Parent topic:Run a demo application using IAR

Parent topic:Demo

Run a demo application using MCUXpresso IDE This document uses peripheral_ht example
to describe the steps to open a project, build an example, and run a project on MCUXpresso IDE.

1.8. Wireless 393

MCUXpresso SDK Documentation, Release 25.12.00

For details, see Section 3 in Getting Started with MCUXpresso SDK User’s Guide (document MCUXS-

DKGSUG) at root/docs/Getting Started with MCUXpresso SDK.pdf and refer to the readme file in
the corresponding demo’s directory.

Open an MCUXpresso IDE example

1. Open MCUXpresso IDE and open an existing or a new workspace location.

. MCUXpresso IDE Launcher
Select a directory as workspace

MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: y C:\workspace

Browse...

[]Use this as the default and do not ask again
» Recent Workspaces

Launch Cancel

2. Drag and drop the package archive into the MCUXpresso Installed SDKs area in the lower
right of the main window.

@ Installed SDKs = [Properties X! Problems B Console ¢ Terminal s Image Info & Debugger Console ==

] $<>| =]
@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common 'mcuxpresso’ fi
Installed SDKs . Available Boards| Available Devices

Name SDK Version

Manifest Version Location

3. After the SDK is loaded successfully, select the Import the SDK examples(s)... to add ex-
amples to your workspace.

U Installed SDKs &) [Properties [Problems =g Progress & Console & Terminal G Image Info &} Debugger Console

@ ¢
@ Installed SDKs
& Quickstart Panel &2 =Variables e Breakpoints =8)))
To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common ‘mcuxpresso’ folder]
A~
- MCUXpresso IDE - Quickstart Panel Installed SDKs . Available Boards| Available Devices
—*= No project selected Name SDK Version
~ Create or import a project

Manifest Version Location

380 & \board_EVK-MIMXRT1060.zip

I 1 SDK_2.x_board_EVK-MIMXRT1060 I 28.0

= Ruild vnur nrniact

4. Select the evkmimxrt1060 board and click the Next button to select the desired example(s).

394

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

B soK Import Wizard

O X
® Importing project(s) for device: MIMXRT1062:c0wA using board: EVK-MIMXRT 1060 x @

. Board and/or Device selection page

- SDK MCUs B Available boards

MCUs from installed SDKs. Please select an available board for your project.
Please click above or visit |Supported boards for device: MIMXRT 106230004 ‘
Mcuxpresso.nxp.com to obtain

additional SDKs.

P 1%| &

NXP MIMXRT10623000¢A
~ MIMXRT1060
MIMXRT1062:000A

_ | i.MX RT1060 Evgluation Kit

|Th|s board is available from the SDK: SDK_2.x_board_EVK-MIMXRT 1060

Selected Device: MIMXRT 1062x0xxA using board: EVK-MIMXRT 1060
Target Core: cm/ Name SDK Versi.. Manifest.. Location

Description: iMX MIMXRT1062 600MHz, 512KB SRAM Microcontrollers 1 SDK_2.x board EVK-N 290 380 € <Commons\board_EVK-MI
(MCUs) based on ARM Cortex-M7 Core - - - - : -

SDKs for selected MCU

@

< Back Finish Cancel

5. Select the evkmimxrt1060 board EdgeFast Bluetooth example. For example, peripheral_ht.

6. Ensure to change SDK debug console from Semihost to UART.
7. Click Finish.

1.8. Wireless 395

MCUXpresso SDK Documentation, Release 25.12.00

SDK Import Wi

MIMXRT1060" SDK.

& The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2.x_board_EVK-

A

. Import projects

Project name prefix;| evkmimxrt1060 L Project name suffix: &
Use default location
Location: | CAworkspace\evkmimxrt 1060 Browse...
Project Type Project Options
@ CProject (C++ Project (I C Static Library () C++ Static Library SDK Debug Console () Semihodt @ UART J ' Example default
Copy sources
Import other files
Examples | 4 MR B E
‘type to filter ‘
Name Description Version
~ [m] = edgefast_bluetooth_examples
[= a2dp_sink The ethermind audio source with simplified application.
[] = a2dp_source The ethermind audio source with simplified application.
[l udio_profile The ethermind audio demo with simplified application.
[= central_hpc The ethermind hpc example with simplified application.
O entral_ht The ethermind hts example with simplified application.
[] = central_ipsp The ethermind ipsp example with simplified application.
[l entral_pxm The ethermind pxm example with simplified application.
[andsfree The ethermind bluetooth handsfree example with simplified application.
[andsfree_ag The ethermind handsfree AG example with simplified application.
O eripheral_hps The ethermind hps example with simplified application.
peripheral_ht The ethermind hts example with simplified application.
[l eripheral_ipsp The ethermind ipsp example with simplified application.
[= peripheral_pxr The ethermind pxr example with simplified application.
O pp The Bluetooth BR SPP example.
[] = wifi_provisioning The wifi provisioning example.
@ < Back Next > Cancel
Parent topic:Run a demo application using MCUXpresso IDE
Build an MCUXpresso IDE example
1. Select desired target for your project.
- I 5 FVAE R ATR AN

Build Configurations >
Build Targets >
Index >

Set Active
Manage...

> |V 1Debug (Debug build)
2 Release (Release build)

r DEoo..
RaailA All

EOIVIETTIUTY ==

2. Build MCUXpresso IDE EdgeFast Bluetooth Protocol Abstraction Layer project.

396

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

workspace - evkmimxrt1060_peripheral_ht/source/main.c - MCUXpresso IDE
File Edit Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

(=4 BY& v Qiw|m LS S/ ek - BON LI O~ QU-i®I~ v §lvs A Q iE|K %
 Project Explo... © % Peripherals+ i Registers #sFaults = O[3 mainc i = Outline 52 ®- Global Variables WP ewi=0
ellv|isv @ ¢ 1s/* A SDK Details

@ bt ble ~ 2 * Copyright 2021 NXP No SDK selected
8 component 3 * All rights reserved
3 device 4
5 PDX-License-Identifier: BSD-3-Clause
@ doc 6 %
& drivers 7
@ edgefast 8 #include "fs_debug_console.h”
@ ethermind 9
@ fatfs 10 #include "FreeRTOS.h"
@ framework ii #include "task.h'
5
& freertos 13 #include <peripheral_ht.h>
& linkscripts 14
@ Iwip 15 #include "pin_mux.h"
@ sdmmc 16 #include "clock_config.h"
v @ source 17 #include "board.h"
® app_configh 18 #include "fsl_adapter_uart.h” .

[edgefast_bluetooth_config.h
[FreeRTOSConfigh

(& mainc

4 peripheral_htc @ Installed SDKs
[peripheral_hth No search results available.

[semihost_hardfault.c To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common ‘mcuxpresso’ folder] Start a search from the search

08 M wH s @ 0O

%o

@ Installed SDKs &2 [T Properties (21 Problems =5 Progress G Console §?Terminal (s Image Info @ Debugger Console

<

S Installed SDKs "\ Available Boards| Available Devices| dialog...
SEE S B8 AT OEETRis 2| Name SOK Version Manifest Version Location

Ll #/SDK_2.x board_EVK-MIMXRT1060 290 380 £ \board_EVK-MIMXRT1060.zip

- MCUXpresso IDE - Quickstart Panel
=227 project: evkmimxrt1060_peripheral ht [Debug]

~ Create or import a project

B New project.
B8 import SDK example(s

® Import project(s) from file system.

~ Build your project

en
~ Debug your project E-E-B-

rm ¥ Debug v
O NXP MIMXRT1062000A* (evkmimx..eral ht)

Parent topic:Run a demo application using MCUXpresso IDE

Run an MCUXpresso IDE example For MCUXpresso IDE project running, all steps are similar
to Run an IAR example except the steps of downloading image from compiler.

To download MCUXpresso IDE image to board, click the Debug button to download the exe-
cutable file onto the board.

File Edit Source Refactor Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

=R¢ |®s~&~ @& Biw ENzceSRenERRiSsiev-iBOnILN MURS Rel- R g MR o Q sk
[&5 Project Explo... 5% 7 Peripherals+ !l Registers #Faults = O [& mainc &2 oo dl = B 2 Outline 2 ®-=Global Variables =8
en Element
1e/* Lp—l A Thereis no active editor that provides an outline.
~ 15 evkmimxrt1060_peripheral_ht <Debug> ~ 2 * Copyright 2021 NXP
@ Project Settings 3 * All rights reserved.
2 *
>
1 Binaries 5 * SPDX-License-Identifier: BSD-3-Clause
) Includes o %
@ CMsis 7
€ board 8 #include "fs1_debug_console.h”
 boards 9
& btble 10 #include "FreeRT0S.h"
& component 11 #include "task.h”
5 device 2
13 #include <peripheral_ht.h>
 doc
& drivers 15 #include "pin_mux.h"
5 edgefast 16 #include "clock_config.h"
 ethermind 17 #include "board.h"
& fatfs 18 #include "fsl_adapter_uart.h" .
8 framework s
5 freertos N - - — =
@ linkscripts @ Installed SDKs [Properties (2 Problems =g Progress @ Console &3 & Terminal [Image Info @ Debugger Console SO EM-&IME-B-=0 gM wH &5 =)
& wip CDT Build Console [evkmimxrt1060_peripheral_ht] 5t
G NONE - €a01-ECL ~M0SLULLD ~L L: \WOrKSPACE \EVRILIKI {1000 _PEr IpIEral i1t \€ LHErmING\DIUE (00T PFIVATENI 10 ~ALLIKEr ~Tiap= EVKIINKFLIon
& sdmmc Memory region Used Size Region Size %age Used No search results available.
~ @ source . BOARD_FLASH: 988680 B 5568 KB 17.34% Start a search from the search
D me emnfinn NVM_region: 64 KB 64 KB 100.00% dialog..
O Quickstart Panel 5 (- Variables ®e Breakpoints =8 SRAM_OC: 315012 B 768 KB 40.17%
N SRAWH_DTC: 15708 B 128 KB 11.98%
I8 MCUXpresso IDE - Quickstart Panel SRAM_TTC: 6 6B 128 k8B 0.60%
=) project: evkmimurt1060_peripheral_ht [Debug] BOARD_SDRAM: oG8 30 1B 0.00%
NCACHE_REGION: 0 GB 2 M8 0.00%
~ Create or import a project Finished building target: evkmimxrt1060_peripheral_ht.axf
: /nxp/MCUXpressoIDE_11.3.0_5149_alpha/ide/plugins/com.nxp.mcuxpresso. tools.win32_11.3.0. uildtools/bin/make --no-prin
B New project C: /nxp/MCUX; IDE_11.3.0_5149_alpha/ide/plugins/ tools.win32_11.3.0.202008311133/buildtools/bin/mak i
B import SDK example(s), Performing post-build steps
® import project’s) from file system. arm-none-eabi-size "evkmimxrt1060_peripheral_ht.axf"; # arm-none-eabi-objcopy -v -0 binary "evkmimxrt1060_peripheral ht.axf" “evkmi
)) text data bss dec hex filename
~ Build your project 979768 74448 303756 1357972 14b894 evkmimxrt1060_peripheral_ht.axf
A Build
 Clean 14:14:39 Build Finished. @ errors, © warnings. (took 1m:34s.429ms)
~ Debug your project 5
n ¥ Debug v o< R

Parent topic:Run a demo application using MCUXpresso IDE

Parent topic:Demo

Run a demo application using MDK This document uses peripheral_ht example to describe
the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in the Getting Started with MCUXpresso SDK User’s Guide
(document: MCUXSDKGSUG) in the directory root/docs/ and the readme file in the corresponding
demo’s directory.

1.8. Wireless 397

MCUXpresso SDK Documentation, Release 25.12.00

Open an MDK project For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at: <root>/boards/evkmimxrt1060/
edgefast_ bluetooth__examples/peripheral ht/mdk.

2. Open the mdk workspace file. For example, the highlighted *uvmpw format file.
dume (D) » test > board_EVE-MIMXRTI080 » boards » evkmimxrt1060 » edgefast_bluetooth_examples » peripheral_ht » mdk

o

Marne Type Size

| evkmimuxrt1060_flexspi_nor.ini Configuration settings KB
_'j MIMARTT 0620 _flexspi_nor File Explorer Command TEB
peripheral_ht.uvmpw E&ision Multi-Project 1KE
| peripheral_ht.uvopt: UVOPTX File 11 KB
peripheral_ht.uvprojx B&isionS Project 313 KB

Parent topic:Run a demo application using MDK

Build an MDK example To build an MDK example:

1. Select flexspi_nor_debug or flexspi_nor._release configurations from the drop-down selector
above the project tree in the workspace.

KA D:\test\board_EVK-MIMXRT1060\boards\evkmimuxrt1060\edgefast,
File Edit View Project Flash Debug Peripherals Tools

F‘lﬁdﬂ\fs-q:s\ﬂ o~ | “.H“IE

Project L X |
= & WorkSpace

> R

2. Click the highlighted icon to build the EdgeFast Bluetooth Protocol Abstraction Layer
project.

KA D:\test\board_EVK-MIMXRT1060\boards\evkmimxrt1060\edgefast
File Edit View Project Flash Debug Peripherals Tools
ﬁﬁdﬂ\ -::5.\41 f*-|“.\1b1&

\-
fon=-

‘xi{,
E.
[
ﬁ
E
3:
=
=
=]
o
m
]
Ei
=
e
B
E
<

Project
SRE? WorkSpace

- PR

398 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo application using MDK

Run an MDK example For MDK project running, all steps are similar to Run an IAR example
except the steps of downloading image from compiler.

To download the MDK image to the board, click the Debug button. The executable file downloads
to the board.

KA D:test\board_EVK-MIMXRT1060\boards\evimimurt1060\edgefast_bluetooth_examples\peripheral_ht\mdk\peripheral_ht.uvprojx - pVision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

= o iE iE @ bt_shellTestModelnit B & Q- G &- B~ X
I;I l:l k:é' per\pheral,hﬂlexspl,nmv ,5',\ t % 'Q" A} @
Project I x |
=let) WorkSpace
- Project: peripher:
Parent topic:Run a demo application using MDK

Parent topic:Demo

Run a demo application using Arm GCC This document uses peripheral_ht example to de-
scribe the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in Getting Started with MCUXpresso SDK User’s Guide (docu-
ment: MCUXSDKGSUG) at root/docs/ and the readme file in the corresponding demo’s directory.

Setup tool chains See the section “Run a demo using Arm GCC” of getting start document. For
example, Getting Started with MCUXpresso SDK for MIMXRT1160-EVK.

Parent topic:Run a demo application using Arm GCC

Build a GCC example To build a GCC example:

1. Change the directory to the project directory: <install dir>\boards\evkmimxrt1060\
edgefast_ bluetooth__examples\peripheral _ht\armgcc.

