
MCUXpresso SDK Documentation
Release 25.12.00

NXP
Dec 18, 2025

Table of contents

1 Middleware 3
1.1 Boot . 3

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3
1.1.2 MCUboot . 4

1.2 Connectivity . 5
1.2.1 lwIP . 5

1.3 eIQ . 6
1.3.1 eIQ . 6

1.4 File System . 35
1.4.1 FatFs . 35

1.5 Motor Control . 37
1.5.1 FreeMASTER . 37

1.6 MultiCore . 74
1.6.1 Multicore SDK . 74

1.7 Multimedia . 172
1.7.1 Audio Voice . 172
1.7.2 VGLite Graphics Driver . 248

1.8 Wireless . 338
1.8.1 NXP Wireless Framework and Stacks . 338
1.8.2 EdgeFast Bluetooth . 383

2 RTOS 459
2.1 FreeRTOS . 459

2.1.1 FreeRTOS kernel . 459
2.1.2 FreeRTOS drivers . 459
2.1.3 backoffalgorithm . 459
2.1.4 corehttp . 459
2.1.5 corejson . 459
2.1.6 coremqtt . 460
2.1.7 corepkcs11 . 460
2.1.8 freertos-plus-tcp . 460

i

ii

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the evkbimxrt1050 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

3

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

License: Apache 2.0

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.12.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

• boot/bootutil - The core of the bootloader itself.

• boot/boot_serial - Support for serial upgrade within the bootloader itself.

• boot/zephyr - Port of the bootloader to Zephyr.

• boot/mynewt - Bootloader application for Apache Mynewt.

• boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.

• boot/mbed - Port of the bootloader to Mbed OS.

• boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

• boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

• imgtool - A tool to securely sign firmware images for booting by MCUboot.

• sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

• Our developer mailing list

• Our Discord channel Get your invite

1.2 Connectivity

1.2.1 lwIP

This is the NXP fork of the lwIP networking stack.
• For details about changes and additions made by NXP, see CHANGELOG.

• For details about the NXP porting layer, see The NXP lwIP Port.

• For usage and API of lwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP lwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is lwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

1.2. Connectivity 5

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.12.00

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for lwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif_probe_link() which reads those data from
PHY and forwards them into lwIP stack.

In almost all examples this function is called every ETH_LINK_POLLING_INTERVAL_MS
(1500ms) by a function probe_link_cyclic().

By setting ETH_LINK_POLLING_INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif_init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX_TASK_STACK_SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH_DO_RX_IN_SEPARATE_TASK macro to 0.

Disabling Rx interrupt when out of buffers If ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH_MAX_RX_PKTS_AT_ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

• ethernetif_wait_linkup()- Blocks until the link on the passed netif is not up.

• ethernetif_wait_linkup_array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif_wait_ipv4_valid() does this.

1.3 eIQ

1.3.1 eIQ

6 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

eIQ TensorFlow Lite for Micro Library User Guide

• Overview

• TensorFlow Lite for Microcontrollers

• Build Status

– Official Builds

– Community Supported TFLM Examples

– Community Supported Kernels and Unit Tests

• Contributing

• Getting Help

• Additional Documentation

• RFCs

Overview TensorFlow Lite is an open source software library for running machine learning
models on mobile and embedded devices. For more information, see www.tensorflow.org/lite.

For memory constrained devices, the library contains TensorFlow Lite for Microcontrollers. For
more information, see www.tensorflow.org/lite/microcontrollers.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated TensorFlow Lite for Microcontrollers based on version 25-
04-08 (from the 8th of April 2025 with commit). This document describes the steps required to
download and start using the library. Additionally, the document describes the steps required
to create an application for running pre-trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

TensorFlow Lite for Microcontrollers TensorFlow Lite for Microcontrollers is a port of Ten-
sorFlow Lite designed to run machine learning models on DSPs, microcontrollers and other de-
vices with limited memory.

Additional Links:

• Tensorflow github repository

• TFLM at tensorflow.org

Build Status
• GitHub Status

Official Builds
Build Type Status

CI (Linux)

Code Sync

1.3. eIQ 7

http://www.tensorflow.org/lite
https://github.com/tensorflow/tflite-micro/commit/bc68d362d6f3ac93ce11d8712974d05b1d6a8305
https://github.com/tensorflow/tensorflow/
https://www.tensorflow.org/lite/microcontrollers
https://www.githubstatus.com/
https://github.com/tensorflow/tflite-micro/actions/workflows/run_ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/sync.yml

MCUXpresso SDK Documentation, Release 25.12.00

Community Supported TFLM Examples This table captures platforms that TFLM has been
ported to. Please see New Platform Support for additional documentation.

Platform Status

Arduino
Coral Dev Board Micro TFLM + EdgeTPU Examples for Coral Dev Board Micro

Espressif Systems Dev
Boards
Renesas Boards TFLM Examples for Renesas Boards
Silicon Labs Dev Kits TFLM Examples for Silicon Labs Dev Kits

Sparkfun Edge
Texas Instruments Dev
Boards

Community Supported Kernels and Unit Tests This is a list of targets that have optimized
kernel implementations and/or run the TFLM unit tests using software emulation or instruction
set simulators.

Build Type Status

Cortex-M

Hexagon

RISC-V

Xtensa

Generate Integration Test

Contributing See our contribution documentation.

Getting Help A Github issue should be the primary method of getting in touch with the Ten-
sorFlow Lite Micro (TFLM) team.

The following resources may also be useful:

1. SIG Micro email group and monthly meetings.

2. SIG Micro gitter chat room.

3. For questions that are not specific to TFLM, please consult the broader TensorFlow project,
e.g.:

• Create a topic on the TensorFlow Discourse forum

• Send an email to the TensorFlow Lite mailing list

• Create a TensorFlow issue

• Create a Model Optimization Toolkit issue

8 Chapter 1. Middleware

https://github.com/tensorflow/tflite-micro-arduino-examples/actions/workflows/ci.yml
https://github.com/antmicro/tensorflow-arduino-examples/actions/workflows/test_examples.yml
https://coral.ai/products/dev-board-micro
https://github.com/google-coral/coralmicro
https://github.com/espressif/tflite-micro-esp-examples/actions/workflows/ci.yml
https://github.com/renesas/tflite-micro-renesas
https://github.com/SiliconLabs/tflite-micro-efr32-examples
https://github.com/advaitjain/tflite-micro-sparkfun-edge-examples/actions/workflows/ci.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/cortex_m.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_hexagon.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/riscv.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/run_xtensa.yml
https://github.com/tensorflow/tflite-micro/actions/workflows/generate_integration_tests.yml
https://github.com/tensorflow/tflite-micro/issues/new/choose
https://groups.google.com/a/tensorflow.org/g/micro
http://doc/1YHq9rmhrOUdcZnrEnVCWvd87s2wQbq4z17HbeRl-DBc
https://gitter.im/tensorflow/sig-micro
https://discuss.tensorflow.org
https://groups.google.com/a/tensorflow.org/g/tflite
https://github.com/tensorflow/tensorflow/issues/new/choose
https://github.com/tensorflow/model-optimization

MCUXpresso SDK Documentation, Release 25.12.00

Additional Documentation
• Continuous Integration

• Benchmarks

• Profiling

• Memory Management

• Logging

• Porting Reference Kernels from TfLite to TFLM

• Optimized Kernel Implementations

• New Platform Support

• Platform/IP support

– Arm IP support

• Software Emulation with Renode

• Software Emulation with QEMU

• Python Dev Guide

• Automatically Generated Files

• Python Interpreter Guide

RFCs
1. Pre-allocated tensors

2. TensorFlow Lite for Microcontrollers Port of 16x8 Quantized Operators

Deployment The eIQ TensorFlow Lite for Microcontrollers library is part of the eIQ machine
learning software package, which is an optional middleware component of MCUXpresso SDK.
The eIQ component is integrated into the MCUXpresso SDK Builder delivery system available on
mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso SDK package, the
eIQ middleware component is selected in the software component selector on the SDK Builder
page when building a new package. See Figure 1.

1.3. eIQ 9

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

|

|

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to Figure 2. The eIQ TensorFlow Lite library directories
are highlighted in red.

10 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

|

1.3. eIQ 11

MCUXpresso SDK Documentation, Release 25.12.00

| |

12 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

|

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the eIQ library source code and example application source code and data.

Example applications The eIQ TensorFlow Lite library is provided with a set of example appli-
cations. For details, see Table 1. The applications demonstrate the usage of the library in several
use cases.

Name Description Availability
tflm_cifar10CIFAR-10 classification of 32 × 32 RGB pixel im-

ages into 10 categories using a small Convolu-
tional Neural Network (CNN).

MCX-N947-EVK (no camera and
display support) MCX-N947-
FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_kwsKeyword spotting application using a neural net-
work for word detection in pre-processed audio
input.

MCX-N947-EVK (no audio sup-
port) MCX-N947-FRDM (no audio
support) MCX-N547-EVK (no au-
dio support) MIMXRT700-EVK (no
audio support)

tflm_label_imageImage recognition application using a MobileNet
model architecture to classify 128 × 128 RGB pixel
images into 1000 categorieswith eIQ Neutron NPU.

MCX-N947-EVK (no camera and
display support) MCX-N947-
FRDM (no camera and display
support) MCX-N547-EVK (no
camera and display support)
MIMXRT700-EVK (no camera and
display support)

tflm_label_image_ext_memImage recognition application using a MobileNet
model architecture to classify 224 × 224 RGB pixel
images into 1000 categorieswith eIQ Neutron NPU.
In this example, it demonstrates how to fetch
model’s weight from external memory(xSPI flash)
to internal SRAM for Neutron NPU execution.

MIMXRT700-EVK (no camera and
display support)

tflm_cifar10_hifi4CIFAR-10 classification of 32 × 32 RGBpixel images
into 10 categories using a small Convolutional
Neural Network. In this example, M33 core0 starts
HiFi4 DSP core with HiFi4 DSP image. HiFi4 DSP
does the inference for CIFAR-10 classification.

MIMXRT700-EVK (no camera and
display support)

tflm_label_image_hifi4Image recognition application using a MobileNet
model architecture to classify 128 × 128 RGB pixel
images into 1000 categories. In this example, M33
core0 starts HiFi4 DSP core with HiFi4 DSP image.
HiFi4 DSP does the inference for image recogni-
tion application.

MIMXRT700-EVK (no camera and
display support)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG). When using
MCUXpresso IDE, the example applications can be imported through the SDK Import Wizard as
shown in Figure 1.

1.3. eIQ 13

MCUXpresso SDK Documentation, Release 25.12.00

|

14 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

|

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, Figure 2 shows the output of the tflm_label_image_cm7``tflm_label_image
example application printed to the MCUXpresso IDE Console window when semihosting debug
console is selected in the SDK Import Wizard.

|

1.3. eIQ 15

MCUXpresso SDK Documentation, Release 25.12.00

|

Model Conversion to TensorFlow Lite Format The eIQ® Toolkit provides a comprehensive
end-to-end environment for machine learning (ML) model development and deployment. De-
signed for NXP EdgeVerse processors, the toolkit includes both an intuitive GUI-based tool (eIQ
Portal) and command-line utilities for advanced workflows.

One key component, the eIQ ModelTool, enables seamless conversion of ML models from pop-
ular formats such as TensorFlow, PyTorch, and ONNX into the TensorFlow Lite (TFLite) format.
These converted models can be further optimized and deployed on NXP platforms for inference
acceleration.

Model Conversion for NXP eIQ Neutron NPU To leverage the NXP eIQ Neutron NPU for hard-
ware acceleration, models must undergo additional processing using the Neutron Converter
Tool. This tool transforms standard quantized TensorFlow Lite models into a format optimized
for execution on the Neutron NPU.

The key steps involved in this process are as follows:

1. Convert to Quantized TensorFlow Lite Model: Ensure the model is in a quantized TFLite
format before running the Neutron Converter.

2. Run the Neutron Converter Tool: The Neutron Converter analyzes the TFLite model, iden-
tifies supported operators, and replaces them with specialized NPU-compatible nodes. Un-
supported operations are executed using fallback mechanisms, such as:

• CMSIS-NN for optimized CPU execution

• Reference Operators for unsupported cases

3. Execute on Target Platform: The converted model runs efficiently on the Neutron NPU using
a custom TFLite Micro-operator implementation.

Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU The following
is a sample command-line invocation for the Neutron Converter tool:

neutron-converter --input mobilenet_v1_0.25_128_quant.tflite \
--output mobilenet_v1_0.25_128_quant_npu.tflite \
--target imxrt700 \
--dump-header-file-output

Note: This will convert the source tflite model to neutron compatable model, meanwhile, it will
dump the model as one headfile name as “mobilenet_v1_0.25_128_quant_npu.h”.

Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE This section lists the
steps to Prepare CM33 Core for the examples and Prepare DSP core for the examples.

16 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prepare CM33 Core for the examples
1. The tflm_cifar10_hifi4 and tflm_label_image_hifi4 examples consist of two separate applica-

tions that run on the CM33 core0 and DSP core. The CM33 core0 application initializes the
DSP core and starts it.

To debug the application:

1. Set up and execute the CM33 application using an environment of your choice.

2. Build and execute the examples located in:

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/cm33/

<SDK_ROOT>/ boards/mimxrt700evk/eiq_examples/tflm_label_image_hifi4/cm33/

2. The tflm_cifar10_hifi1 example consists of three separate applications that run on the CM33
core0, CM33 core1, and DSP core. The CM33 core0 application initializes the CM33 core1
core and starts it. The CM33 core1 application initializes the DSP core and starts it.

To debug the application:

1. Set up and build the CM33 core1 application using an environment of your choice.

2. Set up and execute the CM33 core0 application using an environment of your choice.

3. Build and execute the example located in:

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi1/cm33_core1/

<SDK_ROOT>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi1/cm33_core0/

Note: ARMGCC toolchain and IAR Embedded Workbench are both supported. To en-
able compatibility with RT700, IAR Embedded Workbench may require a patch. There
are default DSP core images in the SDK. For details on how to build the examples, refer
to Prepare DSP core for the examples.

Parent topic:Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE

Prepare DSP core for the examples The projects for different supported toolchains are built.
The “xcc” project builds on the command line and the “xtensa” directory is an Xplorer IDE
project.

To run the tflm_cifar10_hifi4 example, import the SDK sources into the Xplorer IDE.

1. Select File > Import > General > Existing Projects into Workspace.

1.3. eIQ 17

MCUXpresso SDK Documentation, Release 25.12.00

2. Click Next.

3. Select the SDK directory/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/xtensa
as the root directory.

18 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

4. Click Select Folder.

5. Leave all the other options check boxes blank.

1.3. eIQ 19

MCUXpresso SDK Documentation, Release 25.12.00

Once imported, the tflm_cifar10_hifi4 example appears in the Project Explorer.

6. To make a build selection for the project and hardware target configuration, use the drop-
down buttons on the menu bar.

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

7. To build the DSP application image for the CM33 application, select the Release target op-
tion in the Xplorer IDE as below.

8. Three DSP binaries are generated and are loaded into different TCM or SRAM address seg-
ments:

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_data_release.bin

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_literal_release.bin

• <SDK_ROOT/>/boards/mimxrt700evk/eiq_examples/tflm_cifar10_hifi4/hifi4/binary/
dsp_text_release.bin

Parent topic:Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE

Running an inference After converting the model to the TensorFlow Lite format, it is con-
verted into a C language array to include it in the application source code. The xxd utility
can be used for this purpose (distributed with the Vim editor for many platforms on https:
//www.vim.org/) as shown in Converting a model to a C language header file. The utility con-
verts a TensorFlow Lite model into a C header file with an array definition containing the binary
image of the model and a variable containing the data size.

Converting a model to a C language header file {#EXAMPLE_4 .section}
xxd -i mobilenet_v1_0.25_128_quant.tflite > mobilenet_v1_0.25_128_quant_model.h

1.3. eIQ 21

https://www.vim.org/
https://www.vim.org/

MCUXpresso SDK Documentation, Release 25.12.00

After the header file is generated, the type of the array is changed from unsigned char to const
char to match the library API input parameters and the default array name can be changed to a
more convenient one. The user must align the buffer to at least 64-bit boundary (the size of a
double-precision floating-point number) to avoid misaligned memory access. The alignment can
be achieved by using the __ALIGNED(16) macro from the cmsis_compiler.h header file (available
in the MCUXpresso SDK) in the array declaration before the data assignment.

The easiest way to create an application with the proper configuration is to copy and modify an
existing example application. To learn where to find the example applications and how to build
them, see the Example applications.

Running an inference using TensorFlow Lite for Microcontrollers involves several steps (shown
for quantized model with signed 8-bit values as input and 32-floating point values as output):

1. Include the necessary eIQ TensorFlow Lite Micro library header files and the converted
model.

Including header files

#include ”tensorflow/lite/micro/micro_error_reporter.h”
#include ”tensorflow/lite/micro/micro_interpreter.h”
#include ”tensorflow/lite/micro/all_ops_resolver.h”
#include ”mobilenet_v1_0.25_128_quant_model.h”

2. Allocate a static memory buffer for input and output tensors and intermediate arrays.
Load the FlatBuffer model image (assuming the mobilenet_v1_0.25_128_quant_model.h file
generated in Converting a model to a C language header file defines an array named mo-
bilenet_model and a size variable named mobilenet_model_len), build the interpreter ob-
ject and allocate memory for tensors.

Loading the FlatBuffer model

constexpr int kTensorArenaSize = 1024 * 1024;
static uint8_t tensorArena[kTensorArenaSize];
const tflite::Model* model = tflite::GetModel(mobilenet_model);
// TODO: Report an error if model->version() != TFLITE_SCHEMA_VERSION
static tflite::AllOpsResolver microOpResolver;
static tflite::MicroErrorReporter microErrorReporter;
static tflite::MicroInterpreter interpreter(model,
microOpResolver, tensorArena, kTensorArenaSize,
microErrorReporter);

interpreter->AllocateTensors();
// TODO: Check return value for kTfLiteOk

3. Fillhe input data into the input tensor. For example, if a speech recognition model, image
data from a camera or audio data from a microphone. The dimensions of the input data
must be the same as the dimensions of the input tensor. These dimensions were specified
when the model was created.

Fill-in input data

// Get access to the input tensor data
TfLiteTensor* inputTensor = interpreter->input(0);
// Copy the input tensor data from an application buffer
for (int i = 0; i < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input_data[i];

4. Run the inference and read the output data from the output tensor. The dimensions of the
output data must be the same as the dimensions of the output tensor. These dimensions
were specified when the model was created.

Running inference and reading output data

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

// Run the inference
interpreter->Invoke();
// TODO: Check the return value for TfLiteOk
// Get access to the output tensor data
TfLiteTensor* outputTensor = interpreter->output(0);
// Copy the output tensor data to an application buffer
for (int i = 0; i < outputTensor->bytes / sizeof(float32); i++)
output_data[i] = outputTensor->data.f[i];

NPU inference {#npu_infer .section} Running an inference using a model converted for the
NPU requires registration of a custom operator implementation. First the header file with the
custom operator implementation interface must be included.

#include ”tensorflow/lite/micro/kernels/micro_ops.h”
#include ”tensorflow/lite/micro/all_ops_resolver.h”
#include ”tensorflow/lite/micro/kernels/neutron/neutron.h”

Next, the specialized implemetation has to be registered in the operator resolver object.

static tflite::AllOpsResolver microOpResolver;
microOpResolver.AddCustom(tflite::GetString_NEUTRON_GRAPH(),

tflite::Register_NEUTRON_GRAPH());

The specialized NPU nodes from the converted model are the executed using this newly regis-
tered implementation.

Adjusting the tensor arena size {#adjust_arena .section} The tensor arena is a static memory
buffer used for intermediate tensor and scratch buffer allocation. The size of the tensor arena
buffer is set by the kTensorArenaSize constant in the example above. The value depends on the
tensor sizes used in the model and on the hardware-specific implementations of kernels, which
may require various sizes of scratch buffers for intermediate computations. The value can be
determined experimentally by running an inference with a small value, so the library fails with
an insufficient tensor memory error and prints the missing amount. Continue adjusting the size
until the error stops being reported. If the target hardware changes, readjust the value.

Code size optimization Typically, models do not use all the operators that are available in
TensorFlow Lite. However, because of the default operator registration mechanism used in the
library, the toolchain linker is not able to remove the code of unused operators. In order to reduce
code size, it is possible to only register the specific operators used by a model. To determine
which operators are used by a particular model, a model visualizer tool like Netron can be used.
Then a mutable operator resolver object can be created that only registers the operators that are
used by the model being inferenced.

Use the tflite::MicroMutableOpResolver object template, which is later passed to the
tflite::MicroInterpreter object. Depending on the list of used operators, the result should be
similar to the following code snippet. Make sure to update the MicroMutableOpResolver
template parameter to reflect the number of operators that need to be registered.

Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}
#include ”tensorflow/lite/micro/kernels/micro_ops.h”

#include ”tensorflow/lite/micro/micro_mutable_op_resolver.h”
tflite::MicroMutableOpResolver<6> microOpResolver;
microOpResolver.AddAveragePool2D();
microOpResolver.AddConv2D();
microOpResolver.AddDepthwiseConv2D();

(continues on next page)

1.3. eIQ 23

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
microOpResolver.AddDequantize();
microOpResolver.AddReshape();
microOpResolver.AddSoftmax();
static tflite::MicroInterpreter interpreter(
model, microOpResolver, tensorArena, kTensorArenaSize, microErrorReporter);

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

eIQ ExecuTorch Library User Guide

Overview ExecuTorch is an end-to-end solution for enabling on-device inference capabilities
across mobile and edge devices including wearables, embedded devices and microcontrollers.
It is part of the PyTorch Edge ecosystem and enables efficient deployment of PyTorch models to
edge devices. For more information, see https://pytorch.org/executorch-overview.

The MCUXpresso Software Development Kit (MCUXpresso SDK) provides a comprehensive soft-
ware package with a pre-integrated ExecuTorch based on version v1.0.0 which includes the Neu-
tron Backend. Neutron Backend enables acceleration of ML models on the eIQ® Neutron Neural
Processing Unit (NPU).

This document describes the steps required to download and start using the ExecuTorch. Ad-
ditionally, the document describes the steps required to create an application for running pre-
trained models.

Note: The document also assumes knowledge of machine learning frameworks for model train-
ing.

Supported platforms:
• i.MX RT700

24 Chapter 1. Middleware

https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/applications/technologies/ai-and-machine-learning/eiq-neutron-npu:EIQ-NEUTRON-NPU
https://www.nxp.com/products/i.MX-RT700

MCUXpresso SDK Documentation, Release 25.12.00

Installation The ExecuTorch, with the Neutron Backend consists of:

• ExecuTorch with Neutron Backend for Ahead of Time ML Model Compilation

• Neutron Converter

• MCUXpresso SDK

Here we briefly describe each components purpose and steps to install them.

The ExecuTorch AoT and Neutron Converter are needed to convert a PyTorch model to Execu-
Torch and Delegate it to eIQ Neutron NPU using the Neutron Backend. The MCUXpresso SDK
provides project to build the ExecuTorch Runtime Library, the example application with simple
CNN, toolchains and other middleware libraries to build and deploy the application on the target
platform.

If you want run to prepared example application on the i.MX RT700 platform, and skip the model
preparation phase continue with the MCUXpresso SDK Part.

ExecuTorch for Ahead of Time model preparation The ExecuTorch enables to deploy Py-
Torch models on edge devices. For this purpose the PyTorch model must be processed and con-
verter by the ExecuTorch Ahead of Time (AoT) part. You can obtain the full ExecuTorch including
the AoT part aligned with this version of MCUX SDK from the mcuxsdk-middleware-executorch
release/mcux-full branch.

Installation Prerequisities:

• x86 Linux Machine with GLIBC-2.29 or higher (e.g. Ubuntu 20.04 or higher)

• Python 3.10, 3.11 or 3.12

To build and install the ExecuTorch follow these steps:

1. (Optional) Setup python virtual environment on desired location and activate it.

$ python3 -m venv venv
$ source venv/bin/activate

2. Clone the ExecuTorch from mcuxsdk-middleware-executorch

$ git clone --branch release/mcux-full https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch.git
$ cd mcuxsdk-middleware-executorch
$ git submodule update --init --recursive

3. Build and install the ExecuTorch and its dependencies:

$./install_executorch.sh

[!WARNING] The install_requirements.sh installs the CPU version of torch from https://
download.pytorch.org/whl/cpu. If you are behind corporate proxy, it might have issues
accessing it and you will see warnings like:

WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None,␣
↪→status=None)) after connection broken by 'SSLError(SSLCertVerificationError(1, '[SSL:␣
↪→CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer␣
↪→certificate (_ssl.c:1006)'))': /whl/test/cpu/torch/

In this case the CUDA version of torch is installed and the install_requirements.sh script
fails with:

PyTorch: CUDA cannot be found. Depending on whether you are building

Make sure the pip can access the https://download.pytorch.org/whl/cpu PyPI.

1.3. eIQ 25

https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full
https://github.com/nxp-mcuxpresso/mcuxsdk-middleware-executorch/tree/release/mcux-full

MCUXpresso SDK Documentation, Release 25.12.00

Next continue with installation of the Neutron Converter

Neutron Converter The eIQ Neutron Backend uses the Neutron Converter to convert the Ex-
ecuTorch program to the eIQ Neutron NPU microcode.

Installation The Neutron Converter is available as a Python package and can be installed by
the pip command from eiq.nxp.com/repository:

pip install --index-url https://eiq.nxp.com/repository neutron_converter_SDK_25_12==1.0.0

Or you can use the prepared setup script:

./examples/nxp/setup.sh

The Neutron Converter is used internally by the ExecuTorch, and it is tied to the particular BSP
you are using - the suffix of the python package name. In the code snippet above the flavor is
the SDK_25_12. In the aot_neutron_convert.py example script by the --neutron_converter_flavor
parameter.

MCUXpresso SDK The MCUXpresso SDK is used to build, debug and deploy the application
using the ExecuTorch on the target platform.

You can obtain the MCUXpresso SDK from MCUXpresso SDK Builder including the IDE. See the
getting_mcuxpress for details.

In the MCUXpresso SDK, there are 2 projects available related to ExecuTorch:

• executorch_lib

• executorch_cifarnet

For more details see example_applications. Here you will find the details to run build and run
the demo applications.

Getting the MCUXpresso SDK with eIQ ExecuTorch The eIQ ExecuTorch library is part of
the eIQ machine learning software package, which is an optional middleware component of
MCUXpresso SDK. The eIQ component is integrated into the MCUXpresso SDK Builder delivery
system available on mcuxpresso.nxp.com. To include eIQ machine learning into the MCUXpresso
SDK package, the eIQ middleware component is selected in the software component selector on
the SDK Builder page when building a new package:

26 Chapter 1. Middleware

https://mcuxpresso.nxp.com/en
https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or
imported into the MCUXpresso IDE. For more information on the MCUXpresso SDK folder struc-
ture, see the Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).
The package directory structure is similar to figure bellow:

1.3. eIQ 27

MCUXpresso SDK Documentation, Release 25.12.00

The boards directory contains example application projects for supported toolchains. For the
list of supported toolchains, see the MCUXpresso SDK Release Notes. The middleware directory
contains the eIQ library source code and example application source code and data.

PyTorch Model Conversion to ExecuTorch Format In this guideline we will show how to use
the ExecuTorch AoT part to convert a PyTorch model to ExecuTorch format and delegate the
model computation to eIQ Neutron NPU using the eIQ Neutron Backend.

First we will start with an example script converting the model. This example shows the CifarNet
model preparation. It is the same model which is part of the example_cifarnet.

1. Run the aot_neutron_compile.py example with the cifar10model. As the aot_neutron_compile.
py is already installed as part of the ExecuTorch installation we will run it from there

$ python -m examples.nxp.aot_neutron_compile --quantize \
--delegate --neutron_converter_flavor SDK_25_12 -m cifar10

2. It will generate you cifar10_nxp_delegate.pte file which can be used with the MXUXpresso
SDK cifarnet_example project.

The generated PTE file is used in the executorch_cifarnet example application, see exam-
ple_application.

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso SDK Example applications The MCUXpresso SDK provides a set of projects and
example application with the eIQ ExecuTorch. These demonstrate the functionality of the Execu-
Torch with the Neutron Backend, or enable to build the executorch library itself, if code changes
or customization is needed. See table bellow:

Name Description Availability
ex-
ecu-
torch_lib

This project contains the ExecuTorch Runtime Library source code and
is used to build the ExecuTorch Runtime Library. The library is further
used to build a full application using the leveraging ExecuTorch.

MIMXRT700-
EVK (no
camera and
display sup-
port)

ex-
ecu-
torch_cifarnet

Example application demonstrating the use of the ExecuTorch running
a CifarNet classification model accelerated on the eIQ Neutron NPU.
The Cifarnet is a small Convolutional Neural Network (CNN), trained
on CIFAR-10 [1] dataset. The model clasifies the input images into 10
caterories.

MIMXRT700-
EVK (no
camera and
display sup-
port)

For details on how to build and run the example applications with supported toolchains, see
Getting Started with MCUXpresso SDK User’s Guide (document: MCUXSDKGSUG).

How to build and run executorch_cifarnet example The example needs ExecuTorch Runtime
Library and Neutron Libraries.

ExecuTorch Runtime Library:

• middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a for Cortex-M33 Core

• middleware/eiq/executorch/lib/hifi4/xcc/imxrt700/libexecutorch.a for HiFi4 Core

Neutron Libraries:

• Cortex-M33

– /middleware/eiq/neutron/rt700/cm33/libNeutronDriver.a and

– /middleware/eiq/neutron/rt700/cm33/libNeutronFirmware.a

• HiFi4 DSP

– /middleware/eiq/neutron/rt700/hifi4/libNeutronDriver.a and

– /middleware/eiq/neutron/rt700/hifi4/libNeutronFirmware.a

In the example the model and the input image is already embedded into the program and ready
to build and deploy to i.MX RT700, so you can continue right to the building and deployment
section.

Convert the model and example input to C array In this section we describe where the model
and example input is located in the example application sources, and how it was generated.

The cifar10 model ExecuTorch model is stored in boards/mimxrt700evk/eiq_examples/
executorch_cifarnet/cm33_core0/model_pte.h. and was generated from the cifar10_nxp_delegate.
pte (see convert_model).

We use the xxd command to get the C array containing the model data and array size:

$ xxd -i cifar10_nxp_delegate.pte > model_pte_data.h

then use the array data and size in the model_pte.h.

1.3. eIQ 29

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00

As input image we use the image from CIFAR-10 dataset [1]. After preprocessing and
normalization it is converted to bytes and located here boards/mimxrt700evk/eiq_examples/
executorch_cifarnet/cm33_core0/image_data.h. The preprocessing is performed as follows:

import torch
import torchvision
import numpy as np

batch_size = 1

transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)

index = 0
num_images = 10
for data in test_loader:
images, labels = data
for image, label in zip(images,labels):
arr = image.numpy().astype(np.float32)
arr.tofile(”img” + str(index) + ”_” + str(int(label)) + ”.bin”)
index = index + 1
if index >= num_images:
break

if index >= num_images:
break

This generates the num_images count of images from Cifar10 dataset, as input tensors for the
cifar10 model and store them in corresponding .bin files. Then we use the xxd command to get
the C array data and size:

$ xxd -i img0_3.bin > image_data_base.h

and again copy the array data and size in the image_data.h

Note, the img0 is the image picturing a cat, what is a class number 3.

Build, Deploy and Run
1. When using ARMGCC toolchain, the example application can be built as below:

$ boards/mimxrt700evk/eiq_examples/executorch_cifarnet/cm33_core0/armgcc$./build_flash_release.sh

After building the example application, download it to the target with JLink as shown in figure

bellow.

30 Chapter 1. Middleware

https://www.cs.toronto.edu/~kriz/cifar.html

MCUXpresso SDK Documentation, Release 25.12.00

The output message displays on the connected terminal:

2. When using MCUXpresso IDE, the example applications can be imported through the SDK
Import Wizard:

1.3. eIQ 31

MCUXpresso SDK Documentation, Release 25.12.00

After building the example application and downloading it to the target, the execution stops in
the main function. When the execution resumes, an output message displays on the connected
terminal. For example, bellow figure shows the output of the executorch_cifarnet example appli-
cation:

32 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

In case of missing probabilities in the printed output, add PRINTF_FLOAT_ENABLE=1 to the Pre-
processor settings for C++ and C compiler:

1.3. eIQ 33

MCUXpresso SDK Documentation, Release 25.12.00

How to build executorch_lib example If you want to build a new ExecuTorch Runtime Library,
follow the commands as below and use the new library to replace the default Runtime library
middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a.

1. When using ARMGCC toolchain, the example application can be built as below.

$ boards/mimxrt700evk/eiq_examples/executorch_lib/cm33_core0/armgcc$./build_release.sh
$ boards/mimxrt700evk/eiq_examples/executorch_lib/cm33_core0/armgcc$ cp release/libexecutorch_lib_
↪→cm33_core0.a ../../../../../../middleware/eiq/executorch/lib/cm33/armgcc/libexecutorch.a

2. When using MCUXpresso IDE, you can import the project directly to the IDE through the
SDK Import Wizard. The project can be found under eiq_examples:

34 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

After building the example application, copy the new library
mimxrt700evk_executorch_lib_cm33_core0\Debug\libmimxrt700evk_executorch_lib_cm33_core0.a
to replace the default Runtime library mimxrt700evk_executorch_cifarnet_cm33_core0\eiq\
executorch\lib\cm33\armgcc\libexecutorch.a.

[1] Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

1.4 File System

1.4.1 FatFs

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

1.4. File System 35

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content This is MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUXpresso version is extending original content by following hardware specific porting layers:

• mmc_disk

• nand_disk

• ram_disk

• sd_disk

• sdspi_disk

• usb_disk

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15_rev0]
• Upgraded to version 0.15

• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev0]
• Upgraded to version 0.14b

[R0.14a_rev0]
• Upgraded to version 0.14a

• Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
• Upgraded to version 0.14

• Applied patch ff14_p1.diff and ff14_p2.diff

36 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.12.00

[R0.13c_rev0]
• Upgraded to version 0.13c

• Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff_13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
• Upgraded to version 0.13b

[R0.13a_rev0]
• Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[R0.12c_rev1]
• Add NAND disk support.

[R0.12c_rev0]
• Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[R0.12b_rev0]
• Upgraded to version 0.12b.

[R0.11a]
• Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.

• Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

• Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

• Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

• Conditional compilation of physical disk interfaces in diskio.c.

1.5 Motor Control

1.5.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

1.5. Motor Control 37

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified

38 Chapter 1. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

1.5. Motor Control 39

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

MCUXpresso SDK Documentation, Release 25.12.00

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

40 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

1.5. Motor Control 41

MCUXpresso SDK Documentation, Release 25.12.00

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

1.5. Motor Control 43

MCUXpresso SDK Documentation, Release 25.12.00

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

44 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

1.5. Motor Control 45

MCUXpresso SDK Documentation, Release 25.12.00

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

46 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

1.5. Motor Control 47

MCUXpresso SDK Documentation, Release 25.12.00

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

48 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

1.5. Motor Control 49

MCUXpresso SDK Documentation, Release 25.12.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT

50 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

1.5. Motor Control 51

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG

1.5. Motor Control 53

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

1.5. Motor Control 55

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set

1.5. Motor Control 57

MCUXpresso SDK Documentation, Release 25.12.00

up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype

1.5. Motor Control 59

MCUXpresso SDK Documentation, Release 25.12.00

void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */

(continues on next page)

1.5. Motor Control 61

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

62 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

1.5. Motor Control 63

MCUXpresso SDK Documentation, Release 25.12.00

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

64 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

1.5. Motor Control 65

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

1.5. Motor Control 67

MCUXpresso SDK Documentation, Release 25.12.00

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

1.5. Motor Control 69

MCUXpresso SDK Documentation, Release 25.12.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

70 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.5. Motor Control 71

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

72 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.5. Motor Control 73

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

1.6 MultiCore

1.6.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUXpresso SDK to make the software framework for easy development of multicore applica-
tions.

74 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit
(MCSDK) version 25.12.00.
This software package contains components for efficient work with multicore devices as well as
for the
multiprocessor communication.

What is new
• eRPC CHANGELOG

• RPMsg-Lite CHANGELOG

• MCMgr CHANGELOG

• Supported evaluation boards (multicore examples):

– LPCXpresso55S69

– FRDM-K32L3A6

– MIMXRT1170-EVKB

– MIMXRT1160-EVK

– MIMXRT1180-EVK

– MCX-N5XX-EVK

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– KW47-EVK

– KW47-LOC

– FRDM-MCXW72

– MCX-W72-EVK

– FRDM-IMXRT1186

• Supported evaluation boards (multiprocessor examples):

– LPCXpresso55S36

– FRDM-K22F

– FRDM-K32L2B

– MIMXRT685-EVK

– MIMXRT1170-EVKB

– MIMXRT1180

– FRDM-MCXN236

– FRDM-MCXC242

– FRDM-MCXC444

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– FRDM-IMXRT1186

1.6. MultiCore 75

https://github.com/EmbeddedRPC/erpc/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.12.00/CHANGELOG.md

MCUXpresso SDK Documentation, Release 25.12.00

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location
Multicore SDK location
<MCSDK_dir>

<MCUXpressoSDK_install_dir>/middleware/
multicore/

Documentation <MCSDK_dir>/mcuxsdk-doc/
Embedded Remote Procedure Call
component

<MCSDK_dir>/erpc/

Multicore Manager component <MCSDK_dir>/mcmgr/
RPMsg-Lite <MCSDK_dir>/rpmsg_lite/
Multicore demo applications <MCUXpressoSDK_install_dir>/examples/

multicore_examples/
Multiprocessor demo applications <MCUXpressoSDK_install_dir>/examples/

multiprocessor_examples/

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

• Embedded Remote Procedure Call (eRPC)

• Multicore Manager (MCMGR) - included just in SDK for multicore devices

• Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.
The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in
the <MCUXpressoSDK_install_dir>/examples/multicore_examples subdirectories.

• erpc_matrix_multiply_mu

• erpc_matrix_multiply_mu_rtos

• erpc_matrix_multiply_rpmsg

• erpc_matrix_multiply_rpmsg_rtos

• erpc_two_way_rpc_rpmsg_rtos

• freertos_message_buffers

• hello_world

• multicore_manager

• rpmsg_lite_pingpong

• rpmsg_lite_pingpong_rtos

• rpmsg_lite_pingpong_dsp

• rpmsg_lite_pingpong_tzm

76 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain

MCUXpresso SDK Documentation, Release 25.12.00

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.
The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in
the <MCUXpressoSDK_install_dir>/examples/multiprocessor_examples subdirectories.

• erpc_client_matrix_multiply_spi

• erpc_server_matrix_multiply_spi

• erpc_client_matrix_multiply_uart

• erpc_server_matrix_multiply_uart

• erpc_server_dac_adc

• erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

1.6. MultiCore 77

MCUXpresso SDK Documentation, Release 25.12.00

All the MCSDK-related files are located in <MCUXpressoSDK_install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.12.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

• Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

• Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

• Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

78 Chapter 1. Middleware

http://www.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

RPC implementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

Main eRPC features:
• Scalable from BareMetal to Linux OS - configurable memory and threading policies.

• Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

• Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:

• Maintains information about all cores in system.

• Secondary/auxiliary cores startup and shutdown.

• Remote core monitoring and event handling.

The MCMGR library is located in the<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:

• Shared memory interprocessor communication.

• Virtio-based messaging bus.

• Application-defined messages sent between endpoints.

1.6. MultiCore 79

MCUXpresso SDK Documentation, Release 25.12.00

• Portable to different environments/platforms.

• Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder
Multicore example
projects

<MCUXpressoSDK_install_dir>/examples/multicore_examples/
<application_name>/

Multiprocessor example
projects

<MCUXpressoSDK_install_dir>/examples/
multiprocessor_examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers
The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism
On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging API.

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls
To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

• Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)

• Sensor aggregation/fusion applications

• Encryption algorithms

• Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.2

– RPMsg-Lite v5.3.0

[25.09.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

1.6. MultiCore 81

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.1

– RPMsg-Lite v5.2.1

[25.06.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.0

– RPMsg-Lite v5.2.0

[25.03.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.7

– RPMsg-Lite v5.1.4

[24.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.6

– RPMsg-Lite v5.1.3

[2.16.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.2

[2.15.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.12.0

– eRPC generator (erpcgen) v1.12.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.1

82 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.14.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.11.0

– eRPC generator (erpcgen) v1.11.0

– Multicore Manager (MCMgr) v4.1.4

– RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.13.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.12.0_imx93]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.1

[2.12.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.0

1.6. MultiCore 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.1

[2.11.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.0

[2.10.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.1

– eRPC generator (erpcgen) v1.8.1

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.2

[2.9.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.0

– eRPC generator (erpcgen) v1.8.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.1

[2.8.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.4

– eRPC generator (erpcgen) v1.7.4

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.1.0

84 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.3

– eRPC generator (erpcgen) v1.7.3

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.0.0

[2.6.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.2

– eRPC generator (erpcgen) v1.7.2

– Multicore Manager (MCMgr) v4.0.3

– RPMsg-Lite v2.2.0

[2.5.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.1

– eRPC generator (erpcgen) v1.7.1

– Multicore Manager (MCMgr) v4.0.2

– RPMsg-Lite v2.0.2

[2.4.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.0

– eRPC generator (erpcgen) v1.7.0

– Multicore Manager (MCMgr) v4.0.1

– RPMsg-Lite v2.0.1

[2.3.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.6.0

– eRPC generator (erpcgen) v1.6.0

– Multicore Manager (MCMgr) v4.0.0

– RPMsg-Lite v1.2.0

1.6. MultiCore 85

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.5.0

– eRPC generator (erpcgen) v1.5.0

– Multicore Manager (MCMgr) v3.0.0

– RPMsg-Lite v1.2.0

[2.2.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.4.0

– eRPC generator (erpcgen) v1.4.0

– Multicore Manager (MCMgr) v2.0.1

– RPMsg-Lite v1.1.0

[2.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.3.0

– eRPC generator (erpcgen) v1.3.0

[2.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.2.0

– eRPC generator (erpcgen) v1.2.0

– Multicore Manager (MCMgr) v2.0.0

– RPMsg-Lite v1.0.0

[1.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.1.0

– Multicore Manager (MCMgr) v1.1.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev01

[1.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.0.0

– Multicore Manager (MCMgr) v1.0.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

86 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For overview please read RPMSG-Lite VirtIO Overview.

For RPMSG-Lite Design Considerations please read RPMSG-Lite Design Considerations.

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

1.6. MultiCore 87

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://nxp-mcuxpresso.github.io/rpmsg-lite/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static API in RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352
Relative Difference [%] ~52.7% ~77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.

88 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action
in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_cb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

1.6. MultiCore 89

MCUXpresso SDK Documentation, Release 25.12.00

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

• Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

• Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

• Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

• Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

• Read received data directly from the shared memory.

• Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

90 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

1.6. MultiCore 91

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board_name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

• rpmsg_env_bm.c

• rpmsg_env_freertos.c

• rpmsg_env_xos.c

• rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

92 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme

MCUXpresso SDK Documentation, Release 25.12.00

Config-
uration
option

De-
fault
value

Usage

RL_MS_PER_INTERVAL(1) Delay in milliseconds used in non-blocking API functions for polling.
RL_BUFFER_PAYLOAD_SIZE(496) Size of the buffer payload, it must be more than 1 byte, and has to be word

align (including rpmsg header size 16 bytes), if not it will be aligned up
RL_BUFFER_COUNT(2) Number of the buffers, it must be power of two (2, 4, …)
RL_API_HAS_ZEROCOPY(1) Zero-copy API functions enabled/disabled.
RL_USE_STATIC_API(0) Static API functions (no dynamic allocation) enabled/disabled.
RL_USE_DCACHE(0) Memory cache management of shared memory. Use in case of data cache

is enabled for shared memory.
RL_CLEAR_USED_BUFFERS(0) Clearing used buffers before returning back to the pool of free buffers en-

abled/disabled.
RL_USE_MCMGR_IPC_ISR_HANDLER(0) When enabled IPC interrupts are managed by the Multicore Manager (IPC

interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_ENVIRONMENT_CONTEXT(0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some
RAM).

RL_DEBUG_CHECK_BUFFERS(0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by
RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION(0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOW_CUSTOM_SHMEM_CONFIG(0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RL_ASSERTsee
rpmsg_default_config.h

Assert implementation.

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvm project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_clang_format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.6. MultiCore 93

http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

[v5.3.0]

Added
• RT700 porting layer added support to send rpmsg messages between CM33_0 <-> Hifi1 and

CM33_1 <-> Hifi4 cores.

• Add new platform macro RL_PLATFORM_MAX_ISR_COUNT this will set number of IRQ
count per platform. This macro is then used in environment layers to set isr_table size
where irq handles are registered. It size should match the bit length of VQ_ID so all combi-
nations can fit into table.

• Unit tests updated to improve code coverage, new unit tests added covering static alloca-
tions in rtos environment layers.

Fixed
• virtio.h removed typedef uint8_t boolean and in its place use standard C99 bool type to avoid

potential type conflicts.

• env_acquire_sync_lock() and env_release_sync_lock() synchronization primitives removed

• Kconfig consolidation, when RL_ALLOW_CUSTOM_SHMEM_CONFIG enabled the plat-
form_get_custom_shmem_config() function needs to be implemented in platform layer to
provide custom shared memory configuration for RPMsg-Lite instance.

v5.2.1

Added
• Doc added RPMSG-Lite VirtIO Overview

• Doc added RPSMG-Lite Design Consi derations

• Added frdmimxrt1186 unit testing

Changed
• Remove limitation that RL_BUFFER_SIZE needs to be power of 2. It just has to be more

than 16 bytes, e.g. 16 bytes of rpmsg header and payload size at least 1 byte and word
aligned, if not it will be aligned up.

Fixed
• Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for

imxrt700_m33, imxrt700_hifi4, imxrt700_hifi1 platforms

v5.2.0

Added
• Add MCXL20 porting layer and unit testing

• New utility macro RL_CALCULATE_BUFFER_COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

• RT700 platform add support for MCMGR in DSPs

94 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Change rpmsg_platform.c to support new MCMGR API

• Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

• Refactored repeated buffer count calculation pattern for better code maintainability.

• To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed
• Fixed env_wait_for_link_up function to handle timeout in link state checks for baremetal

and qnx environment, RL_BLOCK mode can be used to wait indefinitely.

• Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST_LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

• Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_config.vring_size
expressions.

• Fixed CERT INT31-C violation in platform_interrupt_disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

• Fixed unsigned integer underflow in rpmsg_lite_alloc_tx_buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

• Fixed CERT-C INT31-C violation in rpmsg_lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

– Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& 0xFFFFU).

– This fix prevents potential data loss when size values exceed 65535.

• Fixed CERT INT31-C violation in env_memset functions by explicitly converting int32_t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

• Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

– rpmsg_env_freertos.c: Added validation before converting int32_t to UBaseType_t.

– rpmsg_env_qnx.c: Fixed format string and added validation before assigning to mqstat
fields.

– rpmsg_env_threadx.c: Added validation to prevent integer overflow and negative val-
ues.

– rpmsg_env_xos.c: Added range checking before casting to uint16_t.

– rpmsg_env_zephyr.c: Added validation before passing values to k_msgq_init.

• Fixed a CERT INT31-C compliance issue in env_get_current_queue_size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

• Fixed CERT INT31-C violation in rpmsg_platform.c where memcmp() return value (signed int)
was compared with unsigned constant without proper type handling.

1.6. MultiCore 95

MCUXpresso SDK Documentation, Release 25.12.00

• Fixed CERT INT31-C violation in rpmsg_platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

• Fixed potential integer overflow in env_sleep_msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

• Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

• Added RL_MAX_BUFFER_COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

• Fixed CERT INT31-C violation in vring_need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
• Add KW43B43 porting layer

Changed
• Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

Added
• Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg_config.h in case of data cache is used.

• Cmake/Kconfig support added.

• Porting layers for imx95, imxrt700, mcmxw71x, mcmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
• Zephyr-related changes.

• Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
• Test suite provided.

• Zephyr support added.

96 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
• RPMsg-Lite: Added aarch64 support.

Changed
• RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.

• Code formatting using LLVM16.

Fixed
• Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added
• Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

Changed
• Improved debug check buffers implementation - instead of checking the pointer fits into

shared memory check the presence in the VirtIO ring descriptors list.

• VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
• Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

• Misra corrections.

v4.0.0 - 20-Jun-2022

Added
• Added support for custom shared memory arrangement per the RPMsg_Lite instance.

• Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
• Adjusted rpmsg_lite_is_link_up() to return RL_TRUE/RL_FALSE.

1.6. MultiCore 97

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21

MCUXpresso SDK Documentation, Release 25.12.00

v3.2.0 - 17-Jan-2022

Added
• Added support for i.MX8 MP multicore platform.

Changed
• Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR

#14.

• Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
• Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added
• Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK

examples, otherwise stdio printf is used).

• Added environment layers for XOS.

• Added support for i.MX RT500, i.MX RT1160 and i.MX RT1170 multicore platforms.

Fixed
• Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
• Updated RL_BUFFER_COUNT documentation (issue #10).

• Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added
• Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-

site side notification sending each time received buffers are consumed and put into the
queue of available buffers.

• Added environment layers for Threadx.

• Added support for i.MX8QM multicore platform.

Changed
• Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

98 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20
https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed (7.4).

• Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

• Correction of rpmsg_lite_instance structure members description.

• Address -Waddress-of-packed-member warnings in GCC9.

Changed
• Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed, incl. data types consolidation.

• Code formatted.

v2.2.0 - 20-Mar-2019

Added
• Added configuration macro RL_DEBUG_CHECK_BUFFERS.

• Several MISRA violations fixed.

• Added environment layers for QNX and Zephyr.

• Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

• Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
• Supporting i.MX6SX and i.MX7D MPU platforms.

• Supporting LPC5411x MCU platform.

• Baremental and FreeRTOS support.

• Support of copy and zero-copy transfer.

• Support of static API (without dynamic allocations).

1.6. MultiCore 99

MCUXpresso SDK Documentation, Release 25.12.00

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview This repository is for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
mcmgr directory.

100 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://nxp-mcuxpresso.github.io/mcux-mcmgr/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

The Multicore Manager provides the following major functions:

• Maintains information about all cores in system.

• Secondary/auxiliary core(s) startup and shutdown.

• Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

Example of MCMGR usage to start secondary core:

#include ”mcmgr.h”

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

(continues on next page)

1.6. MultiCore 101

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass ”1” as startup data,␣
↪→starting synchronously. */

MCMGR_StartCore(kMCMGR_Core1, CORE1_BOOT_ADDRESS, 1, kMCMGR_Start_Synchronous);
.
.
.

/* Stop secondary core execution. */
MCMGR_StopCore(kMCMGR_Core1);

}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

It could also happen that the secondary core application stops running correctly and the primary
core application does not know about that situation. Therefore, it is beneficial to implement a
mechanism for core health monitoring. The test_heartbeat unit test can serve as an example
how to ensure that: secondary core could periodically send heartbeat signals to the primary
core using MCMGR_TriggerEvent() API to indicate that it is alive and functioning properly.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() API. Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)
#define APP_NUMBER_OF_CORES (2)
#define APP_SECONDARY_CORE kMCMGR_Core1

/* Callback function registered via the MCMGR_RegisterEvent() and triggered by MCMGR_TriggerEvent()␣
↪→called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_core_t coreNum, uint16_t eventData, void *context)
{

uint16_t *data = &((uint16_t *)context)[coreNum];

*data = eventData;
}

void main()
{

uint16_t RPMsgRemoteReadyEventData[NUMBER_OF_CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

/* Register the application event before starting the secondary core */
MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void␣

↪→*)RPMsgRemoteReadyEventData);

(continues on next page)

102 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass rpmsg_lite_base address␣

↪→as startup data, starting synchronously. */
MCMGR_StartCore(APP_SECONDARY_CORE, CORE1_BOOT_ADDRESS, (uint32_t)rpmsg_lite_

↪→base, kMCMGR_Start_Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to␣
↪→communicate. */

while(APP_RPMSG_READY_EVENT_DATA != RPMsgRemoteReadyEventData[APP_SECONDARY_
↪→CORE]) {};
.
.
.
}

Code for the secondary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

.

.

.

/* Signal the to other core that we are ready by triggering the event and passing the APP_RPMSG_
↪→READY_EVENT_DATA */

MCMGR_TriggerEvent(kMCMGR_Core0, kMCMGR_RemoteApplicationEvent, APP_RPMSG_
↪→READY_EVENT_DATA);
.
.
.
}

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

1.6. MultiCore 103

MCUXpresso SDK Documentation, Release 25.12.00

104 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[v5.0.2]

Added
• Added gcov options and configs to support mcmgr code coverage

• Added new test_weak_mu_isr testcase for devices with MU peripheral

• Added new test_heartbeat testcase showing heartbeat mechanism between primary and
secondary cores using the MCMGR

v5.0.1

Added
• Added frdmimxrt1186 unit testing

Changed
• [KW43] Rename core#1 reset control register

Fixed
• Added CX flag into CMakeLists.txt to allow c++ build compatibility.

• Fix path to mcmgr headers directory in doxyfile

v5.0.0

Added
• Added MCMGR_BUSY_POLL_COUNT macro to prevent infinite polling loops in MCMGR

operations.

• Implemented timeout mechanism for all polling loops in MCMGR code.

• Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

– MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

– MCMGR_TriggerEvent(mcmgr_event_type_t type, uint16_t eventData, mcmgr_core_t
coreNum)

– MCMGR_TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

– typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

1.6. MultiCore 105

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

When registering the event with function MCMGR_RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

• Updated all porting files to support new MCMGR API.

• Added new platform specific include file mcmgr_platform.h. It will contain common plat-
form specific macros that can be then used in mcmgr and application. e.g. platform core
count MCMGR_CORECOUNT 4.

• Move all header files to new inc directory.

• Added new platform-specific include files inc/platform/<platform_name>/mcmgr_platform.
h.

Added
• Add MCXL20 porting layer and unit testing

v4.1.7

Fixed
• mcmgr_stop_core_internal() function now returns kStatus_MCMGR_NotImplemented status

code instead of kStatus_MCMGR_Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mcxw716, mcxw727.

[v4.1.6]

Added
• Multicore Manager moved to standalone repository.

• Add porting layers for imxrt700, mcmxw727, kw47b42.

• New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added
• Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid

using uninitialized data in their implementations.

[v4.1.4]

Fixed
• Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable

flag is not set in the CR/TCR register.

• Messaging Unit RX and status registers are cleared after the initialization.

106 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[v4.1.3]

Added
• Add porting layers for imxrt1180.

Fixed
• mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-

able flag is not set in the CR/TCR register.

• mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed
• Update mcmgr_stop_core_internal() implementations to set core state to kM-

CMGR_ResetCoreState.

[v4.1.0]

Fixed
• Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
• Documentation updated to describe handshaking in a graphic form.

• Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
• Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed
• Code formatting, removed unused code

[v4.0.0]

1.6. MultiCore 107

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Add new MCMGR_TriggerEventForce() API.

[v3.0.0]

Removed
• Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
• Modified MCMGR_GetStartupData()

Added
• Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()

• Added the ability for remote core monitoring and event handling

[v2.0.1]

Fixed
• Updated to be Misra compliant.

[v2.0.0]

Added
• Support for lpcxpresso54114 board.

[v1.1.0]

Fixed
• Ported to KSDK 2.0.0.