2. Run the build script.
For windows, the script is build_flexspi_nor_debug.bat/ build_flexspi_nor_release.bat.

The build output is shown in the following figure.

pheral ht. elf

Parent topic:Run a demo application using Arm GCC

1.8. Wireless 399

MCUXpresso SDK Documentation, Release 25.12.00

Run a GCC example Refer to the section “Run a demo using Arm GCC” of the getting start
document. For example, see Getting Started with MCUXpresso SDK for MIMXRT1060-EVK. The
peripheral_ht.elf is the target to download.

Parent topic:Run a demo application using Arm GCC

Parent topic:Demo

Download Linker Layer firmware from the reference board Download the Linker Layer
(LL) Firmware from Reference board EVKRT1060 by SDIO interface before running the Bluetooth
Controller stack. The LL download is necessary because wireless module does not support flash.

Parent topic:Demo

Change board-specific parameters There are some board-specific parameters that can be
changed in the application layer for EdgeFast BT PAL.

Change HCI UART parameters Since the controller can support different baud
rates, the demo provides an interface with configurable baud rates. The func-
tioncontroller_hci_uart_get _configuration is used to get HCI UART parameters, including
the instance, default baud rate, which depends on the controller, running baud rate which
defined by macro BOARD_BT_UART_BAUDRATE and so on. If this function returns ‘0’ and the
running baud rate is inconsistent with the default baud rate, EdgeFast BT PAL switches the baud
rate of the controller to the running baud rate.

Parent topic:Change board-specific parameters

Change USB Host stack parameters Since the board supports multiple USB ports, the demo
provides a configurable interface for USB Host stack. The functionUSB_HostGetConfiguration
received the instance of USB for EdgeFast BT PAL. For the case where there is a USBPHY, the
demo configures the properties of the PHY throughUSB_HostPhyGetConfiguration.

Note: There are series of hex bytes printed on the console after the wireless module resets.
However, it does not impact the EdgeFast BT PAL application running.

Parent topic:Change board-specific parameters

Parent topic:Demo

Known issues This section provides a list of known issues in the release package.

Notes This section provides a list of notes to use EdgeFast Bluetooth stack
* the follow configuration items related to resource needs more attention
— CONFIG_BT_MAX_CONN The max connections that can be created.
— CONFIG_BT_MAX_PAIRED The max supported paired devices.

— CONFIG_BT_BUF_EVT_RX_COUNT The max received hci events and acl data packets
at one time if the sys work queue task is blocked. One example is: when LE connec-
tion is created and HCI_LE_Enhanced_Connection_Complete is received, the sys work
queue task is busy with processing the HCI_LE_Enhanced_Connection_Complete. If the
received hci events exceed CONFIG_BT_BUF_EVT_RX_COUNT, it may leads potential is-
sue, please increase value of the macro.

» All the EdgeFast Bluetooth API should be called only after EdgeFast Bluetooth is initialized.

* Don’t send HCI cmd from the sys work queue task or any stack’s callbacks.

400 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

EdgeFast BT PAL configuration documentation CONFIG_BT_BUF_RESERVE
Buffer reserved length, suggested value is 8.

CONFIG_BT_SNOOP

Whether enable bt snoop feature, 0 - disable, 1 - enable.
CONFIG_BT_HCI_CMD_COUNT

Number of HCI command buffers, ranging from 2 to 64. Number of buffers available for HCI
commands Range 2 to 64 is valid.

CONFIG_BT_RX BUF_COUNT

Number of HCI RX buffers, ranging from 2 to 255. Number of buffers available for incoming ACL
packets or HCI events from the controller Range 2 to 255 is valid.

CONFIG_BT_RX BUF_LEN

Maximum supported HCI RX buffer length, ranging from 73 to 2000. Maximum data size for each
HCI RX buffer. This size includes everything starting with the ACL or HCI event headers. Note
that buffer sizes are always rounded up to the nearest multiple of 4, so if this Kconfig value is
something else then there is some wasted space. The minimum of 73 has been taken for LE SC
which has an L2CAP MTU of 65 bytes. On top of this, The L2CAP header (4 bytes) and the ACL
header (also 4 bytes) which yields 73 bytes. Range is 73 to 2000.

CONFIG_BT_HCI_RESERVE

Reserve buffer size for user. Headroom that the driver needs for sending and receiving buffers.
Add a new ‘default’ entry for each new driver.

CONFIG_BT_DISCARDABLE_BUF_COUNT

Number of discardable event buffers, if the macro is set to 0, disable this feature, if greater than
0, this feature is enabled. Number of buffers in a separate buffer pool for events which the
HCI driver considers discardable. Examples of such events could be , for example, Advertising
Reports. The benefit of having such a pool means that if there is a heavy inflow of such events it
does not cause the allocation for other critical events to block and may even eliminate deadlocks
in some cases.

CONFIG_BT_DISCARDABLE_BUF_SIZE

Size of discardable event buffers, ranging from 45 to 257. Size of buffers in the separate discard-
able event buffer pool. The minimum size is set based on the Advertising Report. Setting the
buffer can save memory if with size set differently from that of the CONFIG_BT_RX_BUF_LEN.
range is 45 to 257.

CONFIG_BT_HCI_TX_STACK SIZE

HCI TX task stack size needed for executing bt_send with specified driver, should be no less than
512.

CONFIG_BT HCI_TX_PRIO
HCI TX task priority.
CONFIG_BT_RX_STACK_SIZE

Size of the receiving thread stack. This is the context from which all event callbacks to the appli-
cation occur. The default value is sufficient for basic operation, but if the application needs to
do advanced things in its callbacks that require extra stack space, this value can be increased to
accommodate for that.

CONFIG_BT_RX_PRIO
RX task priority.
CONFIG_BT_PERIPHERAL

1.8. Wireless 401

MCUXpresso SDK Documentation, Release 25.12.00

Peripheral Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Peripheral role support.

CONFIG_BT_BROADCASTER

Broadcaster Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
Select this for LE Broadcaster role support.

CONFIG_BT_EXT_ADV

Extended Advertising and Scanning support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. Select this to enable Extended Advertising API support. This
enables support for advertising with multiple advertising sets, extended advertising data, and
advertising on LE Coded PHY. It enables support for receiving extended advertising data as a
scanner, including support for advertising data over the LE coded PHY. It enables establishing
connections over LE Coded PHY.

CONFIG_BT_CENTRAL

Central Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Central role support.

CONFIG_BT_WHITELIST

Enable whitelist support. This option enables the whitelist API. This takes advantage of the
whitelisting feature of a Bluetooth LE controller. The whitelist is a global list and the same
whitelist is used by both scanner and advertiser. The whitelist cannot be modified while it is
in use. An Advertiser can whitelist which peers can connect or request scan response data. A
scanner can whitelist advertiser for which it generates advertising reports. Connections can be
established automatically for whitelisted peers.

This option deprecates the bt_le_set_auto_conn API in favor of the bt_conn_create_aute_le API.
CONFIG_BT DEVICE NAME

Bluetooth device name. Name can be up to 248 bytes long (excluding NULL termination). Can
be empty string.

CONFIG_BT_DEVICE_APPEARANCE

Bluetooth device appearance. For the list of possible values, see the link:
www.bluetooth.com/specifications/assigned-numbers.

CONFIG_BT_DEVICE_NAME_DYNAMIC

Allow to set Bluetooth device name on runtime. Enabling this option allows for runtime config-
uration of Bluetooth device name.

CONFIG_BT_ID_MAX

Maximum number of local identities, range 1 to 10 is valid. Maximum number of supported
local identity addresses. For most products, this is safe to leave as the default value (1). Range 1
to 10 is valid.

CONFIG_BT_CONN
Connection enablement, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
CONFIG_BT _MAX CONN

it is the max connection supported by host stack. Maximum number of simultaneous Bluetooth
connections supported.

CONFIG_BT_HCI_ACL_FLOW_CONTROL

Controller to host ACL flow control support. Enable support for throttling ACL buffers from the
controller to the host. This is useful when the host and controller are on separate cores, since it
ensures that we do not run out of incoming ACL buffers.

CONFIG_BT_PHY_UPDATE

402 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

PHY Update, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable support
for Bluetooth 5.0 PHY Update Procedure.

CONFIG_BT_DATA_LEN_UPDATE

Data Length Update. If the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable
support for Bluetooth v4.2 LE Data Length Update procedure.

CONFIG_BT _CREATE_CONN_TIMEOUT
Timeout for pending LE Create Connection command in seconds.
CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT

Peripheral connection parameter update timeout in milliseconds, range 1 to 65535 is valid. The
value is a timeout used by peripheral device to wait until it starts the connection parameters
update procedure to change default connection parameters. The default value is set to 5s, to
comply with BT protocol specification: Core 4.2 Vol 3, Part C, 9.3.12.2 Range 1 to 65535 is valid.

CONFIG_BT_CONN_TX_MAX

Maximum number of pending TX buffers. Maximum number of pending TX buffers that have
not yet been acknowledged by the controller.

CONFIG_BT_REMOTE_INFO

Enable application access to remote information. Enable application access to the remote in-
formation available in the stack. The remote information is retrieved once a connection has
been established and the application is notified when this information is available through the
remote_version_available connection callback.

CONFIG_BT_REMOTE_VERSION

Enable fetching of remote version. Enable this to get access to the remote version in the Con-
troller and in the host through bt_conn_get_info(). The fields in question can be then found in
the bt_conn_info struct.

CONFIG_BT_SMP_SC_ONLY

Secure Connections Only Mode. This option enables support for Secure Connection Only Mode.
In this mode device shall only use Security Mode 1 Level 4 with exception for services that only
require Security Mode 1 Level 1 (no security). Security Mode 1 Level 4 stands for authenticated
LE Secure Connections pairing with encryption. Enabling this option disables legacy pairing.

CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY

Force Out of Band Legacy pairing. This option disables Legacy and LE SC pairing and forces
legacy OOB.

CONFIG_BT_SMP_DISABLE_LEGACY_JW_PASSKEY

Forbid usage of insecure legacy pairing methods. This option disables Just Works and Passkey
legacy pairing methods to increase security.

CONFIG_BT_PRIVACY

Privacy Feature, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable local
Privacy Feature support. This makes it possible to use Resolvable Private Addresses (RPAs).

CONFIG_BT_ECC
Enable ECDH key generation support. This option adds support for ECDH HCI commands.
CONFIG_BT_TINYCRYPT_ECC

Use TinyCrypt library for ECDH. If this option is used to set TinyCrypt library which is used for
emulating the ECDH HCI commands and events needed by e.g. LE Secure Connections. In builds
including the Bluetooth LE host, if don’t set the controller crypto which is used for ECDH and if
the controller doesn’t support the required HCI commands the LE Secure Connections support
will be disabled. In builds including the HCI Raw interface and the Bluetooth LE controller, this

1.8. Wireless 403

MCUXpresso SDK Documentation, Release 25.12.00

option injects support for the 2 HCI commands required for LE Secure Connections so that hosts
can make use of those. The option defaults to enabled for a combined build with Zephyr’s own
controller, since it does not have any special ECC support itself (at least not currently).

CONFIG_BT_TINYCRYPT_ECC_PRIORITY
Thread priority of ECC Task.
CONFIG_BT_HCI_ECC_STACK_SIZE
Thread stack size of ECC Task.
CONFIG_BT_RPA

Bluetooth Resolvable Private Address (RPA)
CONFIG_BT_RPA_TIMEOUT

Resolvable Private Address timeout, defaults to 900 seconds. This option defines how often re-
solvable private address is rotated. Value is provided in seconds and defaults to 900 seconds (15
minutes).

CONFIG_BT_SIGNING

Data signing support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables data signing which is used for transferring authenticated data in an unencrypted
connection.

CONFIG_BT_SMP_APP_PAIRING_ACCEPT

Accept or reject pairing initiative. When receiving pairing request or pairing response queries,
the application shall either accept proceeding with pairing or not. This is for pairing over SMP
and does not affect SSP, which will continue pairing without querying the application. The ap-
plication can return an error code, which is translated into an SMP return value if the pairing is
not allowed.

CONFIG_BT_SMP_ALLOW_UNAUTH_OVERWRITE

Allow unauthenticated pairing for paired device. This option allows all unauthenticated pairing
attempts made by the peer where an unauthenticated bond already exists. This would enable
cases where an attacker could copy the peer device address to connect and start an unauthen-
ticated pairing procedure to replace the existing bond. When this option is disabled in order to
create a new bond the old bond must be explicitly deleted with bt_unpair.

CONFIG_BT_FIXED_PASSKEY

Use a fixed passkey for pairing, set passkey to fixed or not. With this option enabled, the applica-
tion will be able to call the bt_passkey_set() API to set a fixed passkey. If set, the pairing_confim()
callback will be called for all incoming pairings.

CONFIG_BT_BONDABLE

Bondable Mode, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This op-
tion enables support for Bondable Mode. In this mode, Bonding flag in AuthReq of SMP Pairing
Request/Response is set indicating the support for this mode.

CONFIG_BT_BONDING_REQUIRED

Always require bonding. When this option is enabled remote devices are required to always set
the bondable flag in their pairing request. Any other kind of requests will be rejected.

CONFIG_BT_SMP_ENFORCE_MITM

Enforce MITM protection, if the macro is set to 0, feature is disabled, if 1, feature is enabled. With
this option enabled, the Security Manager is set MITM option in the Authentication Requirements
Flags whenever local I0 Capabilities allow the generated key to be authenticated.

CONFIG_BT_OOB_DATA_FIXED

404 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Use a fixed random number for LESC OOB pairing. With this option enabled, the application
will be able to perform LESC pairing with OOB data that consists of fixed random number and
confirm value. This option should only be enabled for debugging and should never be used in
production.

CONFIG_BT_KEYS_OVERWRITE_OLDEST

Overwrite oldest keys with new ones if key storage is full. With this option enabled, if a pairing
attempt occurs and the key storage is full, then the oldest keys in storage will be removed to free
space for the new pairing keys.

CONFIG_BT_HOST_CCM

Enable host side AES-CCM module. Enables the software-based AES-CCM engine in the host. Will
use the controller’s AES encryption functions if available, or BT_HOST_CRYPTO otherwise.

CONFIG_BT_L2CAP_RX MTU

Maximum supported L2CAP MTU for incoming data, if CONFIG_BT_SMP is set, range is 65 to
1300, otherwise range is 23 to 1300. Maximum size of each incoming L2CAP PDU. Range is 23 to
1300 range is 65 to 1300 for CONFIG_BT_SMP.

CONFIG_BT_L2CAP_TX_BUF_COUNT

Number of buffers available for outgoing L2CAP packets, ranging from 2 to 255. Range is 2 to
255.

CONFIG_BT_L2CAP_TX FRAG_COUNT

Number of L2CAP TX fragment buffers, ranging from 0 to 255. Number of buffers available for
fragments of TX buffers.

Warning: Setting this to 0 means that the application must ensure that queued TX buffers never
need to be fragmented, that is the controller’s buffer size is large enough. If this is not ensured,
and there are no dedicated fragment buffers, a deadlock may occur. In most cases the default
value of 2 is a safe bet. Range is 0 to 255.

CONFIG_BT_L2CAP_TX _MTU

Maximum supported L2CAP MTU for L2CAP TX buffers, if CONFIG_BT_SMP is set, the range is
65 to 2000. Otherwise, range is 23 to 2000. Range is 23 to 2000. Range is 65 to 2000 for CON-
FIG_BT_SMP.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL

L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL

L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

Bluetooth BR/EDR support [EXPERIMENTAL] This option enables Bluetooth BR/EDR support.
CONFIG_BT_ATT_PREPARE_COUNT

Number of ATT prepares write buffers, if the macro is set to 0, feature is disabled, if greater
than 1, feature is enabled. Number of buffers available for ATT prepares write, setting this to 0
disables GATT long/reliable writes.

CONFIG_BT_ATT_TX_MAX

Maximum number of queued outgoing ATT PDUs. Number of ATT PDUs that can be at a single
moment queued for transmission. If the application tries to send more than this amount the calls
blocks until an existing queued PDU gets sent. Range is 1 to CONFIG_BT_L2CAP_TX BUF_COUNT.

CONFIG_BT_GATT_SERVICE_CHANGED

1.8. Wireless 405

MCUXpresso SDK Documentation, Release 25.12.00

GATT Service Changed support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
This option enables support for the service changed characteristic.

CONFIG_BT_GATT_DYNAMIC_DB

GATT dynamic database support, if the macro is set to 0, feature is disabled, if 1, feature is en-
abled. This option enables registering/unregistering services at runtime.

CONFIG_BT_GATT_CACHING

GATT Caching support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for GATT Caching. When enabled the stack registers Client Supported
Features and Database Hash characteristics which is used by clients to detect if anything has
changed on the GATT database.

CONFIG_BT_GATT_CLIENT

GATT client support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for the GATT Client role.

CONFIG_BT_GATT_READ_MULTIPLE

GATT Read Multiple Characteristic. Values support, if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables support for the GATT Read Multiple Characteristic
Values procedure.

CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS

Automatic Update of Connection Parameters, if the macro is set to 0, feature is disabled, if 1,
feature is enabled. This option, if enabled, allows automatically sending request for connection
parameters update after GAP recommended 5 seconds of connection as peripheral.

CONFIG_BT_GAP_PERIPHERAL PREF PARAMS

Configure peripheral preferred connection parameters. This configures peripheral preferred
connection parameters. Enabling this option results in adding PPCP characteristic in GAP. If
disabled it is up to application to set expected connection parameters.

CONFIG_BT_MAX _PAIRED

Maximum number of paired devices. Maximum number of paired Bluetooth devices. The min-
imum (and default) number is 1.

CONFIG_BT_MAX _SCO_CONN

Maximum number of simultaneous SCO connections. Maximum number of simultaneous Blue-
tooth synchronous connections supported. The minimum (and default) number is 1. Range 1 to
3 is valid.

CONFIG_BT_RFCOMM

Bluetooth RFCOMM protocol support [EXPERIMENTAL], if the macro is set to 0, feature is dis-
abled, if 1, feature is enabled. This option enables Bluetooth RFCOMM support.

CONFIG_BT RFCOMM _L2CAP MTU
L2CAP MTU for RFCOMM frames. Maximum size of L2CAP PDU for RFCOMM frames.
CONFIG BT HFP_HF

Bluetooth Handsfree profile HF Role support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. This option enables Bluetooth HF support.

CONFIG_BT_AVDTP

Bluetooth AVDTP protocol support [EXPERIMENTALY], if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables Bluetooth AVDTP support.

CONFIG_BT_A2DP
Bluetooth A2DP Profile [EXPERIMENTALY]. This option enables the A2DP profile.

406 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_A2DP_SOURCE

Bluetooth A2DP profile source function. This option enables the A2DP profile Source function.
CONFIG_BT_A2DP_SINK

Bluetooth A2DP profile sink function. This option enables the A2DP profile Sink function.
CONFIG_BT_A2DP_TASK_PRIORITY

Bluetooth A2DP profile task priority. This option sets the task priority. The task is used to process
the streamer data and retry command.

CONFIG_BT_A2DP_TASK STACK SIZE
Bluetooth A2DP profile task stack size. This option sets the task stack size.
CONFIG_BT_PAGE_TIMEOUT

Bluetooth Page Timeout. This option sets the page timeout value. Value is selected as (N * 0.625)
ms.

CONFIG_BT_DIS_MODEL

Model name. The device model inside Device Information Service.
CONFIG_BT_DIS_MANUF

Manufacturer name. The device manufacturer inside Device Information Service.
CONFIG_BT_DIS_PNP

Enable PnP_ID characteristic. Enable PnP_ID characteristic in Device Information Service.
CONFIG_BT_DIS_PNP_VID_SRC

Vendor ID source, range 1 - 2. The Vendor ID Source field designates which organization assigned
the value used in the Vendor ID field value. The possible values are:

* 1 Bluetooth SIG, the Vendor ID was assigned by the Bluetooth SIG
» 2 USB IF, the Vendor ID was assigned by the USB IF
CONFIG_BT _DIS_PNP_VID

Vendor ID, range 0 - OXFFFFE. The Vendor ID field is intended to uniquely identify the vendor
of the device. This field is used in conjunction with Vendor ID Source field, which determines
which organization assigned the Vendor ID field value. Note: The Bluetooth Special Interest
Group assigns Device ID Vendor ID, and the USB Implementers Forum assigns Vendor IDs, either
of which can be used for the Vendor ID field value. Device providers should procure the Vendor
ID from the USB Implementers Forum or the Company Identifier from the Bluetooth SIG.

CONFIG_BT_DIS_PNP_PID

Product ID, range 0 - OXFFFF. The Product ID field is intended to distinguish between different
products made by the vendor identified with the Vendor ID field. The vendors themselves man-
age Product ID field values.

CONFIG_BT_DIS_PNP_VER

Product Version, range 0 - OXFFFF. The Product Version field is a numeric expression identify-
ing the device release number in Binary-Coded Decimal. This is a vendor-assigned value, which
defines the version of the product identified by the Vendor ID and Product ID fields. This field
is intended to differentiate between versions of products with identical Vendor IDs and Product
IDs. The value of the field value is 0XJJMN for version J].M.N (J] - major version number, M - minor
version number, N - subminor version number); For example, version 2.1.3 is represented with
value 0x0213 and version 2.0.0 is represented with a value of 0x0200. When upward-compatible
changes are made to the device, it is recommended that the minor version number be incre-
mented. If incompatible changes are made to the device. It is recommended that the major
version number is incremented. The subminor version is incremented for bug fixes.

1.8. Wireless 407

MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_DIS_SERIAL_NUMBER

Enable DIS Serial number characteristic, 1 - enable, O - disable. Enable Serial Number character-
istic in Device Information Service.

CONFIG_BT_DIS_SERIAL_NUMBER_STR
Serial Number. Serial Number characteristic string in Device Information Service.
CONFIG_BT_DIS_FW_REV

Enable DIS Firmware Revision characteristic, 1 - enable, 0 - disable. Enable Firmware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_FW_REV_STR
Firmware revision. Firmware Revision characteristic String in Device Information Service.
CONFIG_BT_DIS_HW_REV

Enable DIS Hardware Revision characteristic, 1 - enable, 0 - disable. Enable Hardware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_HW_REV_STR
Hardware revision. Hardware Revision characteristic String in Device Information Service.
CONFIG_BT_DIS_SW_REV

Enable DIS Software Revision characteristic, 1 - enable, 0 - disable. Enable Software Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_SW_REV_STR

Software revision Software revision characteristic String in Device Information Service.
CONFIG_SYSTEM_WORKQUEUE_STACK _SIZE

System work queue stack size.
CONFIG_SYSTEM_WORKQUEUE_PRIORITY

System work queue priority.
CONFIG_BT_HCI_TRANSPORT_INTERFACE _TYPE

HCI transport interface type.
CONFIG_BT_HCI_TRANSPORT_INTERFACE_INSTANCE
HCI transport interface instance number.
CONFIG_BT_HCI_TRANSPORT_INTERFACE_SPEED

HCI transport interface rate. Configures the interface speed, for example, the default interface
is h4, the speed to 115200

CONFIG_BT _HCI_TRANSPORT TX THREAD
Whether enable HCI transport TX thread.
CONFIG_BT_HCI_TRANSPORT _RX THREAD
Whether enable HCI transport RX thread.
CONFIG_BT_HCI_TRANSPORT_RX_STACK SIZE
HCI transport RX thread stack size.
CONFIG_BT_HCI_TRANSPORT _TX STACK SIZE
HCI transport TX thread stack size.
CONFIG_BT_HCI_TRANSPORT_TX PRIO

HCI transport TX thread priority.

408 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_HCI_TRANSPORT_RX_PRIO
HCI transport RX thread priority.
CONFIG_BT_MSG_QUEUE_COUNT

Message number in message queue.

Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer

Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT1170-
EVKB and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect 76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56 and]57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

1.8. Wireless 409

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module Hardware
Rework Guide for MIMXRT1170-EVKB and Murata

2EL M.2 Module

This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP
1.MX MIMXRT1170-EVKB and the Murata 2EL M.2 solution - direct M.2 connection to Embedded
Artists’ Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* HCI UART rework
* PCM interface rework

* LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
* HCI UART rework
1. Remove resistors R183 and R1816.
2. Solder 0 ohm resistor to R404, R1901, and R1902.

410 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

S T T T
S T
iy,

MXRT1170-EVKB

(o
i 1T

Ui

LB

sy
i

6D 0.-0
a0t a0
- v

100:00
L

o
e

il
oE 8 o
. ' ualtd

e oo,

E TDA9108
0« S N\
o o

M5

[+ H]

* PCM interface rework
1. Disconnect header J79 and J80.

1.8. Wireless 411

MCUXpresso SDK Documentation, Release 25.12.00

2. Connect header J81 and J82.
3. Remove resistors R1985, R1986, R1987, R1988, R1992, R1993, R1994, and R1995.
4. Solder 0 ohm resistor to R228, R229, R232, R234, and R1903.

412 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

e T} »

PeeePH SeassdoN
PePead0000 VoG seow
= L]

L "
1iDo00
-

i

0 M

(< [<

5

2@0000C0000

T
-
L

[T

* LE Audio Synchronization interface rework (only used on sink side)
1. Connect J25-15 with J97.
2. Connect J25-13 with 2EL’s GPIO_27

1.8. Wireless 413

MCUXpresso SDK Documentation, Release 25.12.00

CA01 CA04
e
et cwsd o

414 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

‘ ’ Embedded
Artists

2EL M.2 Module,
Based on Murato

Sync_Signal LBDASPL2EL

3
© &

LBESS5PL2EL
SA2022008
000000001

Artists
lihl”LJ”

Parent topic:Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Adapter

Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM457-uSD. The AW-AM457-uSD user guide is available here.The hardware re-
work has one part:

* HCI UART rework

Hardware rework HCI UART rework
* R398 move from 1-2 to 2-3
* JP12 2-3

* Connect the pins of two boards as the following table.

1.8. Wireless 415

https://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_D_20201103.pdf

MCUXpresso SDK Documentation, Release 25.12.00

Pin Name AW-AM457- i.MXRT685 PIN NAME GPIONAME of i.MX RT685
uSD

UART _TXD]10 (pin 4) J27 (pin 1) US- FC4_RXD_SDA_MOSI_DATA

ART4_RXD

UART RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS

UART_RTS J10 (pin 6) J47 (pin9) USART4_CTS FC4_CTS_SDA_SSELO

UART_CTS J10 (pin 8) J27 (pin5) USART4_RTS FC4_RTS_SCL_SSEL1

GND J6 (pin 7) J29 (pin 6) GND GND

NXe

©2019 Nxp B.V.

HEER D Gl

1
N

78 N
E‘IIII!IIIII“ T IIINIIIIII“IR
s
1L LTI
2 M.2 CONN i
|
L

g

416

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Jumper Settings:

* Connect J4[2-3] for VIO 3.3 V supply
» Connect J11[2-3] for VIO_SD 3.3 V supply

PCM interface rework

Connect the pins of two boards as the following table.

Pin Name AW-AM457- i.MX PIN NAME of LMX GPIONAME of .MX RT685
usb RT685 RT685

PCM_IN]9 (pin 1) J47 (pin7) 1252_TXD FC2_RXD_SDA_MOSI_DATA

PCM_OUT]9 (pin 2) J28 (pin 4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA

PCM_SYNC]9 (pin 3) J28 (pin 5) 12S5_WS FC5_TXD_SCL_MISO_WS

PCM_CLK]9 (pin 4) J28 (pin 6) 12S5_SCK FC5_SCK

GND]9 (pin 6) J29 (pin7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i MX MIMXRT685-EVK
board and AW-CM358-uSD. The AW-CM358-uSD user guide is available here. The hardware re-

work has one part:
* HCI UART rework

Hardware rework HCI UART rework

R398 move from 1-2 to 2-3.

1.8. Wireless

417

http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf

MCUXpresso SDK Documentation, Release 25.12.00

Connect the pins of two boards as the following table.

Pin Name AW-CM358-USD

i.MXRT685

PIN NAME

GPIONAME of RT685

UART_TXD J10 (pin 4)
UART_RXD J10 (pin 2)
UART_RTS J10 (pin 6)
UART_CTS J10 (pin 8)
GND J6 (pin 7)

J27 (pin 1)
]J27 (pin 2)
J47 (pin 9)
J27 (pin 5)
J29 (pin 6)

USART4_RXD
USART4_TXD
USART4_CTS
USART4_RTS
GND

FC4_RXD_SDA_MOSI_DATA
FC4_TXD_SCL_MISO_WS
FC4_CTS_SDA_SSELO
FC4_RTS_SCL_SSEL1

GND

418

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Jumper Setting:
Connect J4[1-2] for VIO 1.8 V supply.

PCM interface rework

Connect the pins of two boards as the following table.