[v1.0.0]

Added
• Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

108 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

eRPC

• MCUXpresso SDK : mcuxsdk-middleware-erpc

– Overview

– Documentation

– Setup

– Contribution

• eRPC

– About

– Releases

* Edge releases

– Documentation

– Examples

– References

– Directories

– Building and installing

* Requirements

· Windows

· Mac OS X

* Building

· CMake and KConfig

· Make

1.6. MultiCore 109

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

* Installing for Python

– Known issues and limitations

– Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the
internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {

// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void

}

Client side usage:

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* init eRPC client IO service */
initIO_client(client_manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */
deinitIO_client();
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);

(continues on next page)

110 Chapter 1. Middleware

http://thrift.apache.org

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
erpc_transport_tcp_deinit(transport);

}

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* scope for client service */
{

/* init eRPC client IO service */
IO_client client(client_manager);

// Now we can call the remote function to turn on the green LED.
client.set_led(kGreen, true);

}

/* deinit objects */
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

Server side usage:

// Implement the remote function.
void set_led(LEDName whichLed, bool onOrOff) {

// implementation goes here
}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
erpc_service_t service = create_IO_service();

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */
destroy_IO_service(service);
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

// Implement the remote function.
class IO : public IO_interface

(continues on next page)

1.6. MultiCore 111

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{

/* eRPC call definition */
void set_led(LEDName whichLed, bool onOrOff) override {

// implementation goes here
}

}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
IO IOImpl;
IO_service io(&IOImpl);

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, &io);

/* poll for requests */
erpc_status_t err = server.run();

/* deinit objects */
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

A number of transports are supported, and new transport classes are easy to write.

Supported transports can be found in erpc/erpc_c/transport folder. E.g:

• CMSIS UART

• NXP Kinetis SPI and DSPI

• POSIX and Windows serial port

• TCP/IP (mostly for testing)

• NXP RPMsg-Lite / RPMsg TTY

• SPIdev Linux

• USB CDC

• NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

112 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc

MCUXpresso SDK Documentation, Release 25.12.00

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and
update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in

mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

• erpc (EmbeddedRPC) getting started notes

• ERPC Linux Local Environment Construction and Use

• The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c - Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.

erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.

examples - Several example IDL files.

mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

1.6. MultiCore 113

https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd

MCUXpresso SDK Documentation, Release 25.12.00

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

• CMake (minimal version 3.20.0)

• Generator - Make, Ninja, …

• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Requirements when using Make:

• Make
• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_v14/readme_erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install_dependencies.ps1
* ```

Linux

```bash
./install_dependencies.sh

Mandatory for case, when build for different architecture is needed

• gcc-multilib, g++-multilib

Mac OS X

114 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

./install_dependencies.sh

Building

CMake and KConfig eRPC use CMake and KConfig to configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc/ execute:

cmake -B ./build # in erpc/build generate cmake project
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:

• erpc: build the liberpc.a static library

• erpcgen: build the erpcgen tool

• erpcsniffer: build the sniffer tool

• test: build the unit tests under the test directory

• all: build all of the above

• install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

1.6. MultiCore 115



MCUXpresso SDK Documentation, Release 25.12.00

Known issues and limitations
• Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully

supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor, Inc.

Copyright 2016-2025 NXP

eRPC Getting Started

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install_dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

116 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.6. MultiCore 117



MCUXpresso SDK Documentation, Release 25.12.00

|

118 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

1.6. MultiCore 119



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

120 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.6. MultiCore 121



MCUXpresso SDK Documentation, Release 25.12.00

|

122 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.6. MultiCore 123



MCUXpresso SDK Documentation, Release 25.12.00

|

124 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

1.6. MultiCore 125



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

126 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 127



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

128 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.6. MultiCore 129



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

130 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 131



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

132 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 133



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

134 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

1.6. MultiCore 135



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

136 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.6. MultiCore 137



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

• The primary core (CM7) runs the eRPC client.

• The secondary core (CM4) runs the eRPC server.

• RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

138 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

|Multicore application source and project files|<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/|
|Multiprocessor application source and project files|<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files|<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/|

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc_matrix_multiply
/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
const int32 matrix_size = 5;
/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
type Matrix = int32[matrix_size][matrix_size];
interface MatrixMultiplyService {
erpcMatrixMultiply(in Matrix matrix1, in Matrix matrix2, out Matrix result_matrix) ->
void
}

Details:

• The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

• The declaration and definition of the constant variable namedmatrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

• The alias name for the two-dimensional array type (Matrix) is declared.

• The interface groupMatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

• As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

1.6. MultiCore 139



MCUXpresso SDK Documentation, Release 25.12.00

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.

2. New data types and constants declarations.

3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPC generator tool |Windows OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Windows|
|Linux OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

| |Mac OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac|

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

• The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_file>.erpc

• In the “Matrix multiply” example, the command should look like:

erpcgen erpc_matrix_multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

• “-?”/”—help” – Shows supported commands.

• “-o <filePath>”/”—output<filePath>” – Sets the output directory.

For example,

<path_to_erpcgen>/erpcgen –o <path_to_output>
<path_to_IDL>/<IDL_file_name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:

erpcgen –o

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

In both cases, the following four files are generated into the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

• erpc_matrix_multiply.h

• erpc_matrix_multiply_client.cpp

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service
folder.

For Linux OS users:
• Do not forget to set the permissions for the eRPC generator application.

• Run the application as ./erpcgen… instead of as erpcgen ….

140 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.6. MultiCore 141



MCUXpresso SDK Documentation, Release 25.12.00

|

142 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

1.6. MultiCore 143



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

144 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.6. MultiCore 145



MCUXpresso SDK Documentation, Release 25.12.00

|

146 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.6. MultiCore 147



MCUXpresso SDK Documentation, Release 25.12.00

|

148 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

1.6. MultiCore 149



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

150 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 151



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

152 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.6. MultiCore 153



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

154 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 155



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

156 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.6. MultiCore 157



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

158 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

1.6. MultiCore 159



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

160 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.6. MultiCore 161



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

162 Chapter 1. Middleware

https://github.com/EmbeddedRPC


MCUXpresso SDK Documentation, Release 25.12.00

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed
• Python code of the eRPC infrastructure was updated to match the proper python code style,

add type annotations and improve readability.

1.14.0

Added
• Added Cmake/Kconfig support.

• Made java code jdk11 compliant, GitHub PR #432.

• Added imxrt1186 support into mu transport layer.

• erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
• eRPC: Sources reformatted.

• erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

• erpc: Free the arbitrated client token from client manager, GitHub PR #444.

1.6. MultiCore 163

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

• erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

• erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

• Examples and tests consolidated.

1.13.0

Added
• erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.

• eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).

• eRPC: Add new Zephyr-related examples.

Fixed
• eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.

• eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.

• eRPC,erpcgen: Align switch brackets, GitHub PR #396.

• erpc: Fix zephyr uart transport, GitHub PR #410.

• erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
• eRPC,erpcgen: Remove cstbool library, GitHub PR #403.

1.12.0

Added
• eRPC: Add dynamic/static option for transport init, GitHub PR #361.

• eRPC,erpcgen: Winsock2 support, GitHub PR #365.

• eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

• eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

• eRPC,erpcgen: Add experimental Java support.

Fixed
• eRPC: Fix receive error value for spidev, GitHub PR #363.

• eRPC: UartTransport::init adaptation to changed driver.

• eRPC: Fix typo in assert, GitHub PR #371.

• eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

• eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

164 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.11.0

Fixed
• eRPC: Makefiles update, GitHub PR #301.

• eRPC: Resolving warnings in Python, GitHub PR #325.

• eRPC: Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.

• eRPC: Improved codec function to use reference instead of address, GitHub PR #324.

• eRPC: Fix NULL check for pending client creation, GitHub PR #341.

• eRPC: Replace sprintf with snprintf, GitHub PR #343.

• eRPC: Use MU_SendMsg blocking call in MU transport.

• eRPC: New LPSPI and LPI2C transport layers.

• eRPC: Freeing static objects, GitHub PR #353.

• eRPC: Fixed casting in deinit functions, GitHub PR #354.

• eRPC: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.

• erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

• erpcgen: Add check that string read is not more than max length, GitHub PR #328.

• erpcgen: Move to g++ in pytest, GitHub PR #335.

• erpcgen: Use build=release for make, GitHub PR #334.

• erpcgen: Removed boost dependency, GitHub PR #346.

• erpcgen: Mingw support, GitHub PR #344.

• erpcgen: VS build update, GitHub PR #347.

• erpcgen: Modified name for common types macro scope, GitHub PR #337.

• erpcgen: Fixed memcpy for template, GitHub PR #352.

• eRPC,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.

• eRPC,erpcgen: Remove redundant includes, GitHub PR #338.

• eRPC,erpcgen: Many minor code improvements, GitHub PR #323.

1.10.0

Fixed
• eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added
• eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

1.6. MultiCore 165



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: MUTransport adaptation to new supported SoCs.

• eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

• eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

• eRPC: Endianness agnostic update, GitHub PR #276.

• eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

• eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.

• eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

• eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

• eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

• eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

• eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker, GitHub
PR #266.

• eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

• eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.

• erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.

• erpcgen: Several fixes for tests and CI, GitHub PR #289.

• erpcgen: Refactoring erpcgen code, GitHub PR #302.

• erpcgen: Fixed assigning const value to enum, GitHub PR #309.

• erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

1.9.1

Fixed
• eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

• eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

• eRPC: Improve python detection in make, GitHub PR #225.

• eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

• eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.

• eRPC: Fix making test under Linux, GitHub PR #229.

• eRPC: Assert costumizing, GitHub PR #148.

• eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

• eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

• eRPC: Fix inout cases, GitHub PR #237.

166 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

• eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

• eRPC: MessageBuffer usage improvement, GitHub PR #258.

• eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

• eRPC: Several MISRA violations addressed.

• eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

• eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.

• eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

• erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

• erpcgen: Fix serialization of list/binary types, GitHub PR #240.

• erpcgen: Fix empty list parsing, GitHub PR #72.

• erpcgen: Fix templates for malloc errors, GitHub PR #110.

• erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #249, #250.

• erpcgen: Fix compile error:UniqueIdChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

1.9.0

Added
• eRPC: Allow used LIBUSBSIO device index being specified from the Python command line

argument.

Fixed
• eRPC: Improving template usage, GitHub PR #153.

• eRPC: run_clang_format.py cleanup, GitHub PR #177.

• eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

• eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

• eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.

• eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

• eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APi,
GitHub PR #168, #169.

• erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

1.8.1

Added
• eRPC: New i2c_slave_transport trasnport introduced.

1.6. MultiCore 167



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: Fix misra erpc c, GitHub PR #158.

• eRPC: Allow conditional compilation of message_loggers and pre_post_action.

• eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.

• erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

• erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

• erpcgen: Fix bison file, GitHub PR #156.

1.8.0

Added
• eRPC: Support win32 thread, GitHub PR #108.

• eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

• eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.

• eRPC: Introduced new USB CDC transport.

• eRPC: Introduced new Linux spidev-based transport.

• eRPC: Added formatting extension for VSC, GitHub PR #134.

• erpcgen: Introduce ustring type for unsigned char and force cast to char*, GitHub PR #125.

Fixed
• eRPC: Update makefile.

• eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.

• eRPC: Extend error msg for python server service handle function, GitHub PR #132.

• eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

• eRPC: SPI transport update to allow usage without handshaking GPIO.

• eRPC: Native _WIN32 erpc serial transport and threading.

• eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

• eRPC: Update of matrix_multiply.py example: Add –serial and –baud argument, GitHub PR
#137.

• eRPC: Update of .clang-format, GitHub PR #140.

• eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

• eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

• eRPC, erpcgen: Core re-formatted using Clang version 10.

• erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

• erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

168 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

• erpcgen: Python generator improvements, GitHub PR #100, #118.

• erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.7.4

Added
• eRPC: Support MU transport unit testing.

• eRPC: Adding mbed os support.

Fixed
• eRPC: Unit test code updated to handle service add and remove operations.

• eRPC: Several MISRA issues in rpmsg-based transports addressed.

• eRPC: Fixed Linux/TCP acceptance tests in release target.

• eRPC: Minor documentation updates, code formatting.

• erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed
• eRPC: Improved the test_callbacks logic to be more understandable and to allow requested

callback execution on the server side.

• eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

• eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

• erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added
• eRPC: Add missing doxygen comments for transports.

Fixed
• eRPC: Improved support of const types.

• eRPC: Fixed Mac build.

• eRPC: Fixed serializing python list.

• eRPC: Documentation update.

1.6. MultiCore 169



MCUXpresso SDK Documentation, Release 25.12.00

1.7.1

Fixed
• eRPC: Fixed semaphore in static message buffer factory.

• erpcgen: Fixed MU received error flag.

• erpcgen: Fixed tcp transport.

1.7.0

Added
• eRPC: List names are based on their types. Names are more deterministic.

• eRPC: Service objects are as a default created as global static objects.

• eRPC: Added missing doxygen comments.

• eRPC: Added support for 64bit numbers.

• eRPC: Added support of program language specific annotations.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Generating crc value is optional.

• eRPC: Fixed CMSIS Uart driver. Removed dependency on KSDK.

• eRPC: Forbid users use reserved words.

• eRPC: Removed outByref for function parameters.

• eRPC: Optimized code style of callback functions.

1.6.0

Added
• eRPC: Added @nullable support for scalar types.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Improved eRPC nested calls.

• eRPC: Improved eRPC list length variable serialization.

1.5.0

170 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Added
• eRPC: Added support for unions type non-wrapped by structure.

• eRPC: Added callbacks support.

• eRPC: Added support @external annotation for functions.

• eRPC: Added support @name annotation.

• eRPC: Added Messaging Unit transport layer.

• eRPC: Added RPMSG Lite RTOS TTY transport layer.

• eRPC: Added version verification and IDL version verification between eRPC code and eRPC
generated shim code.

• eRPC: Added support of shared memory pointer.

• eRPC: Added annotation to forbid generating const keyword for function parameters.

• eRPC: Added python matrix multiply example.

• eRPC: Added nested call support.

• eRPC: Added struct member “byref” option support.

• eRPC: Added support of forward declarations of structures

• eRPC: Added Python RPMsg Multiendpoint kernel module support

• eRPC: Added eRPC sniffer tool

1.4.0

Added
• eRPC: New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

Fixed
• eRPC: win_flex_bison.zip for windows updated.

• eRPC: Use one codec (instead of inCodec outCodec).

[1.3.0]

Added
• eRPC: New annotation types introduced (@length, @max_length, …).

• eRPC: Support for running both erpc client and erpc server on one side.

• eRPC: New transport layers for (LP)UART, (D)SPI.

• eRPC: Error handling support.

[1.2.0]

Added
• eRPC source directory organization changed.

• Many eRPC improvements.

1.6. MultiCore 171



MCUXpresso SDK Documentation, Release 25.12.00

[1.1.0]

Added
• Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added
• Initial Release

1.7 Multimedia

1.7.1 Audio Voice

Audio Voice Components

MCUXpresso SDK : audio-voice-components

Overview This repository is for MCUXpresso SDK audio-voice-components middleware deliv-
ery and it contains the components officially provided in NXP MCUXpresso SDK. This repos-
itory is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Audio Voice Components - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Overview This repository allows users to add additional functionality to the Maestro Audio
framework. This structure is designed for integration with Maestro and is not intended for stan-
dalone use. For information on the use of individual components, please refer to the Maestro
programmer’s guide.

This repository acts as Zephyr module, to be able to use these libraries in Zephyr build system.

172 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/components/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro/blob/main/doxygen/ProgrammersGuide.md


MCUXpresso SDK Documentation, Release 25.12.00

Content
• asrc - Libraries and public files of Asynchronous Sample Rate Converter, version 1.0.0

• ssrc - Libraries and public files of Synchronous Sample Rate Converter, version 1.0.0

• opus - Source files of Opus decoder and encoder, version 1.3.1

• opusfile - Source files for Opus streams in the Ogg container, version 0.12

• ogg - Source files of Ogg container, version 1.3.5

• decoders - Libraries and public files of following audio decoders:

– aac - AAC decoder, version 1.0.0

– flac - FLAC decoder, version 1.0.0

– mp3 - MP3 decoder, version 1.0.0

– wav - WAV decoder, version 1.0.0

• zephyr/ - Files allowing usage of the libraries in Zephyr build

Following table contains information about libraries and source files availability:

Asynchronous Sample Rate Converter The Asynchronous Sample Rate Converter (ASRC) soft-
ware module compensates the drift between two mono audio signals. This is not a frequency
converter and so the nominal signal frequency is the same before and after the ASRC. More de-
tails about ASRC are available in the User Guide, which is located in asrc\doc\.

Synchronous Sample Rate Converter The Synchronous Sample Rate Converter (SSRC) soft-
ware module converts an audio signal (mono or stereo) with a certain sampling frequency to
an audio signal with another sampling frequency. More details about SSRC are available in the
User Guide.

Opus For Opus decoder and encoder documentation please see following link: opus.

Opus File The Opus File provides a API for decoding and basic manipulation of Opus streams
in Ogg container and depends on Opus and Ogg libraries. For Opus File documentation please
see following link: opusfile.

Ogg Container For Ogg container documentation please see following link: ogg.

Decoders Each decoder contains libraries for supported processor and toolchain (see table
above), corresponding Public API file and documentation folder.

AAC For decoder features please see aacdec, for API Usage please see aacd_ug.

FLAC For decoder features please see flacdec, for API Usage please see flacd_ug.

MP3 For decoder features please see mp3dec, for API Usage please see mp3d_ug.

WAV For decoder features please see wavdec, for API Usage please see wavd_ug.

1.7. Multimedia 173

https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opusfile_api-0.12/index.html
https://xiph.org/ogg/doc/


MCUXpresso SDK Documentation, Release 25.12.00

Zephyr build To add library into the Zephyr build, add CON-
FIG_NXP_AUDIO_VOICE_COMPONENTS_* for specific libraries into your prj.conf. For
all configuration options, see zephyr/Kconfig.

List of supported libraries in Zephyr:

• Decoders:

– AAC

– FLAC

– MP3

– FLAC

– OPUS

• Encoders

– OPUS

AAC decoder

AAC decoder features
• The AAC decoder implementation supports the following:

• Supported profile : AAC-LC

• Sampling rate : 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48
kHz

• Channel : stereo and mono

• Bits per samples : 16 bit

• Container format : (MPEG-2 Style)AAC transport format - ADTS and ADIF.

Specification and reference

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 26332 + 19264 = 45596

• Data/RAM = 26832

Section Size
.text 26332
.ro & .const 19264
.bss 26832

174 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
• CPU core clock in MHz: 20.97.

Track type Duration of track in sec-
ond

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz,
stereo

38 s 4096 12.2 MHz

API Usage of AAC Decoder

Overview
• This section describes the integration steps to call AAC decoder APIs by the application code.

During each step, the used data structures and functions are explained. All CCI public APIs
are defined in aac_cci.h header file. This file is located at \decoders\aac.

Configuration

Build Options AAC Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the AAC decoder.

Buffer Allocation
• The AAC decoder does not perform dynamic memory allocation. The application calls

the function AACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder, then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• AACDecoderInit() function must be called before decode API. This API allocates the memory

to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which is used by the decoder to read
or seek the input stream.

Decoding
• AACDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

1.7. Multimedia 175



MCUXpresso SDK Documentation, Release 25.12.00

Seeking
• AACDecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions are assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API AAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

FLAC decoder

FLAC decoder features
• The FLAC decoder implementation support the following:

• Sampling rate: 8 kHz, 11.05 kHz, 12 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel : stereo and mono

• Bits per samples : 16 bits

Specification and reference

Official website
• FLAC lossless audio codec is at https://xiph.org/flac.

Inbound licensing
• For licensing information please refer to FLAC’s official website:

https://xiph.org/flac/license.html.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 15744 + 2080 = 17824

• Data/RAM = 27936

Section Size
.text 15744
.ro & .const 2080
.bss 27936

176 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
• Output frame size: 16384 bytes.

• CPU core clock in MHz: 20.97.

Track type Duration of track in second Performance MIPS of codec (in MHz)
48 kHz, stereo 76 s 30.7 MHz
32 kHz, stereo 76 s 20.3 MHz
8 kHz, stereo 37 s 5.34 MHz

Following test cases are performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of FLAC Decoder

Overview
• This section describes the integration steps to call FLAC decoder APIs by the application

code. During each step the used data structures and functions are explained. All cci public
APIs are defined in flac_cci.h header file. This file is located at \decoders\flac\include.

Configuration

Build Options
• SUPPORT_16_BITS_ONLY :- This macro is used to enable 16bits per sample flac decoder.

• ASM :- This macro is used to enable ARM assembly macros for 24bits per sample flac de-
coder.

Buffer Allocation
• The FLAC decoder does not perform dynamic memory allocation. The application calls

the function FLACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• FLACDecoderInit() function must be called before decode API. This API allocates the mem-

ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 177



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• FLACDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• FLACDecoderSeek() function calculates the actual frame boundary align offset from the

unalign seek offset and returns the actual seek offset. It also resets the decoder internal
states and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API FLAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

MP3 decoder

MP3 decoder features
• MP3 decoder supports mpeg-1, mpeg-2, mpeg-2.5.

• All MP3 features supported , including joint stereo, mid-side stereo, intensity stereo, and
dual channel.

• Supported sampling rate: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1
kHz and 48 kHz.

• Supported channel: stereo and mono

• Supported bits per samples: 16 bit

• Supported bit rate: 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256,
320, 384, 416, and 448.

Performance

Memory information The memory usage of the decoder (data obtained from IAR compiler) in
bytes is:

• Code/flash = 26884 + 18372 = 45256

• RAM = 16200

178 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Section Size
.text 26884
.ro & .const 18372
.bss 16200

CPU usage The performance of the decoder was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec
(in MHz)

320 Kbps, 44.1 kHz,
stereo

358 s 2304 ~24 MHz

192 Kbps, 48 kHz,
stereo

10 s 2304 ~18 MHz

API Usage of MP3 Decoder

Overview
• This section describes the integration steps to call MP3 decoder APIs by the application code.

During each step the used data structures and functions are explained. All cci public APIs
are defined in mp3_cci.h header file. This file is located at \decoders\mp3.

Configuration

Build Options MP3 Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the MP3 decoder.

Buffer Allocation
• The MP3 decoder does not perform dynamic memory allocation. The application calls

the function MP3DecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• MP3DecoderInit() function must be called before decode API. This API allocates the memory

to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 179



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• MP3DecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• MP3DecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API MP3 Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

WAV decoder

WAV decoder features
• The WAV decoder implementation support the following:

• Sampling rate: 8 kHz, 11.025kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel: stereo and mono

• PCM format with 8/16/24 bits per sample.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 6260 + 342 = 6602

• Data/RAM = 16 + 20696 = 20712

Section Size
.text 6260
.ro & .const 342
.bss 20696
.data 16

180 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage The performance of the decoder was measured using the decoder standalone unit
test.

• CPU core clock in MHz: 20.97 MHz.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz, stereo,
PCM

12 s 4096 9.68 MHz

Following test cases were performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of WAV Decoder

Overview
• This section describes the integration steps to call MP3 decoder APIs by the application code.

During each step the used data structures and functions are explained. All cci public APIs
are defined in wav_cci.h header file. This file is located at \decoders\wav.

Configuration

Build Options WAV Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the WAV decoder.

Buffer Allocation
• The WAV decoder does not perform dynamic memory allocation. The application calls

the function WAVDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• WAVDecoderInit() function must be called before decode API. This API allocates the mem-

ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

1.7. Multimedia 181



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• WAVDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• WAVDecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API WAV Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

Synchronous Sample Rate Converter

Introduction The Synchronous Sample Rate Converter (SSRC) software module converts a
mono or stereo audio signal with a certain sampling frequency to an audio signal with a differ-
ent sampling frequency. The sample rate converter works synchronously, meaning that input
and output sampling rates are exactly known for a mutual clock reference.

To accomplish a professional sampling conversion quality and minimal system footprint, the
SRC SW module contains highly optimized components.

The SSRC module supports the following features.

• Multiple instances of the sample rate converter can run at the same time.

• Supported sampling frequencies: 32 kHz, 44.1 kHz, and 48 kHz plus the halves and the quar-
ters of these three sample rates. The input and output sample rates are freely selectable out
of the supported sampling rates

• Selectable Mono/Stereo Input/Output.

• Selectable quality level: high quality/ very high quality.

Acronyms Table 1 lists the acronyms used in this document.

182 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

AcronymDescription
Fs Sampling Frequency
Fs-
LOWow

Lowest sample rate used for the conversion Note: Input sample rate for up sampling
and the output sample rate for down sampling

FsIN Input sample rate
FsOUTOutput sample rate
MIPS Million Instructions Per Second
SSRC Synchronous sample rate converter
THD+NTotal Harmonic Distortion plus Noise Note: The THD+N is defined as the total power of

the unwanted signal divided by the power of the wanted signal. The wanted signal is
defined as a full scale, 1 kHz sine wave.

Parent topic:Introduction

Performance figures The Total Harmonic Distortion Plus Noise (THD+N) of the converted sig-
nals is below - 76 (high-quality mode) and - 85 (very high-quality mode) for signal frequencies
below 0.45*FsLOW (=90 % of the Nyquist range of the lowest sample clock)

Table 1 and Table 2 give the THD+N performance (FsIN on the vertical axis and FsOUT on the
horizontal axis) for the two supported quality levels. The numbers in the tables give the worst-
case THD+N measured for signal frequencies below 0.45*FsLOW. For each conversion ratio, 100
THD+N measurements were executed with signal frequencies linearly spread over the complete
Nyquist range.

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -79.7 -80.1 -80.1 -79.6 -80.2 -79.4 -79.1 -79.2
11025 -79 -92.9 -80 -79.9 -80.2 -79.8 -79.9 -79.5 -78.9
12000 -79 -79.2 -92.7 -80.1 -79.8 -80.3 -79.8 -79.8 -79.5
16000 -81.7 -78.8 -80.2 -93 -78.3 -77.7 -78.3 -78.3 -77.9
22050 -77.5 -81.8 -78.2 -79 -93 -79.9 -79.8 -80.3 -79.9
24000 -77.4 -77.9 -81.2 -79.1 -79.2 -92.5 -80.1 -79.8 -79.9
32000 -81 -77.5 -78.9 -81.2 -78.7 -80.1 -92.9 -79.7 -79.2
44100 -79.1 -81.2 -76.7 -77.8 -82 -78.2 -79.1 -93 -79.7
48000 -78.7 -78.8 -81.1 -77.6 -77.9 -81.8 -79.1 -79.3 -93

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -86.6 -88.6 -91.5 -86.4 -89 -89.7 -89.3 -89.3
11025 -89.1 -92.9 -86.3 -86.3 -91.6 -86.3 -86.5 -89.7 -89.3
12000 -91.4 -88.4 -92.7 -89.6 -86.6 -91.5 -86.8 -86.6 -89.7
16000 -93.1 -88.4 -90.4 -93 -86.6 -88.8 -91.5 -86.5 -89.4
22050 -90.7 -93.5 -89.7 -89.3 -93 -86.5 -86.3 -91.5 -86.6
24000 -93.8 -90.5 -93.5 -91.7 -88.4 -92.5 -89.7 -86.6 -91.5
32000 -93.8 -91 -91.2 -93.3 -88.4 -90.5 -92.9 -86.7 -89
44100 -93.7 -93.6 -91.5 -90.6 -93.8 -89.8 -89.3 -93 -86.5
48000 -94.1 -92.6 -94 -94 -90.1 -93.7 -91.8 -88.4 -93

Parent topic:Introduction

Resource usage This section lists the memory and processing requirements for the SSRC mod-
ule.

1.7. Multimedia 183



MCUXpresso SDK Documentation, Release 25.12.00

Memory requirements The following are the memory requirements for the SSRC module.

Memory item Size in bytes
Instance memory (persistent) 548
Scratch memory (non-persistent) 15.536 1
Program memory for Arm9E and XScale 14k
Program memory for Arm7 15k

Parent topic:Resource usage

1 Worst case number for I/O buffers of 40 ms. If smaller I/O buffers are used, this number is
smaller. The required scratch memory is roughly equal to 2 times the buffer size on the highest
sample rate.

Processing requirements The following tables give the MIPS performance of the SSRC module.
The cycles are measured with zero wait state memory and for I/O buffers of 40 ms.

Note: The user processing 32-bit processing must refer to the very high-quality MIPS results.

On Arm7 and Arm9

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 4.77 5.17 1.84 6.75 7.33 3.55 9.1 9.89
11025 5.42 0.18 5.58 6.84 2.53 7.75 9.71 4.89 10.31
12000 5.85 6.39 0.2 7.01 8.97 2.76 9.89 12.94 5.32
16000 1.69 7.74 7.99 0.26 9.54 10.33 3.68 13.5 14.65
22050 7.2 2.33 10.09 10.83 0.36 11.17 13.67 5.07 15.49
24000 7.79 8.33 2.53 11.7 12.78 0.39 14.03 17.94 5.51
32000 3.12 10.32 10.58 3.38 15.48 15.98 0.52 19.08 20.66
44100 9.96 4.3 13.65 14.4 4.65 20.18 21.67 0.72 22.34
48000 10.8 11.34 4.68 15.58 16.67 5.06 23.4 25.56 0.78

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.07 7.71 8.24 2.28 10.5 11.28 4.41 13.44 14.48
11025 8.19 0.1 8.96 11.04 3.14 12 15.09 6.08 15.2
12000 8.76 9.52 0.1 11.3 14.48 3.41 15.36 20.07 6.61
16000 2.14 11.73 12.01 0.14 15.41 16.48 4.55 21 22.56
22050 10.78 2.94 15.39 16.38 0.19 17.92 22.08 6.27 24
24000 11.57 12.34 3.2 17.51 19.04 0.21 22.61 28.97 6.83
32000 4.19 15.48 15.77 4.27 23.46 24.01 0.28 30.83 32.96
44100 14.78 5.77 20.56 21.56 5.89 30.77 32.75 0.38 35.83
48000 15.92 16.7 6.28 23.15 24.69 6.41 35.02 38.08 0.42

184 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 13.61 14.52 4.43 19.03 20.43 8.8 25.06 26.99
11025 14.85 0.18 15.91 19.47 6.1 21.82 27.35 12.13 28.38
12000 15.84 17.36 0.2 19.97 25.4 6.64 27.85 36.26 13.21
16000 4.25 21.24 21.79 0.26 27.22 29.03 8.86 38.07 40.85
22050 20.02 5.85 27.72 29.7 0.36 31.81 38.94 12.2 43.63
24000 21.45 22.98 6.37 31.68 34.71 0.39 39.94 50.8 13.28
32000 8.39 28.74 29.29 8.5 42.48 43.58 0.52 54.43 58.07
44100 28.11 11.57 38.05 40.03 11.71 55.43 59.4 0.72 63.62
48000 30.19 31.71 12.59 42.9 45.96 12.74 63.36 69.42 0.78

Parent topic:Processing requirements

On Arm9e and XScale

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.14 1.25 0.54 1.95 2.14 1.04 3.85 4.23
11025 1.31 0.05 1.36 1.62 0.75 2.23 2.78 1.44 4.38
12000 1.43 1.57 0.05 1.68 2.13 0.82 2.84 3.72 1.57
16000 0.5 1.86 1.93 0.07 2.27 2.5 1.09 3.9 4.29
22050 2.19 0.69 2.42 2.61 0.1 2.72 3.24 1.5 4.46
24000 2.4 2.52 0.75 2.86 3.15 0.1 3.35 4.25 1.63
32000 0.92 3.12 3.18 1.01 3.72 3.86 0.14 4.55 4.99
44100 4.28 1.27 4.15 4.37 1.39 4.83 5.23 0.19 5.43
48000 4.7 4.9 1.39 4.8 5.03 1.51 5.72 6.3 0.21

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 1.87 2.02 1.07 3.09 3.36 2.07 6.09 6.63
11025 2.27 0.09 2.25 2.66 1.47 3.56 4.4 2.85 7.01
12000 2.45 2.76 0.09 2.75 3.43 1.6 4.5 5.83 3.1
16000 0.99 3.23 3.36 0.13 3.73 4.05 2.14 6.17 6.72
22050 3.69 1.36 4.14 4.55 0.17 4.51 5.31 2.95 7.13
24000 4.01 4.28 1.48 4.9 5.51 0.19 5.51 6.85 3.21
32000 1.83 5.26 5.39 1.98 6.46 6.71 0.25 7.47 8.09
44100 7.22 2.52 6.94 7.38 2.72 8.27 9.1 0.35 9.02
48000 7.85 8.33 2.74 8.02 8.57 2.97 9.81 11.03 0.38

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.21 1.33 0.61 2.08 2.29 1.17 4.1 4.51
11025 1.47 0.05 1.44 1.72 0.84 2.38 2.97 1.61 4.66
12000 1.62 1.76 0.05 1.78 2.26 0.91 3.03 3.98 1.75
16000 0.55 2.1 2.17 0.07 2.42 2.65 1.22 4.16 4.57
22050 2.49 0.76 2.73 2.95 0.1 2.88 3.45 1.68 4.75
24000 2.75 2.86 0.83 3.23 3.52 0.1 3.56 4.53 1.83
32000 1 3.56 3.63 1.11 4.2 4.34 0.14 4.84 5.3
44100 4.86 1.38 4.74 4.98 1.53 5.46 5.89 0.19 5.75
48000 5.38 5.55 1.5 5.5 5.71 1.66 6.47 7.05 0.21

1.7. Multimedia 185



MCUXpresso SDK Documentation, Release 25.12.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 2.11 2.29 1.2 3.55 3.86 2.31 6.99 7.61
11025 2.62 0.09 2.52 3.01 1.66 4.07 5.07 3.19 8
12000 2.85 3.15 0.09 3.11 3.9 1.81 5.17 6.75 3.47
16000 1.09 3.73 3.85 0.13 4.22 4.57 2.41 7.1 7.72
22050 4.32 1.5 4.79 5.23 0.17 5.05 6.02 3.32 8.15
24000 4.74 4.99 1.64 5.69 6.3 0.19 6.22 7.8 3.61
32000 1.98 6.18 6.3 2.18 7.45 7.71 0.25 8.44 9.14
44100 8.43 2.72 8.18 8.64 3.01 9.59 10.47 0.35 10.1
48000 9.26 9.66 2.97 9.49 9.97 3.27 11.39 12.59 0.38

Parent topic:Processing requirements

On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
Mode MIPs
Mono at High Quality 3.13
Stereo at High Quality 3.61
Mono at Very High Quality 4.13
Stereo at Very High Quality 6.52

Parent topic:Processing requirements

Parent topic:Resource usage

Parent topic:Introduction

Application programmers interface (API) This section describes the application program-
ming interface (API) libraries of the SSRC module.

Type definitions This section describes the type definitions of the SSRC module.

Types for allocation of instance and scratch memory The instance memory is the memory
that contains the state of one instance of the SSRC module. Multiple instances of the SSRC mod-
ule can exist, each with it is own instance memory. S memory is the memory that is only used
temporarily by the process function of the SSRC module. This memory can be used as scratch
memory by any other function running in the same thread as the SSRC module. Different threads
cannot share the scratch memories.

The application must allocate both the instance and the scratch memory. The SSRC module does
not allocate memory.

There is a data type available for both the instance and the scratch memory, namely
SSRC_Instance_t and SSRC_Scratch_t. The instance type is defined as structures of the correct
size in the SSRC header file. Both the instance and the scratch memory must be 4 bytes aligned.

Parent topic:Type definitions

LVM_Fs_en Definition:

typedef enum
{

LVM_FS_8000 = 0,
LVM_FS_11025 = 1,

(continues on next page)

186 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
LVM_FS_12000 = 2,
LVM_FS_16000 = 3,
LVM_FS_22050 = 4,
LVM_FS_24000 = 5,
LVM_FS_32000 = 6,
LVM_FS_44100 = 7,
LVM_FS_48000 = 8

} LVM_Fs_en;

Description:
Used to pass the input and the output sample rate to the SSRC.

Parent topic:Type definitions

LVM_Format_en Definition:

typedef enum
{

LVM_STEREO = 0,
LVM_MONOINSTEREO = 1,
LVM_MONO = 2

} LVM_Format_en;

Description:
The LVM_Format_en enumerated type is used to set the value of the SSRC data format.

The SSRC supports input data in two formats Mono and Stereo. For an input buffer of NumSamples
= N (meaning N sample pairs for Stereo and MonoInStereo or N samples for Mono), the format
of data in the buffer is as listed in Table 1:

Sample Number Stereo MonoInStereo Mono
0 Left(0) Mono(0) Mono(0)
1 Right(0) Mono(0) Mono(1)
2 Left(1) Mono(1) Mono(2)
3 Right(1) Mono(1) Mono(3)
4 Left(2) Mono(2) Mono(4)
“ “ “ “
“ “ “ “
N-2 Left(N/2-1) Mono(N/2-1) Mono(N-2)
N-1 Right(N/2-1) Mono(N/2-1) Mono(N-1)
N Left(N/2) Mono(N/2) Not Used
N+1 Right(N/2) Mono(N/2) Not Used
N+2 Left(N/2+1) Mono(N/2+1) Not Used
N+3 Right(N/2+1) Mono(N/2+1) Not Used
“ “ “ Not Used
“ “ “ Not Used
2*N-2 Left(N-1) Mono(N-1) Not Used

Parent topic:Type definitions

SSRC_Quality_en Definition:

typedef enum
{

SSRC_QUALITY_HIGH = 0,
(continues on next page)

1.7. Multimedia 187



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
SSRC_QUALITY_VERY_HIGH = 1,
SSRC_QUALITY_DUMMY = LVM_MAXENUM

} SSRC_Quality_en;

Description:
Used to select the quality level of the SSRC. For details, see Performance figures. Selecting the
highest-quality level, comes with a cost in the SSRC processing requirements. Therefore, it should
only be done for critical applications.

Parent topic:Type definitions

Instance parameters Definition:

typedef struct
{

SSRC_Quality_en Quality;
LVM_Fs_en SSRC_Fs_In;
LVM_Fs_en SSRC_Fs_Out;
LVM_Format_en SSRC_NrOfChannels;
short NrSamplesIn;
short NrSamplesOut;

} SSRC_Params_t;

Description:
Used to pass the SSRC instance parameters to the SSRC module. It is a structure that contains the
members for input sample rate, output sample rate, the number of channels, and the number of
samples on the input and output audio stream.

Parent topic:Type definitions

Nr of samples mode Definition:

typedef enum
{

SSRC_NR_SAMPLES_DEFAULT = 0,
SSRC_NR_SAMPLES_MIN = 1,
SSRC_NR_SAMPLES_DUMMY = LVM_MAXENUM

} SSRC_NR_SAMPLES_MODE_en;

Description:
The SSRC_NR_SAMPLES_MODE_en enumerated type specifies the two different modes that
can be used to retrieve the number of samples using the SSRC_GetNrSamples function.

Parent topic:Type definitions

Function return status Definition:

typedef enum
{

SSRC_OK = 0,
SSRC_INVALID_FS = 1,
SSRC_INVALID_NR_CHANNELS = 2,
SSRC_NULL_POINTER = 3,
SSRC_WRONG_NR_SAMPLES = 4,
SSRC_ALLINGMENT_ERROR = 5,

(continues on next page)

188 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
SSRC_INVALID_MODE = 6,
SSRC_INVALID_VALUE = 7,
SSRC_ALLINGMENT_ERROR = 8,
LVXXX_RETURNSTATUS_DUMMY = LVM_MAXENUM

} SSRC_ReturnStatus_en;

Description:
The SSRC_ReturnStatus_en enumerated type specifies the different error codes returned by the
API functions. For the exact meaning, see the individual function descriptions.

Parent topic:Type definitions

Parent topic:Application programmers interface (API)

Functions This section lists all the API functions of the SSRC module and explains their param-
eters.

SSRC_GetNrSamples Prototype:

SSRC_ReturnStatus_en SSRC_GetNrSamples
(SSRC_NR_SAMPLES_MODE_en Mode,
SSRC_Params_t* pSSRC_Params );

Description:
This function retrieves the number of samples or sample pairs for stereo used as an input and
as an output of the SSRC module.

NameType Description
ModeSSRC_NR_SAMPLES_MODE_enThere are two modes: - SSRC_NR_SAMPLES_DEFAULT: In this

mode, the function returns the number of samples for 40 ms blocks -
SSRC_NR_SAMPLES_MIN: the function returns the minimal number of sam-
ples supported for this conversion ratio. The SSRC_Init function accepts each
integer multiple of this ratio. Formula: blocksize (ms) = 1/gcd(Fs_In,Fs_Out)

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. The application fills in the values of the in-
put sample rate, the output sample rate, and the number of channels. Based on
this input, the SSRC_GetNrSamples fills in the values for the number of samples
for the input and the output audio stream.

Returns:

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params is a NULL pointer.
SSRC_INVALID_MODE When mode is not a valid setting.

Note: The SSRC_GetNrSamples function returns the values from the following tables. Instead of
calling the SSRC_GetNrSamples function, use the values from these tables directly.

1.7. Multimedia 189



MCUXpresso SDK Documentation, Release 25.12.00

Sample rate Nr of samples
8000 320
11025 441
12000 480
16000 640
22050 882
24000 960
32000 1280
44100 1764
48000 1920

In/Out 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 11 320441 23 12 160441 13 14 80441 16
11025 441320 11 147160 441640 12 147320 4411280 14 147640
12000 32 160147 11 34 80147 12 38 40147 14
16000 21 640441 43 11 320441 23 12 160441 13
22050 441160 21 14780 441320 11 147160 441640 12 147320
24000 31 320147 21 32 160147 11 34 80147 12
32000 41 1280441 83 21 640441 43 11 320441 23
44100 44180 41 14740 441160 21 14780 441320 11 147160
48000 61 640147 41 31 320147 21 32 160147 11

Parent topic:Functions

SSRC_GetScratchSize Prototype:

SSRC_ReturnStatus_en SSRC_GetScratchSize
(SSRC_Params_t* pSSRC_Params,
LVM_INT32* pScratchSize );

Description:
This function retrieves the scratch size for a given conversion ratio and for given buffer sizes at
the input and at the output.

Name Type Description
pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. All members should have a

valid value.
pScratch-
Size

LVM_INT32* Pointer to the scratch size. The SSRC_GetScratchSize function fills
in the correct value (in bytes).

|

Returns:

190 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.

Parent topic:Functions

SSRC_Init Prototype:

SSRC_ReturnStatus_en SSRC_Init
(SSRC_Instance_t* pSSRC_Instance,
SSRC_Scratch_t* pSSRC_Scratch,
SSRC_Params_t* pSSRC_Params,
LVM_INT16** ppInputInScratch,
LVM_INT16** ppOutputInScratch);

Description:
The SSRC_Init function initializes an instance of the SSRC module.

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC. This application must allocate the memory

before calling the SSRC_Init function.
pSSRC_ScratchSSRC_Scratch_t*Pointer to the scratch memory. The pointer is saved inside the instance and is

used by the SSRC_Process function. The application must allocate the scratch
memory before calling the SSRC_Init function.

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters.
ppIn-
putIn-
Scratch

LVM_INT16**The SSRC module can be called with the input samples located in scratch.
This pointer points to a location that holds the pointer to the location in the
scratch memory that can be used to store the input samples. For example, to
save memory.

ppOut-
putIn-
Scratch

LVM_INT16**The SSRC module can store the output samples in the scratch memory. This
pointer points to a location that holds the pointer to the location in the scratch
memory that can be used to store the output samples. For example, to save
memory.

Returns:

1.7. Multimedia 191



MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.
SSRC_ALIGNMENT_ERROR When the instance memory or the scratch memory is not 4

bytes aligned.

Parent topic:Functions

SSRC_SetGains Prototype:

SSRC_ReturnStatus_en SSRC_SetGains
(SSRC_Instance_t* pSSRC_Instance,
LVM_Mode_en bHeadroomGainEnabled,
LVM_Mode_en bOutputGainEnabled,
LVM_INT16 OutputGain);

Description:
This function sets headroom gain and the post gain of the SSRC. The SSRC_SetGains function is
an optional function that should be used only in rare cases. Preferably, use the default settings.

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC.
bHead-
room-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the headroom gain of the SSRC. The default
value is LVM_MODE_ON. LVM_MODE_OFF can be used if it can be guaran-
teed that the input level is below - 6 in all cases (the default headroom is -6 dB).

bOut-
put-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the output gain. The default value is
LVM_MODE_ON.

Out-
put-
Gain

LVM_INT16The value of the output gain. The output gain is a linear gain value. 0x7FFF
is equal to +6 dB and 0x0000 corresponds to -inf dB. By default, a 3 dB gain is
applied (OutputGain = 23197), resulting in an overall gain of -3 dB (-6 dB head-
room +3 dB output gain). Unit Q format Data Range Default value Linear gain
Q1.14 [0;32767] 23197

Returns:

SSRC_OK When the function call succeeds
SSRC_NULL_POINTERWhen pSSRC_Instance is a NULL pointer
SSRC_INVALID_MODEWrong value used for the bHeadroomGainEnabled or the OutputGainEn-

abled parameters.
SSRC_INVALID_VALUEWhen OutputGain is out of the range [0;32767].

192 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

SSRC_Process Prototype:

SSRC_ReturnStatus_en SSRC_Process
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT16* pSSRC_AudioIn,
LVM_INT16* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 16-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT16* Pointer to the input samples.
pSSRC_AudioOut LVM_INT16* Pointer to the output samples.

Returns:

SSRC_OK When the function call succeeds.
SSRC_NULL_POINTERWhen one of pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is

NULL.

Parent topic:Functions

SSRC_Process_D32 Prototype:

SSRC_ReturnStatus_en SSRC_Process_D32
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT32* pSSRC_AudioIn,
LVM_INT32* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 32-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT32* Pointer to the input samples.
pSSRC_AudioOut LVM_INT32* Pointer to the output samples.

Returns:
|SSRC_OK|When the function call succeeds.| |SSRC_NULL_POINTER|When one of
pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is NULL.|

1.7. Multimedia 193



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

Parent topic:Application programmers interface (API)

Dynamic function usage This chapter explains how and when the SSRC functions are or can
be used.

Define the number of samples to be used on input and output Call the function
SSRC_GetNrSamples. Each integer multiple of the returned number of samples can be used.

Parent topic:Dynamic function usage

Allocate scratch memory To calculate the required size of the scratch memory, call the
SSRC_GetScratchSize function. Allocate memory for the returned size.

Parent topic:Dynamic function usage

Initialize the SSRC instance Call the SSRC_Init function.

Parent topic:Dynamic function usage

Process samples The SSRC_Process function can now be called any number of times.

Parent topic:Dynamic function usage

Destroy the SSRC instance When the processing is completed, the allocated memory for the
instance and the scratch can be freed.

Parent topic:Dynamic function usage

Parent topic:Application programmers interface (API)

Reentrancy None of the SSRC functions are re-entrant.

Parent topic:Application programmers interface (API)

Additional user information This section provides information on the Attenuation of the sig-
nal and Notes on integration.

Attenuation of the signal When a fully saturated or clipped input is applied to an SRC module,
the aliases after the sample rate conversion, although sufficiently suppressed, can still result in
a clipped output. To prevent clipped output, the output of the SSRC module is by default atten-
uated with 3 dB. Although not advised, this gain value can be changed using the SSRC_SetGains
function.

Parent topic:Additional user information

194 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Notes on integration Although the sample rate converter module works with audio signals on
different sampling rates, it is a synchronous module. The module takes a block of input samples,
consumes the input completely, and produces a full buffer with output samples. As a result, the
SSRC only accepts a limited number of input and output block sizes. To flush last, incomplete,
block of an audio stream, the block is padded with zeros until it is full before the SSRC processes
it.

Parent topic:Additional user information

Example application The source code of the example application can be found in the .
\EX_APP\APP_FileIO\SRC directory of the release package. The .\EX_APP\APP_FileIO\
MAKE directory contains a make file that can be used to build the example application. When
building the application, an executable is generated in the .\EX_APP\APP_FileIO\EXE direc-
tory.

The example application takes as command-line input parameters:

1. The path toward the input PCM file. It assumes raw 16 bit signed little-endian put. Stereo
input samples should be interleaved (L1, L2 R1, R2,…), mono samples should be deinter-
leaved (L1, L2, and so on).

2. The path toward the output PCM file.

3. The input sample rate.

4. The output sample rate.

5. The channel format (mono or stereo).

Integration test A correct integration of the SSRC module can be verified in two ways.

• Bit accurate test

• THD+N measurement

Bit accurate test The TestFiles directory of the release package contains a test input (sampled
at 44,100 Hz) and several expected output files (sample rates from 8000 Hz to 48,000 Hz). If the
same test input file is applied to the SRC after integration in the target platform, the output is bit
accurate with the expected output file that matches the output-sample rate

Parent topic:Integration test

THD+N measurement Produce a swept sine and feed it through the SSRC module. Do a THD+N
measurement on the obtained output signal. The THD+N of the converted signals should be
below - 77 in the interval [0 - 0.45] FsLOW.

Parent topic:Integration test

Maestro Audio Framework

MCUXpresso SDK : Maestro

Overview This repository is for MCUXpresso SDK maestro middleware delivery and it contains
the components officially provided in NXP MCUXpresso SDK. This repository is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to
the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

1.7. Multimedia 195



MCUXpresso SDK Documentation, Release 25.12.00

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Maestro - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
Maestro project placed on github. Contributing can be managed via pull-requests.

Introduction Maestro audio framework intends to enable chaining of basic audio processing
blocks, called elements. These blocks then form stream processing objects, called pipeline. This
pipeline can be used for multiple audio processing use cases.

The processing blocks can include (but are not limited to) different audio sources (for exam-
ple file or microphone), decoders or encoders, filters or effects, and audio sinks. Framework
overview is depicted in the following picture:

*not all elements and libraries are supported in Zephyr port. For more information, see Maestro
on Zephyr

The Maestro audio framework is an open-source component developed by NXP Semiconductors
and released under the BSD-compatible license. It is running on RTOS (Zephyr or FreeRTOS),
abstracted by OSA layer.

For detailed description of the audio Maestro framework, please refer to the programmer’s guide.

To see what is new, see changelog.

Maestro on Zephyr Getting started guide and further information for Maestro on Zephyr may
be found here.

Maestro on FreeRTOS Maestro on FreeRTOS is supported in NXP’s SDK. To get started, see
mcuxsdk doc.

196 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/maestro/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/index.html


MCUXpresso SDK Documentation, Release 25.12.00

Supported examples The current version of the Maestro audio framework supports several
optional features, some of which are used in these examples:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

The examples can be found in the audio_examples folder of the desired board. The demo ap-
plications are based on FreeRTOS and use multiple tasks to form the application functionality.

Example applications overview To set up the audio framework properly, it is necessary to
create a streamer with streamer_create API. It is also essential to set up the desired hardware
peripherals using the functions described in streamer_pcm.h. The Maestro example projects con-
sist of several files regarding the audio framework. The initial file is main.c with code to create
multiple tasks. For features including SD card (in the maestro_playback examples, reading a
file from SD card is supported and in maestro_record writing to SD card is currently supported)
the APP_SDCARD_Task is created. The command prompt and connected functionalities are
handled by APP_Shell_Task.

One of the most important parts of the configuration is the streamer_pcm.c where the initial-
ization of the hardware peripherals, input and output buffer management can be found. For
further information please see also streamer_pcm.h

In the Maestro USB examples (maestro_usb_mic and maestro_usb_speaker), the USB configura-
tion is located in the usb_device_descriptor.c, audio_microphone.c and audio_speaker.cfiles. For fur-
ther information please see also usb_device_descriptor.h, audio_microphone.h and audio_speaker.h.

In order to be able to get the messages from the audio framework, it is necessary to create a
thread for receiving the messages from the streamer, which is usually called a Message Task. The
message thread is placed in the app_streamer.c file, reads the streamer message queue, and reacts
to the following messages:

• STREAM_MSG_ERROR - stops the streamer and exits the message thread

• STREAM_MSG_EOS - stops the streamer and exits the message thread

• STREAM_MSG_UPDATE_DURATION - prints info about the stream duration

• STREAM_MSG_UPDATE_POSITION - prints info about current stream position

• STREAM_MSG_CLOSE_TASK - exits the message thread

File structure

1.7. Multimedia 197



MCUXpresso SDK Documentation, Release 25.12.00

Folder Description
src Maestro audio framework sources
src/inc Maestro include files
src/core Maestro core sources
src/cci Common decoder interface sources
src/cei Common encoder interface sources
src/elements Maestro elements sources
src/devices External audio devices implementation (audio source & audio sink ele-

ments)
src/utils Helper utilities utilized by Maestro
docs Generated documentation
doxygen Documentation sources
components Glue for audio libraries, so they can be used in elements
tests Maestro tests
zephyr/ Zephyr related files
zephyr/samples/ Zephyr samples
zephyr/tests/ Zephyr tests
zephyr/audioTracks/ Audio tracks for testing
zephyr/wrappers/ Zephyr NXP SDK Wrappers
zephyr/doc/ Zephyr documentation configuration for Sphinx
zephyr/scripts/ Zephyr helper scripts, mostly for testing

Maestro Audio Framework Programmer’s Guide

Introduction Maestro audio framework provides instruments for playback and capture of dif-
ferent audio streams. In order to do that the framework uses API for creating various audio and
voice pipelines with the support of media and track information. This document describes the
framework in its detail, and the usage of API for pipeline creation using different elements. The
framework needs an operating system in order to create different tasks for audio processing and
communication with the application.

Architecture overview A high-level block diagram of the streamer used in Maestro is shown
below. An element is the most important class of objects in the streamer (see streamer_element.c).
A chain of elements will be created and linked together when a pipeline is created. Data flows
through this chain of elements in form of data buffers. An element has one specific function,
which can be the reading of data from a file, decoding of this data, or outputting this data to
a sink device. By chaining together several such elements, a pipeline is created that can do a
specific task, for example, the playback.

Pipeline

198 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The pipeline is created within the streamer_create API using the streamer_create_pipeline call.
In the example applications provided in the MCUXpresso SDK the pipeline is created in the
app_streamer.c file. In order to create a pipeline user needs to provide a PipelineElements struc-
ture consisting of array of element indexes ElementIndex and the number of elements in the
pipeline. Then the pipeline is built automatically and user can specify the properties of the
elements using the streamer_set_property API. All the element properties can be found in the
streamer_element_properties.h file.

The streamer can handle up to two pipelines within a single task. The first pipeline with
index 0 can be created using the streamer_create function as described above. Then the
streamer_create_pipeline function should be used to create the second pipeline (pipeline with in-
dex 1). Both pipelines are processed sequentially, so after the first pipeline is processed, the
second pipeline is processed.

After the pipeline is sucessfully created, all elements and entire pipeline are in STATE_NULL
state. A user can start the streamer by setting the pipeline state to STATE_PLAYING using the
streamer_set_state function. The pipeline can also be paused or stopped using the same function.
Use the STATE_PAUSED to pause and use STATE_NULL to stop. The function changes the state
of each element that is in the pipeline in turn, and after all the elements have obtained the desired
state, the state of entire pipeline is changed.

Elements The current version of the Maestro framework supports several types of elements
(StreamElementType). In each pipeline should be used one source element (elements with the
_SRC suffix) and one sink element (elements with the _SINK suffix). A decoder, encoder or au-
dio_proc element can be connected between these two elements. The audio_proc element can be
used more than once within the same pipeline.