Pin Name AW-CM358- i.MXRT685 PIN NAME of RT685 GPIONAME of RT685

uSD
PCM_IN J11(pin1) J47 (pin7) 1252_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin5) 1285_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin 6) 1285_SCK FC5_SCK
GND J11 (pin 5) J29 (pin7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-AMS510-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i MX MIMXRT685-EVK
board and AW-AM510-uSD. The AW-AM510-uSD user guide is available here. The hardware re-

work has one part:
* HCI UART rework

Hardware rework
* HCI UART rework

1.8. Wireless

419

https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf

MCUXpresso SDK Documentation, Release 25.12.00

Connect the pins of two boards as the following table.

PinName AW-AM510-uSD i.MXRT685 PIN NAME GPIO NAME of RT685
UART_TXD J10 (pin 4) J27 (pin1) USART4 RXD FC4_RXD_SDA_MOSI_DATA
UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSELO
UART_CTS J10 (pin 8) J27 (pin5) USART4_RTS FC4_RTS_SCL_SSEL1

GND J6 (pin 7) J29 (pin 6) GND GND

Jumper Setting:

— Connect J4[2-3] for VIO 3.3 V supply

 PCM interface rework

Connect the pins of two boards as the following table.

PIN NAME ~ AW-AM510- i.MX PIN NAME GPIONAME of RT685

usD RT685 RT685
PCM_IN J11(pin 1) J47 (pin7) 1282_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin4) 12S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin5) 12S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin6) 12S5_SCK FC5_SCK
GND J11 (pin 6) J29 (pin7) GND GND

420

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD

Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT685-
EVK board and the Murata uSD-M.2 adapter. For details on the Murata uSD-M.2 Adapter, see

Murata’s uSD-M.2 webpage.

The hardware rework has one part:

* HCI UART rework

Hardware rework HCI UART rework :

. JP12 2-3

* Connect the pins of two boards as the following table using jumper cables included in Mu-

rata’s uSD-M.2 Adapter Kkit.

Pin name uSD-M.2 adapter i.MX RT685

pin

pin

Pin name of GPIO name of RT685
RT685

BT_UART_TXD_HO]9 (pin 1)
BT_UART_RXD_HO]9 (pin 2)
BT_UART_RTS_HO! J8 (pin 3)
BT_UART_CTS_HO! J8 (pin 4)

J27 (pin 1)
J27 (pin 2)
J47 (pin 9)
J27 (pin 5)

USART4_RXD FC4_RXD_SDA_MOSI_DATA
USART4_TXD FC4_TXD_SCL_MISO_WS
USART4_CTS FC4_CTS_SDA_SSELO
USART4_RTS FC4_RTS_SCL_SSEL1

1.8. Wireless

421

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter

MCUXpresso SDK Documentation, Release 25.12.00

J47

127

J13

I

J12

J8

Murata uSD-M.2 jumper settings:
* Both J12 and J13 = 1-2 (WLAN-SDIO = 1.8 V; and BT-UART and WLAN/BT-CTRL = 3.3 V)
* J1 =2-3 (3.3 Vfrom uSD connector)

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter

Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module This section is
a brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i MX MIMXRT685-
AUD-EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Em-
bedded Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:
* HCI UART rework

422 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Hardware rework HCI UART rework:
Mount R300~R305 A-B
Jumper Setting:

* Connect JP41[2-3]

141

J300 - J305

Dzon1 wee vy
MIMXRT685-AUD-EVK

Parent topic:Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i. MX MIMXRT595-EVK board and the Murata’s 2EL - direct M.2
connection to Embedded Artists’ Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* Debug console serial rework
* Host wake-up controller pin rework (H2C)

* Controller wake-up host pin rework (C2H)

Hardware rework
* Debug console serial rework
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.
* Host wake-up controller pin rework:

For details, refer Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and
Murata 1XK M.2 Module.

* Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK,
2. Solder OK ohm resistor on R33 of Murata 2EL M.2 Module
3. Solder 10K ohm resistor on the Murata 2EL. M.2 Module between TP1 and TP20.

1.8. Wireless 423

MCUXpresso SDK Documentation, Release 25.12.00

1 [-:ib .'.';.1_"' ,

I:.. .| ! N
et e &

{260 M.2 Modulel : ¥

k Baved on Murd®
§ LBESSPLZEL

& ZEL M.2 Hndule ey M.

C:IE.urbzdd—d Artlats A8 -ﬁazz
i 'FME."rhaddudAr"rli’r-; |.:r-| —
DESIGMNED iN m:cﬂE_- Ea
COOPERATTCN WITH :‘,'_ tals’

High o % - i
| s g S 1“51""3
e E307802 B

e LA 1 D_E S2HTLH

1'!111"1 e R _ -
o2z m artiste. B '

LU { N ||||||||'||l|||“||||

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
2EL M.2 Module

Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT595-
EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

* Debug console serial rework

Hardware rework Debug console serial rework:

No special rework is required, except the following to enable the debug port.
* JP41-2.
* J27 1 - TX of USB to serial converter
* J27 2 - RX of USB to serial converter

424 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

HINYILS

LI
L EG

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 1XK - direct M.2
connection to Embedded Artists EAR00385 (1XK) M.2 modules.

1.8. Wireless 425

MCUXpresso SDK Documentation, Release 25.12.00

The hardware rework has three parts:
* Debug console serial rework
» Host wake-up controller pin rework (H2C)

* Controller wake-up host pin rework (C2H)

Hardware rework Debug console serial rework:
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

Host wake-up controller pin rework:
Connect M.2 (pin 42) to JP26 (pin 4) with a wire.

Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK.

2. Solder 10K ohm resistor on the Murata 1XK M.2 Module at the location shown in the fol-
lowing figure.

=363 m 2202 8Y sis144y pappaqwi())

00 el
‘-' ﬂﬁ E POGa) 5

:uj
L ™

LBEESCJ1XK
SS1N24009
000033105

50

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
1XK M.2 Module

426 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT595-EVK
board and AW-AM510MA. The AW-AM510MA user guide is available here. The hardware re-
work has one part:

* Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.
* Connect J39 with external power.
* Connect JP4 1-2.
* J27 1 — TX of USB to serial converter.
* J27 2 — RX of USB to serial converter.

1.8. Wireless 427

https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_A_STD.pdf

MCUXpresso SDK Documentation, Release 25.12.00

*
E
=

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA

Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA This section is a brief
hardware rework guidance of the Ethermind Bluetooth stack on the NXP i. MX MIMXRT595-EVK
board and AW-CM358MA. The AW-CM358MA user guide is available here. The hardware rework

has one part:
* Debug console serial rework

428 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_E_STD.pdf

MCUXpresso SDK Documentation, Release 25.12.00

Hardware rework Debug console serial rework:
» Connect J39 with external power.
* JP41-2
* J27 1 - TX of USB to serial converter
* J27 2 - RX of USB to serial converter

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA

1.8. Wireless 429

MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i. MX MIMXRT1040-
EVK board and the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework
* PCM interface rework

* Wake pin rework

Hardware rework
1. HCI UART rework
* Solder R93 and R96
2. PCM interface rework
* Solder R70 and R79; remove R76 and R86; Connect J80.
3. Wake pin rework

* When using 2LL M.2 module, remove R456 and R457 to avoid the module has an impact
on boot configuration.

Note: Make sure to disconnect J80 when debugging. Otherwise, the debugger downloading fails.
Parent topic:Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i. MX MIMXRT1060-
EVKC and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:
* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect 76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56 and]57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

430 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter This sec-
tion is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX
MIMXRT1060-EVKC and the Murata 2EL M.2 solution - direct M.2 connection to Embedded Artists’
Rev-Al (2EL) M.2 modules.

The hardware rework has three parts:
* HCI UART rework
* PCM interface rework

* LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
* HCI UART rework
1. Mount R93, R96.
2. Remove R193.
3. Connect J109, connect]J76 2-3.
* PCM interface rework
1. Remove J54 and J55, connect J56, and J57.
2. Remove R220.
3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection
when downloading flash and reconnect it after downloading.

1.8. Wireless 431

MCUXpresso SDK Documentation, Release 25.12.00

* LE Audio Synchronization interface rework (only used on sink side)

1.
2. Remove R196, R201, R213, and R211.

3. Connect J110-1 (GPT2_CLK) to R2140 (SAI_MCLK).

4,

5. Connect ENET _MDC (GPT2_CAP2) with 2EL’s GPIO_27 (Sync Signal).

Remove J110 jumper cap.

Connect ENET_MDIO (GPT2_CAP1) with J97 (SAI_SW).

: w2
‘@
;

v il ‘
43
DC_SV_IN 445

432

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(] II"U‘ 000 :
OO EO R
RO rRRg NI
TR23091564 i oo e

1 80 J57
455 1 pe
54 §

cuopem

cnab

U
Jit
5

&
&
€
e
¢
c
-
3
I

1.8. Wireless 433

MCUXpresso SDK Documentation, Release 25.12.00

‘ ’ Embedded
Artists

2EL M.2 Module,
Based on Murato

Sync_Signal LBDASPL2EL

3
© &

LBESS5PL2EL
SA2022008
000000001

Artists
lihl”LJ”

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter

Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN547-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:
* M.2 UART interface
* M.2 SDIO interface

Hardware rework
* M.2 UART interface rework

434 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

— Mount R835
— Connect JP45 2-3 to supply 1.8V for GPI04
* M.2 SDIO interface rework

— Connect JP47 2-3 to supply 1.8V for GPIO2
— Remove R818, connect R823

— Remove R819, connect R824

— Remove R817, connect R822

— Remove R815, connect R816

— Remove R820, connect R825

— Remove R821, connect R826

Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN947-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:
¢ M.2 UART interface
* M.2 SDIO interface

Hardware rework
* M.2 UART interface rework
— Mount R835
— Connect JP45 2-3 to supply 1.8V for GP104
* M.2 SDIO interface rework
— Connect JP47 2-3 to supply 1.8V for GPIO2

1.8. Wireless 435

MCUXpresso SDK Documentation, Release 25.12.00

— Remove R818, connect R823
— Remove R819, connect R824
— Remove R817, connect R822
— Remove R815, connect R816
— Remove R820, connect R825

PROTO ONLY |

o not disfrib\.nl

=g

— Remove R821, connect R826

Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP IMXRT1050-EVKB
board and the Murata 1XK,1ZM and 2EL solution - direct M.2 connection to Embedded Artists’
EARO00385 (1XK) , EAR00364 (1ZM) or EAR00409 (2EL)M.2 modules. The hardware rework con-
sists of three parts:

¢ Murata uSDM
* HCI UART rework

Hardware rework
* Murata uSD-M.2 jumper settings
- J12 =1-2: WLAN-SDIO & BT-PCM =18V
— J13 =1-2: BT-UART & WLAN/BT-CTRL =3.3V
- J1=2-3: 3.3V from uSD connector
* HCI UART interface rework

Connect the TX/RX/RTS/CTS pins of the two boards as show in Table 1 using the jumper
cables included in the Murata’s uSD-M.2 Adapter kit as shown in the following table.

436 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Pin name uSD-M.2 i.MX RT1050- Pin name of GPIO name of

adapter pin EVKB pin RT1050-EVKB RT1050-EVKB
BT_UART_TXD_]9 (pin 1) J22 (pin 1) LPUART3_RXD GPIO_AD_B1 07
BT_UART_RXD_]9 (pin 2) J22 (pin 2) LPUART3_TXD GPIO_AD_B1_06
BT _UART_RTS_]]J8 (pin 3) J23 (pin 3) LPUART3_CTS GPIO_AD_B1 04
BT_UART_CTS_]]J8 (pin 4) J23 (pin 4) LPUART3_RTS GPIO_AD_B1_05
GND J7 (pin 7) J25 (pin 7) GND GND

Parent topic:Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module

Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MIMXRT1180 board
and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EARO00385 (1XK), EAR00364 (1ZM), Rev-A1l (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

* HCI UART rework

* PCM interface rework

Hardware rework
* HCI UART rework:
— Remove: R124,R126
- Mount R696, R697
— Connect J57 [2-3], J76 [2-3]
* PCM interface rework
— Mount R699
— Disconnect]J78 J79
— Connect J80 J81

1.8. Wireless

437

MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter This section
is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and X-FRDM-WIFI-M.2 or the Murata’s 2LL EAR00500 (2LL) M.2 modules solution.

The hardware rework consists of one part:

» UART interface rework

Hardware rework

» UART interface rework
— Remove SJ11 1-2, connect SJ11 2-3
— Remove SJ10 1-2, connect J1-3 to J9-26

* X-FRDM-WIFI-M.2 jumper setting
— Connect J8(On X-FRDM-WIFI-M.2) for 1.8V
— Connect J24(On X-FRDM-WIFI-M.2) for 3.3V
— Connect J19(On X-FRDM-WIFI-M.2) for 1.8V
— Connect J25(0On X-FRDM-WIFI-M.2) for 3.3V
— Connect J15(0On X-FRDM-WIFI-M.2) for 1.8V
- Connect J16(On X-FRDM-WIFI-M.2) for 3.3V
— Connect J17(0On X-FRDM-WIFI-M.2) for 1.8V

438 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

thn P’

— Connect J18(On X-FRDM-WIFI-M.2) for 3.3V

Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510 This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and FRDM-IW416-AW-AM510 board. The hardware rework consists of two parts:

» UART interface rework
e FRDM-IW416-AW-AM510

Hardware rework
* UART interface rework
— Remove SJ11 1-2, connect SJ11 2-3
— Remove SJ10 1-2, connect J1-3 to J9-26
* FRDM-IW416-AW-AM510 jumper setting
— Connect J16 2-3 for 3.3V supply
— Connect J17 2-3 for 3.3V UART voltage level

1
Ao

aﬂua&oeo

\n;a" ,rs'-a‘,s.‘\

sJ10

é; () (@om
4 wRIBT 1
0 3

— Connect]7 2-3 for 3.3V SDIO voltage level

1.8. Wireless 439

MCUXpresso SDK Documentation, Release 25.12.00

c26 Smcai
R S prpgate
RI3
Raz &
c21

il S =)
il Li? Lt |
1 omr O OE 0

gz 111 |

TPITPS
5 ; Ern 7 RS
'~ o™

.IEI'_EJ,

U4
4]

mmmnn

ol BITTTET

R25
R2T
PP S

(o O W= OO

==k

Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064

Introduction NXP supports Bluetooth/Bluetooth Low Energy on RT1060EVK and RT1060EVKC.
RT1064 has the same MCU die with RT1060EVK and RT1060EVKC and therefore it is possible to
migrate the examples.

This document takes peripheral_ht as an example and describes the steps to migrate EdgeFast
examples from RT1060EVK to RT1064 (based on SDK 2.13.0) and from RT1060EVKC to RT1064
(based on SDK 2.14.0) with different toolchains including IAR, Arm GCC, and MDK.

Migrate examples from RT1060EVK to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDKtoolchains.