Each element type (StreamElementType) has several functions that are determined by a unique el-
ement index (ElementIndex). These indexes are used to create a pipeline, and each element index
can only be used once in the same pipeline. The type_lookup_table shows which StreamElement-
Type supports which ElementIndex.

Each element index (ElementIndex) has its own properties and a list of these properties can be
found in the streamer_element_properties.hfile. These properties are divided into groups and each
group is identified by a property mask (e.g. for speaker it is PROP_SPEAKER_MASK). Then
the property_lookup_table in the streamer_msg.c file determines which property group relates to
which element index (ElementIndex). When an element is created and added to the pipeline, its
properties are set to their defalut values. Default values can be seen in the initialization function
of a particular element. The initialization functions are specified in the element_list array in the
streamer_element.c file (e.g. for the audio_proc element it is the audio_proc_init_element function).
The user can get the value of the property using the streamer_get_property function or change its
value using the streamer_set_property function.

The source code of the elements can be found in themiddleware\audio_voice\maestro\src\elements\
folder.

Add a new element type The user can add a new element type (StreamElementType) to the
Maestro audio framework. For this, the following steps need to be done.

• Add a new element type to the StreamElementType enum type in the streamer_api.h.

• Create a new *.c and *.h files for the new element type in the middleware\audio_voice\
maestro\src\elements\ folder. All necessary structures and functions (functions for src pads,
sink pads and element itself) needs to be defined in these files. Inspiration can be found in
other elements.

• Link the initialization function to the element type in the element_list array in the
streamer_element.c file. To do this, a new definition that enables the element needs to be
created (e.g. there is a STREAMER_ENABLE_AUDIO_PROC definition for the audio_proc
element).

1.7. Multimedia 199



MCUXpresso SDK Documentation, Release 25.12.00

• Associate the newly created element type with an element index (ElementIndex) by adding
a new pair to the type_lookup_table in the streamer.c file.

• If the user wants to use the newly created element in an application, the definiton that
enables the element must be defined at the project level.

Mostly the user doesn’t need to create a new element type, but just create an element index.

Add a new element index To create a new element index in the Maestro audio framework,
follow these steps:

• Add a new element index to the ElementIndex enum type in the streamer_api.h.

• Create the required properties for the newly created element index in the
streamer_element_properties.h file.

• Associate the newly created property group with newly created element index by adding a
new pair to the property_lookup_table in the streamer_msg.c file.

• Associate the newly created element index with an element type (StreamElementType) by
adding a new pair to the type_lookup_table in the streamer.c file.

• Add support for the created properties to functions of the associated element type. These
functions are defined in files that correspond to a particular element type. The files are
located in the middleware\audio_voice\maestro\src\elements\ folder.

It is important to know that each element type (StreamElementType) can be associated with
more than one element index (ElementIndex), but each element index (ElementIndex) can be
associated with only one element type (StreamElementType).

Pads Pads are elements’ inputs and outputs. A pad can be viewed as a “plug” or “port” on an
element where links may be made with other elements, and through which data can flow to or
from those elements. Data flows out of an element through a source pad, and elements accept
incoming data through a sink pad. Source and sink elements have only source and sink pads,
respectively. For detailed information about pads, please see the API reference from pad.c.

200 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Internal communication The streamer (the core of the framework) provides several mecha-
nisms for communication and data exchange between the application, a pipeline, and pipeline
elements:

• Buffers are objects for passing streaming data between elements in the pipeline. Buffers
always travel from sources to sinks (downstream).

• Messages are objects sent from the application to the streamer task to construct, configure,
and control a streamer pipeline.

• Callbacks are used to transmit information such as errors, tags, state changes, etc. from the
pipeline and elements to the application.

• Events are objects sent between elements. Events can travel upstream and downstream.
Events may also be sent to the application

• Queries allow applications to request information such as duration or current playback
position from the pipeline. Elements can also use queries to request information from their
peer elements (such as the file size or duration). They can be used both ways within a
pipeline, but upstream queries are more common

Decoders and encoders Maestro framework uses a common codec interface for decoding pur-
poses and a common encoder interface for encoding. Those interfaces encapsulate the usage
of specific codecs. Reference codecs are available in audio-voice-components repository which
should be in \middleware\audio_voice\components\ folder.

Common codec interface The Common Codec Interface is the intended interface for all used
decoders. The framework will integrate a CCI decoder element into the streamer to interface
with all decoders.

Using the CCI to interface with Metadata
• cci_extract_meta_data must be called before any other Codec Interface APIs. This

API extracts the metadata information of the codec and fills this information in the

1.7. Multimedia 201



MCUXpresso SDK Documentation, Release 25.12.00

file_meta_data_t structure. The file_meta_data_t structure must be allocated by the appli-
cation.

• This function first extracts the input file extension and based on that it calls the specific
codec’s metadata extraction function. If it finds an invalid extension or unsupported ex-
tension then it returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

• If this API finds the valid metadata then it returns with META_DATA_FOUND code. If this
API does not find any metadata information then it returns with META_DATA_NOT_FOUND
code. It also returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

Using the CCI to interface with Decoders
• codec_get_mem_info gets the memory requirement based on the specific decoder stream

type. It returns the size in bytes of the specific codec. The user of the decoders must al-
locate memory of this size and this memory is used by the initialization API. The user or
application must pass this allocated memory pointer to the init API.

• codec_init must be called before the codec’s decode API. This API calls the codec-specific
initialization function based on the codec stream type. This API allocates the memory to
the codec main structure and also initializes the codec main structure parameters. It also
registers the call back functions to the codec which will be used by the codec to read or seek
the input stream.

• codec_decode is the main decoding API of the codec. This API calls the codec-specific decod-
ing function based on the codec stream type. This API decodes the input raw stream and
fills the PCM output samples into codec output PCM buffer. This API gives the information
about the number of samples produced by the codec and also gives the pointer of the codec
output PCM samples buffer.

• codec_get_pcm_samples must be called after the codec’s decode API. This API calls the codec
specific Get PCM Sample API based on the codec stream type. This API gets the PCM samples
from the codec in constant block size and fills them into the output PCM buffer. It returns
the number of samples get from the codec and also gives the pointer of the output PCM
buffer.

• codec_reset calls the codec specific reset API base on stream type and resets the codec.

• codec_seek accepts the seek bytes offset converted from the time by application. This API
calls the decoder’s internal seek API to calculate the actual seek offset which frame bound-
ary aligns. This API returns the actual seek offset.

The basic sequence to use a decoder with the CCI is shown below:

202 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Adding new decoders to the CCI This section explains how to integrate a new decoder in the
Common Codec Interface. The CCI assumes the decoder library to be used is in the \middleware\
audio_voice\audiocomponents\decoders\*decoder*\libs\ folder of the maestro framework. The CCI
is just a wrapper around a specific implementation. The decoder is expected to be extended as
needed to meet the APIs described above.

• Register Decoder Top level APIs in Common Codec Interface

– Place the decoder lib in libs folder.

– Add prototypes of the decoder top level APIs in codec_interface.h file (located at
maestro\src\cci\inc\ folder).

– In codec_interface.c file (located at maestro\src\cci\src\), add top level Decoder APIs in
decoder function table.

– Pseudo code for this is as described below.

const codec_interface_function_table_t g_codec_function_table[STREAM_TYPE_COUNT] = {
#ifdef VORBIS_CODEC

{
&VORBISDecoderGetMemorySize,
&VORBISDecoderInit,
&VORBISDecoderDecode,
NULL,

(continues on next page)

1.7. Multimedia 203



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
NULL,
&VORBISDecoderSeek,
&VORBISDecoderGetIOFrameSize,

},
#else

{
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

}
#endif
};

• Enable or Disable Decoder

– Define VORBIS_CODEC macro in audio_cfg.h file.

– Comment this macro if you want to disable VORBIS Decoder otherwise keep it defined
in order to enable the decoder.

• Add Extract Metadata API for the decoder

– Add extract metadata API source file for the decoder at
streamer/cci/metadata/src/vorbis folder.

– Add this code in extract metadata lib project space.

– Build the extract metadata lib and copy that lib to libs folder.

– Add the desired stream type into ccidec_extract_meta_data API (in codecextractmeta-
data.c file) to call VORBIS Decoder extract metadata API.

• Add stream type of the new decoder in the stream type enum audio_stream_type_t in
codec_interface_public_api.h

– Stream type of the decoder in stream type enum and decoder APIs in decoder function
table must be in the same sequence.

Common encoder interface Please see the following section about the cei.

Maestro performance

Memory information The memory usage of the framework components using reference
codecs (data obtained from GNU ARM compiler) in bytes is:

text data bss component
48790 2752 4 aac decoder
4348 16400 212 asrc
15512 0 4 flac decoder
76462 16 5013 maestro
34211 0 4 mp3 decoder
211974 0 0 opus
65446 0 4 ssrc
5850 16 12 wav decoder

204 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro framework uses dynamic allocation of audio buffers. The total amount of memory al-
located for the pipeline depends on the following parameters:

• Number of elements in the pipeline

• Element types

• Audio stream properties

– Sampling rate

– Bit width

– Channel number

– Frame size

CPU usage The performance of the pipeline was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Pipeline type Performance MIPS of pipeline (in MHz)
audio source -> audio sink ~10.26 MHz
audio source -> file sink ~9.84 MHz
file source (8-channel PCM) -> audio sink ~16.5 MHz

For performance details about the supported codecs please see audio-voice-components reposi-
tory documentation.

CEI encoder The Maestro streamer contains an element adapting an extensible set of audio en-
coders in the form of functions conforming to the CEI (Common Encoder Interface). This element
enables the user to choose and configure a suitable encoder at runtime.

Header files CEI itself and the CEI encoders are using following header files, in which you may
be interested:

• cei.h - contains types used by the element itself and an encoder implementing the CEI

• cei_enctypes.h - contains a list of possible encoders and types used for interfacing with a CEI
encoder

• cei_table.h - contains a table of functions implementing integrated CEI encoders

Instantiating the element This element’s index is ELEMENT_ENCODER_INDEX and its type
is TYPE_ELEMENT_ENCODER, as defined in streamer_api.h. It has one source pad (data in-
put) and one sink pad (data output). It is initialized like any other element, meaning that
it is instantiated and inserted into the pipeline using the create_element, add_element_pipeline
and link_elements functions. Inversely, for destroying the element, the unlink_elements, re-
move_element_pipeline and destroy_element are used. This element alone does not depend on
any additional software layers other than these required by the Maestro streamer itself, so no
pre-initialization before this element instantiation is necessary.

Element properties Use Maestro streamer property API (streamer_set_property and
streamer_get_property) for setting or getting these. The constants are defined in
streamer_element_properties.h.

• PROP_ENCODER_CHUNK_SIZE

1.7. Multimedia 205



MCUXpresso SDK Documentation, Release 25.12.00

– Synopsis: Determines the length of a chunk pulled from the sibling of the source pad
and essentially influences the size of allocated buffers. If the actual amount of data
pulled is smaller, the rest is zero-filled.

– Type: unsigned 32-bit integer

– Default value: 1920
– Constraints:

* Must be bigger than zero, otherwise STREAM_ERR_INVALID_ARGS is returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS is returned.

• PROP_ENCODER_TYPE

– Synopsis: Determines the exact encoder (CEI implementation) to be used.

– Type: CeiEncoderType (cei_enctypes.h)

– Default value: CEIENC_LAST

– Constraints:

* Must not be equal to CEIENC_LAST, otherwise STREAM_ERR_INVALID_ARGS
will be returned.

* Selected encoder must be implemented, otherwise
STREAM_ERR_INVALID_ARGS will be returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

– Behaviour influenced: The encoder element process function will return
FLOW_ERROR if this property isn’t set.

• PROP_ENCODER_CONFIG

– Synopsis: Determines encoder-specific configuration (application, bitrate, …).

– Type: Pointer to the encoder-specific configuration structure.

– Default value: Determined by the encoder.

– Constraints:

* The encoder has to be configurable. If it is not, STREAM_ERR_ERR_GENERAL
will be returned on any access.

* The structure has to conform to the encoder requirements. If the encoder returns
an error code, STREAM_ERR_GENERAL will be returned.

• PROP_ENCODER_BITSTREAMINFO

– Synopsis: Specifies information about the incoming bitstream (sample rate, sample
depth, …).

– Type: Pointer to CeiBitstreamInfo (cei_enctypes.h).

– Default value:

(CeiBitstreamInfo) {
.sample_rate = 0,
.num_channels = 0,
.endian = AF_LITTLE_ENDIAN,
.sign = TRUE,
.sample_size = 0,
.interleaved = TRUE

}

206 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– Constraints:

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

* As of now, only bitstreams containing 16-bit interleaved (if 2 or more channels will
be encoded) samples are supported. If anything else was set to the sample_size and
interleaved members, STREAM_ERR_INVALID_ARGS will be returned.

– Behaviour influenced:

* Given the characteristics of some elements available, different packets of data
(header and payload, referred to as “chunk” above) may be pulled by this element.
Each packet can contain a different header, which may or may not contain useful
information about the bitstream. If a packet with the AudioPacketHeader (todofile.h)
is pulled at first and any other iteration of the streamer pipeline, the bitstream pa-
rameters configured by this property are implicitly available and are not expected
to be specified by the user. Other packet header types (such as RawPacketHeader)
don’t contain any bitstream parameters and require the user to specify the param-
eters manually using this property. Failure to do so will result in the element’s
process function returning FLOW_ERROR. Same situation will occur if a packet
with the AudioPacketHeader is received and its contents differ from the already ac-
quired bitstream parameters.

* As of now, CEI is defined to work with 16-bit signed little-endian (s16le) samples,
which are interleaved if the bitstream contains more than one channels. This ele-
ment handles endianness and unsigned to signed conversion.

CEI definition - implementing your own encoder The CEI defines following function pointer
types:

• CeiFnGetMemorySize: Returns number of bytes required for encoder state for a given num-
ber of channels.

• CeiFnEncoderInit: Initialize an encoder for a given sample rate and channel count.

• CeiFnEncoderGetConfig: Copy current or default configuration to a given structure pointer.

• CeiFnEncoderSetConfig: Configure the encoder from a given structure pointer.

• CeiFnEncode: Encode a given buffer to a given output buffer.

Detailed descriptions of function behaviour, parameters and expected return values are avail-
able as docblocks in the cei.h file.

Each encoder is implemented as a set of pointers pointing to functions conforming to these types,
grouped in theCeiEncoderFunctions structure. Specifying theCeiEncoderGetConfig fnGetConfig and
CeiFnEncoderSetConfig fnSetConfig members is optional, as an encoder does not have to be con-
figurable. If so desired, specify NULL. Implementation of the remaining functions is mandatory,
however. If at least one of these functions isn’t implemented and NULL is specified instead, the
encoder will be considered as not implemented.

To register an implemented encoder with the element, add a new entry to the CeiEncoderType
enum and add the CeiEncoderFunctions struct value to the table CeiEncoderFunctions ceiEncTable[]
located in the cei_table.h header file. Note and match the order of items in that table, as a CeiEn-
coderType value is used as an index. Same goes for the size_t ceiEncConfigSizeTable[]. If configura-
tion is not applicable, specify 0 at the appropriate index. If configuration is applicable, describe
the configuration structure in the cei_enctypes.h header file and add its size to that table.

Maestro playback example

1.7. Multimedia 207



MCUXpresso SDK Documentation, Release 25.12.00

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview The Maestro playback example demonstrates audio processing on the ARM cortex
core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console and the
audio files are read from the SD card.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback of encoded files from an SD card with up to 2
channels, up to 48 kHz sample rate and up to 16 bit width. This mode is enabled by default.

• Multi-channel - The mode demonstrates playback of raw PCM files from an SD card with 2
or 8 channels, 96kHz sample rate and 32 bit width. The decoders and synchronous sample
rate converter are not supported in this mode. The Multi-channel mode is only supported
on selected platforms, see the table below. The Example configuration section contains in-
formation on how to enable it.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Decoder:

– AAC:

* The reference decoder is supported only in the MCUXpresso IDE and ARMGCC.

– FLAC:

* LPCXpresso55s69 - When playing FLAC audio files with too small frame size (block
size), the audio output may be distorted because the board is not fast enough.

– OPUS:

* LPCXpresso55s69 - The decoder is disabled due to insufficient memory may be dis-
torted because the board is not fast enough.

• Sample rate converter:

– SSRC:

208 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

* LPCXpresso55s69 - When a memory allocation ERROR occurs, it is necessary to
disable the SSRC element due to insufficient memory.

Known issues:
• Decoder:

– MP3:

* The reference decoder has issues with some of the files. One of the channels can
be sometimes distorted or missing parts of the signal.

– OPUS:

* The decoder doesn’t support all the combinations of frame sizes and sample rates.
The application might crash when playing an unspupported file.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• SD card with supported audio files

• Personal computer

• Optional:

– Audio expansion board AUD-EXP-42448 (REV B)

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

Preparation
1. Connect a micro USB cable between the PC host and the debug USB port on the development

board.

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

1.7. Multimedia 209

https://www.nxp.com/part/AUD-EXP-42448#/


MCUXpresso SDK Documentation, Release 25.12.00

5. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*********************************
Maestro audio playback demo start
*********************************

[APP_Main_Task] started

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console (If
multi-channel playback mode is enabled, the description is slightly different):

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”file”: Perform audio file decode and playback

USAGE: file [stop|pause|volume|seek|play|list|info]
stop Stops actual playback.
pause Pause actual track or resume if already paused.
volume <volume> Set volume. The volume can be set from 0 to 100.
seek <seek_time> Seek currently paused track. Seek time is absolute time in milliseconds.
play <filename> Select audio track to play.
list List audio files available on mounted SD card.
info Prints playback info.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– Add the MULTICHANNEL_EXAMPLE symbol to preprocessor defines on project level.

– Connect AUD-EXP-42448 (see the point below).

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962 macro to 0 in the app_definitions.h file

210 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

5. Set the DEMO_CODEC_CS42448 macro to 1 in the app_definitions.h file.

Functionality The file play <filename> command calls the STREAMER_file_Create or
STREAMER_PCM_Create function from the app_streamer.c file depending on the selected mode.

• When the Standard mode is enabled, the command calls the STREAMER_file_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX

– ELEMENT_DECODER_INDEX

– ELEMENT_SRC_INDEX (If SSRC_PROC is defined)

– ELEMENT_SPEAKER_INDEX

• When the Multi-channel mode is enabled, the command calls STREAMER_PCM_Create
function, which creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX (PCM format only)

– ELEMENT_SPEAKER_INDEX

– Note:

* If the input file is an 8 channel PCM file, output to all 8 channels is available. The
properties of the PCM file are set in the app_streamer.c file using file source prop-
erties sent to the streamer:

· PROP_FILESRC_SET_SAMPLE_RATE - default value is 96000 [Hz]

· PROP_FILESRC_SET_NUM_CHANNELS - default value is 8

· PROP_FILESRC_SET_BIT_WIDTH - default value is 32

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

EXT_PROCESS_DESC_T ssrc_proc = {SSRC_Proc_Init, SSRC_Proc_Execute, SSRC_Proc_Deinit,␣
↪→&get_app_data()->proc_args};

prop.prop = PROP_SRC_PROC_FUNCPTR;
prop.val = (uintptr_t)&ssrc_proc;

if (streamer_set_property(streamer, 0, prop, true) != 0)
{

return -1;
}

prop.prop = PROP_AUDIOSINK_SET_VOLUME;
prop.val = volume;
streamer_set_property(streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 3 different states:

• Idle

1.7. Multimedia 211



MCUXpresso SDK Documentation, Release 25.12.00

• Running

• Paused

In each state, each command can have a different behavior. For more information, see Com-
mands in detail section.

Commands in detail The applicatin is controlled by commands from the shell interface and the
available commands for the selected mode can be displayed using the help command. Commands
are processed in the cmd.c file.

• help, version

• file stop

• file pause

• file volume <volume>

• file seek <seek_time>

• file play <filename>

• file list

• file info

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> D[Write help or version]:::function
B((Running)):::state --> D
C((Paused)):::state --> D
D-->E((No state
change)):::state

file stop
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

212 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

B((Idle)):::state --> B
C((Running)):::state -->E((Idle)):::state
D((Paused)):::state -->E

file pause
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Paused)):::state
D((Paused)):::state -->F((Running)):::state

file volume <volume>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> M[Error: Play a track first]:::error
C((Running)):::state --> G{Volume
parameter
empty?}:::condition
D((Paused)):::state --> G
G -- Yes -->H[Error: Enter volume parameter]:::error
G -- No -->I{Volume
in range?}:::condition
I -- No -->J[Error: invalid value]:::error
I -- Yes -->K[Set volume]:::function
J --> L((No state
change)):::state
K --> L
H--> L

file seek <seek_time> The seek argument is only supported in the Standard mode.

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> E[Error: First select
an audio track to play]:::error
E-->B
C((Running)):::state --> F[Error: First
pause the track]:::error
F --> C
D((Paused)):::state --> G{Seek
parameter
empty?}:::condition
G --No --> H{AAC file?}:::condition

1.7. Multimedia 213



MCUXpresso SDK Documentation, Release 25.12.00

G --Yes --> I[Error: Enter
a seek time value]:::error
I-->N((Paused)):::state;
H --Yes -->J[Error: The AAC decoder
does not support
the seek command]:::error
J-->N
H --No -->K{Seek
parameter
positive?}:::condition
K --No -->L[Error: The seek
time must be
a positive value]:::error
L-->N
K --Yes -->M[Seek the file]:::function
M-->N

file play <filename>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

C((Running)):::state --> Z[Error: First stop
current track]:::error
D((Paused)):::state --> Z
B((Idle)):::state --> E{SD Card
inserted?}:::condition
E -- No -->F[Error: Insert SD
card]:::error
E -- Yes -->G{File
name
empty?}:::condition
G -- Yes -->H[Error: Enter
file name]:::error
G -- No -->I{File exists?}:::condition
I -- No -->O[Error: File
doesn't exist]:::error
I -- Yes -->J{Supported
format?}:::condition
J -- Yes -->K[Play the track]:::function
J -- No -->L[Error: Unsupported
file]:::error
K -->M((Running)):::state
L --> W((No state
change)):::state
O --> W
H --> W
F --> W
Z --> W

file list
flowchart TD

classDef function fill:#69CA00

214 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> G{SD Card
inserted?}:::condition
C((Running)):::state --> G
D((Paused)):::state --> G
G -- Yes -->H[List supported files]:::function
G -- No -->I[Error: Insert SD card]:::error
I --> J((No state
change)):::state
H --> J

file info
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->E[Write file info]:::function
C((Running)):::state -->E
D((Paused)):::state -->E
E --> F((No state

change)):::state

Processing Time Typical streamer pipeline execution times and their individual elements for
the EVKC-MIMXRT1060 development board are presented in the following tables. The time spent
on output buffers is not included in the traversal measurements. However, file reading time
is accounted for. In the case of the WAV codec, the audio file was accessed in every pipeline
run. Therefore, during each run, the file was read from the SD card. However, for the MP3
codec, where data must be processed in complete MP3 frames, the file was not read in every
run. Instead, it was read periodically only when the codec buffer did not contain a complete
frame of data.

For further details, please refer to the Processing Time document.

WAV streamer file_src codec SSRC_proc speaker
48kHz 1.1 ms 850 μs 150 μs 70 μs 40 μs
44kHz 1.75 ms 850 μs 180 μs 670 μs 40 μs

MP3 streamer file_src codec SSRC_proc speaker
48 kHz with file read 2.9 ms 2.3 μs 450 μs 60 μs 50 μs
48 kHz without file read 0.5 ms x 400 μs 40 μs 40 μs
44 kHz with file read 3.2 ms 2.3 μs 440 μs 400 μs 50 μs
44 kHz without file read 0.9 ms x 440 μs 390 μs 40 μs

Maestro record example

1.7. Multimedia 215



MCUXpresso SDK Documentation, Release 25.12.00

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview The Maestro record example demonstrates audio processing on the ARM cortex core
utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Loopback - The application demonstrates a loopback from the microphone to the speaker
without any audio processing. Mono, stereo or multichannel mode can be used, depending
on the hardware, see table below.

• File recording - The application takes audio samples from the microphone inputs and
stores them to an SD card as an PCM file. The PCM file has following parameters:

– Mono and stereo : 2 channels, 16kHz, 16bit width

– Multi-channel (AUD-EXP-42448): 6 channels, 16kHz, 32bit width

• Voice control - The application takes audio samples from the microphone input and uses
the VIT library to recognize wake words and voice commands. If a wake word or a voice
command is recognized, the application write it to the serial terminal.

• Encoding - The application takes PCM samples from memory and sends them to the Opus
encoder. The encoded data is stored in memory and compared to a reference. The result of
the comparison is finally written into the serial terminal.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Addition labraries

– VIT:

* The VIT is supported only in the MCUXpresso IDE and ARMGCC.

* LPCXpresso55s69 - The VIT is disabled by default due to insufficient memory. To
enable it, see the Example configuration section.

216 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

* EVK-MCXN5XX - Some VIT models can’t fit into memory. In order to free some
space it is necessary to disable SD card handling and opus encoder. To disable it,
see the Example configuration section.

• Encoder

– OPUS:

* LPCXpresso55s69 - The encoder is not supported due to insufficient memory.

• The File recording mode is not supported on RW612BGA development board due to missing
SD card slot.

Known issues:
• EVKB-MIMXRT1170 - After several tens of runs (the number of runs is not deterministic),

the development board restarts because a power-up sequence is detected on the RESET pin
(due to a voltage drop).

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• Personal computer

• Optional:

– SD card for file output

– Audio expansion board AUD-EXP-42448 (REV B)

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

• EVK-MCXN5XX:

– Short: JP7 2-3, JP8 2-3, JP10 2-3, JP11 2-3

• RW612BGA:

– Connect: JP50; Disconnect JP9, JP11

Preparation
1. Connect a micro USB cable between the PC host and the debug USB port on the development

board

2. Open a serial terminal with the following settings:

• 115200 baud rate

1.7. Multimedia 217

https://www.nxp.com/part/AUD-EXP-42448#/


MCUXpresso SDK Documentation, Release 25.12.00

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. LPCXpresso55s69:

• Insert source of sound to audio Line-In connector (headphone jack) on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*******************************
Maestro audio record demo start
*******************************

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”record_mic”: Record MIC audio and perform one (or more) of following actions:
- playback on codec
- perform voice recognition (VIT)
- store samples to a file.

USAGE: record_mic [audio|file|<file_name>|vit] 20 [<language>]
The number defines length of recording in seconds.

Please see the project defined symbols for the languages supported.
Then specify one of: en/cn/de/es/fr/it/ja/ko/pt/tr as the language parameter.
For voice recognition say supported WakeWord and in 3s frame supported command.
Please note that this VIT demo is near-field and uses 1 on-board microphone.

NOTES: This command returns to shell after the recording is finished.
To store samples to a file, the ”file” option can be used to create a file
with a predefined name, or any file name (without whitespaces) can be specified
instead of the ”file” option.

”opus_encode”: Initializes the streamer with the Opus memory-to-memory pipeline and
encodes a hardcoded buffer.

218 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Details of commands can be found here.

Example configuration The example can be configured by user. There are several options how
to configure the example settings, depending on the environment. For configuration using west
and Kconfig, please follow the instructions here. Before configuration, please check the table to
see if the feature is supported on the development board.

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962 macro to 0 in the app_definitions.h file

5. Set the DEMO_CODEC_CS42448 macro to 1 in the app_definitions.h file.

– Note:

* The audio stream is as follows:

· Stereo INPUT 1 (J12) -> LINE 1&2 OUTPUT (J6)

· Stereo INPUT 2 (J15) -> LINE 3&4 OUTPUT (J7)

· MIC1 & MIC2 (P1, P2) -> LINE 5&6 OUTPUT (J8)

· Insert the headphones into the different line outputs to hear the inputs.

· To use the Stereo INPUT 1, 2, connect an audio source LINE IN jack.

• Enable VIT:
– LPCXpresso55s69 and MCX-N5XX:

* In MCUXPresso IDE (SDK package):

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level.

2. Add VIT_PROC symbol to preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Prepro-
cessor)

* In armgcc in SDK package:

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

2. Remove OPUS_ENCODE=1 and STREAMER_ENABLE_ENCODER prepro-
cessor defines in flags.cmake file.

3. Add VIT_PROC symbol to preprocessor defines in flags.cmake file.

4. Remove sdmmc_config.c,.h files from CMakeLists.txt file.

* In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.
element.file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.
sdmmc.sd and MCUX_COMPONENT_middleware.sdmmc.host.usdhc

3. Make sure sdmmc_config files (.c, .h) is excluded from project build

1.7. Multimedia 219

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/Configuration_System.html


MCUXpresso SDK Documentation, Release 25.12.00

· remove mcux_add_source function that adds the sources in reconfig.cmake
in maestro_record/cm33_core0 folder

4. Disable fatfs MCUX_COMPONENT_middleware.fatfs and
MCUX_COMPONENT_middleware.fatfs.sd

5. Disable file utils MCUX_COMPONENT_middleware.audio_voice.maestro.
file_utils.enable

6. Make sure Opus encoder is disabled MCUX_COMPONENT_middleware.
audio_voice.maestro.element.encoder.opus.enable

7. Make sure VIT_PROC symbol is defined

· remove mcux_remove_macro function that removes the VIT_PROC preproces-
sor definition in reconfig.cmake in maestro_record folder

8. Make sure VIT processing is enabled MCUX_PRJSEG_middleware.audio_voice.
components.vit

• VIT model generation:
– For custom VIT model generation (defining own wake words and voice commands)

please use https://vit.nxp.com/

• Disable SD card handling:
– In MCUXPresso IDE:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

– In armgcc in SDK package:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

– In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.element.
file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.sdmmc.
sd

Functionality The record_mic or opus_encode command calls the STREAMER_mic_Create or
STREAMER_opusmem2mem_Create function from the app_streamer.c file depending on the se-
lected mode.

• When the Loopback mode is selected, the command calls the STREAMER_mic_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_MICROPHONE_INDEX

– ELEMENT_SPEAKER_INDEX

• When the File recording mode is selected, the command calls the STREAMER_mic_Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_FILE_SINK_INDEX

• When the Voice control mode is selected, the command calls the STREAMER_mic_Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_VIT_INDEX

220 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• When the Encoding mode is selected, the command calls the
STREAMER_opusmem2mem_Create function that creates a pipeline with the fol-
lowing elements: - ELEMENT_MEM_SRC_INDEX - ELEMENT_ENCODER_INDEX - ELE-
MENT_MEM_SINK_INDEX

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = DEMO_MIC_CHANNEL_NUM;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_BITS_PER_SAMPLE;
prop.val = DEMO_AUDIO_BIT_WIDTH;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
prop.val = DEMO_MIC_FRAME_SIZE;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = DEMO_AUDIO_SAMPLE_RATE;
streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• record_mic audio <time>

• record_mic file <time>

• record_mic <file_name> <time>

• record_mic vit <time> <language>

• opus_encode

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

1.7. Multimedia 221



MCUXpresso SDK Documentation, Release 25.12.00

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

record_mic audio <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> D{time
> 0 ?}:::condition
D -- Yes --> F[recording]:::function
D -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
F --> C((Running)):::state
C -->G{time
expired?}:::condition
G -- No --> C
G -- Yes --> B

record_mic file <time>/record_mic <file_name> <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> D{SD card
inserted?}:::condition
C -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
D -- Yes --> G{Custom
file name?}:::condition
G -- Yes --> H[Create custom
file name]:::function
G -- No --> I[Create default
file name]:::function
H --> J[Recording]:::function
I --> J
J --> K((Running)):::state

222 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

K -->L{time
expired?}:::condition
L -- No --> K
L -- Yes --> B
D -- No --> F[Error: Insert SD
card first]:::error
F --> B

record_mic vit <time> <language>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> E{Selected
language?}:::condition
C -- No --> D[Error: Record length
must be greater than 0]:::error
D --> B
E -- Yes --> G{Supported
language?}:::condition
E -- No --> F[Error: Language
not selected]:::error
F -->B
G -- Yes -->I[Recording with
voice recognition]:::function
G -- No -->H[Error: Language not supported]:::error
H --> B
I --> J((Running)):::state
J -->K{time
expired?}:::condition
K -- No --> J
K -- Yes --> B

opus_encode
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->C[Encode file]:::function
C -->D[Check result]:::function
D -->B

Processing Time Typical execution times of the streamer pipeline for the EVKC-MIMXRT1060
development board are detailed in the following table. The duration spent on output buffers
and reading from the microphone is excluded from traversal measurements. Three measured

1.7. Multimedia 223



MCUXpresso SDK Documentation, Release 25.12.00

pipelines were considered. The first involves a loopback from microphone to speaker, support-
ing both mono and stereo configurations. The second pipeline is a mono voice control setup,
comprising microphone and VIT blocks. The final pipeline is a stereo voice control setup, inte-
grating microphone and VIT blocks.

For further details of execution times on individual elements, please refer to the Processing Time
document.

streamer

microphone -> speaker 1 channel 40 μs
microphone -> speaker 2 channels 115 μs
microphone -> VIT 7.4 ms

Maestro USB microphone example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro USB microphone example demonstrates audio processing on the ARM
cortex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host. The
application takes audio samples from the microphone inputs and sends them to the USB host
via the USB bus. User will see the volume levels obtained from the USB host but this is only an
example application. To leverage the volume values, the demo has to be modified.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

1. When connected to MacBook, change the PCM format from (0x02,0x00,) to (0x01,0x00,
) in the g_config_descriptor[CONFIG_DESC_SIZE] in the usb_descriptor.c file. Otherwise,
it can’t be enumerated and noise is present when recording with the QuickTime player
because the sampling frequency and bit resolution do not match.

224 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

2. When device functionality is changed, please uninstall the previous PC driver to make
sure the device with changed functionality can run normally.

3. If you’re having audio problems on Windows 10 for recorder, please disable signal
enhancement as the following if it is enabled and have a try again.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. LPCXpresso55s69:

• Insert source of sound to Audio Line-In connector (headphone jack) on the develop-
ment board.

5. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*************************************************
Maestro audio USB microphone solutions demo start
*************************************************

Copyright 2022 NXP
(continues on next page)

1.7. Multimedia 225



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
[APP_Shell_Task] start

>> usb_mic -1

Starting maestro usb microphone application
The application will run until the board restarts
[STREAMER] Message Task started
Starting recording
[STREAMER] start usb microphone
Set Cur Volume : 1f00

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_mic”: Record MIC audio and playback to the USB port as an audio 2.0
microphone device.

USAGE: usb_mic <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_mic 20

Details of commands can be found here.

Example configuration The example only supports one mode and do not support any addi-
tional libraries, so the example can’t be configured by user.

Functionality The usb_mic command calls the STREAMER_mic_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_USB_SINK_INDEX

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
(continues on next page)

226 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_mic <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

usb_mic <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{seconds
== 0?}:::condition
C -- No --> E{seconds
< 0?}:::condition
C -- Yes --> D[Error: Incorrect

1.7. Multimedia 227



MCUXpresso SDK Documentation, Release 25.12.00

command parameter]:::error
D -->B
E -- Yes --> G[recording]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[recording]:::function
F --> I((Running)):::state
I --> J{seconds
expired?}:::condition
J -- No -->I
J -- Yes --> B

Maestro USB speaker example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro USB speaker example demonstrates audio processing on the ARM cor-
tex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host.
The application takes audio samples from the USB host and sends them to the audio Line-Out
port. User will see the volume levels obtained from the USB host but this is only an example
application. To leverage the volume values, the demo has to be modified.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback with up to 2 channels, up to 48 kHz sample
rate and up to 16 bit width. This mode is enabled by default.

• Multi-Channel - In this mode the device is enumerated as a UAC 5.1. This mode is disabled
by default. See the Example configuration section to see how to enable the mode.

– When playing an 5.1 audio file, the example sends only the front-left and front-right
channels to the audio Line-Out port (the other channels are ignored), since this exam-
ple only supports on-board codecs with stereo audio output.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:

228 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Note:

– If the USB device audio speaker example uses an ISO IN feedback endpoint, please
attach the device to a host like PC which supports feedback function. Otherwise, there
might be attachment issue or other problems.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• Headphones with 3.5 mm stereo jack

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

5. Insert the headphones into Line-Out connector (headphone jack) on the development
board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

**********************************************
Maestro audio USB speaker solutions demo start
**********************************************

Copyright 2022 NXP
[APP_Shell_Task] start

>> usb_speaker -1
(continues on next page)

1.7. Multimedia 229



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

Starting maestro usb speaker application
The application will run until the board restarts
[STREAMER] Message Task started
Starting playing
[STREAMER] start usb speaker
Set Cur Volume : fbd5

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_speaker”: Play data from the USB port as an audio 2.0
speaker device.

USAGE: usb_speaker <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_speaker 20

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– The feature can be enabled by set the USB_AUDIO_CHANNEL5_1 macro to 1U in the
usb_device_descriptor.h file.

– Note: When device functionality is changed, such as UAC 5.1, please uninstall the pre-
vious PC driver to make sure the device with changed functionality can run normally.

Functionality The Usb_speaker command calls the STREAMER_speaker_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_USB_SRC_INDEX - ELEMENT_SPEAKER_INDEX

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_USB_SRC_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_NUM_CHANNELS;
prop.val = 2;

(continues on next page)

230 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_FRAME_MS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_speaker <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

usb_speaker <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{Duration
== 0?}:::condition

1.7. Multimedia 231



MCUXpresso SDK Documentation, Release 25.12.00

C -- No --> E{Duration
< 0?}:::condition
C -- Yes --> D[Error: Incorrect
command parameter]:::error
D -->B
E -- Yes --> G[playing]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[playing]:::function
F --> I((Running)):::state
I --> J{Duration
expired?}:::condition
J -- No -->I
J -- Yes --> B

Supported features The current version of the audio framework supports several optional
features. These can be limited to some MCU cores or development boards variants. More infor-
mation about support can be found on the specific example page:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

Some features are delivered as prebuilt library and the binaries can be found in the \middleware\
audio_voice\components\*component*\libs folder. The source code of some features can be found
in the \middleware\audio_voice\maestro\src folder.

Decoders Supported decoders and its options are:

Decoder Sample rates [kHz] Number of channels Bit depth
AAC 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
FLAC 8, 11.025, 12, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 16
MP3 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
OPUS 8, 16, 24, 48 1, 2 (mono/stereo) 16
WAV 8, 11.025, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 8, 16, 24

For more details about the reference decoders please see audio-voice-components repository
documentation \middleware\audio_voice\components\.

Encoders
• OPUS encoder - The current verion of the audio framework only supports a OPUS encoder.

For more details about the encoder please see the following link.

Sample rate converters
• SSRC - Synchronous sample rate converter. More details about SSRC are available in the

User Guide, which is located in middleware\audio_voice\components\ssrc\doc\.

• ASRC - Asynchronous sample rate converter is not used in our examples, but it is part of the
maestro middleware and can be enabled. To enable ASRC, the maestro_framework_asrc and
CMSIS_DSP_Library_Source components must be added to the project. Furthermore, it is
necessary to switch from Redlib to Newlib (semihost) library and add a platform definition

232 Chapter 1. Middleware

https://opus-codec.org/docs/opus_api-1.3.1/


MCUXpresso SDK Documentation, Release 25.12.00

to the project (e.g. for RT1170: PLATFORM_RT1170_CORTEXM7). Supported platforms
can be found in the PL_platformTypes.h file. More details about ASRC are available in the
User Guide, which is located in middleware\audio_voice\components\asrc\doc\.

Additional libraries
• VIT - Voice Intelligent Technology (VIT) Wake Word and Voice Command Engines pro-

vide free, ready to use voice UI enablement for developers. It enables customer-defined
wake words and commands using free online tools. More details about VIT are available
in the VIT package, which is located in middleware\audio_voice\components\vit\{platform}\
Doc\(depending on the platform) or via following link.

Processing Time

Table of content
• Maestro playback example

• Maestro record example

The individual time measurements were conducted using a logic analyzer by monitoring
changes in the GPIO port levels on the EVKC-MIMXRT1060 development board. These measure-
ments were executed for each individual pipeline run, capturing the timing at each correspond-
ing element, and, when relevant, the interconnections between these elements.

Maestro playback example For the Maestro playback example the following reference audio
file was used: test_48khz_16bit_2ch.wav. In this example, the pipeline depicted in the diagram
was considered. Media codecs WAV and MP3 were taken into account. To compare the times
spent on the SSRC block, sampling rates for both codecs were selected: 44.1 kHz and 48 kHz.

The measurement of streamer pipeline run started at the beginning of
streamer_process_pipelines(): streamer.c and ended in the function streamer_pcm_write():
streamer_pcm.c just before the output buffer.

In the scenario involving the WAV codec, the audio file was accessed in every iteration of the
streamer pipeline. Meaning, during each run, the file was read directly from the SD card. How-
ever, in the case of the MP3 codec, where data processing necessitates complete MP3 frames,
the file wasn’t read during every run. Rather, it was accessed periodically, triggered when the
codec buffer lacked a complete MP3 frame of data. The total time spent on codec processing
varies significantly depending on the type and implementation of the codec. For certain types of
codecs, like FLAC, there may be multiple file accesses during a single pipeline run. The provided
values are specific to the reference implementation. For details about the codecs please see see
audio-voice-components documentation middleware\audio_voice\components\.

The duration of the streamer pipeline illustrates that with a sampling frequency of 48 kHz, there
is no resampling occurring at the SSRC element. Consequently, the overall pipeline time is lower
than in the case of 44.1 kHz audio, where resampling takes place.

To enhance comprehension of the system’s behavior, histograms of the pipeline run times and
its elements are included. The greater time variance with the MP3 codec is precisely due to

1.7. Multimedia 233

https://nxp.com/vit


MCUXpresso SDK Documentation, Release 25.12.00

the absence of file reads in every run. In clusters with shorter times, there are no file accesses,
while in clusters with longer times, file reads occur. This indicates that the majority of runs do
not involve file access.

WAV 48
kHz

WAV 44
kHz

MP3 48 kHz
file read

MP3 48 kHz w/o
file read

MP3 44 kHz
file read

MP3 44 kHz w/o
file read

mean 1.11 ms 1.76 ms 2.87 ms 0.51 ms 3.22 ms 0.89 ms
min 1.03 ms 1.60 ms 2.74 ms 0.41 ms 2.33 ms 0.74 ms
max 1.29 ms 2.23 ms 3.24 ms 1.83 ms 3.73 ms 1.12 ms

Time on each element In the tables and histograms below, the timings for individual elements
and their connections are provided. Given that the file reading function was invoked during the
codec’s operation, the tables for individual elements display the total time on the codec element,
the time on the codec element before the file read, and the time on the codec element after the
file read. The individual blocks in the tables are as follows:

• streamer - total time of one pipeline run without time on output buffers

• codec start - time on decoder before file read

• codec end - time on decoder after file read

• codec total - codec_start+codec_end

• file_src - file reading time

• SSRC_proc - time on SSRC element

• audio_sink - time on audio sink without ouput buffers

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• codec - decoder_sink_pad_process_handler():decoder_pads.c

• file_src - filesrc_read():file_src_rtos.c

• SSRC_proc - SSRC_Proc_Execute():ssrc_proc.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

234 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

WAV
48kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.119
ms

152
μs

31 μs 0.843
ms

120
μs

5 μs 64 μs 2 μs 40 μs 20.228
ms

min 1.026
ms

125
μs

21 μs 0.773
ms

104
μs

<1 μs 47 μs <1 μs 30 μs 19.805
ms

max 1.290
ms

193
μs

49 μs 1.311
ms

144
μs

23 μs 93 μs 14 μs 91 μs 20.324
ms

WAV
44kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.765
ms

178
μs

44 μs 0.853
ms

134
μs

5 μs 671
μs

3 μs 42 μs 21.472
ms

min 1.604
ms

145
μs

33 μs 0.770
ms

112
μs

<1 μs 574
μs

<1 μs 33 μs 18.163
ms

max 2.233
ms

218
μs

57 μs 1.335
ms

161
μs

18 μs 715
μs

5 μs 89 μs 21.746
ms

MP3 48 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 2.871
ms

441
μs

279
μs

2.271
ms

162
μs

6 μs 56 μs 3 μs 50 μs 11.019
ms

min 2.739
ms

353
μs

74 μs 1.353
ms

26
μs

<1 μs 40 μs <1 μs 34 μs 10.091
ms

max 3.244
ms

570
μs

409
μs

2.728
ms

467
μs

18 μs 80 μs 14 μs 62 μs 12.910
ms

1.7. Multimedia 235



MCUXpresso SDK Documentation, Release 25.12.00

MP3 48
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.508
ms

403
μs

x x x 8 μs 39 μs 3 μs 36 μs 11.326
ms

min 0.407
ms

208
μs

x x x <1 μs 25 μs <1 μs 21 μs 7.715
ms

max 1.834
ms

563
μs

x x x 41 μs 69 μs 16 μs 104
μs

12.941
ms

MP3 44 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 3.217
ms

436
μs

367
μs

2.300
ms

66
μs

7 μs 403
μs

3 μs 51 μs 12.188
ms

min 2.329
ms

383
μs

73 μs 1.411
ms

26
μs

2 μs 318
μs

<1 μs 35 μs 9.119
ms

max 3.726
ms

547
μs

464
μs

2.801
ms

441
μs

27 μs 454
μs

12 μs 65 μs 12.529
ms

MP3 44
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.891
ms

437
μs

x x x 9 μs 388
μs

3 μs 38 μs 11.934
ms

min 0.738
ms

268
μs

x x x <1 μs 290
μs

<1 μs 22 μs 8.964
ms

max 1.115
ms

620
μs

x x x 45 μs 438
μs

17 μs 92 μs 12.624
ms

236 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro record example Typical execution times of the streamer pipeline and its individual
elements for the EVKC-MIMXRT1060 development board are detailed in the following tables. The
duration spent on output buffers and reading from the microphone is excluded from traversal
measurements. Three measured pipelines are depicted in the figure below. The first involves
a loopback from microphone to speaker, supporting both mono and stereo configurations. The
second pipeline is a mono voice control setup, comprising microphone and VIT blocks. The final
pipeline is a stereo voice control setup, integrating microphone and VIT blocks. The measure-
ment of streamer pipeline run started at the beginning of streamer_process_pipelines():streamer.c
and ended in the function streamer_pcm_write(): streamer_pcm.c just before the output buffer.

The individual blocks in the tables are as follows:

• streamer - total time of one pipeline run without time on output buffers and without time
reading from the microphone

• audio_src_start - time on audio src before reading from the microphone

• audio_src_end - time on audio src after reading from the microphone

• pcm_read - reading from the microphone

• vit - time on VIT element

• audio_sink - time on audio sink without ouput buffers

1.7. Multimedia 237



MCUXpresso SDK Documentation, Release 25.12.00

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• audio_src - audiosrc_src_process():audio_src.c

• pcm_read - streamer_pcm_read():streamer_pcm.c

• vit - vitsink_sink_pad_chain_handler():vit_sink.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

Pipeline Microphone -> Speaker

microphone ->
speaker mono

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 43 μs 3 μs 29.938
ms

29 μs <1 μs 10 μs 18 μs

min 26 μs <1 μs 29.350
ms

19 μs <1 μs 5 μs 12 μs

max 72 μs 12 μs 29.957
ms

44 μs 1 μs 15 μs 25 μs

microphone ->
speaker stereo

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 115
μs

5 μs 29.861
ms

54 μs 2 μs 55 μs 23 μs

min 94 μs <1 μs 29.768
ms

43 μs <1 μs 50 μs 12 μs

max 154
μs

14 μs 29.880
ms

67 μs 8 μs 65 μs 49 μs

238 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pipeline Microphone -> VIT

microphone ->
VIT

streamer au-
dio_src_start

pcm_read au-
dio_src_end

link audio_src-
vit

vit

mean 7.380
ms

30 μs 22.624
ms

78 μs 2 μs 7.261
ms

min 2.641
ms

10 μs 2.2265
ms

58 μs <1 μs 2.559
ms

max 7.780
ms

42 μs 2.7341
ms

94 μs 5 μs 7.624
ms

Maestro on Zephyr
• Based on and tested with Zephyr version, given by tag v4.0.0

• Tested with Zephyr SDK version 16.4

• To see the pre-built documentation, see: README.html. Also see the documentation section.

Maestro sample for recording data from microphone to RAM

Description This sample records data from microphone (alias dmic0 in devicetree) and stores
them to a buffer in RAM.

Currently one PDM channel with fixed 16 kHz sample rate and 16 bit sample width is supported.

For configuration options, see Kconfig and prj.conf.

User Input/Output
• Input:

None.

• Output:

UART Output:

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro voice detection sample using VIT

1.7. Multimedia 239

doc/doc/README.html


MCUXpresso SDK Documentation, Release 25.12.00

Description Records data from microphone (alias dmic0 in devicetree) and detects voice com-
mands from selected language model. Detected commands are printed via UART.

Language model may be changed via Kconfig usingCONFIG_MAESTRO_EXAMPLE_VIT_LANGUAGE
selection. For other configuration options, see example’s Kconfig and prj.conf.

This project requires an NXP board supported by the VIT library.

The example has to be modified if a new board needs to be added. Please create an issue in that
case.

User Input/Output
• Input:

None.

• Output:

UART Output:

– List of voice commands the model can detect (printed immediately after start)

– <Specific voice command> if voice command was detected

– Demo result: FAIL otherwise

Dependencies
• VIT library: https://www.nxp.com/design/design-center/software/embedded-software/

voice-intelligent-technology-wake-word-and-voice-command-engines:
VOICE-INTELLIGENT-TECHNOLOGY

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro decoder sample

Description Tests and demonstrates decoder functionality in Maestro pipeline.

Supported decoders:

• MP3

• WAV

• AAC

• FLAC

• OPUS with OGG envelop

• (RAW OPUS - TBD)

Data Input:

• Prepared encoded audio data (part of Maestro repository, folder zephyr/audioTracks)

• Prepared decoded audio data (RAW PCM format, part of Maestro repository, folder zephyr/
audioTracks)

Function:

1. Loads encoded data into source buffer stored in RAM

240 Chapter 1. Middleware

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY


MCUXpresso SDK Documentation, Release 25.12.00

2. Decodes audio data using selected decoder and stores data in RAM

3. Compares prepared data with decoded data to check if its the same

4. Prints Demo result: OK or Demo result: FAIL via UART

User Input/Output
• Input:

None

• Output:

UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Decoder libraries

Configuration
• See prj.conf for user input sections

– Selecting decoder may be done by enablingCONFIG_MAESTRO_EXAMPLE_DECODER_SELECTED_<DECODER_NAME>
in prj.conf file. When no decoder is selected, default one (WAV) is used instead.

– System settings should be modified (stack size, heap size) based on selected decoder
and system capabilities/requirements in prj.conf.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working decoders: FLAC, WAV, OPUS OGG

Maestro encoder sample

Description Tests and demonstrates encoder functionality in Maestro pipeline.

Supported encoders:
• OPUS with OGG envelop - TBD

• RAW OPUS - TBD

Input:

• Prepared decoded audio data (RAW PCM format, part of Maestro repository)

• Prepared encoded audio data (part of Maestro repository)

Function:

1. Loads RAW data into source buffer stored in RAM

2. Encodes audio data using selected encoder and stores data in RAM

3. Compares prepared data with decoded data if same

4. Prints Demo result: OK or Demo result: FAIL via UART

1.7. Multimedia 241



MCUXpresso SDK Documentation, Release 25.12.00

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Encoder libraries

User Input/Output Input:

• None

Output:

• UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Configuration
• See prj.conf for user input sections

– Selecting encoder may be done by enablingCONFIG_MAESTRO_EXAMPLE_ENCODER_SELECTED_<ENCODER_NAME>
in prj.conf file. When no encoder is selected, default one (OPUS) is used instead.

– System settings should be modified (stack size, heap size) based on selected encoder
and system capabilities/requirements in prj.conf file.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working encoders: None.

Maestro mem2mem sample

Description Tests basic memory to memory pipeline.

Function:
1. Moves generated data with fixed size of 256B from memory source to memory sink.

2. Compares copied data to check if they’re the same.

3. Returns Demo result: OK or Demo result: FAIL via UART.

• Maestro environment setup

• Build and run Maestro example

– Using command line

– Using MCUXpresso for VS Code

• Folder structure

• Supported elements and libraries

• Examples support

• Creating your own example

• Documentation

• FAQ

242 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro environment setup Follow these steps to set up a Maestro development environment
on your machine.

1. If you haven’t already, please follow this guide to set up a Zephyr development environment
and its dependencies first:

• Cmake

• Python

• Devicetree compiler

• West

• Zephyr SDK bundle

2. Get Maestro. You can pick either of the options listed below. If you need help deciding
which option is the best fit for your needs, please see the FAQ.

• Freestanding Maestro - This option pulls in only Maestro’s necessary dependencies.

Run:

1. west init -m <maestro repository url> --mr <revision> --mf west-freestanding.yml
↪→<foldername>
2. cd <foldername>
3. west update

• Maestro as a Zephyr module

To include Maestro into Zephyr, update Zephyr’s west.yml file:

projects:
name: maestro
url: <maestro repository url>
revision: <revision with Zephyr support>
path: modules/audio/maestro
import: west.yml

Then run west update maestro command.

Build and run Maestro example These steps will guide you through building and running
Maestro samples. You can use either the command line utilizing Zephyr’s powerful west tool or
you can use VS Code’s GUI. Detailed steps for both options are listed below.

Using command line See Zephyr’s Building, Flashing and Debugging guide if you aren’t famil-
iar with it yet.

1. To build a project, run:

west build -b <board> -d <output build directory> <path to example> -p

For example, this compiles VIT example for rd_rw612_bga board:

1. cd maestro/zephyr
2. west build -b rd_rw612_bga -d build samples/vit -p

2. To run a project, run:

west flash -d <directory>

e.g.:

1.7. Multimedia 243

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html


MCUXpresso SDK Documentation, Release 25.12.00

west flash -d build

3. To debug a project, run:

west debug -d <directory>

e.g.:

west debug -d build

Using MCUXpresso for VS Code For this you have to have NXP’s MCUXpresso for VS Code
extension installed.

1. Import your topdir as a repository to MCUXPresso for VS Code:

• Open the MCUXpresso Extension. In the Quickstart Panel click Import Repository.

• In the displayed menu click LOCAL tab and select the folder location of your topdir.

• Click Import.

• The repository is successfully added to the Installed Repositories view once the import
is successful.

2. To import any project from the imported repository:

• In the Quickstart Panel click Import Example from Repository.

• For Repository select your imported repository.

• For Zephyr SDK the installed Zephyr SDK is selected automatically. If not, select one.

• For Board select your board (make sure you’ve selected the correct revision).

• For Template select the folder path to your project.

• Click the Create button.

3. Build the project by clicking the Build Selected icon (displayed on hover) in the extension’s
Projects view. After the build, the debug console window displays the memory usage (or
compiler errors if any).

4. Debug the project by clicking the Debug (play) icon (displayed on hover) in the extension’s
Projects view.

5. The execution will pause. To continue execution click Continue on the debug options.

6. In the SERIAL MONITOR tab of your console panel, the application prints the Zephyr boot
banner during startup and then prints the test results.

Folder structure
maestro/
���� ...
���� zephyr/ All Zephyr related files

��� samples/ Sample examples
��� tests/ Tests
��� audioTracks/ Audio tracks for testing
��� doc/ Documentation configuration for Sphinx
��� wrappers/ NXP SDK Wrappers
��� scripts/ Helper scripts, mostly for testing
��� module.yml Defines module name, Cmake and Kconfig locations
��� CMakeList.txt Defines module's build process
��� Kconfig Defines module's configuration
��� osa/ Deprecated. OSA port for Zephyr
��� ...

244 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/vscode-for-mcux
https://github.com/nxp-mcuxpresso/vscode-for-mcux


MCUXpresso SDK Documentation, Release 25.12.00

Supported elements and libraries Here is the list of all features currently supported in Mae-
stro on Zephyr. Our goal is to support all features in Maestro on Zephyr that are already sup-
ported in Maestro on NXP’s SDK and to extend them further.

Supported elements:
• Memory source

• Memory sink

• Audio source

• Audio sink

• Process sink

• Decoder

• Encoder

Supported decoders:
• WAV

• MP3

• FLAC

• OPUS OGG

• AAC

Supported encoders:
• OPUS RAW

Supported libraries:
• VIT

Examples support All included examples use UART as output. Examples are located in zephyr/
tests and zephyr/samples directories.

List of included examples:
• Maestro sample for recording data from microphone to RAM

• Maestro voice detection sample using VIT

• Maestro encoder sample

• Maestro decoder sample

• Maestro mem2mem sample

Examples support for specific boards:

Example RDRW612BGA LPCx-
presso55s69

MIMXRT1060EVKB MIMXRT1170EVKB

Record YES TO BE TESTED TO BE TESTED TO BE TESTED
VIT YES TO BE TESTED TO BE TESTED TO BE TESTED
Encoder In progress: OPUS RAW TO BE TESTED TO BE TESTED TO BE TESTED
Decoder YES - WAV, FLAC, OPUS

OGG
TO BE TESTED TO BE TESTED TO BE TESTED

Mem2mem YES TO BE TESTED TO BE TESTED TO BE TESTED

1.7. Multimedia 245

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY


MCUXpresso SDK Documentation, Release 25.12.00

Creating your own example There are two ways to create your own example - you can either
one of the included examples as a reference or you can create your own example from scratch
by hand.

When creating your own example from scratch, setCONFIG_MAESTRO_AUDIO_FRAMEWORK=y
in your prj.conf file. Then you can start enabling specific elements by setting CON-
FIG_MAESTRO_ELEMENT_<NAME>_ENABLE=y.

However, the recommended way to edit config options is to open gui-config (or menuconfig) by
calling west build -t guiconfig. Then you can use the graphical interface to interactively turn on/off
the features you need.

Documentation Please note, Maestro documentation is under reconstruction. It is currently
mixing several tools and formats.

To see the pre-generated Maestro Zephyr documentation, see zephyr/doc/doc/README.html

To generate the Zephyr documentation, go under zephyr/doc folder and execute make html.
Sphinx version sphinx-build 8.1.3 must be installed. Open doc/doc/html/README.hml afterwards.

To see Maestro core documentation, go to the Maestro top directory and see README.md.

FAQ
1. Should I choose the freestanding version of Maestro or should integrate it into my west

instead?

• Freestanding version of Maestro pulls in all the dependencies it needs including
Zephyr itself.

• Integrating it as a module is easier if you already have your Zephyr environment set
up.

Maestro Audio Framework changelog

2.0.2
• Removed VoiceSeeker support

2.0.1
• Fixed filesrc buffer alignment

2.0.0 (newest)
• Added Zephyr port, see Zephyr README.

– Possible to use standalone version, pulling its own Zephyr and dependencies

– Possible to import it as a module in your Zephyr project

• Changed build system - newly uses Kconfig and Cmake

• Supports NXP MCUXSDK (previously 2.x)

• Changed folder structure and names to improve readability (description may be found in
README)

• Removed audio libraries and placed into audio-voice-components repository

• Added libraries are pulled into the build via Kconfig and Cmake

246 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Changed Maestro library core - minor changes

1.8.0
• New platforms support: MCX-N5XX-EVK, FRDMMCXN236 and RD-RW612-BGA

• Fixed compilation warnings

• Documentation improvements and updates

– Added section with processing time information

– Added application state diagrams

• Various updates and fixes

1.7.0
• Removed EAP support for future SDK releases

• Created new API for audio_sink and audio_src to support USB source, sink

• ASRC library integrated

• License changed to BSD 3-Clause

• Improved pipeline creation API

• Fixed compilation warnings in Opus

• Various other improvements and bug fixes

1.6.0
• Up to 2 parallel pipelines supported

• Synchronous Sample Rate Converter support Added

• Various improvements and bug fixes

1.5.0
• Enabled switching from 2 to 4 channel output during processing

• PadReturn type has been replaced by FlowReturn

• Support of AAC, WAV, FLAC decoders

• Renamed eap element to audio_proc element

• Added audio_proc to VIT pipeline to support VoiceSeeker

• Minor bug fixes

1.4.0
• Use Opusfile lib for Ogg Opus decoder

• Refactor code, fix issues found in unit tests

• Various bug fixes

1.7. Multimedia 247



MCUXpresso SDK Documentation, Release 25.12.00

1.3.0
• Make Maestro framework open source (except mp3 and wav decoder)

• Refactor code, remove unused parts, add comments

1.2.0
• Unified buffering in audio source, audio sink

• Various improvements and bug fixes

1.0_rev0
• Initial version of framework with support for Cortex-M7 platforms

1.7.2 VGLite Graphics Driver

IMXRTVGLITEAPIRM

Introduction The VGLite Graphics API (Application Programming Interface) is designed to sup-
port 2D vector and 2D raster-based operations for rendering the interactive user interface that
may include menus, fonts, curves, and images. The goal is to provide the maximum 2D vec-
tor/raster rendering performance, while keeping the memory footprint to the minimum.

Note: This document contains proprietary information of VeriSilicon Holdings Co., Ltd, and Vi-
vante Corporation.

VGLite Graphics API The Vivante VGLite Graphics API is used to control the Vivante vector
graphics hardware units that provide accelerated vector and raster operations.

The Vivante VGLite API is developed for use with Vivante GCNanoLiteV, GCNanoUltraV, GCNanoV,
GC355, and GC555 hardware. GC355 and GC555 support the Khronos OpenVG 1.1 feature set,
while GCNanoLiteV, GCNanoUltraV and GCNanoV have a feature set smaller than that required
to pass Khronos OpenVG CTS.

The VGLite API driver V4 is a new design and implementation of the driver (from 2023Q1) to sup-
port the new generation 2.5D GPU (GC555), and the previous 2.5D GPU releases (GC255, GC265,
GC355). The new V4 driver supports the new and improved VGLite API (version 3.0) and can
generate the most CPU-efficient, customized driver build for a specific 2.5D GPU release based
on the hardware feature set.

VGLite API supported features include: Porter-Duff Blending, Gradient Controls, Fast Clear, Ar-
bitrary Rotations, Path Filling rules, Path painting, and Pattern Path Filling.

By default, VGLite API driver V4 supports one implicit global application context in a single
thread. VGLite V4 driver does not support multithreaded applications, which is not suitable
for embedded IoT devices.

Parent topic:Introduction

API function group The VGLite Graphics API has been designed to have independent function
groups. It is permissible for a user to use only one of the function groups in the VGLite applica-
tion:

• Initialization is used for initializing hardware and software structures

• Blit API is used for the raster part of rendering

• Draw API is used for 2D vector-based draw operations

248 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Introduction

API files The VGLite source code is available as part of the NXP MCUXpresso SDK:

The VGLite graphics API functions are defined in the header file VGLite/inc/vg_lite.h.

All VGLite enumerations and data types are defined in VGLite/inc/vg_lite.h.

Parent topic:Introduction

Hardware versions The Vivante VGLite API is compatible with a range of Vivante Vector
Graphics IPs including: GCNanoLiteV, GCNanoUltraV, GCNanoV, GC355, and GC555.

Note: A specific hardware version has customized feature set that may limit hardware support
for some VGLite API options. The VGLite application can use the vg_lite_query_feature API to
query specific VGLite feature availability.

Users can also check the VGLite/VGLite/vg_lite_options.h file which includes CHIPID, REVISION,
CID to identify specific HW releases, and the gcFEATURE_VG_* macros to define the feature set
for the HW release.

The gcFEATURE_VG_* macro values (except a few SW features) should NOT be changed. Other-
wise, the VGLite driver does not function correctly on the specific HW release. Users can change
the “SW Features” macro values to disable some software features, unnecessary error checks, or
enable VGLite API trace for debug purposes.

.

Parent topic:Introduction

Common parameters and error values This chapter provides an overview of the common
parameter types and the enumeration used for error reporting.

Common parameter types The VGLite graphics API uses a naming convention scheme
wherein definitions are preceded by vg_lite.

Below is the list of types and structures in the driver implementation.

1.7. Multimedia 249



MCUXpresso SDK Documentation, Release 25.12.00

NameType-
def

Value

vg_lite_bool_tint A signed 32-bit integer 0: FALSE; 1: TRUE.
vg_lite_int8_tchar A signed 8-bit integer
vg_lite_uint8_tun-

signed
char

An unsigned 8-bit integer

vg_lite_int16_tshort A signed 16-bit integer
vg_lite_uint16_tun-

signed
short

An unsigned 16-bit integer

vg_lite_int32_tint A signed 32-bit integer
vg_lite_uint32_tun-

signed
int

An unsigned 32-bit integer

vg_lite_uint64_tun-
signed
long
long

An unsigned 64-bit integer

vg_lite_float_tfloat A 32-bit single precision floating point number
vg_lite_double_tdou-

ble
A 64-bit double precision floating point number

vg_lite_char_tchar A signed 8-bit integer
vg_lite_stringchar* A pointer to a character string
vg_lite_pointervoid* A generic address pointer (void *). On 32-bit OS, it is a 32-bit address pointer. On

64-bit OS, it is a 64-bit address pointer.
vg_lite_voidvoid The void type
vg_lite_color_tvg_lite_uint32_tA 32-bit color value The color value specifies the color used in various func-

tions. The color is formed using 8-bit RGBA channels. The red chan-
nel is in the lower 8-bit of the color value, followed by the green and
blue channels. The alpha channel is in the upper 8-bit of the color value.

For L8 target formats, the RGB
color is converted to L8 by using the default ITU-R BT.709 conversion rules.

VG_LITE_S8enum
vg_lite_format_t

A signed 8-bit integer coordinate

VG_LITE_S16enum
vg_lite_format_t

A signed 16 bit integer coordinate

VG_LITE_S32enum
vg_lite_format_t

A signed 32-bit integer coordinate

VG_LITE_FP32enum
vg_lite_format_t

A 32-bit floating point coordinate

Parent topic:Common parameters and error values

Enumerations for error reporting This section describes enumerations used for error report-
ing.

vg_lite_error_t enumeration Most functions in the API include an error status via the
vg_lite_error_tenumeration. API functions return the status of the command and will report
VG_LITE_SUCCESS if successful with no errors. Possible error values include the values in
the table below. vg_lite_error_tenumeration is used in many functions, including initialization,
flush, blit, draw, gradient, and pattern functions.

250 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t string values Description
VG_LITE_GENERIC_IO Cannot communicate with the kernel driver
VG_LITE_INVALID_ARGUMENTAn invalid argument was specified
VG_LITE_MULTI_THREAD_FAILMulti-thread/tasks fail (available from June 2020)
VG_LITE_NO_CONTEXT No context specified
VG_LITE_NOT_SUPPORT Function call is not supported. Hardware support is not

available.
VG_LITE_OUT_OF_MEMORY Out of memory (driver heap)
VG_LITE_OUT_OF_RESOURCESOut of resources (OS heap)
VG_LITE_SUCCESS Successful with no errors
VG_LITE_TIMEOUT Timeout
VG_LITE_ALREADY_EXISTS Object exists (available from August 2021)
VG_LITE_NOT_ALIGNED Data alignment error (available from August 2021)

Parent topic:Enumerations for error reporting

Parent topic:Common parameters and error values

Hardware product and feature information These query functions can be used to identify
the product and its key features and to get VGLite driver information.

Enumerations for product and feature queries This section describes enumerations used for
product and feature queries.

vg_lite_feature_t enumeration The following feature values may be queried for availability in
compatible hardware. (expanded March 2023 to support additional hardware for driver V4)

Used in information function: vg_lite_query_feature.

vg_lite_feature_t string values Description
gcFEATURE_BIT_VG_16PIXELS_ALIGN Require 16 pixels aligned for the input pixel buffer
gcFEATURE_BIT_VG_24BIT RGB888 or RGBA5658 formats support
gcFEATURE_BIT_VG_24BIT_PLANAR 24-bit planar format support
gcFEATURE_BIT_VG_AYUV_INPUT AYUV input format support
gcFEATURE_BIT_VG_BORDER_CULLING Border culling support
gcFEATURE_BIT_VG_COLOR_KEY Color key support.
gcFEATURE_BIT_VG_COLOR_TRANSFORMATION Color transform support.
gcFEATURE_BIT_VG_DEC_COMPRESS DEC compression format output support
gcFEATURE_BIT_VG_DITHER Dither support
gcFEATURE_BIT_VG_DOUBLE_IMAGE Support two image source inputs
gcFEATURE_BIT_VG_FLEXA FLEXA interface support
gcFEATURE_BIT_VG_GAMMA Gamma support
gcFEATURE_BIT_VG_GAUSSIAN_BLUR Gaussian blur sampling support
gcFEATURE_BIT_VG_GLOBAL_ALPHA Global alpha support
gcFEATURE_BIT_VG_HW_PREMULTIPLY HW supports alpha premultiply for image
gcFEATURE_BIT_VG_IM_DEC_INPUT DEC compressed format input support
gcFEATURE_BIT_VG_IM_FASTCLEAR Fast Clear support
gcFEATURE_BIT_VG_IM_INDEX_FORMAT Index format support for image
gcFEATURE_BIT_VG_IM_INPUT Blit and draw API support
gcFEATURE_BIT_VG_IM_REPEAT_REFLECT Image repeat reflect mode support
gcFEATURE_BIT_VG_INDEX_ENDIAN Index format endian support
gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT Support for extended linear gradient capabilities

continues on next page

1.7. Multimedia 251



MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
vg_lite_feature_t string values Description
gcFEATURE_BIT_VG_LVGL_SUPPORT LVGL blend mode support
gcFEATURE_BIT_VG_MASK Mask support
gcFEATURE_BIT_VG_MIRROR Mirror support
gcFEATURE_BIT_VG_NEW_BLEND_MODE New blend mode DARKEN/LIGHTEN support
gcFEATURE_BIT_VG_NEW_IMAGE_INDEX New CLUT image index support
gcFEATURE_BIT_VG_PARALLEL_PATHS New parallel path HW support
gcFEATURE_BIT_VG_PE_CLEAR Pixel engine clear support
gcFEATURE_BIT_VG_PIXEL_MATRIX Pixel matrix support
gcFEATURE_BIT_VG_QUALITY_8X 8x anti-aliasing path support
gcFEATURE_BIT_VG_RADIAL_GRADIENT Radial gradient support
gcFEATURE_BIT_VG_RECTANGLE_TILED_OUT Rectangle tiled output support
gcFEATURE_BIT_VG_RGBA2_FORMAT RGBA2222 format support
gcFEATURE_BIT_VG_RGBA8_ETC2_EAC ETC2/EAC compressed image format support
gcFEATURE_BIT_VG_SCISSOR Scissor support
gcFEATURE_BIT_VG_SRC_PREMULTIPLIED Source image alpha premultiplied
gcFEATURE_BIT_VG_STENCIL Stencil image mode support
gcFEATURE_BIT_VG_STRIPE_MODE Stripe mode support
gcFEATURE_BIT_VG_TESSELLATION_TILED_OUT Tessellation tiled output support
gcFEATURE_BIT_VG_USE_DST Read destination pixel support
gcFEATURE_BIT_VG_YUV_INPUT YUV input format support
gcFEATURE_BIT_VG_YUV_OUTPUT YUV format output support
gcFEATURE_BIT_VG_YUV_TILED_INPUT YUV tiled input format support
gcFEATURE_BIT_VG_YUY2_INPUT YUY2 input format support

Parent topic:Enumerations for product and feature queries

Parent topic:Hardware product and feature information

Structures for product and feature queries This section describes structures used for prod-
uct and feature queries.

vg_lite_info_t structure This structure is used to query VGLite driver information.

Used in function: vg_lite_get_info_t.

vg_lite_info_t member Type Description
api_version vg_lite_uint32_t VGLite API version
header_version vg_lite_uint32_t VGLite header version
release_version vg_lite_uint32_t VGLite driver release version
reserved vg_lite_uint32_t Reserved for future use

Parent topic:Structures for product and feature queries

Parent topic:Hardware product and feature information

Functions for product and feature queries This section describes functions used for product
and feature queries.

vg_lite_get_product_info Description:
This function is used to identify the VGLite-compatible product.

Syntax:

252 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t vg_lite_get_product_info (
char *name,
uint32_t *chip_id,
uint32_t *chip_rev

);

Parameters:

Name Description
name A character array to store the name of the chip.
chip_id Stores an ID number for the chip.
chip_rev Stores a revision number for the chip.

Parent topic:Functions for product and feature queries

vg_lite_get_info Description:
This function is used to query the VGLite driver information.

Syntax:

vg_lite_error_t vg_lite_get_info (
vg_lite_info_t *info

);

Parameters:

Name Description
info Points to the VGLite driver information structure, which includes the API version,

header version, and release version

Parent topic:Functions for product and feature queries

vg_lite_get_register Description:
This function can be used to read a GPU AHB register value given the AHB byte address of a
register. Refer to the appropriate Vivante GPU AHB register specification documents for register
descriptions. The value range of AHB accessible addresses for VGLite cores is usually 0x0 to 0x1FF
and 0xA00 to 0xA7F.

Syntax:

vg_lite_error_t vg_lite_get_register (
vg_lite_uint32_t address,
vg_lite_uint32_t *result

);

Parameters:

Name Description
address Byte Address of the register which value you want.
*result The registers value.

Parent topic:Functions for product and feature queries

1.7. Multimedia 253



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_query_feature Description:
This function is used to query if a specific feature is available.

Syntax:

vg_lite_uint32_t vg_lite_query_feature (
vg_lite_feature_t feature

);

Parameters:

Name Description
feature Feature to be queried, as detailed in enum vg_lite_feature_t

Returns:
The feature is either not supported (0) or supported (1).

Parent topic:Functions for product and feature queries

vg_lite_get_mem_size Description:
This function queries whether there is any remaining allocated contiguous video memory.
(available from June 2020)

Syntax:

vg_lite_error_t vg_lite_get_mem_size(
vg_lite_uint32_t *size

);

Parameters:

Name Description
size Pointer to the remaining allocated contiguous video memory.

Returns:
Returns VG_LITE_SUCCESS if the query is successful and memory is available. Returns
VG_LITE_NO_CONTEXT if the driver is not initialized or there is no available memory.

Parent topic:Functions for product and feature queries

Parent topic:Hardware product and feature information

API control Before calling any VGLite API function, the application must initialize the VGLite
implicit (global) context by calling vg_lite_init(), which will fill in a features table, reset the fast-
clear buffer, reset the compositing target buffer and allocate the command and tessellation
buffers.

The VGLite driver only supports one current context and one thread to issue commands to the
Vivante Vector Graphics hardware. The VGLite driver does not support multiple concurrent
contexts running simultaneously in multiple threads/processes, as the VGLite kernel driver does
not support context switching. A VGLite application can only use a single context at any time to
issue commands to the Vivante Vector Graphics hardware. If a VGLite application must switch
contexts, vg_lite_close() must be called to close the current context in the current thread, then

254 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init() can be called to initialize a new context either in the current thread or from another
thread/process.

Context initialization and control functions This section provides an overview of the context
initialization and control functions.

vg_lite_init Description:
This function initializes the memory and data structures needed for VGLite draw/blit functions,
by allocating memory for the command buffer and a tessellation buffer of the specified size.

GC555 has a newly designed hardware tessellation module that requires less memory for the
tessellation buffer than GC355 and GNanoLite-V. Specifically, the GC555 required tessellation
buffer size is “buffer_height * 128 byte”. vg_lite_init API can simply be called with the render
buffer “width” and “height” as the input parameters for GC555. This results in the best path to
tessellation performance.

GC355 and GCNanoLiteV hardware tessellation module requires a tessellation buffer with size
“buffer_height * buffer_width * 8 byte”. If system memory is limited, the application can define
a smaller tessellation window based on the amount of memory available. GPU hardware can
process the entire render buffer path tessellation in multiple passes with the tessellation window
sliding across the render buffer. The multi-pass path tessellation with the smaller tessellation
window has a certain performance overhead.

The minimum tessellation window that can be used is 16x16. If tess_height or tess_width is less
than 0 in vg_lite_init API, then no path tessellation buffer is created and path drawing APIs do
not work, only blit APIs can be used after vg_lite_init.

If this would be the first context that accesses the hardware, the hardware is turned on and
initialized. If a new context must be initialized, vg_lite_close must be called to close the current
context. Otherwise, vg_lite_init will return an error.

Syntax:

vg_lite_error_t vg_lite_init (
vg_lite_int32_t tess_width,
vg_lite_int32_t tess_height

);

Parameters:

Name Description
tess_widthWidth of tessellation window. Maximum cannot be greater than render buffer width.

If less than or equal to 0, then no tessellation buffer is created, in which case only blit
APIs can be used afterward.

tess_heightHeight of tessellation window. Maximum cannot be greater than render buffer height.
If less than or equal to 0, then no tessellation buffer is created, in which case blit APIs
can be used afterward.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

1.7. Multimedia 255



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_close Description:
This function deallocates all the resources and free up all the memory that was initialized earlier
by the vg_lite_init function. It will also turn OFF the hardware automatically if this was the only
active context.

Syntax:

vg_lite_error_t vg_lite_close (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg_lite_flush Description:
This function explicitly submits the command buffer to the GPU without waiting for it to com-
plete. (From Dec 2019, return type is vg_lite_error_t, previously was void.)

Syntax:

vg_lite_error_t vg_lite_flush (
void

);

Returns:
Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_finish Description:
This function explicitly submits the command buffer to the GPU and waits for it to complete.

Syntax:

vg_lite_error_t vg_lite_finish (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg_lite_frame_delimiter Description:
This function sets a flag for GPU to signal the completion of current frame. A vg_lite_finish is
called by default within this API. The enum VG_LITE_FRAME_END_FLAG is the only value
that can be set by flag parameter.

Syntax:

256 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_frame_delimiter (
vg_lite_frame_flag_t flag

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_set_command_buffer_size Description:
This function is optional. If used, call it before vg_lite_init if you want to change the command
buffer size. (available from March 2020)

Syntax:

vg_lite_error_t vg_lite_set_command_buffer_size (
vg_lite_uint32_t size

);

Parameters:

Name Description
size Size of the VGLite Command buffer. Default is 64K.

Returns:
Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_set_command_buffer Description:
This function sets a user-defined external memory buffer (physical, 64-byte aligned) as the VGLite
command buffer. By default, the VGLite driver allocates a static command buffer internally.
Thus, it is not necessary for an application to allocate and set the command buffer. This function
is only used for devices where an application needs to allocate the command buffer dynamically.
(from December 2021)

Syntax:

vg_lite_error_t vg_lite_set_command_buffer (
vg_lite_uint32_t physical,
vg_lite_uint32_t size

);

Parameters:

Name Description
physical The physical address of a memory buffer. The address must be 64-byte aligned.
size The size of memory buffer. The size must be 128-byte aligned.

Returns:
Returns VG_LITE_SUCCESS if the command buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

1.7. Multimedia 257



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Context initialization and control functions

vg_lite_set_tess_buffer Description:
This function specifies a memory buffer from an application as the VGLite driver’s tessellation
buffer. By default, the VGLite driver allocates a static tessellation buffer internally. Thus, it is not
necessary for an application to allocate and set the tessellation buffer. This function is only used
for devices where the application needs to allocate the tessellation buffer dynamically. (from
December 2021)

Syntax:

vg_lite_error_t vg_lite_set_tess_buffer (
vg_lite_uint32_t physical,
vg_lite_uint32_t size

);

Parameters:

Name Description
physi-
cal

The physical address of a tessellation buffer. The address must be 64-byte aligned.

size The size of tessellation buffer. tessellation buffer size = target buffer’s height * 128B.

Returns:
Returns VG_LITE_SUCCESS if the tessellation buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

Parent topic:Context initialization and control functions

vg_lite_set_memory_pool Description:
This function sets the specific memory pool from which certain type of
buffers, VG_LITE_COMMAND_BUFFER, VG_LITE_TESSELLATION_BUFFER, or
VG_LITE_RENDER_BUFFER, should be allocated. By default, all types of buffers are al-
located from VG_LITE_MEMORY_POOL_1. This API must be called before vg_lite_init()
for setting VG_LITE_COMMAND_BUFFER or VG_LITE_TESSELLATION_BUFFER memory
pools. This API can be called anytime for VG_LITE_RENDER_BUFFER to affect the following
vg_lite_allocate() calls.(from December 2023)

Syntax:

vg_lite_error_t vg_lite_set_memory_pool (
vg_lite_buffer_type_t type,
vg_lite_memory_pool_t pool

);

Parameters:

NameDescription
type The buffer type (VG_LITE_COMMAND_BUFFER, VG_LITE_TESSELLATION_BUFFER,

or VG_LITE_RENDER_BUFFER) to be allocated from memory pool.
pool The memory pool (VG_LITE_MEMORY_POOL_1, VG_LITE_MEMORY_POOL_2)

from which the buffer type should be allocated.

258 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Returns:
Returns VG_LITE_SUCCESS if the memory pool set is successful. See vg_lite_error_t enumera-
tion for other return codes.

Parent topic:Context initialization and control functions

Parent topic:API control

Pixel buffers This chapter provides an overview of the pixel buffer alignment, cache, internal
representation, enumerations, structures, and functions.

Pixel buffer alignment The VGLite hardware requires the pixel buffer start address and
stride to be properly byte-aligned to work correctly. The start address and stride align-
ment requirement for a pixel buffer depends on the specific pixel format, and gcFEA-
TURE_VG_16PIXELS_ALIGNED value (0/1) in vg_lite_options.h file.

Parent topic:Pixel buffers

Pixel cache The Vivante Imaging Engine (IM) includes two fully associative caches. Each cache
has 8 lines. Each line has 64 bytes. In this case, one cache line can hold either a 4x4-pixel tile or
a 16x1-pixel row.

Parent topic:Pixel buffers

Internal representation For non-32-bit color formats, each pixel is extended to 32 bits as fol-
lows:

If the source and destination formats have the same color format, but differ in the number of
bits per color channel, the source channel is multiplied by (2d- 1)/(2s– 1) and is rounded to the
nearest integer, where:

• d is the number of bits in the destination channel

• s is the number of bits in the source channel

Example: a b11111 5-bit source channel gets converted to an 8-bit destination b11111000.

The YUV formats are internally converted to RGB. The pixel selection is unified for all formats
by using the LSB of the coordinate.

Parent topic:Pixel buffers

Pixel buffer enumerations This section provides an overview of the pixel buffer enumera-
tions.

vg_lite_buffer_format_t enumeration This enumeration specifies the color format to use for
a buffer. This applies to both image and Render Target. Formats include supported swizzles for
RGB. For YUV swizzles, use the related values and parameters in vg_lite_swizzle_t.

The application shall use the vg_lite_query_feature API to determine support for some
hardware-specific formats. For example, related vg_lite_feature_t enum values include gcFEA-
TURE_BIT_VG_RGBA2_FORMAT and gcFEATURE_BIT_VG_IM_INDEX_FORMAT.

(Alignment columns refined March and Sept 2023)

Used in structure: vg_lite_buffer_t.

See also vg_lite_blit, vg_lite_clear, vg_lite_draw.

1.7. Multimedia 259



MCUXpresso SDK Documentation, Release 25.12.00

Attention: OpenVG VGImageFormat Note: The bits for each color channel are stored within
a machine word from MSB to LSB in the order indicated by the pixel format name. This is the
opposite of the original VG_LITE_* formats that are ordered from LSB to MSB. The formats with
the same organization are listed in the same row as their VG_Lite counterparts.

Attention: Original VGLite API Image Format Note: The bits for each color channel are stored
within a machine word from LSB to MSB in the order indicated by the pixel format name. This
is the opposite of the OPENVG VG_* formats that are ordered from MSB to LSB.

The following codes, as also used in OpenVG 1.1 Specification Table 11, are used for format de-
scription:

• A - Alpha channel

• B - Blue color channel

• G - Green color channel

• R - Red color channel

• X - Uninterpreted padding byte or bit

• L - Grayscale

• BW - 1-bit black and white

• l - Linear color space

• s - Non-linear (sRGB) color space

• PRE - Alpha values are premultiplied

260 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_format_t String Value Description Sup-
ported
as
source

Sup-
ported
as desti-
nation

Start ad-
dress/ Stride
alignment:
bytes

VG_LITE_ABGR8888
VG_sRGBA_8888
VG_sRGBA_8888_PRE
VG_lRGBA_8888
VG_lRGBA_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_ARGB8888
VG_sBGRA_8888
VG_sBGRA_8888_PRE
VG_lBGRA_8888
VG_lBGRA_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_BGRA8888
VG_sARGB_8888
VG_sARGB_8888_PRE
VG_lARGB_8888
VG_lARGB_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_RGBA8888
VG_sABGR_8888
VG_sABGR_8888_PRE
VG_lABGR_8888
VG_lABGR_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_BGRX8888
VG_sXRGB_8888 VG_lXRGB_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_RGBX8888
VG_sXBGR_8888 VG_lXBGR_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_XBGR8888 RGBX
VG_sRGBX_8888 VG_lRGBX_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_XRGB8888
VG_sBGRX_8888 VG_lBGRX_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_ABGR1555
VG_sRGBA_5551

Yes Yes Start 4B /
Stride 32B

VG_LITE_ARGB1555
VG_sBGRA_5551

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGRA5551
VG_sARGB_1555

Yes Yes Start 4B /
Stride 32B

VG_LITE_RGBA5551
VG_sABGR_1555

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGR565 VG_sRGB_565 Yes Yes Start 4B /
Stride 32B

VG_LITE_RGB565 VG_sBGR_565 Yes Yes Start 4B /
Stride 32B

VG_LITE_ABGR4444
VG_sRGBA_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_ARGB4444
VG_sBGRA_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGRA4444
VG_sARGB_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_RGBA4444
VG_sABGR_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_YUY2 VG_LITE_YUYV Yes No Start 4B /
Stride 32B

VG_LITE_A4 VG_A_4 Yes No Start 4B /
Stride 8B

VG_LITE_A8 VG_A_8 Yes Yes Start 4B /
Stride 16B

VG_LITE_L8 VG_sL_8 VG_lL_8 Yes Yes Start 4B /
Stride 16B

1.7. Multimedia 261



MCUXpresso SDK Documentation, Release 25.12.00

Hardware-dependent
formats for
vg_lite_buffer_format_t

Description Sup-
ported
as
source

Supported
as destina-
tion

Alignment
(bytes)

VG_LITE_ABGR2222 Yes Yes Start 4B / Stride
16B

VG_LITE_ARGB2222 Yes Yes Start 4B / Stride
16B

VG_LITE_BGRA2222 Yes Yes Start 4B / Stride
16B

VG_LITE_RGBA2222 Yes No 8B
VG_LITE_INDEX_1 1-bit index format Yes No 8B
VG_LITE_INDEX_2 2-bit index format Yes No both 8B
VG_LITE_INDEX_4 4-bit index format Yes No both 8B
VG_LITE_INDEX_8 8-bit index format Yes No both 16B

VG_LITE_NV12_TILED Yes No Y: both 16
Bytes UV: both
8 Bytes

VG_LITE_ANV12_TILED Yes No A, Y: both 16
Bytes UV: both
8 Bytes

VG_LITE_AYUY2_TILED Yes No both 32B

VG_LITE_RGB888 Yes Yes Start 4B / Stride
32B

VG_LITE_BGR888 Yes Yes

VG_LITE_ARGB8565 Yes Yes

VG_LITE_BGRA5658 Yes Yes Start 4B / Stride
32B

VG_LITE_ABGR8565 Yes Yes Start 4B / Stride
32B

VG_LITE_RGBA5658 Yes Yes Start 4B / Stride
32B

262 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

Image buffer alignment requirement The image (or source) buffer alignment requirement
depends on the specific pixel format, and some gcFEATURE_*_ALIGNED defines in the
vg_lite_options.h file.

Image format Bits per pixel Source tile mode Start address alignment requirement in bytes Stride alignment requirement in bytes Buffer height alignment requirement Supported for destination
VG_LITE_INDEX1 1 linear 8B 2B 1
VG_LITE_INDEX1 1 tile 8B 1B 4
VG_LITE_INDEX2 2 linear 8B 4B 1
VG_LITE_INDEX2 2 tile 8B 1B 4
VG_LITE_INDEX4 4 linear 8B 8B 1
VG_LITE_INDEX4 4 tile 8B 2B 4
VG_LITE_INDEX8 8 linear 16B 16B 1
VG_LITE_INDEX8 8 tile 16B 4B 4
VG_LITE_A4 4 linear 8B 8B 1
VG_LITE_A4 4 tile 8B 2B 4
VG_LITE_A8 8 linear 16B 16B 1 Yes
VG_LITE_A8 8 tile 16B 4B 4 Yes
VG_LITE_L8 8 linear 16B 16B 1 Yes
VG_LITE_L8 8 tile 16B 4B 4 Yes
VG_LITE_ARGB2222 8 linear 16B 16B 1 Yes
VG_LITE_ARGB2222 8 tile 16B 4B 4 Yes
VG_LITE_RGB565 16 linear 32B 32B 1 Yes
VG_LITE_RGB565 16 tile 32B 8B 4 Yes
VG_LITE_ARGB1555 16 linear 32B 32B 1 Yes
VG_LITE_ARGB1555 16 tile 32B 8B 4 Yes
VG_LITE_ARGB4444 16 linear 32B 32B 1 Yes
VG_LITE_ARGB4444 16 tile 32B 8B 4 Yes
VG_LITE_ARGB8888 32 linear 64B 64B 1 Yes
VG_LITE_ARGB8888 32 tile 64B 16B 4 Yes
VG_LITE_XRGB8888 32 linear 64B 64B 1 Yes
VG_LITE_XRGB8888 32 tile 64B 16B 4 Yes
VG_LITE_ARGB8565 24 linear 64B 48B* 1 Yes
VG_LITE_ARGB8565 24 tile 64B 12B* 4 Yes
VG_LITE_RGB888 24 linear 64B 48B* 1 Yes
VG_LITE_RGB888 24 tile 64B 12B* 4 Yes
VG_LITE_YUY2/UYVY 16 linear 32B 32B 1
VG_LITE_YUY2/UYVY 16 tile 32B 8B 4
VG_LITE_NV12 12 linear Y: 32B UV: 32B Y: 32B UV: 32B 1
VG_LITE_YV12 12 linear Y: 32B U: 16B V: 16B Y: 32B U: 16B V: 16B 1
VG_LITE_NV16 16 linear Y: 32B UV: 32B Y: 32B UV: 32B 1
VG_LITE_YV16 16 linear Y: 32B U: 16B V: 16B Y: 32B U: 16B V: 16B 1
VG_LITE_YV24 24 linear Y: 32B U: 32B V: 32B Y: 32B U: 32B V: 32B 1
VG_LITE_ETC2 8 tile 16B 4B 4

Note:
1. The values in the table reflect the alignment requirements of the data in memory. The stride

of ARGB8888 / ARGB8565 is seen as 4Byte per pixel when configuring the hardware.

2. For tile mode, the stride is still the byte size of a row of pixels in the buffer instead of 4 rows.

3. When DECNano function is enabled for the buffer, the total buffer size need align to
64Byte*compression rate for ARGB8888 or XRGB8888 format, align to 48Byte*compress rate
for RGB888 format.

Additional Alignment Requirement

1.7. Multimedia 263



MCUXpresso SDK Documentation, Release 25.12.00

1. Buffer starting address must be 16 pixel-byte-size aligned, that is 8 bit-per-pixel format
buffer must be 16 bytes aligned; 16 bit-per-pixel format buffer must be 32 bytes aligned;
24 and 32 bit-per-pixel format buffer must be 64 bytes aligned.

2. For linear mode buffer, the buffer stride must be 16 pixel-byte-size aligned.

3. For tile mode buffer, buffer width and height must be 4 pixel aligned so buffer width and
height end at tile boundary.

Parent topic:Pixel buffer enumerations

Destination buffer alignment requirement The destination (or render target) buffer align-
ment requirement depends on the specific pixel format, and some gcFEATURE_*_ALIGNED
defines in the vg_lite_options.h file.

Target format Bits per pixel Target tile mode VG tile mode Start address alignment requirement in bytes Stride alignment requirement in bytes Buffer height alignment requirement
VG_LITE_A8 8 linear linear 4B 1B 1
VG_LITE_A8 8 linear tile 64B 64B 4
VG_LITE_A8 8 tile linear 64B 64B 4
VG_LITE_A8 8 tile tile 64B 16B 4
VG_LITE_L8 8 linear linear 4B 1B 1
VG_LITE_L8 8 linear tile 64B 64B 4
VG_LITE_L8 8 tile linear 64B 64B 4
VG_LITE_L8 8 tile tile 64B 16B 4
VG_LITE_ARGB2222 8 linear linear 4B 1B 1
VG_LITE_ARGB2222 8 linear tile 64B 64B 4
VG_LITE_ARGB2222 8 tile linear 64B 64B 4
VG_LITE_ARGB2222 8 tile tile 64B 16B 4
VG_LITE_RGB565 16 linear linear 4B 2B 1
VG_LITE_RGB565 16 linear tile 64B 64B 4
VG_LITE_RGB565 16 tile linear 64B 64B 4
VG_LITE_RGB565 16 tile tile 64B 16B 4
VG_LITE_ARGB1555 16 linear linear 4B 2B 1
VG_LITE_ARGB1555 16 linear tile 64B 64B 4
VG_LITE_ARGB1555 16 tile linear 64B 64B 4
VG_LITE_ARGB1555 16 tile tile 64B 16B 4
VG_LITE_ARGB4444 16 linear linear 4B 2B 1
VG_LITE_ARGB4444 16 linear tile 64B 64B 4
VG_LITE_ARGB4444 16 tile linear 64B 64B 4
VG_LITE_ARGB4444 16 tile tile 64B 16B 4
VG_LITE_ARGB8888 32 linear linear 4B 4B 1
VG_LITE_ARGB8888 32 linear tile 64B 64B 4
VG_LITE_ARGB8888 32 tile linear 64B 64B 4
VG_LITE_ARGB8888 32 tile tile 64B 16B 4
VG_LITE_XRGB8888 32 linear linear 4B 4B 1
VG_LITE_XRGB8888 32 linear tile 64B 64B 4
VG_LITE_XRGB8888 32 tile linear 64B 64B 4
VG_LITE_XRGB8888 32 tile tile 64B 16B 4
VG_LITE_ARGB8565 24 linear linear 64B 3B* 1
VG_LITE_ARGB8565 24 linear tile 64B 48B* 4
VG_LITE_ARGB8565 24 tile linear 64B 48B* 4
VG_LITE_ARGB8565 24 tile tile 64B 12B* 4
VG_LITE_RGB888 24 linear linear 64B 3B* 1
VG_LITE_RGB888 24 linear tile 64B 48B* 4
VG_LITE_RGB888 24 tile linear 64B 48B* 4
VG_LITE_RGB888 24 tile tile 64B 12B* 4

264 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Note:
1. The values in the table reflect the alignment requirements of pixel data in memory. The

stride of ARGB8888/ARGB8565 is seen as 4 Bytes per pixel when configuring the hardware.

2. For tile mode, the buffer stride is still the byte size of a row of pixels instead of 4 rows of
pixels.

3. For PE clear function, the clear size must align to 48 Bytes for the RGB888 or ARGB8565
format.

4. For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for
RGB888, align to 64 Bytes for ARGB8888 or XRGB8888.

5. If the DECNano function is enabled for the buffer, the target buffer start address needs to
align to 64 Bytes.

6. If the DECNano function is enabled for the buffer, the total buffer size needs to align
to a 64-byte compression rate for ARGB8888 or XRGB8888 format and align to a 48
Byte*compression rate for RGB888 format.

Additional Alignment Requirement
1. Buffer starting address must be at least 4-byte aligned. Buffer stride must be at least one

pixel size aligned.

2. Buffer starting address must be 64-byte aligned for 24 bit-per-pixel format, or tile mode, or
DECNano enabled.

3. Buffer height must be 4-pixel aligned for tile mode buffer.

4. For tile mode buffer, the buffer stride must be 16-byte aligned for non-24bit-per-pixel for-
mats. So, 8 bits-per-pixel format buffer width must be 16-pixel aligned; 16 bits-per-pixel
format buffer width must be 8-pixel aligned; 32 bit-per-pixel format buffer width must be
4 pixel aligned.

5. For tile mode buffer, the buffer stride must be 12-byte aligned for 24 bits-per-pixel formats,
that is, the buffer width must be 4-pixel aligned.

6. For PE clear function, the clear size must align to 48 Bytes for 24-bits-per-pixel formats.

7. For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for 24
bits-per-pixel formats and align to 64 Bytes for 32 bits-per-pixel formats.

8. If source buffer tile mode is different from destination buffer tile mode, buffer starting
address must be 64 Byte aligned, buffer stride must be 64 Byte aligned for non-24 bits-per-
pixel formats, buffer stride must be 48-Byte aligned for 24 bits-per-pixel formats.

VGLite hardware requires the raster image width to be a multiple of 16 pixels for linear gradient
and radial gradient operations. This requirement applies to all image formats. Therefore, the
user must pad an arbitrary image width to a multiple of 16 pixels for VGLite linear gradient and
radial gradient APIs.

Parent topic:Pixel buffer enumerations

vg_lite_buffer_layout_t enumeration Specifies the buffer data layout in memory.

Used in structure: vg_lite_buffer.

1.7. Multimedia 265



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_layout_t
String Value

Description

VG_LITE_LINEAR Linear (scanline) layout.
VG_LITE_TILED Data is organized in 4x4 pixel tiles. Note: for this layout, the buffer

start address and stride must be 64-byte aligned

Parent topic:Pixel buffer enumerations

vg_lite_compress_mode_t enumeration Specifies the DECNano comprssion mode. (from
March 2023)

Used in structure: vg_lite_buffer_t.

vg_lite_compress_mode_t string
value

Description

VG_LITE_DEC_DISABLE Disable compression.
VG_LITE_DEC_NON_SAMPLE compression ratio is 1.6 for ARGB8888, 2.0 for

XRGB8888
VG_LITE_DEC_HSAMPLE compression ratio is 2.0 for ARGB8888, 2.6 for

XRGB8888
VG_LITE_DEC_HV_SAMPLE compression ratio is 2.6 for ARGB8888, 4.0 for

XRGB8888

Parent topic:Pixel buffer enumerations

vg_lite_gamma_conversion_t enumeration Specifies the gamma conversion mode (from Sept
2022)

Used in function: vg_lite_set_gamma.

vg_lite_gamma_conversion_t string value Description
VG_LITE_GAMMA_NO_CONVERSION Leave the color as it is.
VG_LITE_GAMMA_LINEAR Convert from sRGB to linear.
VG_LITE_GAMMA_NON_LINEAR Convert from linear to sRGB space.

Parent topic:Pixel buffer enumerations

vg_lite_index_endian_t enumeration Specifies the endian order parsing mode for index for-
mats (from March 2023).

Used in structure: vg_lite_buffer_t.

vg_lite_index_endian_t
string value

Description

VG_LITE_INDEX_ENDIAN_LITTLE_ENDIANParse the index pixel from low to high, when using index1, the
parsing order is bit0~bit7. when using index2, the parsing order
is bit0:1,bit2:3,bit4:5.bit6:7. when using index4, the parsing order is
bit0:3,bit4:7.

VG_LITE_INDEX_ENDIAN_BIG_ENDIANParse the index pixel from low to high, when using index1, the
parsing order is bit7~bit0. when using index2, the parsing order
is bit7:6,bit5:4,bit3:2.bit1:0. when using index4, the parsing order is
bit4:7,bit0:3.

266 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

vg_lite_image_mode_t enumeration Specifies how an image is rendered onto a buffer (prior
to Sept 2022 name was vg_lite_buffer_image_mode_t).

Used in structure: vg_lite_buffer_t.

vg_lite_image_mode_t string value Description
VG_LITE_ZERO

VG_LITE_NORMAL_IMAGE_MODE Image drawn with blending mode
VG_LITE_MULTIPLY_IMAGE_MODE Image is multiplied with paint color
VG_LITE_STENCIL_MODE

VG_LITE_NONE_IMAGE_MODE Image input is ignored.
VG_LITE_RECOLOR_MODE

Parent topic:Pixel buffer enumerations

vg_lite_map_flag_t enumeration Specifies whether mapping is for user memory or the DMA
buffer (from March 2023).

Used in function: vg_lite_map.

vg_lite_map_flag_t string value Description
VG_LITE_MAP_USER_MEMORY Mapping is for user memory.
VG_LITE_MAP_DMABUF Mapping is for the DMA buffer.

Parent topic:Pixel buffer enumerations

vg_lite_paint_type_t enumeration Specifies paint type (from May 2023).

Used in structure: vg_lite_buffer_t.

vg_lite_paint_type_t string value Description
VG_LITE_PAINT_ZERO

VG_LITE_PAINT_COLOR Color
VG_LITE_PAINT_LINEAR_GRADIENT Linear Gradient
VG_LITE_PAINT_RADIAL_GRADIENT Radial Gradient
VG_LITE_PAINT_PATTERN Pattern

Parent topic:Pixel buffer enumerations

vg_lite_transparency_t enumeration Specifies the transparency mode for a buffer (prior to
Sept 2022 name was vg_lite_buffer_transparency_mode_t).

Used in structure:vg_lite_buffer.

1.7. Multimedia 267



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_transparency_t
string value

Description

VG_LITE_IMAGE_OPAQUEOpaque image: all image pixels are copied to the VG PE for rasterization
VG_LITE_IMAGE_TRANSPARENTTransparent image: only the non-transparent image pixels are copied

to the VG PE. Note: This mode is only valid when IMAGE_MODE
(vg_lite_image_mode_t) is either VG_LITE_NORMAL_IMAGE_MODE or
VG_LITE_MULTIPLY_IMAGE_MODE.

Parent topic:Pixel buffer enumerations

vg_lite_swizzle_t enumeration This enumeration specifies the swizzle for the UV components
of YUV data.

Used in structure: vg_lite_yuvinfo.

vg_lite_swizzle_t string value Description
VG_LITE_SWIZZLE_UV U in lower bits, V in upper bits
VG_LITE_SWIZZLE_VU V in lower bits, U in upper bits

Parent topic:Pixel buffer enumerations

vg_lite_yuv2rgb_t enumeration This enumeration specifies the standard for conversion of
YUV data to RGB data.

Used in structure: vg_lite_yuvinfo.

vg_lite_yuv2rgb_t string value Description
VG_LITE_YUV601 YUV Converting with ITC.BT-601 standard
VG_LITE_YUV709 YUV Converting with ITC.BT-709 standard

Parent topic:Pixel buffer enumerations

Parent topic:Pixel buffers

Pixel buffer structures This section provides an overview on the pixel buffer structures.

vg_lite_buffer_t structure This structure defines the buffer layout for a VGLite image or mem-
ory data.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in init functions: vg_lite_allocate, vg_lite_free, vg_lite_upload_buffer, vg_lite_map,
vg_lite_unmap.

Used in blit functions:vg_lite_blit, vg_lite_blit_rect, vg_lite_clear, vg_lite_create_masklayer,
vg_lite_fill_masklayer, vg_lite_blend_masklayer, vg_lite_set_masklayer,
vg_lite_render_masklayer, vg_lite_destroy_masklayer

Used in draw functions: vg_lite_draw, vg_lite_draw_pattern, vg_lite_draw_grad,
vg_lite_draw_radial_grad

268 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_t
member

Type Description

width vg_lite_int32_t Width of buffer in pixels
height vg_lite_int32_t Height of buffer in pixels
stride vg_lite_int32_t Stride in bytes
tiled vg_lite_buffer_layout_tLinear or tiled format for buffer enum
format vg_lite_buffer_format_tcolor format enum
handle vg_lite_pointer memory handle
memory vg_lite_pointer pointer to the start address of the memory
address vg_lite_uint32_t GPU address
yuv vg_lite_yuvinfo_t YUV format info struct
image_mode vg_lite_image_mode_tBlit image mode enum
trans-
parency_mode

vg_lite_transparency_tImage transparency mode enum

fc_buffer[3] vg_lite_fc_buffer_t Three (3) fast clear buffers, reserved YUV format
(from March 2023)

compress_mode vg_lite_compress_modeCompression mode (from March 2023)
index_endian vg_lite_index_endian_tBig/Little Endian setting for index formats (from

March 2023)
paintType vg_lite_paint_type_t Paint type enum (from May 2023)
fc_enable vg_lite_int8_t Enable Image fast clear (moved from Aug 2023)
scissor_layer vg_lite_int8_t Get paintcolor from different paint types (from Aug

2023)
premulitplied vg_lite_int8_t The RGB pixel values are alpha-premultipled (from

Aug 2023)

Parent topic:Pixel buffer structures

vg_lite_fc_buffer_t structure This structure defines the organization of a fast clear buffer.
(from March 2023)

Used in structure: vg_lite_buffer_t.

vg_lite_fc_buffer_t
members

Type Description

width vg_lite_int32_t Width of buffer in pixels
height vg_lite_int32_t Height of buffer in pixels
stride vg_lite_int32_t Stride in bytes
handle vg_lite_pointer memory handle as allocated by the VGLite kernel
memory vg_lite_pointer logical pointer to the start address of the memory

for the CPU
address vg_lite_uint32_taddress to the buffer’s memory for the GPU hard-

ware
color vg_lite_uint32_tThe fast clear color value

Parent topic:Pixel buffer structures

vg_lite_yuvinfo_t structure This structure defines the organization of VGLite YUV data.

Used in structure: vg_lite_buffer_t.

1.7. Multimedia 269



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_yuvinfo_t
member

Type Description

swizzle vg_lite_swizzle_t UV swizzle enum
yuv2rgb vg_lite_yuv2rgb_tYUV conversion standard enum
‘uv_planar vg_lite_uint32_t UV (U) planar address for GPU, generated by driver
v_planar vg_lite_uint32_t V planar address for GPU, generated by driver
‘alpha_planar vg_lite_uint32_t Alpha planar address for GPU, generated by driver
‘uv_stride vg_lite_uint32_t UV (U) stride in bytes
‘v_stride vg_lite_uint32_t V planar stride in bytes
alpha_stride vg_lite_uint32_t Alpha stride in bytes
‘uv_height vg_lite_uint32_t UV (U) height in pixels
‘v_height vg_lite_uint32_t V stride in bytes
uv_memory vg_lite_pointer Logical pointer to the UV (U) planar memory
‘v_memory vg_lite_pointer Logical pointer to the V planar memory
uv_handle vg_lite_pointer Memory handle of the UV (U) planar, generated by

the driver
v_handle vg_lite_pointer Memory handle of the V planar, generated by the

driver

Parent topic:Pixel buffer structures

Parent topic:Pixel buffers

Pixel buffer functions This section provides an overview of the pixel buffer functions.

vg_lite_allocate function Description:
This function is used to allocate a buffer before it is used in either blit or draw functions.

To allow the hardware to access some memory, such as a source image or target buffer, you
must first allocate the memory. The supplied vg_lite_buffer_t structure must be initialized with
the size (width and height) and format of the requested buffer. If the stride is set to zero, then
this function fills it in. The only input parameter to this function is the pointer to the buffer
structure. If the structure has all the information needed, then appropriate memory is allocated
for the buffer.

This function calls the kernel to allocate the memory. The kernel fills in the memory handle,
logical address, and hardware addresses in the vg_lite_buffer_t structure.

Alignment note:
Vivante GPUs have an alignment requirement of 64 bytes. However, to meet the alignment re-
quirements of the Vivante display controller, the VGLite driver sets the render target buffer align-
ment to 128 bytes. For source image buffer alignment requirements, see the alignment notes
available in Table 1.

The vg_lite_buffer_format_t value descriptions:

Syntax:

vg_lite_error_t vg_lite_allocate (
vg_lite_buffer_t *buffer

);

Parameters:

270 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
bufferPointer to the buffer that holds the size and format of the buffer being allocated. Either

the memory or address field must be set to a non-zero value to map either a logical or
physical address into hardware accessible memory.

Returns:
• VG_LITE_SUCCESS if the contiguous buffer was allocated successfully.

• VG_LITE_OUT_OF_RESOURCES if there is insufficient memory in the host OS heap for
the buffer.

• VG_LITE_OUT_OF_MEMORY if allocation of a contiguous buffer failed.

Parent topic:Pixel buffer functions

vg_lite_free function Description:
This function is used to deallocate the buffer that was previously allocated. It frees up the mem-
ory for that buffer.

Syntax:

vg_lite_error_t vg_lite_free (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_upload_buffer function Description:
The function uploads the pixel data to a GPU memory buffer object. The format of the data
(pixel) to be uploaded must match the format defined for the buffer object. The input data mem-
ory buffer should contain enough data to be uploaded to the GPU buffer pointed by the input
parameter buffer.

Note: Vivante Vector Graphics IP only uses data[0] and stride[0] as it does not support planar
YUV formats..

Syntax:

vg_lite_error_t vg_lite_upload_buffer (
vg_lite_buffer_t *buffer,
vg_lite_uint8_t *data[3],
vg_lite_uint32_t stride[3]

);

1.7. Multimedia 271



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() func-

tion
data[3] Pointer to pixel data. For the YUV format, there may be up to 3 pointers.
stride[3] Stride for the pixel data

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_map function Description:
This function is used to map the memory appropriately for a particular buffer. For some oper-
ating systems, it is used to get proper translation to the physical or logical address of the buffer
needed by the GPU.

To use a frame buffer directly as a target buffer:

• Wrap a vg_lite_buffer_t structure around the buffer

• Call the kernel to map the supplied logical or physical address into hardware accessible
memory

For example, if you know the logical address of the frame buffer, set the memory field of the
vg_lite_buffer_t structure with that address and call this function. If you know the physical ad-
dress, set the memory field to NULL and program the address field with the physical address.

Syntax:

vg_lite_error_t vg_lite_map (
vg_lite_buffer_t *buffer,
vg_lite_map_flag_t flag,
int32_t fd
);

Parameters:

Name Description
*bufferPointer to a buffer structure that was filled in by calling the vg_lite_allocate() function
flag Enumerate the vg_lite_map_flag_t value that specifies whether the mapping is for user

memory or DMA buffer. (from March 2023)
fd File descriptor for dma_buf if the flag is VG_LITE_MAP_DMABUF. Otherwise, this

parameter is ignored. (from March 2023)

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_unmap function Description:
This function unmaps the buffer and frees any memory resources allocated by a previous call to
the vg_lite_map() function.

272 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_unmap (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_flush_mapped_buffer function Description:
This function flushes the CPU cache for the mapped buffer to make sure the buffer contents are
written to GPU memory.

Syntax:

vg_lite_error_t vg_lite_flush_mapped_buffer (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
*buffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set_CLUT function Description:
This function sets the Color Lookup Table (CLUT) in the context state for index color image. Once
the CLUT is set (Not NULL), the image pixel color for index format image rendering is obtained
from the Color Lookup Table (CLUT) according to the pixel’s color index value.