Common steps
1. Download SDK_2.13.0_EVK-MIMXRT1060 and SDK_2.13.0_EVK-MIMXRT1064.

2. Copy the following folders from RT1060EVK package to RT1064 package: <install dir>/
components/internal_flash/ <install_dir>/middleware/edgefast_ bluetooth/ <install_dir>/
middleware/wireless/.

440 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

3. Create a folder named edgefast_bluetooth__examples/ under <rt1064_install_dir>/boards/
evkmimxrt1064,/.

4. Copy the entire folder from <rt1060evk install dir>/boards/evkmimxrt1060/
edgefast_ bluetooth__examples/peripheral ht/to < rt1064_install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064__install_dir>/boards/
evkmimxrt1064/demo_apps/hello world/ to <rt1064 installed>/boards/evkmimxrt1064/
edgefast__bluetooth__examples/peripheral _ht/ to replace the previous files.

6. Add #define EDGEFAST_ BT_LITTLEFS MFLASH 1 in <rt1064_install_dir>/boards/
evkmimxrt1064/edgefast_ bluetooth__examples/peripheral ht /app_ config.c.

7. Make the following changes in <rtl064 installed>/boards/evkmimxrt1064/
edgefast_ bluetooth /peripheral ht/board.h.

72 #define BOARD_FLASH SIZE (@x500006L) ¢a 72 #define BOARD_FLASH SIZE (@x400000U)

Parent topic:Migrate examples from RT1060EVK to RT1064

IAR

1. Navigate to <rtl064_install_dir>/boards/evkmimxrt1064/edgefast_ bluetooth__examples/
peripheral ht/iar/.

2. Make the following changes.

File name Previous item New item
peripheral_ht.ewp 1060 1064
1062 1064

3. Rename MIMXRT1062xxxxx_ flexspi_ nor.icf as MIMXRT1064xxxxx_ flexspi_ nor.icf and make
the following changes.

c» 47 define symbol m_interrupts_start = BxbBBE2088; <3 47 define symbol m_interrupts_start = Bx70002000;

| 4 define symbol m_interrupts_end = BxGOBB23FF; | 4 define symbol m_interrupts_end = Bx708823FF;
49 g

o =0 define symbol m_text_start = Bx60e82488; A = define symbol m_text_start = @x78e82488;

| = define symbol _ROM_END_ = @x6857FFFF; | = define symbol _ROM_END_ = @x7817FFFF;

o 2 define exported symbol m_boot_hdr_conf_start = @xceeeeees; <A 5 define exported symbol m_boot_hdr_conf_start = @x7eeeesee;
&7 define symbol m_boot_hdr ivt_start = @xCcBeaLees; 57 define symbol m_boot_hdr_ivt start = Bx708081088;
g2 define symbol m_boot_hdr_boot_data_start = Bx6BeaLez2e; 52 define symbol m_boot_hdr_boot_data_start = Bx70881828;
g2 define symbol m_boot_hdr dcd_data_start = @xcBeaLese; 52 define symbol m_boot_hdr_dcd_data_start = Bx70881838;
55 BT_LITTLEFS_STORAGE_SECTOR_SIZE = @x1@@@; /* 4k flash secto 35 BT_LITTLEFS_STORAGE_SECTOR_SIZE = @xleee; /* 4k flash sect

C» 25 BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x685880808 - EDGEFAST_BT_ <3 %= BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x7848808@8 - EDGEFAST_BIT
T a7 FEry

Parent topic:Migrate examples from RT1060EVK to RT1064

Arm GCC

1. Navigate to <rtl064 install dir>/boards/evkmimxrt1064/edgefast_bluetooth examples/
peripheral ht/armgcc/.

2. Rename the following files.

Path Previous name New name

<rt1064_install dir>/ middleware_edgefast_bluetooth middleware_edgefast_ bluetooth_%k32w061_ contro
middleware /wireless/ cmake cmake

ethermind/

1.8. Wireless 441

MCUXpresso SDK Documentation, Release 25.12.00

3. Make following changes.

File name Previous item New item
config.cmake 1060 1064
1062 1064
flags.cmake 1062 1064
CMakeLists.txt 1060 1064
1062 1064

4. mflash is used in RT1064 instead of flash_adaptertherefore, comment in-
clude(component_ flexspi_nor_ flash_adapter_rt1064_ MIMXRT1064) in CMakeLists.txt.

5. Rename MIMXRT1062xxxxx_flexspi nor.ld as MIMXRT1064xxxxx_flexspi nor.ld and make
the following changes.

C» 27 _ROM _START_ - @x50082480; ¢a 27 _ROM_START_ - @x70002480;
| = _ROM_END_ = @x5857FFFF; | 2 _ROM_END_ = @x7817FFFF;
o 50 EDGEFAST_BT_LITTLEFS_STORAGE_MAX_SECTORS = (@x60300008 - EDG | <3 o0 EDGEFAST_BT_LITTLEFS_STORAGE_MAX_SECTORS = (8x70488008 - EDC
1 /*** littleFs configuration End ***/ 1 /*** 1littleFS configuration End ***/
62 2
8¢ HEAP_SIZE = DEFINED{_ heap size_) ? _ heap_size_ : @xle 4 HEAP_SIZE = DEFINED(_ heap_size_) ? _ heap size : Bx1€
85 STACK_SIZE = DEFINED(_ stack size_) ? _ stack _size_ : @x@4 £ STACK_SIZE = DEFINED(_ stack size) ? _ stack size_ : @x@4
&5 VECTOR_RAM SIZE = DEFINED(_ ram_vector table) ? @x@0088480 = VECTOR_RAM_SIZE = DEFINED{_ ram vector_table_) ? @xBoeao4ae
gz /¥ Specify the memory areas */ 2 /* Specify the memory areas */
&% MEMORY 5 MEMORY
0 1 {
o» 71 m_flash_config (RX) : ORIGIN = @x6@000000, LENGTH =] m_flash_config (RX) : ORIGIN = @x70000008, LENGTH
l 7omivt (RX) : ORIGIN = @x6@@e18e8, LENGTH [7 om vt (RX) : ORIGIN - Bx7P@@l0e8, LENGTH
m_interrupts (RX) : ORIGIN = @x6@e@208@, LENGTH m_interrupts (RX) : ORIGIN = @x79@@208@, LENGTH

- e frwn L oARTeT — et —iox 4 rne - _ - e fran L oAmTeT Y

Parent topic:Migrate examples from RT1060EVK to RT1064

MDK

1. Navigate to <rtl064_install dir>/boards/evkmimxrt1064/edgefast_bluetooth__examples/
peripheral ht/mdk/.

2. Make following changes.

File name Previous item New item
peripheral_ht.uvprojx 1060 1064
1062 1064

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/helloworld/mdk/ to <rt1064 install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/peripheral ht/mdk/.

4. Rename MIMXRT1062xxxxx_ flexspi_nor as MIMXRT1064xxxxx_ flexspi_nor and make the
following changes.

C» 43 #define m_flash_config_start BxEBBEEBE8 €A 43 #define m_flash_config_start Bx76BREE6A
50 #define m_flash_config_size cpclclclchlclele] 50 #define m_flash_config_size cpcclclchlelele]
o 5z #define m_ivt_start Bx50601008 <A 5z #define m_ivt_start Bx70601060
53 #define m_ivt_size BxBeEE1868 53 #define m_ivt_size BxPeBA1888
54 54
o» 55 #define m_interrupts_start Bxceee2eea <A 55 #define m_interrupts_start Bx70602000
55 #define m_interrupts_size Bx00e08400 55 #define m_interrupts_size Bx0ee08400
sz #define m_text start Bx58882400 <A = #define m_text start ax7eea24ea
55 #define ROM_END @x6a57FFFF | 5 #define ROM END @x7817FFFF
EDGEFAST_BT_LITTLEFS_STORAGE_START_ADDRESS (_ROM_END_ + 1) 55 EDGEFAST_BT_LITTLEFS_STORAGE_START_ADDRESS (_ROM END_ + 1)
EDGEFAST BT LITTLEFS_STORAGE_END ADDRESS (@x502008808) ¢3 s EDGEFAST BT_LITTLEFS_STORAGE_END_ADDRESS (@x78480000)
EDGEFAST BT LITTLEFS STORAGE SECTOR SIZE (ex1000) 57 EDGEFAST BT LITTLEFS STORAGE SECTOR SIZE (ex1000)

442 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Migrate examples from RT1060EVK to RT1064

Migrate examples from RT1060EVKC to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDK toolchains.

Common steps

1.
2.

Download SDK_ 2.14.0_ EVKC-MIMXRT1060 and SDK_ 2.14.0_ EVK-MIMXRT1064.

Copy the following folders from the RT1060EVKC package to the RT1064 package:
<install dir>/middleware/edgefast_bluetooth/ <install dir>/middleware/wireless/ethermind.

Create a new folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/
boards/evkmimxrt1064/.

Copy the entire folder from <rt1060evke_install dir>/boards/evkemimxrt1060/
edgefast_ bluetooth_examples/peripheral ht/ to <rt1064_install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/.

. Copy clock__config.[c/h] and board.c from <rt1064__install_dir>/boards/

evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/peripheral ht/ to replace the previous files.

Parent topic:Migrate examples from RT1060EVKC to RT1064

IAR
1.

2.

3.

Navigate to <rt1064_install dir>/boards/evkmimxrt1064/edgefast_ bluetooth_examples/
peripheral ht/iar/.

Make the following changes in the listed order.

File name Previous item New item
peripheral _ht.ewp 1062 1064
mflash/evkecmimxrt1060 mflash/mimxrt1064
evkemimxrt1060 evkmimxrt1064

6B 6A

Rename MIMXRT1062xxxxx_ flexspi_nor.icf as MIMXRT1064xxxxx_ flexspi_ nor.icf and make
the following changes.

C» 22 define symbol m_interrupts_start = @x6Bes2eee; 3 22 define symbol m_interrupts_start = @x70002000;

| 4 define symbol m_interrupts_end = @x6B88023FF; | 4 define symbol m_interrupts_end = @x7BO023FF;
4 a

c» 42 define symbol m_text_start = Bx60882400; <A 4z define symbol m_text_start = @x70802460 ;

| 4 define symbol m_text end = @x6B7FFFFF - | 4 define symbol m_text end = @x783FFFFF -

c» 57 define exported symbol m_boot_hdr_conf_start - 8xc0000000; <3 =7 define exported symbol m_boot_hdr_conf_start = @x70000000;
55 define symbol m_boot hdr_ivt start = @x6eealees; 55 define symbol m_boot_hdr ivt start = @x79801008;
52 define symbol m_boot hdr_boot_data_start = Ox60001020; £z define symbol m_boot_hdr_boot_data_start = Bx70001820;
@0 define symbol m_boot hdr dcd data start = BxGRe81030; 20 define symbol m_boot hdr_dcd data_start = Bx76001030;

Parent topic:Migrate examples from RT1060EVKC to RT1064

Arm GCC

1.

Navigate to <rtl064 install dir>/boards/evkmimxrt1064/edgefast bluetooth examples/
peripheral ht/armgcc/.

1.8. Wireless 443

MCUXpresso SDK Documentation, Release 25.12.00

2.

Copy folder from <rt1060evke install dir>/boards/evkemimxrt1060/
edgefast_ bluetooth__examples/template/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_ bluetooth_examples/ and rename the files.

|Path |Previous name|New name| |<rt1064_install dir>/boards/evkmimxrt1064/

edgefast_ bluetooth__examples/ | middleware__edgefast_ bluetooth_mcux_ linker_template_evkemimxrt1060.
cmake | middleware__edgefast_ bluetooth__mcux_ linker_template_evkmimxrt1064.

cmake | | middleware__edgefast_bluetooth sdio_ template evkemimxrt1060.

cmake | middleware_ edgefast_ bluetooth_ sdio_template evkmimxrt1064.cmake |

Add the following content to<rtl064_install dir>/devices/MIMXRT1064/all lib_ device.
cmake at appropriate location.

${CMAKE_CURRENT_LIST DIR}/../../boards

${CMAKE CURRENT LIST DIR}/../../boards/evkmimxrt1064/edgefast bluetooth examples/
—template

${CMAKE_CURRENT_LIST_DIR}/../../middleware/edgefast_ bluetooth

${CMAKE CURRENT _ LIST DIR}/../../middleware/wireless/ethermind

include if use(middleware edgefast bluetooth ble ethermind cmTf)
include_if use(middleware_edgefast_bluetooth_ble_ethermind_lib_ cmTf)
include_if use(middleware_edgefast_bluetooth_br_ethermind_ cmTf)
include_if use(middleware_edgefast_ bluetooth_br_ethermind_ lib_ cm?7f)
include_if use(middleware_edgefast_bluetooth_btble_ethermind_cm7f)
include_if use(middleware_edgefast_ bluetooth_btble ethermind_lib_ cm7f)
include_if use(middleware_edgefast_ bluetooth__common_ ethermind)
include_if use(middleware_edgefast_ bluetooth common_ ethermind_ hci)
include_if use(middleware edgefast_bluetooth common_ethermind_hci uart)
include_if use(middleware_edgefast_ bluetooth_config_ethermind)
include_if use(middleware_edgefast_bluetooth_config template)
include_if use(middleware_edgefast_ bluetooth extension_common_ ethermind)
include_if use(middleware__edgefast_ bluetooth_k32w061_ controller)
include_if use(middleware_edgefast_bluetooth mcux_linker template_ evkmimxrt1064)
include_if use(middleware_ edgefast_ bluetooth_pal)
include_if use(middleware_edgefast_ bluetooth_pal_db_ gen_ethermind)
include_if use(middleware_edgefast_bluetooth_pal_ host__msd_fatfs_ethermind)
include_if use(middleware edgefast_bluetooth_pal platform_ethermind)
include_if use(middleware_edgefast_ bluetooth_porting)
include_if use(middleware_edgefast_ bluetooth__porting atomic)
include_if use(middleware_edgefast_ bluetooth porting_ list)
include_if use(middleware_edgefast_ bluetooth_porting net)
include_if use(middleware__edgefast_ bluetooth_porting_toolchain)
include_if use(middleware edgefast_bluetooth_porting work_queue)
include_if use(middleware_edgefast_ bluetooth_profile_ bas)

include_if use(middleware_edgefast_bluetooth_profile dis)

include_if use(middleware_edgefast_ bluetooth_ profile_ fmp)

include_if use(middleware_edgefast_ bluetooth_ profilehps)

include_if use(middleware_edgefast_bluetooth profile hrs)

include_if use(middleware_ edgefast_ bluetooth_ profile_ hts)

include_if use(middleware_edgefast_ bluetooth_ profile_ipsp)

include_if use(middleware_edgefast_bluetooth profile pxr)

include_if use(middleware_edgefast_ bluetooth_ profile_tip)

include_if use(middleware_edgefast_ bluetooth_ profile_ wu)

include_if use(middleware_edgefast_bluetooth sdio_template_evkmimxrt1064)
include_if use(middleware_edgefast_ bluetooth_ shell)

include_if use(middleware_edgefast_ bluetooth_shell ble)

include_if use(middleware_edgefast_bluetooth template)

include_if use(middleware_edgefast_ bluetooth_wifi_nxp_ controller_base)...