Note: Available only for IP with Indexed color support..

Syntax:

vg_lite_error_t vg_lite_set_CLUT (
vg_lite_uint32_t count,
vg_lite_uint32_t *colors

);

Parameters:

1.7. Multimedia 273



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
count This is the count of the colors in the color look-up table: - For INDEX_1, there can be up to

2 colors in the table - For INDEX_2, there can be up to 4 colors in the table - For INDEX_4,
there can be up to 16 colors in the table - For INDEX_8, there can be up to 256 colors in
the table

*col-
ors

The Color Lookup Table (CLUT) pointed by “colors” will be stored in the context and
programmed to the command buffer when needed. The CLUT will not take effect until
the command buffer is submitted to HW. The color is in ARGB format with A located in
the upper bits. Note: The VGLite driver does not validate the CLUT contents from the
application.

Returns:
VG_LITE_SUCCESS as no checking is done.

Parent topic:Pixel buffer functions

vg_lite_enable_dither function Description:
This function is used to enable the dither function. Dither is turned off by default. The application
can use the VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_DITHER) to determine HW
support for dither.

Syntax:

vg_lite_error_t vg_lite_enable_dither (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_disable_dither function Description:
This function is used to disable the dither function. Dither is turned off by default.

Syntax:

vg_lite_error_t vg_lite_disable_dither (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set_gamma function Description:
This function sets a gamma value.

274 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Application can use the VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_GAMMA) to deter-
mine HW support for gamma.

Syntax:

vg_lite_error_t vg_lite_set_gamma (
vg_lite_gamma_conversion_t gamma_value

);

Parameters:

Name Description
gamma_value Sets a gamma value. See enum vg_lite_gamma_conversion_t.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

Parent topic:Pixel buffers

Matrices This part of the API provides matrix controls.

Note: All the transformations in the driver/API are actually the final plane/surface coordinate
system. There is no transformation of different coordinate systems with VGLite.

Matrix control float parameter type

Name Typedef Value
vg_lite_float_t float A single-precision floating-point number

vg_lite_pixel_matrix_t [20] vg_lite_float_t

Parent topic:Matrices

Matrix control structures This section provides an overview of the graphic transformation
matrix control structures.

vg_lite_matrix_t structure This structure defines a 3x3 floating point matrix.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient,
vg_lite_draw_pattern, vg_lite_identity, vg_lite_scale, vg_lite_translate.

1.7. Multimedia 275



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_matrix_t member Type Description
m[3][3] vg_lite_float_t 3x3 matrix, in [row] [column] order

Parent topic:Matrix control structures

vg_lite_pixel_channel_enable_t structure This structure provides enable disable flags for hard-
ware pixel channels A,R,G,B.

Used in function: vg_lite_set_pixel_matrix_t.

vg_lite_pixel_channel_enable_t members Type Description
enable_a vg_lite_uint8_t Enable A channel
enable_b vg_lite_uint8_t Enable B channel
enable_g vg_lite_uint8_t Enable G channel
enable_r vg_lite_uint8_t Enable R channel

Parent topic:Matrix control structures

Parent topic:Matrices

Matrix control functions This section provides an overview of the matrix control functions.

vg_lite_identity function Description:
This function loads an identity matrix into a matrix variable.

Syntax:

vg_lite_error_t vg_lite_identity (
vg_lite_matrix_t *matrix,

);

Parameters:

Name Description
*ma-
trix

Pointer to the vg_lite_matrix_t structure that will be loaded with an identity matrix.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_set_pixel_matrix function Description:
This function sets up a pixel transform matrix m[20] which transforms each pixel as follows:

276 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The pixel transform for the A, R, G, B channels can be enabled/disabled individually with the
channel parameter.

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_PIXEL_MATRIX)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_set_pixel_matrix (
vg_lite_pixel_matrix_t matrix,
vg_lite_pixel_channel_enable_t *channel

);

Parameters:

Name Description
*ma-
trix

Specifies the vg_lite_pixel_matrix_t pixel transform matrix that will be loaded.

*chan-
nel

Pointer to the vg_lite_pixel_channel_enable_t structure used to enable/disable indi-
vidual channels.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_rotate function Description:
This function rotates a matrix a specified number of degrees.

Syntax:

vg_lite_error_t vg_lite_rotate (
vg_lite_float_t degrees,
vg_lite_matrix_t *matrix

);

Parameters:

NameDescription
de-
grees

Number of degrees to rotate the matrix. Positive numbers rotate clockwise.The coordi-
nates for the transformation are given in the surface coordinate system (top-to-bottom
orientation). Rotations with positive angles are in the clockwise direction.

*ma-
trix

Pointer to the vg_lite_matrix_t structure that has to be rotated

Returns:

1.7. Multimedia 277



MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_scale function Description:
This function scales a matrix in both horizontal and vertical directions.

Syntax:

vg_lite_error_t vg_lite_scale (
vg_lite_float_t scale_x,
vg_lite_float_t scale_y,
vg_lite_matrix_t *matrix

);

Parameters:

Name Description
scale_x Horizontal scale
scale_y Vertical scale
matrix Pointer to the vg_lite_matrix_t structure that will be scaled.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_translate function Description:
This function translates a matrix to a new location.

Syntax:

vg_lite_error_t vg_lite_translate (
vg_lite_float_t x,
vg_lite_float_t y,
vg_lite_matrix_t *matrix

);

Parameters:

Name Description
x X location of the transformation.
y Y location of the transformation.
matrix Pointer to the vg_lite_matrix_t structure that will be translated.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

Parent topic:Matrices

278 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Blits for compositing and blending This part of the API performs the hardware accelerated
blit operations.

Compositing rules describes how two areas are combined to form a single area. Blending rules
describes how combining the colors of the overlapping areas are combined. VGLite supports two
blending operations and a subset of the Porter-Duff operations [PD84]. The Porter-Duff operators
assume that the pixels have the alpha associated (premultiplied), it means that the pixels are
premultiplied prior to the blending operation. GC555, GC355, and some GCNanoUltraV hardware
support alpha premultiply for RGB image, but GCNanoLiteV does not.

The source image is copied to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction.

• The blit function can be used with or without the blend mode.

• The blit function can be used with or without specifying any color value.

• The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Blit enumerations This section gives details on blit enumerations.

vg_lite_blend_t enumeration This enumeration defines the blending modes supported by
some VGLite API functions. S and D represent source and destination non-premultiplied RGB
color channels. Sa and Da represent the source and destination alpha channels. SP and DP rep-
resent source and destination alpha-premultiplied RGB color channels (SP = S*Sa, DP = D*Da).

Note: VG_LITE_BLEND_*_LVGL modes are supported on all VG cores. On VG cores that do
not support gcFEATURE_BIT_VG_LVGL_SUPPORT, the LVGL blend modes are supported by
a combination of software and hardware operations. OPENVG_BLEND_* modes can only be
supported on GC355 and GC555 cores.

Used in blit functions: vg_lite_blit, vg_lite_blit2, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

1.7. Multimedia 279



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_blend_t String Values Description
VG_LITE_BLEND_NONE S, no blending Non-premultiplied
VG_LITE_BLEND_SRC_OVER S + D * (1 - Sa) Non-premultiplied
VG_LITE_BLEND_DST_OVER S * (1 – Da) + D Non-premultiplied
VG_LITE_BLEND_SRC_IN S * Da Non-premultiplied
VG_LITE_BLEND_DST_IN D * Sa Non-premultiplied
VG_LITE_BLEND_MULTIPLY S * (1 - Da) + D * (1 - Sa) + S * D Non-premultiplied
VG_LITE_BLEND_SCREEN S + D - S * D Non-premultiplied
VG_LITE_BLEND_DARKEN min(SRC_OVER, DST_OVER) Non-premultiplied
VG_LITE_BLEND_LIGHTEN max(SRC_OVER, DST_OVER) Non-premultiplied
VG_LITE_BLEND_ADDITIVE S + D Non-premultiplied
VG_LITE_BLEND_SUBTRACT D * (1 - Sa) Non-premultiplied
VG_LITE_BLEND_NORMAL_LVGL S * Sa + D * (1 - Sa) Non-premultiplied (from March 2023)
VG_LITE_BLEND_ADDITIVE_LVGL (S + D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
VG_LITE_BLEND_SUBTRACT_LVGL (S - D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
VG_LITE_BLEND_MULTIPLY_LVGL (S * D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
OpenVG Porter-Duff Blend String
Values

(from Aug 2023)

OPENVG_BLEND_NONE SP, no blending Premultiplied
OPENVG_BLEND_SRC_OVER (SP + DP * (1 - Sa)) / (Sa + Da * (1 - Sa)) Premultiplied
OPENVG_BLEND_DST_OVER (SP * (1 - Da) + DP) / (Sa * (1 - Da) + Da) Premultiplied
OPENVG_BLEND_SRC_IN (SP * Da) / (Sa * Da) Premultiplied
OPENVG_BLEND_DST_IN (DP * Sa) / (Sa * Da) Premultiplied
OPENVG_BLEND_MULTIPLY (SP*DP + SP*(1 - Da) + DP*(1 - Sa)) / (Sa + Da*(1 - Sa))

Premultiplied
OPENVG_BLEND_SCREEN (SP + DP - (SP*DP)) / (Sa + Da*(1 - Sa)) Premultiplied
OPENVG_BLEND_DARKEN min(SRC_OVER, DST_OVER) Premultiplied
OPENVG_BLEND_LIGHTEN max(SRC_OVER, DST_OVER) Premultiplied
OPENVG_BLEND_ADDITIVE (SP + DP) / (Sa + Da) Premultiplied

Parent topic:Blit enumerations

vg_lite_color_t parameter The common parameter vg_lite_color_t is described in Table 1.

Parent topic:Blit enumerations

vg_lite_color_transform_t structure Specifies the pixel color_transform values for scale and
bias.

Used in functions: vg_lite_set_color_transform.

vg_lite_color_transform_t members Type Description
a_scale vg_lite_float_t Scale value for alpha.
a_bias vg_lite_float_t Bias value for alpha.
r_scale vg_lite_float_t Scale value for red.
r_bias vg_lite_float_t Bias value for red.
g_scale vg_lite_float_t Scale value for green.
g_bias vg_lite_float_t Bias value for green.
b_scale vg_lite_float_t Scale value for blue.
b_bias vg_lite_float_t Bias value for blue.

280 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Blit enumerations

vg_lite_filter_t enumeration Specifies the sample-filtering mode in VGLite blit and draw APIs.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

vg_lite_filter_t string val-
ues

Description

VG_LITE_FILTER_POINTFetch only the nearest image pixel
VG_LITE_FILTER_LINEARUse linear interpolation along a horizontal line
VG_LITE_FILTER_BI_LINEARUse a 2x2 box around the image pixel and perform an interpola-

tion
VG_LITE_FILTER_GAUSSIANPerform 3x3 gaussian blur with the convolution for image pixel.

(from March 2023)

Parent topic:Blit enumerations

vg_lite_color_transform_t structure Specifies the pixel color_transform values for scale and
bias.

Used in functions: vg_lite_set_color_transform.

vg_lite_color_transform_t members Type Description
a_scale vg_lite_float_t Scale value for alpha.
a_bias vg_lite_float_t Bias value for alpha.
r_scale vg_lite_float_t Scale value for red.
r_bias vg_lite_float_t Bias value for red.
g_scale vg_lite_float_t Scale value for green.
g_bias vg_lite_float_t Bias value for green.
b_scale vg_lite_float_t Scale value for blue.
b_bias vg_lite_float_t Bias value for blue.

Parent topic:Blit enumerations

vg_lite_mask_operation_t enumeration Specifies the mask operation mode in VGLite blit APIs.

Used in functions: vg_lite_blend_masklayer, vg_lite_render_masklayer.

1.7. Multimedia 281



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_mask_operation_t
string values

Description

VG_LITE_CLEAR_MASKThis operation sets all mask values in the region of interest to 0, ignoring the
new mask layer.

VG_LITE_FILL_MASKThis operation sets all mask values in the region of interest to 1, ignoring the
new mask layer.

VG_LITE_SET_MASKThis operation copies values in the region of interest from the new mask layer,
overwriting the previous mask values.

VG_LITE_UNION_MASKThis operation replaces the previous mask in the region of interest by its union
with the new mask layer. The resulting values are always greater than or
equal to their previous value.

VG_LITE_INTERSECT_MASKThis operation replaces the previous mask in the region of interest by its in-
tersection with the new mask layer. The resulting mask values are always less
than or equal to their previous value.

VG_LITE_SUBTRACT_MASKThis operation subtracts the new mask from the previous mask and replaces
the previous mask in the region of interest by the resulting mask. The result-
ing values are always less than or equal to their previous value.

Parent topic:Blit enumerations

vg_lite_orientation_t enumeration Specifies the mirror orientation in VGLite blit APIs.

Used in functions: vg_lite_set_mirror.

vg_lite_orientation_t string values Description
VG_LITE_ORIENTATION_TOP_BOTTOMTarget output orientation is from top to bottom (de-

fault).
VG_LITE_ORIENTATION_BOTTOM_TOPTarget output orientation is from bottom to top.

Parent topic:Blit enumerations

vg_lite_param_type_t enumeration Specifies the parameter type in VGLite blit APIs.

Used in functions: vg_lite_get_parameter.

vg_lite_param_type_t string value Description
VG_LITE_GPU_IDLE_STATE The count must be 1 for GPU idle state TRUE or FALSE.
VG_LITE_SCISSOR_RECT The count must be 4n for x, y, right, bottom.

Parent topic:Blit enumerations

Parent topic:Blits for compositing and blending

Blit structures This section provides details about blit structures.

vg_lite_buffer_t structure Defined under the “Pixel buffer structures” section (see
vg_lite_buffer_t structure).

Parent topic:Blit structures

282 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_color_key_t structure A “color key” have two sections, where each section contains
R,G,B channels, which are noted as high_rgb and low_rgb respectively. (from April 2022)

When the enable value is true, the color key specified is effective and the alpha value is used to
replace the alpha channel of the destination pixel when its RGB channels are in range [low_rgb,
high_rgb]. After the color key is used in the current frame, if the color key is not needed for the
next frame, it should be disabled before the next frame.

Used in structure: vg_lite_color_key4_t

vg_lite_color_key_t
members

Type Description

enable vg_lite_uint8_tWhen set (true), this color key is enabled
low_r vg_lite_uint8_tThe R channel of low_rgb
low_g vg_lite_uint8_tThe G channel of low_rgb
low_b vg_lite_uint8_tThe B channel of low_rgb
alpha vg_lite_uint8_tThe alpha value to replace the destination pixel alpha

channel value with
high_r vg_lite_uint8_tThe R channel of high_rgb
high g vg_lite_uint8_tThe G channel of high_rgb
high_b vg_lite_uint8_tThe B channel of high_rgb

Parent topic:Blit structures

vg_lite_color_key4_t structure The priority order is: color_key_0 > color_key_1 > color_key_2
> color_key_3. (from April 2022)

Used in blit function: vg_lite_set_color_key

vg_lite_color_key4_t members Type Description
color_key_0 high_rgb_0, low_rgb_0, alpha_0, enable_0

color_key_1 high_rgb_1, low_rgb_1, alpha_1, enable_1

color_key_2 high_rgb_2, low_rgb_2, alpha_2, enable_2

color_key_3 high_rgb_3, low_rgb_3, alpha_3, enable_3

Parent topic:Blit structures

vg_lite_matrix_t structure Defined under the “Matrix control structures” section (see
vg_lite_matrix_t structure).

Parent topic:Blit structures

vg_lite_path_t structure Defined under the “Vector path structures” section (see vg_lite_path_t
structure).

Parent topic:Blit structures

vg_lite_rectangle_t structure This structure defines a rectangle by using coordinates.

Used in blit function: vg_lite_clear.

1.7. Multimedia 283



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_rectangle_t member Type Description
x vg_lite_int32_t X origin of rectangle, left coordinate in pixels
y vg_lite_int32_t Y origin of rectangle, top coordinate in pixels
width vg_lite_int32_t X Width of rectangle in pixels
height vg_lite_int32_t Y Height of rectangle in pixels

Parent topic:Blit structures

vg_lite_point_t structure This structure defines a 2D point (from March 2021).

Used in structure: vg_lite_point4_t.

vg_lite_point_t member Type Description
X vg_lite_int32_t X value of coordinate
Y vg_lite_int32_t Y value of coordinate

Parent topic:Blit structures

vg_lite_point4_t structure This structure defines four 2D points that form a polygon. The
points are defined by structure vg_lite_point_t. (from March 2021)

vg_lite_point4_t member Type Description
vg_lite_point_t[4] vg_lite_int32_t each a set of four points

Parent topic:Blit structures

vg_lite_float_point_t structure This structure defines a 2D float point (from March 2024).

Used in structure: vg_lite_float_point4_t.

vg_lite_float_point_t members Type Description
x vg_lite_float_t X value of coordinate
y vg_lite_float_t Y value of coordinate

Parent topic:Blit structures

vg_lite_float_point4_t structure This structure defines four 2D float points that form a poly-
gon. The points are defined by structure vg_lite_float_point_t. (from March 2024)

Used in blit function: vg_lite_get_transform_matrix.

vg_lite_float_point4_t members Type Description
vg_lite_float_point[4] vg_lite_float_t each a set of four points

Parent topic:Blit structures

Parent topic:Blits for compositing and blending

284 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Blit functions This section provides an overview on blit functions.

vg_lite_blit function Description:
This is the blit function. The blit operation is performed using a source and a destination buffer.
The source and destination buffer structures are defined using the vg_lite_buffer_t structure.
Blit copies a source image to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does not
support coverage sample anti-aliasing so the destination buffer edge may not be smooth, espe-
cially with a rotation matrix. VGLite path rendering can be used to achieve high-quality coverage
sample anti-aliasing (16X, 8X, 4X) rendering effect.

Note:
• The blit function can be used with or without the blend function (vg_lite_blend_t)

• The blit function can be used with or without specifying a foreground color value
(vg_lite_color_t)

• The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Syntax:

vg_lite_error_t vg_lite_blit (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

1.7. Multimedia 285



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Image
Source Alignment Requirement for valid destination color formats for the blit functions.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

*ma-
trix

Points to a vg_lite_matrix_t structure that defines the transformation matrix of source
pixels into the target. If the matrix is NULL, then an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is sup-
ported, then Transparency mode is always set to TRANSPARENT- If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, then Blend
mode is always set to VG_LITE_BLEND_SRC_OVER. It happens due to some limita-
tions in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mixed color gets mul-
tiplied with each source pixel before blending happens. If you don’t need a
mix color, set the color parameter to 0.Note: this parameter has no effect if the
source vg_lite_buffer_t structure member image_mode is set to VG_LITE_ZERO or
VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_blit2 function Description:
This is the blit function for use with two sources. The blit2 operation is performed using two
source buffers and one destination buffer. The source and destination buffer structures are de-
fined using the vg_lite_buffer_t structure. Source0 and Source1 are first blended according to
the blend mode with a specific transformation matrix for each image. Source1 is used as the
source while Source0 is used as the dest and is directly output to the render target buffer.

The specified matrices can include translation, rotation, scaling, and perspective correction.
Note that vg_lite_buffer_t does not support coverage sample anti-aliasing so the destination
buffer edge may not be smooth, especially with a rotation matrix. VGLite path rendering can
be used to achieve high-quality coverage sample anti-aliasing (16X, 8X, 4X) rendering effect.

Application can use VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_DOUBLE_IMAGE)
to determine HW support for double image.

Note:
• The vg_lite_blit function can be used for color conversion for Source0 or Source1 before

merging sources with vg_lite_blit2.

Syntax:

vg_lite_error_t vg_lite_blit2 (
vg_lite_buffer_t *target,

(continues on next page)

286 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
vg_lite_buffer_t *source0,
vg_lite_buffer_t *source1,
vg_lite_matrix_t *matrix0,
vg_lite_matrix_t *matrix1,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Align-
ment notes for valid destination color formats for the blit functions

*source0,

*source1

Points to the vg_lite_buffer_t structure for the source0 and source1 buffers. All color
formats available in the vg_lite_buffer_format_t‘ enum are valid source formats for the
blit functions.

*matrix0,

*ma-
trix1

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix0 for the
source0 pixels and matrix1 for the source1 pixels. If matrix0 and matrix1 are both NULL,
the identity matrix is assumed, meaning the blending result of Source0 and Source1 is
copied directly on the target at location(0,0).

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the “matrix” parameter is specified with rotation
or perspective, and the “blend” parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN, the VGLite driver
overwrites the application’s setting for the BLIT operation as follows: - If
gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,
the transparency mode will always be set to TRANSPARENT. - If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, the blend
mode will always be set to VG_LITE_BLEND_SRC_OVER. This is due to some limita-
tions in the VGLite hardware.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_blit_rect function Description:
This is the blit rectangle function. The blit operation is performed using a source and a destina-
tion buffer. The source and destination buffer structures are defined using the vg_lite_buffer_t
structure. Blit copies a source image to the destination window with a specified matrix that can
include translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does
not support coverage sample anti-aliasing so the destination buffer edge may not be smooth,
especially with a rotation matrix. VGLite path rendering can be used to achieve high-quality
coverage sample anti-aliasing (16X, 8X, 4X) rendering effect.

Note:
• The blit_rect function can be used with or without the blend function (vg_lite_blend_t).

• The blit_rect function can be used with or without specifying any color value
(vg_lite_color_t).

1.7. Multimedia 287



MCUXpresso SDK Documentation, Release 25.12.00

• The blit_rect function can be used for color conversion with an identity matrix and appro-
priate formats specified for the source and destination buffers. In this case, do not specify
blend mode and color value.

• The vg_lite_blit_rect rectangle start origin point is always (0,0) for hardware versions prior
to GCNanoLiteV 1311p that do not support a non-zero rectangle origin.

Syntax:

vg_lite_error_t vg_lite_blit_rect (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_rectangle_t *rect,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure that defines the destination buffer.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit_rect function.

*rect Specifies the rectangle area of the source image to blit. rect[0]/[1]/[2]/[3] are x, y, width,
and height of the source rectangle respectively. Note: Non-zero source origins are sup-
ported.

*ma-
trix

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of
source pixels into the target. If the matrix is NULL, then an identity matrix is assumed,
which means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is sup-
ported, then Transparency mode is always set to TRANSPARENT - If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, then Blend
mode is always set to VG_LITE_BLEND_SRC_OVER. It happens due to some limita-
tions in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mixed color gets multi-
plied with each source pixel before blending happens. If you do not need a mix
color, then set the color parameter to 0. Note: This parameter has no effect if the
source vg_lite_buffer_t structure member image_mode is set to VG_LITE_ZERO or
VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

288 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_copy_image function Description:
This API copied a pixel rectangle with dimension (width, height) from source buffer to destina-
tion buffer. The source image pixel (sx *+ i,*sy + j) is copied to the destination image pixel (dx
*+ i,*dy + j), for *0 � i <*width and *0 � j <*height. Pixels whose source or destination lie outside
the bounds of the respective image are ignored. Pixel format conversion is applied as needed.

No pre-multiply, transformation, blending, filtering operations are applied to the pixel copy.

Syntax:

vg_lite_error_t vg_lite_copy_image (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_int32_t sx,
vg_lite_int32_t sy,
vg_lite_int32_t dx,
vg_lite_int32_t dy,
vg_lite_int32_t width,
vg_lite_int32_t height

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure that defines the destination buffer.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

sx,
sy

Pixel coordinates of the lower-left corner of a pixel rectangle within the source buffer.

dx,
dy

Pixel coordinates of the lower-left corner of a pixel rectangle within the target buffer.

width Width of the copied pixel rectangle.
heightHeight of the copied pixel rectangle.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_get_transform_matrix function Description:
This function generates a 3x3 homogenous transform matrix from 4 float point source coordi-
nates and 4 float point target coordinates. (from March 2021)

Syntax:

vg_lite_error_t vg_lite_get_transform_matrix (
vg_lite_float_point4_t src,
vg_lite_float_point4_t dst,
vg_lite_matrix_t *mat

);

Parameters:

1.7. Multimedia 289



MCUXpresso SDK Documentation, Release 25.12.00

Name Description
src Pointer to the four 2D points that form a source polygon
dst Pointer to the four 2D points that form a destination polygon
mat Output parameter, pointer to a 3x3 homogenous matrix that transforms the source

polygon to a destination polygon.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_clear function Description:
This function performs the clear operation, clearing/filling the specified buffer (entire buffer or
partial rectangle in a buffer) with an explicit color.

Syntax:

vg_lite_error_t vg_lite_clear (
vg_lite_buffer_t *target,
vg_lite_rectangle_t *rect,
vg_lite_color_t color

);

Parameters:

NameDescription
*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the clear
function.

*rect Pointer to the vg_lite_rectangle_tstructure that specifies the area to be filled. If the rect-
angle is NULL, the entire target buffer is filled with the specified color.

color Clear color, as specified in the vg_lite_color_t enum that is the color value to use for filling
the buffer. If the buffer is in L8 format, the RGBA color is converted into a luminance
value.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_set_color_key function Description:
This function sets a color key. Color key can be used for blit or for draw pattern operations. (from
April 2022)

A “color key” have two sections, where each section contains R,G,B channels which are noted as
high_rgb and low_rgb respectively.

When the vg_lite_color_key_t structure value enable is true, the color key specified is effective
and the alpha value is used to replace the alpha channel of the destination pixel when its RGB

290 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

channels are within range [low_rgb, high_rgb]. After the color key is used in the current frame,
if the color key is not needed for the next frame, it should be disabled before the next frame.

Hardware support for color key is not available for GCNanoLiteV. Application can use VGLite
API vg_lite_query_feature(gcFEATURE_BIT_VG_COLOR_KEY) to determine HW support for
color key.

Syntax:

vg_lite_error_t vg_lite_set_color_key (
vg_lite_color_key4_t colorkey

);

Parameters:

Parameter Description
colorkey Color keying parameters as defined by vg_lite_color_key4_t.

Here are 4 groups of color key states:

• color_key_0, high_rgb_0, low_rgb_0, alpha_0, enable_0

• color_key_1, high_rgb_1, low_rgb_1, alpha_1, enable_1

• color_key_2, high_rgb_2, low_rgb_2, alpha_2, enable_2

• color_key_3, high_rgb_3, low_rgb_3, alpha_3, enable_3

The priority order of these states is:

color_key_0 > color_key_1 > color_key_2 > color_key_3.

Returns:
VG_LITE_SUCCESS if successful. VG_LITE_NOT_SUPPORT if color key is not supported in
hardware.

Parent topic:Blit functions

vg_lite_gaussian_filter function Description:
This function sets 3x3 gaussian blur weighted values to filter an image pixel. (from March 2023)

The parameters w0, w1, w2 define a 3x3 gaussian blur weight matrix as:

The sum of the 9 kernel weights must be 1.0 to avoid convolution overflow ( w0 + 4*w1 + 4*w2 =
1.0 ).

The 3x3 weight matrix applies to a 3x3 pixel block:

With the following dot product equation:

1.7. Multimedia 291



MCUXpresso SDK Documentation, Release 25.12.00

Applications can useVGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_GAUSSIAN_BLUR)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_gaussian_filter (
vg_lite_float_t w0
vg_lite_float_t w1
vg_lite_float_t w2

);

Parameters:

Parameter Description

w0, w1, w2 w0, w1, w2 define a 3x3 gaussian blur weighted matrix as:

Returns:
VG_LITE_SUCCESS if successful. Otherwise, VG_LITE_NOT_SUPPORT if gaussian blur is not
supported in hardware.

Parent topic:Blit functions

Parent topic:Blits for compositing and blending

Blit/Draw extended functions The following BLIT or DRAW-related functions typically re-
quire GC355 or GC555 hardware and are not available for all Vivante Vector Graphics hardware
configurations.

Applications can use the VGLite API vg_lite_query_feature to determine HW support for the re-
lated functionality.

vg_lite_get_parameter function Description:
This function returns the selected VGLite / GPU states to the application.

(from Aug 2023)

Syntax:

vg_lite_error_t vg_lite_get_parameter (
vg_lite_param_type_t type,
vg_lite_int32_t count,
vg_lite_pointer params

);

Parameters:

292 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parame-
ter

Description

type The parameter type to be queried (VG_LITE_GPU_IDLE_STATE,
VG_LITE_SCISSOR_RECT)

count The number of returned parameters
params The pointer to the array of returned parameters

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_scissor function Description:
This function enables scissor rectangle operation for the rectangle regions defined by
vg_lite_scissor_rects API. (fromMarch 2020, modified August 2020, requires GC355 or GC555 hard-
ware)

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_SCISSOR) to deter-
mine HW support for scissoring. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_enable_scissor (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_disable_scissor function Description:
This function disables scissor operation for the rectangle regions defined by the
vg_lite_scissor_rects API. (from March 2020, modified August 2020, requires GC355 or GC555
hardware).

Syntax:

vg_lite_error_t vg_lite_disable_scissor (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_scissor_rects function Description:
This function defines scissor rectangle regions on the hardware mask layer. But the scissor func-
tion is enable/disabled by vg_lite_enable_scissor and vg_lite_disable_scissor APIs. (from August
2022, requires GC355 or GC555 hardware).

1.7. Multimedia 293



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_scissor_rects (
vg_lite_buffer_t *target,
vg_lite_uint32_t nums,
vg_lite_rectangle_t rect[]

);

Parameters:

Parameter Description
target Target render buffer that has the scissor mask layer.
nums Number of scissor rectangles.
rect[] The scissor rectangle array.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_scissor function Description:
This is a legacy scissor API function that can be used to set a single scissor rectangle for the render
target. This scissor API is supported by a different hardware mechanism other than the mask
layer and it has better performance than the mask layer scissor function.

This API is not enabled/disabled by vg_lite_enable_scissor and vg_lite_disable_scissor APIs. In-
stead, the vg_lite_set_scissor API calls with a valid scissor rectangle input (x, y, right, bottom)
enables the scissor function by default. The vg_lite_set_scissor API call with input parameter (-1,
-1, -1, -1) disables the scissor function. (requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_scissor (
vg_lite_int32_t x,
vg_lite_int32_t y,
vg_lite_int32_t right,
vg_lite_int32_t bottom

);

Parameters:

Parameter Description
x X Origin of rectangle, left coordinate in pixels
Y Y Origin of rectangle, top coordinate in pixels
right X rightmost pixel of the rectangle
bottom Y bottom pixel of the rectangle

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

294 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_disable_color_transform function Description:
This function is used to disable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Applications can use the VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_COLOR_TRANSFORMATION)‘
to determine HW support for color transformation. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_disable_color_transform (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_color_transform function Description:
This function is used to enable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_enable_color_transform (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_color_transform function Description:
This function is used to set pixel scale and bias values for color transformation for each pixel
channel. (from August 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_color_transform (
vg_lite_color_transform_t *values

);

Parameters:

Parame-
ter

Description

*values Pointer to the color transformation values to set. See enum
vg_lite_color_transform_t.

Returns:

1.7. Multimedia 295



MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_masklayer function Description:
This function controls the availability of mask functionality. The mask is turned off by default.
(from August - Sept mber 2022, requires GC555 hardware)

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_MASK) to determine
HW support for mask. The blit and draw mask functions below require GC555 hardware support.
These functions were introduced in August 2022 and the syntax or name was further refined in
September 2022.

Syntax:

vg_lite_error_t vg_lite_enable_masklayer (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_disable_masklayer function Description:
This function controls the availability of mask functionality. The mask is turned off by de-
fault. (from August -September 2022, requires GC555 hardware, prior to Sept 2022 name was
vg_lite_disable_mask_layer)

Syntax:

vg_lite_error_t vg_lite_disable_masklayer (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_create_masklayer function Description:
This function creates a mask layer with the specified width and height. The mask format defaults
to A8 and the default mask value is 255. (from August 2022-September, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_create_masklayer (
vg_lite_buffer_t *masklayer,
vg_lite_uint32_t width,
vg_lite_uint32_t height

);

296 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be created.
width Mask layer width (in pixels).
height Mask layer height (in pixels).

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_blend_masklayer function Description:
This function blends the specified area of the source mask layer with the destination mask layer
according to an vg_lite_mask_operation_t enumeration value, to create a blended destination
mask layer. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_blend_masklayer (
vg_lite_buffer_t *dst_masklayer,
vg_lite_buffer_t *src_masklayer,
vg_lite_mask_operation operation,
vg_lite_rectangle_t *rect,

);

Parameters:

Parameter Description
*dst_masklayerPoints to the address of the buffer of the destination mask layer.
*src_masklayerPoints to the address of the buffer of the source mask layer.
operation Blending mode to be applied to each image pixel, as defined by the enum

vg_lite_mask_operation_t.
*rect The rectangle area (x, y, width, height) of the blend operation.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_masklayer function Description:
This function sets the given mask layer to the hardware. (from August-September 2022, requires
GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_masklayer (
vg_lite_buffer_t *masklayer

);

Parameters:

1.7. Multimedia 297



MCUXpresso SDK Documentation, Release 25.12.00

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be set.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_render_masklayer function Description:
This function draws the mask layer according to the specified path, color, and matrix informa-
tion. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_render_masklayer (
vg_lite_buffer_t *masklayer,
vg_lite_mask_operation operation,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_color_t color,
vg_lite_matrix_t *matrix

);

Parameters:

Pa-
ram-
e-
ter

Description

*masklayerPoints to the address of the buffer of the destination mask layer.
op-
er-
a-
tion

Blending mode to be applied to each image pixel, as defined by the enum
vg_lite_mask_operation_t

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. Refer to Vector path opcodes for plotting paths in this document for opcode detail.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
color Specifies the color vg_lite_color_t RGBA value to be applied to each pixel drawn by the

path.
*ma-
trix

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If the matrix is NULL, an identity matrix is assumed, meaning the source is copied
directly on the target at 0,0 location. which is usually a bad idea since the path can be
anything.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_destroy_masklayer function Description:
This function is used to free a mask layer. (from August-September 2022, requires GC555 hard-
ware)

298 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_destroy_masklayer (
vg_lite_buffer_t masklayer

);

Parameters:

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be destroyed.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_mirror function Description:
This function is used to control mirror functionality. By default, the mirror is turned off and the
default output orientation is from top to bottom. (from August 2022, only for GC555 hardware)

Application can use VGLite API [vg\_lite\_query\_feature](vg_lite_query_feature_function.md)
(gcFEATURE_BIT_VG_MIRROR) to determine HW support for mirror. Mirror functions re-
quire GC555 hardware.

Syntax:

vg_lite_error_t vg_lite_set_mirror (
vg_lite_orientation_t orientation

);

Parameters:

Parameter Description
orientation The orientation mode as defined by the enum vg_lite_orientation_t.‘

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if not supported.

Parent topic:Blit/Draw extended functions

vg_lite_source_global_alpha function Description:
This function sets the image/source global alpha and return a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Application can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_GLOBAL_ALPHA) to
determine HW support for global alpha. The global alpha BLIT-related functions require GC-
NanoUltraV or GC555 hardware.

Syntax:

1.7. Multimedia 299



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_source_global_alpha (
vg_lite_global_alpha_t alpha_mode,
vg_lite_uint8_t alpha_value

);

Parameters:

Parameter Description
alpha_mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The image/source global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if global alpha is not supported.

Parent topic:Blit/Draw extended functions

vg_lite_dest_global_alpha function Description:
This function sets the destination global alpha and returns a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_dest_global_alpha (
vg_lite_global_alpha_t alpha_mode,
vg_lite_uint8_t alpha_value

);

Parameters:

Parameter Description
alpha_mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The destination global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if global alpha is not supported.

Parent topic:Blit/Draw extended functions

Parent topic:Blits for compositing and blending

Vector path control This chapter provides an overview of the vector path enumerations, struc-
tures, functions, and opcodes for plotting paths.

Vector path enumerations This section provides an overview of vector path enumerations.

vg_lite_format_t enumeration Values for vg_lite_format_t enum are defined in Table 1.

If vg_lite_format_t Path data alignment in the array should be:
VG_LITE_S8 8 bit
VG_LITE_S16 2 bytes
VG_LITE_S32 4 bytes

300 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path enumerations

vg_lite_quality_t enumeration Specifies the level of hardware assisted anti-aliasing.

Used in structure: vg_lite_path_t.

Used in function: vg_lite_init_path, vg_lite_init_arc_path.

vg_lite_quality_t
string
values

Description

VG_LITE_HIGHHigh quality: 16x coverage sample anti-aliasing
VG_LITE_UPPERUpper quality: 8x coverage sample anti-aliasing. Use vg_lite_query_feature

to determine availability of 8x CSAA (feature enum value gcFEA-
TURE_BIT_VG_QUALITY_8X.(deprecated from June 2020, available with
supported hardware from August 2022).

VG_LITE_MEDIUMMedium quality: 4x coverage sample anti-aliasing
VG_LITE_LOWLow quality: No anti-aliasing

Parent topic:Vector path enumerations

Parent topic:Vector path control

Vector path structures This section provides an overview of vector path structures.

vg_lite_hw_memory structure This structure gets the memory allocation information recorded
by the kernel.

Used in structure: vg_lite_path_t.

vg_lite_hw_memory_t
member

Type Description

handle vg_lite_pointerGPU memory object handle
memory vg_lite_pointerLogical memory address
address vg_lite_uint32_tGPU memory address
bytes vg_lite_uint32_tSize of memory
property vg_lite_uint32_tBit 0 is used for path upload: - 0: Disable path data uploading (al-

ways embedded into command buffer) - 1: Enable auto path data
uploading

Parent topic:Vector path structures

vg_lite_path_t structure This structure describes VGLite path data.

Path data is made of op codes and coordinates. The format for op codes is always VG_LITE_S8.
For more details on opcodes, see Vector path opcodes for plotting paths.

Used in init functions: vg_lite_init_path, vg_lite_init_arc_path, vg_lite_upload_path,
vg_lite_clear_path, vg_lite_append_path.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

1.7. Multimedia 301



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_t
members

Type Description

bound-
ing_box[4]

vg_lite_float_t bounding box for path [0] left [1] top [2] right [3] bottom

quality vg_lite_quality_tenum for quality hint for the path, anti-aliasing level
format vg_lite_format_tenum for coordinate format
uploaded vg_lite_hw_memory_tstruct with path data that has been uploaded into GPU ad-

dressable memory
path_length vg_lite_uint32_tnumber of bytes in the path
path vg_lite_pointer pointer to path data
path_changed vg_lite_int8_t 0: not changed; 1: changed.
pdata_internal vg_lite_int8_t 0: path data memory is allocated by application; 1: path data

memory is allocated by driver.
path_type vg_lite_path_type_tThe draw path type as specified in enum vg_lite_path_type_t.

(added for stroke control, from March 2022)
*stroke vg_lite_stroke_tAs defined by structure vg_lite_stroke_t (added for stroke con-

trol, from March 2022)
stroke_path vg_lite_pointer Pointer to the physical description of the stroke path. (added

for stroke control, from March 2022)
stroke_size vg_lite_uint32_tNumber of bytes in the stroke path data. (added for stroke con-

trol, from March 2022)
stroke_color vg_lite_color_t The stroke path fill color. (from Sept 2022)
add_end vg_lite_int8_t Flag that add end_path in driver (from March 2023)

Special notes for path objects:
• Endianness has no impact, as it is aligned against the boundaries

• Multiple contiguous opcodes should be packed by the size of the specified data format. For
example, by 2 bytes for VG_LITE_S16 or by 4 bytes for VG_LITE_S32.

For example, because opcodes are 8-bit (1-byte), 16-bit (2-byte), or 32-bit (4-byte) data types:

…
<opcode1_that_needs_data>
<align_to_data_size>
<data_for_opcode1>
<opcode2_that_doesnt_need_data>
<align_to_data_size>
<opcode3_that_needs_data>
<align_to_data_size>
<data_for_opcode3>
…

• Path data in the array should always be 1-, 2-, or 4-byte aligned, depending on the format:

For example, for 32-bit (4-byte) data types:

…
<opcode1_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode1>
<opcode2_that_doesnt_need_data>
<pad to 4 bytes>
<opcode3_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode3>
…

Parent topic:Vector path structures

302 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector path functions When using a small tessellation window and depending on a path’s size,
a path might be uploaded to the hardware multiple times because the hardware scanline convert
path with the provided tessellation window size, so VGLite path rendering performance might
go down. That is why it is preferable to set the tessellation buffer size to the most common path
size, for example if you only render 24-pt fonts, you can set the tessellation buffer to be 24x24.

All the RGBA color formats available in the vg_lite_buffer_format_t are supported as the destina-
tion buffer for the draw function.

vg_lite_get_path_length function Description:
This function calculates the path command buffer length (in bytes).

The application is responsible for allocating a buffer according to the buffer length calculated
with this function. Then, the buffer is used by the path as a command buffer. The VGLite driver
does not allocate the path command buffer.

Syntax:

vg_lite_uint32_t vg_lite_get_path_length (
vg_lite_uint8_t *opcode,
vg_lite_uint32_t count,
vg_lite_format_t format

);

Parameters:

Param-
eter

Description

*opcode Pointer to the opcode array to use to construct the path. (*opcode fromMarch 2023)
count The opcode count
format The coordinate data format. All formats available in the vg_lite_format_t enum are

valid formats for this function.

Returns:
Returns the command buffer length in bytes.

Parent topic:Vector path functions

vg_lite_append_path function Description:
This function assembles the command buffer for the path. The command buffer is allocated by
the application and assigned to the path. This function makes the final GPU command buffer for
the path based on the input opcodes (cmd) and coordinates (data). The application is responsible
for allocating a buffer large enough for the path*. (from Jan 2022, returns a vg_lite_error_t status
code)*

Syntax:

vg_lite_error_t vg_lite_append_path (
vg_lite_path_t *path
vg_lite_uint8_t *opcode,
vg_lite_pointer data,
vg_lite_uint32_t seg_count

(continues on next page)

1.7. Multimedia 303



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
);

Parameters:

Parame-
ter

Description

*path Pointer to the vg_lite_path_t structure with the path definition.
*opcode Pointer to the opcode array to use to construct the path. (*opcode from March

2023)
data Pointer to the coordinate data array to use to construct the path
seg_count The opcode count

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite_init_path function Description:
This function initializes a path definition with specified values. (From Dec 2019 returns
vg_lite_error_t, previous was void.)

Syntax:

vg_lite_error_t vg_lite_init_path (
vg_lite_path_t *path,
vg_lite_format_t format,
vg_lite_quality_t quality,
vg_lite_uint32_t length,
vg_lite_pointer *data,
vg_lite_float_t min_x,
vg_lite_float_t min_y,
vg_lite_float_t max_x,
vg_lite_float_t max_y

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t structure for the path object to be initialized

with the member values specified.
format The coordinate data format. All formats available in the vg_lite_format_t

enum are valid formats for this function.
quality The quality for the path object. All formats available in the

vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes)
*data Pointer to path data
min_x min_y
max_x max_y

Minimum and maximum x and y values specifying the bounding box of
the path

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

304 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init_arc_path function Description:
This function initializes an arc path definition with specified values. (from February 2021)

Syntax:

vg_lite_error_t vg_lite_init_arc_path (
vg_lite_path_t *path,
vg_lite_format_t format,
vg_lite_quality_t quality,
vg_lite_uint32_t length,
vg_lite_pointer *data,
vg_lite_float_t min_x,
vg_lite_float_t min_y,
vg_lite_float_t max_x,
vg_lite_float_t max_y

);

Parameters:

Parameter Function
*path Pointer to the vg_lite_path_t structure for the path object to be initialized

with the member values specified.
format The coordinate data format. The vg_lite_format_t enum value should be

FP32.
quality The quality for the path object. All formats available in the

vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes).
*data Pointer to path data.
min_x min_y
max_x max_y

Minimum and maximum x and y values specifying the bounding box of
the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite_upload_path function Description:
This function is used to upload a path to GPU memory.

In normal cases, the VGLite driver will copy any path data into a command buffer structure
during runtime. This does take some time if there are many paths to be rendered. Also, in an
embedded system the path data won’t change - so it makes sense to upload the path data into GPU
memory in such a form that the GPU can directly access it. This function will signal the driver to
allocate a buffer that will contain the path data and the required command buffer header and
footer data for the GPU to access the data directly. Call vg_lite_clear_path to free this buffer after
the path is used.

Syntax:

vg_lite_error_t vg_lite_upload_path (
vg_lite_path_t *path

);

Parameters:

Parameter Description
*path Pointer to a vg_lite_path_t structure that contains the path to be uploaded.

1.7. Multimedia 305



MCUXpresso SDK Documentation, Release 25.12.00

Returns:
VG_LITE_OUT_OF_MEMORY if not enough GPU memory is available for buffer allocation.

Parent topic:Vector path functions

vg_lite_clear_path function Description:
This function will clear and reset path member values. If the path has been uploaded, it frees
the GPU memory allocated when uploading the path. (From Dec 2019 returns vg_lite_error_t,
previous was void.)

.

Syntax:

vg_lite_error_t vg_lite_clear_path (
vg_lite_path_t *path

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t path definition to be cleared.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

Parent topic:Vector path control

Vector path opcodes for plotting paths The following opcodes are path drawing commands
available for vector path data.

A path operation is submitted to the GPU as [Opcode | Coordinates]. The operation code is stored
as a VG_LITE_S8 while the coordinates are specified via vg_lite_format_t.

306 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Op-
code

Arguments Description

0x00 None VLC_OP_END. Finish tessellation. Close any open path.
0x01 None VLC_OP_CLOSE. For VGLite driver internal use only. Applica-

tion should not use this OP directly.

0x02 (x, y)

0x03 (�x, �y)

0x04 (x, y)

0x05 (�x, �y)

0x06 (cx, cy) (x, y)

0x07 (�cx, �cy) (�x, �y)

0x08 (cx-1, cy1) (cx2, cy2)
(x, y)

0x09 (�cx-1, �cy1) (�cx2,
�cy2) (�x, �y)

0x0A None VLC_OP_BREAK. Indicates 64-bit path data (including the op-
code) is a no-op.

0x0B (x)

0x0C (�x)

0x0D (y)

0x0E (�y)

0x0F (x,y)

0x10 (�x,�y)

0x11 (cx2,cy2) (x,y)

0x12 (�cx2,�cy2) (�x,�y)

0x13 (rh,rv,rot,x,y)

0x14 (rh,rv,rot,x,y)

0x15 (rh,rv,rot,x,y)

0x16 (rh,rv,rot,x,y)

0x17 (rh,rv,rot,x,y)

0x18 (rh,rv,rot,x,y)

0x19 (rh,rv,rot,x,y)

0x1A (rh,rv,rot,x,y)

1.7. Multimedia 307



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector-dased draw operations This part of the API performs the hardware accelerated draw
operations.

Draw and gradient enumerations This section provides an overview of draw and gradient
enumerations.

vg_lite_blend_t enumeration This enumeration is defined under the “Blit enumerations” sec-
tion (see vg_lite_blend_t enumeration).

Parent topic:Draw and gradient enumerations

vg_lite_color_t parameter The common parameter vg_lite_color_t is described in Common
parameter types.

Parent topic:Draw and gradient enumerations

vg_lite_fill_t enumeration This enumeration is used to specify the fill rule to use. For drawing
any path, the hardware supports both non-zero and odd-even fill rules.

To determine whether any point is contained inside an object, imagine drawing a line from that
point out to infinity in any direction such that the line does not cross any vertex of the path. For
each edge that is crossed by the line, add 1 to the counter if the edge is crossed from left to right,
as seen by an observer walking across the line towards infinity, and subtract 1 if the edge crossed
from right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that a point is inside the shape if the resulting sum is not equal to zero.
The even/odd rule says that a point is inside the shape if the resulting sum is odd, regardless of
sign.

Used in function: vg_lite_render_masklayer.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

vg_lite_fill_t string
values

Description

VG_LITE_FILL_NON_ZERONon-zero fill rule. A pixel is drawn if it crosses at least one path pixel.
VG_LITE_FILL_EVEN_ODDEven-odd fill rule. A pixel is drawn if it crosses an odd number of

path pixels.

Parent topic:Draw and gradient enumerations

vg_lite_filter_t enumeration This enum is defined under the “Blit enumerations” section (see
vg_lite_filter_t enumeration).

Parent topic:Draw and gradient enumerations

308 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_gradient_spreadmode_t enumeration vg_lite_gradient_spreadmode_t enum is
defined to match OpenVG enum VGColorRampSpreadMode (from March 2023, re-
placesvg_lite_radial_gradient_spreadmode*, requires GC355/GC555 hardware)*

The application may only define stops with offsets between 0 and 1. Spread modes define how
the given set of stops are repeated or extended in order to define interpolated color values for
arbitrary input values outside the [0,1] range.

Used in structure: vg_lite_radial_gradient_t.

vg_lite_gradient_spreadmode_t
String Values

Description

VG_LITE_GRADIENT_SPREAD_FILLThe current fill color is used for all stop values less than 0 or greater
than 1 respectively.

VG_LITE_GRADIENT_SPREAD_PADColors defined at 0 and 1 are used for all stop values less than 0 or
greater than 1 respectively.

VG_LITE_GRADIENT_SPREAD_REPEATColor values defined between 0 and 1 are repeated indefinitely in
both directions.

VG_LITE_GRADIENT_SPREAD_REFLECTColor values defined between 0 and 1 are repeated indefinitely in
both directions but with alternate copies of the range reversed.

Parent topic:Draw and gradient enumerations

vg_lite_pattern_mode_t enumeration Defines how the region outside the image pattern is
filled for the path.

Used in function: vg_lite_draw_gradient, vg_lite_draw_pattern.

vg_lite_pattern_mode_t
string values

Description

VG_LITE_PATTERN_COLORPixels outside the bounds of the source image should be taken as the color.
VG_LITE_PATTERN_PADPixels outside the bounds of the source image should be taken as having

the same color as the closest edge pixel. The color of the pattern border is
expanded to fill the region outside the pattern.

VG_LITE_PATTERN_REPEATPixels outside the bounds of the source image should be repeated indefi-
nitely in all directions. (from March 2023)

VG_LITE_PATTERN_REFLECTPixels outside the bounds of the source image should be reflected indefi-
nitely in all directions. (from March 2023)

Parent topic:Draw and gradient enumerations

vg_lite_radial_gradient_spreadmode_t enumeration (Deprecated March 2023) use
vg_lite_gradient_spreadmode_t. Defines the radial gradient padding mode. (from Nov 2020,
requires GC355 hardware)

Used in structure: vg_lite_radial_gradient_t.

1.7. Multimedia 309



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_spreadmode_t
String Values

Description

VG_LITE_RADIAL_GRADIENT_SPREAD_FILL
= 0

The current fill color is used for all stop values less than 0 or
greater than 1 respectively.

VG_LITE_RADIAL_GRADIENT_SPREAD_PADColors defined at 0 and 1 are used for all stop values less than 0
or greater than 1 respectively.

VG_LITE_RADIAL_GRADIENT_SPREAD_REPEATColor values defined between 0 and 1 are repeated indefinitely
in both directions.

VG_LITE_RADIAL_GRADIENT_SPREAD_REFLECTColor values defined between 0 and 1 are repeated indefinitely
in both directions but with alternate copies of the range re-
versed.

Parent topic:Draw and gradient enumerations

Parent topic:Vector-dased draw operations

Draw and gradient structures This section provides an overview of the draw and gradient
structures.

vg_lite_buffer_t structure This structure is defined under the “Pixel buffer structures” section
(see vg_lite_buffer_t structure).

Parent topic:Draw and gradient structures

vg_lite_color_ramp_t structure This structure defines the stops for the radial gradient. The
five parameters provide the offset and color for the stop. Each stop is defined by a set of floating
point values which specify the offset and the sRGBA color and alpha values. Color channel values
are in the form of a non-premultiplied (R, G, B, alpha) quad. All parameters are in the range of
[0,1]. The red, green, blue, alpha value of [0, 1] is mapped to an 8-bit pixel value [0, 255].(from
November 2020, requires GC355 hardware)

The define for the max number of radial gradient stops is #define
MAX_COLOR_RAMP_STOPS256.

Used in radial gradient structure: vg_lite_radial_gradient_t.

vg_lite_color_ramp_t mem-
bers

Type Description

stop vg_lite_float_t Offset value for the color stop
red vg_lite_float_t Red color channel value for the color stop
green vg_lite_float_t Green color channel value for the color stop
blue vg_lite_float_t Blue color channel value for the color stop
alpha vg_lite_float_t Alpha color channel value for the color stop

Parent topic:Draw and gradient structures

vg_lite_linear_gradient_t structure This structure defines the organization of a linear gradi-
ent in VGLite data. The linear gradient is applied to filling a path. It generates a 256x1 image
according to the specified settings.

Used in init and draw functions: vg_lite_init_grad, vg_lite_set_grad, vg_lite_update_grad,
vg_lite_get_grad_matrix, vg_lite_clear_grad, vg_lite_draw_grad.

310 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_linear_gradient_t con-
stants

Type Description

VLC_MAX_GRADIENT_STOPSvg_lite_int32_tConstant. Maximum number of gradient col-
ors = 16.

vg_lite_linear_gradient_t
members
colors
[VLC_MAX_GRADIENT_STOPS]

vg_lite_uint32_tColor array for the gradient

count vg_lite_uint32_tNumber of colors
stops
[VLC_MAX_GRADIENT_STOPS]

vg_lite_uint32_tNumber of color stops, from 0 to 255

matrix vg_lite_matrix_tStruct for the matrix to transform the gradi-
ent color ramp

image vg_lite_buffer_tImage object struct to represent the color
ramp

Parent topic:Draw and gradient structures

vg_lite_ext_linear_gradient structure This structure defines the organization of the extended
parameters possible for a linear gradient (from April 2022).

Used in functions: vg_lite_draw_linear_grad.

vg_lite_ext_linear_gradient_t
members

Type Description

count vg_lite_uint32_t Count of colors, up to 256.
matrix vg_lite_matrix_t The matrix to transform the gradient.
image vg_lite_buffer_t The image for rendering as gradient pattern.
linear_grad vg_lite_linear_gradient_parameter_tLinear gradient parameters. Includes center

point, focal point and radius.
ramp_length vg_lite_uint32_t Color ramp length for gradient paints provided

to the driver.
color_ramp[VLC_MAX_COLOR_RAMP_STOPS]vg_lite_color_ramp_tColor ramp parameter for gradient paints pro-

vided to the driver.
converted_length vg_lite_uint32_t Converted internal color ramp length.
con-
verted_ramp[VLC_MAX_COLOR_RAMP_STOPS+2]

vg_lite_color_ramp_tConverted internal color ramp.

pre-multiplied vg_lite_uint8_t If this value is set to 1, the color value of
color_ramp will be multiplied by the alpha
value of color_ramp.

spread_mode vg_lite_radial_gradient_spreadmode_tThe spread mode that is applied to the pixels
out of the image after transformed.

|

Parent topic:Draw and gradient structures

vg_lite_linear_gradient_parameter structure This structure defines a radial direction for a lin-
ear gradient. (from April 2022)

Line0 connects point (X0, Y0) to point (X1, Y1) and represents the radial direction of the linear
gradient.

Line1 is a line perpendicular to line0 which passes through point (X0, Y0).

Line2 is a line perpendicular to line0 which passes through point (X1, Y1)

1.7. Multimedia 311



MCUXpresso SDK Documentation, Release 25.12.00

The linear gradient paint is applied at the intersection of the path fill area and the plane starting
from line 1 and ending at line 2.

Used in structure: vg_lite_ext_linear_gradient.

Used in functions: vg_lite_set_linear_grad.

vg_lite_linear_gradient_parameter_t
members

Type Description

X0 vg_lite_float_tX origin of linear gradient radial di-
rection.

Y0 vg_lite_float_tY origin of linear gradient radial di-
rection.

X1 vg_lite_float_tX end point of linear gradient radial
direction.

Y1 vg_lite_float_tY end point of linear gradient radial
direction.

Parent topic:Draw and gradient structures

vg_lite_matrix_t structure This structure is defined under the “Matrix control structures” sec-
tion (see vg_lite_matrix_t structure).

Parent topic:Draw and gradient structures

vg_lite_path_t structure This structure is defined under the “Vector path structures” section
(see vg_lite_path_t structure).

Parent topic:Draw and gradient structures

vg_lite_radial_gradient_parameter_t structure This structure defines the gradient radius and
the X and Y coordinates for the center and focal points of the gradient (from November 2020,
requires GC355 or GC555 hardware).

Used in radial gradient structure: vg_lite_radial_gradient_t.

312 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_parameter_t
member

Type Description

cx vg_lite_float_t
cy vg_lite_float_t

r vg_lite_float_t

fx vg_lite_float_t
fy vg_lite_float_t

Parent topic:Draw and gradient structures

vg_lite_radial_gradient_t structure This structure defines the application of the radial gradient
to fill a path. (from November 2020, requires GC355 or GC555 hardware).

Used in radial gradient functions: vg_lite_draw_grad, vg_lite_set_radial_grad,
vg_lite_update_radial_grad, vg_lite_get_radial_grad, vg_lite_clear_radial_grad.

1.7. Multimedia 313



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_t
member

Type Description

count vg_lite_uint32_t Count of colors, up to 256
matrix vg_lite_matrix_t Structure that specifies the transform matrix

for the gradient
image vg_lite_buffer_t Structure that specifies the image for render-

ing as a gradient pattern
radial_grad vg_lite_radial_gradient_parameter_tStructure that specifies the location of the gra-

dient’s center point (cx, cy), focal point(fx, fy)
and radius(r)

ramp_length vg_lite_uint32_t Color ramp parameters for gradient paints
provided to the driver

color_ramp[VLC_MAX_COLOR_RAMP_STOPS]vg_lite_color_ramp_tStructure that specifies the color ramp
converted_length vg_lite_uint32_t Converted internal color ramp.
con-
verted_ramp[VLC_MAX_COLOR_RAMP_STOPS+2]

vg_lite_color_ramp_tStructure that specifies the internal color ramp

pre_multiplied vg_lite_uint32_t If this value is set to 1, the color value of
color_ramp will be multiplied by the alpha
value of color_ramp.

spread_mode vg_lite_radial_gradient_spreadmode_tEnum that specifies the tiling mode, which is
applied to the pixels out of the image after
transformation

Parent topic:Draw and gradient structures

Parent topic:Vector-dased draw operations

Draw functions This section provides an overview of the draw functions.

vg_lite_draw function Description:
This function performs a hardware accelerated 2D vector draw operation.

The size of the tessellation buffer can be specified at initialization and it is aligned with the min-
imum hardware alignment requirements of the kernel. Specifying a smaller size for tessellation
buffer allocates less memory but reduces performance. Because the hardware walks the target
with the provided tessellation window size, a path may be sent to the hardware multiple times.
It is a good practice to set the tessellation buffer size to the most common path size. For example,
if all you do is render up to 24-point fonts, you can set the tessellation buffer to 24x24.

Note:
• All the color formats available in the vg_lite_buffer_format_t enum are supported as the

destination buffer for the draw function

• The hardware does not support strokes; they must be converted to paths before you use
them in the draw API

Syntax:

vg_lite_error_t vg_lite_draw (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color

);

314 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the draw
function.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*ma-
trix

Pointer to a vg_lite_matrix_t structure that defines the affine transformation matrix of
the path. If the matrix is NULL, an identity matrix is assumed. Note: Non-affine trans-
formations are not supported by vg_lite_draw; therefore, a perspective transformation
matrix might have unexpected effects on path rendering.

blend Select one of the hardware-supported blend modes in the vg_lite_blend_t enum
to be applied to each drawn pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0).

color The color applied to each pixel drawn by the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_grad function Description:
This function is used to fill a path with a linear gradient according to the specified fill rules. The
specified path is transformed according to the selected matrix and is filled with the specified
color gradient.

Syntax:

vg_lite_error_t vg_lite_draw_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *matrix,
vg_lite_linear_gradient_t *grad,
vg_lite_blend_t blend

);

Parameters:

1.7. Multimedia 315



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
eter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw and fill with the linear gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*ma-
trix

Pointer to the vg_lite_matrix_t structure that defines the 3x3 transformation matrix
of the path. If the matrix is NULL, an identity matrix is assumed; however, this option
is not preferable.

*grad Pointer to the vg_lite_linear_gradient_t structure that contains the values to be used to
fill the path.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_radial_grad function Description:
This function is used to fill a path with a radial gradient according to the specified fill
rules. The specified path is transformed according to the selected matrix and is filled
with the radial color gradient. The application can use VGLite API vg_lite_query_feature
(gcFEATURE_BIT_VG_RADIAL_GRADIENT) to determine HW support for radial gradient.

Syntax:

vg_lite_error_t vg_lite_draw_radial_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_radial_gradient_t *grad,
vg_lite_color_t paint_color,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

316 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw for and fill with the radial gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*path_matrixPointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the path. If the matrix is NULL, an identity matrix is assumed; however, his option is
not preferable.

*grad Pointer to the vg_lite_radial_gradient_t structure that contains the values to
be used to fill the path. Note: grad->image.image_mode does not support
VG_LITE_MULTIPLY_IMAGE_MODE .

paint_colorSpecifies the paint color vg_lite_color_t RGBA value to be applied
by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL set by the function
vg_lite_set_radial_grad. When pixels are out of the image after transformation,
paint_color is applied to them. For details, see vg_lite_radial_gradient_spreadmode_t.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel.
If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

fil-
ter

Specified the filter mode vg_lite_filter_t enum value to be applied to each drawn pixel.
If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_pattern function Description:
This function fills a path with an image pattern. The path is transformed according to the speci-
fied matrix and is filled with the transformed image pattern.

Syntax:

vg_lite_error_t vg_lite_draw_pattern (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_buffer_t *pattern_image,
vg_lite_matrix_t *pattern_matrix,
vg_lite_blend_t blend,
vg_lite_pattern_mode_t pattern_mode,
vg_lite_color_t pattern_color,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

1.7. Multimedia 317



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for this
draw function.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
*path_matrixPointer to the vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the source pixels into the target. If the matrix is NULL, an identity matrix is assumed,
meaning the source is copied directly onto the target at 0,0 location.

*pat-
tern_image

Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If the matrix is NULL, an identity matrix is assumed.

*pat-
tern_matrix

Pointer to the vg_lite_buffer_t structure that describes the source of the image pattern

Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
source pixels into the target. If the matrix is NULL, an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the vg_lite_blend_t enum values for hardware-supported blend modes
to be applied to each drawn pixel in the image. If no blending is required, set this value
to VG_LITE_BLEND_NONE (0).

pat-
tern_mode

Specifies the vg_lite_pattern_mode_t value that defines how the region outside the im-
age pattern is to be filled.

pat-
tern_color

Specifies a 32bpp ARGB color (vg_lite_color_t) to be applied to the fill outside the image
pattern area when the pattern_mode value is VG_LITE_PATTERN_COLOR. (from Dec
2019, type now vg_lite_color_t, previously was uint32_t)

color Specifies a 32bpp ARGB color (vg_lite_color_t) to be applied as a mix color. If non-zero,
the mix color value gets multiplied with each source pixel before blending happens. If a
mix color is not needed, set the color parameter to 0 (fromMay 2023). Note: This param-
eter has no effect if the pattern image vg_lite_buffer_t structure member image_mode is
set to VG_LITE_ZERO or VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

Parent topic:Vector-dased draw operations

Linear gradient initialization and control functions This part of the API performs linear
gradient operations.

A color gradient (color progression, color ramp) is a smooth transition between a set of colors
(color stops) that is done along a line (linear, or axial color gradient) or radially, along concentric
circles (radial color gradient). The color transition is done by linear interpolation between two
consecutive color stops.

Note: VGLite supports linear color gradients for GCNanoLiteV and GCNanoUltraV. Both linear
and radial gradients are supported with GC355 and GC555.

vg_lite_init_grad function Description:

318 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

This function initializes the internal buffer for the linear gradient object with default settings for
rendering.

Syntax:

vg_lite_error_t vg_lite_init_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Param-
eter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which defines the gradient to be
initialized. Default values are used.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_clear_grad function Description:
This function is used to clear the values of a linear gradient object and free up the memory of
the image buffer.

Syntax:

vg_lite_error_t vg_lite_clear_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_linear_gradient_t structure that is to be cleared

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_set_grad function Description:
This function is used to set values for the members of the vg_lite_linear_gradient_t structure.

Note: The vg_lite_set_grad API adopts the following rules to set the default gradient colors if the
input parameters are incomplete or invalid:

• If no valid stops have been specified (for example, due to an empty input array, out-of-range
or out-of-order stops), a stop at 0 with (R, G, B, A) color (0.0, 0.0, 0.0, 1.0) (opaque black) and
a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are implicitly defined

• If at least one valid stop has been specified, but none has been defined with an offset of 0,
then an implicit stop is added with an offset of 0 and the same color as the first user-defined
stop

1.7. Multimedia 319



MCUXpresso SDK Documentation, Release 25.12.00

• If at least one valid stop has been specified, but none has been defined with an offset of 1,
then an implicit stop is added with an offset of 1 and the same color as the last user-defined
stop

Syntax:

vg_lite_error_t vg_lite_set_grad (
vg_lite_linear_gradient_t *grad,
uint32_t count,
uint32_t *colors,
uint32_t *stops
);

Parameters:

Param-
eter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure to be set
count The number of colors in the linear gradient. The maximum color stop count is de-

fined by VLC_MAX_GRAD which is 16.
*colors Specifies the color array for the gradient stops. The color is in ARGB8888 format

with alpha in the upper byte.
*stops Pointer to the gradient stop offset

Returns:
Always returns VG_LITE_SUCCESS.

Parent topic:Linear gradient initialization and control functions

vg_lite_get_grad_matrix function Description:
This function is used to get a pointer to the transformation matrix of the gradient object. It allows
an application to manipulate the matrix to facilitate correct rendering of the gradient path.

Syntax:

vg_lite_error_t vg_lite_get_grad_matrix (
vg_lite_linear_gradient_t *grad

);

Parameters:

Parame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which contains the matrix to be
retrieved

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_update_grad function Description:
This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_linear_gradient_t object has an image buffer, which is used to render the gradient
pattern. The image buffer is created or updated with the corresponding gradient parameters.

320 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_update_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Pa-
rame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which contains the update values
to be used for the object to be rendered

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

Parent topic:Vector-dased draw operations

Linear gradient extended functions The following functions are available only with IP that
includes hardware support for extended linear gradient capabilities, such as GC355 and GC555.
These functions are not available with GCNanoLiteV, GCNanoUltraV, or GCNanoV. Applications
can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT)
to determine HW support for linear gradient.

vg_lite_set_linear_grad function Description:
This function is used to set the values that define the linear gradient. (from April 2022)

Syntax:

vg_lite_error_t vg_lite_set_linear_grad (
vg_lite_ext_linear_gradient_t *grad,
vg_lite_uint32_t count,
vg_lite_color_ramp_t *color_ramp,
vg_lite_linear_gradient_parameter_t grad_param,
vg_lite_radial_gradient_spreadmode_t spread_mode,
vg_lite_uint8_t pre_mult

);

Parameters:

1.7. Multimedia 321



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*grad Pointer to the vg_lite_ext_linear_gradient_t structure that is to be set.
count Count of the colors in the gradient. The maximum color stop count is defined by

MAX_COLOR_RAMP_STOPS, which is set to 256.
*color_rampIt is the array of stops for the linear gradient. The number of parameters for each stop

is 5, and gives the offset and color of the stop. Each stop is defined by a floating-point
offset value and four floating-point values containing the sRGBA color and alpha value
associated with each stop, in the form of a non-premultiplied (R, G, B, alpha) quad. The
range of all parameters is [0,1].

grad_paramGradient parameters as specified in the structure vg_lite_linear_gradient_parameter_t.
spread_modeThe fill mode is applied to the pixels out of the paint after transformation. Uses

the same spread mode enumeration types as radial gradient. For details, see
vg_lite_radial_gradient_spreadmode_t enum.

pre_multThis parameter controls whether color and alpha values are interpolated in premulti-
plied or non-premultiplied form.

Returns:
Returns VG_LITE_INVALID_ARGUMENTS to indicate the parameters are wrong.

Parent topic:Linear gradient extended functions

vg_lite_get_linear_grad_matrix function Description:
This function returns a pointer to an extended linear gradient object’s matrix.(fromMarch 2023).

Syntax:

vg_lite_matrix_t* vg_lite_get_linear_grad_matrix (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_ext_linear_gradient_t structure.

Returns:
Returns a pointer to vg_lite_matrix_t for the specified extended linear gradient.

Parent topic:Linear gradient extended functions

vg_lite_draw_linear_grad function Description:
This function returns a pointer to an extended linear gradient object’s matrix.(fromMarch 2023).

Syntax:

vg_lite_error_t vg_lite_draw_linear_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,

(continues on next page)

322 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
vg_lite_matrix_t *path_matrix,
vg_lite_ext_linear_gradient_t *grad,
vg_lite_color_t paint_color,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw for the linear gradient. Refer to Vector path opcodes for plotting paths in this
document for opcode detail.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
*path_matrixPointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the path. If the matrix is NULL, an identity matrix is assumed; however, this option is
not preferable.

*grad Pointer to the vg_lite_ext_linear_gradient_t structure that contains the values
to be used to fill the path. Note: grad->image.image_mode does not support
VG_LITE_MULTIPLY_IMAGE_MODE.

paint_colorSpecifies the paint color vg_lite_color_t RGBA value to be applied
by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL, set by function
vg_lite_set_linear_grad. When pixels are out of the image after trans-
formation, this paint_color is applied to them. For details, see enum
vg_lite_radial_gradient_spreadmode_t.

blend Specifies blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel. If
no blending is required, set this value to VG_LITE_BLEND_NONE (0).

fil-
ter

Specified the filter mode vg_lite_filter_t enum value to be applied to each drawn pixel.
If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg_lite_update_linear_grad function Description:
This function is used to update or generate the corresponding image object to render (from April
2022).

The vg_lite_ext_linear_gradient_t object has an image buffer that is used to render the linear
gradient paint. The image buffer is created/updated according to the specified grad parameters.

Syntax:

vg_lite_error_t vg_lite_update_linear_grad (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

1.7. Multimedia 323



MCUXpresso SDK Documentation, Release 25.12.00

Parame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_ext_t structure that is to be updated or cre-
ated.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg_lite_clear_linear_grad function Description:
This function is used to clear the linear gradient object. This resets the grad members and free
the image buffer’s memory (from April 2022).

Syntax:

vg_lite_error_t vg_lite_clear_linear_grad (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_linear_gradient_ext_t structure that is to be cleared.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

Parent topic:Vector-dased draw operations

Radial gradient functions initialization and control functions The following functions are
available only with IP that supports radial gradients, such as GC355 and GC555. These functions
are not available with GCNanoLiteV, or GCNanoUltraV or GCNanoV.

Note: There is no init function required for radial gradients. Buffer initialization is done through
the vg_lite_update_radial_grad function. (from Nov 2020, requires GC355 or GC555 hardware)

vg_lite_set_radial_grad function Description:
This function is used to set the values for the radial linear gradient definition. (from November
2020, requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_radial_grad (
vg_lite_radial_gradient_t *grad,
vg_lite_uint32_t count,
vg_lite_color_ramp_t *color_ramp,
vg_lite_radial_gradient_parameter_t grad_param,
vg_lite_radial_gradient_spreadmode_t spread_mode,
vg_lite_uint8_t pre_mult

);

324 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa-
ram-
e-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure for the radial gradient that has to be
set

count The number of color stops in the gradient. The maximum color stop count is defined by
MAX_COLOR_RAMP_STOPS, which is currently 256.

*color_rampPointer to the vg_lite_color_ramp_t structure that defines the stops for the radial gradi-
ent. The five parameters provide the offset and color for each stop. Each stop is defined
by a set of floating point values that specify the offset and the sRGBA color and alpha val-
ues. Color channel values are in the form of a non-premultiplied (R, G, B, alpha) quad.
All parameters are in the range of [0,1]. The red, green, blue, alpha value of [0, 1] is
mapped to an 8-bit pixel value [0, 255].

grad_paramThe radial gradient parameters are supplied as a vector of 5 floats. Parameters (cx, cy)
specify the center point, parameters (fx, fy) specify the focal point, and r specifies the
radius. See structure vg_lite_radial_gradient_parameter_t.

spread_modeThe tiling mode that is applied to pixels out of the paint after transformation. See enum
vg_lite_radial_gradient_spreadmode_t.

pre_multControls whether color and alpha values are interpolated in premultiplied or non-
premultiplied form. If this value is set to 1, the color value of vgColorRamp is multipled
by the alpha value of vgColorRamp.

Returns:
Returns VG_LITE_INVALID_ARGUMENTS to indicate that the parameters are wrong.

Parent topic:Radial gradient functions initialization and control functions

vg_lite_update_radial_grad function Description:
This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_radial_gradient_t object has an image buffer that is used to render the gradient pat-
tern. The image buffer will be created or updated with the corresponding gradient parameters.
(from November 2020, requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_update_radial_grad (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Pa-
rame-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure, which contains the updated values
to be used for the object to be rendered

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

1.7. Multimedia 325



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_get_radial_grad_matrix function Description:
This function is used to get a pointer to the radial gradient object’s transformation matrix. This
allows an application to manipulate the matrix to facilitate correct rendering of the gradient
path*. (from Nov 2020, requires GC355 or GC555 hardware).*

Syntax:

vg_lite_error_t vg_lite_get_radial_grad_matrix (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Parame-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure, which contains the matrix to be
retrieved

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

vg_lite_clear_rad_grad function Description:
This function is used to clear the values of a radial gradient object and free the image buffer’s
memory*. (from Nov 2020, requires GC355 or GC555 hardware)*

Syntax:

vg_lite_error_t vg_lite_clear_radial_grad (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_radial_gradient_t structure which is to be cleared

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

Parent topic:Vector-dased draw operations

Stroke operations This part of the API performs stroke operations. (from March 2022)

Stroke enumerations This section gives details on stroke enumerations.

326 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_cap_style_t enumeration Defines the style of cap at the end of a stroke (from March
2022).

Used in structure: vg_lite_stroke_t.

Used in function: vg_lite_set_stroke.

vg_lite_cap_style_t
values

Description

VG_LITE_CAP_BUTTThe butt end cap style terminates each segment with a line perpendicular to the
tangent at each endpoint.

VG_LITE_CAP_ROUNDThe round end cap style appends a semicircle with a diameter equal to the line
width centered around each endpoint.

VG_LITE_CAP_SQUAREThe square end cap style appends a rectangle with two sides of length equal to the
line width perpendicular to the tangent, and two sides of length equal to half the
line width parallel to the tangent, at each endpoint.

Parent topic:Stroke enumerations

vg_lite_path_type_t enumeration Defines the type of draw path (from March 2022).

Used in structure: vg_lite_path_t, vg_lite_stroke_t.

Used in function: vg_lite_set_path_type.

vg_lite_path_type_t string values Description
VG_LITE_DRAW_FILL_PATH Draw path is fill.
VG_LITE_DRAW_STROKE_PATH Draw path is stroke.
VG_LITE_DRAW_FILL_STROKE_PATH Draw path is both fill and stroke.

Parent topic:Stroke enumerations

vg_lite_join_style_t enumeration Defines the type of styles available for line joints. (from
March 2022)

Used in structure: vg_lite_stroke_t.

Used in function: vg_lite_set_stroke.

vg_lite_join_style_t
string
values

Description

VG_LITE_JOIN_MITERThe miter join style appends a trapezoid with one vertex at the intersection point
of the two original lines, two adjacent vertices at the outer endpoints of the two
“thickened” lines and a fourth vertex at the extrapolated intersection point of the
outer perimeters of the two “thickened” lines.

VG_LITE_JOIN_ROUNDThe round join style appends a wedge-shaped portion of a circle, centered at the
intersection point of the two original lines, having a radius equal to half the line
width.

VG_LITE_JOIN_BEVELThe bevel type join style appends a triangle with two vertices at the outer end-
points of the two “thickened” lines and a third vertex at the intersection point of
the two original lines.

Parent topic:Stroke enumerations

Parent topic:Stroke operations

1.7. Multimedia 327



MCUXpresso SDK Documentation, Release 25.12.00

Stroke structures This section gives details on stroke structures.

vg_lite_path_t structure Defined under Vector Path Structures - vg_lite_path_t structure.

(additional members added for stroke from March 2022)

Parent topic:Stroke structures

vg_lite_path_list_t structure The structure vg_lite_path_list_ptr points to the
vg_lite_path_list structure that provides divided path data according to MOVE/MOVE_REL.
(from Aug 2023)

Used (vg_lite_path_list_ptr) in structures: vg_lite_stroke_t.

vg_lite_path_list_t members Type Description
path_points vg_lite_path_point_ptr

path_end vg_lite_path_point_ptr

point_count vg_lite_uint32_t

next vg_lite_path_list_ptr

closed vg_lite_uint8_t

Parent topic:Stroke structures

vg_lite_path_point_t structure The structure vg_lite_path_point_ptr points to the
vg_lite_path_point structure which provides path detail (from March 2022)

Used (vg_lite_path_point_ptr) in structures: vg_lite_path_point_t, vg_lite_stroke_conversion.
vg_lite_sub_path_t.

vg_lite_path_point_t mem-
bers

Type Description

x vg_lite_float_t X coordinate
y vg_lite_float_t Y coordinate
flatten_flag vg_lite_uint8_t Flatten flag for flattened path
curve_type vg_lite_uint8_t Curve type for the stroke path
tangentX vg_lite_float_t X tangent (Note: #define centerX tan-

gent)
tangentY vg_lite_float_t Y tangent (Note: #define centerX tan-

gent)
length vg_lite_float_t Line length
prev vg_lite_path_point_ptr Pointer to the previous point node

Parent topic:Stroke structures

vg_lite_stroke_t structure The structure provides stroke parameters and pointers to temp stor-
age for a stroke sub path. Refer to the function vg_lite_set_stroke parameter descriptions for
additional description for some members. (from March 2022)

Used in structure: vg_lite_path_t.

328 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_stroke_t members Type Description
cap_style vg_lite_cap_style_t Stroke cap style
join_style vg_lite_join_style_t Stroke joint style
line_width vg_lite_float_t Stroke line width
miter_limit vg_lite_float_t Stroke miter limit
*dash_pattern vg_lite_float_t Pointer to stroke dash pattern
pattern_count vg_lite_uint32_t Number of dash pattern repetitions
dash_phase vg_lite_float_t Stroke dash phrase
dash_length vg_lite_float_t Stroke dash initial length
dash_index vg_lite_uint32_t Stroke dash initial index
half_width vg_lite_float_t Half line width
pattern_length vg_lite_float_t Total length of stroke dash patterns.
miter_square vg_lite_float_t For fast checking
path_points vg_lite_path_point_ptr Temp storage for stroke sub path
path_end vg_lite_path_point_ptr Temp storage for stroke sub path
point_count unint32_t Temp storage for stroke sub path
left_point vg_lite_path_point_ptr Temp storage for stroke sub path
right_pont vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_points vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_end vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_count vg_lite_uint32_t Temp storage for stroke sub path
path_list_divide vg_lite_path_list_ptr Divide stroke path according to move or move_rel for avoiding implicit closure. (from Aug 2023)
cur_list vg_lite_path_list_ptr Pointer to current divided path data. (from Aug 2023)
add_end vg_lite_uint8_t Flag that adds end_path in driver (from Aug 2023)
dash_reset vg_lite_uint8_t (from Aug 2023)
stroke_paths vg_lite_sub_path_ptr
last_stroke vg_lite_sub_path_ptr
swing_handling vg_lite_uint32_t
swing_deltax vg_lite_float_t
swing_deltay vg_lite_float_t
swing_start vg_lite_path_point_ptr
swing_stroke vg_lite_path_point_ptr
swing_length vg_lite_float_t
swing_centlen vg_lite_float_t
swing_count vg_lite_uint32_t
need_swing vg_lite_uint8_t
swing_ccw vg_lite_uint8_t
stroke_length vg_lite_float_t
stroke_size vg_lite_uint32_t
fattened vg_lite_uint8_t The stroke line is a fat line.
closed vg_lite_uint8_t

Parent topic:Stroke structures

vg_lite_sub_path_t structure The structure vg_lite_sub_path_ptr points to the
vg_lite_sub_path structure that provides sub path detail and a pointer to the next sub path.
(from March 2022)

Used in structure: vg_lite_stroke_conversion.

1.7. Multimedia 329



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_point_t mem-
bers

Type Description

next vg_lite_sub_path_ptr Pointer to the next sub path
point_count vg_lite_uint32_t Number of points in the sub path
point_list vg_lite_path_point_ptr Pointer to the point list.
end_point vg_lite_path_point_ptr Pointer to the last point.
closed vg_lite_uint8_t Indicates whether or not the path is

closed.
length vg_lite_float_t Length of the sub path.

Parent topic:Stroke structures

Parent topic:Stroke operations

Stroke functions All return vg_lite_error_t status.

vg_lite_set_path_type function Description:
This function sets the path type*. (from March 2022)*

Syntax:

vg_lite_error_t vg_lite_set_path_type (
vg_lite_path_t *path,
vg_lite_path_type_t path_type

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t structure that describes the vector path.
path_type Pointer to a vg_lite_path_type_t structure that describes the path type.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_set_stroke function Description:
This function uses input parameters to set stroke attributes (from March 2022).

Syntax:

vg_lite_error_t vg_lite_set_stroke (
vg_lite_path_t *path,
vg_lite_cap_style_t cap_style,
vg_lite_join_style_t join_style,
vg_lite_float_t line_width,
vg_lite_float_t miter_limit,
vg_lite_float_t *dash_pattern,
vg_lite_uint32_t pattern_count,
vg_lite_float_t dash_phase,
vg_lite_color_t color

(continues on next page)

330 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
);

Parameters:

Pa-
ram-
e-
ter

Description

*path Pointer to the vg_lite_path_t structure that describes the path.
cap_styleThe end cap style is defined by the vg_lite_cap_style_t enum.
join_styleThe line join style defined by the vg_lite_join_style_t enum.
line_widthThe line width of the stroke path. A line width less than or equal to 0 prevents stroking

from taking place.
miter_limitWhen stroking using the Miter stroke vg_lite_join_style_t, the miter length (that is, the

length between the intersection points of the inner and outer perimeters of the two “fat-
tened” lines) is compared to the product of the user-set miter limit and the line width.
If the miter length exceeds this product, the Miter join is not drawn and a Bevel join is
substituted. Note: Miter limit values less than 1 are silently clamped to 1.

*dash_patternPointer to a dash pattern that consists of a sequence of lengths of alternating “on” and
“off” dash segments. The first value of the dash array defines the length, in user coordi-
nates, of the first “on” dash segment. The second value defines the length of the following
“off” segment. Each subsequent pair of values defines one “on” and one “off” segment.
Note: If the dash pattern has an odd number of elements, the final element is ignored.

pat-
tern_count

The count of dash on/off segments.

dash_phaseDefines the starting point in the dash pattern that is associated with the start of the first
segment of the path. For example, if the dash pattern is [10 20 30 40] and the dash
phase is 35, the path is stroked with an “on” segment of length 25 (skipping the first
“on” segment of length 10, the following “off” segment of length 20, and the first 5 units
of the next “on” segment), followed by an “off” segment of length 40. The pattern is then
repeated from the beginning, with an “on” segment of length 10, an “off” segment of
length 20, an “on” segment of length 30.

color The stroke color.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_update_stroke function Description:
This function uses the path and stroke attributes as specified with the function vg_lite_set_stroke
to update the stroke path’s parameters and generate stroke path data . (from March 2022)

Syntax:

vg_lite_error_t vg_lite_update_stroke (
vg_lite_path_t *path,

);

Parameters:

1.7. Multimedia 331



MCUXpresso SDK Documentation, Release 25.12.00

Parameter Description
*path Pointer to the vg_lite_path_t structure that describes the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

Parent topic:Stroke operations

Deprecated and renamed APIs The following functions are deprecated and are either obso-
lete or replaced by a more efficient implementation. Their use is discouraged and will produce
unpredictable behaviors.

The names of some functions, enums and structures were modified during code refinements in
2022Q3. If the parameters did not change, the deprecated syntax detail is not provided below.
Changes to enums and structs are not mentioned here, instead refer to the item itself.

Deprecated or renamed API Recommended replacement
API

Source
file

Date depre-
cated

vg_lite_perspective n/a vg_lite.h August 2022
vg_lite_set_dither vg_lite_enable_dither

vg_lite_disable_dither
vg_lite.h August 2022

vg_lite_append_path vg_lite_path_append vg_lite.h Sept 2022
vg_lite_path_calc_length vg_lite_get_path_length vg_lite.h Sept 2022
vg_lite_set_image_global_alpha vg_lite_set_source_global_alpha vg_lite.h Sept 2022
vg_lite_dest_global_alpha vg_lite_set_dest_global_alpha vg_lite.h Sept 2022
vg_lite_mem_avail vg_lite_get_mem_size vg_lite.h Sept 2022
vg_lite_enable_premultiply n/a vg_lite.h Dec 2022
vg_lite_disable_premultiply n/a vg_lite.h Dec 2022
vg_lite_set_premultiply n/a vg_lite.h Aug 2023
vg_lite_radial_gradient_spreadmode_t
enum

vg_lite_gradient_spreadmode_t
enum

vg_lite.h March 2023

API Name Refinement (no change to parameters)

vg_lite_buffer_upload vg_lite_upload_buffer_ vg_lite.h Sept 2022
vg_lite_*mask* most vg_lite_*mask_layer vg_lite.h Sept 2022
vg_lite_*_grad vg_lite_*_gradient (parameters

unchanged)
vg_lite.h Sept 2022

vg_lite_*_radial_grad* vg_lite_*_rad_grad* vg_lite.h Sept 2022
vg_lite_buffer_image_mode_t vg_lite_image_mode_t vg_lite.h Sept 2022
vg_lite_transparency_mode_t vg_lite_transparency_t vg_lite.h Sept 2022
vg_lite_set_update_stroke vg_lite_update_stroke vg_lite.h Sept 2022
vg_lite_set_draw_path_type vg_lite_set_path_type vg_lite.h Sept 2022

Deprecated vg_lite syntax Syntax for deprecated functions is provided below for reference.

Note: This list does not include items renamed during code refinement of Sept 2022.

vg_lite_perspective (deprecated) Syntax:

332 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

void vg_lite_perspective (
vg_lite_float_t px,
vg_lite_float_t py,
vg_lite_matrix_t *matrix

);

Parent topic:Deprecated vg_lite syntax

vg_lite_set_dither (deprecated) Syntax:

vg_lite_error_t vg_lite_set_dither (
int enable

);

Parent topic:Deprecated vg_lite syntax

vg_lite_enable_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_enable_premultiply (
void

);

Parent topic:Deprecated vg_lite syntax

vg_lite_disable_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_disable_premultiply (
void

);

Parent topic:Deprecated vg_lite syntax

vg_lite_set_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_set_premultiply (
vg_lite_uint8_t src_premult,
vg_lite_uint8_t dst_premult,

);

Parent topic:Deprecated vg_lite syntax

Parent topic:Deprecated and renamed APIs

VGLite API version 2.0 to 3.0 migration guide The VGLite API version 3.0 is not fully compat-
ible with VGLite API version 2.0. VGLite API version 3.0 includes some new API functions for the
new features in the latest VG GPU like GC555. Some VGLite API version 2.0 function interfaces
are changed in API version 3.0. So, the existing VGLite API version 2.0 applications must be mod-
ified to compile and run properly with the VGLite API version 3.0 driver. This chapter provides
guidance for migrating VGLite API version 2.0 applications to VGLite API version 3.0.

VGLite API name changes in API version 3.0 Some original VGLite API names are changed in
API version 3.0 for API naming consistency. In the VGLite API version 3.0 header file vg_lite.h, a
set of API name macros are defined for the equivalent API names between API version 3.0 and
API version 2.0, so it is not necessary to modify the VGLite API function names in API version 2.0
applications for the application to compile and run with the API version 3.0 driver.

1.7. Multimedia 333



MCUXpresso SDK Documentation, Release 25.12.00

The list of equivalent VGLite API functions between API version 3.0 and API version 2.0 is shown
below. These API functions’ parameters are the same between API version 3.0 and API version
2.0.

/* API name defines for backward compatibility to VGLite 2.0 APIs */
#define vg_lite_buffer_upload vg_lite_upload_buffer
#define vg_lite_path_append vg_lite_append_path
#define vg_lite_path_calc_length vg_lite_get_path_length
#define vg_lite_set_ts_buffer vg_lite_set_tess_buffer
#define vg_lite_set_draw_path_type vg_lite_set_path_type
#define vg_lite_create_mask_layer vg_lite_create_masklayer
#define vg_lite_fill_mask_layer vg_lite_fill_masklayer
#define vg_lite_blend_mask_layer vg_lite_blend_masklayer
#define vg_lite_generate_mask_layer_by_path vg_lite_render_masklayer
#define vg_lite_set_mask_layer vg_lite_set_masklayer
#define vg_lite_destroy_mask_layer vg_lite_destroy_masklayer
#define vg_lite_enable_mask vg_lite_enable_masklayer
#define vg_lite_enable_color_transformation vg_lite_enable_color_transform
#define vg_lite_set_color_transformation vg_lite_set_color_transform
#define vg_lite_set_image_global_alpha vg_lite_source_global_alpha
#define vg_lite_set_dest_global_alpha vg_lite_dest_global_alpha
#define vg_lite_clear_rad_grad vg_lite_clear_radial_grad
#define vg_lite_update_rad_grad vg_lite_update_radial_grad
#define vg_lite_get_rad_grad_matrix vg_lite_get_radial_grad_matrix
#define vg_lite_set_rad_grad vg_lite_set_radial_grad
#define vg_lite_draw_linear_gradient vg_lite_draw_linear_grad
#define vg_lite_draw_radial_gradient vg_lite_draw_radial_grad
#define vg_lite_draw_gradient vg_lite_draw_grad
#define vg_lite_mem_avail vg_lite_get_mem_size
#define vg_lite_set_update_stroke vg_lite_update_stroke

The list of equivalent VGLite API structures and enumerations is shown below:

#define vg_lite_buffer_image_mode_t vg_lite_image_mode_t
#define vg_lite_draw_path_type_t vg_lite_path_type_t
#define vg_lite_linear_gradient_ext_t vg_lite_ext_linear_gradient_t
#define vg_lite_buffer_transparency_mode_t vg_lite_transparency_t

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_set_scissor API interface change The VGLite API vg_lite_set_scissor() function name
is not changed in API version 3.0, but the API parameters are defined differently in API version
3.0.

In VGLite API version 3.0, the vg_lite_set_scissor() function is defined as:

/* Set and enable a scissor rectangle for render target. */
vg_lite_error_t vg_lite_set_scissor(vg_lite_int32_t x, vg_lite_int32_t y,

vg_lite_int32_t right, vg_lite_int32_t bottom);

In VGLite API version 2.0, the vg_lite_set_scissor() function is defined as:

vg_lite_error_t vg_lite_set_scissor(int32_t x, int32_t y, int32_t width, int32_t height);

So, the vg_lite_set_scissor() API parameters “width” and “height” in the VGLite API version 2.0
application must be changed to “right” x-coordinate value and “bottom” y-coordinate value.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_map API interface change The VGLite API vg_lite_map() function name is not changed
in API version 3.0, but the API parameters are defined differently in API version 3.0.

334 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

In VGLite API version 3.0, the vg_lite_map() function is defined as:

/* Map a buffer into hardware accessible address space. */
vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer, vg_lite_map_flag_t flag, int32_t fd);

In VGLite API version 2.0, the vg_lite_map() function is defined as:

vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer);

So, vg_lite_map() in VGLite API version 3.0 API requires two extra parameters “flag” and “fd”,
which can simply be set as vg_lite_map (buffer, 0, 0) in applications.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_enable_scissor / vg_lite_disable_scissor API The VGLite API vg_lite_enable_scissor()
and vg_lite_disable_scissor() functions are valid only for vg_lite_scissor_rects() API. They have
no effect for vg_lite_set_scissor() in VGLite API version 3.0.

Although the behavior of vg_lite_enable_scissor() and vg_lite_disable_scissor() is changed in
VGLite API version 3.0, there is no need to change these functions in VGLite API version 2.0
applications to work with the VGLite API version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_draw_pattern API interface change The VGLite API vg_lite_draw_pattern() function
name is not changed in API version 3.0, but the API parameters are defined differently in API
version 3.0.

In VGLite API version 3.0, the vg_lite_draw_pattern() function is defined as:

/* Draw a path that is filled by a transformed image pattern. */
vg_lite_error_t vg_lite_draw_pattern(vg_lite_buffer_t *target,

vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_buffer_t *pattern_image,
vg_lite_matrix_t *pattern_matrix,
vg_lite_blend_t blend,
vg_lite_pattern_mode_t pattern_mode,
vg_lite_color_t pattern_color,
vg_lite_color_t color,
vg_lite_filter_t filter);

Compared to the VGLite API version 2.0 vg_lite_draw_pattern() function, “color” is a new addi-
tional parameter. It specifies a 32bpp ARGB color (vg_lite_color_t) to be applied as a mix color.
If nonzero, the mix color value gets multiplied with each source pixel before blending happens.
If a mix color is not needed, set the color parameter to 0.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

[New] vg_lite_copy_image in VGLite API version 3.0 The new API vg_lite_copy_image() is
added in VGLite API version 3.0 to support the OpenVG vgCopyImage API, which performs a pixel
rectangle copy without pixel transformation, blending, filtering operations.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

1.7. Multimedia 335



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_set_dither API is deprecated in API version 3.0 The original API version 2.0 function
vg_lite_set_dither(int enable) API is removed from API version 3.0, it is replaced with two new
APIs for dither enable/disable:

/* Enable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_enable_dither();
/* Disable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_disable_dither();

Therefore, the vg_lite_set_dither(enable) function in the VGLite API version 2.0 application must
be replaced with vg_lite_enable_dither() or vg_lite_disable_dither() to work with the VGLite API
version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Deprecated VGLite API version 2.0 functions The VGLite API vg_lite_perspective(),
vg_lite_enable_premultiply(), vg_lite_disable_premultiply() functions are removed from API
version 3.0. These API functions must be deleted from a VGLite API version 2.0 application to
work with the VGLite API version 3.0 driver.

In VGLite API version 3.0, the color premultiply setting is defined by the vg_lite_blend_t enu-
meration to replace the original vg_lite_enable_premultiply() and vg_lite_disable_premultiply()
APIs.

• VG_LITE_BLEND_* enumeration values in vg_lite_blend_t define non-premultiplied blend-
ing modes.

• OPEVG_BLEND_* enumeration values in vg_lite_blend_t define premultiplied Porter-Duff
blending modes.

So, the VGLite API version 3.0 application can set different blending modes to get the desired
premultiplied/non-premultiplied blending result.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Revision history

336 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Doc-
u-
ment
ID

Re-
lease
date

Description

IMXRTVGLITEAPIRM,
Rev.
1.2

17
Jan-
uary
2025

The document is updated to correspond to the API version 3.0

IMXRTVGLITEAPIRM,
Rev.
1.1

22
Septem-
ber
2022

- Paragraph 4.1.1 Updated Table 3 - vg_lite_feature_t enumeration. - Paragraph
6.6 Added documentation for new API vg_lite_set_dither - Paragraph 8.2 Blit
structures- Added documentation for new data structure vg_lite_color_key_t -;
added documentation for new data structure vg_lite_color_key4_t - Paragraph
8.3.1, vg_lite_blit function- added note related to HW limitation on RT500 platform
- Paragraph 8.3.2, vg_lite_blit_rect function -added note related to HW limitation
on RT500 platforms - Paragraph 8.3.3, vg_lite_get_transform_matrix function- ad-
justed function description, adjusted function parameters description - Paragraph
8.3, blit functions- added documentation for new API vg_lite_set_color_key - Para-
graph 8.4.1, vg_lite_enable_premultiply function- added note about limited support
on specific platforms - Paragraph 8.4.2, vg_lite_disable_premultiply function- added
note about limited support on specific platforms - Paragraph 10.1.3, vg_lite_fill_t
enumeration- added note about crossing points buffer limitation - Paragraph
10.2, draw and gradient structures- added documentation for new data struc-
ture vg_lite_gradient_parameter_t - done- added documentation for new data struc-
ture vg_lite_gradient_ext_t- Paragraph 10.3, draw functions- added documentation
for new API vg_lite_draw_linear_gradient- Paragraph 10, vector-Based Draw Op-
erations - added new paragraph 10.5 Extended linear gradient initialization and
control functions; added documentation for new API vg_lite_set_linear_gradient;
added documentation for new API vg_lite_get_linear_grad_matrix; added docu-
mentation for new API vg_lite_update_linear_grad; Added documentation for new
API vg_lite_clear_linear_grad - Paragraph 10.5, Radial gradient functions - adjusted
paragraph title - Added new Chapter Stroke Operations - Chapter Platform-Specific
Features -updated Table 41 - Platform-specific VGLite features

IMXRTVGLITEAPIRM,
Rev.
1

27
Jan-
uary
2022

Introduction Added i.MX RT1160 to the list of NXP devices that support VGLite
graphics API vg_lite_error_t enumeration Updated Table 1 vg_lite_feature_t enu-
merationUpdated Table 1 API control

IMXRTVGLITEAPIRM,
Rev.
0

22
Febru-
ary
2021

Initial release

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials must be
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

1.7. Multimedia 337



MCUXpresso SDK Documentation, Release 25.12.00

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.8 Wireless

1.8.1 NXP Wireless Framework and Stacks

Wi-Fi, Bluetooth, 802.15.4

Application notes
• Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i.MX-RT-SDK.pdf

• Link TN00066-WFA-Derivative-Certification-Process.pdf

User manuals
• Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i.MX-RT-

Platforms.pdf

• UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i.MX-RT-Platforms.pdf

• Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i.MX-RT-
Platforms.pdf

• Link UM11567-WFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i.MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.12.00 has been tested for the wireless SoCs listed in Supported prod-
ucts.

Supported products
• 88W8987

• IW416

• IW6111

• IW6122

338 Chapter 1. Middleware

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf


MCUXpresso SDK Documentation, Release 25.12.00

• AW6113

• RW610

• RW612

Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-
port is available only in i.MX RT1180 EVKA

Features

Wi-Fi radio

Client mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) TX and RX support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) 4k TX and RX support Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) 1x1 20 MHz and 40 MHz Y N Y N N Y
802.11n - High throughput HT Beamformee (explicit) Y Y Y N N Y
802.11ac - Very high throughput 2.4 GHz band supported channel bandwidth: 20MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 80 MHz Y N Y N N Y
802.11ac - Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac - Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1 Y N Y N N Y
802.11ac - Very high throughput MU-MIMO Beamformee (Explicit and Implicit) Y N Y Y Y Y
802.11ac - Very high throughput RTS/CTS with BW signaling N N N N N N
802.11ac - Very high throughput Operation mode notification Y N Y N N Y
802.11ac - Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac - Very high throughput TX VHT MCS rate adaptation Y N Y Y Y Y
802.11ac - Very high throughput Low density parity check (LDPC) Y N Y N N Y
802.11ax - High efficiency 2.4 GHz band supported channel bandwidth: 20MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 20 MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 40 MHz N N Y N N Y
802.11ax - High efficiency 5 GHz band supported channel bandwidths: 80 MHz N N Y N N Y
802.11ax - High efficiency OFDMA (UL/DL, 106 RU) N N Y Y Y Y
802.11ax - High efficiency OFDMA (UL/DL, 484 RU) N N Y N N Y
802.11ax - High efficiency 1024 QAM N N Y N N Y
802.11ax - High efficiency Target wake time (TWT) N N Y Y Y Y
802.11ax - High efficiency 256 QAM modulation – MCS8 and MCS9 N N Y Y Y Y
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 2.4 GHz N N Y N N Y

continues on next page

1.8. Wireless 339



MCUXpresso SDK Documentation, Release 25.12.00

Table 5 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 5 GHz N N Y N N Y
802.11ax - High efficiency DCM N N Y N N Y
802.11ax - High efficiency DCM N N Y Y N Y
802.11ax - High efficiency ER (extended range) N N Y Y Y Y
802.11ax - High efficiency SU Beamforming N N Y Y Y Y
802.11ax - High efficiency OMI (operating mode indication) N N Y Y Y Y
802.11a/b/g features 802.11b/g data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features 802.11a data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features TX rate adaptation (BG) Y Y Y Y Y Y
802.11a/b/g features Fragmentation/defragmentation N N N Y Y N
802.11a/b/g features ERP protection, slot time, preamble Y Y Y Y Y Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)3 Y Y Y Y Y Y
802.11i security Opensource WPA Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | WPA Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | WPA Supplicant Y Y Y Y Y Y
802.11i security 802.1x EAP Authentication Methods3 | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode3 | WPA Supplicant N N N Y Y N
802.11i security WPA3-Enterprise3 (Suite-B) |National Security Algorithm (CSNA) | WPA Supplicant Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | WPA Supplicant Y Y Y Y Y Y
802.11i security Embedded Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Roaming Y Y Y Y Y Y
802.11i security WPA3 Enterprise3 Y Y Y YY Y
Power save mode Deep sleep Y Y Y Y Y Y
Power save mode IEEE power save Y Y Y Y Y Y
Power save mode Host sleep/WoWLAN (inband)3 N N N Y Y N
Power save mode Host sleep/WoWLAN (outband)3 Y Y Y N N Y
Power save mode U-APSD Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF require and capable Y Y Y Y Y Y
802.11w - PMF (protected management frames) Unicast management frames - Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - PMF (protected management frames) Broadcast management frames - Encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - PMF (protected management frames) SA query request/response Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF support using embedded supplicant Y Y Y Y Y Y
DPP functionality Wi-Fi easy connect3 Y Y Y Y Y Y
General features Embedded supplicant Y Y Y Y Y Y
General features Host sleep packet filtering N N Y Y Y Y
General features Host-based supplicant Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EDMAC - EU adaptivity support (ETSI certification) Y Y Y Y Y Y
General features External coexistence N N N N N N
General features IPv6 NS offload N N Y Y Y Y
General features FIPS Y Y Y Y Y Y
General features TKIP1 N N N N N Y
General features RF test mode Y Y Y Y Y Y
General features 802.11k Y Y Y Y Y Y
General features 802.11v Y Y Y Y Y Y
General features DFS radar detection in peripheral mode (follow AP)5 Y Y Y Y Y Y
General features Embedded roaming based on RSSI threshold beacon loss Y Y Y Y Y Y
General features ARP offload N N Y Y Y Y

continues on next page

340 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 5 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
General features Cloud keep alive Y Y Y N N Y
General features UNII-4 channel support N N Y Y Y Y
General features ClockSync using TSF N N Y N N Y
General features Auto reconnect Y Y N N N N
General features CSI (channel state information)3 Y N Y Y Y Y
General features Ambient Motion Index (AMI)3 N N Y Y Y Y
General features Independent reset (in-band)3 Y Y Y Y Y Y
General features Independent reset (out-band)3 Y Y Y N N Y
General features Wi-Fi agile multiband N N Y Y Y Y
General features Network co-processor (NCP) mode N N N Y4 N N
General features 802.11mc - WLS (Wi-Fi location service)3 N N Y N N Y
General features 802.11az3 N N Y N N Y

Parent topic:Wi-Fi radio

[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.

[2] Support available in host-base supplicant.

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Read more about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1 must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y N N Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) Rx support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) -4k RX support Y Y Y Y Y Y
802.11n - High throughput Max client support (up to 8 devices) Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 80MHz Y N Y N N Y
802.11ac – Very high throughput Short/long guard interval (400ns/800ns) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) Y N Y Y N Y
802.11ac – Very high throughput Single user- Aggregated MAC protocol data unit (SU-AMPDU) aggregation Y N Y Y Y Y
802.11ac – Very high throughput RTS/CTS with BW signaling N N Y N N Y
802.11ac – Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac – Very high throughput TX VHT MCS rate adaptation Y N N Y Y N
802.11ac – Very high throughput MU-MIMO Beamformee (explicit and implicit) Y N Y Y Y Y
802.11ac – Very high throughput Operation mode notification Y N Y N N Y

continues on next page

1.8. Wireless 341



MCUXpresso SDK Documentation, Release 25.12.00

Table 6 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11ax – High efficiency 2.4 GHz band operation (20 MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 2.4 GHz band operation (40 MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (20MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 5 GHz band operation (40MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (80 MHz channel bandwidth) N N Y N N Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e -QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)1 Y Y Y Y Y Y
802.11i security Hostapd Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | hostapd Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Hostapd Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | Hostapd Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | Hostapd Y Y Y N N Y
802.11i security 802.1x EAP Authentication Methods | Hostapd Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode1 | Hostapd N N N Y Y N
802.11i security WPA3-Enterprise (Suite-B)1 |National Security Algorithm (CSNA) | Hostapd Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Hostapd Y Y Y Y Y Y
802.11i security Embedded Authenticator Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11y Extended channel switch announcement (ECSA) Y Y Y Y Y Y
802.11w - protected management frames (PMF) PMF require and capable Y Y Y Y Y Y
802.11w - protected management frames (PMF) Unicast management frames -Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - protected management frames (PMF) Broadcast management frames -encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - protected management frames (PMF) SA query request/response Y Y Y Y Y Y
General features Embedded authenticator Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EU adaptivity support Y Y Y Y Y Y
General features Automatic channel selection (ACS) Y Y Y Y Y Y
General features External coexistence (software interface) N N N N N N
General features Independent reset (in-band)1 Y Y Y Y Y Y
General features Network co-processor (NCP) mode2 N N N Y N N
General features Vendor specific IE (custom IE) Y Y Y Y Y Y
General features Hidden SSID (broadcast SSID disabled) Y Y Y Y Y Y
General features MAC address filter N N N Y Y N
General features Multiple external STA support Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in
References.

AP-STA mode

Features Sub features 88W8987IW416IW611/IW612RW610/RW612IW610AW611
Simultaneous AP-STA oper-
ation (same channel)

AP-STA func-
tionality

Y Y Y Y Y Y

SAD Software an-
tenna diver-
sity1

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

342 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

Fea-
tures

Sub features 88W8987IW416 IW611/IW612RW610/RW612IW610 AW611

Generic Firmware download (paral-
lel)1

Y Y Y N N Y

Generic Secure boot N N Y Y Y Y
Generic Kconfig memory optimizer3 Y Y Y Y Y Y
Generic Firmware Compression2 N Y N N N N
Generic u-AP intra-BSS Y N Y Y Y Y
Generic Net Monitor Mode N N N Y Y N
Generic Net Monitor Mode with packet

transmission
N N N Y Y N

Generic In-Channel Net Monitor mode N N N N N N

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W89873IW4162IW611/IW6123RW610/RW6123IW6103AW6113
P2P basic func-
tionality1

P2P Auto GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GC Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Persistent
Group

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Invitation Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Device Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Provision Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GO + STA

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GC + uAP

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

1.8. Wireless 343



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth radio

344 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth classic

Feature Sub feature 88W8987IW416IW611/IW612RW610/RW612IW610AW611
General fea-
tures

Bluetooth Class 1.5 and Class 2 sup-
port

Y Y Y N N Y

General fea-
tures

Scatternet support Y Y Y N N Y

General fea-
tures

Maximum of seven simultaneous
ACL connections – Central links

Y Y Y N N Y

General fea-
tures

Automatic packet type selection Y Y Y N N Y

General fea-
tures

Bluetooth - 2.1 to 5.0 specification
support

Y Y Y N N Y

General fea-
tures

Low power sniff Y Y Y N N Y

General fea-
tures

Deep sleep using out-of-band Y Y N N N N

General fea-
tures

Wake on Bluetooth (SoC to host) Y Y Y N N Y

General fea-
tures

Independent reset (in-band)1 Y Y Y Y N Y

General fea-
tures

Independent reset (out-band)1 Y Y N N N N

General fea-
tures

Firmware download (parallel)1 Y Y N N N N

General fea-
tures

RF test mode Y Y Y N N Y

Bluetooth
packet type
supported

ACL (DM1, DH1, DM3, DH3, DM5,
DH5, 2-DH1, 2-DH3, 2-DH5, 3-DH1,
3-DH3, 3-DH5)

Y Y Y N N Y

Bluetooth
packet type
supported

SCO (HV1, HV3) Y Y Y N N Y

Bluetooth
packet type
supported

eSCO (EV3, EV4, EV5, 2EV3, 3EV3,
2EV5, 3EV5)

Y Y Y N N Y

Bluetooth
profiles sup-
ported

A2DP source/sink Y Y Y N N Y

Bluetooth
profiles sup-
ported

AVRCP target/controller Y Y Y N N Y

Bluetooth
profiles sup-
ported

HFP Dev/AG Y Y Y N N Y

Bluetooth
profiles sup-
ported

OPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

SPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

HID target/device Y Y Y N N Y

Bluetooth au-
dio features

PCM NBS central/peripheral Y Y Y N N Y

Bluetooth au-
dio features

PCM WBS central/peripheral Y Y Y N N Y

1.8. Wireless 345



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Generic features Maximum 16 Bluetooth LE connections (central role) Y Y Y Y Y Y
Generic features Deep sleep using out-of-band Y Y N N N N
Generic features Wake on Bluetooth LE (SoC to Host) Y Y Y N N Y
Generic features RF Test mode Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE HID over GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GAP Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy physical layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy link layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Enhancements to HCI for Low Energy Y Y Y Y Y Y
Bluetooth LE 4.0 support Low energy direct test mode Y Y Y Y Y Y
Bluetooth 4.1 support Low duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE dual mode topology Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE privacy v1.1 Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE link layer topology Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE secure connection Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE link layer privacy v1.2 Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE data length extension Y Y Y Y Y Y
Bluetooth 4.2 support Link layer extended scanner filter policies Y Y Y Y Y Y
Bluetooth 5.0 support Bluetooth LE 2 Mbps support Y Y Y Y Y Y
Bluetooth 5.0 support High duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 5.0 support Low Energy advertising extension N Y Y Y Y Y
Bluetooth 5.0 support Low Energy long range N Y Y Y Y Y
Bluetooth 5.0 support Low Energy periodic advertisement N Y Y Y Y Y
Bluetooth 5.2 support Low Energy power control N N Y Y Y Y
Bluetooth LE audio support1 2 Isochronous channel N N Y Y Y Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS source N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS sink N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIG Validation N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio: Mono and Stereo N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS source N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS sink N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIG validation N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS synchronization N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio: mono and stereo N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio TX/RX and bidirectional traffic N N Y N N Y

continues on next page

346 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 7 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Bluetooth LE audio support1 2 ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms N N Y N N Y
Bluetooth LE audio support1 2 Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kHz, 44.1kHz, 48kHz N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Auracast use cases: Auracast streaming 2 BISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast use cases: Unicast streaming 2 CISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast Use cases: Unicast streaming 4 CISes N N Y N N Y
Bluetooth LE audio support1 2 A2DP + Auracast/Unicast Bridge use cases – CIS/BIS N N Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y

Note: Details of the tested Bluetooth LE Audio use cases:

• Number of streams:

– 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

– 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

– 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

• PHY: 2M and 1M

• Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

• Packing: sequential and interleaved

• Bit rate: maximum 96kbps

– For 1-CIG with upto 3-CIS: maximum bit rate 96kbps

– For 1-CIG with 4-CIS: maximum bit rate 80kbps

– For 1-BIG with 4-BIS: maximum bit rate 80kbps

– For 2-CIG cases: maximum bit rate 80kbps

• Mode: unframed mode

• 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

• Bluetooth + Bluetooth LE Audio

• A2DP + Bluetooth LE Audio bridging support

• A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |
PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR and Wi-Fi co-
existence scenarios such as LE audio + BR/EDR link or LE audio + Wi-Fi link. From the perspective

1.8. Wireless 347



MCUXpresso SDK Documentation, Release 25.12.00

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea-
tures

Spinel over SPI Y N N

General fea-
tures

OpenThread RCP Mode implementing Thread1.3 Y N N

General fea-
tures

802.15.4-2015 MAC/PHY as required by Thread
1.3

Y Y Y

General fea-
tures

OpenThread Border Router (OTBR) v1.1 Y Y Y

General fea-
tures

Direct/indirect transmission with/without ACK Y Y Y

General fea-
tures

802.15.4 CSL parent feature implementation Y Y Y

General fea-
tures

Enhanced Frame Pending Y Y Y

General fea-
tures

Enhanced keep alive Y Y Y

General fea-
tures

Router Y Y Y

General fea-
tures

Leader Y Y Y

General fea-
tures

Router Eligible End Device (REED) Y Y Y

General fea-
tures

End Device (FED, MED) Y Y Y

Zigbee features Coordinator N N Y
Zigbee features Router N N Y
Zigbee features End Device (RX ON) N N Y
Zigbee features R23 N N Y
Zigbee features OTA Client N N Y
Zigbee features OTA server N N Y
Matter features Matter over Wi-Fi Y N N
Matter features Matter over Thread Y N Y

Parent topic:Features

Coexistence

348 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW612IW610RW612
BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

STA + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Mobile AP + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + Wi-Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth LE2

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth + Bluetooth LE

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth +
OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE +
OpenThread + Wi-
Fi

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Single antenna configu-
ration

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

External Coexistence
PTA

N Y Y

Parent topic:Coexistence

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

1.8. Wireless 349



MCUXpresso SDK Documentation, Release 25.12.00

Features Macros to enable the feature Memory
impact

CSI CONFIG_CSI Flash
- 60K,
RAM -
4K

AMI CONFIG_CSI_AMI3 Flash -
2032K,
RAM -
772K

DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K

Independent
reset

CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal

Parallel
firmware
download
Wi-Fi

CONFIG_WIFI_IND_DNLD Minimal

Parallel
firmware
download
Bluetooth

CONFIG_BT_IND_DNLD Minimal

WPA3 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

WPA2 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash

- 10K,
RAM -
57K

802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

802.11az CONFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

Non-
blocking
firmware
download
mechanism

CONFIG_FW_DNLD_ASYNC —

Antenna di-
versity

CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -

P2P CONFIG_WPA_SUPP_P2P -

Note:
• For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h

350 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory***.***

• Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.