4. Make the following changes in the listed order.

444

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

File name Previous New

item item
config.cmake MIMXRT1 MIMXRT1064xxxxA
mflash_evkcmimxrt1060 mflash_rt:
1062 1064
evkemimxrt1060 evk-

mimxrt10
flags.cmake 1062 1064
6B 6A
CMakeLists.txt 1062 1064
<rt1064_install dir>/middleware/edgefast_ bluetooth/ evkemims evk-
middleware__edgefast_ bluetooth_template.cmake mimxrt1064
<rt1064 install dir>/middleware/wireless/ethermind/ 1062 1064
middleware__edgefast_ bluetooth_common_ ethermind_hci_ uart.
cmake
<rt1064_install dir>/middleware/wireless/ethermind/ 1062 1064
middleware_edgefast_ bluetooth_k32w061_ controller.cmake
<rt1064_install _dir>/middleware/wireless/ethermind/ evkemims evk-
middleware__edgefast_ bluetooth_wifi nxp_ controller_base.cmake mimxrt1064
<rt1064_install _dir>/boards/evkmimxrt1064/ 1062 1064
edgefast_ bluetooth_examples/middleware edgefast_bluetooth mcux_ mxrt1064.
cmake
<rt1064_install dir>/boards/evkmimxrt1064/ 1062 1064
edgefast_ bluetooth__examples/middleware_edgefast_ bluetooth_sdio_t {.

cmake

5. Rename MIMXRT1062xxxxx_ flexspi_nor.ld as MIMXRT1064xxxxx_ flexspi_nor.ld and make

the following changes.

= @xcee02480;

o 33 m_text start
| 4 = @xBe7FDCeR -

m_text_size

2 HEAP_SIZE
43 STACK_SIZE =
44 VECTOR_RAM_SIZE =
45
48 /* Specify the memory areas */
47 MEMORY
42
= 43 m_flash_config (RX) : ORIGIN =
l 0 mivt (RX) : ORIGIN =

m_interrupts (RX) : ORIGIN =

LITTLEFS_REGION_SIZE;

= DEFINED(__heap_size) 2 _ heap_size
DEFINED(_ stack_size_) ? _ stack_size_ :
DEFINED(_ ram_vector_table_) ? ©8x20000400 : ©;

: @xleea;
ax0480;

ax600aa000, LENGTH =
8xceee18e8, LENGTH =
@x6ee02008, LENGTH =

iz m_text start
40 m_text_size

—f&

42 HEAP_SIZE = DEFINED(heap_size)
sz STACK_SIZE = DEFINED(_ stack_size_) ? _ stack_size__ :
44 VECTOR_RAM_SIZE = DEFINED(_ ram_vector_table_) ? @x800006400 : 0

= Bx70002400;

= Bx@@3FDC8d - LITTLEFS_REGION_SIZE;
? _ heap_size_ : @x100@;
OxB400;

4 /* Specify the memory areas */

47 MEMORY

ax60001000 Q@ e
8xB20e1808 2 m_ive
axeRRee4an m_interrupts

Parent topic:Migrate examples from RT1060EVKC to RT1064

MDK

1. Navigate to
peripheral _ht/mdk/.

2. Make the following changes in the listed order.

m_flash_config

(RX) : ORIGIN = 0x70000000, LENGTH - 8x00001000
(RX) : ORIGIN = @x70001000, LENGTH = 8x00001000
(RX) : ORIGIN = @x70002000, LENGTH = 8x00000400

<rt1064_install_dir>/boards/evkmimxrt1064/edgefast_ bluetooth examples/

File name Previous item New item

peripheral_ht.uvprojx 1062 1064
mflash/evkemimxrt1060 mflash/mimxrt1064
evkemimxrt1060 evkemimxrt1064
6B 6A

1.8. Wireless

445

MCUXpresso SDK Documentation, Release 25.12.00

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/helloworld/mdk/ to <rt1064 install dir>/boards/evkmimxrt1064/
edgefast_ bluetooth__examples/peripheral _ht/mdk/.

4. Rename MIMXRT1062xxxxx_ flexspi_nor as MIMXRT1064xxxxx_ flexspi_nor and make the
following changes.

c» 43 #define m_flash_config start Bxceeeeees <A 43 #define m_flash config start 0x7 3000000
44 #define m_flash_config_size axeee01008 44 #define m_flash config_size axeee01000
45 48
o> 4 #define m_ivt start Bx6ee01000 A 4 #define m_ivt start 0x70001000
47 #define m_ivt size axeeeel000 47 #define m_ivt size axeeoaloas
48 8
C» 43 #define m_interrupts_start BxE8882888 €A 43 #define m_interrupts_start Bx7 6002008
50 #define m_interrupts_size chclclclelhlcle] 50 #define m_interrupts_size GxB2400
o 5z #define m_text_start BxE0802408 <A =z #define m_text_start 07 Be02400
| =2 #define m_text_size Bx@87FDCe8 - LITTLEFS | =2 #define m_text_size Bx@@3FDCe8 - LITTLEFS

Parent topic:Migrate examples from RT1060EVKC to RT1064

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170

Introduction RT1170 works with two cores: M7 and M4, on which both all EdgeFast examples
can run. However, all the EdgeFast examples in the release package are enabled on M7. Only the
A2DP source example is enabled on M4.

EdgeFast projects for both the cores share the demo source files but with different project set-
tings. Therefore, the examples can be migrated.

This document describes the steps to migrate EdgeFast examples from M7 to M4 with different
toolchains. There are four main steps required. Additionally, you can also delete the function.

1. Create an M4 project
2. Rearrange source files

3. Rearrange project files

446 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

4. Adjust project settings
5. Delete function

In this document, the peripheral_ht example is used to demonstrate how to enable EdgeFast
examples on M4 core with IAR and ARMGCC.

IAR This section describes the steps to create an M4 project with IAR, rearrange source and
project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder cm4 in the directory <install_dir>boards|\evkmimxrt1170\|edgefast_bluetooth_examples|a2dp.
into the folder in which the example should be enabled.
In this case, copy the folder <c¢m4 into the directory <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht.

2. Openthe folder iar in the directory <install dir>boards\evkmimxrt1170\edgefast_bluetooth_examples|perip}
3. Rename the files. Change the file name name a2dp_source_cm4 to peripheral_ht_cm4 in all
the respective files.

ie(D:) » test » board MIMXRT1170-EVK3 » boards » evkmimxrt1170 » edgefast_bluetooth_examples » peripheral bt » cmd » iar

A

Name

aZdp_source_cmd.ewd
aZdp_source_cmd.ewp
0 aZdp_source_cmd.eww
| L MIMXRT1 TRcooo,_omd_flexspi_noricf

Date moedified

4. Open the files peripheral_ht_cm4.eww and peripheral_ht_cm4.ewp with a text editor, such as
Notepad, Notepad++, Sublime, or Visual Studio Code.

5. Search and replace all a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

LT - LB = R B S) | w-— - | - LN ' 1 b ol B L SE e) e | =
H peripheral_ht_cma.eww =] peripheral_ht_cm4.ewp EJ } Replace
774 J] <debug>1</debug>ERikg Find Replace Find in Files Mark
775 E <option>ERil
776 <name>IlinkLibIOConfig< Find what : ~
777 <state>l</state>ERiNg) "
L </option>ERNE Replace with ;‘perlpheral_ht e
<option>ERMA []1n selection
<name>XLinkMisraHandle1
<state>0</state>iNE [] Backward direction
</option>EaNd Match whole word only
<option> @ik [Match case
<name>IlinkInputFileSl: [Wrap around
<state>0</state>ERiAE
</option>ERMNE Search Mode L
<option>@0iNg () Normal
<name>IlinkOutputFile<;, (O)Extended (\n, \r, \t,\0, \x...)
<state>a2dp source cmd. (®) Regular expression |_]. matches newline
</option:>[CRila
| <option>E@RiNa
|
Parent topic:/AR
1.8. Wireless 447

MCUXpresso SDK Documentation, Release 25.12.00

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder cm4 in the directory <install_dir> boards|evkmimxrt1170\edgefast_bluetooth_examples|peri
and delete all files with the extensions *.c and *h.

2. Copy the files with the extensions *c and *h from the folder
boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral htlcm7| to the folder
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples|\peripheral_ht\cm4.

D\ \edgefast_bluetooth_examples\peripheral_ht\cm7 +] |e%] |Di\.\edgefast_bluetooth_examples\peripheral_ht\crnd - I t ud -
MName Size Maodified Name Size Modified

B ar | ar

il armgec il armgec

a1 sdmmc_config.t 4,654 2021/4/27 20.02:06

1 sdmmc_config.c

W readme.txt

B pin_muxh
upin_mux.c

0 peripheral_ht_v3_8.xml

B peripheral_hth

eeRTOSConfig.h

B evkmimxrt1170_connect_cmd_emTside jlinkscript
W evkmimyrt1170_connect_omd_cmdside jlinkscript 2,473 2021/4/27 20:02:06
® edgefast_bluetooth_config.h
mdcdh
Bdcd.c
o clock_conf
u clock_config.c
mboard h
board.c
mapp_config.h
| maZdp_source_cmd_v3_8xm 55,176 2021/4/27 20:02:06
|
Parent topic:/AR

Rearrange project files To rearrange project files, perform the following steps:

1. Open the peripheral_ht _cm7and peripheral_ht _cm4 IAR projects in the directories <in-
stall_dir> boardslevkmimxrt1170|edgefast_bluetooth_examples|peripheral _ht |\cm7\iar and
<install_dir> boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht |\cm4\iar.

1. Compare the whole project directory, find file groups that the cm7 project has but are
missing in the cm4 project. Add the missing file groups from the cm?7 project into the
cm4 project.

2. Compare the difference between the two groups with the same name. Remove files
that do not exist in the cm7 project but exist in the cm4 project. Find files that are
available in the cm7 project but are missing in the cm4 project. Add the missing files
from the cm7 project into the cm4 project.

2. For example, in the following figure, the files in the source group
in the cm4 project must be removed, and the files in the path: <in-
stall_dir>\boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht with the
same name as the files in the cm7 project must be added into the source group.

448 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

¥ 3 3 workspace S
Bescsgn_naon_debug _
| fesspi_ror_debug .
B
Filas . . & = Flen s B
pin_ra
E B sdmme_config ¢ . g :::x_zg r':. .
Bl sdmmc_config h P | .
& o bt_ble & = -hl.hla
- ol CMSIS i CMSIS
—H W compaonent s —& & component -
= i device = mill :daw:e -
@ il doc —@ o doc
5 W drivers . —& . drivers .
—E B edgefast - —d :EdIJEI_-I!BI ™
= ol fatfs s j _ammﬂﬂn .
&]
—H . framewark L] =
= il freeros 3 j :fr:ammtm rk :
D = —H o sdmmc -
whlsovree | ||
rfig.h . _
g:ﬂ;j:m Eluﬂnm config h | — B aZdp_pi_media_48kHz h
B FreeRTOSConégh | F— B app_configh
B main.c s | F2 B app_connectc .
B peripheral_hc . . —_EEI g mp_g?:':::;' nc .
- &) peripheral_hth = E_discwer-h
I starup | L :
shartup_MIMKFT1176_om? s . | = g app_peripheral_htc .
@ o usb . | F— B app_peripheral_hth
mal 0 s | @ B app_shell.c -
il | F— El app_shellk
j =“:m : | — B edgefast_bluetooth_corfig.h
—= -'Il:nlpmn — kI FreeRTOSConfig.h
tE T manc .
¥ T B =imrhe - *
petipheral_ i
[pericieeal_hi_cmd

3. Compare the services group.

The peripheral hts profile is in the services folder. Add the hts.c file to the services group of
the cm4 folder.

1.8. Wireless 449

MCUXpresso SDK Documentation, Release 25.12.00

ﬂ' & ! lﬂ' perphensd_k_ormd - 1AR Ernbedded Workbench IDE - Arm 8.50.9
File Ed#t View Projed CMSS.DAP Tool§ fie Es view Projedt CMSS.DAP Toaols Window Helg
LOONS B AN DN NBEe B 4K 9C
Workipace Wedkipace * 0 X mai
Aexspi_nor_debug exspi_nos_detrug i [mai
Files . Files 8 = =~
E @ peripheral_ht - flexspi_nor_debut = @ peripheral_h_cmd - flexspi_n... «
—E B board & B boand
& ol bi_ble @ ol b1_ble
—= -:CHSIS —E W CMSIS
= B component —& W component
- Wl dendce = dervice
—-| -:dI:u: — & doc
= W divers —F W divers
1 iel:lgmuﬂ £ il edgetast
= bustooth B blustooth
B controliar B conrollar
M include . include
o porting
[]
|-@ & adp.c
8 B connc — [a2dp_intemal h &
— [conn_intemal h — [l ath
@ £} crypio.c 8 &l afic
— B crypto_intemnal h — & att_intemal h
—&] gattc — [l awdip_intemal h
— &l gaft_intemal h & £ conn.c
—& & hei_core.c — [l conn_intarmal b
— [hci_core h —& [E] cryplo.c
— [l keysh — [cryoio_intemal i
—E B Bcapc Eecch
— &} Roop_internal b El gattc
& &) monior.c gatt_insemal k
— El maniiorh Ha Flhei corec =
— Bmpah [pespheral_Fi_cmé
— & =mg.h
—& &l smo_null.c Debug Log

Parent topic:/AR

Adjust project settings To adjust the project settings, perform the following steps:

1. Compare the macro in the project settings: Option > C/C++ compiler > Preprocessor.

2. Find the macros that do not exist in the cm4 project but are available in the em7 project.
Delete these macro. The rule is that m7 macro setting should be same with m4.

450

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Options for node "peripheral_ht_cmd”
Categarny: Factom Selings
General Options [T Multi-file Compilation
Static Analysis Digcard Unused Publics
Runtime Checking
C/C++ Compiler MISRA-C: 1998 Encodings Extra Options
Assembler Language 1 Language 2 Code Optimizations Output
Output Converter List Preprocessor Diagnostics MISRA-C:2004
Custom Build
Build Actions [] Ignone standard include directories
IE.::H Additicnal include directones: (one per line)
) ' SPROJ_DIRS.. s
Simulator $PROJ_DIRS/..J..J.J.J.J. Imiddlewarelwifiiwifi_bt_firmware
CADI $PROJ_DIRS/. /. /. /.1 J. imiddlewarsledgefast_blustooth/source/
CMSIS DAP SPROU_DIRS/ /.10 4 J. idevices/MIMXRT1176/drivers
GDB Server $PROJ_DIRS/././../ /.. IdevicesMIMXRT1176 v
I-jet Preinclude file:
J-Link/J-Trace $PROJ_DIRS/. /app_config.h
TI Stedlaris
MNu-Link Defined symbols: (one per line)
PE micro CONFIG_BT_BREDR=1 - Preprocessor output to file
ST-LINK CONFIG_BET_PERIPHERAL=1 Presane comments
. . CONMFIG_BT_CENTRAL=1 Cararatn Hlivs ot
Third-Party Driver Generate Fline directives
CONFIG_EBT_SMP=1 o
TI MSP-FET —
T XDS
Cace

The macros are in the**peripheral\ _ht__cm4.ewp** file.

['](../images/image7.png "Compare the peripheral ht cmd.ewp file”)

|
Parent topic:/AR

Delete function As a final step, remove the function “SCB_DisableDCache(); in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:/AR

Arm GCC This section describes the steps to create an M4 project with Arm GCC, rearrange
source and project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder <install dir> boards\evkmimxrt1170\edgefast_bluetooth_examples|\a2dp_source
lcm4 into another folder in which the example should
be enabled. In this case, copy the folder <install_dir>

1.8. Wireless 451

MCUXpresso SDK Documentation, Release 25.12.00

boards|evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source |cm4 into*<install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4*

2. Open the file CMakeLists.txt located in the path: <install _dir>
boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht|\cm4| armgcc.

3. Search and replace all a2dp_source_cm4 with peripheral_ht_cm4, and then save the files.

Parent topic:Arm GCC

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *h.

2. Copy the files with the extensions *c and *h in the folder <in-
stall_dir>boardslevkmimxrt1170\edgefast_bluetooth_examples\peripheral hticm7 to the
folder <install dir>boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

lhedgelsst bluetooth exampled peripheral hem? T T ¥ schgedadt_blusioath_ecampled\penpheral hityormd L

N

R SHHALLERE

|
Parent topic:Arm GCC

Rearrange project files To rearrange project files, perform the following steps:

1. Open the CMakeLists.txt of the two examples respectively. The two files are in the <in-
stall_dir>boards|\evkmimxrt1170\edgefast_bluetooth_examples\peripheral ht\cm7|armgcc
and <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm4|\armgcc
folders respectively.

2. Search the section add_executable. Compare the difference between the two sections. Re-
move files that do not exist in the cm7 project but are available in the cm4 project. Add
the files that exist in the cm7 project but are not available in the cm4 project into the cm4
project. For example, in the following figure, the files in the red box should be removed
and the files in the green box must be added into the cm4 project.

452 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

"${ProjDirPath}/../sdmmc_config.h" A~ “${ProjDirPath}/../sdmmc_config.h" ~

| - "${ProjDirPath}/../app_a2dp_source.c"H
${ProjDirPath}/../app_a2dp_source.h"H
${ProjDirPath}/../app_connect.c"H
${ProjDirPath}/../app_connect.h"H
"${ProjDirPath}/../app_discover.c"H
"${ProjDirPath}/../app_discover.h"H
"${ProjDirPath}/../app_shell.c"H
${ProjDirPath}/../app_shell.h"H
${ProjDirPath}/../a2dp_pl media_48KHz.h"E

“&{Prnjnirpafh}f /main. c" “S{ProjDirPath}j,,jmain_c”

"${ProjDirPath}/../peripheral_ht.q4"H
"${ProjDirPath}/../peripheral_ht.H"H

"${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/source/porting/atomic_c.c"
"${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/include/sys/atomic.h"|

'${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/source/services/hts.c"X
'${ProjDirPath}/../../../../../../middleware/edgefast_bluetooth/include/bluetooth/services/hts.h"H
Parent topic:Arm GCC

Adjust project setting To adjust the project settings, perform the following steps:

1. Open the flags.cmake of the two examples respectively. The two files are in the <in-
stall_dir>boardslevkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm7|armgcc
and <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm4|\armgcc
folders respectively.

2. Search the CMAKE C FLAGS DEBUG section.
1. Compare the macro between the two sections.

2. Add the macros that do not exist in the cm4 project but are available in the em?7 project
into the cm4 project. The rule is that macro setting should be same.

3. Delete the macros highlighted in the red rectangle.

-DSDK_DEBUGCONSOLE_UART=1"\ : -DSDK_DEBUGCONSOLE_UART=1-\
«++«4-DCONFIG_BT_BREDR=1-\H

-DCONFIG_BT_PERIPHERAL=1-\H

-DCONFIG_BT_CENTRAL=1-\H

-DCONFIG_BT_SMP=1:\H

-DDEBUG_CONSOLE_RX_ENABLE=@+\H

-DOSA_USED=1-\H

-DSHELL_USE_COMMON_TASK=0-\H

-DSHELL_TASK_STACK_SIZE=2048-\X

1 «++{-DSHELL_TASK_PRIORITY=configMAX_PRIORITIES-2-\H

| -DNVM_NO_COMPONNET=1" \ -DNVM_NO_COMPONNET=1-\

|
Parent topic:Arm GCC

Delete function As a final step, remove the function “SCB_DisableDCache() in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:Arm GCC

MDK This section describes the steps to create an M4 project with MDK, rearrange source and
project files, adjust project settings, and delete function.

1.8. Wireless 453

MCUXpresso SDK Documentation, Release 25.12.00

Create an M4 project

1. Copy folder cm4 from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples|a2dp_source|cm4
into the folder in where the example must be enabled. In this case, copy folder cm4 into
directory <install dir>|boards\evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht.

2. Openfolder mdk from <install_dir>boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht|\cm4

lume (D) » test » board_MIMXRT1170-EVE » boards » evkmimxrt1170 » edgefast_bluetooth_examples » peripheral_ht » cmd » mdk

-

Mame Date modified Type

E aZdp_source_cmd.uvmpw F1016:02 Fision Multi-Project
a2dp_source_cmduvophe 1 UVOPTX File

a aZdp_source_cmd.uvprojx 101 i&isions Project
evkmimxrt1170_flexspi_nerini 1 Configuration settings

| MIMART11 7600 _cmd_flexspi_nor 01602 File Explorer Command

3. Change the filename a2dp_source_cm4 to peripheral_ht_cm4 respectively.

4. Open the files *peripheral_ht_cm4.*uvmpw and peripheral ht_ cm4. uvoptx, periph-
eral_ht_cm4.uvprojxwith a text editor, such as Notepad, Notepad++, Sublime, or Visual Stu-
dio code.

5. Search and replace a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

iy ®x 1 FE@EA

i

o R Ul
5 pheral_hl_cmd uvprop = penpheral_ht_cmd uvmpw (X] |E enpheral_hl_cmd uvoplx
c?xml version="1.0" ¢ 1ing="UTF-8" standalon i
H<ProjectWorkspace xml xsi="http://www.w3.org/ / xs1:noN

<SchemaVersion>2.1</SchemaVersion>ila

<Header>### uVision Project, (C) K

<WorkspaceName>WorkSpace</Workspac

E ‘;'-Tojﬁec.‘. ORI Find Replace Find in Files Find in Projects Mark
<PathAndName>a2dp source cmd.uvp
<NodeIsActive>1</NodelsActive>El

</projec Replace with : | peripheral_ht _cm4
</ProjectWorkspace>

Find what : a2dp_source_am4

|
Parent topic:MDK

Rearrange source files

1. Openfolder cm4 in *<install_dir>*boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4,
and delete all files with the .c and .h file name extension.

2. Copy files with the .c and .h filename extension in folder cm7 with directory <install_dir>
boards|evkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht\cm7to folder cm4 with
directory <install_dir> boards\evkmimxrt1170|edgefast_bluetooth_examples|peripheral_ht\cm4.

454 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

._III.I=_-_I_-III.E!'P_:‘

Parent topic:MDK

Rearrange project files

1. Open the peripheral ht _cm?7 and peripheral_ht_cm4 IAR projects. The two workspaces are
located in *<install_dir>*boardslevkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
lcm7|\mdk and *<install_dir>*boardslevkmimxrt1170\edgefast_bluetooth_examples|peripheral_ht
|cm4|mdk respectively.

* Compare the whole project directory, find file groups that the cm7 project has but the
cm4 project not and then add these groups into the cm4 project.

* Compare the difference between the two groups with the same name, remove files
that do not exist in the cm7 project but exist in the cm4 project; find files that the cm7
project has but the cm4 project not and then add these files into the cm4 project.

2. For the source group, in this case, the files in the source group in the cm4 project
must be removed, and the files in the path <install dir>|\boards|evkmimxrt1170|
boards|evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4 with the same
name as the files in the cm7 project must be added into the source group.

1.8. Wireless 455

MCUXpresso SDK Documentation, Release 25.12.00

NE 4 |

Project
ERE WorkSpace
=Re

4 ! 4 1
Je =l W

= & peripheral_ht flexspi_nor_debug

DEPEBEDD

=& source

FreeRTOSConfig.h
app_config.h

main.c

peripheral_ht.c
peripheral_ht.h
edgefast_bluetooth_config.h

[wifi/wifi_bt_firmware
[board

= doc

-3 drivers
@[device
[startup
[d component/uart
@ [utilities

3. Compare the service: group.

rue CuiL

view Froject

NS d@| ¥ @ |

ridxr vepuy FENRNCIdls

|.1

SR AN _1‘ Eg%‘:l peripheral_ht_cm4flex;;|

Project
= &3 WorkSpace

| otpephesliand

- 4= peripheral_ht _cm4 flexspi_nor_debug

L * |

s

E-45 source

ERPERPUD

EERE

EEPE

UEE

FreeRTOSConfig.h
app_config.h
app_addp_source.c
app_a2dp_source.h
app_connect.c
app_connect.h
app_discover.c
app_discover.h
app_shell.c

app_shell.h
aldp_pl_media_48KHz.h
main.c
edgefast_bluetooth_config.h

& wifi/wifi_bt_firmware

Peripheral hts profile is located in “service” folder. Add the hts.c file to the services group

of the cm4 folder.

456

Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

L

bt_ble/port/pal/mcux/sbc
bt_ble/port/pal/mcux
bt_ble/bluetooth/private/utils/shc
bt_ble/bluetooth/private/lib/confi
bt_ble/bluetooth/export/extension
wififincl

wifi/incl/port/os
wifi/incl/wifidriver
wifi/incl/wlcmgr

wifi/port/os

wifi/wifidriver/incl

wifi/wifidriver
edgefast/bluetooth/source
edgefast/bluetooth/include/bluete
edgefast/bluetooth/include/sys
edgefast/bluetooth/include/zephy
edgefast/bluetooth/porting
edgefast/bluetooth/porting/errmo
edgefast/bluetooth/include/toolch
edgefast/bluetooth/include
edgefast/bluetooth/include/net

edgefast/bluetooth/source/service

\J hts.c

roject
=3
=L
R
=3
=3
=3
=3
=3
=3
=3
=
=3
=3
=3
o
=3
=3
CR|
=3
=3
o
(=R
DR
Parent topic:MDK

edgefast/bluetooth/include/bluets

Adjust project settings

=3
=3
=L
=03
=3
=L
=03
=3
=
=03
=
=
=3
=L
=3
=3
oE

=3
R

N

A I e e e T B |

bt_ble/bluetooth/private/lib/config
bt_ble/bluetooth/export/extension
wifi/incl

wifi/incl/port/os

wifi/incl/wifidriver

wifi/incl/wlcmgr

wifi/port/os

wifi/wifidriver/incl

wifi/wifidriver
edgefast/bluetooth/source
edgefast/bluetooth/source/a2dp_codec/sbc
edgefast/bluetooth/include/bluetooth
edgefast/bluetooth/include/sys
edgefast/bluetooth/include/zephyr
edgefast/bluetooth/porting
edgefast/bluetooth/porting/errno
edgefast/bluetooth/include/toolchain
edgefast/bluetooth/include
edgefast/bluetooth/include/net

5

edgefast/bluetooth/source/services

\J bas.c
L] hrs.c

=

edgefast/bluetooth/include/bluetooth/services

1. Compare the macro in the project settings: preprocessor symbols.

2. Compare the macro that does exist in the cm4 project but exists in the cm7 project.

3. Delete the following macro. The rule is that m7 macro setting should be same as m4 .

The macro could also be found in be eripheral_ht_cm4.uvprojx.

1.8. Wireless

457

MCUXpresso SDK Documentation, Release 25.12.00

K Options for Target ‘peripheral_ht _crmd4 flexspi_nor_debug’ *
Device | Target | Output | Listing | User | C/C++ (ACE) | Asm | Linker | Debug | Luities |
Preprocessor Symbols
Define: |x|P_ExTERNM_FLh5H-1 . XIP_BOOT HEADER_ENABLE=0, DEBUG, CPU_MIMXRT1176DVMAA c
Undefine: |
Language / Code Generation
[~ Execute-only Code Wamings: |ACSdke Wamings v| Language C: [c99 -l
Optimization: |-O1 | I Tum Wamings into Emors Language C++: [ces11]
™ Link-Time Optimization ™ Plain Charis Signed W Short enums /wchar
™ Spit Load and Store Multiple ™ Read-Only Posttion independent ™ use RTTI
¥ One ELF Section per Function [T ReadWrite Posftion Independent [No Auto Includes

"';';: ik A 4 A fmiddiewarewifi/wili_bt_ femware; /7 / /. /. /middeware/edgefast_bluetooth/sourc J

- “.:I |-n::i.n:lc Japp_config h fno-common fdata-sections ffreestanding fno-builtin -mthumb

Compiler |yc sid=c59 -target=am-am-none-eabi mcpu=cortex-m4 mfpu=fpvd-sp-d16 -mfloat-abi=hard < ~
c:ﬁ {no-tti funsigned-char fshort-enums fshort-wchar

ok | cancel | Defauts l-up|

I'](../images/adjust_mdk_ settings2.png "Compare the macro”)

|
Parent topic:MDK

Delete function Remove function SCB_DisableDCache(); in main.c.

On successful completion of the above steps, the M7 project is changed to the M4 project. You
can now download and debug the M4 example project.

Parent topic:MDK

Note The above steps are based on the a2dp_source example and help enable the periph-
eral_ht example on the m4 core. You can use the same steps for other examples and migrate
them from an m7 project to an m4 project.

458 Chapter 1. Middleware

Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme
FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

2.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

2.1.5 corejson

JSON parser.

459

MCUXpresso SDK Documentation, Release 25.12.00

Readme

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

2.1.7 corepkesll

PKCS #11 key management library.

Readme

2.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

460 Chapter 2. RTOS

	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project

	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions

	eIQ
	eIQ
	eIQ TensorFlow Lite for Micro Library User Guide
	Overview
	TensorFlow Lite for Microcontrollers
	Build Status
	Official Builds
	Community Supported TFLM Examples
	Community Supported Kernels and Unit Tests

	Contributing
	Getting Help
	Additional Documentation
	RFCs
	Deployment
	Example applications
	Model Conversion to TensorFlow Lite Format
	Model Conversion for NXP eIQ Neutron NPU
	Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU
	Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE
	Prepare CM33 Core for the examples
	Prepare DSP core for the examples

	Running an inference
	Converting a model to a C language header file {#EXAMPLE_4 .section}
	NPU inference {#npu_infer .section}
	Adjusting the tensor arena size {#adjust_arena .section}

	Code size optimization
	Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

	Note about the source code in the document

	eIQ ExecuTorch Library User Guide
	Overview
	Supported platforms:
	Installation
	ExecuTorch for Ahead of Time model preparation
	Installation
	Neutron Converter
	Installation
	MCUXpresso SDK

	Getting the MCUXpresso SDK with eIQ ExecuTorch
	PyTorch Model Conversion to ExecuTorch Format
	MCUXpresso SDK Example applications
	How to build and run executorch_cifarnet example
	Convert the model and example input to C array
	Build, Deploy and Run
	How to build executorch_lib example

	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]

	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.12.00]
	[25.09.00]
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	[v5.3.0]
	Added
	Fixed
	v5.2.1
	Added
	Changed
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	[v5.0.2]
	Added
	v5.0.1
	Added
	Changed
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	Added
	Fixed
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added

	Multimedia
	Audio Voice
	Audio Voice Components
	MCUXpresso SDK : audio-voice-components
	Overview
	Documentation
	Setup
	Contribution
	Overview
	Content
	Asynchronous Sample Rate Converter
	Synchronous Sample Rate Converter
	Opus
	Opus File
	Ogg Container
	Decoders
	AAC
	FLAC
	MP3
	WAV
	Zephyr build

	AAC decoder
	AAC decoder features
	Specification and reference
	Performance
	Memory information
	CPU usage

	API Usage of AAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	FLAC decoder
	FLAC decoder features
	Specification and reference
	Official website
	Inbound licensing
	Performance
	Memory information
	CPU usage
	Following test cases are performed:

	API Usage of FLAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	MP3 decoder
	MP3 decoder features
	Performance
	Memory information
	CPU usage

	API Usage of MP3 Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	WAV decoder
	WAV decoder features
	Performance
	Memory information
	CPU usage
	Following test cases were performed:

	API Usage of WAV Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	Synchronous Sample Rate Converter
	Introduction
	Acronyms
	Performance figures
	Resource usage
	Memory requirements
	Processing requirements
	On Arm7 and Arm9
	On Arm9e and XScale
	On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
	Application programmers interface (API)
	Type definitions
	Types for allocation of instance and scratch memory
	LVM_Fs_en
	LVM_Format_en
	SSRC_Quality_en
	Instance parameters
	Nr of samples mode
	Function return status
	Functions
	SSRC_GetNrSamples
	SSRC_GetScratchSize
	SSRC_Init
	SSRC_SetGains
	SSRC_Process
	SSRC_Process_D32
	Dynamic function usage
	Define the number of samples to be used on input and output
	Allocate scratch memory
	Initialize the SSRC instance
	Process samples
	Destroy the SSRC instance
	Reentrancy
	Additional user information
	Attenuation of the signal
	Notes on integration
	Example application
	Integration test
	Bit accurate test
	THD+N measurement

	Maestro Audio Framework
	MCUXpresso SDK : Maestro
	Overview
	Documentation
	Setup
	Contribution
	Introduction
	Maestro on Zephyr
	Maestro on FreeRTOS
	Supported examples
	Example applications overview
	File structure

	Maestro Audio Framework Programmer’s Guide
	Introduction
	Architecture overview
	Pipeline
	Elements
	Add a new element type
	Add a new element index
	Pads
	Internal communication
	Decoders and encoders
	Common codec interface
	Using the CCI to interface with Metadata
	Using the CCI to interface with Decoders
	Adding new decoders to the CCI
	Common encoder interface
	Maestro performance
	Memory information
	CPU usage

	CEI encoder
	Header files
	Instantiating the element
	Element properties
	CEI definition - implementing your own encoder

	Maestro playback example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	file stop
	file pause
	file volume <volume>
	file seek <seek_time>
	file play <filename>
	file list
	file info
	Processing Time

	Maestro record example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	record_mic audio <time>
	record_mic file <time>/record_mic <file_name> <time>
	record_mic vit <time> <language>
	opus_encode
	Processing Time

	Maestro USB microphone example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_mic <seconds>

	Maestro USB speaker example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_speaker <seconds>

	Supported features
	Decoders
	Encoders
	Sample rate converters
	Additional libraries

	Processing Time
	Table of content
	Maestro playback example
	Time on each element
	Maestro record example
	Pipeline Microphone -> Speaker
	Pipeline Microphone -> VIT

	Maestro on Zephyr
	Maestro sample for recording data from microphone to RAM
	Description
	User Input/Output
	Supported platforms
	Maestro voice detection sample using VIT
	Description
	User Input/Output
	Dependencies
	Supported platforms
	Maestro decoder sample
	Description
	User Input/Output
	Dependencies
	Configuration
	Supported platforms
	Maestro encoder sample
	Description
	Dependencies
	User Input/Output
	Configuration
	Supported platforms
	Maestro mem2mem sample
	Description
	Maestro environment setup
	Build and run Maestro example
	Using command line
	Using MCUXpresso for VS Code
	Folder structure
	Supported elements and libraries
	Examples support
	Creating your own example
	Documentation
	FAQ

	Maestro Audio Framework changelog
	2.0.2
	2.0.1
	2.0.0 (newest)
	1.8.0
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.0_rev0

	VGLite Graphics Driver
	IMXRTVGLITEAPIRM
	Introduction
	VGLite Graphics API
	API function group
	API files
	Hardware versions

	Common parameters and error values
	Common parameter types
	Enumerations for error reporting
	vg_lite_error_t enumeration

	Hardware product and feature information
	Enumerations for product and feature queries
	vg_lite_feature_t enumeration
	Structures for product and feature queries
	vg_lite_info_t structure
	Functions for product and feature queries
	vg_lite_get_product_info
	vg_lite_get_info
	vg_lite_get_register
	vg_lite_query_feature
	vg_lite_get_mem_size

	API control
	Context initialization and control functions
	vg_lite_init
	vg_lite_close
	vg_lite_flush
	vg_lite_finish
	vg_lite_frame_delimiter
	vg_lite_set_command_buffer_size
	vg_lite_set_command_buffer
	vg_lite_set_tess_buffer
	vg_lite_set_memory_pool

	Pixel buffers
	Pixel buffer alignment
	Pixel cache
	Internal representation
	Pixel buffer enumerations
	vg_lite_buffer_format_t enumeration
	Image buffer alignment requirement
	Destination buffer alignment requirement
	vg_lite_buffer_layout_t enumeration
	vg_lite_compress_mode_t enumeration
	vg_lite_gamma_conversion_t enumeration
	vg_lite_index_endian_t enumeration
	vg_lite_image_mode_t enumeration
	vg_lite_map_flag_t enumeration
	vg_lite_paint_type_t enumeration
	vg_lite_transparency_t enumeration
	vg_lite_swizzle_t enumeration
	vg_lite_yuv2rgb_t enumeration
	Pixel buffer structures
	vg_lite_buffer_t structure
	vg_lite_fc_buffer_t structure
	vg_lite_yuvinfo_t structure
	Pixel buffer functions
	vg_lite_allocate function
	vg_lite_free function
	vg_lite_upload_buffer function
	vg_lite_map function
	vg_lite_unmap function
	vg_lite_flush_mapped_buffer function
	vg_lite_set_CLUT function
	vg_lite_enable_dither function
	vg_lite_disable_dither function
	vg_lite_set_gamma function

	Matrices
	Matrix control float parameter type
	Matrix control structures
	vg_lite_matrix_t structure
	vg_lite_pixel_channel_enable_t structure
	Matrix control functions
	vg_lite_identity function
	vg_lite_set_pixel_matrix function
	vg_lite_rotate function
	vg_lite_scale function
	vg_lite_translate function

	Blits for compositing and blending
	Blit enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_color_transform_t structure
	vg_lite_filter_t enumeration
	vg_lite_color_transform_t structure
	vg_lite_mask_operation_t enumeration
	vg_lite_orientation_t enumeration
	vg_lite_param_type_t enumeration
	Blit structures
	vg_lite_buffer_t structure
	vg_lite_color_key_t structure
	vg_lite_color_key4_t structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_rectangle_t structure
	vg_lite_point_t structure
	vg_lite_point4_t structure
	vg_lite_float_point_t structure
	vg_lite_float_point4_t structure
	Blit functions
	vg_lite_blit function
	vg_lite_blit2 function
	vg_lite_blit_rect function
	vg_lite_copy_image function
	vg_lite_get_transform_matrix function
	vg_lite_clear function
	vg_lite_set_color_key function
	vg_lite_gaussian_filter function
	Blit/Draw extended functions
	vg_lite_get_parameter function
	vg_lite_enable_scissor function
	vg_lite_disable_scissor function
	vg_lite_scissor_rects function
	vg_lite_set_scissor function
	vg_lite_disable_color_transform function
	vg_lite_enable_color_transform function
	vg_lite_set_color_transform function
	vg_lite_enable_masklayer function
	vg_lite_disable_masklayer function
	vg_lite_create_masklayer function
	vg_lite_blend_masklayer function
	vg_lite_set_masklayer function
	vg_lite_render_masklayer function
	vg_lite_destroy_masklayer function
	vg_lite_set_mirror function
	vg_lite_source_global_alpha function
	vg_lite_dest_global_alpha function

	Vector path control
	Vector path enumerations
	vg_lite_format_t enumeration
	vg_lite_quality_t enumeration
	Vector path structures
	vg_lite_hw_memory structure
	vg_lite_path_t structure
	Vector path functions
	vg_lite_get_path_length function
	vg_lite_append_path function
	vg_lite_init_path function
	vg_lite_init_arc_path function
	vg_lite_upload_path function
	vg_lite_clear_path function
	Vector path opcodes for plotting paths

	Vector-dased draw operations
	Draw and gradient enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_fill_t enumeration
	vg_lite_filter_t enumeration
	vg_lite_gradient_spreadmode_t enumeration
	vg_lite_pattern_mode_t enumeration
	vg_lite_radial_gradient_spreadmode_t enumeration
	Draw and gradient structures
	vg_lite_buffer_t structure
	vg_lite_color_ramp_t structure
	vg_lite_linear_gradient_t structure
	vg_lite_ext_linear_gradient structure
	vg_lite_linear_gradient_parameter structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_radial_gradient_parameter_t structure
	vg_lite_radial_gradient_t structure
	Draw functions
	vg_lite_draw function
	vg_lite_draw_grad function
	vg_lite_draw_radial_grad function
	vg_lite_draw_pattern function
	Linear gradient initialization and control functions
	vg_lite_init_grad function
	vg_lite_clear_grad function
	vg_lite_set_grad function
	vg_lite_get_grad_matrix function
	vg_lite_update_grad function
	Linear gradient extended functions
	vg_lite_set_linear_grad function
	vg_lite_get_linear_grad_matrix function
	vg_lite_draw_linear_grad function
	vg_lite_update_linear_grad function
	vg_lite_clear_linear_grad function
	Radial gradient functions initialization and control functions
	vg_lite_set_radial_grad function
	vg_lite_update_radial_grad function
	vg_lite_get_radial_grad_matrix function
	vg_lite_clear_rad_grad function

	Stroke operations
	Stroke enumerations
	vg_lite_cap_style_t enumeration
	vg_lite_path_type_t enumeration
	vg_lite_join_style_t enumeration
	Stroke structures
	vg_lite_path_t structure
	vg_lite_path_list_t structure
	vg_lite_path_point_t structure
	vg_lite_stroke_t structure
	vg_lite_sub_path_t structure
	Stroke functions
	vg_lite_set_path_type function
	vg_lite_set_stroke function
	vg_lite_update_stroke function

	Deprecated and renamed APIs
	Deprecated vg_lite syntax
	vg_lite_perspective (deprecated)
	vg_lite_set_dither (deprecated)
	vg_lite_enable_premultiply (deprecated)
	vg_lite_disable_premultiply (deprecated)
	vg_lite_set_premultiply (deprecated)

	VGLite API version 2.0 to 3.0 migration guide
	VGLite API name changes in API version 3.0
	vg_lite_set_scissor API interface change
	vg_lite_map API interface change
	vg_lite_enable_scissor / vg_lite_disable_scissor API
	vg_lite_draw_pattern API interface change
	[New] vg_lite_copy_image in VGLite API version 3.0
	vg_lite_set_dither API is deprecated in API version 3.0
	Deprecated VGLite API version 2.0 functions

	Revision history
	Note about the source code in the document

	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Firmware version: 18.99.6.p46 to 18.99.6.p47
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Firmware version: 18.99.5.p76 to 18.99.5.p79
	Known issues
	Abbreviations
	References

	EdgeFast Bluetooth
	MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction
	Introduction
	Stack API Reference

	Overview
	Folder structure
	Architecture
	Features
	Bluetooth features
	Toolchain support
	RTOS support
	Examples list

	Hardware
	Reference boards list
	Dual-chip wireless module list

	Demo
	Run a demo application using IAR
	Open an IAR example
	Build an IAR example
	Run an IAR example
	Run a demo application using MCUXpresso IDE
	Open an MCUXpresso IDE example
	Build an MCUXpresso IDE example
	Run an MCUXpresso IDE example
	Run a demo application using MDK
	Open an MDK project
	Build an MDK example
	Run an MDK example
	Run a demo application using Arm GCC
	Setup tool chains
	Build a GCC example
	Run a GCC example
	Download Linker Layer firmware from the reference board
	Change board-specific parameters
	Change HCI UART parameters
	Change USB Host stack parameters

	Known issues
	Notes
	EdgeFast BT PAL configuration documentation

	Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer
	Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA
	Hardware rework

	Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510
	Hardware rework

	Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064
	Introduction
	Migrate examples from RT1060EVK to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Migrate examples from RT1060EVKC to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Note about the source code in the document

	Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170
	Introduction
	IAR
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Arm GCC
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project setting
	Delete function

	MDK
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Note

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