[2] Prerequisite macros for 802.11mc and 802.11az features

[3] Enable PRINTF_FLOAT_ENABLE only for MCUXpresso IDE and specifically for the RT1060-
EVKC and RT1170-EVKB platforms

• Go to project properties > C/C++ Build > Settings > Preprocessor.

• Add PRINTF_FLOAT_ENABLE=1

88W8987 release notes

Package information
• SDK version: 25.12.00

Parent topic:88W8987 release notes

Version information
• Wireless SoC: 88W8987

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

– 21 - Release version

– p153.9 - Patch number

Parent topic:88W8987 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1.8. Wireless 351



MCUXpresso SDK Documentation, Release 25.12.00

WFA certifications
• STA | 802.11n

• STA | 802.11ac

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• External Access Point: ASUS AX88U

• DUT: W8987 Murata (Module: 1ZM M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• External Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

352 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External APs: ASUS AX88U

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 52 60 63
WPA2-AES 50 51 60 62
WPA3-SAE 50 51 60 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

1.8. Wireless 353



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155

STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 124 119 228 235
WPA2-AES 118 107 228 204
WPA3-SAE 114 107 229 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 47 48 57 60
WPA2-AES 46 49 57 60
WPA3-SAE 47 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

354 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 127 141 227 217
WPA2-AES 124 127 227 198
WPA3-SAE 125 127 227 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com-
po-
nent

Description

Wi-
Fi

WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless 355



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo-
nent

Description

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo-
nent

Description

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

356 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues
Component Description
NA

Parent topic:88W8987 release notes

IW416 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW416 release notes

Version information
• Wireless SoC: IW416

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

1.8. Wireless 357



MCUXpresso SDK Documentation, Release 25.12.00

– 21 - Release version

– p153.9 - Patch number

Parent topic:IW416 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW416 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW416 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

358 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 47 59 59
WPA2-AES 39 43 58 55
WPA3-SAE 39 45 57 53

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 72 59 95 87
WPA2-AES 69 58 116 92
WPA3-SAE 57 58 115 91

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 43 48 59 59
WPA2-AES 42 48 56 60
WPA3-SAE 42 47 57 58

1.8. Wireless 359



MCUXpresso SDK Documentation, Release 25.12.00

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 68 64 118 96
WPA2-AES 65 59 117 96
WPA3-SAE 69 59 118 96

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 41 45 52 54
WPA2-AES 42 45 53 53
WPA3-SAE 45 42 53 53

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 62 70 123 90
WPA2-AES 61 65 117 90
WPA3-SAE 61 65 118 87

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 45 58 57
WPA2-AES 42 45 55 56
WPA3-SAE 43 45 57 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 75 85 118 100
WPA2-AES 77 68 118 100
WPA3-SAE 77 69 118 100

Parent topic:Wi-Fi throughput

Parent topic:IW416 release notes

360 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo-
nent

Description

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com-
ponent

Description

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless 361



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description
Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com-
ponent

Description

Wi-Fi The DUT encounters a command response timeout during the execution of the wlan-
info command following UDP traffic tests.

Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW416 release notes

Known issues

Compo-
nent

Description

Coex Wi-Fi connection in 2.4GHz is not stable, observed deauthentication within
10sec.

Parent topic:IW416 release notes

362 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in i.MX RT1170 EVKB
and i.MX RT1060 EVKC.

Package information
• SDK version: 25.12.00

Parent topic:IW611/IW612 release notes

Version information
• Wireless SoC: IW611/IW612

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.10

– 18 - Major revision

– 99 - Feature pack

– 3 - Release version

– p27.10 - Patch number

Parent topic:IW611/IW612 release notes

Host platform
• i.MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

– 802.15.4 over SPI (IW612 only)

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

1.8. Wireless 363



MCUXpresso SDK Documentation, Release 25.12.00

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW611/IW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi_wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

364 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
To get the highest throughput, the throughput values shown in STA throughput and Mobile
AP throughput are measured with the maximum values of the default host configuration
macros. STA and AP throughput captured with the minimum values of the host configuration
macros shows the throughput numbers obtained when using the minimum values of the host
configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX_SIZE 96 32
DEFAULT_RAW_RECVMBOX_SIZE 32 12
DEFAULT_UDP_RECVMBOX_SIZE 64 12
DEFAULT_TCP_RECVMBOX_SIZE 64 12
TCP_MSS 1460 536
TCP_SND_BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

1.8. Wireless 365



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 51 64 63
WPA2-AES 51 50 62 62
WPA3-SAE 51 50 63 61

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 79 85 118 131
WPA2-AES 78 84 118 129
WPA3-SAE 78 83 118 130

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 50 52 63 64
WPA2-AES 49 51 63 63
WPA3-SAE 49 51 63 63

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 77 86 118 133
WPA2-AES 76 86 118 132
WPA3-SAE 79 86 118 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 56 59 76 76
WPA2-AES 56 59 74 75
WPA3-SAE 56 59 76 75

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (VHT)

366 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 88 95 118 177
WPA2-AES 87 94 118 175
WPA3-SAE 91 94 118 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 121 102 118 200
WPA2-AES 121 103 118 200
WPA3-SAE 121 103 118 200

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 78 64 117 105
WPA2-AES 78 67 117 104
WPA3-SAE 79 65 117 97

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 95 91 118 199
WPA2-AES 93 90 118 200
WPA3-SAE 91 87 118 199

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 76 66 118 127
WPA2-AES 75 68 118 125
WPA3-SAE 75 68 118 126

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HE)

1.8. Wireless 367



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 105 69 118 200
WPA2-AES 104 70 118 200
WPA3-SAE 104 70 118 200

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 125 73 118 200
WPA2-AES 123 76 118 200
WPA3-SAE 123 76 118 200

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 54 61 60
WPA2-AES 50 55 61 60
WPA3-SAE 51 54 61 60

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 85 107 118 124
WPA2-AES 86 101 118 126
WPA3-SAE 84 102 118 126

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 43 63 60
WPA2-AES 50 43 62 60
WPA3-SAE 50 43 63 60

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 89 115 118 128
WPA2-AES 88 110 118 128
WPA3-SAE 88 115 118 128

368 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 58 66 76 72
WPA2-AES 58 65 75 72
WPA3-SAE 58 65 75 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 103 141 135 168
WPA2-AES 102 134 137 167
WPA3-SAE 102 134 139 167

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 137 180 182 218
WPA2-AES 130 174 181 218
WPA3-SAE 136 175 182 218

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 53 66 85 120
WPA2-AES 52 65 83 116
WPA3-SAE 52 65 83 118

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 86 100 133 132
WPA2-AES 83 100 135 134
WPA3-SAE 86 100 136 134

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 65 82 83
WPA2-AES 58 65 82 82
WPA3-SAE 58 65 81 81

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

1.8. Wireless 369



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 104 141 151 170
WPA2-AES 102 137 151 170
WPA3-SAE 103 136 150 170

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 138 180 189 219
WPA2-AES 135 175 190 218
WPA3-SAE 135 175 192 218

Parent topic:Wi-Fi throughput

Parent topic:IW611/IW612 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW611/IW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com-
po-
nent

Description

Blue-
tooth

Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming
sessions.

Parent topic:Bug fixes and/or feature enhancements

370 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com-
po-
nent

Description

Wi-
Fi

802.11R Fast BSS roaming works only with hostapd and does not work with standard
APs (supporting 11R)

Blue-
tooth

DUT is not able to sustain a connection with the remote device that does extended ad-
vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com-
po-
nent

Description

Wi-
Fi

STAUT not sending Neighbor Advertisement packet after receiving Neighbor Solicitation
packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Blue-
tooth

When DUT works as CIS source and CIS Offset is 612us, high packet drops observed
which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bit rate.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com-
po-
nent

Description

Wi-
Fi

After performing independent reset (out-of-band mode), the STAUT fails to connect to
the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue-
tooth

Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established
with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo-
nent

Description

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue-
tooth

CIS Sink frequently fails to acknowledge CIS Source TX PDU.

1.8. Wireless 371



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com-
ponent

Description

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,

with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW611/IW612 release notes

Known issues

Com-
po-
nent

Description

Blue-
tooth

Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-
connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Parent topic:IW611/IW612 release notes

RW610/RW612 release notes

372 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Package information
• SDK version: 25.12.00

Parent topic:RW610/RW612 release notes

Version information
• Wi-Fi firmware version: 18.99.6.p50

– rw61x_sb_wifi_a2.bin for A2

– 18 - Major revision

– 99 - Feature pack

– 6 - Release version

– p50 - Patch number

• Bluetooth LE firmware version: 18.25.6.p50

– rw61x_sb_ble_a2.bin for A2

– 18 - Major revision

– 25 - Feature pack

– 6 - Release version

– p50 - Patch number

• 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p50

– rw61x_sb_ble_15d4_combo_a2.bin for A2

– 18 - Major revision

– 34 - Feature pack

– 6 - Release version

– p50 - Patch number

Parent topic:RW610/RW612 release notes

Host platform
• RW610/RW612 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

1.8. Wireless 373



MCUXpresso SDK Documentation, Release 25.12.00

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 1.

Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: refer to 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio

Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread

Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: RW610/RW612

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

374 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

1.8. Wireless 375



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

376 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput

Parent topic:RW610/RW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com-
ponent

Description

Zigbee Zigbee Coordinator and Router are disconnected during BLE connection pairing and
bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo-
nent

Description

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue-
tooth

NCP cannot work after flash uart bins for both host and device side

Parent topic:Bug fixes and/or feature enhancements

1.8. Wireless 377



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.6.p46 to 18.99.6.p47
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:RW610/RW612 release notes

Known issues
Component Description
Wi-Fi —
Bluetooth LE —
Zigbee -
Coex -

Parent topic:RW610/RW612 release notes

IW610 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW610 release notes

Version information
• Wireless SoC: IW610

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.5.p86

– 18 - Major revision

– 99 - Feature pack

– 5 - Release version

– p86 - Patch number

Parent topic:IW610 release notes

Host platform
• IW610 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

378 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW610 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW610

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

1.8. Wireless 379



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 48 44 61 61
WPA2-AES 47 43 59 59
WPA3-SAE 47 43 59 59

380 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 49 46 64 63
WPA2-AES 48 45 62 61
WPA3-SAE 48 45 62 61

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 50 73 73
WPA2-AES 53 49 73 72
WPA3-SAE 52 49 73 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 51 71 70
WPA2-AES 53 50 71 70
WPA3-SAE 52 50 71 70

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 59 56 93 90
WPA2-AES 57 53 94 84
WPA3-SAE 57 53 94 84

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 61 58 96 91
WPA2-AES 59 56 98 85
WPA3-SAE 59 55 98 85

Parent topic:Wi-Fi throughput

Parent topic:IW610 release notes

Bug fixes and/or feature enhancements

1.8. Wireless 381



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo-
nent

Description

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.5.p76 to 18.99.5.p79
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW610 release notes

Known issues
Component Description
NA

Parent topic:IW610 release notes

Abbreviations
Abbreviation Definition
A2DP Advanced audio distribution profile
AMPDU Aggregated MAC protocol data unit
AMSDU Aggregated MAC service data unit
AP Access point
BW Bandwidth
CCMP Counter mode CBC-MAC protocol
CSI Channel state information
CTS Clear To Send
DL Down link
EDCA Enhanced distributed channel access
ER Extended range
ERP Extended rate physical
GATT Generic attribute profile
HFP Hands free profile
HID Human interface device
HT High throughput
LDPC Low density parity check
MCS Modulation and coding scheme
MLME Mac layer management entity
OMI Operating mode indication
PMF Protected management frames
RTS Request to send
SAE Simultaneous authentication of equals
STA Station

continues on next page

382 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 8 – continued from previous page
Abbreviation Definition
TWT Target wake time
UL Up link
VHT Very high throughput
WEP Wired equivalent private
WFD Wi-Fi direct
WMM Wireless multi-media
WPA Wi-Fi protected access
WPS Wi-Fi protected setup
WSC Wi-Fi Simple Configuration

References
1. Application note - AN13681 – Wi-Fi Alliance (WFA) Derivative Certification Process (avail-

able in the SDK package)

2. User manual – UM11442 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for i.MX
RT Platforms (available in the SDK package)

3. User manual – UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

4. Certification – Bluetooth controller - QDID (link)

5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

6. Technical note - TN00066 – Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page – Thread certified products (link)

8. Web page – Connectivity standard alliance (csa) – NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

9. Web page – Connectivity standard alliance (csa) – NXP RW610 Wireless MCU Development
Platform (link)

10. Application note - AN14634 – Kconfig Memory Optimizer (link)

1.8.2 EdgeFast Bluetooth

Currently we provide pdf version of those documentation, later release may convert the pdf
documentation to markdown for better review and aligned format.

• EdgeFast BT PAL API Reference Manual pdf.

MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction

Introduction This document provides an overview of the EdgeFast Bluetooth Protocol Abstrac-
tion Layer stack software based on FreeRTOS OS on the NXP board with variant wireless module
chipsets. This document covers hardware setup, build, and usage of the provided demo applica-
tions.

Stack API Reference EdgeFast Bluetooth Protocol Abstraction Layer is a wrapper layer on top
of the bluetooth host stack. Zephyr Bluetooth host stack API is used as the basis of the EdgeFast
Bluetooth Protocol Abstraction Layer with some enhancement on A2DP/SPP/HFP.

1.8. Wireless 383

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html


MCUXpresso SDK Documentation, Release 25.12.00

The APIs of the EdgeFast Bluetooth Protocol Abstraction Layer host stack are described in the
EdgeFast Bluetooth Protocol Abstraction Layer RM document.

Note: The online document of the Zephyr Bluetooth Host stack is available here: https://docs.
zephyrproject.org/latest/reference/bluetooth/index.html.

Parent topic:Introduction

Overview The EdgeFast Bluetooth Protocol Abstraction Layer host stack software is built based
on MCUXpresso SDK. The following chapter uses RT1060 as an example, other boards have sim-
ilar folder structure and corresponding document.

Folder structure The following figure shows the EdgeFast Bluetooth examples folder struc-
ture.

The following figure shows the EdgeFast Bluetooth Protocol Abstraction Layer host stack folder
structure.

384 Chapter 1. Middleware

https://docs.zephyrproject.org/latest/reference/bluetooth/index.html
https://docs.zephyrproject.org/latest/reference/bluetooth/index.html


MCUXpresso SDK Documentation, Release 25.12.00

The following table provides information regarding the structure and description.

|Folder
|Description
| |————|—————–| |boards/

CMSIS/

devices/

docs/

middleware/

rtos/

tools/

|MCUXpresso SDK directory. Refer to Chapter 5

Release contents of MCUXpresso SDK Release Notes at root/docs/ MCUXpresso SDK Release Notes
for EVK-MIMXRT1060.pdf to know the details

| |boards/<board>/wireless/edgefast_bluetooth_examples

|EdgeFast Bluetooth Protocol Abstraction Layer host stack example projects| |middle-
ware/wireless/edgefast_bluetooth

|EdgeFast Bluetooth Protocol Abstraction Layer host stack source code

|

The EdgeFast Bluetooth folder includes two subfolders:

• include: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
headers.

• source: This subfolder includes EdgeFast Bluetooth Protocol Abstraction Layer host stack
source code based on the Ethermind Bluetooth host stack APIs.

Parent topic:Overview

1.8. Wireless 385



MCUXpresso SDK Documentation, Release 25.12.00

Architecture The figure Architecture of EdgeFast Bluetooth Protocol Abstraction Layer demo
in MCUXpresso SDK below shows that the EdgeFast Bluetooth Protocol Abstraction Layer host
stack is integrated into the MCUXpresso SDK as a middleware component. It leverages the RTOS,
the board support, the peripheral driver/component, and other components in the MCUXpresso
SDK. The Bluetooth application is built on top of the EdgeFast Bluetooth Protocol Abstraction
Layer host stack and supports different peripheral features, Bluetooth features, and different
RTOSes required by the user.

MCUXpresso SDK has the dual-chip architecture defined by EdgeFast Bluetooth Protocol Abstrac-
tion Layer project, the Bluetooth application code, and the EdgeFast Bluetooth Protocol Abstrac-
tion Layer host stack running on the reference board. For example, MIMXRT1060-EVK and the
Linker Layer (LL) run on the Bluetooth modules like AW-AM457-USD, Murata Type 1XK, and Mu-
rata Type 1ZM and has single-chip architecture. Bluetooth Host stack and LL runs on the same
chip, and communicate with Internal Communication Unit (IMU).

The communication between the host stack and the LL is implemented via the standard HCI
UART interface and PCM interface for voice, or the IMU interface.

For details about the different components in MCUXpresso SDK, see Getting Started with MCUX-
presso SDK User’s Guide (document MCUXSDKGSUG) at root/docs/Getting Started with MCUX-
presso SDK.pdf. For details on possible hardware rework requirements, see the hardware rework
guide document of the relative board. For example, Hardware Rework Guide for EdgeFast BT

PAL.

386 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Overview

Features This section provides an overview of Bluetooth features, toolchain support, and RTOS
support.

Bluetooth features
• Bluetooth 5.0 compliant

• Protocol support

– L2CAP, GAP, GATT, RFCOMM, SDP, and SM

Note: The Enhanced Attribute (EATT) protocol is not supported in the current version.
However, the support will be available in a future version.

• Classic profile

– SPP, A2DP, and HFP

• LE profile

– HTP, PXP, IPSP, HPS

• Integrated the Fatfs based on USB Host MSD in SDK

• Digital Audio Interface including PCM interface for HFP

Parent topic:Features

Toolchain support
• IAR Embedded Workbench for ARM®

• MCUXpresso IDE

• Keil® MDK/μVision

• Makefiles support with GCC from Arm Embedded

Note: For details on IDE Development tools version details, see Section 3, Development tools
in MCUXpresso SDK Release Notes (document MCUXSDKMIMXRT106XRN). The Release Notes
document is available at root/docs/ MCUXpresso SDK Release Notes for EVK-MIMXRT1060.pdf.

Parent topic:Features

RTOS support
• FreeRTOSTMOS

Note: The FreeRTOS static allocation feature is required by Edgefast Bluetooth. The macro con-
figSUPPORT_STATIC_ALLOCATION needs to be set to enable this feature.

Parent topic:Features

Parent topic:Overview

Examples list
• The following examples are provided. Not all the examples are implemented on all the

boards. See the board package for a list of the implemented examples.

1.8. Wireless 387



MCUXpresso SDK Documentation, Release 25.12.00

– central_hpc (central http proxy service client): Demonstrates a basic Bluetooth Low
Energy Central role functionality. The application scans for other Bluetooth Low En-
ergy devices and establishes a connection to the peripheral with the strongest signal.
The application specifically looks for HPS Server and programs a set of characteristics
that configures a Hyper Text Transfer Protocol (HTTP) request, initiates request, and
reads the response once connected.

– central_ht (central health thermometer): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for health thermometer sensor and reports the die tem-
perature readings once connected.

– central_ipsp (central Internet protocol support profile): Demonstrates a basic Blue-
tooth Low Energy Central role functionality. The application scans for other Bluetooth
Low Energy devices and establishes connection to the peripheral with the strongest
signal. The application specifically looks for IPSP Service and communicates between
the devices that support IPSP. Once connected, the communication is done using IPv6
packets over the Bluetooth Low Energy transport.

– central_pxm (central proximity monitor): Demonstrates a basic Bluetooth Low En-
ergy Central role functionality. The application scans for other Bluetooth Low Energy
devices and establishes a connection to the peripheral with the strongest signal. The
application specifically looks for Proximity Reporter.

– peripheral beacon: Demonstrates the Bluetooth Low Energy Peripheral role, This ap-
plication implements types of beacon applications.

* beacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising Company Identifier, Beacon Identifier, UUID, A, B, C, RSSI.

* Eddystone: The Eddystone Configuration Service runs as a GATT service on the
beacon while it is connectable and allows configuration of the advertised data, the
broadcast power levels, and the advertising intervals.

* iBeacon: Demonstrates the Bluetooth Low Energy Broadcaster role functionality
by advertising an Apple iBeacon.

– peripheral_hps (peripheral http proxy service): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HTTP Proxy GATT Ser-
vice.

– peripheral_ht (peripheral health thermometer): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the HT (Health Ther-
mometer) GATT Service. Once a device connects, it generates dummy temperature
values.

– peripheral_ipsp (peripheral Internet protocol support profile): Demonstrates the
Bluetooth Low Energy Peripheral role. The application specifically exposes the Inter-
net Protocol Support GATT Service.

– peripheral_pxr (peripheral proximity reporter): Demonstrates the Bluetooth Low
Energy Peripheral role. The application specifically exposes the Proximity Reporter
(including LLS, IAS, and TPS) GATT Service.

– wireless uart: The application automatically starts advertising the wireless uart ser-
vice and connects to the wireless uart service after the role switch. The wireless UART
service is a custom service that implements a custom writable ASCII Char characteris-
tic (UUID: 01ff0101-ba5e-f4ee-5ca1-eb1e5e4b1ce0) that holds the character written by
the peer device.

– spp (serial prot profile): Application demonstrates the use of the SPP feature.

– handsfree: Application demonstrating usage of the Hands-free Profile (HFP) feature.

388 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– handsfree_ag: Application demonstrating usage of the Hands-free Profile Audio Gate-
way (HFP-AG) feature.

– a2dp_sink: Application demonstrating how to use the a2dp sink feature.

– a2dp_source: Application demonstrating how to use the a2dp source feature.

– audio_profile: Demonstrates the following functions.

* There are five parts working in the demo: AWS cloud, Android app, audio demo
(running on RT1060), U-disk, and Bluetooth headset.

* With an app running on the smartphone (Android phone), the end user connects
to the AWS cloud and controls the audio demo running on the RT1060 EVK board
through AWS cloud. Some operations like play, play next, and pause are used to
control the media play functionalities.

* Audio demo running on the RT1060 EVK board connects to the AWS through WiFi.
A connection establishes between the RT1060 EVK board and a Bluetooth headset.
To get the media resource (mp3 files) from the U-disk, an HS USB host is enabled,
and a U-disk with mp3 files is connected to RT1060 EVK board via the USB port. The
audio demo searches the root directory of the U-disk for the music files (only mp3
files are supported) and uploads the song file list to AWS. The song list is shown
in the app running on the smartphone. The music can then be played out via the
Bluetooth headset once end user controls the app to play the mp3 file.

– wifi_provisioning: Demonstrates the WiFi provisioning service that safely sends cre-
dential from phone to device over Bluetooth low energy. By default, AWS Wi-Fi pro-
visioning demo starts advertising if the Wi-Fi access point (AP) is not configured and
waits for the Wi-Fi AP configuration. After connecting to the Android APK, the demo
executes the request from cellphone and sends the response. When the Wi-Fi AP is con-
figured, the Shadow demo connects to the AWS via Wi-Fi and publishes the configured
Wi-Fi AP information.

– shell: Shell application demonstrating the shell mode of the simplified Adapter APIs.

Parent topic:Overview

Hardware For dual-chip implementation, the Bluetooth demo runs on a (reference board)
along with the ported EdgeFast Bluetooth Protocol Abstraction Layer API host stack. The Linker
Layer (LL) runs on a wireless module. A standard UART HCI and PCM is used to communicate
between the two boards, the IMU is used to communicate in between. The Bluetooth host and
controller stack run on different boards. The demo hardware requires two different boards; a
development board for host stack and application and a wireless module adapter board for con-
troller running. For example, the evkmimxrt1060 and uSD-15x15 Adapter Board for AW-AM457-
uSD board, or any of the supported Murata modules with the Murata uSD-M.2 adapter. For de-
tails on the board hardware requirement and board setting, see the following documents. For
one-chip implementation, the Bluetooth demo, EdgeFast Bluetooth Protocol Abstraction Layer
API host stack, and LL run on one chip and they communicate with IMU.

• Hardware rework guide document of the relative board, Hardware Rework Guide for
MIMXRT1060-EVK and AW-AM457-uSD, or Hardware Interconnection Guide for i.MX RT
EVKs and Murata M.2 modules.

• Readme file of the examples.

Reference boards list
• MIMXRT1170: For details, see the quick start guide of this reference board (MIMXRT1170).

• MIMXRT685-EVK: For details, see the quick start guide of this reference board (MIMXRT685-
EVK).

1.8. Wireless 389

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK


MCUXpresso SDK Documentation, Release 25.12.00

• MIMXRT595-EVK: For details, see the quick start guide of this reference board.
(MIMXRT595-EVK).

• MIMXRT1050-EVKB: For details, see the quick start guide of this reference board
(MIMXRT1050-EVKB).

Parent topic:Hardware

Dual-chip wireless module list

Module HCI
uSD-15x15 Adapter Board for AW-AM457-uSD UART
uSD-15x15 Adapter Board for AW-CM358-uSD UART
uSD-15x15 Adapter Board for AW-AM510-uSD UART
AW-CM358MA UART
AW-CM510MA UART
K32W061 UART
Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1ZM M.2 Mod-
ule (EAR00364)

UART

Murata uSD-M.2 Adapter (LBEE0ZZ1WE-uSD-M2) and Embedded Artists 1XK M.2 Mod-
ule (EAR00385)

UART

For details on AzureWave module, see the quick start guide of this reference board AW-AM457-
uSD, AW-CM358-uSD, AW-CM358MA, AW-AM510-uSD, AW-CM510MA, and K32W061.

For Murata documentation, refer to the Quick Start Guide and User Guide here.

Note: The boards and wireless module lists are not random combination. For the wireless mod-
ule support list of specific board, see the readme.txt of each example.

Parent topic:Hardware

Demo This topic lists the steps to run a demo application using IAR, steps to run a demo ap-
plication using MCUXpresso IDE, and steps to download LL firmware from the reference board.
The following chapter uses RT1060 and peripheral_ht as an example.

Before you run the example, see the readme.txt in current the peripheral_ht directory and the
Hardware Rework Guide for EdgeFast BT PAL document to set the jumper and connect the wire-
less module with development board.

The uSD type wireless module is similar to the Development board connector in the Run an IAR
example section. If the module is M2 type, connect the module to the onboard M2 interface.

Run a demo application using IAR This document uses EVKRT1060 EdgeFast Bluetooth Proto-
col Abstraction Layer API example to describe the steps to open a project, build an example,
and run a project. For details, see Section 3 in Getting Started with MCUXpresso SDK User’s
Guide(document MCUXSDKGSUG) atroot/docs/Getting Started with MCUXpresso SDK.pdf.

Open an IAR example For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at:

<root>/boards/evkmimxrt1060/edgefast_bluetooth_examples/peripheral_ht/iar

2. Open the IAR workspace file. For example, the highlighted *.eww format file

390 Chapter 1. Middleware

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1050-evaluation-kit:MIMXRT1050-EVK
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_C_20200821.pdf
http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf
http://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_C_STD.pdf
https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf
https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_C_STD.pdf
https://www.nxp.com/products/wireless/thread/k32w061-41-high-performance-secure-and-ultra-low-power-mcu-for-zigbeethread-and-bluetooth-le-5-0-with-built-in-nfc-option:K32W061_41
https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/nxp-imx


MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo application using IAR

Build an IAR example
1. Select flexspi_nor_debug or flexspi_nor_release configurations from the drop-down selector

above the project tree in the workspace.

2. Build the EdgeFast Bluetooth Protocol Abstraction Layer project.

1.8. Wireless 391



MCUXpresso SDK Documentation, Release 25.12.00

Note: Wireless module does not have flash hardware and requires 512 KB image loaded
from board (such as RT1060) on system startup. The 512 KB image is kept on RT1060 side
and only flexspi_nor target is supported for Bluetooth examples. Other targets are not sup-
ported because memory size limit.

Parent topic:Run a demo application using IAR

Run an IAR example This document uses the peripheral_ht as an example to describe the
steps to run an example. For details on other projects and compilers, see the readme file in
the corresponding example directory.

The following figure shows the connection of RT1060 and the uSD wireless module.

1. Connect the USB debug console port to PC. For example, connect J14 of EVKRT1060 to the
PC.

2. Connect a 5 V power source to the J1 jack in the Wireless module board.

3. Make the appropriate debugger settings in the project options window, as shown in the
figure below.

392 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

4. Click the Download and Debug button to flash the executable onto the board, as shown
in the following figure. After the download is complete, if you must test the function of
HFP, stop IAR debugging, and then connect the PCM interface. Reset the target board by
manually.

5. Linker layer (LL) Firmware running in wireless module loads from EVKRT1060 by SDIO
interface, so need take a bit time to download the LL firmware, “Initialize AW-AM457-uSD
Driver” prints in the debug console. For example, it depends on the firmware. For details,
see readme.txt.

Note: The projects are configured to use “CMSIS DAP” as the default debugger. Ensure that the
OpenSDA chip of the board contains a CMSIS. DAP firmware or that the debugger selection cor-
responds to the physical interface used to interface to the board.

Parent topic:Run a demo application using IAR

Parent topic:Demo

Run a demo application using MCUXpresso IDE This document uses peripheral_ht example
to describe the steps to open a project, build an example, and run a project on MCUXpresso IDE.

1.8. Wireless 393



MCUXpresso SDK Documentation, Release 25.12.00

For details, see Section 3 inGetting StartedwithMCUXpresso SDKUser’s Guide (document MCUXS-
DKGSUG) at root/docs/Getting Started with MCUXpresso SDK.pdf and refer to the readme file in
the corresponding demo’s directory.

Open an MCUXpresso IDE example
1. Open MCUXpresso IDE and open an existing or a new workspace location.

2. Drag and drop the package archive into the MCUXpresso Installed SDKs area in the lower
right of the main window.

3. After the SDK is loaded successfully, select the Import the SDK examples(s)… to add ex-
amples to your workspace.

4. Select the evkmimxrt1060 board and click the Next button to select the desired example(s).

394 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

5. Select the evkmimxrt1060 board EdgeFast Bluetooth example. For example, peripheral_ht.

6. Ensure to change SDK debug console from Semihost to UART.

7. Click Finish.

1.8. Wireless 395



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo application using MCUXpresso IDE

Build an MCUXpresso IDE example
1. Select desired target for your project.

2. Build MCUXpresso IDE EdgeFast Bluetooth Protocol Abstraction Layer project.

396 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo application using MCUXpresso IDE

Run an MCUXpresso IDE example For MCUXpresso IDE project running, all steps are similar
to Run an IAR example except the steps of downloading image from compiler.

To download MCUXpresso IDE image to board, click the Debug button to download the exe-
cutable file onto the board.

Parent topic:Run a demo application using MCUXpresso IDE

Parent topic:Demo

Run a demo application using MDK This document uses peripheral_ht example to describe
the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in the Getting Started with MCUXpresso SDK User’s Guide
(document: MCUXSDKGSUG) in the directory root/docs/ and the readme file in the corresponding
demo’s directory.

1.8. Wireless 397



MCUXpresso SDK Documentation, Release 25.12.00

Open an MDK project For the IAR Embedded Workbench, unpack the contents of the archive
to a folder on a local drive.

1. The example projects are available at: <root>/boards/evkmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/mdk.

2. Open the mdk workspace file. For example, the highlighted *.uvmpw format file.

Parent topic:Run a demo application using MDK

Build an MDK example To build an MDK example:

1. Select flexspi_nor_debug or flexspi_nor_release configurations from the drop-down selector
above the project tree in the workspace.

2. Click the highlighted icon to build the EdgeFast Bluetooth Protocol Abstraction Layer
project.

398 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo application using MDK

Run an MDK example For MDK project running, all steps are similar to Run an IAR example
except the steps of downloading image from compiler.

To download the MDK image to the board, click the Debug button. The executable file downloads
to the board.

Parent topic:Run a demo application using MDK

Parent topic:Demo

Run a demo application using Arm GCC This document uses peripheral_ht example to de-
scribe the steps to open a project, build an example, and run a project on MDK.

For details, see the related section in Getting Started with MCUXpresso SDK User’s Guide (docu-
ment: MCUXSDKGSUG) at root/docs/ and the readme file in the corresponding demo’s directory.

Setup tool chains See the section “Run a demo using Arm GCC” of getting start document. For
example, Getting Started with MCUXpresso SDK for MIMXRT1160-EVK.

Parent topic:Run a demo application using Arm GCC

Build a GCC example To build a GCC example:

1. Change the directory to the project directory: <install_dir>\boards\evkmimxrt1060\
edgefast_bluetooth_examples\peripheral_ht\armgcc.

2. Run the build script.

For windows, the script is build_flexspi_nor_debug.bat/ build_flexspi_nor_release.bat.

The build output is shown in the following figure.

Parent topic:Run a demo application using Arm GCC

1.8. Wireless 399



MCUXpresso SDK Documentation, Release 25.12.00

Run a GCC example Refer to the section “Run a demo using Arm GCC” of the getting start
document. For example, see Getting Started with MCUXpresso SDK for MIMXRT1060-EVK. The
peripheral_ht.elf is the target to download.

Parent topic:Run a demo application using Arm GCC

Parent topic:Demo

Download Linker Layer firmware from the reference board Download the Linker Layer
(LL) Firmware from Reference board EVKRT1060 by SDIO interface before running the Bluetooth
Controller stack. The LL download is necessary because wireless module does not support flash.

Parent topic:Demo

Change board-specific parameters There are some board-specific parameters that can be
changed in the application layer for EdgeFast BT PAL.

Change HCI UART parameters Since the controller can support different baud
rates, the demo provides an interface with configurable baud rates. The func-
tioncontroller_hci_uart_get_configuration is used to get HCI UART parameters, including
the instance, default baud rate, which depends on the controller, running baud rate which
defined by macro BOARD_BT_UART_BAUDRATE and so on. If this function returns ‘0’ and the
running baud rate is inconsistent with the default baud rate, EdgeFast BT PAL switches the baud
rate of the controller to the running baud rate.

Parent topic:Change board-specific parameters

Change USB Host stack parameters Since the board supports multiple USB ports, the demo
provides a configurable interface for USB Host stack. The functionUSB_HostGetConfiguration
received the instance of USB for EdgeFast BT PAL. For the case where there is a USBPHY, the
demo configures the properties of the PHY throughUSB_HostPhyGetConfiguration.

Note: There are series of hex bytes printed on the console after the wireless module resets.
However, it does not impact the EdgeFast BT PAL application running.

Parent topic:Change board-specific parameters

Parent topic:Demo

Known issues This section provides a list of known issues in the release package.

Notes This section provides a list of notes to use EdgeFast Bluetooth stack

• the follow configuration items related to resource needs more attention

– CONFIG_BT_MAX_CONN The max connections that can be created.

– CONFIG_BT_MAX_PAIRED The max supported paired devices.

– CONFIG_BT_BUF_EVT_RX_COUNT The max received hci events and acl data packets
at one time if the sys work queue task is blocked. One example is: when LE connec-
tion is created and HCI_LE_Enhanced_Connection_Complete is received, the sys work
queue task is busy with processing the HCI_LE_Enhanced_Connection_Complete. If the
received hci events exceed CONFIG_BT_BUF_EVT_RX_COUNT, it may leads potential is-
sue, please increase value of the macro.

• All the EdgeFast Bluetooth API should be called only after EdgeFast Bluetooth is initialized.

• Don’t send HCI cmd from the sys work queue task or any stack’s callbacks.

400 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

EdgeFast BT PAL configuration documentation CONFIG_BT_BUF_RESERVE
Buffer reserved length, suggested value is 8.

CONFIG_BT_SNOOP
Whether enable bt snoop feature, 0 - disable, 1 - enable.

CONFIG_BT_HCI_CMD_COUNT
Number of HCI command buffers, ranging from 2 to 64. Number of buffers available for HCI
commands Range 2 to 64 is valid.

CONFIG_BT_RX_BUF_COUNT
Number of HCI RX buffers, ranging from 2 to 255. Number of buffers available for incoming ACL
packets or HCI events from the controller Range 2 to 255 is valid.

CONFIG_BT_RX_BUF_LEN
Maximum supported HCI RX buffer length, ranging from 73 to 2000. Maximum data size for each
HCI RX buffer. This size includes everything starting with the ACL or HCI event headers. Note
that buffer sizes are always rounded up to the nearest multiple of 4, so if this Kconfig value is
something else then there is some wasted space. The minimum of 73 has been taken for LE SC
which has an L2CAP MTU of 65 bytes. On top of this, The L2CAP header (4 bytes) and the ACL
header (also 4 bytes) which yields 73 bytes. Range is 73 to 2000.

CONFIG_BT_HCI_RESERVE
Reserve buffer size for user. Headroom that the driver needs for sending and receiving buffers.
Add a new ‘default’ entry for each new driver.

CONFIG_BT_DISCARDABLE_BUF_COUNT
Number of discardable event buffers, if the macro is set to 0, disable this feature, if greater than
0, this feature is enabled. Number of buffers in a separate buffer pool for events which the
HCI driver considers discardable. Examples of such events could be , for example, Advertising
Reports. The benefit of having such a pool means that if there is a heavy inflow of such events it
does not cause the allocation for other critical events to block and may even eliminate deadlocks
in some cases.

CONFIG_BT_DISCARDABLE_BUF_SIZE
Size of discardable event buffers, ranging from 45 to 257. Size of buffers in the separate discard-
able event buffer pool. The minimum size is set based on the Advertising Report. Setting the
buffer can save memory if with size set differently from that of the CONFIG_BT_RX_BUF_LEN.
range is 45 to 257.

CONFIG_BT_HCI_TX_STACK_SIZE
HCI TX task stack size needed for executing bt_send with specified driver, should be no less than
512.

CONFIG_BT_HCI_TX_PRIO
HCI TX task priority.

CONFIG_BT_RX_STACK_SIZE
Size of the receiving thread stack. This is the context from which all event callbacks to the appli-
cation occur. The default value is sufficient for basic operation, but if the application needs to
do advanced things in its callbacks that require extra stack space, this value can be increased to
accommodate for that.

CONFIG_BT_RX_PRIO
RX task priority.

CONFIG_BT_PERIPHERAL

1.8. Wireless 401



MCUXpresso SDK Documentation, Release 25.12.00

Peripheral Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Peripheral role support.

CONFIG_BT_BROADCASTER
Broadcaster Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
Select this for LE Broadcaster role support.

CONFIG_BT_EXT_ADV
Extended Advertising and Scanning support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. Select this to enable Extended Advertising API support. This
enables support for advertising with multiple advertising sets, extended advertising data, and
advertising on LE Coded PHY. It enables support for receiving extended advertising data as a
scanner, including support for advertising data over the LE coded PHY. It enables establishing
connections over LE Coded PHY.

CONFIG_BT_CENTRAL
Central Role support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Select
this for LE Central role support.

CONFIG_BT_WHITELIST
Enable whitelist support. This option enables the whitelist API. This takes advantage of the
whitelisting feature of a Bluetooth LE controller. The whitelist is a global list and the same
whitelist is used by both scanner and advertiser. The whitelist cannot be modified while it is
in use. An Advertiser can whitelist which peers can connect or request scan response data. A
scanner can whitelist advertiser for which it generates advertising reports. Connections can be
established automatically for whitelisted peers.

This option deprecates the bt_le_set_auto_conn API in favor of the bt_conn_create_aute_le API.

CONFIG_BT_DEVICE_NAME
Bluetooth device name. Name can be up to 248 bytes long (excluding NULL termination). Can
be empty string.

CONFIG_BT_DEVICE_APPEARANCE
Bluetooth device appearance. For the list of possible values, see the link:
www.bluetooth.com/specifications/assigned-numbers.

CONFIG_BT_DEVICE_NAME_DYNAMIC
Allow to set Bluetooth device name on runtime. Enabling this option allows for runtime config-
uration of Bluetooth device name.

CONFIG_BT_ID_MAX
Maximum number of local identities, range 1 to 10 is valid. Maximum number of supported
local identity addresses. For most products, this is safe to leave as the default value (1). Range 1
to 10 is valid.

CONFIG_BT_CONN
Connection enablement, if the macro is set to 0, feature is disabled, if 1, feature is enabled.

CONFIG_BT_MAX_CONN
it is the max connection supported by host stack. Maximum number of simultaneous Bluetooth
connections supported.

CONFIG_BT_HCI_ACL_FLOW_CONTROL
Controller to host ACL flow control support. Enable support for throttling ACL buffers from the
controller to the host. This is useful when the host and controller are on separate cores, since it
ensures that we do not run out of incoming ACL buffers.

CONFIG_BT_PHY_UPDATE

402 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

PHY Update, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable support
for Bluetooth 5.0 PHY Update Procedure.

CONFIG_BT_DATA_LEN_UPDATE
Data Length Update. If the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable
support for Bluetooth v4.2 LE Data Length Update procedure.

CONFIG_BT_CREATE_CONN_TIMEOUT
Timeout for pending LE Create Connection command in seconds.

CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT
Peripheral connection parameter update timeout in milliseconds, range 1 to 65535 is valid. The
value is a timeout used by peripheral device to wait until it starts the connection parameters
update procedure to change default connection parameters. The default value is set to 5s, to
comply with BT protocol specification: Core 4.2 Vol 3, Part C, 9.3.12.2 Range 1 to 65535 is valid.

CONFIG_BT_CONN_TX_MAX
Maximum number of pending TX buffers. Maximum number of pending TX buffers that have
not yet been acknowledged by the controller.

CONFIG_BT_REMOTE_INFO
Enable application access to remote information. Enable application access to the remote in-
formation available in the stack. The remote information is retrieved once a connection has
been established and the application is notified when this information is available through the
remote_version_available connection callback.

CONFIG_BT_REMOTE_VERSION
Enable fetching of remote version. Enable this to get access to the remote version in the Con-
troller and in the host through bt_conn_get_info(). The fields in question can be then found in
the bt_conn_info struct.

CONFIG_BT_SMP_SC_ONLY
Secure Connections Only Mode. This option enables support for Secure Connection Only Mode.
In this mode device shall only use Security Mode 1 Level 4 with exception for services that only
require Security Mode 1 Level 1 (no security). Security Mode 1 Level 4 stands for authenticated
LE Secure Connections pairing with encryption. Enabling this option disables legacy pairing.

CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY
Force Out of Band Legacy pairing. This option disables Legacy and LE SC pairing and forces
legacy OOB.

CONFIG_BT_SMP_DISABLE_LEGACY_JW_PASSKEY
Forbid usage of insecure legacy pairing methods. This option disables Just Works and Passkey
legacy pairing methods to increase security.

CONFIG_BT_PRIVACY
Privacy Feature, if the macro is set to 0, feature is disabled, if 1, feature is enabled. Enable local
Privacy Feature support. This makes it possible to use Resolvable Private Addresses (RPAs).

CONFIG_BT_ECC
Enable ECDH key generation support. This option adds support for ECDH HCI commands.

CONFIG_BT_TINYCRYPT_ECC
Use TinyCrypt library for ECDH. If this option is used to set TinyCrypt library which is used for
emulating the ECDH HCI commands and events needed by e.g. LE Secure Connections. In builds
including the Bluetooth LE host, if don’t set the controller crypto which is used for ECDH and if
the controller doesn’t support the required HCI commands the LE Secure Connections support
will be disabled. In builds including the HCI Raw interface and the Bluetooth LE controller, this

1.8. Wireless 403



MCUXpresso SDK Documentation, Release 25.12.00

option injects support for the 2 HCI commands required for LE Secure Connections so that hosts
can make use of those. The option defaults to enabled for a combined build with Zephyr’s own
controller, since it does not have any special ECC support itself (at least not currently).

CONFIG_BT_TINYCRYPT_ECC_PRIORITY
Thread priority of ECC Task.

CONFIG_BT_HCI_ECC_STACK_SIZE
Thread stack size of ECC Task.

CONFIG_BT_RPA
Bluetooth Resolvable Private Address (RPA)

CONFIG_BT_RPA_TIMEOUT
Resolvable Private Address timeout, defaults to 900 seconds. This option defines how often re-
solvable private address is rotated. Value is provided in seconds and defaults to 900 seconds (15
minutes).

CONFIG_BT_SIGNING
Data signing support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables data signing which is used for transferring authenticated data in an unencrypted
connection.

CONFIG_BT_SMP_APP_PAIRING_ACCEPT
Accept or reject pairing initiative. When receiving pairing request or pairing response queries,
the application shall either accept proceeding with pairing or not. This is for pairing over SMP
and does not affect SSP, which will continue pairing without querying the application. The ap-
plication can return an error code, which is translated into an SMP return value if the pairing is
not allowed.

CONFIG_BT_SMP_ALLOW_UNAUTH_OVERWRITE
Allow unauthenticated pairing for paired device. This option allows all unauthenticated pairing
attempts made by the peer where an unauthenticated bond already exists. This would enable
cases where an attacker could copy the peer device address to connect and start an unauthen-
ticated pairing procedure to replace the existing bond. When this option is disabled in order to
create a new bond the old bond must be explicitly deleted with bt_unpair.

CONFIG_BT_FIXED_PASSKEY
Use a fixed passkey for pairing, set passkey to fixed or not. With this option enabled, the applica-
tion will be able to call the bt_passkey_set() API to set a fixed passkey. If set, the pairing_confim()
callback will be called for all incoming pairings.

CONFIG_BT_BONDABLE
Bondable Mode, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This op-
tion enables support for Bondable Mode. In this mode, Bonding flag in AuthReq of SMP Pairing
Request/Response is set indicating the support for this mode.

CONFIG_BT_BONDING_REQUIRED
Always require bonding. When this option is enabled remote devices are required to always set
the bondable flag in their pairing request. Any other kind of requests will be rejected.

CONFIG_BT_SMP_ENFORCE_MITM
Enforce MITM protection, if the macro is set to 0, feature is disabled, if 1, feature is enabled. With
this option enabled, the Security Manager is set MITM option in the Authentication Requirements
Flags whenever local IO Capabilities allow the generated key to be authenticated.

CONFIG_BT_OOB_DATA_FIXED

404 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Use a fixed random number for LESC OOB pairing. With this option enabled, the application
will be able to perform LESC pairing with OOB data that consists of fixed random number and
confirm value. This option should only be enabled for debugging and should never be used in
production.

CONFIG_BT_KEYS_OVERWRITE_OLDEST
Overwrite oldest keys with new ones if key storage is full. With this option enabled, if a pairing
attempt occurs and the key storage is full, then the oldest keys in storage will be removed to free
space for the new pairing keys.

CONFIG_BT_HOST_CCM
Enable host side AES-CCM module. Enables the software-based AES-CCM engine in the host. Will
use the controller’s AES encryption functions if available, or BT_HOST_CRYPTO otherwise.

CONFIG_BT_L2CAP_RX_MTU
Maximum supported L2CAP MTU for incoming data, if CONFIG_BT_SMP is set, range is 65 to
1300, otherwise range is 23 to 1300. Maximum size of each incoming L2CAP PDU. Range is 23 to
1300 range is 65 to 1300 for CONFIG_BT_SMP.

CONFIG_BT_L2CAP_TX_BUF_COUNT
Number of buffers available for outgoing L2CAP packets, ranging from 2 to 255. Range is 2 to
255.

CONFIG_BT_L2CAP_TX_FRAG_COUNT
Number of L2CAP TX fragment buffers, ranging from 0 to 255. Number of buffers available for
fragments of TX buffers.

Warning: Setting this to 0 means that the application must ensure that queued TX buffers never
need to be fragmented, that is the controller’s buffer size is large enough. If this is not ensured,
and there are no dedicated fragment buffers, a deadlock may occur. In most cases the default
value of 2 is a safe bet. Range is 0 to 255.

CONFIG_BT_L2CAP_TX_MTU
Maximum supported L2CAP MTU for L2CAP TX buffers, if CONFIG_BT_SMP is set, the range is
65 to 2000. Otherwise, range is 23 to 2000. Range is 23 to 2000. Range is 65 to 2000 for CON-
FIG_BT_SMP.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL
L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

CONFIG_BT_L2CAP_DYNAMIC_CHANNEL
L2CAP Dynamic Channel support. This option enables support for LE Connection oriented Chan-
nels, allowing the creation of dynamic L2CAP Channels.

Bluetooth BR/EDR support [EXPERIMENTAL] This option enables Bluetooth BR/EDR support.

CONFIG_BT_ATT_PREPARE_COUNT
Number of ATT prepares write buffers, if the macro is set to 0, feature is disabled, if greater
than 1, feature is enabled. Number of buffers available for ATT prepares write, setting this to 0
disables GATT long/reliable writes.

CONFIG_BT_ATT_TX_MAX
Maximum number of queued outgoing ATT PDUs. Number of ATT PDUs that can be at a single
moment queued for transmission. If the application tries to send more than this amount the calls
blocks until an existing queued PDU gets sent. Range is 1 to CONFIG_BT_L2CAP_TX_BUF_COUNT.

CONFIG_BT_GATT_SERVICE_CHANGED

1.8. Wireless 405



MCUXpresso SDK Documentation, Release 25.12.00

GATT Service Changed support, if the macro is set to 0, feature is disabled, if 1, feature is enabled.
This option enables support for the service changed characteristic.

CONFIG_BT_GATT_DYNAMIC_DB
GATT dynamic database support, if the macro is set to 0, feature is disabled, if 1, feature is en-
abled. This option enables registering/unregistering services at runtime.

CONFIG_BT_GATT_CACHING
GATT Caching support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for GATT Caching. When enabled the stack registers Client Supported
Features and Database Hash characteristics which is used by clients to detect if anything has
changed on the GATT database.

CONFIG_BT_GATT_CLIENT
GATT client support, if the macro is set to 0, feature is disabled, if 1, feature is enabled. This
option enables support for the GATT Client role.

CONFIG_BT_GATT_READ_MULTIPLE
GATT Read Multiple Characteristic. Values support, if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables support for the GATT Read Multiple Characteristic
Values procedure.

CONFIG_BT_GAP_AUTO_UPDATE_CONN_PARAMS
Automatic Update of Connection Parameters, if the macro is set to 0, feature is disabled, if 1,
feature is enabled. This option, if enabled, allows automatically sending request for connection
parameters update after GAP recommended 5 seconds of connection as peripheral.

CONFIG_BT_GAP_PERIPHERAL_PREF_PARAMS
Configure peripheral preferred connection parameters. This configures peripheral preferred
connection parameters. Enabling this option results in adding PPCP characteristic in GAP. If
disabled it is up to application to set expected connection parameters.

CONFIG_BT_MAX_PAIRED
Maximum number of paired devices. Maximum number of paired Bluetooth devices. The min-
imum (and default) number is 1.

CONFIG_BT_MAX_SCO_CONN
Maximum number of simultaneous SCO connections. Maximum number of simultaneous Blue-
tooth synchronous connections supported. The minimum (and default) number is 1. Range 1 to
3 is valid.

CONFIG_BT_RFCOMM
Bluetooth RFCOMM protocol support [EXPERIMENTAL], if the macro is set to 0, feature is dis-
abled, if 1, feature is enabled. This option enables Bluetooth RFCOMM support.

CONFIG_BT_RFCOMM_L2CAP_MTU
L2CAP MTU for RFCOMM frames. Maximum size of L2CAP PDU for RFCOMM frames.

CONFIG_BT_HFP_HF
Bluetooth Handsfree profile HF Role support [EXPERIMENTAL], if the macro is set to 0, feature
is disabled, if 1, feature is enabled. This option enables Bluetooth HF support.

CONFIG_BT_AVDTP
Bluetooth AVDTP protocol support [EXPERIMENTAL], if the macro is set to 0, feature is disabled,
if 1, feature is enabled. This option enables Bluetooth AVDTP support.

CONFIG_BT_A2DP
Bluetooth A2DP Profile [EXPERIMENTAL]. This option enables the A2DP profile.

406 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_A2DP_SOURCE
Bluetooth A2DP profile source function. This option enables the A2DP profile Source function.

CONFIG_BT_A2DP_SINK
Bluetooth A2DP profile sink function. This option enables the A2DP profile Sink function.

CONFIG_BT_A2DP_TASK_PRIORITY
Bluetooth A2DP profile task priority. This option sets the task priority. The task is used to process
the streamer data and retry command.

CONFIG_BT_A2DP_TASK_STACK_SIZE
Bluetooth A2DP profile task stack size. This option sets the task stack size.

CONFIG_BT_PAGE_TIMEOUT
Bluetooth Page Timeout. This option sets the page timeout value. Value is selected as (N * 0.625)
ms.

CONFIG_BT_DIS_MODEL
Model name. The device model inside Device Information Service.

CONFIG_BT_DIS_MANUF
Manufacturer name. The device manufacturer inside Device Information Service.

CONFIG_BT_DIS_PNP
Enable PnP_ID characteristic. Enable PnP_ID characteristic in Device Information Service.

CONFIG_BT_DIS_PNP_VID_SRC
Vendor ID source, range 1 - 2. The Vendor ID Source field designates which organization assigned
the value used in the Vendor ID field value. The possible values are:

• 1 Bluetooth SIG, the Vendor ID was assigned by the Bluetooth SIG

• 2 USB IF, the Vendor ID was assigned by the USB IF

CONFIG_BT_DIS_PNP_VID
Vendor ID, range 0 - 0xFFFF. The Vendor ID field is intended to uniquely identify the vendor
of the device. This field is used in conjunction with Vendor ID Source field, which determines
which organization assigned the Vendor ID field value. Note: The Bluetooth Special Interest
Group assigns Device ID Vendor ID, and the USB Implementers Forum assigns Vendor IDs, either
of which can be used for the Vendor ID field value. Device providers should procure the Vendor
ID from the USB Implementers Forum or the Company Identifier from the Bluetooth SIG.

CONFIG_BT_DIS_PNP_PID
Product ID, range 0 - 0xFFFF. The Product ID field is intended to distinguish between different
products made by the vendor identified with the Vendor ID field. The vendors themselves man-
age Product ID field values.

CONFIG_BT_DIS_PNP_VER
Product Version, range 0 - 0xFFFF. The Product Version field is a numeric expression identify-
ing the device release number in Binary-Coded Decimal. This is a vendor-assigned value, which
defines the version of the product identified by the Vendor ID and Product ID fields. This field
is intended to differentiate between versions of products with identical Vendor IDs and Product
IDs. The value of the field value is 0xJJMN for version JJ.M.N (JJ - major version number, M - minor
version number, N - subminor version number); For example, version 2.1.3 is represented with
value 0x0213 and version 2.0.0 is represented with a value of 0x0200. When upward-compatible
changes are made to the device, it is recommended that the minor version number be incre-
mented. If incompatible changes are made to the device. It is recommended that the major
version number is incremented. The subminor version is incremented for bug fixes.

1.8. Wireless 407



MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_DIS_SERIAL_NUMBER
Enable DIS Serial number characteristic, 1 - enable, 0 - disable. Enable Serial Number character-
istic in Device Information Service.

CONFIG_BT_DIS_SERIAL_NUMBER_STR
Serial Number. Serial Number characteristic string in Device Information Service.

CONFIG_BT_DIS_FW_REV
Enable DIS Firmware Revision characteristic, 1 - enable, 0 - disable. Enable Firmware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_FW_REV_STR
Firmware revision. Firmware Revision characteristic String in Device Information Service.

CONFIG_BT_DIS_HW_REV
Enable DIS Hardware Revision characteristic, 1 - enable, 0 - disable. Enable Hardware Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_HW_REV_STR
Hardware revision. Hardware Revision characteristic String in Device Information Service.

CONFIG_BT_DIS_SW_REV
Enable DIS Software Revision characteristic, 1 - enable, 0 - disable. Enable Software Revision
characteristic in Device Information Service.

CONFIG_BT_DIS_SW_REV_STR
Software revision Software revision characteristic String in Device Information Service.

CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE
System work queue stack size.

CONFIG_SYSTEM_WORKQUEUE_PRIORITY
System work queue priority.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_TYPE
HCI transport interface type.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_INSTANCE
HCI transport interface instance number.

CONFIG_BT_HCI_TRANSPORT_INTERFACE_SPEED
HCI transport interface rate. Configures the interface speed, for example, the default interface
is h4, the speed to 115200

CONFIG_BT_HCI_TRANSPORT_TX_THREAD
Whether enable HCI transport TX thread.

CONFIG_BT_HCI_TRANSPORT_RX_THREAD
Whether enable HCI transport RX thread.

CONFIG_BT_HCI_TRANSPORT_RX_STACK_SIZE
HCI transport RX thread stack size.

CONFIG_BT_HCI_TRANSPORT_TX_STACK_SIZE
HCI transport TX thread stack size.

CONFIG_BT_HCI_TRANSPORT_TX_PRIO
HCI transport TX thread priority.

408 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CONFIG_BT_HCI_TRANSPORT_RX_PRIO
HCI transport RX thread priority.

CONFIG_BT_MSG_QUEUE_COUNT
Message number in message queue.

Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer

Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT1170-
EVKB and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework

1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework
1. Remove J54 and J55, connect J56 and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

1.8. Wireless 409



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module Hardware
Rework Guide for MIMXRT1170-EVKB and Murata

2EL M.2 Module

This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP
i.MX MIMXRT1170-EVKB and the Murata 2EL M.2 solution - direct M.2 connection to Embedded
Artists’ Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• HCI UART rework

• PCM interface rework

• LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
• HCI UART rework

1. Remove resistors R183 and R1816.

2. Solder 0 ohm resistor to R404, R1901, and R1902.

410 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• PCM interface rework
1. Disconnect header J79 and J80.

1.8. Wireless 411



MCUXpresso SDK Documentation, Release 25.12.00

2. Connect header J81 and J82.

3. Remove resistors R1985, R1986, R1987, R1988, R1992, R1993, R1994, and R1995.

4. Solder 0 ohm resistor to R228, R229, R232, R234, and R1903.

412 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• LE Audio Synchronization interface rework (only used on sink side)

1. Connect J25-15 with J97.

2. Connect J25-13 with 2EL’s GPIO_27

1.8. Wireless 413



MCUXpresso SDK Documentation, Release 25.12.00

414 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Adapter

Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM457-uSD. The AW-AM457-uSD user guide is available here.The hardware re-
work has one part:

• HCI UART rework

Hardware rework HCI UART rework
• R398 move from 1-2 to 2-3

• JP12 2-3

• Connect the pins of two boards as the following table.

1.8. Wireless 415

https://www.azurewave.com/img/nxp/uSD-1515%20Adaptor%20Board_User%20guide_D_20201103.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Pin Name AW-AM457-
uSD

i.MX RT685 PIN NAME GPIONAME of i.MX RT685

UART_TXD J10 (pin 4) J27 (pin 1) US-
ART4_RXD

FC4_RXD_SDA_MOSI_DATA

UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

416 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Jumper Settings:
• Connect J4[2-3] for VIO 3.3 V supply

• Connect J11[2-3] for VIO_SD 3.3 V supply

PCM interface rework
Connect the pins of two boards as the following table.

Pin Name AW-AM457-
uSD

i.MX
RT685

PIN NAME of I.MX
RT685

GPIONAME of I.MX RT685

PCM_IN J9 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J9 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J9 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J9 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J9 (pin 6) J29 (pin 7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-CM358-uSD. The AW-CM358-uSD user guide is available here. The hardware re-
work has one part:

• HCI UART rework

Hardware rework HCI UART rework
R398 move from 1-2 to 2-3.

1.8. Wireless 417

http://www.azurewave.com/img/nxp/uSD-1212%20Adaptor%20Board_User%20guide_G_20210127.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Connect the pins of two boards as the following table.

Pin Name AW-CM358-USD i.MXRT685 PIN NAME GPIONAME of RT685
UART_TXD J10 (pin 4) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
UART_RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

418 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Jumper Setting:
Connect J4[1-2] for VIO 1.8 V supply.

PCM interface rework
Connect the pins of two boards as the following table.

Pin Name AW-CM358-
USD

i.MX RT685 PIN NAME of RT685 GPIONAME of RT685

PCM_IN J11 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_OUT J11 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_SYNC J11 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_CLK J11 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J11 (pin 5) J29 (pin 7) GND GND

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD

Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-EVK
board and AW-AM510-uSD. The AW-AM510-uSD user guide is available here. The hardware re-
work has one part:

• HCI UART rework

Hardware rework
• HCI UART rework

1.8. Wireless 419

https://www.azurewave.com/img/nxp/AW-AM510-uSD_User%20guide_A_210126.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Connect the pins of two boards as the following table.

Pin Name AW- AM510- uSD i. MXRT685 PIN NAME GPIO NAME of RT685
UART_ TXD J10 (pin 4) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
UART_ RXD J10 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
UART_ RTS J10 (pin 6) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
UART_ CTS J10 (pin 8) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1
GND J6 (pin 7) J29 (pin 6) GND GND

Jumper Setting:
– Connect J4[2-3] for VIO 3.3 V supply

• PCM interface rework
Connect the pins of two boards as the following table.

PIN NAME AW- AM510-
 USD

i.MX
RT685

PIN NAME of
RT685

GPIONAME of RT685

PCM_ IN J11 (pin 1) J47 (pin 7) I2S2_TXD FC2_RXD_SDA_MOSI_DATA
PCM_ OUT J11 (pin 2) J28 (pin 4) I2S5_RXD FC5_RXD_SDA_MOSI_DATA
PCM_ SYNC J11 (pin 3) J28 (pin 5) I2S5_WS FC5_TXD_SCL_MISO_WS
PCM_ CLK J11 (pin 4) J28 (pin 6) I2S5_SCK FC5_SCK
GND J11 (pin 6) J29 (pin 7) GND GND

420 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD

Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT685-
EVK board and the Murata uSD-M.2 adapter. For details on the Murata uSD-M.2 Adapter, see
Murata’s uSD-M.2 webpage.

The hardware rework has one part:

• HCI UART rework

Hardware rework HCI UART rework :
• JP12 2-3

• Connect the pins of two boards as the following table using jumper cables included in Mu-
rata’s uSD-M.2 Adapter kit.

Pin name uSD-M.2 adapter
pin

i.MX RT685
pin

Pin name of
RT685

GPIO name of RT685

BT_UART_TXD_HOSTJ9 (pin 1) J27 (pin 1) USART4_RXD FC4_RXD_SDA_MOSI_DATA
BT_UART_RXD_HOSTJ9 (pin 2) J27 (pin 2) USART4_TXD FC4_TXD_SCL_MISO_WS
BT_UART_RTS_HOSTJ8 (pin 3) J47 (pin 9) USART4_CTS FC4_CTS_SDA_SSEL0
BT_UART_CTS_HOSTJ8 (pin 4) J27 (pin 5) USART4_RTS FC4_RTS_SCL_SSEL1

1.8. Wireless 421

https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/usd-m2-adapter


MCUXpresso SDK Documentation, Release 25.12.00

Murata uSD-M.2 jumper settings:
• Both J12 and J13 = 1-2 (WLAN-SDIO = 1.8 V; and BT-UART and WLAN/BT-CTRL = 3.3 V)

• J1 = 2-3 (3.3 V from uSD connector)

Parent topic:Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter

Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module This section is
a brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i.MX MIMXRT685-
AUD-EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Em-
bedded Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

• HCI UART rework

422 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Hardware rework HCI UART rework:
Mount R300~R305 A-B

Jumper Setting:
• Connect JP41[2-3]

Parent topic:Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 2EL - direct M.2
connection to Embedded Artists’ Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• Debug console serial rework

• Host wake-up controller pin rework (H2C)

• Controller wake-up host pin rework (C2H)

Hardware rework
• Debug console serial rework

For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

• Host wake-up controller pin rework:

For details, refer Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and
Murata 1XK M.2 Module.

• Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK,

2. Solder 0K ohm resistor on R33 of Murata 2EL M.2 Module

3. Solder 10K ohm resistor on the Murata 2EL M.2 Module between TP1 and TP20.

1.8. Wireless 423



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
2EL M.2 Module

Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT595-
EVK board and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has one part:

• Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.

• JP4 1-2.

• J27 1 - TX of USB to serial converter

• J27 2 - RX of USB to serial converter

424 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module

Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2
Module This section is a brief hardware rework guidance of the EdgeFast Bluetooth PAL for
low power feature on the NXP i.MX MIMXRT595-EVK board and the Murata’s 1XK - direct M.2
connection to Embedded Artists EAR00385 (1XK) M.2 modules.

1.8. Wireless 425



MCUXpresso SDK Documentation, Release 25.12.00

The hardware rework has three parts:

• Debug console serial rework

• Host wake-up controller pin rework (H2C)

• Controller wake-up host pin rework (C2H)

Hardware rework Debug console serial rework:
For details, refer Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module.

Host wake-up controller pin rework:
Connect M.2 (pin 42) to JP26 (pin 4) with a wire.

Controller wake-up host pin rework:
1. Remove resistors R709 on MIMXRT595-EVK.

2. Solder 10K ohm resistor on the Murata 1XK M.2 Module at the location shown in the fol-
lowing figure.

Parent topic:Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata
1XK M.2 Module

426 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT595-EVK
board and AW-AM510MA. The AW-AM510MA user guide is available here. The hardware re-
work has one part:

• Debug console serial rework

Hardware rework Debug console serial rework:
No special rework is required, except the following to enable the debug port.

• Connect J39 with external power.

• Connect JP4 1-2.

• J27 1 — TX of USB to serial converter.

• J27 2 — RX of USB to serial converter.

1.8. Wireless 427

https://www.azurewave.com/img/nxp/AW-AM510MA_DS_DF_A_STD.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA

Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA This section is a brief
hardware rework guidance of the Ethermind Bluetooth stack on the NXP i.MX MIMXRT595-EVK
board and AW-CM358MA. The AW-CM358MA user guide is available here. The hardware rework
has one part:

• Debug console serial rework

428 Chapter 1. Middleware

https://www.azurewave.com/img/nxp/AW-CM358MA_DS_DF_E_STD.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Hardware rework Debug console serial rework:
• Connect J39 with external power.

• JP4 1-2

• J27 1 - TX of USB to serial converter

• J27 2 - RX of USB to serial converter

Parent topic:Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA

1.8. Wireless 429



MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module This section is a
brief hardware rework guidance of the Edgefast Bluetooth PAL on the NXP i.MX MIMXRT1040-
EVK board and the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded
Artists EAR00385 (1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

• Wake pin rework

Hardware rework
1. HCI UART rework

• Solder R93 and R96

2. PCM interface rework

• Solder R70 and R79; remove R76 and R86; Connect J80.

3. Wake pin rework

• When using 2LL M.2 module, remove R456 and R457 to avoid the module has an impact
on boot configuration.

Note: Make sure to disconnect J80 when debugging. Otherwise, the debugger downloading fails.

Parent topic:Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX MIMXRT1060-
EVKC and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework has two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework

1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework
1. Remove J54 and J55, connect J56 and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection when
downloading flash and reconnect it after downloading.

430 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module

Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter This sec-
tion is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP i.MX
MIMXRT1060-EVKC and the Murata 2EL M.2 solution - direct M.2 connection to Embedded Artists’
Rev-A1 (2EL) M.2 modules.

The hardware rework has three parts:

• HCI UART rework

• PCM interface rework

• LE Audio Synchronization interface rework (only used on sink side)

Hardware rework
• HCI UART rework

1. Mount R93, R96.

2. Remove R193.

3. Connect J109, connect J76 2-3.

• PCM interface rework

1. Remove J54 and J55, connect J56, and J57.

2. Remove R220.

3. Connect J103.

Note: When J103 is connected, flash cannot be downloaded. So, remove the connection
when downloading flash and reconnect it after downloading.

1.8. Wireless 431



MCUXpresso SDK Documentation, Release 25.12.00

• LE Audio Synchronization interface rework (only used on sink side)

1. Remove J110 jumper cap.

2. Remove R196, R201, R213, and R211.

3. Connect J110-1 (GPT2_CLK) to R2140 (SAI_MCLK).

4. Connect ENET_MDIO (GPT2_CAP1) with J97 (SAI_SW).

5. Connect ENET_MDC (GPT2_CAP2) with 2EL’s GPIO_27 (Sync Signal).

432 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.8. Wireless 433



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter

Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN547-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• M.2 UART interface

• M.2 SDIO interface

Hardware rework
• M.2 UART interface rework

434 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– Mount R835

– Connect JP45 2-3 to supply 1.8V for GPIO4

• M.2 SDIO interface rework

– Connect JP47 2-3 to supply 1.8V for GPIO2

– Remove R818, connect R823

– Remove R819, connect R824

– Remove R817, connect R822

– Remove R815, connect R816

– Remove R820, connect R825

– Remove R821, connect R826

Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MCXN947-EVK board and
the Murata’s 1XK, 1ZM or 2LL solution - direct M.2 connection to Embedded Artists EAR00385
(1XK), EAR00364 (1ZM) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• M.2 UART interface

• M.2 SDIO interface

Hardware rework
• M.2 UART interface rework

– Mount R835

– Connect JP45 2-3 to supply 1.8V for GPIO4

• M.2 SDIO interface rework

– Connect JP47 2-3 to supply 1.8V for GPIO2

1.8. Wireless 435



MCUXpresso SDK Documentation, Release 25.12.00

– Remove R818, connect R823

– Remove R819, connect R824

– Remove R817, connect R822

– Remove R815, connect R816

– Remove R820, connect R825

– Remove R821, connect R826

Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module This section is a
brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP IMXRT1050-EVKB
board and the Murata 1XK,1ZM and 2EL solution - direct M.2 connection to Embedded Artists’
EAR00385 (1XK) , EAR00364 (1ZM) or EAR00409 (2EL)M.2 modules. The hardware rework con-
sists of three parts:

• Murata uSDM

• HCI UART rework

Hardware rework
• Murata uSD-M.2 jumper settings

– J12 = 1-2: WLAN-SDIO & BT-PCM = 1.8 V

– J13 = 1-2: BT-UART & WLAN/BT-CTRL = 3.3 V

– J1 = 2-3: 3.3 V from uSD connector

• HCI UART interface rework

Connect the TX/RX/RTS/CTS pins of the two boards as show in Table 1 using the jumper
cables included in the Murata’s uSD-M.2 Adapter kit as shown in the following table.

436 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pin name uSD-M.2
adapter pin

i.MX RT1050-
EVKB pin

Pin name of
RT1050-EVKB

GPIO name of
RT1050-EVKB

BT_UART_TXD_HOSTJ9 (pin 1) J22 (pin 1) LPUART3_RXD GPIO_AD_B1_07
BT_UART_RXD_HOSTJ9 (pin 2) J22 (pin 2) LPUART3_TXD GPIO_AD_B1_06
BT_UART_RTS_HOSTJ8 (pin 3) J23 (pin 3) LPUART3_CTS GPIO_AD_B1_04
BT_UART_CTS_HOSTJ8 (pin 4) J23 (pin 4) LPUART3_RTS GPIO_AD_B1_05
GND J7 (pin 7) J25 (pin 7) GND GND

Parent topic:Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module

Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module This section is a brief
hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP MIMXRT1180 board
and the Murata’s 1XK, 1ZM, 2EL or 2LL solution - direct M.2 connection to Embedded Artists
EAR00385 (1XK), EAR00364 (1ZM), Rev-A1 (2EL) or EAR00500 (2LL) M.2 modules.

The hardware rework consists of two parts:

• HCI UART rework

• PCM interface rework

Hardware rework
• HCI UART rework:

– Remove: R124,R126

– Mount R696, R697

– Connect J57 [2-3], J76 [2-3]

• PCM interface rework

– Mount R699

– Disconnect J78 J79

– Connect J80 J81

1.8. Wireless 437



MCUXpresso SDK Documentation, Release 25.12.00

Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter This section
is a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and X-FRDM-WIFI-M.2 or the Murata’s 2LL EAR00500 (2LL) M.2 modules solution.

The hardware rework consists of one part:

• UART interface rework

Hardware rework
• UART interface rework

– Remove SJ11 1-2, connect SJ11 2-3

– Remove SJ10 1-2, connect J1-3 to J9-26

• X-FRDM-WIFI-M.2 jumper setting

– Connect J8(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J24(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J19(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J25(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J15(On X-FRDM-WIFI-M.2) for 1.8V

– Connect J16(On X-FRDM-WIFI-M.2) for 3.3V

– Connect J17(On X-FRDM-WIFI-M.2) for 1.8V

438 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– Connect J18(On X-FRDM-WIFI-M.2) for 3.3V

Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510 This section is
a brief hardware rework guidance of the EdgeFast Bluetooth PAL on the NXP FRDM-MCXN947
board and FRDM-IW416-AW-AM510 board. The hardware rework consists of two parts:

• UART interface rework

• FRDM-IW416-AW-AM510

Hardware rework
• UART interface rework

– Remove SJ11 1-2, connect SJ11 2-3

– Remove SJ10 1-2, connect J1-3 to J9-26

• FRDM-IW416-AW-AM510 jumper setting

– Connect J16 2-3 for 3.3V supply

– Connect J17 2-3 for 3.3V UART voltage level

– Connect J7 2-3 for 3.3V SDIO voltage level

1.8. Wireless 439



MCUXpresso SDK Documentation, Release 25.12.00

Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064

Introduction NXP supports Bluetooth/Bluetooth Low Energy on RT1060EVK and RT1060EVKC.
RT1064 has the same MCU die with RT1060EVK and RT1060EVKC and therefore it is possible to
migrate the examples.

This document takes peripheral_ht as an example and describes the steps to migrate EdgeFast
examples from RT1060EVK to RT1064 (based on SDK 2.13.0) and from RT1060EVKC to RT1064
(based on SDK 2.14.0) with different toolchains including IAR, Arm GCC, and MDK.

Migrate examples from RT1060EVK to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDKtoolchains.

Common steps
1. Download SDK_2.13.0_EVK-MIMXRT1060 and SDK_2.13.0_EVK-MIMXRT1064.

2. Copy the following folders from RT1060EVK package to RT1064 package: <install_dir>/
components/internal_flash/ <install_dir>/middleware/edgefast_bluetooth/ <install_dir>/
middleware/wireless/.

440 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

3. Create a folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/boards/
evkmimxrt1064/.

4. Copy the entire folder from <rt1060evk_install_dir>/boards/evkmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/ to < rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064_install_dir>/boards/
evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/ to replace the previous files.

6. Add #define EDGEFAST_BT_LITTLEFS_MFLASH 1 in <rt1064_install_dir>/boards/
evkmimxrt1064/edgefast_bluetooth_examples/peripheral_ht /app_config.c.

7. Make the following changes in <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth/peripheral_ht/board.h.

Parent topic:Migrate examples from RT1060EVK to RT1064

IAR
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/iar/.

2. Make the following changes.

File name Previous item New item
peripheral_ht.ewp 1060 1064

1062 1064

3. Rename MIMXRT1062xxxxx_flexspi_nor.icf as MIMXRT1064xxxxx_flexspi_nor.icf and make
the following changes.

Parent topic:Migrate examples from RT1060EVK to RT1064

Arm GCC
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/armgcc/.

2. Rename the following files.

Path Previous name New name
<rt1064_install_dir>/
middleware/wireless/
ethermind/

middleware_edgefast_bluetooth_k32w061_controller_MIMXRT1062.
cmake

middleware_edgefast_bluetooth_k32w061_controller_MIMXRT1064.
cmake

1.8. Wireless 441



MCUXpresso SDK Documentation, Release 25.12.00

3. Make following changes.

File name Previous item New item
config.cmake 1060 1064

1062 1064

flags.cmake 1062 1064
CMakeLists.txt 1060 1064

1062 1064

4. mflash is used in RT1064 instead of flash_adapter,therefore, comment in-
clude(component_flexspi_nor_flash_adapter_rt1064_MIMXRT1064) in CMakeLists.txt.

5. Rename MIMXRT1062xxxxx_flexspi_nor.ld as MIMXRT1064xxxxx_flexspi_nor.ld and make
the following changes.

Parent topic:Migrate examples from RT1060EVK to RT1064

MDK
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/mdk/.

2. Make following changes.

File name Previous item New item
peripheral_ht.uvprojx 1060 1064

1062 1064

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/hello_world/mdk/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/mdk/.

4. Rename MIMXRT1062xxxxx_flexspi_nor as MIMXRT1064xxxxx_flexspi_nor and make the
following changes.

442 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Migrate examples from RT1060EVK to RT1064

Migrate examples from RT1060EVKC to RT1064 This topic describes the Common steps and
the steps to migrate with the IAR, Arm GCC, and MDK toolchains.

Common steps
1. Download SDK_2.14.0_EVKC-MIMXRT1060 and SDK_2.14.0_EVK-MIMXRT1064.

2. Copy the following folders from the RT1060EVKC package to the RT1064 package:
<install_dir>/middleware/edgefast_bluetooth/ <install_dir>/middleware/wireless/ethermind.

3. Create a new folder named edgefast_bluetooth_examples/ under <rt1064_install_dir>/
boards/evkmimxrt1064/.

4. Copy the entire folder from <rt1060evkc_install_dir>/boards/evkcmimxrt1060/
edgefast_bluetooth_examples/peripheral_ht/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/.

5. Copy clock_config.[c/h] and board.c from <rt1064_install_dir>/boards/
evkmimxrt1064/demo_apps/hello_world/ to <rt1064_installed>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/ to replace the previous files.

Parent topic:Migrate examples from RT1060EVKC to RT1064

IAR
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/iar/.

2. Make the following changes in the listed order.

File name Previous item New item
peripheral_ht.ewp 1062 1064
mflash/evkcmimxrt1060 mflash/mimxrt1064

evkcmimxrt1060 evkmimxrt1064

6B 6A

3. Rename MIMXRT1062xxxxx_flexspi_nor.icf as MIMXRT1064xxxxx_flexspi_nor.icf and make
the following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

Arm GCC
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/armgcc/.

1.8. Wireless 443



MCUXpresso SDK Documentation, Release 25.12.00

2. Copy folder from <rt1060evkc_install_dir>/boards/evkcmimxrt1060/
edgefast_bluetooth_examples/template/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/ and rename the files.

|Path|Previous name|New name| |<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/|middleware_edgefast_bluetooth_mcux_linker_template_evkcmimxrt1060.
cmake|middleware_edgefast_bluetooth_mcux_linker_template_evkmimxrt1064.
cmake| |middleware_edgefast_bluetooth_sdio_template_evkcmimxrt1060.
cmake|middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064.cmake|

3. Add the following content to<rt1064_install_dir>/devices/MIMXRT1064/all_lib_device.
cmake at appropriate location.

…
${CMAKE_CURRENT_LIST_DIR}/../../boards
${CMAKE_CURRENT_LIST_DIR}/../../boards/evkmimxrt1064/edgefast_bluetooth_examples/

↪→template
${CMAKE_CURRENT_LIST_DIR}/../../middleware/edgefast_bluetooth
${CMAKE_CURRENT_LIST_DIR}/../../middleware/wireless/ethermind

…
include_if_use(middleware_edgefast_bluetooth_ble_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_ble_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_br_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_br_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_btble_ethermind_cm7f)
include_if_use(middleware_edgefast_bluetooth_btble_ethermind_lib_cm7f)
include_if_use(middleware_edgefast_bluetooth_common_ethermind)
include_if_use(middleware_edgefast_bluetooth_common_ethermind_hci)
include_if_use(middleware_edgefast_bluetooth_common_ethermind_hci_uart)
include_if_use(middleware_edgefast_bluetooth_config_ethermind)
include_if_use(middleware_edgefast_bluetooth_config_template)
include_if_use(middleware_edgefast_bluetooth_extension_common_ethermind)
include_if_use(middleware_edgefast_bluetooth_k32w061_controller)
include_if_use(middleware_edgefast_bluetooth_mcux_linker_template_ evkmimxrt1064)
include_if_use(middleware_edgefast_bluetooth_pal)
include_if_use(middleware_edgefast_bluetooth_pal_db_gen_ethermind)
include_if_use(middleware_edgefast_bluetooth_pal_host_msd_fatfs_ethermind)
include_if_use(middleware_edgefast_bluetooth_pal_platform_ethermind)
include_if_use(middleware_edgefast_bluetooth_porting)
include_if_use(middleware_edgefast_bluetooth_porting_atomic)
include_if_use(middleware_edgefast_bluetooth_porting_list)
include_if_use(middleware_edgefast_bluetooth_porting_net)
include_if_use(middleware_edgefast_bluetooth_porting_toolchain)
include_if_use(middleware_edgefast_bluetooth_porting_work_queue)
include_if_use(middleware_edgefast_bluetooth_profile_bas)
include_if_use(middleware_edgefast_bluetooth_profile_dis)
include_if_use(middleware_edgefast_bluetooth_profile_fmp)
include_if_use(middleware_edgefast_bluetooth_profile_hps)
include_if_use(middleware_edgefast_bluetooth_profile_hrs)
include_if_use(middleware_edgefast_bluetooth_profile_hts)
include_if_use(middleware_edgefast_bluetooth_profile_ipsp)
include_if_use(middleware_edgefast_bluetooth_profile_pxr)
include_if_use(middleware_edgefast_bluetooth_profile_tip)
include_if_use(middleware_edgefast_bluetooth_profile_wu)
include_if_use(middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064)
include_if_use(middleware_edgefast_bluetooth_shell)
include_if_use(middleware_edgefast_bluetooth_shell_ble)
include_if_use(middleware_edgefast_bluetooth_template)
include_if_use(middleware_edgefast_bluetooth_wifi_nxp_controller_base)...

4. Make the following changes in the listed order.

444 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

File name Previous
item

New
item

config.cmake MIMXRT1062xxxxBMIMXRT1064xxxxA
mflash_evkcmimxrt1060 mflash_rt1064

1062 1064

evkcmimxrt1060 evk-
mimxrt1064

flags.cmake 1062 1064
6B 6A

CMakeLists.txt 1062 1064
<rt1064_install_dir>/middleware/edgefast_bluetooth/
middleware_edgefast_bluetooth_template.cmake

evkcmimxrt1060evk-
mimxrt1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_common_ethermind_hci_uart.
cmake

1062 1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_k32w061_controller.cmake

1062 1064

<rt1064_install_dir>/middleware/wireless/ethermind/
middleware_edgefast_bluetooth_wifi_nxp_controller_base.cmake

evkcmimxrt1060evk-
mimxrt1064

<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/middleware_edgefast_bluetooth_mcux_linker_template_evkmimxrt1064.
cmake

1062 1064

<rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/middleware_edgefast_bluetooth_sdio_template_evkmimxrt1064.
cmake

1062 1064

5. Rename MIMXRT1062xxxxx_flexspi_nor.ld as MIMXRT1064xxxxx_flexspi_nor.ld and make
the following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

MDK
1. Navigate to <rt1064_install_dir>/boards/evkmimxrt1064/edgefast_bluetooth_examples/

peripheral_ht/mdk/.

2. Make the following changes in the listed order.

File name Previous item New item
peripheral_ht.uvprojx 1062 1064

mflash/evkcmimxrt1060 mflash/mimxrt1064

evkcmimxrt1060 evkcmimxrt1064

6B 6A

1.8. Wireless 445



MCUXpresso SDK Documentation, Release 25.12.00

3. Copy evkmimxrt1064_flexspi_nor.ini from <rt1064_install_dir>/boards/evkmimxrt1064/
demo_apps/hello_world/mdk/ to <rt1064_install_dir>/boards/evkmimxrt1064/
edgefast_bluetooth_examples/peripheral_ht/mdk/.

4. Rename MIMXRT1062xxxxx_flexspi_nor as MIMXRT1064xxxxx_flexspi_nor and make the
following changes.

Parent topic:Migrate examples from RT1060EVKC to RT1064

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170

Introduction RT1170 works with two cores: M7 and M4, on which both all EdgeFast examples
can run. However, all the EdgeFast examples in the release package are enabled on M7. Only the
A2DP source example is enabled on M4.

EdgeFast projects for both the cores share the demo source files but with different project set-
tings. Therefore, the examples can be migrated.

This document describes the steps to migrate EdgeFast examples from M7 to M4 with different
toolchains. There are four main steps required. Additionally, you can also delete the function.

1. Create an M4 project

2. Rearrange source files

3. Rearrange project files

446 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

4. Adjust project settings

5. Delete function

In this document, the peripheral_ht example is used to demonstrate how to enable EdgeFast
examples on M4 core with IAR and ARMGCC.

IAR This section describes the steps to create an M4 project with IAR, rearrange source and
project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder cm4 in the directory <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source\cm4
into the folder in which the example should be enabled.
In this case, copy the folder cm4 into the directory <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht.

2. Open the folder iar in the directory <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\iar.

3. Rename the files. Change the file name name a2dp_source_cm4 to peripheral_ht_cm4 in all
the respective files.

|

|

4. Open the files peripheral_ht_cm4.eww and peripheral_ht_cm4.ewp with a text editor, such as
Notepad, Notepad++, Sublime, or Visual Studio Code.

5. Search and replace all a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

|

|

Parent topic:IAR

1.8. Wireless 447



MCUXpresso SDK Documentation, Release 25.12.00

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder cm4 in the directory <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *.h.

2. Copy the files with the extensions *.c and *.h from the folder
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\ to the folder
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

|

|

Parent topic:IAR

Rearrange project files To rearrange project files, perform the following steps:

1. Open the peripheral_ht _cm7and peripheral_ht _cm4 IAR projects in the directories <in-
stall_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht \cm7\iar and
<install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht \cm4\iar.

1. Compare the whole project directory, find file groups that the cm7 project has but are
missing in the cm4 project. Add the missing file groups from the cm7 project into the
cm4 project.

2. Compare the difference between the two groups with the same name. Remove files
that do not exist in the cm7 project but exist in the cm4 project. Find files that are
available in the cm7 project but are missing in the cm4 project. Add the missing files
from the cm7 project into the cm4 project.

2. For example, in the following figure, the files in the source group
in the cm4 project must be removed, and the files in the path: <in-
stall_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht with the
same name as the files in the cm7 project must be added into the source group.

448 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

3. Compare the services group.

The peripheral hts profile is in the services folder. Add the hts.c file to the services group of
the cm4 folder.

1.8. Wireless 449



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:IAR

Adjust project settings To adjust the project settings, perform the following steps:

1. Compare the macro in the project settings: Option > C/C++ compiler > Preprocessor.

2. Find the macros that do not exist in the cm4 project but are available in the cm7 project.
Delete these macro. The rule is that m7 macro setting should be same with m4.

450 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

The macros are in the**peripheral\_ht\_cm4.ewp** file.

|![](../images/image7.png ”Compare the peripheral_ht_cm4.ewp file”)

|

Parent topic:IAR

Delete function As a final step, remove the function “SCB_DisableDCache(); in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:IAR

Arm GCC This section describes the steps to create an M4 project with Arm GCC, rearrange
source and project files, adjust project settings, and delete function.

Create an M4 project To create an M4 project, perform the following steps:

1. Copy the folder <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source
\cm4 into another folder in which the example should
be enabled. In this case, copy the folder <install_dir>

1.8. Wireless 451



MCUXpresso SDK Documentation, Release 25.12.00

boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source \cm4 into*<install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4*.

2. Open the file CMakeLists.txt located in the path: <install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\ armgcc.

3. Search and replace all a2dp_source_cm4 with peripheral_ht_cm4, and then save the files.

Parent topic:Arm GCC

Rearrange source files To rearrange source files, perform the following steps:

1. Open the folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4
and delete all files with the extensions *.c and *.h.

2. Copy the files with the extensions *.c and *.h in the folder <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7 to the
folder <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

|

|

Parent topic:Arm GCC

Rearrange project files To rearrange project files, perform the following steps:

1. Open the CMakeLists.txt of the two examples respectively. The two files are in the <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\armgcc
and <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\armgcc
folders respectively.

2. Search the section add_executable. Compare the difference between the two sections. Re-
move files that do not exist in the cm7 project but are available in the cm4 project. Add
the files that exist in the cm7 project but are not available in the cm4 project into the cm4
project. For example, in the following figure, the files in the red box should be removed
and the files in the green box must be added into the cm4 project.

452 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Arm GCC

Adjust project setting To adjust the project settings, perform the following steps:

1. Open the flags.cmake of the two examples respectively. The two files are in the <in-
stall_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7\armgcc
and <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\armgcc
folders respectively.

2. Search the CMAKE_C_FLAGS_DEBUG section.

1. Compare the macro between the two sections.

2. Add the macros that do not exist in the cm4 project but are available in the cm7 project
into the cm4 project. The rule is that macro setting should be same.

3. Delete the macros highlighted in the red rectangle.

|

|

Parent topic:Arm GCC

Delete function As a final step, remove the function “SCB_DisableDCache() in main.c.

On the completion of the above steps, the M7 project successfully migrates to an M4 project. You
can now download and debug the M4 example project.

Parent topic:Arm GCC

MDK This section describes the steps to create an M4 project with MDK, rearrange source and
project files, adjust project settings, and delete function.

1.8. Wireless 453



MCUXpresso SDK Documentation, Release 25.12.00

Create an M4 project
1. Copy folder cm4 from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\a2dp_source\cm4

into the folder in where the example must be enabled. In this case, copy folder cm4 into
directory <install_dir>\boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht.

2. Open folder mdk from <install_dir>boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4\mdk.

|

|

3. Change the filename a2dp_source_cm4 to peripheral_ht_cm4 respectively.

4. Open the files *peripheral_ht_cm4.*uvmpw and peripheral_ht_cm4. uvoptx, periph-
eral_ht_cm4.uvprojxwith a text editor, such as Notepad, Notepad++, Sublime, or Visual Stu-
dio code.

5. Search and replace a2dp_source_cm4 with peripheral_ht _cm4, and then save the files.

|

|

Parent topic:MDK

Rearrange source files
1. Open folder cm4 in *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4,

and delete all files with the .c and .h file name extension.

2. Copy files with the .c and .h filename extension in folder cm7 with directory <install_dir>
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm7to folder cm4 with
directory <install_dir> boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4.

454 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

.

Parent topic:MDK

Rearrange project files
1. Open the peripheral_ht _cm7 and peripheral_ht _cm4 IAR projects. The two workspaces are

located in *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
\cm7\mdk and *<install_dir>*boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht
\cm4\mdk respectively.

• Compare the whole project directory, find file groups that the cm7 project has but the
cm4 project not and then add these groups into the cm4 project.

• Compare the difference between the two groups with the same name, remove files
that do not exist in the cm7 project but exist in the cm4 project; find files that the cm7
project has but the cm4 project not and then add these files into the cm4 project.

2. For the source group, in this case, the files in the source group in the cm4 project
must be removed, and the files in the path <install_dir>\boards\evkmimxrt1170\
boards\evkmimxrt1170\edgefast_bluetooth_examples\peripheral_ht\cm4 with the same
name as the files in the cm7 project must be added into the source group.

1.8. Wireless 455



MCUXpresso SDK Documentation, Release 25.12.00

3. Compare the service: group.

Peripheral hts profile is located in “service” folder. Add the hts.c file to the services group
of the cm4 folder.

456 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

.

Parent topic:MDK

Adjust project settings
1. Compare the macro in the project settings: preprocessor symbols.

2. Compare the macro that does exist in the cm4 project but exists in the cm7 project.

3. Delete the following macro. The rule is that m7 macro setting should be same as m4 .

The macro could also be found in be eripheral_ht_cm4.uvprojx.

1.8. Wireless 457



MCUXpresso SDK Documentation, Release 25.12.00

|

|

|![](../images/adjust_mdk_settings2.png ”Compare the macro”)

|

Parent topic:MDK

Delete function Remove function SCB_DisableDCache(); in main.c.

On successful completion of the above steps, the M7 project is changed to the M4 project. You
can now download and debug the M4 example project.

Parent topic:MDK

Note The above steps are based on the a2dp_source example and help enable the periph-
eral_ht example on the m4 core. You can use the same steps for other examples and migrate
them from an m7 project to an m4 project.

458 Chapter 1. Middleware



Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

2.1.4 corehttp

C language HTTP client library designed for embedded platforms.

2.1.5 corejson

JSON parser.

459



MCUXpresso SDK Documentation, Release 25.12.00

Readme

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

2.1.7 corepkcs11

PKCS #11 key management library.

Readme

2.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

460 Chapter 2. RTOS


	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project


	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions



	eIQ
	eIQ
	eIQ TensorFlow Lite for Micro Library User Guide
	Overview
	TensorFlow Lite for Microcontrollers
	Build Status
	Official Builds
	Community Supported TFLM Examples
	Community Supported Kernels and Unit Tests

	Contributing
	Getting Help
	Additional Documentation
	RFCs
	Deployment
	Example applications
	Model Conversion to TensorFlow Lite Format
	Model Conversion for NXP eIQ Neutron NPU
	Example: Converting a Quantized TensorFlow Lite Model for Neutron NPU
	Run and debug eIQ HiFi4 and HiFi1 DSP examples using Xplorer IDE
	Prepare CM33 Core for the examples
	Prepare DSP core for the examples

	Running an inference
	Converting a model to a C language header file {#EXAMPLE_4 .section}
	NPU inference {#npu_infer .section}
	Adjusting the tensor arena size {#adjust_arena .section}

	Code size optimization
	Register only used operators in TensorFlow Lite Micro {#SECTION_SS1_DJQ_QPB .section}

	Note about the source code in the document

	eIQ ExecuTorch Library User Guide
	Overview
	Supported platforms:
	Installation
	ExecuTorch for Ahead of Time model preparation
	Installation
	Neutron Converter
	Installation
	MCUXpresso SDK

	Getting the MCUXpresso SDK with eIQ ExecuTorch
	PyTorch Model Conversion to ExecuTorch Format
	MCUXpresso SDK Example applications
	How to build and run executorch_cifarnet example
	Convert the model and example input to C array
	Build, Deploy and Run
	How to build executorch_lib example




	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]



	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications


	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types


	Document references
	Links
	Documents
	Revision history



	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.12.00]
	[25.09.00]
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	[v5.3.0]
	Added
	Fixed
	v5.2.1
	Added
	Changed
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	[v5.0.2]
	Added
	v5.0.1
	Added
	Changed
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	Added
	Fixed
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added




	Multimedia
	Audio Voice
	Audio Voice Components
	MCUXpresso SDK : audio-voice-components
	Overview
	Documentation
	Setup
	Contribution
	Overview
	Content
	Asynchronous Sample Rate Converter
	Synchronous Sample Rate Converter
	Opus
	Opus File
	Ogg Container
	Decoders
	AAC
	FLAC
	MP3
	WAV
	Zephyr build

	AAC decoder
	AAC decoder features
	Specification and reference
	Performance
	Memory information
	CPU usage

	API Usage of AAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	FLAC decoder
	FLAC decoder features
	Specification and reference
	Official website
	Inbound licensing
	Performance
	Memory information
	CPU usage
	Following test cases are performed:

	API Usage of FLAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	MP3 decoder
	MP3 decoder features
	Performance
	Memory information
	CPU usage

	API Usage of MP3 Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	WAV decoder
	WAV decoder features
	Performance
	Memory information
	CPU usage
	Following test cases were performed:

	API Usage of WAV Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	Synchronous Sample Rate Converter
	Introduction
	Acronyms
	Performance figures
	Resource usage
	Memory requirements
	Processing requirements
	On Arm7 and Arm9
	On Arm9e and XScale
	On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
	Application programmers interface (API)
	Type definitions
	Types for allocation of instance and scratch memory
	LVM_Fs_en
	LVM_Format_en
	SSRC_Quality_en
	Instance parameters
	Nr of samples mode
	Function return status
	Functions
	SSRC_GetNrSamples
	SSRC_GetScratchSize
	SSRC_Init
	SSRC_SetGains
	SSRC_Process
	SSRC_Process_D32
	Dynamic function usage
	Define the number of samples to be used on input and output
	Allocate scratch memory
	Initialize the SSRC instance
	Process samples
	Destroy the SSRC instance
	Reentrancy
	Additional user information
	Attenuation of the signal
	Notes on integration
	Example application
	Integration test
	Bit accurate test
	THD+N measurement


	Maestro Audio Framework
	MCUXpresso SDK : Maestro
	Overview
	Documentation
	Setup
	Contribution
	Introduction
	Maestro on Zephyr
	Maestro on FreeRTOS
	Supported examples
	Example applications overview
	File structure

	Maestro Audio Framework Programmer’s Guide
	Introduction
	Architecture overview
	Pipeline
	Elements
	Add a new element type
	Add a new element index
	Pads
	Internal communication
	Decoders and encoders
	Common codec interface
	Using the CCI to interface with Metadata
	Using the CCI to interface with Decoders
	Adding new decoders to the CCI
	Common encoder interface
	Maestro performance
	Memory information
	CPU usage

	CEI encoder
	Header files
	Instantiating the element
	Element properties
	CEI definition - implementing your own encoder

	Maestro playback example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	file stop
	file pause
	file volume <volume>
	file seek <seek_time>
	file play <filename>
	file list
	file info
	Processing Time

	Maestro record example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	record_mic audio <time>
	record_mic file <time>/record_mic <file_name> <time>
	record_mic vit <time> <language>
	opus_encode
	Processing Time

	Maestro USB microphone example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_mic <seconds>

	Maestro USB speaker example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_speaker <seconds>

	Supported features
	Decoders
	Encoders
	Sample rate converters
	Additional libraries

	Processing Time
	Table of content
	Maestro playback example
	Time on each element
	Maestro record example
	Pipeline Microphone -> Speaker
	Pipeline Microphone -> VIT

	Maestro on Zephyr
	Maestro sample for recording data from microphone to RAM
	Description
	User Input/Output
	Supported platforms
	Maestro voice detection sample using VIT
	Description
	User Input/Output
	Dependencies
	Supported platforms
	Maestro decoder sample
	Description
	User Input/Output
	Dependencies
	Configuration
	Supported platforms
	Maestro encoder sample
	Description
	Dependencies
	User Input/Output
	Configuration
	Supported platforms
	Maestro mem2mem sample
	Description
	Maestro environment setup
	Build and run Maestro example
	Using command line
	Using MCUXpresso for VS Code
	Folder structure
	Supported elements and libraries
	Examples support
	Creating your own example
	Documentation
	FAQ

	Maestro Audio Framework changelog
	2.0.2
	2.0.1
	2.0.0 (newest)
	1.8.0
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.0_rev0



	VGLite Graphics Driver
	IMXRTVGLITEAPIRM
	Introduction
	VGLite Graphics API
	API function group
	API files
	Hardware versions

	Common parameters and error values
	Common parameter types
	Enumerations for error reporting
	vg_lite_error_t enumeration

	Hardware product and feature information
	Enumerations for product and feature queries
	vg_lite_feature_t enumeration
	Structures for product and feature queries
	vg_lite_info_t structure
	Functions for product and feature queries
	vg_lite_get_product_info
	vg_lite_get_info
	vg_lite_get_register
	vg_lite_query_feature
	vg_lite_get_mem_size

	API control
	Context initialization and control functions
	vg_lite_init
	vg_lite_close
	vg_lite_flush
	vg_lite_finish
	vg_lite_frame_delimiter
	vg_lite_set_command_buffer_size
	vg_lite_set_command_buffer
	vg_lite_set_tess_buffer
	vg_lite_set_memory_pool

	Pixel buffers
	Pixel buffer alignment
	Pixel cache
	Internal representation
	Pixel buffer enumerations
	vg_lite_buffer_format_t enumeration
	Image buffer alignment requirement
	Destination buffer alignment requirement
	vg_lite_buffer_layout_t enumeration
	vg_lite_compress_mode_t enumeration
	vg_lite_gamma_conversion_t enumeration
	vg_lite_index_endian_t enumeration
	vg_lite_image_mode_t enumeration
	vg_lite_map_flag_t enumeration
	vg_lite_paint_type_t enumeration
	vg_lite_transparency_t enumeration
	vg_lite_swizzle_t enumeration
	vg_lite_yuv2rgb_t enumeration
	Pixel buffer structures
	vg_lite_buffer_t structure
	vg_lite_fc_buffer_t structure
	vg_lite_yuvinfo_t structure
	Pixel buffer functions
	vg_lite_allocate function
	vg_lite_free function
	vg_lite_upload_buffer function
	vg_lite_map function
	vg_lite_unmap function
	vg_lite_flush_mapped_buffer function
	vg_lite_set_CLUT function
	vg_lite_enable_dither function
	vg_lite_disable_dither function
	vg_lite_set_gamma function

	Matrices
	Matrix control float parameter type
	Matrix control structures
	vg_lite_matrix_t structure
	vg_lite_pixel_channel_enable_t structure
	Matrix control functions
	vg_lite_identity function
	vg_lite_set_pixel_matrix function
	vg_lite_rotate function
	vg_lite_scale function
	vg_lite_translate function

	Blits for compositing and blending
	Blit enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_color_transform_t structure
	vg_lite_filter_t enumeration
	vg_lite_color_transform_t structure
	vg_lite_mask_operation_t enumeration
	vg_lite_orientation_t enumeration
	vg_lite_param_type_t enumeration
	Blit structures
	vg_lite_buffer_t structure
	vg_lite_color_key_t structure
	vg_lite_color_key4_t structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_rectangle_t structure
	vg_lite_point_t structure
	vg_lite_point4_t structure
	vg_lite_float_point_t structure
	vg_lite_float_point4_t structure
	Blit functions
	vg_lite_blit function
	vg_lite_blit2 function
	vg_lite_blit_rect function
	vg_lite_copy_image function
	vg_lite_get_transform_matrix function
	vg_lite_clear function
	vg_lite_set_color_key function
	vg_lite_gaussian_filter function
	Blit/Draw extended functions
	vg_lite_get_parameter function
	vg_lite_enable_scissor function
	vg_lite_disable_scissor function
	vg_lite_scissor_rects function
	vg_lite_set_scissor function
	vg_lite_disable_color_transform function
	vg_lite_enable_color_transform function
	vg_lite_set_color_transform function
	vg_lite_enable_masklayer function
	vg_lite_disable_masklayer function
	vg_lite_create_masklayer function
	vg_lite_blend_masklayer function
	vg_lite_set_masklayer function
	vg_lite_render_masklayer function
	vg_lite_destroy_masklayer function
	vg_lite_set_mirror function
	vg_lite_source_global_alpha function
	vg_lite_dest_global_alpha function

	Vector path control
	Vector path enumerations
	vg_lite_format_t enumeration
	vg_lite_quality_t enumeration
	Vector path structures
	vg_lite_hw_memory structure
	vg_lite_path_t structure
	Vector path functions
	vg_lite_get_path_length function
	vg_lite_append_path function
	vg_lite_init_path function
	vg_lite_init_arc_path function
	vg_lite_upload_path function
	vg_lite_clear_path function
	Vector path opcodes for plotting paths

	Vector-dased draw operations
	Draw and gradient enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_fill_t enumeration
	vg_lite_filter_t enumeration
	vg_lite_gradient_spreadmode_t enumeration
	vg_lite_pattern_mode_t enumeration
	vg_lite_radial_gradient_spreadmode_t enumeration
	Draw and gradient structures
	vg_lite_buffer_t structure
	vg_lite_color_ramp_t structure
	vg_lite_linear_gradient_t structure
	vg_lite_ext_linear_gradient structure
	vg_lite_linear_gradient_parameter structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_radial_gradient_parameter_t structure
	vg_lite_radial_gradient_t structure
	Draw functions
	vg_lite_draw function
	vg_lite_draw_grad function
	vg_lite_draw_radial_grad function
	vg_lite_draw_pattern function
	Linear gradient initialization and control functions
	vg_lite_init_grad function
	vg_lite_clear_grad function
	vg_lite_set_grad function
	vg_lite_get_grad_matrix function
	vg_lite_update_grad function
	Linear gradient extended functions
	vg_lite_set_linear_grad function
	vg_lite_get_linear_grad_matrix function
	vg_lite_draw_linear_grad function
	vg_lite_update_linear_grad function
	vg_lite_clear_linear_grad function
	Radial gradient functions initialization and control functions
	vg_lite_set_radial_grad function
	vg_lite_update_radial_grad function
	vg_lite_get_radial_grad_matrix function
	vg_lite_clear_rad_grad function

	Stroke operations
	Stroke enumerations
	vg_lite_cap_style_t enumeration
	vg_lite_path_type_t enumeration
	vg_lite_join_style_t enumeration
	Stroke structures
	vg_lite_path_t structure
	vg_lite_path_list_t structure
	vg_lite_path_point_t structure
	vg_lite_stroke_t structure
	vg_lite_sub_path_t structure
	Stroke functions
	vg_lite_set_path_type function
	vg_lite_set_stroke function
	vg_lite_update_stroke function

	Deprecated and renamed APIs
	Deprecated vg_lite syntax
	vg_lite_perspective (deprecated)
	vg_lite_set_dither (deprecated)
	vg_lite_enable_premultiply (deprecated)
	vg_lite_disable_premultiply (deprecated)
	vg_lite_set_premultiply (deprecated)

	VGLite API version 2.0 to 3.0 migration guide
	VGLite API name changes in API version 3.0
	vg_lite_set_scissor API interface change
	vg_lite_map API interface change
	vg_lite_enable_scissor / vg_lite_disable_scissor API
	vg_lite_draw_pattern API interface change
	[New] vg_lite_copy_image in VGLite API version 3.0
	vg_lite_set_dither API is deprecated in API version 3.0
	Deprecated VGLite API version 2.0 functions

	Revision history
	Note about the source code in the document



	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Firmware version: 18.99.6.p46 to 18.99.6.p47
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Firmware version: 18.99.5.p76 to 18.99.5.p79
	Known issues
	Abbreviations
	References



	EdgeFast Bluetooth
	MCUXpressoSDK EdgeFast Bluetooth Protocol Abstraction
	Introduction
	Stack API Reference

	Overview
	Folder structure
	Architecture
	Features
	Bluetooth features
	Toolchain support
	RTOS support
	Examples list

	Hardware
	Reference boards list
	Dual-chip wireless module list

	Demo
	Run a demo application using IAR
	Open an IAR example
	Build an IAR example
	Run an IAR example
	Run a demo application using MCUXpresso IDE
	Open an MCUXpresso IDE example
	Build an MCUXpresso IDE example
	Run an MCUXpresso IDE example
	Run a demo application using MDK
	Open an MDK project
	Build an MDK example
	Run an MDK example
	Run a demo application using Arm GCC
	Setup tool chains
	Build a GCC example
	Run a GCC example
	Download Linker Layer firmware from the reference board
	Change board-specific parameters
	Change HCI UART parameters
	Change USB Host stack parameters

	Known issues
	Notes
	EdgeFast BT PAL configuration documentation

	Rework Guide for EdgeFast Bluetooth Protocol Abstraction Layer
	Hardware Rework Guide for MIMXRT1170-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1170-EVKB and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM457-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-CM358-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and AW-AM510-uSD
	Hardware rework

	Hardware Rework Guide for MIMXRT685-EVK and Murata uSD-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MIMXRT685-AUD-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 2EL M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for Low Power Feature on MIMXRT595-EVK and Murata 1XK M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-AM510MA
	Hardware rework

	Hardware Rework Guide for MIMXRT595-EVK and AW-CM358MA
	Hardware rework

	Hardware Rework Guide for MIMXRT1040-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1060-EVKC and Murata 2EL M.2 Adapter
	Hardware rework

	Hardware Rework Guide for MCXN547-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MCXN947-EVK and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for IMXRT1050-EVKB and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for MIMXRT1180 and Murata M.2 Module
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and X-FRDM-WIFI-M.2 Adapter
	Hardware rework

	Hardware Rework Guide for FRDM-MCXN947 and FRDM-IW416-AW-AM510
	Hardware rework


	Enabling Additional EdgeFast Bluetooth Protocol Abstraction Layer Examples on RT1064
	Introduction
	Migrate examples from RT1060EVK to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Migrate examples from RT1060EVKC to RT1064
	Common steps
	IAR
	Arm GCC
	MDK

	Note about the source code in the document

	Enabling Additional Edgefast BT PAL Examples on M4 core for RT1170
	Introduction
	IAR
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Arm GCC
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project setting
	Delete function

	MDK
	Create an M4 project
	Rearrange source files
	Rearrange project files
	Adjust project settings
	Delete function

	Note




	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme




