
MCUXpresso SDK Documentation
Release 25.12.00



NXP
Dec 18, 2025



Table of contents

1 MIMXRT1160-EVK 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Getting Started with MCUXpresso SDK Package . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Getting Started with Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Getting Started with MCUXpresso SDK GitHub . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 Getting Started with MCUXpresso SDK Repository . . . . . . . . . . . . . . . . 35
1.4 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.4.1 MCUXpresso SDK Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.5 ChangeLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.5.1 MCUXpresso SDK Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.6 Driver API Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.7 Middleware Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

1.7.1 VG-Lite GPU Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.7.2 Multicore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.7.3 MCU Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.7.4 Audio Voice components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.5 Maestro Audio Framework for MCU . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.6 eIQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.7 FreeMASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.8 AWS IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.9 NXP Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.10 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.11 lwIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.7.12 File systemFatfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

2 MIMXRT1176 203
2.1 ACMP: Analog Comparator Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2.2 ADC_ETC: ADC External Trigger Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2.3 Anatop_ai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.4 AOI: Crossbar AND/OR/INVERT Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.5 ASRC: Asynchronous sample rate converter . . . . . . . . . . . . . . . . . . . . . . . . 225
2.6 ASRC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.7 ASRC EDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2.8 CAAM: Cryptographic Acceleration and Assurance Module . . . . . . . . . . . . . . . 245
2.9 CAAM AES driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
2.10 CAAM Key Blankening driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
2.11 CAAM Blob driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
2.12 CAAM CRC driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.13 CAAM DES driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2.14 Caam_driver_ecc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
2.15 CAAM HASH driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
2.16 Caam_driver_hmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
2.17 CAAM PKHA driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
2.18 CAAM RNG driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2.19 Caam_driver_rsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
2.20 CAAM Blocking APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

i



2.21 CAAM Non-blocking APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
2.22 CAAM Non-blocking AES driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
2.23 CAAM Non-blocking DES driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2.24 CAAM Non-blocking HASH driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
2.25 Caam_nonblocking_driver_hmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2.26 CAAM Non-blocking RNG driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2.27 CACHE: ARMV7-M7 CACHE Memory Controller . . . . . . . . . . . . . . . . . . . . . . 322
2.28 CACHE: LMEM CACHE Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . 325
2.29 CDOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
2.30 Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
2.31 MIPI CSI2 RX: MIPI CSI2 RX Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
2.32 CSI: CMOS Sensor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
2.33 DAC12: 12-bit Digital-to-Analog Converter Driver . . . . . . . . . . . . . . . . . . . . . 424
2.34 Dcdc_soc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
2.35 DCIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
2.36 DCIC: Display Content Integrity Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2.37 DMAMUX: Direct Memory Access Multiplexer Driver . . . . . . . . . . . . . . . . . . . 454
2.38 eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver . . . . . . . . . . 456
2.39 eLCDIF: Enhanced LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
2.40 ENC: Quadrature Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
2.41 ENET: Ethernet MAC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
2.42 EQOS-TSN: Ethernet QoS with TSN Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 526
2.43 Enet_qos_qos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
2.44 EWM: External Watchdog Monitor Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 567
2.45 FlexCAN: Flex Controller Area Network Driver . . . . . . . . . . . . . . . . . . . . . . . 570
2.46 FlexCAN Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
2.47 FlexCAN eDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
2.48 FlexIO: FlexIO Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
2.49 FlexIO Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
2.50 FlexIO eDMA I2S Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
2.51 FlexIO eDMA SPI Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
2.52 FlexIO eDMA UART Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
2.53 FlexIO I2C Master Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
2.54 FlexIO I2S Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
2.55 FlexIO SPI Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
2.56 FlexIO UART Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
2.57 FLEXRAM: on-chip RAM manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
2.58 FLEXSPI: Flexible Serial Peripheral Interface Driver . . . . . . . . . . . . . . . . . . . 692
2.59 FLEXSPI eDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
2.60 Gpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
2.61 GPIO: General-Purpose Input/Output Driver . . . . . . . . . . . . . . . . . . . . . . . . 725
2.62 GPT: General Purpose Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
2.63 IEE: Inline Encryption Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
2.64 Ieer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
2.65 IOMUXC: IOMUX Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
2.66 Key_manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
2.67 KPP: KeyPad Port Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
2.68 Common Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
2.69 LCDIFv2: LCD Interface v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
2.70 LPADC: 12-bit SAR Analog-to-Digital Converter Driver . . . . . . . . . . . . . . . . . . 815
2.71 LPI2C: Low Power Inter-Integrated Circuit Driver . . . . . . . . . . . . . . . . . . . . . 836
2.72 LPI2C Master Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
2.73 LPI2C Master DMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
2.74 LPI2C Slave Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
2.75 LPSPI: Low Power Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . 864
2.76 LPSPI Peripheral driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
2.77 LPSPI eDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
2.78 LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver . . . . . 892

ii



2.79 LPUART Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
2.80 LPUART eDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
2.81 MCM: Miscellaneous Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914
2.82 MECC: internal error correction code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
2.83 MIPI DSI Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
2.84 MIPI_DSI: MIPI DSI Host Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
2.85 MU: Messaging Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
2.86 Nic301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
2.87 OCOTP: On Chip One-Time Programmable controller. . . . . . . . . . . . . . . . . . . . 957
2.88 OTFAD: On The Fly AES-128 Decryption Driver . . . . . . . . . . . . . . . . . . . . . . . 960
2.89 PDM: Microphone Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
2.90 PDM Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
2.91 PDM EDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
2.92 PGMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
2.93 PIT: Periodic Interrupt Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
2.94 Pmu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
2.95 PUF: Physical Unclonable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
2.96 PWM: Pulse Width Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017
2.97 PXP: Pixel Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
2.98 QTMR: Quad Timer Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
2.99 RDC: Resource Domain Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088
2.100RDC_SEMA42: Hardware Semaphores Driver . . . . . . . . . . . . . . . . . . . . . . . . 1094
2.101Romapi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
2.102RTWDOG: 32-bit Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
2.103SAI: Serial Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
2.104SAI Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
2.105SAI EDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
2.106SEMA4: Hardware Semaphores Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
2.107SEMC: Smart External DRAM Controller Driver . . . . . . . . . . . . . . . . . . . . . . 1155
2.108Smart Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
2.109Smart Card EMVSIM Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
2.110SNVS: Secure Non-Volatile Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
2.111Secure Non-Volatile Storage High-Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
2.112Secure Non-Volatile Storage Low-Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
2.113Soc_mipi_csi2rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
2.114Soc_mipi_dsi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210
2.115Soc_src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210
2.116SPDIF: Sony/Philips Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
2.117SPDIF eDMA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
2.118SSARC: State Save and Restore Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
2.119TEMPSENSOR: Temperature Sensor Module . . . . . . . . . . . . . . . . . . . . . . . . 1247
2.120USDHC: Ultra Secured Digital Host Controller Driver . . . . . . . . . . . . . . . . . . . 1250
2.121WDOG: Watchdog Timer Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
2.122XBARA: Inter-Peripheral Crossbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
2.123XBARB: Inter-Peripheral Crossbar Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 1286
2.124XECC: external error correction code controller . . . . . . . . . . . . . . . . . . . . . . 1287
2.125XRDC2: Extended Resource Domain Controller 2 . . . . . . . . . . . . . . . . . . . . . 1291

3 Middleware 1305
3.1 Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305

3.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource . . . . . . . 1305
3.1.2 MCUboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306

3.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
3.2.1 lwIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307

3.3 File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
3.3.1 FatFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308

3.4 Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310
3.4.1 FreeMASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310

iii



3.5 MultiCore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348
3.5.1 Multicore SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348

3.6 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446
3.6.1 Audio Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446
3.6.2 VGLite Graphics Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522

3.7 Wireless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612
3.7.1 NXP Wireless Framework and Stacks . . . . . . . . . . . . . . . . . . . . . . . . 1612

4 RTOS 1659
4.1 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659

4.1.1 FreeRTOS kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
4.1.2 FreeRTOS drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
4.1.3 backoffalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
4.1.4 corehttp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
4.1.5 corejson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
4.1.6 coremqtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660
4.1.7 corepkcs11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660
4.1.8 freertos-plus-tcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660

iv



MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the evkmimxrt1160 board.

Table of contents 1



MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents



Chapter 1

MIMXRT1160-EVK

1.1 Overview

i.MX RT1160 crossover MCUs are part of the EdgeVerse edge computing platform, achieving
600MHz performance. This MCU family combines superior computing power and multiple me-
dia capabilities with ease of use and real-time functionality. The dual core i.MX RT1160 MCU
runs on the Arm Cortex-M7 core at 600 MHz and Arm Cortex-M4 at 240 MHz, while providing
excellent security. The i.MX RT1160 MCU offers support over a wide temperature range and
is designed for consumer, industrial and automotive markets. The i.MX RT1160 evaluation kit
(EVK) provides a high-performance solution enabled by a 6-layer PCB with through-hole design
for better EMC performance - all at a low cost.

MCU device and part on board is shown below:

• Device: MIMXRT1166

• PartNumber: MIMXRT1166DVM6A

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package

Overview

The MCUXpresso Software Development Kit (SDK) provides comprehensive software support
for Kinetis and LPC Microcontrollers. The MCUXpresso SDK includes a flexible set of periph-
eral drivers designed to speed up and simplify development of embedded applications. Along
with the peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of example

3



MCUXpresso SDK Documentation, Release 25.12.00

applications covering everything from basic peripheral use case examples to full demo applica-
tions. The MCUXpresso SDK contains FreeRTOS and various other middleware to support rapid
development.

For supported toolchain versions, seeMCUXpresso SDKReleaseNotes forMIMXRT1160-EVK (doc-
ument MCUXSDKMIMXRT116XRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm® Cortex®-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various sub-folders to classify the type of examples
it contain. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

• rtos_examples: Basic FreeRTOSTM OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers.

• usb_examples: Applications that use the USB host/device/OTG stack.

• multicore_examples: Applications for both cores showing the usage of multicore software
components and the interaction between cores.

• Other_examples: See detail in package boards/evkmimxrt1160.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive

4 Chapter 1. MIMXRT1160-EVK

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK


MCUXpresso SDK Documentation, Release 25.12.00

understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that
are relevant to that specific piece of hardware. Although we use the hello_world example (part of
the demo_apps folder), the same general rules apply to any type of example in the <board_name>
folder.

In the hello_world application folder you see the following contents:

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Parent topic:MCUXpresso SDK board support package folders

Locating example application source files When opening an example application in any of
the supported IDEs, a variety of source files are referenced. The MCUXpresso SDK devices folder
is the central component to all example applications. It means the examples reference the same
source files and, if one of these files is modified, it could potentially impact the behavior of other
examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and
a few other files

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project_template Project template used in CMSIS PACK new project
creation

1.2. Getting Started with MCUXpresso SDK Package 5



MCUXpresso SDK Documentation, Release 25.12.00

For examples containing an RTOS, there are references to the appropriate source code. RTOSes
are in the rtos folder. The core files of each of these are shared, so modifying one could have
potential impacts on other projects that depend on that file.

Parent topic:MCUXpresso SDK board support package folders

Run a demo using MCUXpresso IDE

Note:
Most MCUXpresso projects provide two targets (debug and release). For CM7 projects, they are
actually flash target. For CM4 projects, they are linked to RAM. To debug and run the CM7 ex-
amples, set SW1[1:4] to 0010 as internal flash boot mode. Currently, MCUXpresso IDE does not
support CM4 download/debug.

This section describes the steps required to configure MCUXpresso IDE to build, run, and de-
bug example applications. The hello_world demo application targeted for the MIMXRT1160-EVK
hardware platform is used as an example, though these steps can be applied to any example
application in the MCUXpresso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside of the MCUXpresso SDK tree.

Parent topic:Run a demo using MCUXpresso IDE

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK example(s)….

6 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

3. In the window that appears, select MIMXRT1166xxxxx. Then, select evkmimxrt1160 and
click Next.

4. Expand the demo_apps folder and select hello_world. Then, click Next.

1.2. Getting Started with MCUXpresso SDK Package 7



MCUXpresso SDK Documentation, Release 25.12.00

5. Ensure Redlib: Use floating point version of printf is selected if the example prints float-
ing point numbers on the terminal for demo applications such as adc_basic, adc_burst,
adc_dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

8 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo using MCUXpresso IDE

Run an example application To download and run the application, perform the following
steps:

1. See Table 1 to determine the debug interface that comes loaded on your specific hardware
platform.

• If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link soft-
ware (drivers and utilities) from SEGGER.

• For boards with the OSJTAG interface, install the driver from KEIL.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number. To determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 9

https://www.segger.com/downloads/jlink/
https://www.keil.com/


MCUXpresso SDK Documentation, Release 25.12.00

4. 1 stop bit

4. On the Quickstart Panel, click Debug ‘evkmimxrt1160_demo_apps_hello_world’ [De-
bug].

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

10 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

6. The application is downloaded to the target and automatically runs to main().

1.2. Getting Started with MCUXpresso SDK Package 11



MCUXpresso SDK Documentation, Release 25.12.00

7. Start the application by clicking Resume.

The hello_world application is now running and a banner is displayed on the terminal. If this is
not the case, check your terminal settings and connections.

Parent topic:Run a demo using MCUXpresso IDE

Build a multicore example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-core
version of hello_world example application targeted for the evkmimxrt1160 hardware platform
is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for evk-
mimxrt1160 is installed and available in the Installed SDKs view, click Import SDK exam-
ple(s)… on the Quickstart Panel. In the window that appears, select MIMXRT1166xxxxx.
Then, select evkmimxrt1160 and click Next.

12 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

2. Expand the multicore_examples folder and select hello_world_cm7. The hello_world_cm4
counterpart project is automatically imported with the cm7 project, because the multicore
examples are linked together and there is no need to select it explicitly. Click Finish.

1.2. Getting Started with MCUXpresso SDK Package 13



MCUXpresso SDK Documentation, Release 25.12.00

3. Now, two projects should be imported into the workspace. To start building the multi-
core application, highlight the hello_world_cm7 project (multicore master project) in the
Project Explorer. Then choose the appropriate build target, Debug or Release, by click-
ing the downward facing arrow next to the hammer icon, as shown in Figure 3. For this
example, select Debug.

Press the Build button to start the multi-core project build. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm7) also
makes the referenced auxiliary core application (cm4) to build.

Note:
When the Release build is requested, it is necessary to change the build configuration of both
the primary and auxiliary core application projects first. To do this, select both projects in the
Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm7) build.

14 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo using MCUXpresso IDE

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and
run the multicore application, switch to the primary core application project and perform all
steps as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See Figure 1 to Figure 4
as reference.

Note: On MCUXpresso IDE, the feature to simultaneously debug two cores is only supported by
CMSIS-DAP debugger.

1.2. Getting Started with MCUXpresso SDK Package 15



MCUXpresso SDK Documentation, Release 25.12.00

16 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

After clicking Resume All Debug sessions, the hello_world multicore application runs and a ban-
ner is displayed on the terminal. If this is not the case, check your terminal settings and connec-
tions

Note: There are some limitations on MCUXpresso IDE debugging. For details, see Section 8.5
MCUXPresso IDE limitation in MCUXpresso SDK Release Notes for MIMXRT1160-EVK (docu-
ment MCUXSDKMIMXRT116XRN).

Parent topic:Run a demo using MCUXpresso IDE

Run a demo application using IAR

Note:
When erasing flash on IAR, IAR will show all range that can connect to flash. Please only check
address flash connect to practically. Take the evkmimxrt1160 for example:

• M7: 0x30000000-0x3fffffff

• M4: 0x8000000-0x17ffffff

When using IAR download/debug flexspi_nor related targets, make sure the boot switch is put to
internal flash boot mode SW1[1:4]:0010.

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK. The hello_world demo application targeted for the MIMXRT1160-EVK
hardware platform is used as an example, although these steps can be applied to any example
application in the MCUXpresso SDK.

1.2. Getting Started with MCUXpresso SDK Package 17



MCUXpresso SDK Documentation, Release 25.12.00

Build an example application Do the following steps to build the hello_world demo applica-
tion.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_type>/iar

Using the MIMXRT1160-EVK hardware platform as an example, the hello_world workspace
is located in:

<install_dir>/boards/evkmimxrt1160/demo_apps/hello_world/cm7/iar/hello_world_demo_cm7.eww

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

There are twelve project configurations (build targets) supported across MCUXpresso SDK
projects:

• Debug– Compiler optimization is set to low, and debug information is generated for the
executable. The linker file is RAMlinker, where text and data section is put in internal
TCM.

• Release– Compiler optimization is set to high, and debug information is not generated.
The linker file is RAM linker, where text and data section is put in internal TCM.

• ram_0x1400_debug– Project configuration is same as the debug target. The linker file is
RAM_0x1400linker, where text is put in ITCM with offset 0x1400 and data put in DTCM.

• ram_0x1400_release– Project configuration is same as the release target. The linker file
is RAM_0x1400 linker, where text is put in ITCM with offset 0x1400 and data put in
DTCM.

• sdram_debug– Project configuration is same as the debug target. The linker file is
SDRAMlinker, where text is put in internal TCM and data put in SDRAM.

• sdram_release– Project configuration is same as the release target. The linker file is
SDRAMlinker, where text is put in internal TCM and data put in SDRAM.

• sdram_txt_debug– Project configuration is same as the debug target. The linker file is
SDRAM_txtlinker, where text is put in SDRAM and data put in OCRAM.

• sdram_txt_release– Project configuration is same as the release target. The linker file
is SDRAM_txtlinker, where text is put in SDRAM and data put in OCRAM.

• flexspi_nor_debug– Project configuration is same as the debug target. The linker file is
flexspi_nor linker, where text is put in flash and data put in TCM.

• flexspi_nor_release– Project configuration is same as the release target. The linker file
is flexspi_nor linker, where text is put in flash and data put in TCM.

• flexspi_nor_sdram_release- Project configuration is same as the release target. The
linker file is flexspi_nor_sdramlinker, where text is put in flash and data put in SDRAM.

• flexspi_nor_sdram_debug– Project configuration is same as the debug target. The linker
file is flexspi_nor_sdramlinker, where text is put in flash and data put in SDRAM. For
some examples need large data memory, only sdram_debugand sdram_releasetargets
are supported. For this example, select hello_world– debug.

18 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

3. To build the demo application, click Make, highlighted in red in Figure 2.

4. The build completes without errors.

Parent topic:Run a demo application using IAR

Run an example application To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED
and follow the instructions to install the Windows® operating system serial driver. If run-
ning on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable. Connect the USB cable to J11
and make sure SW1[1:4] is 0010b.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATEvariable in the board.hfile)

2. No parity

3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 19

https://os.mbed.com/handbook/Windows-serial-configuration


MCUXpresso SDK Documentation, Release 25.12.00

4. 1 stop bit

4. In IAR, click the Download and Debug button to download the application to the target.

• When using CMSIS-DAP to debug cm4 project on IAR, an extra option needs to be spec-
ified in debugger settings. Check and fill in –macro_param enable_core=1 in Debug-
ger -> Extra Options -> Command line options, as shown in Figure 3.

20 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• If debugging with JLINK as probe, jlinkscript file is needed.

– When downloading the cm7 project, check Use command line options, as shown
in Figure 4.

– When downloading the cm4 project, uncheck Use flash loader(s), as shown in Fig-
ure 5, and change the contents of command line options as below:

1.2. Getting Started with MCUXpresso SDK Package 21



MCUXpresso SDK Documentation, Release 25.12.00

* Target with SDRAM

--jlink_script_file=$PROJ_DIR$/../evkmimxrt1160_connect_cm4_cm4side_sdram.
↪→jlinkscript

* Other target

--jlink_script_file=$PROJ_DIR$/../evkmimxrt1160_connect_cm4_cm4side.jlinkscript

5. The application is then downloaded to the target and automatically runs to the main() func-
tion.

6. Run the code by clicking the Go button to start the application.

7. The hello_world application is now running and a banner is displayed on the terminal. If

22 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

this is not true, check your terminal settings and connections.

Note: There are some limitations on MCUXpresso IDE debugging. For details, see Section 8.6 IAR
debug limitation in MCUXpresso SDK Release Notes for MIMXRT1160-EVK (document MCUXSD-
KMIMXRT116XRN).

Parent topic:Run a demo application using IAR

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

<install_dir>/boards//evkmimxrt1160/multicore_examples/hello_world/cm7/iar/hello_world_cm7.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm4) first, because the primary core application project (cm7) needs to know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, only debug and release RAM targets are
present in the project. When building the primary core project, it is possible to select either
debug/release RAM targets or flexspi_nor_debug/flexspi_nor_release Flash targets. When choosing
Flash targets (preferred) the auxiliary core binary is linked with the primary core image and
stored in the external SPI Flash memory. During the primary core execution the auxiliary core
image is copied from flash into the CM4 RAM and executed.

Parent topic:Run a demo application using IAR

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 – 4
as described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the Download and Debug button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary image are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the main() function.

Run both cores by clicking the Start all cores button to start the multicore application.

1.2. Getting Started with MCUXpresso SDK Package 23



MCUXpresso SDK Documentation, Release 25.12.00

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
Stop all cores and Start all cores buttons to stop or run both cores simultaneously.

Note: On IAR, the feature to simultaneously debug two cores is only supported by CMSIS-DAP
debugger.

Parent topic:Run a demo application using IAR

Run a demo using Keil® MDK/μVision

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex® Microcontroller Soft-
ware Interface Standard (CMSIS) device packs must be installed to fully support the device from
a debug perspective. These packs include things such as memory map information, register defi-
nitions and flash programming algorithms. Follow these steps to install the MIMXRT116x CMSIS
pack.

1. Download the MIMXRT1165 and MIMXRT1166 packs.

2. After downloading the DFP, double click to install it. Be patient when the DFP is installed.
It will take approximate 15 minutes for the installation to complete.

Parent topic:Run a demo using Keil® MDK/μVision

Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual
path is:

<install_dir>/boards/evkmimxrt1160/demo_apps/hello_world/cm7/mdk/hello_world_demo_cm7.uvmpw

2. To build the demo project, select Rebuild, highlighted in red.

24 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

3. The build completes without errors.

Parent topic:Run a demo using Keil® MDK/μVision

Run an example application To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED
serial-configuration and follow the instructions to install the Windows® operating system
serial driver. If running on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number. To determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATEvariable in the board.hfile)

2. No parity

3. 8 data bits

4. 1 stop bit

4. To debug the application, click load or press the F8 key for flexspi target which need
to download the program to flash memory. Then, click the Start/Stop Debug Ses-

1.2. Getting Started with MCUXpresso SDK Package 25

https://os.mbed.com/handbook/Windows-serial-configuration


MCUXpresso SDK Documentation, Release 25.12.00

sionbutton, highlighted in red in Figure 2. If using J-Linkas the debugger, click Project
option>Debug>Settings>Debug >Port, and select SW.

Note: If debugging with JLINK, device selection window will be popped when you click the
Settings button under the Debug tab. Users need to choose MIMXRT1165/MIMXRT1166
device manually.

Note:
When using jlink in MDK for cm4 projects, it expects one jlinkscript file named JLinkSet-
tings.JLinkScript in the folder where the uVision project files are located. Please refer to
Segger Wiki for more information.

For the contents in this JlinkSettings.JLinkScript, use contents in
evkmimxrt1160_connect_cm4_cm4side.jlinkscript (non-sdram targets) and
evkmimxrt1160_connect_cm4_cm4side_sdram.jlinkscript (sdram targets).

5. Run the code by clicking Run to start the application, as shown in Figure 3.

The hello_world application is now running and a banner is displayed on the terminal, as
shown in Figure 4. If this is not true, check your terminal settings and connections.

26 Chapter 1. MIMXRT1160-EVK

https://wiki.segger.com/Keil_MDK-ARM


MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Run a demo using Keil® MDK/μVision

Build a multicore example application This section describes the particular steps that need
to be done in order to build and run a dual-core application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
MDK workspaces are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

<install_dir>/boards//evkmimxrt1160/multicore_examples/hello_world/cm7/mdk/hello_world_cm7.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm4) first, because the primary core application project (cm7) needs to know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, debug and release RAM targets are
present in the project only. When building the primary core project, it is possible to select
flexspi_nor_debug/flexspi_nor_release Flash targets. When choosing Flash targets the auxiliary
core binary is linked with the primary core image and stored in the external SPI Flash memory.
During the primary core execution the auxiliary core image is copied from flash into the CM4
RAM and executed.

Parent topic:Run a demo using Keil® MDK/μVision

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 – 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the flash memory. After clicking Run,
the primary core application is executed. During the primary core code execution, the auxiliary
core code is re-allocated from the SPI flash memory to the RAM, and the auxiliary core is released
from the reset. The hello_world multicore application is now running and a banner is displayed
on the terminal. If this is not true, check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 27



MCUXpresso SDK Documentation, Release 25.12.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the
second μVision instance and clicking the Start/Stop Debug Session button. After this, the second
debug session is opened and the auxiliary core application can be debugged.

Parent topic:Run a demo using Keil® MDK/μVision

Run a demo using ARMGCC / VSCODE

This section describes the steps to run an example application from the SDK archive using the
ARMGCC / VSCODE toolchain.

Refer to the running a demo using MCUXpresso VSC section for detailed instructions on setting
up and configuring your project in Visual Studio Code.

Refer to the CLI section for detailed instructions on building and running your project from the
command line.

28 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso config tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso config tools.

Config tool Description Im-
age

Pins tool For configuration of pin routing and pin electrical properties. 

Clock tool For system clock configuration

Peripher-
als tools

For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application. 

Device
Configura-
tion tool

Configures Device Configuration Data (DCD) contained in the program im-
age that the Boot ROM code interprets to setup various on- chip peripherals
prior the program launch. 

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

• Standalone version available for download from MCUXPRESSO. Recommended for cus-
tomers using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on MCUXPRESSO. Recommended to do a quick evaluation of the
processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

1.2. Getting Started with MCUXpresso SDK Package 29

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com


MCUXpresso SDK Documentation, Release 25.12.00

2. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
Depending on the NXP board you’re using, the COM port can be named differently.

1. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

2. OpenSDA – P&E Micro:

30 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

3. OpenSDA – J-Link:

4. P&E Micro OSJTAG:

5. LPC-Link2:

6. FTDI UART:

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with a variety
of factory programmed debug interface configurations. Table 1 lists the hardware platforms
supported by the MCUXpresso SDK, their default debug interface, and any version information
that helps differentiate a specific interface configuration.

Hardware platform Default interface OpenSDA details1
EVK- MC56F83000 P&E Micro OSJTAG N/ A
EVK- MIMXRT595 CMSIS- DAP N/ A
EVK- MIMXRT685 CMSIS- DAP N/ A
FRDM- K22F CMSIS- DAP/ mbed/ DAPLink OpenSDA v2. 1
FRDM- K28F DAPLink OpenSDA v2. 1
FRDM- K32L2A4S CMSIS- DAP OpenSDA v2. 1
FRDM- K32L2B CMSIS- DAP OpenSDA v2. 1
FRDM- K32W042 CMSIS- DAP N/ A
FRDM- K64F CMSIS- DAP/ mbed/ DAPLink OpenSDA v2. 0
FRDM- K66F J- Link OpenSDA OpenSDA v2. 1
FRDM- K82F CMSIS- DAP OpenSDA v2. 1
FRDM- KE15Z DAPLink OpenSDA v2. 1
FRDM- KE16Z CMSIS- DAP/ mbed/ DAPLink OpenSDA v2. 2
FRDM- KL02Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL03Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL25Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL26Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL27Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL28Z P&E Micro OpenSDA OpenSDA v2. 1
FRDM- KL43Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL46Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KL81Z CMSIS- DAP OpenSDA v2. 0

continues on next page

1.2. Getting Started with MCUXpresso SDK Package 31



MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
Hardware platform Default interface OpenSDA details1
FRDM- KL82Z CMSIS- DAP OpenSDA v2. 0
FRDM- KV10Z CMSIS- DAP OpenSDA v2. 1
FRDM- KV11Z P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KV31F P&E Micro OpenSDA OpenSDA v1. 0
FRDM- KW24 CMSIS- DAP/ mbed/ DAPLink OpenSDA v2. 1
FRDM- KW36 DAPLink OpenSDA v2. 2
FRDM- KW41Z CMSIS- DAP/ DAPLink OpenSDA v2. 1 or greater
Hexiwear CMSIS- DAP/ mbed/ DAPLink OpenSDA v2. 0
HVP- KE18F DAPLink OpenSDA v2. 2
HVP- KV46F150M P&E Micro OpenSDA OpenSDA v1
HVP- KV11Z75M CMSIS- DAP OpenSDA v2. 1
HVP- KV58F CMSIS- DAP OpenSDA v2. 1
HVP- KV31F120M P&E Micro OpenSDA OpenSDA v1
JN5189DK6 CMSIS- DAP N/ A
LPC54018 IoT Module N/ A N/ A
LPCXpresso54018 CMSIS- DAP N/ A
LPCXpresso54102 CMSIS- DAP N/ A
LPCXpresso54114 CMSIS- DAP N/ A
LPCXpresso51U68 CMSIS- DAP N/ A
LPCXpresso54608 CMSIS- DAP N/ A
LPCXpresso54618 CMSIS- DAP N/ A
LPCXpresso54628 CMSIS- DAP N/ A
LPCXpresso54S018M CMSIS- DAP N/ A
LPCXpresso55s16 CMSIS- DAP N/ A
LPCXpresso55s28 CMSIS- DAP N/ A
LPCXpresso55s69 CMSIS- DAP N/ A
MAPS- KS22 J- Link OpenSDA OpenSDA v2. 0
MIMXRT1160- EVK CMSIS- DAP N/ A
MIMXRT1170- EVK CMSIS- DAP N/ A
TWR- K21D50M P&E Micro OSJTAG N/ AOpenSDA v2. 0
TWR- K21F120M P&E Micro OSJTAG N/ A
TWR- K22F120M P&E Micro OpenSDA OpenSDA v1. 0
TWR- K24F120M CMSIS- DAP/ mbed OpenSDA v2. 1
TWR- K60D100M P&E Micro OSJTAG N/ A
TWR- K64D120M P&E Micro OpenSDA OpenSDA v1. 0
TWR- K64F120M P&E Micro OpenSDA OpenSDA v1. 0
TWR- K65D180M P&E Micro OpenSDA OpenSDA v1. 0
TWR- K65D180M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KV10Z32 P&E Micro OpenSDA OpenSDA v1. 0
TWR- K80F150M CMSIS- DAP OpenSDA v2. 1
TWR- K81F150M CMSIS- DAP OpenSDA v2. 1
TWR- KE18F DAPLink OpenSDA v2. 1
TWR- KL28Z72M P&E Micro OpenSDA OpenSDA v2. 1
TWR- KL43Z48M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KL81Z72M CMSIS- DAP OpenSDA v2. 0
TWR- KL82Z72M CMSIS- DAP OpenSDA v2. 0
TWR- KM34Z75M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KM35Z75M DAPLink OpenSDA v2. 2
TWR- KV10Z32 P&E Micro OpenSDA OpenSDA v1. 0
TWR- KV11Z75M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KV31F120M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KV46F150M P&E Micro OpenSDA OpenSDA v1. 0
TWR- KV58F220M CMSIS- DAP OpenSDA v2. 1
TWR- KW24D512 P&E Micro OpenSDA OpenSDA v1. 0
USB- KW24D512 N/ A External probe N/ A

continues on next page

32 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
Hardware platform Default interface OpenSDA details1
USB- KW41Z CMSIS- DAP\DAPLink OpenSDA v2. 1 or greater

1 The OpenSDA details is not applicable to LPC.

How to add or remove boot header for XIP targets

The MCUXpresso SDK for i.MX RT1160 provides flexspi_nor_debug and flexspi_nor_release targets
for each example and/or demo which supports XIP (eXecute-In-Place). These two targets add
XIP_BOOT_HEADER to the image by default. Because of this, ROM can boot and run this image
directly on external flash.

Macros for the boot leader:
• The following three macros are added in flexspi_nor targets to support XIP, as described in
Table 1.

^

|XIP_ EXTERNAL_ FLASH|1: Exclude the code which changes the clock of FLEXSPI. | |0:
Make no changes. | |XIP_ BOOT_ HEADER_ ENABLE|1: Add FLEXSPI configuration block,
image vector table, boot data, and device configuration data (optional) to the image by de-
fault. | |0: Add nothing to the image by default. | |XIP_ BOOT_ HEADER_ DCD_ ENABLE|1:
Add device configuration data to the image. | |0: Do NOT add device configuration data to
the image. |

• Table 2 shows the different effect on the built image with a different combination of these
macros.

^

XIP_ BOOT_ HEADER_ DCD_ ENABLE=1XIP_ BOOT_ HEADER_ DCD_ ENABLE=0

XIP_ EXTERNAL_ FLASH=1XIP_ BOOT_ HEADER_ ENABLE=1- Can be programmed to qspiflash by IDE and can
run after POR reset if qspiflash is the boot source. 

– SDRAM will be initialized. | - Can be programmed to qspiflash by IDE, and can run after
POR reset if qspiflash is the boot source. 

– SDRAM will NOT be initialized. | |XIP_ BOOT_ HEADER_ ENABLE=0| - CANNOT run
after POR reset if it is programmed by IDE, even if qspiflash is the boot source. |—|
|XIP_ EXTERNAL_ FLASH=0| - This image CANNOT complete XIP because when this
macro is set to 1, it excludes the code, which changes the clock for FLEXSPI. |

Where to change the macros for each toolchain in MCUXpresso SDK?
Take hello_world as an example:

• IAR

1.2. Getting Started with MCUXpresso SDK Package 33



MCUXpresso SDK Documentation, Release 25.12.00

• MDK

• ARMGCC
Change the configuration in CMakeLists.txt.

34 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• MCUX

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in a multi-repository model. The
SDK is distributed across multiple GitHub repositories and managed using the Zephyr West tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:

• Modular Structure: Multiple repositories for flexibility and scalability.

• Zephyr West Integration: Simplified repository management and synchronization.

• Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

• Scalability: Easily add or update components without impacting the entire SDK.

1.3. Getting Started with MCUXpresso SDK GitHub 35



MCUXpresso SDK Documentation, Release 25.12.00

• Collaboration: Enables distributed development across teams and repositories.

• Version Control: Independent versioning for components ensures better stability.

• Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation

2. Run the installer and select “MCUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

• Visit git-scm.com

• Download for your operating system

• Run installer with default settings

• Important: Make sure “Add Git to PATH” is selected during installation

Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python - Scripting Environment What it does: Runs build scripts and SDK tools.

Installation:

• Install Python 3.10 or newer from python.org

• Important: Check “Add Python to PATH” during installation

36 Chapter 1. MIMXRT1160-EVK

https://docs.mcuxpresso.nxp.com/mcux-vscode/latest/html/Dependency-Installation.html
https://git-scm.com/
https://www.python.org/downloads/


MCUXpresso SDK Documentation, Release 25.12.00

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.

Recommended version: 3.30.0 or newer

Installation:

• Windows: Download .msi installer from cmake.org/download

• Linux: Use package manager or download from cmake.org

• macOS: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.

Minimum version: 1.12.1 or newer

Installation:

• Windows: Usually included, or download from ninja-build.org

• Linux: sudo apt install ninja-build or download binary

• macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able

ARM GCC (Recom-
mended)

Most users, free ARM GNU
Toolchain

ARMGCC_DIR

IAR EWARM Professional develop-
ment

IAR Systems IAR_DIR

Keil MDK ARM ecosystem ARM Developer MDK_DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_DIR

1.3. Getting Started with MCUXpresso SDK GitHub 37

https://cmake.org/download/
https://ninja-build.org/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/
https://developer.arm.com/documentation/109350/v6/Installation
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded


MCUXpresso SDK Documentation, Release 25.12.00

Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

# Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

# Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR=”/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

# Check each tool - you should see version numbers
git --version
python --version
west --version
cmake --version
ninja --version
arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

• The tool isn’t in your system PATH

• Solution: Add the installation directory to your PATH environment variable

Python/pip issues:

• Try using python3 and pip3 instead of python and pip

• On Windows, run the Command Prompt as an Administrator

Slow downloads:

• Add timeout option: pip install -U west --default-timeout=1000

• Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:

System Requirements:
• Python 3.8 or later

• Git 2.25 or later

• CMake 3.20 or later

• Build tools for your target platform

Verification Commands:

38 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

python --version # Should show 3.8+
git --version # Should show 2.25+
cmake --version # Should show 3.20+
west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK from main branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update

This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.

Best for:
• Exploring the complete SDK

• Multi-board development projects

• Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

# For specific board development
west update_board --set board your_board_name

# For specific device family development
west update_board --set device your_device_name

# List available repositories before downloading
west update_board --set board your_board_name --list-repo

Best for:
• Single board development

1.3. Getting Started with MCUXpresso SDK GitHub 39



MCUXpresso SDK Documentation, Release 25.12.00

• Faster setup and reduced disk usage

• Focused development workflows

Examples:

# Update only repositories for FRDM-MCXW23 board
west update_board --set board frdmmcxw23

# Update only repositories for MCXW23 device family
west update_board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

# Verify workspace structure
ls -la
# Should show: manifests/ and mcuxsdk/ directories

# Test build system
west list_project -p examples/demo_apps/hello_world
# Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

# Update only repositories for specific board, e.g., frdmmcxw23
west update_board --set board frdmmcxw23

# List available repositories for the board before updating
west update_board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

# Update only repositories for specific device, e.g., MCXW235
west update_board --set device mcxw23

# List available repositories for the device family
west update_board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

# Use custom configuration file
west update_board --set custom path/to/custom-config.yml

# Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
• Download only components needed for your target board or device

• Significantly faster initial setup for focused development

40 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• Typical reduction from 7 GB to 2GB

Optimized Workspace
• Cleaner workspace with relevant components only

• Reduced disk space usage

• Faster repository operations

Flexible Development
• Switch between different board configurations easily

• Maintain separate workspaces for different projects

• Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

# Display repository information in console
west update_board --set board frdmmcxw23 --list-repo

# Export repository information to YAML file for reference
west update_board --set board frdmmcxw23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

# Generate board-specific SDK package
west update_board --set board frdmmcxw23 -o frdmmcxw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:

For Complete SDK Workspace:

# Update manifest repository
cd manifests
git pull

# Update all component repositories
cd ..
west update

For Targeted Workspace:

# Update manifest repository
cd manifests
git pull

# Update board-specific repositories
cd ..
west update_board --set board your_board_name

1.3. Getting Started with MCUXpresso SDK GitHub 41



MCUXpresso SDK Documentation, Release 25.12.00

Workspace Status Check workspace synchronization status:

# Show status of all repositories
west status

# Show detailed information about repositories
west list

Troubleshooting Network Issues:
• Use west update --keep-descendants for partial failures

• Configure Git credentials for private repositories

• Check firewall settings for Git protocol access

Permission Issues:
• Ensure write permissions in workspace directory

• Run commands without sudo/administrator privileges

• Verify Git SSH key configuration for authenticated access

Disk Space:
• Full SDK workspace requires approximately 7-8 GB

• Targeted workspace typically requires 1-2 GB

• Use board-specific setup to reduce workspace size

Repository Management Issues:
• Verify board/device names match available configurations

• Check that custom YAML files follow the correct template format

• Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:

1. Review Workspace Structure to understand the layout

2. Build your first project with First Build Guide

3. ExploreDevelopmentWorkflowsMCUXPresso VSCode orDevelopmentWorkflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

Repository Organization Based on the manifest structure, the SDK consists of four main repos-
itory categories:

42 Chapter 1. MIMXRT1160-EVK

https://docs.zephyrproject.org/latest/develop/west/index.html


MCUXpresso SDK Documentation, Release 25.12.00

Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

• Devices: MCU-specific support packages

• Examples: Demonstration applications and code samples

• Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

• Connectivity: Networking stacks, USB, and communication protocols

• Security: Cryptographic libraries and secure boot components

• Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

• Graphics: Display drivers and UI frameworks

• Audio: Audio processing and voice recognition libraries

• Machine Learning: AI inference engines and neural network libraries

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:

• nxp-mcuxpresso

• NXP

• nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.

1.3. Getting Started with MCUXpresso SDK GitHub 43

https://github.com/nxp-mcuxpresso/
https://github.com/NXP
https://github.com/nxp-zephyr


MCUXpresso SDK Documentation, Release 25.12.00

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization
your-sdk-workspace/
��� manifests/ # West manifest repository
��� mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.

SDK Component Layout Based on the actual SDK structure, the main directories include:

Di-
rec-
tory

Contents Purpose

arch/ Architecture-specific files ARM CMSIS, build
configurations

cmake/ Build system modules CMake configura-
tion and build rules

components/Software components Reusable software li-
braries and utilities

devices/Device support packages MCU-specific head-
ers, startup code,
linker scripts

drivers/Peripheral drivers Hardware abstrac-
tion layer for MCU
peripherals

examples/Sample applications Demonstration code
and reference im-
plementations

middleware/Optional software stacks Networking, graph-
ics, security, and
other libraries

rtos/ Operating system support FreeRTOS integra-
tion

scripts/Build and utility scripts West extensions and
development tools

svd Svd files for devices, this is optional because of large size. Cus-
tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

Example Organization Examples follow a two-tier structure separating common code from
board-specific implementations:

Common Example Files
examples/demo_apps/hello_world/
��� CMakeLists.txt # Build configuration
��� example.yml # Example metadata
��� hello_world.c # Application source code
��� Kconfig # Configuration options
��� readme.md # General documentation

44 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Board-Specific Files
examples/_boards/your_board/demo_apps/hello_world/
��� app.h # Board specific application header
��� example_board_readme.md # Board specific documentation
��� hardware_init.c # Board specific hardware initialization
��� pin_mux.c # Pin multiplexing configuration
��� pin_mux.h # Pin multiplexing header definitions
��� hello_world.bin # Pre-built binary for quick testing
��� hello_world.mex # MCUXpresso Config Tools project file
��� prj.conf # Board specific Kconfig configuration
��� reconfig.cmake # Board specific cmake configuration overrides

Device Support Structure Device support is organized hierarchically by MCU family:

devices/
��� MCX/ # MCU portfolio

��� MCXW/ # MCU family
��� MCXW235/ # Specific device

��� MCXW235.h # Device register definitions
��� drivers/ # Device-specific drivers
��� gcc/ # GNU toolchain files
��� iar/ # IAR toolchain files
��� mcuxpresso/ # MCUXpresso IDE files
��� startup_MCXW235.c # Startup and vector table
��� system_MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories
include:

• Connectivity: USB, TCP/IP, industrial protocols

• Security: Cryptographic libraries, secure boot

• Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

• Graphics: Display drivers, UI frameworks

• Audio: Processing libraries, voice recognition

• Machine Learning: Inference engines, neural networks

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:

• docs/ - Core SDK documentation and build infrastructure

• Component repositories - API documentation and integration guides

• Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

1.3. Getting Started with MCUXpresso SDK GitHub 45

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/


MCUXpresso SDK Documentation, Release 25.12.00

1. General README: examples/demo_apps/hello_world/readme.md

• What the example does

• General functionality description

• Common usage information

2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/
example_board_readme.md

• Board-specific setup instructions

• Hardware connections required

• Board-specific behavior notes

Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

Development Workflows

Get started with building and running projects:

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development board connected via USB

• Build tools installed per Installation Guide

Understanding Board Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_board examples/demo_apps/hello_world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

46 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Specifying Configuration
# Release build
west build -b your_board examples/demo_apps/hello_world --config release

# Debug build (default)
west build -b your_board examples/demo_apps/hello_world --config debug

Alternative Toolchains
# IAR toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar

# Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device DEVICE_PART_NUMBER --config␣
↪→release

Project Configuration

1.3. Getting Started with MCUXpresso SDK GitHub 47



MCUXpresso SDK Documentation, Release 25.12.00

CMake Configuration Only Run configuration without building:

west build -b your_board examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list_project -p examples/demo_apps/hello_world

Next Steps
• Explore other examples in the SDK

• Learn about Command Line Development for advanced options

• Try VS Code Development for integrated development

• Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.

Prerequisites
• SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)

• Development tools installed per Installation Guide

• Visual Studio Code installed

• MCUXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

48 Chapter 1. MIMXRT1160-EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK


MCUXpresso SDK Documentation, Release 25.12.00

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you’ve already obtained the SDK according to setting up the repo. Select your
location and click Import.

Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART

PANEL

1.3. Getting Started with MCUXpresso SDK GitHub 49

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK


MCUXpresso SDK Documentation, Release 25.12.00

Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL

2. Configure project settings:

• MCUXpresso SDK: Select your imported SDK

• Arm GNU Toolchain: Choose toolchain

• Board: Select your target development board

• Template: Choose example category

50 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• Application: Select specific example (e.g., hello_world)

• App type: Choose between Repository applications or Freestanding applications

3. Click Import

Application Types Repository Applications:
• Located inside the MCUXpresso SDK

• Integrated with SDK workspace

Freestanding Applications:
• Imported to user-defined location

• Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

1.3. Getting Started with MCUXpresso SDK GitHub 51



MCUXpresso SDK Documentation, Release 25.12.00

Build Process
1. Navigate to PROJECTS view

2. Find your project

3. Click the Build Project icon

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup
1. Open Serial Monitor from VS Code’s integrated terminal

2. Configure serial settings:

• VCom Port: Select port for your device

• Baud Rate: Set to 115200

Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:

• Continue: Resume code execution

• Step controls: Navigate through code

52 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• Stop: Terminate debug session .

Monitor Output Observe application output in the Serial Monitor to verify correct operation.

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

• Example applications

• Board configurations

1.3. Getting Started with MCUXpresso SDK GitHub 53

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK


MCUXpresso SDK Documentation, Release 25.12.00

• Middleware components

• Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
• Verify SDK workspace is properly initialized

• Ensure all required repositories are updated

• Check SDK manifest files are present

Project import failures:
• Confirm board support exists for selected example

• Verify toolchain installation

• Check example compatibility with selected board

Build Problems Build failures:
• Check integrated terminal for error messages

• Verify all dependencies are installed

• Ensure toolchain is properly configured

Debug Issues Debug session fails:
• Verify board connection via USB

• Check debug probe drivers are installed

• Confirm build completed successfully

Serial monitor problems:
• Verify correct VCom port selection

• Check baud rate configuration (115200)

• Ensure board drivers are installed

Integration with Command Line MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

54 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
• Explore additional examples in the SDK

• Review Command Line Development for advanced build options

• Refer MCUXpresso for VS Code Wiki for detailed documentation

• Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development tools installed per Installation Guide

• Target board connected via USB

Understanding Board Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_board examples/demo_apps/hello_world

Specifying Build Configuration
# Release build
west build -b your_board examples/demo_apps/hello_world --config release

# Debug build with specific toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

1.3. Getting Started with MCUXpresso SDK GitHub 55

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki


MCUXpresso SDK Documentation, Release 25.12.00

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

Dry Run See what commands would be executed:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device MK22F12810 --config release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:

56 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

# Generate IAR project
west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup
instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:

# Check ARM GCC
echo $ARMGCC_DIR
arm-none-eabi-gcc --version

# Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h

Check Supported Configurations If unsure about supported options for an example:

west list_project -p examples/demo_apps/hello_world

Best Practices

Project Organization
• Keep custom projects outside the SDK tree

• Use version control for your application code

• Document any SDK modifications

Build Efficiency
• Use -p always for clean builds when troubleshooting

• Leverage --dry-run to understand build processes

• Use specific configs and toolchains to reduce build time

1.3. Getting Started with MCUXpresso SDK GitHub 57



MCUXpresso SDK Documentation, Release 25.12.00

Development Workflow
1. Start with existing examples closest to your requirements

2. Copy and modify rather than building from scratch

3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
• Explore VS Code Development for integrated development experience

• Review Workspace Structure to understand SDK organization

• Refer build system documentation for advanced configurations

Using MCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• MCUXpresso Config Tools standalone installed (version 25.09 or above)

• MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG ) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project_info -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_
↪→id=cm33_core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

58 Chapter 1. MIMXRT1160-EVK

https://www.nxp.com/doc/GSMCUXCTUG
https://mcuxpresso.nxp.com/mcux-vscode/latest/html/Working-with-MCUXpresso-Config-Tools.html


MCUXpresso SDK Documentation, Release 25.12.00

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: …mcuxsdk/examples/demo_apps/
hello_world/cfg_tools/).

Updating the SDK West project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.
This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_id=cm33_core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg_resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and

1.4. Release Notes 59

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK


MCUXpresso SDK Documentation, Release 25.12.00

middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.42

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel-
opment
boards

MCU devices

MIMXRT1160-
EVK

MIMXRT1165CVM5A, MIMXRT1165DVM6A, MIMXRT1165XVM5A,
MIMXRT1166CVM5A, MIMXRT1166DVM6A, MIMXRT1166XVM5A

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

60 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

MCU Boot MCU Boot (formerly KBOOT) NXP/Freescale proprietary loader

coreHTTP coreHTTP

openvg OpenVG library for devices with graphics acceleration hardware

NXP Wi-Fi The MCUXpresso SDK provides driver for NXP Wi-Fi external modules. The Wi-Fi
driver is integrated with LWIP TCPIP stack and demonstrated with several network applications
(iperf and AWS IoT).

For more information, see Getting Started with NXP based Wireless Modules and i.MX RT Plat-
form Running on RTOS (document: UM11441).

VG-Lite GPU Library VGLite library for devices with VGLite graphics hardware acceleration
engine

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

Simple Open EtherCAT Master Simple Open EtherCAT Master (SOEM) is an open source Ether-
CAT master stack that is used to write custom EtherCAT Master applications. For more informa-
tion on how to use SOEM, see the Getting Started with MCUXpresso SDK for SOEM document.

1.4. Release Notes 61



MCUXpresso SDK Documentation, Release 25.12.00

SDMMC stack The SDMMC software is integrated with MCUXpresso SDK to support
SD/MMC/SDIO standard specification. This also includes a host adapter layer for bare-
metal/RTOS applications.

PNG decoder An ‘embedded-friendly’ PNG image decoding library.

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

Openh264 H.264 Codec Library

Multicore Multicore Software Development Kit

MMCAU The NXP Memory-Mapped Cryptographic Acceleration Unit

MCU Boot Open source MCU Bootloader.

mbedTLS mbedtls SSL/TLS library v3.x

mbedTLS mbedtls SSL/TLS library v2.x

lwIP The lwIP TCP/IP stack is pre-integrated with MCUXpresso SDK and runs on top of the
MCUXpresso SDK Ethernet driver with Ethernet-capable devices/boards.

For details, see the lwIP TCPIP Stack and MCUXpresso SDK Integration User’s Guide (document
MCUXSDKLWIPUG).

lwIP is a small independent implementation of the TCP/IP protocol suite.

Maestro Audio Framework for MCU Maestro Audio Framework library for MCU

Voice intelligent technology library Voice Intelligent Technology (VIT) Library provides wake
word and voice command engine for voice control

Audio Voice components Audio Voice components for MCU

62 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

eIQ The package contains several example applications using the eIQ TensorFlow Lite for Mi-
crocontrollers library.

eIQ machine learning SDK containing:

• Arm CMSIS-NN library (neural network kernels optimized for Cortex-M cores)

• Inference engines:

– TensorFlow Lite Micro

– DeepView RT

• Example code for TensorFlow Lite Micro, Glow, and DeepView RT

LVGL LVGL Open Source Graphics Library

llhttp HTTP parser llhttp

LittleFS LittleFS filesystem stack

JPEG library JPEG library

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with the MCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

emWin The MCUXpresso SDK is pre-integrated with the SEGGER emWin GUI middleware. The
AppWizard provides developers and designers with a flexible tool to create stunning user inter-
face applications, without writing any code.

NAND Flash Management Stack NAND Flash Management Stack

cJSON Ultralightweight JSON parser in ANSI C

NXP PSA CRYPTO DRIVER PSA crypto driver for crypto library integration via driver wrappers

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

1.4. Release Notes 63



MCUXpresso SDK Documentation, Release 25.12.00

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

New Project Wizard compile failure

The following components request the user to manually select other components that they de-
pend upon in order to compile.

These components depend on several other components and the New Project Wizard (NPW) is
not able to decide which one is needed by the user.

Note: xxx means core variants, such as, cm0plus, cm33, cm4, cm33_nodsp.

**Components:**issdk_mag3110, issdk_host, systick, gpio_kinetis, gpio_lpc, issdk_mpl3115,
sensor_fusion_agm01, sensor_fusion_agm01_lpc, issdk_mma845x, issdk_mma8491q,
issdk_mma865x, issdk_mma9553, and CMSIS_RTOS2.CMSIS_RTOS2, and components which
include cache driver, such as enet_qos.

Also for low-level adapter components, currently the different types of the same adapter cannot
be selected at the same time.

For example, if there are two types of timer adapters, gpt_adapter and pit_adapter, only one can
be selected as timer adapter

in one project at a time. Duplicate implementation of the function results in an error.

Note: Most of middleware components have complex dependencies and are not fully supported
in new project wizard. Adding a middleware component may result in compile failure.

CMSIS-PACK svd issue

CMSIS-PACK DFP installation takes a while. When installing cmsis-pack DFP, Keil MDK processes
the MCU SVD file. The large size of SVD file takes considerable time to finish this conversion.
During the installation, the progress appears stalled. However, it finishes after approximately
20 minutes.

64 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

CMSIS PACK new project compile failure

The generated configuration cannot be applied globally. The components, se-
rial_manager_usb_cdc_virtual and serial_manager_usb_cdc_virtual_xxx (xxx means core
variants like cm0plus, cm33, cm4, and cm33_nodsp) are unsupported for new project wizard of
CMSIS pack and will lead to compile failure if selected while creating new project(s).

MCUXpresso IDE limitation

• Cannot debug cm4 sdram related demos with CMSIS-DAP
MCUXpresso IDE does not support initialization of sdram when debugging.

IAR debug limitation

CM4 flash target demos cannot be debugged on IAR with JLINK.

Extra option required when using CMSIS-DAP to debug

When using CMSIS-DAP to debug CM4 sdram related target in IAR, such as flexspi_nor_sdram
and sdram_txt, an extra option must be specified in the debugger settings.

aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target

The aws_httpscli_corehttp example for evkmimxrt1160 does not work correctly in MCUXpres-
soIDE release target. Use the debug target only in this IDE.

aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target

The aws_httpscli_corehttp example for evkmimxrt1160 does not work correctly in MCUXpres-
soIDE release target. Use the debug target only in this IDE.

The cmsis_lpi2c_edma_b2b_transfer examples don’t work correctly on CM4 core.

Boards cannot transfer data successfully.

Affected toolchains: mcux Affected platforms: evkmimxrt1160, evkbmimxrt1170

Modify dummy cycles value for external qspi flash

More NXP SOCs now support executed code in external flash. Projects require higher QSPI speed.
According to QSPI flash device datasheet descriptions, higher QSPI speed operates stably only
when you pair it with the appropriate dummy cycle value.

Note that some board XIP files directly modify the dummy cycle value in external flash through
ROM using the volatile method. Such modifications may not work with released toolchain ver-
sions. Upgrade the current toolchain to the latest version. NXP also optimizes the corresponding
flashloader.

When users modify dummy cycle value in non-volatile register of external flash, the NXP
flashloader becomes invalid. Users need to create their own flashloader to adapt to the external
flash dummy cycle requirements.

1.4. Release Notes 65



MCUXpresso SDK Documentation, Release 25.12.00

Affected platforms: mimxrt1020-evk, mimxrt1060-evkb, mimxrt1160-evk, mimxrt1170-evkb

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

ACMP

[2.4.0]
• New Feature

– Supported the plateforms which don’t have continuous mode.

[2.3.0]
• Improvements

– Expose C0 register FILTER_CNT bitfield and FPR bitfield to the user.

[2.2.0]
• Improvements

– Updated feature macros for roundrobin mode, window mode, filter mode, and 3V do-
main removes.

66 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New Feature

– Supported the plateforms which don’t have hysteresis mode.

[2.0.6]
• Bug Fixes

– Fixed the wrong comments, the DAC value should range from 0 to 255.

[2.0.5]
• Bug Fixes

– Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
the return value of ACMP_GetInstance() exceeding the array bounds.

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.1, 14.4, 16.4, 17.7.

[2.0.4]
• Bug Fixes

– Avoided changing w1c bit in ACMP_SetRoundRobinPreState().

[2.0.3]
• New Features

– Added feature functions for usage of different power domains(1.8 V and 3 V). These
functions are first enabled in ULP1. They are about:

* ACMP_EnableLinkToDAC()

* ACMP_SetDiscreteModeConfig()

* ACMP_GetDefaultDiscreteModeConfig()

[2.0.2]
• Other Changes

– Changed coding style of peripheral base address from “s_acmpBases” to “s_acmpBase”.

[2.0.1]
• Bug Fixes

– Fixed bug regarding the function “ACMP_SetRoundRobinConfig”. It will not continue
execution but returns directly after disabling round robin mode.

1.5. ChangeLog 67



MCUXpresso SDK Documentation, Release 25.12.00

ADC_ETC

[2.3.2]
• Improvements

– Corrected that FSL_FEATURE_ADC_ETC_HAS_NO_TSC1_TRIG should be used instead of
FSL_FEATURE_ADC_ETC_HAS_NO_TSC0_TRIG in some places.

– For ADC_ETC without TSC trigger source, CTRL [bit 30] shall be cleared explicitly.

[2.3.1]
• Improvements

– Change ADC_ETC default DMA Mode to kADC_ETC_TrigDMAWithPulsedSignal.
Generally speaking, DMA transfer requests should only be cleared by DMA
ACK, and the CPU should not clear the request source. If some users
use option kADC_ETC_TrigDMAWithLatchedSignal, changing the mode to
kADC_ETC_TrigDMAWithPulsedSignal also meet their requirements.

[2.3.0]
• Improvements

– Added blocking way to implement SW trigger.

[2.2.1]
• Improvements

– Moditied macro “ADC_ETC_DONE2_ERR_IRQ_TRIG0_DONE2_MASK” to
“ADC_ETC_DONE2_3_ERR_IRQ_TRIG0_DONE2_MASK” based on the updates of header
file.

[2.2.0]
• Improvements

– Defined two macros to support some devices that do not equipped with TSC trigger.

[2.1.1]
• Bug Fixes

– Fixed the violation of MISRA-2012 rule.

[2.1.0]
• New Features

– Supported independent IRQ enable bit in ADC-ETC chain configuration registers.

– Supported trigger n DONE3 interrupt operations.

• Bug Fixes

– Fixed the violation of MISRA-2012 rules:

* Rule 10.1 10.3 10.7 15.5 16.1 16.3 16.4 17.7

68 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• New Features

– Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

ANATOP_AI

[2.0.0]
• initial version.

AOI

[2.0.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.8, 2.2.

[2.0.0]
• Initial version.

ASRC

[2.1.3]
• Bug Fixes

– Fixed function did not match the specified channel pair issue.

[2.1.2]
• Improvements

– Correct feature name in source file by changing FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASPRM
to FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASRPM.

– Removed the asrc_clock_source_t from driver header file, as SOC header file will pro-
vide detail definition.

• Bug Fixes

1.5. ChangeLog 69



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the ASRC_SetChannelPairConfig/ASRC_ChannelPairEnable functions missing
functionality when using channel pair B/C.

– Fixed violations of the MISRA C-2012 rules 10.7.

[2.1.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1�10.4, 12.2.

[2.1.0]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 14.4, 10.1, 17.7, 11.9, 8.6, 12.2,
11.6.

[2.0.1]
• Improvements

– Added feature macro FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASPRM for
ASRC parameter register.

• Bug Fixes

– Fixed the unused build warning in asrc edma driver.

[2.0.0]
• Initial version.

ASRC EDMA Driver

[2.2.0]
• Bug Fixes

– Fixed the “watermark” and “channel” was defined in struct asrc_p2p_edma_config_t
but never used issue.

[2.1.0]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 14.4, 10.1, 17.7, 11.9, 8.6, 12.2,
11.6.

[2.0.1]
• Improvements

– Added feature macro FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASPRM for
ASRC parameter register.

• Bug Fixes

– Fixed the unused build warning in asrc edma driver.

70 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

CAAM

[2.4.0]
• Add new APIs for native asymmetric operations (RSA, ECC) instead of only accelerating

mathematical primitives and support for black keys and blobs for both symmetric and
asymmetric operations.

[2.3.2]
• Fix MISRA-2012 issues.

[2.3.1]
• Modified function caam_aes_ccm_check_input_args() to allow payload be empty as is spec-

ified in NIST800-38C Section 5.3..

[2.3.0]
• Add support for SHA HMAC.

[2.2.4]
• Fix issue where the outputSize parameter of CAAM_HASH_Finish() has impact on hash cal-

culation.

[2.2.3]
• Fix DCACHE invalidation in CAAM_HASH_Finish().

[2.2.2]
• Modify RNG to not reseed with each request.

[2.2.1]
• Fixed AES-CCM decrypt failing with TAG length bigger than 8 byte.

[2.2.0]
• Added API for Blob functions and CRC

[2.1.6]
• Improve DCACHE handling. Requires CAAM used and cached memory set in write-trough

mode.

1.5. ChangeLog 71



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
• Support EXTENDED data size for all AES, HASH and RNG operations.

• Support multiple De-Initialization/Initialization of CAAM driver within one POR event.

[2.1.4]
• Fix MISRA-2012 issues.

[2.1.3]
• Fix MISRA-2012 issues.

[2.1.2]
• Add data offset feature to provide support for mirrored (high-speed) memory.

[2.1.1]
• Add DCACHE support.

[2.1.0]
• Add return codes check and handling.

[2.0.3]
• Use MACRO instead of numbers in descriptor.

• Correct descriptor size mask.

[2.0.2]
• Add Data and Instruction Synchronization Barrier in caam_input_ring_set_jobs_added() to

make sure that the descriptor will be loaded into CAAM correctly.

[2.0.1]
• Add Job Ring 2 and 3.

[2.0.0]
• Initial version.

CACHE LMEM

[2.1.0]
• Improvements

– Add memory barrier when enabling/disabling cache.

72 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Improvements

– Added new feature macro to support some device do not support PCCCR[ENWRBUF]
bit field.

[2.0.6]
• Bug Fixes

– Fixed doxygen issue.

[2.0.5]
• Improvements

– Updated the cache enable function, don’t enable again when it is already enabled.

[2.0.4]
• Bug Fixes

– Updated full name for lmem driver.

– Fixed doxygen issue.

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.4 and 14.4.

[2.0.2]
• Improvements

– Moved CLCR register configuration out of the while loop, it’s unnecessary to repeat this
operation.

[2.0.1]
• Bug Fixes

– Fixed the over-4KB-size maintenance issue in invalidate/clean/clean&invalidate by
range APIs.

[2.0.0]
• Initial version.

CACHE ARMv7-M7

[2.0.5]
• Bug Fixes

– Fixed cache operations to handle zero size and overflow in invalidate/clean functions

1.5. ChangeLog 73



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed doxygen issue.

[2.0.3]
• Improvements

– Deleted redundancy code about calculating cache clean/invalidate size and address
aligns.

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.1, 10.3 and 10.4.

[2.0.1]
• Bug Fixes

– Fixed cache size issue in L2CACHE_GetDefaultConfig API.

[2.0.0]
• Initial version.

CDOG

[2.1.3]
• Re-design multiple instance IRQs and Clocks

• Add fix for RESTART command errata

[2.1.2]
• Support multiple IRQs

• Fix default CONTROL values

[2.1.1]
• Remove bit CONTROL[CONTROL_CTRL].

[2.1.0]
• Rename CWT to CDOG.

[2.0.2]
• Fix MISRA-2012 issues.

74 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Fix doxygen issues.

[2.0.0]
• Initial version.

CLOCK

[2.2.0]
• New Features

– Added APIs to set/get CLKO1/O2.

[2.1.6]
• Bug Fixes

– Fix an issue in CLOCK_InitArmPll() of wrong bitmask used

[2.1.5]
• Bug Fixes

– Fix clock_pll_post_div_t value.

[2.1.4]
• Improvements

– Move s_clockSourceName array to c from header.

[2.1.3]
• Improvements

– Toggle hold_ring_off during arm pll initialization.

[2.1.2]
• Bug Fixes

– Fixed bug in XBARA_CLOCKS macro define.

– Fixed bug in CLOCK_InitSysPll1() function.

[2.1.1]
• Bug Fixes

– Fixed bug in CLOCK_InitArmPll() function.

– Fixed bug clock root divider set to cut off at 255.

1.5. ChangeLog 75



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New Features

– Added CLOCK_DeinitPfd() function.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

– Fixed bug in XBARA_CLOCKS macro define.

[2.0.0]
• initial version.

COMMON

[2.6.3]
• Bug Fixes

– Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

[2.6.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts

[2.6.1]
• Improvements

– Support Cortex M23.

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

76 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
• Improvements

– Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

1.5. ChangeLog 77



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

78 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

1.5. ChangeLog 79



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

CSI

[2.2.0]
• Improvements

– Update driver to invoke callback whenere there is a full frame received.

[2.1.5]
• Improvements

– Updated for new CSI register and macro names.

[2.1.4]
• Improvements

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.1.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.1.2]
• Improvements

– Supported new CSI_Type register naming.

[2.1.1]
• Bug Fixes

– Fixed IAR build warning Pa082.

– Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.3, 10.4, 10.6, 11.6, 14.4, 17.7.

[2.1.0]
• New Features

– Added 16-bit and 24-bit data bus support.

• Bug Fixes:

– Fixed the bug that CSI writes to wrong buffer when empty buffer not submitted in time.

80 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
• Bug Fixes

– Fixed wrong circular queue delta calculation.

– Fixed double buffering capture issue where, when the transfer is ongoing and the
device has empty buffer slot, the function CSI_TransferSubmitEmptyBuffer sets the
empty buffer to CSI device.

[2.0.2]
• New Features

– Added fragment mode support.

[2.0.1]
• Improvements

– Switched DMA output buffer at the first data after each VSYNC. It originally happened
when the DMA transfer was done.

[2.0.0]
• Initial version.

DAC12

[2.1.2]
• Bug Fixes

– Fixed CERT INT31-C issue.

[2.1.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.1.0]
• Improvements

– Defined the macro “FSL_FEATURE_HAS_NO_ITRM_REGISTER” to distinguish different
scenes that ITRM register may not equipped one some devices.

[2.0.1]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.8, 17.7.

1.5. ChangeLog 81



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

DCDC

[2.1.2]
• Improvements

– The DCDC_GetInstance() function is only available when
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is set to 0.

[2.1.1]
• Bug Fixes

– Fixed Doxygen warnings.

[2.1.0]
• Improvements

– Updated DCDC_BootIntoDCM() function.

– Based on the updates of header file, updated dcdc driver.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3, rule 10.7, and rule 12.2.

[2.0.0]
• Initial version.

DCIC

[2.0.2]
• Bug Fixes

– Fixed the violations of MISRA 2012 advisory rules.

[2.0.1]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules: 10.1, 10.4.

[2.0.0]
• Initial version.

82 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

DMAMUX

[2.1.3]
• Improvements

– Wrap DMAMUX_GetInstance into FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL to
avoid build issues.

[2.1.2]
• Bug Fixes

– Add macro FSL_DMAMUX_CHANNEL_NUM to calculat correct DMAMUX channel num-
ber when input EDAM channel number.

[2.1.1]
• Improvements

– Add macro FSL_FEATURE_DMAMUX_CHANNEL_NEEDS_ENDIAN_CONVERT and
DMAMUX_CHANNEL_ENDIAN_CONVERTn do channel endian convert.

[2.1.0]
• Improvements

– Modify the type of parameter source from uint32_t to int32_t in the DMA-
MUX_SetSource.

[2.0.5]
• Improvements

– Added feature FSL_FEATURE_DMAMUX_CHCFG_REGISTER_WIDTH for the difference
of CHCFG register width.

[2.0.4]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.0.3]
• Bug Fixes

– Fixed the issue for MISRA-2012 check.

* Fixed rule 10.4 and rule 10.3.

[2.0.2]
• New Features

– Added an always-on enable feature to a DMA channel for ULP1 DMAMUX support.

1.5. ChangeLog 83



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Bug Fixes

– Fixed the build warning issue by changing the type of parameter source from uint8_t
to uint32_t when setting DMA request source in DMAMUX_SetSourceChange.

[2.0.0]
• Initial version.

EDMA

[2.4.7]
• Bug Fixes

– Fixed coverity MSG issues with CERT INT31-C compliance.

[2.4.6]
• Bug Fixes

– Fixed the EDMA header index retrieval error caused by done bit calculation mistake
issue.

[2.4.5]
• Bug Fixes

– Fixed memory convert would convert NULL as zero address issue.

[2.4.4]
• Bug Fixes

– Fixed comments by replacing STCD with TCD

– Fixed the TCD overwrite issue when submit transfer request in the callback if there is
a active TCD in hardware.

– Fixed violations of MISRA C-2012 rule 10.8,5.6.

[2.4.3]
• Improvements

– Added FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET to convert the address be-
tween system mapped address and dma quick access address.

• Bug Fixes

– Fixed the wrong tcd done count calculated in first TCD interrupt for the non scatter
gather case.

84 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
• Bug Fixes

– Fixed the wrong tcd done count calculated in first TCD interrupt by correct the initial
value of the header.

– Fixed violations of MISRA C-2012 rule 10.3, 10.4.

[2.4.1]
• Bug Fixes

– Added clear CITER and BITER registers in EDMA_AbortTransfer to make sure the TCD
registers in a correct state for next calling of EDMA_SubmitTransfer.

– Removed the clear DONE status for ESG not enabled case to aovid DONE bit cleared
unexpectedly.

[2.4.0]
• Improvements

– Added api EDMA_EnableContinuousChannelLinkMode to support continuous link
mode.

– Added apis EDMA_SetMajorOffsetConfig/EDMA_TcdSetMajorOffsetConfig to support
major loop address offset feature.

– Added api EDMA_EnableChannelMinorLoopMapping for minor loop offset feature.

– Removed the reduntant IRQ Handler in edma driver.

[2.3.2]
• Improvements

– Fixed HIS ccm issue in function EDMA_PrepareTransferConfig.

– Fixed violations of MISRA C-2012 rule 11.6, 10.7, 10.3, 18.1.

• Bug Fixes

– Added ACTIVE & BITER & CITER bitfields to determine the channel status to fixed the
issue of the transfer request cannot submit by function EDMA_SubmitTransfer when
channel is idle.

[2.3.1]
• Improvements

– Added source/destination address alignment check.

– Added driver IRQ handler support for multi DMA instance in one SOC.

[2.3.0]
• Improvements

– Added new api EDMA_PrepareTransferConfig to allow different configurations of
width and offset.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4, 10.1.

1.5. ChangeLog 85



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the Coverity issue regarding out-of-bounds write.

[2.2.0]
• Improvements

– Added peripheral-to-peripheral support in EDMA driver.

[2.1.9]
• Bug Fixes

– Fixed MISRA issue: Rule 10.7 and 10.8 in function EDMA_DisableChannelInterrupts
and EDMA_SubmitTransfer.

– Fixed MISRA issue: Rule 10.7 in function EDMA_EnableAsyncRequest.

[2.1.8]
• Bug Fixes

– Fixed incorrect channel preemption base address used in
EDMA_SetChannelPreemptionConfig API which causes incorrect configuration of
the channel preemption register.

[2.1.7]
• Bug Fixes

– Fixed incorrect transfer size setting.

* Added 8 bytes transfer configuration and feature for RT series;

* Added feature to support 16 bytes transfer for Kinetis.

– Fixed the issue that EDMA_HandleIRQ would go to incorrect branch when TCD was not
used and callback function not registered.

[2.1.6]
• Bug Fixes

– Fixed KW3X MISRA Issue.

* Rule 14.4, 10.8, 10.4, 10.7, 10.1, 10.3, 13.5, and 13.2.

• Improvements

– Cleared the IRQ handler unavailable for specific platform with macro
FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET.

[2.1.5]
• Improvements

– Improved EDMA IRQ handler to support half interrupt feature.

86 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.4]
• Bug Fixes

– Cleared enabled request, status during EDMA_Init for the case that EDMA is halted
before reinitialization.

[2.1.3]
• Bug Fixes

– Added clear DONE bit in IRQ handler to avoid overwrite TCD issue.

– Optimized above solution for the case that transfer request occurs in callback.

[2.1.2]
• Improvements

– Added interface to get next TCD address.

– Added interface to get the unused TCD number.

[2.1.1]
• Improvements

– Added documentation for eDMA data flow when scatter/gather is implemented for the
EDMA_HandleIRQ API.

– Updated and corrected some related comments in the EDMA_HandleIRQ API and
edma_handle_t struct.

[2.1.0]
• Improvements

– Changed the EDMA_GetRemainingBytes API into EDMA_GetRemainingMajorLoopCount
due to eDMA IP limitation (see API comments/note for further details).

[2.0.5]
• Improvements

– Added pubweak DriverIRQHandler for K32H844P (16 channels shared).

[2.0.4]
• Improvements

– Added support for SoCs with multiple eDMA instances.

– Added pubweak DriverIRQHandler for KL28T DMA1 and MCIMX7U5_M4.

[2.0.3]
• Bug Fixes

– Fixed the incorrect pubweak IRQHandler name issue, which caused re-definition build
errors when client set his/her own IRQHandler, by changing the 32-channel IRQHan-
dler name to DriverIRQHandler.

1.5. ChangeLog 87



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Bug Fixes

– Fixed incorrect minorLoopBytes type definition in _edma_transfer_config struct, and
defined minorLoopBytes as uint32_t instead of uint16_t.

[2.0.1]
• Bug Fixes

– Fixed the eDMA callback issue (which did not check valid status) in EDMA_HandleIRQ
API.

[2.0.0]
• Initial version.

ELCDIF

[2.1.0]
• New Features

– Added API ELCDIF_SetPixelComponentOrder to support configure pixel component or-
der.

[2.0.7]
• Bug Fixes

– Fixed faulty operation of CTRL1 in ELCDIF_RgbModeSetPixelFormat.

[2.0.6]
• Bug Fixes

– Fixed bug in ELCDIF_RgbModeStop that the API shall return until RUN bit is cleared,
so that the RGB mode is properly stopped.

[2.0.5]
• Bug Fixes

– Fixed the violations of MISRA 2012 advisory rules.

[2.0.4]
• Improvements

– Increase outstanding transactions for better performance.

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

88 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
• Improvements

– Supported the platforms which don’t have PXP handshake feature.

• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 8.4, 10.1, 10.6, 10.7, 10.8, 14.4, 17.7

– Removed hardcode delay in function ELCDIF_Reset.

[2.0.1]
• Improvements

– Added the function ELCDIF_RgbModeSetPixelFormat.

[2.0.0]
• Initial version.

ENC

[2.2.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.0]
• New Features

– Supported input filter prescaler.

[2.1.0]
• Improvements

– Supported period measurement function.

[2.0.2]
• Improvements

– Added feature macro for CTRL2[SABIE] and CTRL2[SABIRQ] bits.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 17.7.

1.5. ChangeLog 89



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

ENET

[2.11.0]
• New Features

– Added function ENET_Ptp1588JumpTimer which adjusts the ENET PTP 1588 timer by
jumping a relative time difference. Compared to ENET_Ptp1588SetTimer, this function
yields more accurate results when the relative time difference between the PTP clock
and the target clock is known.

[2.10.1]
• Bug Fixes

– Fixed WAKEUP interrupt not being handled.

[2.10.0]
• New Features

– Added function ENET_Ptp1588GetChannelCaptureValue to read last captured time
from PTP 1588 timer.

[2.9.3]
• Bug Fixes

– Fixed ENET_Ptp1588GetTimer incorrect timestamps when timer wraps occur after
nanosecond capture:

* Now only increments second field when nanosecond value is less than half a sec-
ond

[2.9.2]
• Bug Fixes

– RGMII mode is (temporarily) disabled before selecting between 10/100-Mbit/s and
1000-Mbit/s modes of operation. The bit RGMII_EN of RCR register must not be set
while changing ECR register’s speed bit, otherwise there is a possibility of ENET IP
ending in an incorrect state.

[2.9.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 10.4.

90 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
• Bug Fixes

– Enabled collection of transfer statistics, so the function ENET_GetStatistics does not
always return zeroes.

• New Features

– Added new function ENET_EnableStatistics to enable/disable collection of transfer
statistics.

– Added new function ENET_ResetStatistics to reset transfer statistics.

• Improvements

– Renamed the function ENET_ResetHareware to ENET_ResetHardware.

[2.8.0]
• New Features

– Added the function to reset hardware on certain devices.

[2.7.1]
• Bug Fixes

– Fixed the issue that free wrong buffer address when one frame stores in multiple
buffers and memory pool is not enough to allocate these buffers to receive one com-
plete frame.

[2.7.0]
• Improvements

– Deleted deprecated zero copy Tx/Rx functions and set callback function which can be
configured in ENET_Init.

– Moved the Rx zero copy buffer allocation to Rx BD initialization function to reduce
unnecessary looping code.

• Bug Fixes

– Fixed the issue that predefined Rx buffers which should not be used when enabling
Rx zero copy are still be handled by cache operation, it causes hardfault on some plat-
forms.

– Fixed the issue that zero-copy Rx function doesn’t check Rx length of 0 in the BD with
EMPTY bit is 0, it may occur in the corner case reported by customer. Not sure how it
turns out, consider it as an ENET IP issue and drop this abnormal BD.

[2.6.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 11.6.

1.5. ChangeLog 91



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
• Improvements

– Changed ENET1_MAC0_Rx_Tx_Done0_DriverIRQHandler/ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler
to ENET1_MAC0_Rx_Tx_Done1_DriverIRQHandler/ENET1_MAC0_Rx_Tx_Done2_DriverIRQHandler
which represent ring 1 and ring 2.

[2.6.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.7, 11.6, 11.8.

[2.6.0]
• Improvements

– Added MDIO access wrapper APIs for ease of use.

– Fixed the build warning introduced by 64-bit compatibility patch.

[2.5.4]
• Improvements

– Made the driver compatible with 64-bit platforms.

[2.5.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 11.6.

[2.5.2]
• Improvements

– Updated the TXIC/RXIC register handling code according to the new header file.

[2.5.1]
• Bug Fixes

– Fixed document typo.

[2.5.0]
• Bug Fixes

– Fixed the SendFrame/SendFrameZeroCopy functions issue with scattered buffers.

– Updated the formula of MDC calculation.

– Used a feature macro to distinguish the old IP design from the new design, because
old IP design always reads a value zero from ATCR->CAPTURE bit. For old IP, driver
caculates and wait the necessary delay cycles after setting ATCR->CAPTURE then gets
the timestamp value.

• New Features

– Added new zero copy Tx/Rx function.

92 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– New zero copy Tx function combines scattered and contiguous Tx buffer in one API,
it also supports more Tx featrues which buffer descriptor supports but previous Tx
function doesn’t support.

– New zero copy Rx function use dynamic buffer mechanism and simpler interface.

• Improvements

– Corrected the interrupt handler for PTP timestamp IRQ and PTP1588 event IRQ since
platform difference.

– Added missing IRQ handlers for PTP1588 events on some platforms.

– Corrected the max Tx frame length verification, it will not depend on a fixed macro.
The ENET_FRAME_MAX_FRAMELEN is only an default value for driver, application
can configure it. Driver caculates the limitation with the max frame length in register
which may takes extended 4 or 8 bytes VLAN tag if VLAN/SVLAN enables.

– Deleted deprecated Clause 45 read/write legacy APIs.

[2.4.3]
• Improvements

– Aligned the IRQ handler name with header file.

[2.4.2]
• Bug Fixes

– Fixed the MISRA issue of speculative out-of-bounds access.

[2.4.1]
• Bug Fixes

– Fixed the PTP time capture issue.

[2.4.0]
• Improvements

– Exposed API ENET_ReclaimTxDescriptor for user application to relaim tx descriptors
in their application.

– Added counter to record multicast hash conflict in struct _enet_handle, improved the
situation that one multicast group could be left by other conflict multicast address left
operation.

– Improved concurrent usage of relaim and send frame operation.

[2.3.4]
• Bug Fixes

– Fixed the issue that interrupt handler only checks the interrupt event flag but not
checks interrupt mask flag.

1.5. ChangeLog 93



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.3]
• Bug Fixes

– Fixed the issue that some compilers may choose the memcpy with 4-bit aligned address
limitation due to the type of address pointer is ‘unsigned int *’, the data address doesn’t
have to be 4-bit aligned.

[2.3.2]
• New Features

– Added the feature that ENET driver can be used in the platform which integrates both
10/100M and 1G ENET IP.

– Deleted duplicated code about ARM errata 838869 in first/second level IRQ handler.

[2.3.1]
• Improvements

– Added function pointer checking in IRQ handler to make sure code can be used even
it runs into the interrupt when the second level interupt handler is NULL.

[2.3.0]
• Bug Fixes

– Fixed the issue that clause 45 MDIO read/write API doesn’t check the transmission over
status between two transmissions.

– Fixed violations of the MISRA C-2012 rules 2.2,10.3,10.4,10.7,11.6,11.8,13.5,14.4,15.7,17.7.

• New Features

– Added APIs to support send/receive frame with Zero-Copy.

• Improvements

– Separated the clock configuration from module configuration when init and deinit.

– Added functions to set second level interrupt handler.

– Provided new function to get 1588 timer count without disabling interrupt.

– Improved timestamp controlling, deleted all old timestamp management APIs and data
structures.

– Merged the single/multiple ring(s) APIs, now these APIs can handle both.

– Used base and index to control buffer descriptor, aligned with qos and lpc enet driver.

[2.2.6]
• Bug Fixes

– Updated MII speed formula referring to the manual.

94 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.7, 11.6, 11.9, 13.5,
14.4, 16.4, 17.7, 21.15, 3.1, 8.4.

– Changed to use ARRAY_SIZE(s_enetBases) as the array size for s_ENETHandle, fixed
the hardfault issue for using some ENET instance when ARRAY_SIZE(s_enetBases) is
not same as FSL_FEATURE_SOC_ENET_COUNT.

[2.2.4]
• Improvements

– Added call to Data Synchronization Barrier instruction before activating Tx/Rx buffer
descriptor to ensure previous data update is completed.

– Improved ENET_TransmitIRQHandler to store timestamps for multiple transmit buffer
descriptors.

– Bug Fixes

– Fixed the issue that ENET_Ptp1588GetTimer did not handle the timer wrap situation.

[2.2.3]
• Improvements

– Improved data buffer cache maintenance in the ENET driver.

[2.2.2]
• New Features

– Added APIs for extended multi-ring support.

– Added the AVB configure API for extended AVB feature support.

[2.2.1]
• Improvements

– Changed the input data pointer attribute to const in ENET_SendFrame().

[2.1.1]
• New Features

– Added the extended MDIO IEEE802.3 Clause 45 MDIO format SMI command APIs.

– Added the extended interrupt coalescing feature.

• Improvements

– Combined all storage operations in the ENET_Init to ENET_SetHandler API.

1.5. ChangeLog 95



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Bug Fixes

– Used direct transmit busy check when doing data transmit.

• Miscellaneous Changes

– Updated IRQ handler work flow.

– Changed the TX/RX interrupt macro from kENET_RxByteInterrupt to
kENET_RxBufferInterrupt, from kENET_TxByteInterrupt to kENET_TxBufferInterrupt.

– Deleted unnecessary parameters in ENET handler.

[2.0.0]
• Initial version.

EWM

[2.0.4]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 rules: 10.1, 10.3.

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 rules: 10.3, 10.4.

[2.0.1]
• Bug Fixes

– Fixed the hard fault in EWM_Deinit.

[2.0.0]
• Initial version.

96 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

FLEXCAN

[2.14.5]
• Improvements

– Make API FLEXCAN_GetFDMailboxOffset public.

– Add API FLEXCAN_SetMbID and FLEXCAN_SetFDMbID to configure Message Buffer
ID individually.

• Bug Fixes

– Fixed violations of the CERT INT30-C INT31-C.

– Fixed violations of the CERT ARR30-C.

[2.14.4]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.4, 18.1.

[2.14.3]
• Improvements

– Add unhandled interrupt events check for following API:

* FLEXCAN_MbHandleIRQ

* FLEXCAN_EhancedRxFifoHandleIRQ

• Bug Fixes

– Remove FLEXCAN_MemoryErrorHandleIRQ on some platform without memory error
interrupt.

– Add conditional compile for CTRL2[ISOCANFDEN] because some platform do not have
this bit.

[2.14.2]
• Improvements

– Add Coverage Justification for uncovered code.

– Adjust API FLEXCAN_TransferAbortReceive order.

– UpdateFLEXCAN_Enable to enter Freeze Mode first when enter Disable mode on some
platform.

– Added while loop timeout for following API:

* FLEXCAN_EnterFreezeMode

* FLEXCAN_ExitFreezeMode

* FLEXCAN_Enable

* FLEXCAN_Reset

* FLEXCAN_TransferSendBlocking

* FLEXCAN_TransferReceiveBlocking

* FLEXCAN_TransferFDSendBlocking

* FLEXCAN_TransferFDReceiveBlocking

1.5. ChangeLog 97



MCUXpresso SDK Documentation, Release 25.12.00

* FLEXCAN_TransferReceiveFifoBlocking

* FLEXCAN_TransferReceiveEnhancedFifoBlocking

• Bug Fixes

– Remove remote frame feature in CANFD mode because there is no remote frame in
the CANFD format.

– Remove legacy Rx FIFO disabled branch in FLEXCAN_SubHandlerForLegacyRxFIFO
and FLEXCAN_SubHandlerForDataTransfered.

[2.14.1]
• Bug Fixes

– Fixed register IMASK2-4 IFLAG2-4 HR_TIME_STAMPn access issue on FlexCAN in-
stances with different number of MBs.

– Fixed bit field MBDSR1-3 access issue on FlexCAN instances with different number of
MBs.

• Improvements

– Unified following API as same parameter and return value type:

* FLEXCAN_GetMbStatusFlags

* FLEXCAN_ClearMbStatusFlags

* FLEXCAN_EnableMbInterrupts

* FLEXCAN_DisableMbInterrupts

– Add workaround for ERR050443 and ERR052403.

– Update message buffer read process in API FLEXCAN_ReadRxMb and FLEX-
CAN_ReadFDRxMb to make critical section as short as possible.

– Simplify API FLEXCAN_DriverDataIRQHandler implementation by remove parameter
type.

[2.14.0]
• Improvements

– Support external time tick feature.

– Support high resolution timestamp feature.

– Enter Freeze Mode first when enter Disable Mode on some platform.

– Add feature macro for Pretended Networking because some FlexCAN instance do not
have this feature.

– Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

– Add new FlexCAN IRQ Handler FLEXCAN_DriverDataIRQHandler and FLEX-
CAN_DriverEventIRQHandler. Thses IRQ Handlers are used on soc which FlexCAN
interrupts are grouped by specific function and assigned to different vector.

– Update macro FLEXCAN_WAKE_UP_FLAG and FLEXCAN_PNWAKE_UP_FLAG to sim-
plify code.

– Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKMSK_SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_NO_SLFWAK_SUPPORT.

98 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKSRC_SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER.

• Bug Fixes

– Fixed wrong interrupt and status flag helper macro in enumeration _flexcan_flags and
API FLEXCAN_DisableInterrupts.

– Fixed interrupt flag helper macro typo issue.

– Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_MEMORY_ERROR_INT_FLAG.

– Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_ERROR_AND_STATUS_INT_FLAG.

– Fixed array out-of-bounds access when read enhanced Rx FIFO.

[2.13.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.13.0]
• Improvements

– Support payload endianness selection feature.

[2.12.0]
• Improvements

– Support automatic Remote Response feature.

– Add API FLEXCAN_SetRemoteResponseMbConfig() to configure automatic Remote Re-
sponse mailbox.

[2.11.8]
• Improvements

– Synchronize flexcan driver update on s32z platform.

[2.11.7]
• Bug Fixes

– Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compatibility with edma5.

[2.11.6]
• Bug Fixes

– Fixed ERRATA_9595 FLEXCAN_EnterFreezeMode() may result to bus fault on some
platform.

1.5. ChangeLog 99



MCUXpresso SDK Documentation, Release 25.12.00

[2.11.5]
• Bug Fixes

– Fixed flexcan_memset() crash under high optimization compilation.

[2.11.4]
• Improvements

– Update CANFD max bitrate to 10Mbps on MCXNx3x and MCXNx4x.

– Release peripheral from reset if necessary in init function.

[2.11.3]
• Bug Fixes

– Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compile error with DMA3.

[2.11.2]
• Bug Fixes

– Fixed bug that timestamp in flexcan_handle_t not updated when RX overflow happens.

[2.11.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1.

[2.11.0]
• Bug Fixes

– Fixed wrong base address argument in FLEXCAN2 IRQ Handler.

• Improvements

– Add API to determine if the instance supports CAN FD mode at run time.

[2.10.1]
• Bug Fixes

– Fixed HIS CCM issue.

– Fixed RTOS issue by adding protection to read-modify-write operations on interrupt
enable/disable API.

[2.10.0]
• Improvements

– Update driver to make it able to support devices which has more than 64 8bytes MBs.

– Update CAN FD transfer APIs to make them set/get edl bit according to frame content,
which can make them compatible with classic CAN.

100 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.9.2]
• Bug Fixes

– Fixed the issue that FLEXCAN_CheckUnhandleInterruptEvents() can’t detecting the ex-
ist enhanced RX FIFO interrupt status.

– Fixed the issue that FLEXCAN_ReadPNWakeUpMB() does not return fail even no exist-
ing valid wake-up frame.

– Fixed the issue that FLEXCAN_ReadEnhancedRxFifo() may clear bits other than the
data available bit.

– Fixed violations of the MISRA C-2012 rules 10.4, 10.8.

• Improvements

– Return kStatus_FLEXCAN_RxFifoDisabled instead of kStatus_Fail when read FIFO fail
during IRQ handler.

– Remove unreachable code from timing calculates APIs.

– Update Enhanced Rx FIFO handler to make it deal with underflow/overflow status first.

[2.9.1]
• Bug Fixes

– Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoBlocking() API clearing
Fifo data available flag more than once.

– Fixed the issue that entering FLEXCAN_SubHandlerForEhancedRxFifo() even if En-
hanced Rx fifo interrupts are not enabled.

– Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoEDMA() update handle
even if previous Rx FIFO receive not finished.

– Fixed the issue that FLEXCAN_SetEnhancedRxFifoConfig() not configure the ER-
FCR[NFE] bits to the correct value.

– Fixed the issue that FLEXCAN_ReceiveFifoEDMACallback() can’t differentiate between
Rx fifo and enhanced rx fifo.

– Fixed the issue that FLEXCAN_TransferHandleIRQ() can’t report Legacy Rx FIFO warn-
ing status.

[2.9.0]
• Improvements

• Add public set bit rate API to make driver easier to use.

• Update Legacy Rx FIFO transfer APIs to make it support received multiple frames during
one API call.

• Optimized FLEXCAN_SubHandlerForDataTransfered() API in interrupt handling to reduce
the probability of packet loss.

[2.8.7]
• Improvements

• Initialized the EDMA configuration structure in the FLEXCAN EDMA driver.

1.5. ChangeLog 101



MCUXpresso SDK Documentation, Release 25.12.00

[2.8.6]
• Bug Fixes

• Fix Coverity overrun issues in fsl_flexcan_edma driver.

[2.8.5]
• Improvements

– Make driver aarch64 compatible.

[2.8.4]
• Bug Fixes

– Fixed FlexCan_Errata_6032 to disable all interrupts.

[2.8.3]
• Bug Fixes

– Fixed an issue with the FLEXCAN_EnableInterrupts and FLEXCAN_DisableInterrupts
interrupt enable bits in the CTRL1 register.

[2.8.2]
• Bug Fixes

– Fixed errors in timing calculations and simplify the calculation process.

– Fixed issue of CBT and FDCBT register may write failure.

[2.8.1]
• Bug Fixes

– Fixed the issue of CAN FD three sampling points.

– Added macro to support the devices that no MCR[SUPV] bit.

– Remove unnecessary clear WMB operations.

[2.8.0]
• Improvements

– Update config configuration.

* Added enableSupervisorMode member to support enable/disable Supervisor
mode.

– Simplified the algorithm in CAN FD improved timing APIs.

[2.7.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.7.

102 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Improvements

– Update config configuration.

* Added enablePretendedeNetworking member to support enable/disable Pre-
tended Networking feature.

* Added enableTransceiverDelayMeasure member to support enable/disable
Transceiver Delay MeasurementPretended feature.

* Added bitRate/bitRateFD member to work as baudRate/baudRateFD member
union.

– Rename all “baud” in code or comments to “bit” to align with the CAN spec.

– Added Pretended Networking mode related APIs.

* FLEXCAN_SetPNConfig

* FLEXCAN_GetPNMatchCount

* FLEXCAN_ReadPNWakeUpMB

– Added support for Enhanced Rx FIFO.

– Removed independent memory error interrupt/status APIs and put all interrupt/status
control operation into FLEXCAN_EnableInterrupts/FLEXCAN_DisableInterrupts and
FLEXCAN_GetStatusFlags/FLEXCAN_ClearStatusFlags APIs.

– Update improved timing APIs to make it calculate improved timing according to CiA
doc recommended.

* FLEXCAN_CalculateImprovedTimingValues.

* FLEXCAN_FDCalculateImprovedTimingValues.

– Update FLEXCAN_SetBitRate/FLEXCAN_SetFDBitRate to added the use of enhanced
timing registers.

[2.6.2]
• Improvements

– Add CANFD frame data length enumeration.

[2.6.1]
• Bug Fixes

– Fixed the issue of not fully initializing memory in FLEXCAN_Reset() API.

[2.6.0]
• Improvements

– Enable CANFD ISO mode in FLEXCAN_FDInit API.

– Enable the transceiver delay compensation feature when enable FD operation and set
bitrate switch.

– Implementation memory error control in FLEXCAN_Init API.

– Improve FLEXCAN_FDCalculateImprovedTimingValues API to get same value for
FPRESDIV and PRESDIV.

– Added memory error configuration for user.

1.5. ChangeLog 103



MCUXpresso SDK Documentation, Release 25.12.00

* enableMemoryErrorControl

* enableNonCorrectableErrorEnterFreeze

– Added memory error related APIs.

* FLEXCAN_GetMemoryErrorReportStatus

* FLEXCAN_GetMemoryErrorStatusFlags

* FLEXCAN_ClearMemoryErrorStatusFlags

* FLEXCAN_EnableMemoryErrorInterrupts

* FLEXCAN_DisableMemoryErrorInterrupts

• Bug Fixes

– Fixed the issue of sent duff CAN frame after call FLEXCAN_FDInit() API.

[2.5.2]
• Bug Fixes

– Fixed the code error issue and simplified the algorithm in improved timing APIs.

* The bit field in CTRL1 register couldn’t calculate higher ideal SP, we set it as the
lowest one(75%)

· FLEXCAN_CalculateImprovedTimingValues

· FLEXCAN_FDCalculateImprovedTimingValues

– Fixed MISRA-C 2012 Rule 17.7 and 14.4.

• Improvements

– Pass EsrStatus to callback function when kStatus_FLEXCAN_ErrorStatus is comming.

[2.5.1]
• Bug Fixes

– Fixed the non-divisible case in improved timing APIs.

* FLEXCAN_CalculateImprovedTimingValues

* FLEXCAN_FDCalculateImprovedTimingValues

[2.5.0]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-10.1, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-
11.8, rule-12.2, rule-13.4, rule-14.4, rule-15.5, rule-15.6, rule-15.7, rule-16.4, rule-
17.3, rule-5.8, rule-8.3, rule-8.5.

– Fixed the issue that API FLEXCAN_SetFDRxMbConfig lacks inactive message buff.

– Fixed the issue of Pa082 warning.

– Fixed the issue of dead lock in the function of interruption handler.

– Fixed the issue of Legacy Rx Fifo EDMA transfer data fail in evkmimxrt1060 and evk-
mimxrt1064.

– Fixed the issue of setting CANFD Bit Rate Switch.

104 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the issue of operating unknown pointer risk.

* when used the pointer “handle->mbFrameBuf[mbIdx]” to update the timestamp
in a short-live TX frame, the frame pointer became as unknown, the action of op-
erating it would result in program stack destroyed.

– Added assert to check current CAN clock source affected by other clock gates in current
device.

* In some chips, CAN clock sources could be selected by CCM. But for some clock
sources affected by other clock gates, if user insisted on using that clock source,
they had to open these gates at the same time. However, they should take into
consideration the power consumption issue at system level. In RT10xx chips, CAN
clock source 2 was affected by the clock gate of lpuart1. ERRATA ID: (ERR050235
in CCM).

• Improvements

– Implementation for new FLEXCAN with ECC feature able to exit Freeze mode.

– Optimized the function of interruption handler.

– Added two APIs for FLEXCAN EDMA driver.

* FLEXCAN_PrepareTransfConfiguration

* FLEXCAN_StartTransferDatafromRxFIFO

– Added new API for FLEXCAN driver.

* FLEXCAN_GetTimeStamp

· For TX non-blocking API, we wrote the frame into mailbox only, so no need to
register TX frame address to the pointer, and the timestamp could be updated
into the new global variable handle->timestamp[mbIdx], the FLEXCAN driver
provided a new API for user to get it by handle and index number after TX
DONE Success.

* FLEXCAN_EnterFreezeMode

* FLEXCAN_ExitFreezeMode

– Added new configuration for user.

* disableSelfReception

* enableListenOnlyMode

– Renamed the two clock source enum macros based on CLKSRC bit field value directly.

* The CLKSRC bit value had no property about Oscillator or Peripheral type in lots
of devices, it acted as two different clock input source only, but the legacy enum
macros name contained such property, that misled user to select incorrect CAN
clock source.

– Created two new enum macros for the FLEXCAN driver.

* kFLEXCAN_ClkSrc0

* kFLEXCAN_ClkSrc1

– Deprecated two legacy enum macros for the FLEXCAN driver.

* kFLEXCAN_ClkSrcOsc

* kFLEXCAN_ClkSrcPeri

– Changed the process flow for Remote request frame response..

* Created a new enum macro for the FLEXCAN driver.

· kStatus_FLEXCAN_RxRemote

1.5. ChangeLog 105



MCUXpresso SDK Documentation, Release 25.12.00

– Changed the process flow for kFLEXCAN_StateRxRemote state in the interrupt handler.

* Should the TX frame not register to the pointer of frame handle, interrupt handler
would not be able to read the remote response frame from the mail box to ram,
so user should read the frame by manual from mail box after a complete remote
frame transfer.

[2.4.0]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-12.1, rule-17.7, rule-16.4, rule-11.9, rule-8.4, rule-14.4,
rule-10.8, rule-10.4, rule-10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3,
rule-8.3, rule-12.2 and rule-16.1.

– Fixed the issue that CANFD transfer data fail when bus baudrate is 30Khz.

– Fixed the issue that ERR009595 does not folllow the ERRATA document.

– Fixed code error for ERR006032 work around solution.

– Fixed the Coverity issue of BAD_SHIFT in FLEXCAN.

– Fixed the Repo build warning issue for variable without initial.

• Improvements

– Fixed the run fail issue of FlexCAN RemoteRequest UT Case.

– Implementation all TX and RX transfering Timestamp used in FlexCAN demos.

– Fixed the issue of UT Test Fail for CANFD payload size changed from 64BperMB to
8PerMB.

– Implementation for improved timing API by baud rate.

[2.3.2]
• Improvements

– Implementation for ERR005959.

– Implementation for ERR005829.

– Implementation for ERR006032.

[2.3.1]
• Bug Fixes

– Added correct handle when kStatus_FLEXCAN_TxSwitchToRx is comming.

[2.3.0]
• Improvements

– Added self-wakeup support for STOP mode in the interrupt handling.

[2.2.3]
• Bug Fixes

– Fixed the issue of CANFD data phase’s bit rate not set as expected.

106 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• Improvements

– Added a time stamp feature and enable it in the interrupt_transfer example.

[2.2.1]
• Improvements

– Separated CANFD initialization API.

– In the interrupt handling, fix the issue that the user cannot use the normal CAN API
when with an FD.

[2.2.0]
• Improvements

– Added FSL_FEATURE_FLEXCAN_HAS_SUPPORT_ENGINE_CLK_SEL_REMOVE feature
to support SoCs without CAN Engine Clock selection in FlexCAN module.

– Added FlexCAN Serial Clock Operation to support i.MX SoCs.

[2.1.0]
• Bug Fixes

– Corrected the spelling error in the function name FLEXCAN_XXX().

– Moved Freeze Enable/Disable setting from FLEXCAN_Enter/ExitFreezeMode() to FLEX-
CAN_Init().

– Corrected wrong helper macro values.

• Improvements

– Hid FLEXCAN_Reset() from user.

– Used NDEBUG macro to wrap FLEXCAN_IsMbOccupied() function instead of DEBUG
macro.

[2.0.0]
• Initial version.

FLEXCAN_EDMA

[2.12.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 18.1.

1.5. ChangeLog 107



MCUXpresso SDK Documentation, Release 25.12.00

[2.12.0]
• Improvements

– Support high resolution timestamp feature in enhanced Rx FIFO EDMA.

– Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

• Bug Fixes

– Fixed array out-of-bounds access when read enhanced Rx FIFO in EDMA.

[2.11.7]
• Refer FLEXCAN driver change log 2.7.0 to 2.11.7

FLEXIO

[2.3.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

– Added more pin control functions.

[2.2.3]
• Improvements

– Adapter the FLEXIO driver to platforms which don’t have system level interrupt con-
troller, such as NVIC.

[2.2.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.1]
• Improvements

– Added doxygen index parameter comment in FLEXIO_SetClockMode.

[2.2.0]
• New Features

– Added new APIs to support FlexIO pin register.

[2.1.0]
• Improvements

– Added API FLEXIO_SetClockMode to set flexio channel counter and source clock.

108 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed MISRA 8.4 issues.

[2.0.3]
• Bug Fixes

– Fixed MISRA 10.4 issues.

[2.0.2]
• Improvements

– Split FLEXIO component which combines all flexio/flexio_uart/flexio_i2c/flexio_i2s
drivers into several components: FlexIO component, flexio_uart component,
flexio_i2c_master component, and flexio_i2s component.

• Bug Fixes

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.0.1]
• Bug Fixes

– Fixed the dozen mode configuration error in FLEXIO_Init API. For enableInDoze = true,
the configuration should be 0; for enableInDoze = false, the configuration should be 1.

FLEXIO_I2C

[2.6.2]
• Improvements

– Added timeout for while loop in FLEXIO_I2C_MasterTransferBlocking().

• Bug Fixes

– Fixed build issues related to I2C_RETRY_TIMES.

[2.6.1]
• Bug Fixes

– Fixed coverity issues

[2.6.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

1.5. ChangeLog 109



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_flexio_i2c_master.c.

[2.4.0]
• Improvements

– Added delay of 1 clock cycle in FLEXIO_I2C_MasterTransferRunStateMachine to ensure
that bus would be idle before next transfer if master is nacked.

– Fixed issue that the restart setup time is less than the time in I2C spec by adding delay
of 1 clock cycle before restart signal.

[2.3.0]
• Improvements

– Used 3 timers instead of 2 to support transfer which is more than 14 bytes in single
transfer.

– Improved FLEXIO_I2C_MasterTransferGetCount so that the API can check whether the
transfer is still in progress.

• Bug Fixes

– Fixed MISRA 10.4 issues.

[2.2.0]
• New Features

– Added timeout mechanism when waiting certain state in transfer API.

– Added an API for checking bus pin status.

• Bug Fixes

– Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

– Added codes in FLEXIO_I2C_MasterTransferCreateHandle to clear pending NVIC IRQ,
disable internal IRQs before enabling NVIC IRQ.

– Modified code so that during master’s nonblocking transfer the start and slave address
are sent after interrupts being enabled, in order to avoid potential issue of sending the
start and slave address twice.

110 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.7]
• Bug Fixes

– Fixed the issue that FLEXIO_I2C_MasterTransferBlocking did not wait for STOP bit sent.

– Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.

– Fixed the issue that I2C master did not check whether bus was busy before transfer.

[2.1.6]
• Bug Fixes

– Fixed the issue that I2C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed the subaddress.

[2.1.5]
• Improvements

– Unified component full name to FLEXIO I2C Driver.

[2.1.4]
• Bug Fixes

– The following modifications support FlexIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.3]
• Improvements

– Changed the prototype of FLEXIO_I2C_MasterInit to return kStatus_Success if
initialized successfully or to return kStatus_InvalidArgument if “(srcClock_Hz /
masterConfig->baudRate_Bps) / 2 - 1” exceeds 0xFFU.

[2.1.2]
• Bug Fixes

– Fixed the FLEXIO I2C issue where the master could not receive data from I2C slave in
high baudrate.

– Fixed the FLEXIO I2C issue where the master could not receive NAK when master sent
non-existent addr.

– Fixed the FLEXIO I2C issue where the master could not get transfer count successfully.

– Fixed the FLEXIO I2C issue where the master could not receive data successfully when
sending data first.

– Fixed the Dozen mode configuration error in FLEXIO_I2C_MasterInit API. For en-
ableInDoze = true, the configuration should be 0; for enableInDoze = false, the con-
figuration should be 1.

1.5. ChangeLog 111



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the issue that FLEXIO_I2C_MasterTransferBlocking API
called FLEXIO_I2C_MasterTransferCreateHandle, which lead to the
s_flexioHandle/s_flexioIsr/s_flexioType variable being written. Then,
if calling FLEXIO_I2C_MasterTransferBlocking API multiple times, the
s_flexioHandle/s_flexioIsr/s_flexioType variable would not be written any more
due to it being out of range. This lead to the following situation: NonBlocking transfer
APIs could not work due to the fail of register IRQ.

[2.1.1]
• Bug Fixes

– Implemented the FLEXIO_I2C_MasterTransferBlocking API which is defined in header
file but has no implementation in the C file.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 12.4.

[2.2.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.2.0]
• New Features

– Added timeout mechanism when waiting certain state in transfer API.

• Bug Fixes

– Fixed IAR Pa082 warnings.

– Fixed violations of the MISRA C-2012 rules 10.4, 14.4, 11.8, 11.9, 10.1, 17.7, 11.6, 10.3,
10.7.

[2.1.6]
• Bug Fixes

– Added reset flexio before flexio i2s init to make sure flexio status is normal.

112 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
• Bug Fixes

– Fixed the issue that I2S driver used hard code for bitwidth setting.

[2.1.4]
• Improvements

– Unified component’s full name to FLEXIO I2S (DMA/EDMA) driver.

[2.1.3]
• Bug Fixes

– The following modifications support FLEXIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.2]
• New Features

– Added configure items for all pin polarity and data valid polarity.

– Added default configure for pin polarity and data valid polarity.

[2.1.1]
• Bug Fixes

– Fixed FlexIO I2S RX data read error and eDMA address error.

– Fixed FlexIO I2S slave timer compare setting error.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S_EDMA

[2.1.9]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 12.4.

1.5. ChangeLog 113



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.8]
• Improvements

– Applied EDMA ERRATA 51327.

FLEXIO_SPI

[2.4.3]
• Improvements

– Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.4.2]
• Bug Fixes

– FixedFLEXIO_SPI_MasterTransferBlocking andFLEXIO_SPI_MasterTransferNonBlocking
issue in CS continuous mode, the CS might not be continuous.

[2.4.1]
• Bug Fixes

– Fixed coverity issues

[2.4.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

[2.3.5]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.4]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

[2.3.3]
• Bugfixes

– Fixed cs-continuous mode.

[2.3.2]
• Improvements

– Changed FLEXIO_SPI_DUMMYDATA to 0x00.

114 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Bugfixes

– Fixed IRQ SHIFTBUF overrun issue when one FLEXIO instance used as multiple SPIs.

[2.3.0]
• New Features

– Supported FLEXIO_SPI slave transfer with continuous master CS signal and CPHA=0.

– Supported FLEXIO_SPI master transfer with continuous CS signal.

– Support 32 bit transfer width.

• Bug Fixes

– Fixed wrong timer compare configuration for dma/edma transfer.

– Fixed wrong byte order of rx data if transfer width is 16 bit, since the we use shifter
buffer bit swapped/byte swapped register to read in received data, so the high byte
should be read from the high bits of the register when MSB.

[2.2.1]
• Bug Fixes

– Fixed bug in FLEXIO_SPI_MasterTransferAbortEDMA that when aborting EDMA trans-
fer EDMA_AbortTransfer should be used rather than EDMA_StopTransfer.

[2.2.0]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.4 issues.

– Added codes in FLEXIO_SPI_MasterTransferCreateHandle and
FLEXIO_SPI_SlaveTransferCreateHandle to clear pending NVIC IRQ before enabling
NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

[2.1.3]
• Improvements

– Unified component full name to FLEXIO SPI(DMA/EDMA) Driver.

• Bug Fixes

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.1.2]
• Bug Fixes

– The following modification support FlexIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

1.5. ChangeLog 115



MCUXpresso SDK Documentation, Release 25.12.00

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.1]
• Bug Fixes

– Fixed bug where FLEXIO SPI transfer data is in 16 bit per frame mode with eDMA.

– Fixed bug when FLEXIO SPI works in eDMA and interrupt mode with 16-bit per frame
and Lsbfirst.

– Fixed the Dozen mode configuration error in FLEXIO_SPI_MasterInit/FLEXIO_SPI_SlaveInit
API. For enableInDoze = true, the configuration should be 0; for enableInDoze = false,
the configuration should be 1.

• Improvements

– Added #ifndef/#endif to allow users to change the default TX value at compile time.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

• Bug Fixes

– Fixed the error register address return for 16-bit data write in
FLEXIO_SPI_GetTxDataRegisterAddress.

– Provided independent IRQHandler/transfer APIs for Master and slave to fix the bau-
drate limit issue.

FLEXIO_UART

[2.6.4]
• Improvements

– Make UART_RETRY_TIMES configurable by CONFIG_UART_RETRY_TIMES.

[2.6.3]
• Bug Fixes

– Fixed coverity issues

[2.6.2]
• Bug Fixes

– Fixed coverity issues

116 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.1]
• Improvements

– Improve baudrate calculation method, to support higher frequency FlexIO clock
source.

[2.6.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

[2.5.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
• Improvements

– Added API FLEXIO_UART_FlushShifters to flush UART fifo.

[2.4.0]
• Improvements

– Use separate data for TX and RX in flexio_uart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling FLEXIO_UART_TransferReceiveNonBlocking, the received data count re-
turned by FLEXIO_UART_TransferGetReceiveCount is wrong.

[2.3.0]
• Improvements

– Added check for baud rate’s accuracy that returns kSta-
tus_FLEXIO_UART_BaudrateNotSupport when the best achieved baud rate is not
within 3% error of configured baud rate.

• Bug Fixes

– Added codes in FLEXIO_UART_TransferCreateHandle to clear pending NVIC IRQ before
enabling NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

[2.2.0]
• Improvements

– Added timeout mechanism when waiting for certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.4 issues.

1.5. ChangeLog 117



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
• Bug Fixes

– Fixed IAR Pa082 warnings.

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.1.5]
• Improvements

– Triggered user callback after all the data in ringbuffer were received in
FLEXIO_UART_TransferReceiveNonBlocking.

[2.1.4]
• Improvements

– Unified component full name to FLEXIO UART(DMA/EDMA) Driver.

[2.1.3]
• Bug Fixes

– The following modifications support FLEXIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer configuration instead of dis-
abling module and clock.

* Updated module Enable APIs to only support enable operation.

[2.1.2]
• Bug Fixes

– Fixed the transfer count calculation issue in FLEXIO_UART_TransferGetReceiveCount,
FLEXIO_UART_TransferGetSendCount, FLEXIO_UART_TransferGetReceiveCountDMA,
FLEXIO_UART_TransferGetSendCountDMA, FLEXIO_UART_TransferGetReceiveCountEDMA
and FLEXIO_UART_TransferGetSendCountEDMA.

– Fixed the Dozen mode configuration error in FLEXIO_UART_Init API. For enableInDoze
= true, the configuration should be 0; for enableInDoze = false, the configuration should
be 1.

– Added code to report errors if the user sets a too-low-baudrate which FLEXIO cannot
reach.

– Disabled FLEXIO_UART receive interrupt instead of all NVICs when reading data from
ring buffer. If ring buffer is used, receive nonblocking will disable all NVIC interrupts
to protect the ring buffer. This had negative effects on other IPs using interrupt.

[2.1.1]
• Bug Fixes

– Changed the API name FLEXIO_UART_StopRingBuffer to
FLEXIO_UART_TransferStopRingBuffer to align with the definition in C file.

118 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added txSize/rxSize in handle structure to record the transfer size.

• Bug Fixes

– Added an error handle to handle the situation that data count is zero or data buffer is
NULL.

FLEXIO_UART_EDMA

[2.3.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules.

[2.3.0]
• Refer FLEXIO_UART driver change log to 2.3.0

FLEXRAM

[2.3.0]
• New Features

– Supported platforms which have ECC but no ECC error injection.

[2.2.0]
• New Features

– Supported flexram ECC error injection function.

[2.1.0]
• New Features

– Supported flexram ECC function.

[2.0.7]
• Bug Fixes

– Fixed doxygen issue.

[2.0.6]
• New Features

– Updated bank configuration and TCM size with GPR16/GPR17/GPR18 into SOC level for
different SOC.

1.5. ChangeLog 119



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
• New Features

– Added the magic address feature for OCRAM, DTCM and ITCM.

[2.0.4]
• Bug Fixes

– Fixed FlexRAM driver’s missing extern C around functions in header file.

– Removed magic address feature from driver.

[2.0.3]
• Bug Fixes

– Fixed the issue that TCM size configuration was wrong when TCM bank number was
not a value power of 2.

[2.0.2]
• Bug Fixes

– Updated driver due to Reference Manual update.

[2.0.1]
• Bug Fixes

– Fixed MISRA issue.

[2.0.0]
• Initial version.

FLEXSPI

[2.8.1]
• Improvements

– Updated the LUT configuration parameter checking with flexible way to adapt differ-
ent Socs.

[2.8.0]
• Bug Fixes

– Introduced the disableAhbReadResume field in the flexspi_config_t structure to pro-
vide control over the AHBCR[RESUMEDISABLE] register bit.

– Implemented a workaround for hardware erratum ERR052733 by setting the default
value of disableAhbReadResume to true.

– Fixed issue in FLEXSPI_TransferHandleIRQ where the transfer completion was incor-
rectly signaled despite pending read/write operations.

120 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• New Features

– Introduced a new function(FLEXSPI_UpdateAhbBuffersSettings) that allows users to
update the AHB buffer configuration after the FLEXSPI module has been initialized

[2.7.0]
• New Features

– Added new API to support address remapping.

[2.6.4]
• Improvements

– Added new macro “FSL_SDK_ENABLE_FLEXSPI_RESET_CONTROL” to support driver
level reset control.

[2.6.3]
• Bug Fixes

– Fixed an issue which cause IPCR1[IPAREN] cleared by mistake.

[2.6.2]
• Bug Fixes

– Wait Bus IDLE before operation of FLEXSPI_SoftwareReset(),
FLEXSPI_TransferBlocking() and FLEXSPI_TransferNonBlocking().

[2.6.1]
• Bug Fixes

– Updated code of reset peripheral.

– Updated FLEXSPI_UpdateLUT() to check if input lut address is not in Flexspi AMBA
region.

– Updated FLEXSPI_Init() to check if input AHB buffer size exceeded maximum AHB size.

[2.6.0]
• New Features

– Added new API to set AHB memory-mapped flash base address.

– Added support of DLLxCR[REFPHASEGAP] bit field, it is recommended to set it as 0x2
if DLL calibration is enabled.

[2.5.1]
• Bugfixes

– Fixed handling of W1C bits in the INTR register

– Removed FIFO resets from FLEXSPI_CheckAndClearError

– FLEXSPI_TransferBlocking is observing IPCMDDONE and then fetches the final status
of the transfer

1.5. ChangeLog 121



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed issue that FLEXSPI2_DriverIRQHandler not defined.

[2.5.0]
• Improvements

– Supported word un-aligned access for write/read blocking/non-blocking API functions.

– Fixed dead loop issue in DLL update function when using FRO clock source.

– Fixed violations of the MISRA C-2012 Rule 10.3.

[2.4.0]
• Improvements

– Isolated IP command parallel mode and AHB command parallel mode using feature
MACRO.

– Supported new column address shift feature for external memory.

[2.3.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 14.2.

[2.3.4]
• Bug Fixes

– Updated flexspi_config_t structure and FlexSPI_Init to support new feature
FSL_FEATURE_FLEXSPI_HAS_NO_MCR0_CONBINATION.

[2.3.3]
• Bug Fixes

– Removed feature FSL_FEATURE_FLEXSPI_DQS_DELAY_PS for DLL delay setting.
Changed to use feature FSL_FEATURE_FLEXSPI_DQS_DELAY_MIN to set slave delay tar-
get as 0 for DLL enable and clock frequency higher than 100MHz.

[2.3.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 8.4, 8.5, 10.1, 10.3, 10.4, 11.6 and 14.4.

[2.3.1]
• Bug Fixes

– Wait for bus to be idle before using it as access to external flash with new setting in
FLEXSPI_SetFlashConfig() API.

– Fixed the potential buffer overread and Tx FIFO overwrite issue in
FLEXSPI_WriteBlocking.

122 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• New Features

– Added new API FLEXSPI_UpdateDllValue for users to update DLL value after updating
flexspi root clock.

– Corrected grammatical issues for comments.

– Added support for new feature FSL_FEATURE_FLEXSPI_DQS_DELAY_PS in DLL config-
uration.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 10.1, 10.3 and 10.4.

– Updated _flexspi_command from named enumerator into anonymous enumerator.

[2.2.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8, 11.9, 14.4, 15.7, 16.4,
17.7, 7.3.

– Fixed IAR build warning Pe167.

– Fixed the potential buffer overwrite and Rx FIFO overread issue in
FLEXSPI_ReadBlocking.

[2.2.0]
• Bug Fixes

– Fixed flag name typos: kFLEXSPI_IpTxFifoWatermarkEmpltyFlag to
kFLEXSPI_IpTxFifoWatermarkEmptyFlag; kFLEXSPI_IpCommandExcutionDoneFlag
to kFLEXSPI_IpCommandExecutionDoneFlag.

– Fixed comments typos such as sequencen->sequence, levle->level.

– Fixed FLSHCR2[ARDSEQID] field clean issue.

– Updated flexspi_config_t structure and FlexSPI_Init to support
new feature FSL_FEATURE_FLEXSPI_HAS_NO_MCR0_ATDFEN and
FSL_FEATURE_FLEXSPI_HAS_NO_MCR0_ARDFEN.

– Updated flexspi_flags_t structure to support new feature
FSL_FEATURE_FLEXSPI_HAS_INTEN_AHBBUSERROREN.

[2.1.1]
• Improvements

– Defaulted enable prefetch for AHB RX buffer configuration in
FLEXSPI_GetDefaultConfig, which is align with the reset value in AHBRXBUFxCR0.

– Added software workaround for ERR011377 in FLEXSPI_SetFlashConfig; added some
delay after DLL lock status set to ensure correct data read/write.

1.5. ChangeLog 123



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New Features

– Added new API FLEXSPI_UpdateRxSampleClock for users to update read sample clock
source after initialization.

– Added reset peripheral operation in FLEXSPI_Init if required.

[2.0.5]
• Bug Fixes

– Fixed FLEXSPI_UpdateLUT cannot do partial update issue.

[2.0.4]
• Bug Fixes

– Reset flash size to zero for all ports in FLEXSPI_Init; fixed the possible out-of-range
flash access with no error reported.

[2.0.3]
• Bug Fixes

– Fixed AHB receive buffer size configuration issue. The
FLEXSPI_AHBRXBUFCR0_BUFSZ field should configure 64 bits size, and currently
the AHB receive buffer size is in bytes which means 8-bit, so the correct configuration
should be config->ahbConfig.buffer[i].bufferSize / 8.

[2.0.2]
• New Features

– Supported DQS write mask enable/disable feature during set FLEXSPI configuration.

– Provided new API FLEXSPI_TransferUpdateSizeEDMA for users to update eDMA trans-
fer size(SSIZE/DSIZE) per DMA transfer.

• Bug Fixes

– Fixed invalid operation of FLEXSPI_Init to enable AHB bus Read Access to IP RX FIFO.

– Fixed incorrect operation of FLEXSPI_Init to configure IP TX FIFO watermark.

[2.0.1]
• Bug Fixes

– Fixed the flag clear issue and AHB read Command index configuration issue in
FLEXSPI_SetFlashConfig.

– Updated FLEXSPI_UpdateLUT function to update LUT table from any index instead of
previous command index.

– Added bus idle wait in FLEXSPI_SetFlashConfig and FLEXSPI_UpdateLUT to ensure bus
is idle before any change to FlexSPI controller.

– Updated interrupt API FLEXSPI_TransferNonBlocking and interrupt handle flow
FLEXSPI_TransferHandleIRQ.

– Updated eDMA API FLEXSPI_TransferEDMA.

124 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

FLEXSPI EDMA Driver

[2.3.3]
• Bug Fixes

– Fixed FLEXSPI_TransferEDMA bug that, the DMA channel not configured correctly
when using kFLEXSPI_Read.

[2.3.2]
• Bug Fixes

– Fixed the bug that internal variable s_edmaPrivateHandle overflows when using
FlexSPI2.

[2.0.2]
• New Features

– Provided new API FLEXSPI_TransferUpdateSizeEDMA for users to update eDMA trans-
fer size(SSIZE/DSIZE) per DMA transfer.

[2.0.0]
• Initial version.

GPC

[2.5.0]
• Improvements

– Set GPC_CM_ConfigCpuModeTransitionStep(), GPC_SP_ConfigSetPointTransitionStep(),
GPC_STBY_ConfigStandbyTransitionStep() as deprecated.

– Added GPC_CM_EnableCpuModeTransitionStep(), GPC_CM_DisableCpuModeTransitionStep().

– Added GPC_SP_EnableSetPointTransitionStep(), GPC_SP_DisableSetPointTransitionStep().

– Added GPC_STBY_EnableStandbyTransitionStep(), GPC_STBY_DisableStandbyTransitionStep().

– Added GPC_STBY_SetPmicOutStepCountMode() to set count mode of PMIC_OUT step.

[2.4.0]
• Improvements

– Deleted cnt_mode and step count of gpc_tran_step_config_t structure to aligned with
updates of header file.

1.5. ChangeLog 125



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Bug Fixes

– Fixed the violation of MISRA C-2012 rule 5.8.

[2.3.0]
• Bug Fixes

– Fixed wrong offset value of DCDC_UP_CTRL register.

• New Features

– Added GPC_STBY_ForceCoreRequestStandbyMode() function ti force core to enter
standby mode.

[2.2.0]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.8.

– Fixed violations of MISRA C-2012 rule 8.6 by removing the declaration of
GPC_SP_GetResponseCount() function.

[2.1.1]
• Bug Fixes

– Fixed Doxygen warnings.

[2.1.0]
• Improvements

– Removed status related APIs based on the updates of header file.

[2.0.0]
• Initial version.

GPIO

[2.0.7]
• Bug Fixes

– Fixed coverity MSG issues with CERT INT30-C compliance.

[2.0.6]
• Bug Fixes

– Fixed compile warning: ‘GPIO_GetInstance’ defined but not used when macro
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is defined.

126 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
• Bug Fixes

– Fixed MISRA C-2012 issue: rule-17.7.

[2.0.4]
• Improvements

– Updated the GPIO_PinWrite to use atomic operation if possible.

• Bug Fixes

– Fixed GPIO_PortToggle bug with platforms don’t have register DR_TOGGLE.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-14.4, and rule-15.5.

[2.0.2]
• Bug Fixes

– Fixed the bug of enabling wrong GPIO clock gate in initial API. Since some GPIO in-
stances may not have a clock gate enabled, it checks the clock gate number and makes
sure the clock gate is valid.

[2.0.1]
• Improvements

– API interface changes:

* Refined naming of the API while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The main change is to update
the API with prefix of _PinXXX() and _PortXXX().

[2.0.0]
• Initial version.

GPT

[2.0.6]
• Bug Fixes

– Fix CERT INT30-C issues.

[2.0.5]
• Improvements

– Support workaround for ERR003777. This workaround helps switching the clock
sources.

1.5. ChangeLog 127



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed compiler warning when built with FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
flag enabled.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.3 by customizing function parameter.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.8, 17.7.

[2.0.0]
• Initial version.

IEE

[2.1.1]
• Fixed MISRA issues.

[2.1.0]
• Add region lock function IEE_LockRegionConfig() and driver clock control.

[2.0.0]
• Initial version.

IEE_APC

[2.0.2]
• Updated to newer version of implementation in HW.

[2.0.1]
• Fixed MISRA issues.

128 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

IOMUXC

[2.0.1]
• Doxygen improvement.

[2.0.0]
• initial version.

KEYMGR

[2.0.2]
• Fix MISRA-2012 issues.

[2.0.1]
• Fix MISRA-2012 issues.

[2.0.0]
• Initial version.

KPP

[2.1.1]
• Bug Fixes

– Fixed coverity MSG issues with CERT INT30-C, CERT ARR30-C compliance.

[2.1.0]
• Improvements

– Optimize rowData debounce method to adapt to multi-key detection

– Modify the KPP_keyPressScanning type to status_t.

[2.0.1]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.3 10.4 10.6 14.4 17.7

1.5. ChangeLog 129



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

LCDIFv2

[2.3.3]
• Other Changes

– Removed PDI_PARA register operation due to IP change.

[2.3.2]
• Bug Fixes

– Fixed the violations of MISRA 2012 advisory rules.

[2.3.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.4.

[2.3.0]
• New Features:

– Added API to calculate global alpha based on desired blended alpha.

[2.2.3]
• Improvements

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.2.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.2, 10.4, 10.6, 12.2.

[2.2.1]
• Improvements

– Updated for the new LCDIFV2_Type structure.

[2.2.0]
• Bug Fixes

– Fixed LCDIFV2_GetPorterDuffConfig issue that does not set color mode correctly.

• Other Changes

– Removed the store functions.

130 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Bug Fixes

– Fixed the issue that LCDIFV2_SetLut could not access the last index.

[2.1.0]
• New Features:

– Added function to get Porter Duff configuration.

[2.0.1]
• Bug Fixes

– Fixed the issue that register value not reset by LCDIFV2_Deinit and LCDIFV2_Reset.

[2.0.0]
• Initial version.

LPADC

[2.9.5]
• Improvements

– Fix doxygen issue, grouping command should be balanced.

[2.9.4]
• Improvements

– Update LPADC_GetDefaultConfig, change default conversionAverageMode value to:
kLPADC_ConversionAverage128 for 3 bit width. kLPADC_ConversionAverage1024 for
4 bit width.

[2.9.3]
• Improvements

– Add timeout for while loop code.

[2.9.2]
• Improvements

– Fixed CERT-C issues.

[2.9.1]
• Bug Fixes

– Fixed incorrect channel B FIFO selection logic.

1.5. ChangeLog 131



MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
• Bug Fixes

– Add code to handle the case where GCC[GAIN_CAL] is a signed number.

– Split LPADC_FinishAutoCalibration function into two functions.

– Improved LPADC driver.

[2.8.4]
• Bug Fixes

– Remove function ‘LPADC_SetOffsetValue’ assert statement, this statement may cause
runtime errors in existing code.

[2.8.3]
• Bug Fixes

– Fixed SDK lpadc driver examples compile issue, move condition ‘commandId <
ADC_CV_COUNT’ to a more appropriate location.

[2.8.2]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 18.1, 10.3, 10.1 and 10.4.

[2.8.1]
• Bug Fixes

– Fixed LPADC sample mode enum name mistake.

[2.8.0]
• Improvements

– Release peripheral from reset if necessary in init function.

• Bug Fixes

– Fixed function LPADC_GetConvResult() issue.

– Fixed function LPADC_SetConvCommandConfig() bugs.

[2.7.2]
• Improvements

– Use feature macros instead of header file macros.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

132 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]
• Improvements

– Corrected descriptions of several functions.

– Improved function LPADC_GetOffsetValue and LPADC_SetOffsetValue.

– Revert changes of feature macros for lpadc.

– Use feature macros instead of header file macros.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rule 10.8.

– Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

[2.7.0]
• Improvements

– Added supports of CFG2 register.

– Removed some useless macros.

[2.6.2]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules.

– Fixed LPADC driver code compile error issue.

[2.6.1]
• Improvements

– Updated the use of macros in the driver code.

[2.6.0]
• Improvements

– Added the API LPADC_SetOffset12BitValue() to configure 12bit ADC conversion offset
trim value manually.

– Added the API LPADC_SetOffset16BitValue() to configure 16bit ADC conversion offset
trim value manually.

– Added API to set offset calibration mode.

– Added configuration of alternate channel.

– Updated auto calibration API and added calibration value conversion API.

• New feature

– Added API LPADC_EnableHardwareTriggerCommandSelection() to enable trigger
commands controlled by ADC_ETC.

– Updated LPADC_DoAutoCalibration() to allow doing something else before the ADC ini-
titialization to be totally complete. Enhance initialization duration time of the ADC.

– Added two new APIs to get/set calibration value.

1.5. ChangeLog 133



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.2]
• Improvements

– Added while loop, LPADC_GetConvResult() will return only when the FIFO will not be
empty.

[2.5.1]
• Bug Fixes

– Fixed some typos in Lpadc driver comments.

[2.5.0]
• Improvements

– Added missing items to enable trigger interrupts.

[2.4.0]
• New features

– Added APIs to get/clear trigger status flags.

[2.3.0]
• Improvements

– Removed LPADC_MeasureTemperature() function for the LPADC supports different
temperature sensor calculation equations.

[2.2.1]
• Improvements

– Optimized LPADC_MeasureTemperature() function to support the specific series with
flash solidified calibration value.

– Clean doxygen warnings.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3, rule 10.8 and rule 17.7.

[2.2.0]
• New Feature

– Added API LPADC_MeasureTemperature() to get correct temperature from the internal
sensor.

• Improvements

– Separated lpadc_conversion_resolution_mode_t with related feature macro.

• Bug Fixes

– Fixed the violations of MISRA C-2012 rules:

* Rule 10.3, 10.4, 10.6, 10.7 and 17.7.

134 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Improvements

– Updated the gain calibration formula.

– Used feature to segregate the new item kLPADC_TriggerPriorityPreemptSubsequently.

[2.1.0]
• New Features

– Added the API LPADC_SetOffsetValue() to support configure offset trim value manually.

– Added the API LPADC_DoOffsetCalibration() to do offset calibration independently.

• Improvements

– Improved the usage of macros and removed invalid macros.

[2.0.2]
• Improvements

– Added support for platforms with 2 FIFOs and different calibration measures.

[2.0.1]
• Bug Fixes

– Ensured the API LPADC_SetConvCommandConfig configure related registers correctly.

[2.0.0]
• Initial version.

LPI2C

[2.6.3]
• Bug Fixes

– Fixed static analysis identified issues.

[2.6.2]
• Improvements

– Added timeout for while loop in LPI2C_TransferStateMachineSendCommand().

[2.6.1]
• Bug Fixes

– Fixed coverity issues.

1.5. ChangeLog 135



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
• New Feature

– Added common IRQ handler entry LPI2C_DriverIRQHandler.

[2.5.7]
• Improvements

– Added support for separated IRQ handlers.

[2.5.6]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.5]
• Bug Fixes

– Fixed LPI2C_SlaveInit() - allow to disable SDA/SCL glitch filter.

[2.5.4]
• Bug Fixes

– Fixed LPI2C_MasterTransferBlocking() - the return value was sometime affected by call
of LPI2C_MasterStop().

[2.5.3]
• Improvements

– Added handler for LPI2C7 and LPI2C8.

[2.5.2]
• Bug Fixes

– Fixed ERR051119 to ignore the nak flag when IGNACK=1 in
LPI2C_MasterCheckAndClearError.

[2.5.1]
• Bug Fixes

– Added bus stop incase of bus stall in LPI2C_MasterTransferBlocking.

• Improvements

– Release peripheral from reset if necessary in init function.

[2.5.0]
• New Features

– Added new function LPI2C_SlaveEnableAckStall to enable or disable ACKSTALL.

136 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Improvements

– Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

[2.4.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpi2c.c.

• Bug Fixes

– Fixed bug in LPI2C_MasterInit that the MCFGR2’s value set in
LPI2C_MasterSetBaudRate may be overwritten by mistake.

[2.3.2]
• Improvements

– Initialized the EDMA configuration structure in the LPI2C EDMA driver.

[2.3.1]
• Improvements

– Updated LPI2C_GetCyclesForWidth to add the parameter of minimum cycle, because
for master SDA/SCL filter, master bus idle/pin low timeout and slave SDA/SCL filter
configuration, 0 means disabling the feature and cannot be used.

• Bug Fixes

– Fixed bug in LPI2C_SlaveTransferHandleIRQ that when restart detect event happens
the transfer structure should not be cleared.

– Fixed bug in LPI2C_RunTransferStateMachine, that when only slave address is trans-
ferred or there is still data remaining in tx FIFO the last byte’s nack cannot be ignored.

– Fixed bug in slave filter doze enable, that when FILTDZ is set it means disable rather
than enable.

– Fixed bug in the usage of LPI2C_GetCyclesForWidth. First its return value cannot be
used directly to configure the slave FILTSDA, FILTSCL, DATAVD or CLKHOLD, because
the real cycle width for them should be FILTSDA+3, FILTSCL+3, FILTSCL+DATAVD+3
and CLKHOLD+3. Second when cycle period is not affected by the prescaler value,
prescaler value should be passed as 0 rather than 1.

– Fixed wrong default setting for LPI2C slave. If enabling the slave tx SCL stall, then
the default clock hold time should be set to 250ns according to I2C spec for 100kHz
standard mode baudrate.

– Fixed bug that before pushing command to the tx FIFO the FIFO occupation should be
checked first in case FIFO overflow.

[2.3.0]
• New Features

– Supported reading more than 256 bytes of data in one transfer as master.

– Added API LPI2C_GetInstance.

• Bug Fixes

1.5. ChangeLog 137



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed bug in LPI2C_MasterTransferAbortEDMA, LPI2C_MasterTransferAbort and
LPI2C_MasterTransferHandleIRQ that before sending stop signal whether master is
active and whether stop signal has been sent should be checked, to make sure no FIFO
error or bus error will be caused.

– Fixed bug in LPI2C master EDMA transactional layer that the bus error cannot be
caught and returned by user callback, by monitoring bus error events in interrupt
handler.

– Fixed bug in LPI2C_GetCyclesForWidth that the parameter used to calculate clock cycle
should be 2^prescaler rather than prescaler.

– Fixed bug in LPI2C_MasterInit that timeout value should be configured after baudrate,
since the timeout calculation needs prescaler as parameter which is changed during
baudrate configuration.

– Fixed bug in LPI2C_MasterTransferHandleIRQ and LPI2C_RunTransferStateMachine
that when master writes with no stop signal, need to first make sure no data remains
in the tx FIFO before finishes the transfer.

[2.2.0]
• Bug Fixes

– Fixed issue that the SCL high time, start hold time and stop setup time do not meet I2C
specification, by changing the configuration of data valid delay, setup hold delay, clock
high and low parameters.

– MISRA C-2012 issue fixed.

* Fixed rule 8.4, 13.5, 17.7, 20.8.

[2.1.12]
• Bug Fixes

– Fixed MISRA advisory 15.5 issues.

[2.1.11]
• Bug Fixes

– Fixed the bug that, during master non-blocking transfer, after the last byte is
sent/received, the kLPI2C_MasterNackDetectFlag is expected, so master should not
check and clear kLPI2C_MasterNackDetectFlag when remainingBytes is zero, in case
FIFO is emptied when stop command has not been sent yet.

– Fixed the bug that, during non-blocking transfer slave may nack master while master
is busy filling tx FIFO, and NDF may not be handled properly.

[2.1.10]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rule 10.3, 14.4, 15.5.

– Fixed unaligned access issue in LPI2C_RunTransferStateMachine.

– Fixed uninitialized variable issue in LPI2C_MasterTransferHandleIRQ.

138 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– Used linked TCD to disable tx and enable rx in read operation to fix the issue that for
platform sharing the same DMA request with tx and rx, during LPI2C read operation if
interrupt with higher priority happened exactly after command was sent and before
tx disabled, potentially both tx and rx could trigger dma and cause trouble.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 11.6, 11.9, 14.4, 17.7.

– Fixed the waitTimes variable not re-assignment issue for each byte read.

• New Features

– Added the IRQHandler for LPI2C5 and LPI2C6 instances.

• Improvements

– Updated the LPI2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.1.9]
• Bug Fixes

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

– Fixed Coverity issue of operands did not affect the result in LPI2C_SlaveReceive and
LPI2C_SlaveSend.

– Removed STOP signal wait when NAK detected.

– Cleared slave repeat start flag before transmission started
in LPI2C_SlaveSend/LPI2C_SlaveReceive. The issue was that
LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the reserved repeat
start flag. This caused the next slave to send a break, and the master was always in
the receive data status, but could not receive data.

[2.1.8]
• Bug Fixes

– Fixed the transfer issue with LPI2C_MasterTransferNonBlocking,
kLPI2C_TransferNoStopFlag, with the wait transfer done through callback in a
way of not doing a blocking transfer.

– Fixed the issue that STOP signal did not appear in the bus when NAK event occurred.

[2.1.7]
• Bug Fixes

– Cleared the stopflag before transmission started in LPI2C_SlaveSend/LPI2C_SlaveReceive.
The issue was that LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the re-
served stop flag and caused the next slave to send a break, and the master always
stayed in the receive data status but could not receive data.

[2.1.6]
• Bug Fixes

– Fixed driver MISRA build error and C++ build error in LPI2C_MasterSend and
LPI2C_SlaveSend.

– Reset FIFO in LPI2C Master Transfer functions to avoid any byte still remaining in FIFO
during last transfer.

1.5. ChangeLog 139



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the issue that LPI2C_MasterStop did not return the correct NAK status in the bus
for second transfer to the non-existing slave address.

[2.1.5]
• Bug Fixes

– Extended the Driver IRQ handler to support LPI2C4.

– Changed to use ARRAY_SIZE(kLpi2cBases) instead of FEATURE COUNT to decide the
array size for handle pointer array.

[2.1.4]
• Bug Fixes

– Fixed the LPI2C_MasterTransferEDMA receive issue when LPI2C shared same request
source with TX/RX DMA request. Previously, the API used scatter-gather method,
which handled the command transfer first, then the linked TCD which was pre-set with
the receive data transfer. The issue was that the TX DMA request and the RX DMA re-
quest were both enabled, so when the DMA finished the first command TCD transfer
and handled the receive data TCD, the TX DMA request still happened due to empty
TX FIFO. The result was that the RX DMA transfer would start without waiting on the
expected RX DMA request.

– Fixed the issue by enabling IntMajor interrupt for the command TCD and checking if
there was a linked TCD to disable the TX DMA request in LPI2C_MasterEDMACallback
API.

[2.1.3]
• Improvements

– Added LPI2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

– Added LPI2C_MasterTransferBlocking API.

[2.1.2]
• Bug Fixes

– In LPI2C_SlaveTransferHandleIRQ, reset the slave status to idle when stop flag was
detected.

[2.1.1]
• Bug Fixes

– Disabled the auto-stop feature in eDMA driver. Previously, the auto-stop feature was
enabled at transfer when transferring with stop flag. Since transfer was without stop
flag and the auto-stop feature was enabled, when starting a new transfer with stop
flag, the stop flag would be sent before the new transfer started, causing unsuccesful
sending of the start flag, so the transfer could not start.

– Changed default slave configuration with address stall false.

140 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Improvements

– API name changed:

* LPI2C_MasterTransferCreateHandle -> LPI2C_MasterCreateHandle.

* LPI2C_MasterTransferGetCount -> LPI2C_MasterGetTransferCount.

* LPI2C_MasterTransferAbort -> LPI2C_MasterAbortTransfer.

* LPI2C_MasterTransferHandleIRQ -> LPI2C_MasterHandleInterrupt.

* LPI2C_SlaveTransferCreateHandle -> LPI2C_SlaveCreateHandle.

* LPI2C_SlaveTransferGetCount -> LPI2C_SlaveGetTransferCount.

* LPI2C_SlaveTransferAbort -> LPI2C_SlaveAbortTransfer.

* LPI2C_SlaveTransferHandleIRQ -> LPI2C_SlaveHandleInterrupt.

[2.0.0]
• Initial version.

LPI2C_EDMA

[2.4.6]
• Bug Fixes

– Fixed static analysis identified issues.

[2.4.5]
• Improvements

– Added condition to IRQ handler to check whether the interrupt is enabled -
kLPI2C_MasterTxReadyFlag.

[2.4.4]
• Improvements

– Added support for 2KB data transfer

[2.4.3]
• Improvements

– Added support for separated IRQ handlers.

[2.4.2]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

1.5. ChangeLog 141



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Refer LPI2C driver change log 2.0.0 to 2.4.1

LPSPI

[2.7.4]
• Bug Fixes

– Clear WIDTH bits from the TCR register before writing a new value in LP-
SPI_MasterTransferBlocking().

[2.7.3]
• Improvements

– Added timeout for while loop in LPSPI_MasterTransferWriteAllTxData().

– Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.7.2]
• Bug Fixes

– Fixed coverity issues.

[2.7.1]
• Bug Fixes

– Workaround for errata ERR050607

– Workaround for errata ERR010655

[2.7.0]
• New Feature

– Added common IRQ handler entry LPSPI_DriverIRQHandler.

[2.6.10]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.6.9]
• Bug Fixes

– Fixed reading of TCR register

– Workaround for errata ERR050606

142 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.8]
• Bug Fixes

– Fixed build error when SPI_RETRY_TIMES is defined to non-zero value.

[2.6.7]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API _lpspi_master_handle and
_lpspi_slave_handle.

[2.6.6]
• Bug Fixes

– Added LPSPI register init in LPSPI_MasterInit incase of LPSPI register exist.

[2.6.5]
• Improvements

– Introduced FSL_FEATURE_LPSPI_HAS_NO_PCSCFG and FSL_FEATURE_LPSPI_HAS_NO_MULTI_WIDTH
for conditional compile.

– Release peripheral from reset if necessary in init function.

[2.6.4]
• Bug Fixes

– Added LPSPI6_DriverIRQHandler for LPSPI6 instance.

[2.6.3]
• Hot Fixes

– Added macro switch in function LPSPI_Enable about ERRATA051472.

[2.6.2]
• Bug Fixes

– Disabled lpspi before LPSPI_MasterSetBaudRate incase of LPSPI opened.

[2.6.1]
• Bug Fixes

– Fixed return value while calling LPSPI_WaitTxFifoEmpty in function LP-
SPI_MasterTransferNonBlocking.

[2.6.0]
• Feature

– Added the new feature of multi-IO SPI .

1.5. ChangeLog 143



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.3]
• Bug Fixes

– Fixed 3-wire txmask of handle vaule reentrant issue.

[2.5.2]
• Bug Fixes

– Workaround for errata ERR051588 by clearing FIFO after transmit underrun occurs.

[2.5.1]
• Bug Fixes

– Workaround for errata ERR050456 by resetting the entire module using LP-
SPIn_CR[RST] bit.

[2.5.0]
• Bug Fixes

– Workaround for errata ERR011097 to wait the TX FIFO to go empty when writing TCR
register and TCR[TXMSK] value is 1.

– Added API LPSPI_WaitTxFifoEmpty for wait the txfifo to go empty.

[2.4.7]
• Bug Fixes

– Fixed bug that the SR[REF] would assert if software disabled or enabled the LPSPI mod-
ule in LPSPI_Enable.

[2.4.6]
• Improvements

– Moved the configuration of registers for the 3-wire lpspi mode to the LPSPI_MasterInit
and LPSPI_SlaveInit function.

[2.4.5]
• Improvements

– Improved LPSPI_MasterTransferBlocking send performance when frame size is 1-byte.

[2.4.4]
• Bug Fixes

– Fixed LPSPI_MasterGetDefaultConfig incorrect default inter-transfer delay calculation.

[2.4.3]
• Bug Fixes

– Fixed bug that the ISR response speed is too slow on some platforms, resulting in the
first transmission of overflow, Set proper RX watermarks to reduce the ISR response
times.

144 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
• Bug Fixes

– Fixed bug that LPSPI_MasterTransferBlocking will modify the parameter txbuff and
rxbuff pointer.

[2.4.1]
• Bug Fixes

– Fixed bug that LPSPI_SlaveTransferNonBlocking can’t detect RX error.

[2.4.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpspi.c.

[2.3.1]
• Improvements

– Initialized the EDMA configuration structure in the LPSPI EDMA driver.

• Bug Fixes

– Fixed bug that function LPSPI_MasterTransferBlocking should return after the trans-
fer complete flag is set to make sure the PCS is re-asserted.

[2.3.0]
• New Features

– Supported the master configuration of sampling the input data using a delayed clock
to improve slave setup time.

[2.2.1]
• Bug Fixes

– Fixed bug in LPSPI_SetPCSContinous when disabling PCS continous mode.

[2.2.0]
• Bug Fixes

– Fixed bug in 3-wire polling and interrupt transfer that the received data is not correct
and the PCS continous mode is not working.

[2.1.0]
• Improvements

– Improved LPSPI_SlaveTransferHandleIRQ to fill up TX FIFO instead of write one data
to TX register which improves the slave transmit performance.

– Added new functional APIs LPSPI_SelectTransferPCS and LPSPI_SetPCSContinous to
support changing PCS selection and PCS continous mode.

• Bug Fixes

1.5. ChangeLog 145



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed bug in non-blocking and EDMA transfer APIs that kStatus_InvalidArgument is
returned if user configures 3-wire mode and full-duplex transfer at the same time, but
transfer state is already set to kLPSPI_Busy by mistake causing following transfer can
not start.

– Fixed bug when LPSPI slave using EDMA way to transfer, tx should be masked when tx
data is null, otherwise in 3-wire mode which tx/rx use the same pin, the received data
will be interfered.

[2.0.5]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed the bug that LPSPI can not transfer large data using EDMA.

– Fixed MISRA 17.7 issues.

– Fixed variable overflow issue introduced by MISRA fix.

– Fixed issue that rxFifoMaxBytes should be calculated according to transfer width
rather than FIFO width.

– Fixed issue that completion flag was not cleared after transfer completed.

[2.0.4]
• Bug Fixes

– Fixed in LPSPI_MasterTransferBlocking that master rxfifo may overflow in stall con-
dition.

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.6, 11.9, 14.2, 14.4, 15.7, 17.7.

[2.0.3]
• Bug Fixes

– Removed LPSPI_Reset from LPSPI_MasterInit and LPSPI_SlaveInit, because this API
may glitch the slave select line. If needed, call this function manually.

[2.0.2]
• New Features

– Added dummy data set up API to allow users to configure the dummy data to be trans-
ferred.

– Enabled the 3-wire mode, SIN and SOUT pins can be configured as input/output pin.

[2.0.1]
• Bug Fixes

– Fixed the bug that the clock source should be divided by the PRESCALE setting in LP-
SPI_MasterSetDelayTimes function.

146 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the bug that LPSPI_MasterTransferBlocking function would hang in some corner
cases.

• Optimization

– Added #ifndef/#endif to allow user to change the default TX value at compile time.

[2.0.0]
• Initial version.

LPSPI_EDMA

[2.4.9]
• Improvements

– Removed unused code from LPSPI_SeparateEdmaReadData().

[2.4.8]
• Improvements

– Added timeout for while loop in EDMA_LpspiMasterCallback() and
EDMA_LpspiSlaveCallback().

[2.4.7]
• Bug Fixes

– Add macro LPSPI_ALIGN_TCD_SIZE_MASK to align an address to edma_tcd_t size.

[2.4.6]
• Improvements

– Increased transmit FIFO watermark to ensure whole transmit FIFO will be used during
data transfer.

[2.4.5]
• Bug Fixes

– Fixed reading of TCR register

– Workaround for errata ERR050606

[2.4.4]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.4.3]
• Improvements

– Supported 32K bytes transmit in DMA, improve the max datasize in LP-
SPI_MasterTransferEDMALite.

1.5. ChangeLog 147



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
• Improvements

– Added callback status in EDMA_LpspiMasterCallback and EDMA_LpspiSlaveCallback
to check transferDone.

[2.4.1]
• Improvements

– Add the TXMSK wait after TCR setting.

[2.4.0]
• Improvements

– Separated LPSPI_MasterTransferEDMA functions to LP-
SPI_MasterTransferPrepareEDMA and LPSPI_MasterTransferEDMALite to optimize
the process of transfer.

LPUART

[2.10.0]
• New Feature

– Added support to configure RTS watermark.

[2.9.4]
• Improvements

– Merged duplicate code.

[2.9.3]
• Improvements

– Added timeout for while loops in LPUART_Deinit().

[2.9.2]
• Bug Fixes

– Fixed coverity issues.

[2.9.1]
• Bug Fixes

– Fixed coverity issues.

148 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
• New Feature

– Added support for swap TXD and RXD pins.

– Added common IRQ handler entry LPUART_DriverIRQHandler.

[2.8.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.8.2]
• Bug Fix

– Fixed the bug that LPUART_TransferEnable16Bit controled by wrong feature macro.

[2.8.1]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-5.3, rule-5.8, rule-10.4, rule-11.3, rule-11.8.

[2.8.0]
• Improvements

– Added support of DATA register for 9bit or 10bit data transmit in write and
read API. Such as: LPUART_WriteBlocking16bit, LPUART_ReadBlocking16bit,
LPUART_TransferEnable16Bit LPUART_WriteNonBlocking16bit,
LPUART_ReadNonBlocking16bit.

[2.7.7]
• Bug Fixes

– Fixed the bug that baud rate calculation overflow when srcClock_Hz is 528MHz.

[2.7.6]
• Bug Fixes

– Fixed LPUART_EnableInterrupts and LPUART_DisableInterrupts bug that blocks if the
LPUART address doesn’t support exclusive access.

[2.7.5]
• Improvements

– Release peripheral from reset if necessary in init function.

1.5. ChangeLog 149



MCUXpresso SDK Documentation, Release 25.12.00

[2.7.4]
• Improvements

– Added support for atomic register accessing in LPUART_EnableInterrupts and
LPUART_DisableInterrupts.

[2.7.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 15.7.

[2.7.2]
• Bug Fix

– Fixed the bug that the OSR calculation error when lupart init and lpuart set baud rate.

[2.7.1]
• Improvements

– Added support for LPUART_BASE_PTRS_NS in security mode in file fsl_lpuart.c.

[2.7.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpuart.c.

[2.6.0]
• Bug Fixes

– Fixed bug that when there are multiple lpuart instance, unable to support different
ISR.

[2.5.3]
• Bug Fixes

– Fixed comments by replacing unused status flags kLPUART_NoiseErrorInRxDataRegFlag
and kLPUART_ParityErrorInRxDataRegFlag with kLPUART_NoiseErrorFlag and
kLPUART_ParityErrorFlag.

[2.5.2]
• Bug Fixes

– Fixed bug that when setting watermark for TX or RX FIFO, the value may exceed the
maximum limit.

• Improvements

– Added check in LPUART_TransferDMAHandleIRQ and
LPUART_TransferEdmaHandleIRQ to ensure if user enables any interrupts other
than transfer complete interrupt, the dma transfer is not terminated by mistake.

150 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
• Improvements

– Use separate data for TX and RX in lpuart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling LPUART_TransferReceiveNonBlocking, the received data count returned
by LPUART_TransferGetReceiveCount is wrong.

[2.5.0]
• Bug Fixes

– Added missing interrupt enable masks kLPUART_Match1InterruptEnable and
kLPUART_Match2InterruptEnable.

– Fixed bug in LPUART_EnableInterrupts, LPUART_DisableInterrupts and
LPUART_GetEnabledInterrupts that the BAUD[LBKDIE] bit field should be soc
specific.

– Fixed bug in LPUART_TransferHandleIRQ that idle line interrupt should be disabled
when rx data size is zero.

– Deleted unused status flags kLPUART_NoiseErrorInRxDataRegFlag and
kLPUART_ParityErrorInRxDataRegFlag, since firstly their function are the same
as kLPUART_NoiseErrorFlag and kLPUART_ParityErrorFlag, secondly to obtain them
one data word must be read out thus interfering with the receiving process.

– Fixed bug in LPUART_GetStatusFlags that the STAT[LBKDIF], STAT[MA1F] and
STAT[MA2F] should be soc specific.

– Fixed bug in LPUART_ClearStatusFlags that tx/rx FIFO is reset by mistake when clear-
ing flags.

– Fixed bug in LPUART_TransferHandleIRQ that while clearing idle line flag the other
bits should be masked in case other status bits be cleared by accident.

– Fixed bug of race condition during LPUART transfer using transactional APIs, by dis-
abling and re-enabling the global interrupt before and after critical operations on in-
terrupt enable register.

– Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

• New Features

– Added APIs LPUART_GetRxFifoCount/LPUART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs LPUART_SetRxFifoWatermark/LPUART_SetTxFifoWatermark to set rx/tx
FIFO water mark.

[2.4.1]
• Bug Fixes

– Fixed MISRA advisory 17.7 issues.

[2.4.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

1.5. ChangeLog 151



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Bug Fixes

– Fixed MISRA advisory 15.5 issues.

[2.3.0]
• Improvements

– Modified LPUART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified LPUART_TransferGetSendCount so that this API returns the real byte count
that LPUART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

[2.2.8]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-10.3, rule-14.4, rule-15.5.

– Eliminated Pa082 warnings by assigning volatile variables to local variables and using
local variables instead.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.8, 14.4, 11.6, 17.7.

• Improvements

– Added check for kLPUART_TransmissionCompleteFlag in LPUART_WriteBlocking,
LPUART_TransferHandleIRQ, LPUART_TransferSendDMACallback and
LPUART_SendEDMACallback to ensure all the data would be sent out to bus.

– Rounded up the calculated sbr value in LPUART_SetBaudRate and LPUART_Init to
achieve more acurate baudrate setting. Changed osr from uint32_t to uint8_t since
osr’s bigest value is 31.

– Modified LPUART_ReadBlocking so that if more than one receiver errors occur, all sta-
tus flags will be cleared and the most severe error status will be returned.

[2.2.7]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-12.1, rule-17.7, rule-14.4, rule-13.3, rule-14.4, rule-10.4, rule-10.8, rule-
10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3, rule-13.2, rule-8.3.

[2.2.6]
• Bug Fixes

– Fixed the issue of register’s being in repeated reading status while dealing with the
IRQ routine.

152 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.5]
• Bug Fixes

– Do not set or clear the TIE/RIE bits when using LPUART_EnableTxDMA and
LPUART_EnableRxDMA.

[2.2.4]
• Improvements

– Added hardware flow control function support.

– Added idle-line-detecting feature in LPUART_TransferNonBlocking function. If an idle
line is detected, a callback is triggered with status kStatus_LPUART_IdleLineDetected
returned. This feature may be useful when the received Bytes is less than the expected
received data size. Before triggering the callback, data in the FIFO (if has FIFO) is read
out, and no interrupt will be disabled, except for that the receive data size reaches 0.

– Enabled the RX FIFO watermark function. With the idle-line-detecting feature enabled,
users can set the watermark value to whatever you want (should be less than the RX
FIFO size). Data is received and a callback will be triggered when data receive ends.

[2.2.3]
• Improvements

– Changed parameter type in LPUART_RTOS_Init struct from rtos_lpuart_config to
lpuart_rtos_config_t.

• Bug Fixes

– Disabled LPUART receive interrupt instead of all NVICs when reading data from ring
buffer. Otherwise when the ring buffer is used, receive nonblocking method will dis-
able all NVICs to protect the ring buffer. This may has a negative effect on other IPs
that are using the interrupt.

[2.2.2]
• Improvements

– Added software reset feature support.

– Added software reset API in LPUART_Init.

[2.2.1]
• Improvements

– Added separate RX/TX IRQ number support.

[2.2.0]
• Improvements

– Added support of 7 data bits and MSB.

1.5. ChangeLog 153



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Improvements

– Removed unnecessary check of event flags and assert in LPUART_RTOS_Receive.

– Added code to always wait for RX event flag in LPUART_RTOS_Receive.

[2.1.0]
• Improvements

– Update transactional APIs.

LPUART_EDMA

[2.4.0]
• Refer LPUART driver change log 2.1.0 to 2.4.0

MCM

[2.2.0]
• Improvements

– Support platforms with less features.

[2.1.0]
• Others

– Remove byteID from mcm_lmem_fault_attribute_t for document update.

[2.0.0]
• Initial version.

MECC

[2.1.1]
• Bug fixes:

– Add volatile to variable counter to fix armgcc 13.2.1 -Os optimization issue.

154 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Bug fixes:

– Removed Ocram1StartAddress, Ocram1EndAddress, Ocram2StartAddress,
Ocram2EndAddress in mecc_config_t structure. Use startAddress and endAddress as
instead.

– Removed static function MECC_GetInstance().

• New Features:

– Added new function MECC_GetPendingFlags().

– Added new members: enableReadDataWait, enableReadAddrPipeline, enableWrite-
DataPipeline, enableWriteAddrPipeline in mecc_config_t structure to support pipeline
features.

[2.0.2]
• Bug fixes:

– Fixed MISRA 2012 issue: 10.3, 10.4.

[2.0.1]
• Bug fixes:

– Fixed MISRA 2012 issue: 10.1, 10.3, 10.4, 10.6.

[2.0.0]
• Initial version.

MIPI CSI2RX

[2.0.4]
• Improvements

– Updated for new format MIPI_CSI2RX_Type definition.

[2.0.3]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules: 3.1, 10.3, 10.4, 10.8, 17.7.

[2.0.2]
• Improvements

– Updated to support MIMX8QX C0 header file.

1.5. ChangeLog 155



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Updated to support platforms that don’t have dedicated MIPI CSI2RX CSR.

• Bug Fixes

– Fixed the issue that the register bit PRG_RXHS_SETTLE set to wrong value.

[2.0.0]
• Initial version.

MIPI_DSI

[2.3.0]
• Bug Fixes

– Fixed typo in member of dsi_transfer_t structure. The sendDscCmd and dscCmd shall
be sendDcsCmd and dcsCmd.

[2.2.5]
• Bug Fixes

– Fixed issue that VACTIVE setting shall equal to the number of active lines (height), no
need to minus 1.

[2.2.4]
• Bug Fixes

– Updated the DPI setting to use float for coefficient value for more accurate calculation.

[2.2.3]
• Bug Fixes

– Fixed the DSI_TransferNonBlocking no interrupt issue.

– Fixed the violations of MISRA 2012 advisory rules.

[2.2.2]
• Bug Fixes

– Fixed the DPI horizontal timing setting issue.

– Fixed MISRA issue

[2.2.1]
• Bug Fixes

– Fixed the bug that runs to hardfault when sending long packet with 4-byte unaligned
address.

156 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Improvements

– Supported long package read.

[2.2.0]
• Improvements

– Change parameter MIPI_DSI_Type pointer to const type.

[2.1.0]
• Initial version.

MU

[2.3.1]
• Bug Fixes

– Fixed FSL_FEATURE_MU_HAS_RESET_DEASSERT_INT macro use.

[2.3.0]
• New Features

– Added MU_BUSY_POLL_COUNT parameter to prevent infinite polling loops in MU op-
erations.

– Added timeout mechanism to all polling loops in MU driver code.

– Added new function MU_ReceiveMsgTimeout() to include timeout mechanism.

• Improvements

– Updated function signatures to return status codes for better error handling:

* Changed MU_ResetBothSides to return status_t instead of void

* Updated MU_SendMsg to return status_t for timeout indication

* Updated MU_ReceiveMsg to use MU_TIMEOUT_VALUE (0xFFFFFFFF) as a special
return value to indicate timeout

– Enhanced documentation across all functions to clarify timeout behavior and return
values.

[2.2.0]
• New Features

– Added API MU_GetRxStatusFlags.

[2.1.3]
• Improvements

– Release peripheral from reset if necessary in init function.

1.5. ChangeLog 157



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.2]
• Bug Fixes

– Fixed issue that MU_GetInstance() is defined but never used.

[2.1.1]
• Bug Fixes

– Fixed general interrupt comment typo.

[2.1.0]
• Improvements

– Added new enum mu_msg_reg_index_t.

[2.0.7]
• Bug Fixes

– Fixed MU_GetInterruptsPending bug that can not get general interrupt status.

[2.0.6]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 14.4, 15.5.

[2.0.4]
• Improvements

– Improved for the platforms which don’t support reset assert interrupt and get the other
core power mode.

[2.0.3]
• Bug fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-14.4, rule-15.5.

[2.0.2]
• Improvements

– Added support for MIMX8MQx.

158 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Added support for MCIMX7Ux_M4.

[2.0.0]
• Initial version.

NIC301

[2.0.1]
• Bug Fixes.

– Fixed the repeat of offset addition in this file API.

[2.0.0]
• Initial version.

OCOTP

[2.1.4]
• Bug fixes

– Fixed the bug that OCOTP_ReadFuseShadowRegisterExt can’t read more than one
word.

[2.1.3]
• Bug fixes

– Fixed MISRA 2012 issue: 8.4, 10.3, 10.4, 14.3.

– Fixed doxygen warning.

[2.1.2]
• Improvements

– Updated for new MIMXRT117X header file.

[2.1.1]
• Improvements

– Updated OCOTP_ReloadShadowRegister to return error status.

– Added functions OCOTP_ReadFuseShadowRegisterExt and
OCOTP_WriteFuseShadowRegisterWithLock.

• Bug fixes

– Fixed MISRA 2012 rule 10.3 issue.

1.5. ChangeLog 159



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Bug Fixes

– Fixed doxygen issues.

[2.0.0]
• Initial version.

OTFAD

[2.1.4]
• Bug fixes

– Fixed MISRA 2012 issue: 10.1.

[2.1.3]
• Bug fixes

– Fixed the error that waiting for both FLEXSPI AHB idle and SEQ idle.

[2.1.2]
• Bug fixes

– Fixed MISRA 2012 issue: 10.4.

[2.1.1]
• Improvements:

– Hided some bits in CR and SR registers for selected platforms.

– Fixed doxygen issues.

[2.1.0]
• Improvements:

– Used boolean type to define 1-bit field concepts.

[2.0.0]
• Initial version.

PDM

[2.9.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

160 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.9.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.9.1]
• Bug Fixes

– Fixed the issue that the driver still enters the interrupt after disabling clock.

[2.9.0]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_DECIMATION_FILTER_BYPASS to config
CTRL_2[DEC_BYPASS] field.

• Modify code to make the OSR value is not limited to 16.

[2.8.1]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_DOZEN to handle nonexistent
CTRL_1[DOZEN] field.

[2.8.0]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_HWVAD to remove the support of hadware
voice activity detector.

• Added feature FSL_FEATURE_PDM_HAS_NO_FILTER_BUFFER to remove the support of
FIR_RDY bitfield in STAT register.

[2.7.4]
• Bug Fixes

– Fixed driver can not determine the specific float number of clock divider.

– Fixed PDM_ValidateSrcClockRate calculates PDM channel in wrong method issue.

[2.7.3]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_VADEF to remove the support of VADEF bit-
field in VAD0_STAT register.

[2.7.2]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_MINIMUM_CLKDIV to decide whether the
minimum clock frequency division is required.

1.5. ChangeLog 161



MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 10.3, 10.1, 10.4, 14.4

[2.7.0]
• Improvements

– Added api PDM_EnableHwvadInterruptCallback to support handle hwvad IRQ in PDM
driver.

– Corrected the sample rate configuration for non high quality mode.

– Added api PDM_SetChannelGain to support adjust the channel gain.

[2.6.0]
• Improvements

– Added new features FSL_FEATURE_PDM_HAS_STATUS_LOW_FREQ/FSL_FEATURE_PDM_HAS_DC_OUT_CTRL/FSL_FEATURE_PDM_DC_CTRL_VALUE_FIXED.

[2.5.0]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 16.5, 10.4, 10.3, 10.1, 11.9, 17.7, 10.6,
14.4, 11.8, 11.6.

[2.4.1]
• Bug Fixes

– Fixed MDK 66-D warning in pdm driver.

[2.4.0]
• Improvements

– Added api PDM_TransferSetChannelConfig/PDM_ReadFifo to support read different
width data.

– Added feature FSL_FEATURE_PDM_HAS_RANGE_CTRL and api
PDM_ClearRangeStatus/PDM_GetRangeStatus for range register.

• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 14.4, 10.3, 10.4.

[2.3.0]
• Improvements

– Enabled envelope/energy voice detect mode by adding apis
PDM_SetHwvadInEnvelopeBasedMode/PDM_SetHwvadInEnergyBasedMode.

– Added feature FSL_FEATURE_PDM_CHANNEL_NUM for different SOC.

162 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.6, 10.7, 11.3, 11.8, 14.4, 17.7,
18.4.

– Added medium quality mode support in function PDM_SetSampleRateConfig.

[2.2.0]
• Improvements

– Added api PDM_SetSampleRateConfig to improve user experience and marked api
PDM_SetSampleRate as deprecated.

[2.1.1]
• Improvements

• Used new SDMA API SDMA_SetDoneConfig instead of SDMA_EnableSwDone for PDM SDMA
driver.

[2.1.0]
• Improvements

– Added software buffer queue for transactional API.

[2.0.1]
• Improvements

– Improved HWVAD feature.

[2.0.0]
• Initial version.

PDM_EDMA

[2.6.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

[2.6.4]
• Improvements

– Add handling for runtime change of number of linked transfers

[2.6.3]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

1.5. ChangeLog 163



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
• Improvements

– Add macro MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL to let the user decide
whether to enable it when calling PDM_TransferReceiveEDMA.

[2.6.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.3, 10.4.

[2.6.0]
• Improvements

– Updated api PDM_TransferReceiveEDMA to support channel block interleave transfer.

– Added new api PDM_TransferSetMultiChannelInterleaveType to support channel in-
terleave type configurations.

[2.5.0]
• Refer PDM driver change log 2.1.0 to 2.5.0

PGMC

[2.1.2]
• Bug Fixes

– Fixed bug in PGMC_PPC_TriggerPMICStandbySoftMode() function.

[2.1.1]
• Bug Fixes

– Fixed Doxygen warnings.

[2.1.0]
• Improvements

– Updated PGMC driver based on the updates of header file.

[2.0.0]
• Initial version.

164 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

PIT

[2.2.0]
• Bug Fixes

– According to ERR050763, PIT_LDVAL_STAT register is not reliable in dynamic load
mode, so remove the status check in PIT_SetRtiTimerPeriod which added since 2.1.1.

– Removed not used bit PIT_RTI_TCTRL_CHN_MASK.

• Improvements

– Added more guide about get RTI load status in PIT_SetRtiTimerPeriod’s API comment.

– Change PIT_RTI_Deinit to inline API.

– Ensure PIT peripheral clock enabled in PIT_RTI_Init.

• New Features

– Added PIT_ClearRtiSyncStatus API to clear the RTI_LDVAL_STAT register.

[2.1.1]
• Bug Fixes

– Enable PIT when using RTI to ensure RTI can work properly in debug mode.

• Improvements

– Added status check in PIT_SetRtiTimerPeriod to ensure the load value is synchronized
into the RTI clock domain.

– Added note for PIT_RTI_Init to remind users wait RTI sync.

[2.1.0]
• New Features

– Support RTI (Real Time Interrupt) timer.

[2.0.5]
• Improvements

– Support workaround for ERR007914. This workaround guarantee the write to MCR
register is not ignored.

[2.0.4]
• Bug Fixes

– Fixed PIT_SetTimerPeriod implementation, the load value trigger should be PIT clock
cycles minus 1.

[2.0.3]
• Bug Fixes

– Clear all status bits for all channels to make sure the status of all TCTRL registers is
clean.

1.5. ChangeLog 165



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Bug Fixes

– Fixed MISRA-2012 issues.

* Rule 10.1.

[2.0.1]
• Bug Fixes

– Cleared timer enable bit for all channels in function PIT_Init() to make sure all channels
stay in disable status before setting other configurations.

– Fixed MISRA-2012 rules.

* Rule 14.4, rule 10.4.

[2.0.0]
• Initial version.

PMU

[2.1.2]
• Bug Fixes

– Updated PMU_StaticEnablePllLdo() with disabling LDO current limit after LDO is stable
to minimize ARM PLL jitter in cold temperature.

[2.1.1]
• Bug Fixes

– Fixed bugs in FBB configuration.

– Updated delay value from 1us to 100us in PMU_StaticEnablePllLdo() function.

[2.1.0]
• Improvements

– Updated the PMU driver based on the new header file.

– Defined the macro to separate different scenes that some devices may do not support
FBB.

– Fixed Doxygen warnings.

– Fixed violations of MISRA C-2012 rule 14.3.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 13.1, rule 10.1, rule 10.4, and rule 14.3.

[2.0.0]
• Initial version.

166 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

PUF

[2.2.0]
• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

[2.1.6]
• Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with

shorter time. If this shorter time will also fail, initialization will be tried with worst case
time as before.

[2.1.5]
• Use common SDK delay in puf_wait_usec().

[2.1.4]
• Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to

prevent optimization out delay loop.

[2.1.3]
• Fix MISRA C-2012 issue.

[2.1.2]
• Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to

secret hardware bus (PUF key index 0).

[2.1.1]
• Fix ARMGCC build warning .

[2.1.0]
• Align driver with PUF SRAM controller registers on LPCXpresso55s16.

• Update initizalition logic .

[2.0.3]
• Fix MISRA C-2012 issue.

[2.0.2]
• New feature:

– Add PUF configuration structure and support for PUF SRAM controller.

• Improvements:

– Remove magic constants.

1.5. ChangeLog 167



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Bug Fixes:

– Fixed puf_wait_usec function optimization issue.

[2.0.0]
• Initial version.

PWM

[2.9.1]
• Improvements

– Add new APIPWM_SetupFaultsExt andPWM_SetupFaultInputFilterExt to support Flex-
PWM which has more than one fault input channels.

– Support fault 4-7 interrupt and its flag.

• Bug Fixes

– Fixed violations of the CERT INT31-C.

[2.9.0]
• Improvements

– Support PWMX channel output for edge aligned PWM.

– Forbid submodule 0 counter initialize with master sync and master reload mode.

– Clarify kPWM_BusClock meaning.

– Verify pulseCnt within 65535 when update period register.

[2.8.4]
• Improvements

– Support workaround for ERR051989. This function helps realize no phase delay be-
tween submodule 0 and other submodule.

[2.8.3]
• Bug Fixes

– Fixed MISRA C-2012 Rule 15.7

[2.8.2]
• Bug Fixes

– Fixed warning conversion from ‘int’ to ‘uint16_t’ on API PWM_Init.

– Fixed warning unused variable ‘reg’ on API PWM_SetPwmForceOutputToZero.

168 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.8.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.8.0]
• Improvements

– Added API PWM_UpdatePwmPeriodAndDutycycle to update the PWM signal’s period
and dutycycle for a PWM submodule.

– Added API PWM_SetPeriodRegister and PWM_SetDutycycleRegister to merge dupli-
cate code in API PWM_SetupPwm, PWM_UpdatePwmDutycycleHighAccuracy and
PWM_UpdatePwmPeriodAndDutycycle

[2.7.1]
• Improvements

– Supported UPDATE_MASK bit in MASK register.

[2.7.0]
• Improvements

– Supported platforms which don’t have Capture feature with channel A and B.

– Supported platforms which don’t have Submodule 3.

– Added assert function in API PWM_SetPhaseDelay to prevent wrong argument.

[2.6.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.3.

[2.6.0]
• Improvements

– Added API PWM_SetPhaseDelay to set the phase delay from the master sync signal of
submodule 0.

– Added API PWM_SetFilterSampleCountthe to set number of consecutive samples that
must agree prior to the input filter.

– Added API PWM_SetFilterSamplePeriod to set set the sampling period of the fault pin
input filter.

[2.5.1]
• Bug Fixes

– Fixed MISRA C-2012 rules: 10.1, 10.3, 10.4 , 10.6 and 10.8.

– Fixed the issue that PWM_UpdatePwmDutycycle() can’t update duty cycle status value
correct.

1.5. ChangeLog 169



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
• Improvements

– Added API PWM_SetOouputToIdle to set pwm channel output to idle.

– Added API PWM_GetPwmChannelState to get the pwm channel output duty cycle
value.

– Added API PWM_SetPwmForceOutputToZero to set the pwm channel output to zero
logic.

– Added API PWM_SetChannelOutput to set the pwm channel output state.

– Added API PWM_SetClockMode to set the value of the clock prescaler.

– Added API PWM_SetupPwmPhaseShift to set PWM which a special phase shift and 50%
duty cycle.

– Added API PWM_SetVALxValue/PWM_GetVALxValue to set/get PWM VALs registers
values directly.

[2.4.0]
• Improvements

– Supported the PWM which can’t work in wait mode.

[2.3.0]
• Improvements

– Add PWM output enable&disbale API for SDK.

• Bug Fixes

– Fixed changing channel B configuration when parameter is kPWM_PWMX and PWMX
configuration is not supported yet.

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.3, 10.4.

• Bug Fixes

– Fixed the issue that PWM drivers computed VAL1 improperly.

• Improvements

– Updated calculation accuracy of reloadValue in dutyCycleToReloadValue function.

[2.2.0]
• Improvements

– Added new enumeration and two APIs to support enabling and disabling one or more
PWM output triggers.

– Added a new function to make the most of 16-bit resolution PWM.

– Added one API to support updating fault status of PWM output.

– Added one API to support PWM DMA write request.

– Added three APIs to support PWM DMA capture read request.

170 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

– Added one API to support get default fault config of PWM.

– Added one API to support setting PWM fault disable mapping.

[2.1.0]
• Improvements

– Moved the configuration of fault input filter into a new API to avoid be initialized mul-
tiple times.

• Bug Fixes

– MISRA C-2012 issue fixed.

* Fix rules, containing: rule-10.2, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-14.4,
rule-16.4.

[2.0.1]
• Bug Fixes

– Fixed the issue that PWM submodule may be initialized twice in function
PWM_SetupPwm().

[2.0.0]
• Initial version.

PXP

[2.7.0]
• New Features

– Added the PS_LRC setting for V4.

– Added the PXP_SetPath setting for V4.

– Fixed the code logic, V4 do not support DATA_PATH_CTRL1.

[2.6.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.6.0]
• Bug Fixes

– Added missing configuration option for fetch engine background value.

– Fixed bug in PXP_SetStoreEngineConfig that the address increment for store mask is
not linear.

– Added channel aribitration configuration for fetch engine, channel combine for store
engine.

– Fixed wrong method of obtaining the store mask address.

1.5. ChangeLog 171



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed wrong method of configuring flag shift mask/width which can only be written
in word boundary.

– Fixed wrong configurations of block store and pitch in PXP_SetStoreEngineConfig.

– Fixed wrong method of obtaining cfaValue address and calculating word count.

– Fixed the channel word order cannot be updated when configuring the second chan-
nel.

– Fixed bugs in PXP_SetHistogramConfig of wrong method to obtain the store mask ad-
dress and wrong access of 32-bit registers.

[2.5.0]
• New Features

– Added new API PXP_GetPorterDuffConfigExt for flexible Porter-Duff configuration.

– Added enumerations for new AS/PS pixel formats for certain SoCs.

[2.4.1]
• New Features

– Added API PXP_ResetControl to reset the PXP and the control register to initialized
state.

[2.4.0]
• New Features

– Added the API PXP_BuildRect of building a solid rectangle of given pixel value.

– Added the interrupt enable/disable and status mask for V3.

– Added API PXP_EnableProcessEngine to enable/disable process engines for V3.

– Added API PXP_SetHistogramSize to re-configure the histogram size for each update.

– Updated PXP_WfeaInit and PXP_SetWfeaConfig according to header file’s update of
WFE related registers.

– Updated PXP_WfeaInit to support handshake with upstream dither store engine and
added API PXP_WfeaEnableDitherHandshake to enable/disable the feature.

– Added API PXP_GetLutUsage to get the occupied LUT list.

– Updated APIs to support alpha blending engine1.

– Added the API PXP_MemCopy to support all memory size copy.

• Bug Fixes

– Fixed wrong naming for mux16.

– Fixed wrong naming for enumerations in pxp_scanline_burst_t.

– Fixed bug in PXP_GetHistogramMatchResult since there are 2 histograms engines
rather than 1.

– Fixed bug in PXP_SetFetchEngineConfig that the fetch size should not be minus one
coding.

172 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• New Features

– Added the configuration of fetch engine, store engine, pre-dither engine and histogram
block.

[2.2.2]
• Improvements

– Disable alpha surface (AS) in PXP_Init.

[2.2.1]
• Improvements

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.2.0]
• Bug Fixes

– Fixed Porter Duff configuration error.

[2.1.0]
• New Features

– Added Porter Duff support.

– Added APIs PXP_StartMemCopy and PXP_StartPictureCopy.

– Added API PXP_SetProcessSurfaceYUVFormat.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.8, 11.6, 12.2.

[2.0.1]
• Bug Fixes

– Fixed the rotate function issue for i.MX 6ULL.

[2.0.0]
• Initial version.

QTMR

[2.3.0]
• Improvements

– Support for platforms which QTMR registers are 32-bit.

1.5. ChangeLog 173



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

[2.2.0]
• Improvements

– Added API QTMR_SetPwmOutputToIdle to set the generated pwm signal to the config-
ured idle value.

– Added API QTMR_GetPwmOutputStatus to return the output status of the generated
pwm signal.

– Added API QTMR_GetPwmChannelStatus to return the channel dutycycle value.

– Added API QTMR_SetPwmClockMode to set clock mode change peripheral clock fre-
quency.

• Bug Fixes

– Fixed the issue that pwm duty cycle could not be 0 and 100.

[2.1.0]
• Bug Fixes

– Fixed the issue QTMR_SetTimerPeriod needs to decrement down count by 1, and added
new APIs to configure the LOAD register, COMP register.

[2.0.2]
• Bug Fixes

– Fixed the issue introduced by previous code correction for improving the output signal
accuracy.

[2.0.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 11.5, 11.9.

• Improvements

– Improved the output signal accuracy.

[2.0.0]
• Initial version.

174 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

RDC

[2.2.0]
• New Features

– Added APIs to get memory region or peripheral access policy for specific domain.

[2.1.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.6.

[2.1.0]
• Improvements

– Enhanced to support memory region larger than 32-bit address.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 11.3, 11.8, 17.7.

[2.0.1]
• Bug Fixes:

– Added __DSB after new configuration is set to ensure the new configuration takes ef-
fect.

[2.0.0]
• Initial version.

RDC_SEMA42

[2.0.5]
• Bug Fixes

– Fixed CERT INT30-C issues.

[2.0.4]
• Improvements

– Changed to implement RDC_SEMAPHORE_Lock base on RDC_SEMAPHORE_TryLock.

[2.0.3]
• Improvements:

– Supported the RDC_SEMAPHORE_Type structure whose gate registers are defined as
an array.

1.5. ChangeLog 175



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.8, 14.3, 14.4, 18.1.

[2.0.1]
• Improvements:

– Added support for the platforms that don’t have dedicated RDC_SEMA42 clock gate.

[2.0.0]
• Initial version.

ROMAPI

[1.1.2]
• New features

– Support new silicon Rev

[1.1.1]
• Improvements

– Update the comments of “clear cache” function.

[1.1.0]
• New features

– Support B0 silicon

[1.0.0]
• initial version.

RTWDOG

[2.1.4]
• Bug Fixes

– Fixed CERT INT30-C, INT31-C issue.

– Make API RTWDOG_CountToMesec return 0 if result overflow.

[2.1.3]
• Improvements

– Waited the over status after CS register operation in case next CS operation causes
problem.

176 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.2]
• Bug Fixes

– Fixed doxygen issue.

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-10.8, rule-11.9, rule-14.4, rule-15.5.

[2.1.0]
• Improvements

– Added an API to enable or disable the window mode.

– Added an API to convert a raw count value to millisecond.

– Used AT_QUICKACCESS_SECTION_CODE macro to decorate RTWDOG_Init, and copied
this function from flash to QUICKACCESS section.

[2.0.1]
• Bug Fixes

– Fixed bug in the RTWDOG_Init; added check for register’s unlock status when config-
uring the RTWDOG in RTWDOG_init.

[2.0.0]
• Initial version.

SAI

[2.4.10]
• Improvements

– Allow enabling/disabling implicit channel configuration.

– Allow NULL FIFO watermark.

• Bug Fixes

– Fix compilation warnings when asserts are disabled

[2.4.9]
• Added Errata ERR051421 workaround.

[2.4.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

1.5. ChangeLog 177



MCUXpresso SDK Documentation, Release 25.12.00

[2.4.7]
• Added conditional support for bit clock swap feature

• Added common IRQ handler entry SAI_DriverIRQHandler.

[2.4.6]
• Bug Fixes

– Fixed the IAR build warning.

[2.4.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.4.4]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t - add RX configuration.

[2.4.3]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t value configuration issue.

[2.4.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.4.1]
• Bug Fixes

– Fixed bitWidth incorrectly assigned issue.

[2.4.0]
• Improvements

– Removed deprecated APIs.

[2.3.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

178 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.7]
• Improvements

– Change feature “FSL_FEATURE_SAI_FIFO_COUNT” to “FSL_FEATURE_SAI_HAS_FIFO”.

– Added feature “FSL_FEATURE_SAI_FIFO_COUNTn(x)” to align SAI fifo count function
with IP in function

[2.3.6]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 5.6.

[2.3.5]
• Improvements

– Make driver to be aarch64 compatible.

[2.3.4]
• Bug Fixes

– Corrected the fifo combine feature macro used in driver.

[2.3.3]
• Bug Fixes

– Added bit clock polarity configuration when sai act as slave.

– Fixed out of bound access coverity issue.

– Fixed violations of MISRA C-2012 rule 10.3, 10.4.

[2.3.2]
• Bug Fixes

– Corrected the frame sync configuration when sai act as slave.

[2.3.1]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.3.0]
• Bug Fixes

– Fixed the build error caused by the SOC has no fifo feature.

[2.2.3]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

1.5. ChangeLog 179



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• Bug Fixes

– Fixed the issue of MISRA 2004 rule 9.3.

– Fixed sign-compare warning.

– Fixed the PA082 build warning.

– Fixed sign-compare warning.

– Fixed violations of MISRA C-2012 rule 10.3,17.7,10.4,8.4,10.7,10.8,14.4,17.7,11.6,10.1,10.6,8.4,14.3,16.4,18.4.

– Allow to reset Rx or Tx FIFO pointers only when Rx or Tx is disabled.

• Improvements

– Added 24bit raw audio data width support in sai sdma driver.

– Disabled the interrupt/DMA request in the SAI_Init to avoid generates unexpected sai
FIFO requests.

[2.2.1]
• Improvements

– Added mclk post divider support in function SAI_SetMasterClockDivider.

– Removed useless configuration code in SAI_RxSetSerialDataConfig.

• Bug Fixes

– Fixed the SAI SDMA driver build issue caused by the wrong structure member name
used in the function SAI_TransferRxSetConfigSDMA/SAI_TransferTxSetConfigSDMA.

– Fixed BAD BIT SHIFT OPERATION issue caused by the
FSL_FEATURE_SAI_CHANNEL_COUNTn.

– Applied ERR05144: not set FCONT = 1 when TMR > 0, otherwise the TX may not work.

[2.2.0]
• Improvements

– Added new APIs for parameters collection and simplified user interfaces:

* SAI_Init

* SAI_SetMasterClockConfig

* SAI_TxSetBitClockRate

* SAI_TxSetSerialDataConfig

* SAI_TxSetFrameSyncConfig

* SAI_TxSetFifoConfig

* SAI_TxSetBitclockConfig

* SAI_TxSetConfig

* SAI_TxSetTransferConfig

* SAI_RxSetBitClockRate

* SAI_RxSetSerialDataConfig

* SAI_RxSetFrameSyncConfig

* SAI_RxSetFifoConfig

180 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

* SAI_RxSetBitclockConfig

* SAI_RXSetConfig

* SAI_RxSetTransferConfig

* SAI_GetClassicI2SConfig

* SAI_GetLeftJustifiedConfig

* SAI_GetRightJustifiedConfig

* SAI_GetTDMConfig

[2.1.9]
• Improvements

– Improved SAI driver comment for clock polarity.

– Added enumeration for SAI for sample inputs on different edges.

– Changed FSL_FEATURE_SAI_CHANNEL_COUNT to FSL_FEATURE_SAI_CHANNEL_COUNTn(base)
for the difference between the different SAI instances.

• Added new APIs:

– SAI_TxSetBitClockDirection

– SAI_RxSetBitClockDirection

– SAI_RxSetFrameSyncDirection

– SAI_TxSetFrameSyncDirection

[2.1.8]
• Improvements

– Added feature macro test for the sync mode2 and mode 3.

– Added feature macro test for masterClockHz in sai_transfer_format_t.

[2.1.7]
• Improvements

– Added feature macro test for the mclkSource member in sai_config_t.

– Changed “FSL_FEATURE_SAI5_SAI6_SHARE_IRQ” to “FSL_FEATURE_SAI_SAI5_SAI6_SHARE_IRQ”.

– Added #ifndef #endif check for SAI_XFER_QUEUE_SIZE to allow redefinition.

• Bug Fixes

– Fixed build error caused by feature macro test for mclkSource.

[2.1.6]
• Improvements

– Added feature macro test for mclkSourceClockHz check.

– Added bit clock source name for general devices.

• Bug Fixes

– Fixed incorrect channel numbers setting while calling RX/TX set format together.

1.5. ChangeLog 181



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
• Bug Fixes

– Corrected SAI3 driver IRQ handler name.

– Added I2S4/5/6 IRQ handler.

– Added base in handler structure to support different instances sharing one IRQ num-
ber.

• New Features

– Updated SAI driver for MCR bit MICS.

– Added 192 KHZ/384 KHZ in the sample rate enumeration.

– Added multi FIFO interrupt/SDMA transfer support for TX/RX.

– Added an API to read/write multi FIFO data in a blocking method.

– Added bclk bypass support when bclk is same with mclk.

[2.1.4]
• New Features

– Added an API to enable/disable auto FIFO error recovery in platforms that support this
feature.

– Added an API to set data packing feature in platforms which support this feature.

[2.1.3]
• New Features

– Added feature to make I2S frame sync length configurable according to bitWidth.

[2.1.2]
• Bug Fixes

– Added 24-bit support for SAI eDMA transfer. All data shall be 32 bits for send/receive,
as eDMA cannot directly handle 3-Byte transfer.

[2.1.1]
• Improvements

– Reduced code size while not using transactional API.

[2.1.0]
• Improvements

– API name changes:

* SAI_GetSendRemainingBytes -> SAI_GetSentCount.

* SAI_GetReceiveRemainingBytes -> SAI_GetReceivedCount.

* All names of transactional APIs were added with “Transfer” prefix.

* All transactional APIs use base and handle as input parameter.

* Unified the parameter names.

182 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

• Bug Fixes

– Fixed WLC bug while reading TCSR/RCSR registers.

– Fixed MOE enable flow issue. Moved MOE enable after MICS settings in
SAI_TxInit/SAI_RxInit.

[2.0.0]
• Initial version.

SAI_EDMA

[2.7.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.7.2]
• Improvements

– Add macros MCUX_SDK_SAI_EDMA_TX_ENABLE_INTERNAL and
MCUX_SDK_SAI_EDMA_RX_ENABLE_INTERNAL to let the user decide whether to
enable SAI when calling SAI_TransferSendEDMA/SAI_TransferReceiveEDMA.

[2.7.1]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.7.0]
• Improvements

– Updated api SAI_TransferReceiveEDMA to support voice channel block interleave
transfer.

– Updated api SAI_TransferSendEDMA to support voice channel block interleave trans-
fer.

– Added new api SAI_TransferSetInterleaveType to support channel interleave type con-
figurations.

[2.6.0]
• Improvements

– Removed deprecated APIs.

[2.5.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 20.7.

1.5. ChangeLog 183



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
• Improvements

– Added new api SAI_TransferSendLoopEDMA/SAI_TransferReceiveLoopEDMA to sup-
port loop transfer.

– Added multi sai channel transfer support.

[2.4.0]
• Improvements

– Added new api SAI_TransferGetValidTransferSlotsEDMA which can be used to get
valid transfer slot count in the sai edma transfer queue.

– Deprecated the api SAI_TransferRxSetFormatEDMA and
SAI_TransferTxSetFormatEDMA.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3,10.4.

[2.3.2]
• Refer SAI driver change log 2.1.0 to 2.3.2

SEMA4

[2.2.2]
• Improvements

– Updated SEMA4_TryLock function to avoid unsigned integer operations wrap issue.

[2.2.1]
• Bug Fixes

– Fixed violations of the CERT INT31-C, MISRA C-2012 rules 10.3, 10.4.

[2.2.0]
• New Features

– Added SEMA4_BUSY_POLL_COUNT parameter to prevent infinite polling loops in
SEMA4 operations.

– Added timeout mechanism to all polling loops in SEMA4 driver code.

• Improvements

– Updated SEMA4_Lock function to return status_t instead of void for better error han-
dling.

– Enhanced documentation to clarify timeout behavior and return values.

184 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Improvements

– Changed mask parameter type in SEMA4_EnableGateNotifyInterrupt() and
SEMA4_DisableGateNotifyInterrupt() functions to avoid casting from unsigned
long to unsigned short in the code when modifying the 16bits CPINE register.

[2.0.3]
• Improvements

– Changed to implement SEMA4_Lock base on SEMA4_TryLock.

[2.0.2]
• Improvements:

– Supported the SEMA4_Type structure whose gate registers are defined as an array.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 15.5, 18.1, 18.4.

[2.0.0]
• Initial version.

SEMC

[2.7.1]
• Bug Fixes

– Fixed the wrong write operation to INTR register. The INTR register is a W1C register,
so the right write operation is write directly to it to clear.

[2.7.0]
• Improvements

– Add new autofreshTimes parameter in semc_sdram_config_t.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.6.0]
• Bug Fixes

– Fixed the SEMC SRAM function bug that some configuration options can’t be set.

– Correct legacy SEMC SRAM function feature macros.

• Improvements

– Add new SEMC SRAM function feature macros.

1.5. ChangeLog 185



MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 14.3.

– Fixed SEMC_ConfigureDBI bug that RDX not set correctly.

[2.5.0]
• Bug Fixes

– Fixed definitions of bitfields of BMCR0 and BMCR1 - wrong field order and incorrect
semantical naming

– The fix alters the driver API regarding configuration of AXI bus queue reordering

[2.4.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 5.6.

[2.4.2]
• Improvements

– Deleted meaningless parameter in memory size conversion function.

[2.4.1]
• Bug Fixes

– Fixed PSRAM A8 configuration issue, which should be 0x06U for PSRAM while pix mux
bit width is 0x04U, based on different pix mux bit width.

[2.4.0]
• Improvements

– Improved nor and sram timing configuration on sync mode.

[2.3.1]
• Bug Fixes

– Updated refresh timer period(RT) timing setting, which updated into (RT+1)*(Prescaler
period) for SDRAM.

– Supported new DBI control register 2 to configure CSX interval time(CEITV).

– Fixed violations of the MISRA C-2012 Rule 10.8.

– Fixed doxygen warning.

186 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• New Features

– Limited burst length as 1 according to ERR050577, Auto-refresh command may pos-
sibly fail to be triggered during long time back-to-back write (or read) when SDRAM
controller’s burst length is greater than 1.

– Supported 8 bits column address for SDRAM.

[2.2.1]
• New Features

– Added queue weight control, which can control queue a/b is working or not.

– Updated NAND FLASH configuration API which disables and enables SEMC between
configure control registers.

– Added ONFI parameter Integrity CRC check for SEMC flash component.

[2.2.0]
• New Features

– Supported up to 4 PSRAM CS.

– Added programmable delay line for DQS.

– Added ready/wait feature for SRAM in asynchronous mode.

[2.1.0]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.

– Updated parameter type from uint16_t into uint32_t for send IP command API.

[2.0.4]
• Bug Fixes

– Fixed the SEMC queueA and queueB weight configuration issue.

– Fixed the wrong configuration of DBICR1 register in SEMC_ConfigureDBI.

[2.0.3]
• Bug Fixes

– Added feature macro to control WDS&WDH bit setting for NOR synchronous transfer.

[2.0.2]
• Bug Fixes

– Changed SEMC NAND configuration structure and verify SEMC NAND related APIs.

– Added extended SEMC clock enable.

1.5. ChangeLog 187



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Bug Fixes

– Fixed data size mask configure in SEMC_ConfigureIPCommand API.

– Updated the command mode in IP command type.

[2.0.0]
• Initial version.

SMARTCARD

[2.3.0]
• New features:

– Added support for USIM

[2.2.2]
• Bug fix:

– Fixed MISRA C-2012 rule 10.4.

[2.2.1]
• Bug fix:

– Fixed IAR warnings Pa082 in smartcard_emvsim

– Fixed MISRA issues

– Fixed rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 14.4, 16.1, 16.3, 16.4, 17.7

[2.2.0]
• New features:

– Updated to use RX/TX FIFO

[2.1.2]
• Provided time delay function which works in microseconds.

• Bug fix:

– Changed event to semaphore in RTOS driver (KPSDK-11634).

– Added check if de-initialized variables are not null iSMARTCARD_RTOS_Deinit()
(KPSDK-8788).

– Changed deactivation sequence iSMARTCARD_PHY_TDA8035_Deactivate() to properly
stop the clockPOSCR-35).

– Fixed timing issue with VSEL0/1 signals in smartcard TDA803driver (KPSDK-10160)

188 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• New features:

– Added default phy interface selection into smartcard RTOS drivers (KPSDK-9063).

– Replaced smartcard_phy_ncn8025 driver by smartcard_phy_tda8035.

• Bug fix:

– Fixed protocol timers activation sequences in smartcard_emvsim and smart-
card_phy_tda8035 drivers during emvl1 pre-certification tests (KPSDK-9170, KPSDK-
9556).

[2.1.0]
• Initial version.

SNVS_HP

[2.3.2]
• Make SNVS_HP_RTC_Init()/SNVS_HP_RTC_Deinit more transparent. Use function

SNVS_HP_Init()/SNVS_HP_Deinit() instead of copy of this code in SNVS_HP_RTC_XXX()
function.

[2.3.1]
• Fixed problem in SNVS_HP_RTC_Init(), which is clearing bits that should stay intact.

[2.3.0]
• Re-map Security Violation for RT11xx specific violations.

[2.2.0]
• Fixed doxygen issues.

• Add SNVS HP Set locks.

[2.1.4]
• Fix MISRA issues.

[2.1.3]
• Fixed IAR Pa082 warnings.

[2.1.2]
• Fixed problem with initialization of the periodic interrupt frequency.

• Fixed problem with SNVS entering into fail state when HAB enters closed mode.

1.5. ChangeLog 189



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Added APIs for HP security violation status flags.

[2.1.0]
• Added APIs for High Assurance Counter (HAC), Zeroizable Master Key (ZMK) and Software

Security Violation.

[2.0.0]
• Initial version.

SNVS_LP

[2.4.6]
• Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC2R

were done wrongly to LPATRC1R.

[2.4.5]
• Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC1R

would overwrite previously set bits.

[2.4.4]
• Make SNVS_LP_SRTC_Init()/SNVS_LP_SRTC_Deinit more transparent. Use function

SNVS_LP_Init()/SNVS_LP_Deinit() instead of copy of this code in SNVS_LP_SRTC_XXX()
function.

[2.4.3]
• Fixed problem in SNVS_LP_SRTC_Init(), which is clearing bits that should stay intact.

[2.4.2]
• Updated driver to match with new device header files.

[2.4.1]
• Fixed MISRA issues.

[2.4.0]
• Fix backward compatibility with version 2.2.x.

[2.3.0]
• Add active pin, clock, voltage and temperature tamper features.

190 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• Fixed doxygen issues.

• Add Transition SNVS SSM state to Trusted/Non-secure from Check state.

[2.1.2]
• Fix MISRA issues.

[2.1.1]
• Fix IAR Pa082 warning.

[2.1.0]
• Added APIs for Zeroizable Master Key (ZMK) and Monotonic Counter (MC).

[2.0.0]
• Initial version.

SOC_MIPI_CSI2RX

[2.0.2]
• Updated for new header file.

[2.0.1]
• Bug Fixes

– Fixed MISRA-C 2012 10.8 issue.

[2.0.0]
• initial version.

SPDIF

[2.0.7]
• Improvements

– Add feature macro FSL_FEATURE_SPDIF_HAS_NO_SIC_REGISTER to handle nonexis-
tent SIC register.

[2.0.6]
• Bug Fixes

– Fixed the Q/U channel interrupt enabled unexpectly while Q/U transfer pointer is
NULL.

1.5. ChangeLog 191



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.3.

[2.0.4]
• Bug Fixes

– Added udata/qdata buffer address validation in driver IRQ handler to ensure that
NULL pointer dereferences do not occur.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.

[2.0.2]
• Bug Fixes

– Corrected operator used for size value assertion in
SPDIF_ReadBlocking/SPDIF_WriteBlocking.

[2.0.1]
• Bug Fixes

– Corrected the feature macro name used to define s_edmaPrivateHandle.

[2.0.0]
• Initial version.

SPDIF DMA Driver

[2.0.8]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.0.7]
• Bug Fixes

– Fixed the incompatibility issue with edma4 driver.

[2.0.6]
• Bug Fixes

– Add feature macro to determine whether to use the API MEM-
ORY_ConvertMemoryMapAddress to translate TCD addresses for DLAST_SGA.

192 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.3.

[2.0.4]
• Bug Fixes

– Added udata/qdata buffer address validation in driver IRQ handler to ensure that
NULL pointer dereferences do not occur.

[2.0.3]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.

[2.0.2]
• Bug Fixes

– Corrected operator used for size value assertion in
SPDIF_ReadBlocking/SPDIF_WriteBlocking.

[2.0.1]
• Bug Fixes

– Corrected the feature macro name used to define s_edmaPrivateHandle.

[2.0.0]
• Initial version.

SSARC

[2.1.0]
• Improvements

– Updated the structure ssarc_descriptor_config_t, make it more friendly to users.

[2.0.0]
• Initial version.

TEMPSENSOR

[2.1.2]
• Bug Fixes

– Fixed the bug of incorrect default value of temperature sensor registers in initializa-
tion state.

1.5. ChangeLog 193



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Improvements

– CTRL0 register fields are not needed for customer, they are trim registers for the IP
that are determined during calibration.

[2.1.0]
• Improvements

– Supported directly access to TEMPSENSOR registers.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8.

[2.0.2]
• Bug Fixes

– Fixed bug that FINISH flag not cleared after temperature read out.

[2.0.1]
• Improvements

– Updated temperature calculation formula, to get more accurate result with high or low
temperature..

[2.0.0]
• Initial version.

USDHC

[2.8.8]
• Bug Fixes

– Fixed build issue with armgcc O3.

[2.8.7]
• Bug Fixes

– Disabled CMD error check for standard tuning per RM.

[2.8.6]
• Bug Fixes

– Invalidate cache after blocking read.

194 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.8.5]
• Improvements

– Enable the driver to be AARCH64 compatible.

[2.8.4]
• Improvements

– Add feature macro FSL_FEATURE_USDHC_HAS_NO_VS18.

[2.8.3]
• Improvements

– Improved api USDHC_EnableAutoTuningForCmdAndData to adapt to new bit field
name for USDHC_VEND_SPEC2 register.

[2.8.2]
• Improvements

– Added feature macro FSL_FEATURE_USDHC_HAS_NO_VOLTAGE_SELECT.

[2.8.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.9.

[2.8.0]
• Improvements

– Fixed the mmc boot transfer failed issue which is caused by the Dma complete inter-
rupt not enabled.

– Marked api USDHC_AdjustDelayForManualTuning as deprecated and added new api
USDHC_SetTuingDelay/USDHC_GetTuningDelayStatus.

– Improved the manual tuning flow accroding to specification.

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

– Fixed violations of MISRA C-2012 rule 10.4.

[2.7.0]
• Improvements

– Added api USDHC_TransferScatterGatherADMANonBlocking to support scatter gather
transfer.

– Added feature FSL_FEATURE_USDHC_REGISTER_HOST_CTRL_CAP_HAS_NO_RETUNING_TIME_COUNTER
for re-tuning time counter field in HOST_CTRL_CAP register.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.9, 10.1, 10.3, 10.4, 8.4.

1.5. ChangeLog 195



MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
• Improvements

– Added api USDHC_SetStandardTuningCounter to support adjust tuning counter of
Standard tuning.

[2.5.1]
• Improvements

– Used different status code for command and data interrupt callback.

– Added cache line invalidate for receive buffer in driver IRQ handler to fix CM7 specu-
lative access issue.

[2.5.0]
• Improvements

– Added new api USDHC_SetStrobeDllOverride for HS400 strobe dll override mode delay
taps configurations.

– Corrected the STROBE DLL configurations sequence.

[2.4.0]
• Improvements

– Added feature macro for read/write burst length.

* Disabled redundant interrupt per different transfer request.

* Disabled interrupt and reset command/data pointer in handle when transfer com-
pletes.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 11.9, 15.7, 4.7, 16.4, 10.1, 10.3, 10.4, 11.3, 14.4,
10.6, 17.7, 16.1, 16.3.

– Fixed PA082 build warning.

– Fixed logically dead code Coverity issue.

[2.3.0]
• Improvements

– Added USDHC_SetDataConfig API to support manual tuning.

– Removed the limitaion that source clock must be bigger than the target in function
USDHC_SetSdClock by using source clock frequency as target directly.

– Added peripheral reset in USDHC_Init function.

– Added tuning reset support in function USDHC_Reset function.

[2.2.8]
• Bug Fixes

– Fixed out-of bounds write in function USDHC_ReceiveCommandResponse.

196 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.7]
• Improvements

– Added API USDHC_GetEnabledInterruptStatusFlags and used in US-
DHC_TransferHandleIRQ.

– Removed useless member interruptFlags in usdhc_handle_t.

[2.2.6]
• Improvements

– Added address align check for ADMA descriptor table address.

– Changed USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY to (65536-4096) to
make sure the data address is 4KB align for a transfer which need more than one
ADMA1 descriptor.

[2.2.5]
• Bug Fixes

– Fixed MDK 66-D warning.

[2.2.4]
• Bug Fixes

– Fixed issue that real clock frequency wss mismatched with target clock frequency,
which was caused by an incorrect prescaler calculation.

• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

[2.2.3]
• Bug Fixes

– Fixed issue where AMDA did not disable with DMAEN clear.

• Improvements

– Improved set clock function to check the output frequency range.

– Dynamic set SDCLKFS during DDR enable or disable.

[2.2.2]
• Improvements

– Improved read transfer cache maintain operation, combined clean, and invalidated
them into one function.

[2.2.1]
• Bug Fixes

– Disabled the invalidate cache operation for tuning.

1.5. ChangeLog 197



MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• Improvements

– Improved USDHC to support MMC boot feature.

[2.1.3]
• Bug Fixes

– Fixed MISRA issue.

[2.1.2]
• Bug Fixes

– Fixed Coverity issue.

– Added base address and userData parameter for all callback functions.

[2.1.1]
• Improvements

– Added cache maintain operation.

– Added timeout status check for the DATA transfer which ignore error.

– Added feature macro for SDR50/SDR104 mode.

– Removed useless IRQ handler from different platforms.

[2.1.0]
• Improvements

– Integrated tuning into transfer function.

– Added strobe DLL feature.

– Added enableAutoCommand23 in data structure.

– Removed enable card clock function because the controller would handle the clock
on/off.

[2.0.0]
• Initial version.

WDOG

[2.2.0]
• Bug Fixes

– Fixed the wrong behavior of workMode.enableWait, workMode.enableStop, work-
Mode.enableDebug in configuration structure wdog_config_t. When set the items to
true, WDOG will continues working in those modes.

198 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.

– Fixed the issue of the inseparable process interrupted by other interrupt source.

* WDOG_Init

* WDOG_Refresh

[2.1.0]
• New Features

– Added new API “WDOG_TriggerSystemSoftwareReset()” to allow users to reset the sys-
tem by software.

– Added new API “WDOG_TriggerSoftwareSignal()” to allow users to trigger a WDOG_B
signal by software.

– Removed the parameter “softwareAssertion” and “softwareResetSignal” out of the
wdog_config_t structure.

– Added new parameter “enableTimeOutAssert” to the wdog_config_t structure. With
this parameter enabled, when the WDOG timeout occurs, a WDOG_B signal will be
asserted. This signal can be routed to external pin of the chip. Note that WDOG_B
signal remains asserted until a power-on reset (POR) occurs.

[2.0.1]
• New Features

– Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]
• Initial version.

XBARA

[2.0.6]
• Bug Fixes

– Fixed typo in kXBARA_RequestInterruptEnalbe item.

[2.0.5]
• Bug Fixes

– Fixed IAR build warning Pa082.

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 12.1, 18.1,
20.7.

1.5. ChangeLog 199



MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Improvements

– Optimized XBARA_SetOutputSignalConfig.

[2.0.3]
• Bug Fixes

– Corrected configuration for function XBAR_SetOutputSignalConfig.

[2.0.2]
• Other Changes

– Changed array clock name.

[2.0.1]
• Bug Fixes

– Fixed w1c bits for XBARA_SetOutputSignalConfig function.

[2.0.0]
• Initial version.

XBARB

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 12.2, 10.7

[2.0.1]
• Bug Fixes

– Corrected XBARB_SetSignalsConnection function.

• Other Changes

– Changed array clock name.

[2.0.0]
• Initial version.

XECC

[2.0.0]
• Initial version.

200 Chapter 1. MIMXRT1160-EVK



MCUXpresso SDK Documentation, Release 25.12.00

XRDC2

[2.0.3]
• Bug Fixes

– Fixed the bug that domain access policy is set to the incorrect domain ID.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.8, 12.2, 14.1.

[2.0.1]
• Improvements

– Updated for new header file.

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MIMXRT1166_drivers

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 VG-Lite GPU Library

VGLite Graphics Driver

1.7.2 Multicore

Multicore SDK

1.7.3 MCU Boot

mcuboot_opensource

1.6. Driver API Reference Manual 201



MCUXpresso SDK Documentation, Release 25.12.00

1.7.4 Audio Voice components

Audio Voice Components

1.7.5 Maestro Audio Framework for MCU

Maestro Audio Framework

1.7.6 eIQ

eiq

1.7.7 FreeMASTER

freemaster

1.7.8 AWS IoT

aws_iot

1.7.9 NXP Wi-Fi

Wi-Fi, Bluetooth, 802.15.4

1.7.10 FreeRTOS

FreeRTOS

1.7.11 lwIP

lwIP

1.7.12 File systemFatfs

FatFs

202 Chapter 1. MIMXRT1160-EVK



Chapter 2

MIMXRT1176

2.1 ACMP: Analog Comparator Driver

void ACMP_Init(CMP_Type *base, const acmp_config_t *config)
Initializes the ACMP.

The default configuration can be got by calling ACMP_GetDefaultConfig().

Parameters
• base – ACMP peripheral base address.

• config – Pointer to ACMP configuration structure.

void ACMP_Deinit(CMP_Type *base)
Deinitializes the ACMP.

Parameters
• base – ACMP peripheral base address.

void ACMP_GetDefaultConfig(acmp_config_t *config)
Gets the default configuration for ACMP.

This function initializes the user configuration structure to default value. The default value
are:

Example:

config->enableHighSpeed = false;
config->enableInvertOutput = false;
config->useUnfilteredOutput = false;
config->enablePinOut = false;
config->enableHysteresisBothDirections = false;
config->hysteresisMode = kACMP_hysteresisMode0;

Parameters
• config – Pointer to ACMP configuration structure.

void ACMP_Enable(CMP_Type *base, bool enable)
Enables or disables the ACMP.

Parameters
• base – ACMP peripheral base address.

• enable – True to enable the ACMP.

203



MCUXpresso SDK Documentation, Release 25.12.00

void ACMP_EnableLinkToDAC(CMP_Type *base, bool enable)
Enables the link from CMP to DAC enable.

When this bit is set, the DAC enable/disable is controlled by the bit CMP_C0[EN] instead of
CMP_C1[DACEN].

Parameters
• base – ACMP peripheral base address.

• enable – Enable the feature or not.

void ACMP_SetChannelConfig(CMP_Type *base, const acmp_channel_config_t *config)
Sets the channel configuration.

Note that the plus/minus mux’s setting is only valid when the positive/negative port’s input
isn’t from DAC but from channel mux.

Example:

acmp_channel_config_t configStruct = {0};
configStruct.positivePortInput = kACMP_PortInputFromDAC;
configStruct.negativePortInput = kACMP_PortInputFromMux;
configStruct.minusMuxInput = 1U;
ACMP_SetChannelConfig(CMP0, &configStruct);

Parameters
• base – ACMP peripheral base address.

• config – Pointer to channel configuration structure.

void ACMP_EnableDMA(CMP_Type *base, bool enable)
Enables or disables DMA.

Parameters
• base – ACMP peripheral base address.

• enable – True to enable DMA.

void ACMP_SetFilterConfig(CMP_Type *base, const acmp_filter_config_t *config)
Configures the filter.

The filter can be enabled when the filter count is bigger than 1, the filter period is greater
than 0 and the sample clock is from divided bus clock or the filter is bigger than 1 and the
sample clock is from external clock. Detailed usage can be got from the reference manual.

Example:

acmp_filter_config_t configStruct = {0};
configStruct.filterCount = 5U;
configStruct.filterPeriod = 200U;
configStruct.enableSample = false;
ACMP_SetFilterConfig(CMP0, &configStruct);

Parameters
• base – ACMP peripheral base address.

• config – Pointer to filter configuration structure.

void ACMP_SetDACConfig(CMP_Type *base, const acmp_dac_config_t *config)
Configures the internal DAC.

Example:

204 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

acmp_dac_config_t configStruct = {0};
configStruct.referenceVoltageSource = kACMP_VrefSourceVin1;
configStruct.DACValue = 20U;
configStruct.enableOutput = false;
configStruct.workMode = kACMP_DACWorkLowSpeedMode;
ACMP_SetDACConfig(CMP0, &configStruct);

Parameters
• base – ACMP peripheral base address.

• config – Pointer to DAC configuration structure. “NULL” is for disabling the
feature.

void ACMP_EnableInterrupts(CMP_Type *base, uint32_t mask)
Enables interrupts.

Parameters
• base – ACMP peripheral base address.

• mask – Interrupts mask. See “_acmp_interrupt_enable”.

void ACMP_DisableInterrupts(CMP_Type *base, uint32_t mask)
Disables interrupts.

Parameters
• base – ACMP peripheral base address.

• mask – Interrupts mask. See “_acmp_interrupt_enable”.

uint32_t ACMP_GetStatusFlags(CMP_Type *base)
Gets status flags.

Parameters
• base – ACMP peripheral base address.

Returns
Status flags asserted mask. See “_acmp_status_flags”.

void ACMP_ClearStatusFlags(CMP_Type *base, uint32_t mask)
Clears status flags.

Parameters
• base – ACMP peripheral base address.

• mask – Status flags mask. See “_acmp_status_flags”.

void ACMP_SetDiscreteModeConfig(CMP_Type *base, const acmp_discrete_mode_config_t
*config)

Configure the discrete mode.

Configure the discrete mode when supporting 3V domain with 1.8V core.

Parameters
• base – ACMP peripheral base address.

• config – Pointer to configuration structure. See
“acmp_discrete_mode_config_t”.

void ACMP_GetDefaultDiscreteModeConfig(acmp_discrete_mode_config_t *config)
Get the default configuration for discrete mode setting.

Parameters

2.1. ACMP: Analog Comparator Driver 205



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to configuration structure to be restored with the setting
values.

FSL_ACMP_DRIVER_VERSION
ACMP driver version 2.4.0.

enum _acmp_interrupt_enable
Interrupt enable/disable mask.

Values:

enumerator kACMP_OutputRisingInterruptEnable
Enable the interrupt when comparator outputs rising.

enumerator kACMP_OutputFallingInterruptEnable
Enable the interrupt when comparator outputs falling.

enum _acmp_status_flags
Status flag mask.

Values:

enumerator kACMP_OutputRisingEventFlag
Rising-edge on compare output has occurred.

enumerator kACMP_OutputFallingEventFlag
Falling-edge on compare output has occurred.

enumerator kACMP_OutputAssertEventFlag
Return the current value of the analog comparator output.

enum _acmp_offset_mode
Comparator hard block offset control.

If OFFSET level is 1, then there is no hysteresis in the case of positive port input crossing
negative port input in the positive direction (or negative port input crossing positive port
input in the negative direction). Hysteresis still exists for positive port input crossing neg-
ative port input in the falling direction. If OFFSET level is 0, then the hysteresis selected by
acmp_hysteresis_mode_t is valid for both directions.

Values:

enumerator kACMP_OffsetLevel0
The comparator hard block output has level 0 offset internally.

enumerator kACMP_OffsetLevel1
The comparator hard block output has level 1 offset internally.

enum _acmp_hysteresis_mode
Comparator hard block hysteresis control.

See chip data sheet to get the actual hysteresis value with each level.

Values:

enumerator kACMP_HysteresisLevel0
Offset is level 0 and Hysteresis is level 0.

enumerator kACMP_HysteresisLevel1
Offset is level 0 and Hysteresis is level 1.

enumerator kACMP_HysteresisLevel2
Offset is level 0 and Hysteresis is level 2.

206 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kACMP_HysteresisLevel3
Offset is level 0 and Hysteresis is level 3.

enum _acmp_reference_voltage_source
CMP Voltage Reference source.

Values:

enumerator kACMP_VrefSourceVin1
Vin1 is selected as resistor ladder network supply reference Vin.

enumerator kACMP_VrefSourceVin2
Vin2 is selected as resistor ladder network supply reference Vin.

enum _acmp_port_input
Port input source.

Values:

enumerator kACMP_PortInputFromDAC
Port input from the 8-bit DAC output.

enumerator kACMP_PortInputFromMux
Port input from the analog 8-1 mux.

enum _acmp_dac_work_mode
Internal DAC’s work mode.

Values:

enumerator kACMP_DACWorkLowSpeedMode
DAC is selected to work in low speed and low power mode.

enumerator kACMP_DACWorkHighSpeedMode
DAC is selected to work in high speed high power mode.

typedef enum _acmp_offset_mode acmp_offset_mode_t
Comparator hard block offset control.

If OFFSET level is 1, then there is no hysteresis in the case of positive port input crossing
negative port input in the positive direction (or negative port input crossing positive port
input in the negative direction). Hysteresis still exists for positive port input crossing neg-
ative port input in the falling direction. If OFFSET level is 0, then the hysteresis selected by
acmp_hysteresis_mode_t is valid for both directions.

typedef enum _acmp_hysteresis_mode acmp_hysteresis_mode_t
Comparator hard block hysteresis control.

See chip data sheet to get the actual hysteresis value with each level.

typedef enum _acmp_reference_voltage_source acmp_reference_voltage_source_t
CMP Voltage Reference source.

typedef enum _acmp_port_input acmp_port_input_t
Port input source.

typedef enum _acmp_dac_work_mode acmp_dac_work_mode_t
Internal DAC’s work mode.

typedef struct _acmp_config acmp_config_t
Configuration for ACMP.

2.1. ACMP: Analog Comparator Driver 207



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _acmp_channel_config acmp_channel_config_t
Configuration for channel.

The comparator’s port can be input from channel mux or DAC. If port input is from channel
mux, detailed channel number for the mux should be configured.

typedef struct _acmp_filter_config acmp_filter_config_t
Configuration for filter.

typedef struct _acmp_dac_config acmp_dac_config_t
Configuration for DAC.

typedef struct _acmp_discrete_mode_config acmp_discrete_mode_config_t
Configuration for discrete mode.

CMP_C0_CFx_MASK
The mask of status flags cleared by writing 1.

struct _acmp_config
#include <fsl_acmp.h> Configuration for ACMP.

Public Members

acmp_offset_mode_t offsetMode
Offset mode.

acmp_hysteresis_mode_t hysteresisMode
Hysteresis mode.

bool enableHighSpeed
Enable High Speed (HS) comparison mode.

bool enableInvertOutput
Enable inverted comparator output.

bool useUnfilteredOutput
Set compare output(COUT) to equal COUTA(true) or COUT(false).

bool enablePinOut
The comparator output is available on the associated pin.

struct _acmp_channel_config
#include <fsl_acmp.h> Configuration for channel.

The comparator’s port can be input from channel mux or DAC. If port input is from channel
mux, detailed channel number for the mux should be configured.

Public Members

acmp_port_input_t positivePortInput
Input source of the comparator’s positive port.

uint32_t plusMuxInput
Plus mux input channel(0~7).

acmp_port_input_t negativePortInput
Input source of the comparator’s negative port.

uint32_t minusMuxInput
Minus mux input channel(0~7).

208 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _acmp_filter_config
#include <fsl_acmp.h> Configuration for filter.

Public Members

uint32_t filterCount
Filter Sample Count. Available range is 1-7, 0 would cause the filter disabled.

uint32_t filterPeriod
Filter Sample Period. The divider to bus clock. Available range is 0-255.

struct _acmp_dac_config
#include <fsl_acmp.h> Configuration for DAC.

Public Members

acmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.

uint32_t DACValue
Value for DAC Output Voltage. Available range is 0-255.

bool enableOutput
Enable the DAC output.

struct _acmp_discrete_mode_config
#include <fsl_acmp.h> Configuration for discrete mode.

Public Members

bool enablePositiveChannelDiscreteMode
Positive Channel Continuous Mode Enable. By default, the continuous mode is used.

bool enableNegativeChannelDiscreteMode
Negative Channel Continuous Mode Enable. By default, the continuous mode is used.

2.2 ADC_ETC: ADC External Trigger Control

void ADC_ETC_Init(ADC_ETC_Type *base, const adc_etc_config_t *config)
Initialize the ADC_ETC module.

Parameters
• base – ADC_ETC peripheral base address.

• config – Pointer to “adc_etc_config_t” structure.

void ADC_ETC_Deinit(ADC_ETC_Type *base)
De-Initialize the ADC_ETC module.

Parameters
• base – ADC_ETC peripheral base address.

2.2. ADC_ETC: ADC External Trigger Control 209



MCUXpresso SDK Documentation, Release 25.12.00

void ADC_ETC_GetDefaultConfig(adc_etc_config_t *config)
Gets an available pre-defined settings for the ADC_ETC’s configuration. This function ini-
tializes the ADC_ETC’s configuration structure with available settings. The default values
are:

config->enableTSCBypass = true;
config->enableTSC0Trigger = false;
config->enableTSC1Trigger = false;
config->TSC0triggerPriority = 0U;
config->TSC1triggerPriority = 0U;
config->clockPreDivider = 0U;
config->XBARtriggerMask = 0U;

Parameters
• config – Pointer to “adc_etc_config_t” structure.

void ADC_ETC_SetTriggerConfig(ADC_ETC_Type *base, uint32_t triggerGroup, const
adc_etc_trigger_config_t *config)

Set the external XBAR trigger configuration.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index.

• config – Pointer to “adc_etc_trigger_config_t” structure.

void ADC_ETC_SetTriggerChainConfig(ADC_ETC_Type *base, uint32_t triggerGroup, uint32_t
chainGroup, const adc_etc_trigger_chain_config_t
*config)

Set the external XBAR trigger chain configuration. For example, if triggerGroup is set to 0U
and chainGroup is set to 1U, which means Trigger0 source’s chain1 would be configurated.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

• chainGroup – Trigger chain group index. Available number is 0~7.

• config – Pointer to “adc_etc_trigger_chain_config_t” structure.

uint32_t ADC_ETC_GetInterruptStatusFlags(ADC_ETC_Type *base,
adc_etc_external_trigger_source_t sourceIndex)

Gets the interrupt status flags of external XBAR and TSC triggers.

Parameters
• base – ADC_ETC peripheral base address.

• sourceIndex – trigger source index.

Returns
Status flags mask of trigger. Refer to “_adc_etc_status_flag_mask”.

void ADC_ETC_ClearInterruptStatusFlags(ADC_ETC_Type *base,
adc_etc_external_trigger_source_t sourceIndex,
uint32_t mask)

Clears the ADC_ETC’s interrupt status falgs.

Parameters
• base – ADC_ETC peripheral base address.

210 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• sourceIndex – trigger source index.

• mask – Status flags mask of trigger. Refer to “_adc_etc_status_flag_mask”.

static inline void ADC_ETC_EnableDMA(ADC_ETC_Type *base, uint32_t triggerGroup)
Enable the DMA corresponding to each trigger source.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

static inline void ADC_ETC_DisableDMA(ADC_ETC_Type *base, uint32_t triggerGroup)
Disable the DMA corresponding to each trigger sources.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

static inline uint32_t ADC_ETC_GetDMAStatusFlags(ADC_ETC_Type *base)
Get the DMA request status falgs. Only external XBAR sources support DMA request.

Parameters
• base – ADC_ETC peripheral base address.

Returns
Mask of external XBAR tirgger’s DMA request asserted flags. Available range
is trigger0:0x01 to trigger7:0x80.

static inline void ADC_ETC_ClearDMAStatusFlags(ADC_ETC_Type *base, uint32_t mask)
Clear the DMA request status falgs. Only external XBAR sources support DMA request.

Parameters
• base – ADC_ETC peripheral base address.

• mask – Mask of external XBAR tirgger’s DMA request asserted flags. Avail-
able range is trigger0:0x01 to trigger7:0x80.

static inline void ADC_ETC_DoSoftwareReset(ADC_ETC_Type *base, bool enable)
When enable, all logical will be reset.

Parameters
• base – ADC_ETC peripheral base address.

• enable – Enable/Disable the software reset.

static inline void ADC_ETC_DoSoftwareTrigger(ADC_ETC_Type *base, uint32_t triggerGroup)
Do software trigger corresponding to each XBAR trigger sources. Each XBAR trigger sources
can be configured as HW or SW trigger mode. In hardware trigger mode, trigger source is
from XBAR. In software mode, trigger source is from software tigger. TSC trigger sources
can only work in hardware trigger mode.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

static inline void ADC_ETC_DoSoftwareTriggerBlocking(ADC_ETC_Type *base, uint32_t
triggerGroup)

Do software trigger corresponding to each XBAR trigger sources.

2.2. ADC_ETC: ADC External Trigger Control 211



MCUXpresso SDK Documentation, Release 25.12.00

Note: This function provides a workaround implementation for ERR052412 by using
blocking way to implement SW trigger.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

uint32_t ADC_ETC_GetADCConversionValue(ADC_ETC_Type *base, uint32_t triggerGroup,
uint32_t chainGroup)

Get ADC conversion result from external XBAR sources. For example, if triggerGroup is set
to 0U and chainGroup is set to 1U, which means the API would return Trigger0 source’s
chain1 conversion result.

Parameters
• base – ADC_ETC peripheral base address.

• triggerGroup – Trigger group index. Available number is 0~7.

• chainGroup – Trigger chain group index. Available number is 0~7.

Returns
ADC conversion result value.

enum _adc_etc_status_flag_mask
ADC_ETC customized status flags mask.

Values:

enumerator kADC_ETC_Done0StatusFlagMask

enumerator kADC_ETC_Done1StatusFlagMask

enumerator kADC_ETC_Done2StatusFlagMask

enumerator kADC_ETC_Done3StatusFlagMask

enumerator kADC_ETC_ErrorStatusFlagMask

enum _adc_etc_external_trigger_source
External triggers sources.

Values:

enumerator kADC_ETC_Trg0TriggerSource

enumerator kADC_ETC_Trg1TriggerSource

enumerator kADC_ETC_Trg2TriggerSource

enumerator kADC_ETC_Trg3TriggerSource

enumerator kADC_ETC_Trg4TriggerSource

enumerator kADC_ETC_Trg5TriggerSource

enumerator kADC_ETC_Trg6TriggerSource

enumerator kADC_ETC_Trg7TriggerSource

enumerator kADC_ETC_TSC0TriggerSource

enumerator kADC_ETC_TSC1TriggerSource

212 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _adc_etc_interrupt_enable
Interrupt enable/disable mask.

Values:

enumerator kADC_ETC_Done0InterruptEnable

enumerator kADC_ETC_Done1InterruptEnable

enumerator kADC_ETC_Done2InterruptEnable

enumerator kADC_ETC_Done3InterruptEnable

enum _adc_etc_dma_mode_selection
DMA mode selection.

Values:

enumerator kADC_ETC_TrigDMAWithLatchedSignal

enumerator kADC_ETC_TrigDMAWithPulsedSignal

typedef enum _adc_etc_external_trigger_source adc_etc_external_trigger_source_t
External triggers sources.

typedef enum _adc_etc_interrupt_enable adc_etc_interrupt_enable_t
Interrupt enable/disable mask.

typedef enum _adc_etc_dma_mode_selection adc_etc_dma_mode_selection_t
DMA mode selection.

typedef struct _adc_etc_config adc_etc_config_t
ADC_ETC configuration.

typedef struct _adc_etc_trigger_chain_config adc_etc_trigger_chain_config_t
ADC_ETC trigger chain configuration.

typedef struct _adc_etc_trigger_config adc_etc_trigger_config_t
ADC_ETC trigger configuration.

FSL_ADC_ETC_DRIVER_VERSION
ADC_ETC driver version.

Version 2.3.2.

ADC_ETC_DMA_CTRL_TRGn_REQ_MASK
The mask of status flags cleared by writing 1.

struct _adc_etc_config
#include <fsl_adc_etc.h> ADC_ETC configuration.

struct _adc_etc_trigger_chain_config
#include <fsl_adc_etc.h> ADC_ETC trigger chain configuration.

struct _adc_etc_trigger_config
#include <fsl_adc_etc.h> ADC_ETC trigger configuration.

2.3 Anatop_ai

2.3. Anatop_ai 213



MCUXpresso SDK Documentation, Release 25.12.00

enum _anatop_ai_itf
Anatop AI ITF enumeration.

Values:

enumerator kAI_Itf_Ldo
LDO ITF.

enumerator kAI_Itf_1g
1G PLL ITF.

enumerator kAI_Itf_Audio
Audio PLL ITF.

enumerator kAI_Itf_Video
Video PLL ITF.

enumerator kAI_Itf_400m
400M OSC ITF.

enumerator kAI_Itf_Temp
Temperature Sensor ITF.

enumerator kAI_Itf_Bandgap
Bandgap ITF.

enum _anatop_ai_reg
The enumeration of ANATOP AI Register.

Values:

enumerator kAI_PHY_LDO_CTRL0
PHY LDO CTRL0 Register.

enumerator kAI_PHY_LDO_CTRL0_SET
PHY LDO CTRL0 Set Register.

enumerator kAI_PHY_LDO_CTRL0_CLR
PHY LDO CTRL0 Clr Register.

enumerator kAI_PHY_LDO_CTRL0_TOG
PHY LDO CTRL0 TOG Register.

enumerator kAI_PHY_LDO_STAT0
PHY LDO STAT0 Register.

enumerator kAI_PHY_LDO_STAT0_SET
PHY LDO STAT0 Set Register.

enumerator kAI_PHY_LDO_STAT0_CLR
PHY LDO STAT0 Clr Register.

enumerator kAI_PHY_LDO_STAT0_TOG
PHY LDO STAT0 Tog Register.

enumerator kAI_BANDGAP_CTRL0
BANDGAP CTRL0 Register.

enumerator kAI_BANDGAP_STAT0
BANDGAP STAT0 Register.

enumerator kAI_RCOSC400M_CTRL0
RC OSC 400M CTRL0 Register.

214 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI_RCOSC400M_CTRL0_SET
RC OSC 400M CTRL0 SET Register.

enumerator kAI_RCOSC400M_CTRL0_CLR
RC OSC 400M CTRL0 CLR Register.

enumerator kAI_RCOSC400M_CTRL0_TOG
RC OSC 400M CTRL0 TOG Register.

enumerator kAI_RCOSC400M_CTRL1
RC OSC 400M CTRL1 Register.

enumerator kAI_RCOSC400M_CTRL1_SET
RC OSC 400M CTRL1 SET Register.

enumerator kAI_RCOSC400M_CTRL1_CLR
RC OSC 400M CTRL1 CLR Register.

enumerator kAI_RCOSC400M_CTRL1_TOG
RC OSC 400M CTRL1 TOG Register.

enumerator kAI_RCOSC400M_CTRL2
RC OSC 400M CTRL2 Register.

enumerator kAI_RCOSC400M_CTRL2_SET
RC OSC 400M CTRL2 SET Register.

enumerator kAI_RCOSC400M_CTRL2_CLR
RC OSC 400M CTRL2 CLR Register.

enumerator kAI_RCOSC400M_CTRL2_TOG
RC OSC 400M CTRL2 TOG Register.

enumerator kAI_RCOSC400M_CTRL3
RC OSC 400M CTRL3 Register.

enumerator kAI_RCOSC400M_CTRL3_SET
RC OSC 400M CTRL3 SET Register.

enumerator kAI_RCOSC400M_CTRL3_CLR
RC OSC 400M CTRL3 CLR Register.

enumerator kAI_RCOSC400M_CTRL3_TOG
RC OSC 400M CTRL3 TOG Register.

enumerator kAI_RCOSC400M_STAT0
RC OSC 400M STAT0 Register.

enumerator kAI_RCOSC400M_STAT0_SET
RC OSC 400M STAT0 SET Register.

enumerator kAI_RCOSC400M_STAT0_CLR
RC OSC 400M STAT0 CLR Register.

enumerator kAI_RCOSC400M_STAT0_TOG
RC OSC 400M STAT0 TOG Register.

enumerator kAI_RCOSC400M_STAT1
RC OSC 400M STAT1 Register.

enumerator kAI_RCOSC400M_STAT1_SET
RC OSC 400M STAT1 SET Register.

2.3. Anatop_ai 215



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI_RCOSC400M_STAT1_CLR
RC OSC 400M STAT1 CLR Register.

enumerator kAI_RCOSC400M_STAT1_TOG
RC OSC 400M STAT1 TOG Register.

enumerator kAI_RCOSC400M_STAT2
RC OSC 400M STAT2 Register.

enumerator kAI_RCOSC400M_STAT2_SET
RC OSC 400M STAT2 SET Register.

enumerator kAI_RCOSC400M_STAT2_CLR
RC OSC 400M STAT2 CLR Register.

enumerator kAI_RCOSC400M_STAT2_TOG
RC OSC 400M STAT2 TOG Register.

enumerator kAI_PLL1G_CTRL0
1G PLL CTRL0 Register.

enumerator kAI_PLL1G_CTRL0_SET
1G PLL CTRL0 SET Register.

enumerator kAI_PLL1G_CTRL0_CLR
1G PLL CTRL0 CLR Register.

enumerator kAI_PLL1G_CTRL1
1G PLL CTRL1 Register.

enumerator kAI_PLL1G_CTRL1_SET
1G PLL CTRL1 SET Register.

enumerator kAI_PLL1G_CTRL1_CLR
1G PLL CTRL1 CLR Register.

enumerator kAI_PLL1G_CTRL2
1G PLL CTRL2 Register.

enumerator kAI_PLL1G_CTRL2_SET
1G PLL CTRL2 SET Register.

enumerator kAI_PLL1G_CTRL2_CLR
1G PLL CTRL2 CLR Register.

enumerator kAI_PLL1G_CTRL3
1G PLL CTRL3 Register.

enumerator kAI_PLL1G_CTRL3_SET
1G PLL CTRL3 SET Register.

enumerator kAI_PLL1G_CTRL3_CLR
1G PLL CTRL3 CLR Register.

enumerator kAI_PLLAUDIO_CTRL0
AUDIO PLL CTRL0 Register.

enumerator kAI_PLLAUDIO_CTRL0_SET
AUDIO PLL CTRL0 SET Register.

enumerator kAI_PLLAUDIO_CTRL0_CLR
AUDIO PLL CTRL0 CLR Register.

216 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI_PLLAUDIO_CTRL1
AUDIO PLL CTRL1 Register.

enumerator kAI_PLLAUDIO_CTRL1_SET
AUDIO PLL CTRL1 SET Register.

enumerator kAI_PLLAUDIO_CTRL1_CLR
AUDIO PLL CTRL1 CLR Register.

enumerator kAI_PLLAUDIO_CTRL2
AUDIO PLL CTRL2 Register.

enumerator kAI_PLLAUDIO_CTRL2_SET
AUDIO PLL CTRL2 SET Register.

enumerator kAI_PLLAUDIO_CTRL2_CLR
AUDIO PLL CTRL2 CLR Register.

enumerator kAI_PLLAUDIO_CTRL3
AUDIO PLL CTRL3 Register.

enumerator kAI_PLLAUDIO_CTRL3_SET
AUDIO PLL CTRL3 SET Register.

enumerator kAI_PLLAUDIO_CTRL3_CLR
AUDIO PLL CTRL3 CLR Register.

enumerator kAI_PLLVIDEO_CTRL0
VIDEO PLL CTRL0 Register.

enumerator kAI_PLLVIDEO_CTRL0_SET
VIDEO PLL CTRL0 SET Register.

enumerator kAI_PLLVIDEO_CTRL0_CLR
VIDEO PLL CTRL0 CLR Register.

enumerator kAI_PLLVIDEO_CTRL1
VIDEO PLL CTRL1 Register.

enumerator kAI_PLLVIDEO_CTRL1_SET
VIDEO PLL CTRL1 SET Register.

enumerator kAI_PLLVIDEO_CTRL1_CLR
VIDEO PLL CTRL1 CLR Register.

enumerator kAI_PLLVIDEO_CTRL2
VIDEO PLL CTRL2 Register.

enumerator kAI_PLLVIDEO_CTRL2_SET
VIDEO PLL CTRL2 SET Register.

enumerator kAI_PLLVIDEO_CTRL2_CLR
VIDEO PLL CTRL2 CLR Register.

enumerator kAI_PLLVIDEO_CTRL3
VIDEO PLL CTRL3 Register.

enumerator kAI_PLLVIDEO_CTRL3_SET
VIDEO PLL CTRL3 SET Register.

enumerator kAI_PLLVIDEO_CTRL3_CLR
VIDEO PLL CTRL3 CLR Register.

2.3. Anatop_ai 217



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _anatop_ai_itf anatop_ai_itf_t
Anatop AI ITF enumeration.

typedef enum _anatop_ai_reg anatop_ai_reg_t
The enumeration of ANATOP AI Register.

FSL_ANATOP_AI_DRIVER_VERSION
Anatop AI driver version 1.0.0.

AI_PHY_LDO_CTRL0_LINREG_EN(x)

AI_PHY_LDO_CTRL0_LINREG_EN_MASK

AI_PHY_LDO_CTRL0_LINREG_EN_SHIFT

AI_PHY_LDO_CTRL0_PWRUPLOAD_DIS(x)
LINREG_EN - LinReg master enable LinReg master enable. Setting this bit will enable the
regular

AI_PHY_LDO_CTRL0_PWRUPLOAD_DIS_MASK

AI_PHY_LDO_CTRL0_PWRUPLOAD_DIS_SHIFT

AI_PHY_LDO_CTRL0_LIMIT_EN(x)
LINREG_PWRUPLOAD_DIS - LinReg power-up load disable 0b0..Internal pull-down enabled
0b1..Internal pull-down disabled

AI_PHY_LDO_CTRL0_LIMIT_EN_MASK

AI_PHY_LDO_CTRL0_LIMIT_EN_SHIFT

AI_PHY_LDO_CTRL0_OUTPUT_TRG(x)
LINREG_LIMIT_EN - LinReg current limit enable LinReg current-limit enable. Setting this
bit will enable the current-limiter in the regulator

AI_PHY_LDO_CTRL0_OUTPUT_TRG_MASK

AI_PHY_LDO_CTRL0_OUTPUT_TRG_SHIFT

AI_PHY_LDO_CTRL0_PHY_ISO_B(x)
LINREG_OUTPUT_TRG - LinReg output voltage target setting 0b00000..Set output voltage to
x.xV 0b10000..Set output voltage to 1.0V 0b11111..Set output voltage to x.xV

AI_PHY_LDO_CTRL0_PHY_ISO_B_MASK

AI_PHY_LDO_CTRL0_PHY_ISO_B_SHIFT

AI_BANDGAP_CTRL0_REFTOP_PWD(x)

AI_BANDGAP_CTRL0_REFTOP_PWD_MASK

AI_BANDGAP_CTRL0_REFTOP_PWD_SHIFT

AI_BANDGAP_CTRL0_REFTOP_LINREGREF_PWD(x)
REFTOP_PWD - This bit fully powers down the bandgap module. Setting this bit high will
disable reference output currents and voltages from the bandgap and will affect function-
ality and validity of the voltage detectors.

AI_BANDGAP_CTRL0_REFTOP_LINREGREF_PWD_MASK

AI_BANDGAP_CTRL0_REFTOP_LINREGREF_PWD_SHIFT

218 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

AI_BANDGAP_CTRL0_REFTOP_PWDVBGUP(x)
REFOP_LINREGREF_PWD - This bit powers down only the voltage reference output section
of the bandgap. Setting this bit high will affect functionality and validity of the voltage
detectors.

AI_BANDGAP_CTRL0_REFTOP_PWDVBGUP_MASK

AI_BANDGAP_CTRL0_REFTOP_PWDVBGUP_SHIFT

AI_BANDGAP_CTRL0_REFTOP_LOWPOWER(x)
REFTOP_PWDVBGUP - This bit powers down the VBGUP detector of the bandgap without
affecting any additional functionality.

AI_BANDGAP_CTRL0_REFTOP_LOWPOWER_MASK

AI_BANDGAP_CTRL0_REFTOP_LOWPOWER_SHIFT

AI_BANDGAP_CTRL0_REFTOP_SELFBIASOFF(x)
REFTOP_LOWPOWER - This bit enables the low-power operation of the bandgap by cutting
the bias currents in half to the main amplifiers. This will save power but could affect the
accuracy of the output voltages and currents.

AI_BANDGAP_CTRL0_REFTOP_SELFBIASOFF_MASK

AI_BANDGAP_CTRL0_REFTOP_SELFBIASOFF_SHIFT

AI_BANDGAP_CTRL0_REFTOP_VBGADJ(x)
REFTOP_SELFBIASOFF - Control bit to disable the self-bias circuit in the bandgap. The self-
bias circuit is used by the bandgap during startup. This bit should be set high after the
bandgap has stabilized and is necessary for best noise performance of modules using the
outputs of the bandgap. It is expected that this control bit be set low any time that either
the bandgap is fully powered-down or the 1.8V supply is removed.

AI_BANDGAP_CTRL0_REFTOP_VBGADJ_MASK

AI_BANDGAP_CTRL0_REFTOP_VBGADJ_SHIFT

AI_BANDGAP_CTRL0_REFTOP_IBZTCADJ(x)
REFTOP_VBGADJ - These bits allow the output VBG voltage of the bandgap to be trimmed
000 : nominal 001 : +10mV 010 : +20mV 011 : +30mV 100 : -10mV 101 : -20mV 110 : -30mV
111 : -40mV

AI_BANDGAP_CTRL0_REFTOP_IBZTCADJ_MASK

AI_BANDGAP_CTRL0_REFTOP_IBZTCADJ_SHIFT

AI_RCOSC400M_CTRL0_REF_CLK_DIV(x)

AI_RCOSC400M_CTRL0_REF_CLK_DIV_MASK

AI_RCOSC400M_CTRL0_REF_CLK_DIV_SHIFT

AI_PLL1G_CTRL0_HOLD_RING_OFF(x)

AI_PLL1G_CTRL0_HOLD_RING_OFF_MASK

AI_PLL1G_CTRL0_HOLD_RING_OFF_SHIFT

AI_PLL1G_CTRL0_POWER_UP(x)

AI_PLL1G_CTRL0_POWER_UP_MASK

AI_PLL1G_CTRL0_POWER_UP_SHIFT

2.3. Anatop_ai 219



MCUXpresso SDK Documentation, Release 25.12.00

AI_PLL1G_CTRL0_ENABLE(x)

AI_PLL1G_CTRL0_ENABLE_MASK

AI_PLL1G_CTRL0_ENABLE_SHIFT

AI_PLL1G_CTRL0_BYPASS(x)

AI_PLL1G_CTRL0_BYPASS_MASK

AI_PLL1G_CTRL0_BYPASS_SHIFT

AI_PLL1G_CTRL0_PLL_REG_EN(x)

AI_PLL1G_CTRL0_PLL_REG_EN_MASK

AI_PLL1G_CTRL0_PLL_REG_EN_SHIFT

AI_PLLAUDIO_CTRL0_HOLD_RING_OFF(x)

AI_PLLAUDIO_CTRL0_HOLD_RING_OFF_MASK

AI_PLLAUDIO_CTRL0_HOLD_RING_OFF_SHIFT

AI_PLLAUDIO_CTRL0_POWER_UP(x)

AI_PLLAUDIO_CTRL0_POWER_UP_MASK

AI_PLLAUDIO_CTRL0_POWER_UP_SHIFT

AI_PLLAUDIO_CTRL0_ENABLE(x)

AI_PLLAUDIO_CTRL0_ENABLE_MASK

AI_PLLAUDIO_CTRL0_ENABLE_SHIFT

AI_PLLAUDIO_CTRL0_BYPASS(x)

AI_PLLAUDIO_CTRL0_BYPASS_MASK

AI_PLLAUDIO_CTRL0_BYPASS_SHIFT

AI_PLLAUDIO_CTRL0_PLL_REG_EN(x)

AI_PLLAUDIO_CTRL0_PLL_REG_EN_MASK

AI_PLLAUDIO_CTRL0_PLL_REG_EN_SHIFT

AI_PLLVIDEO_CTRL0_HOLD_RING_OFF(x)

AI_PLLVIDEO_CTRL0_HOLD_RING_OFF_MASK

AI_PLLVIDEO_CTRL0_HOLD_RING_OFF_SHIFT

AI_PLLVIDEO_CTRL0_POWER_UP(x)

AI_PLLVIDEO_CTRL0_POWER_UP_MASK

AI_PLLVIDEO_CTRL0_POWER_UP_SHIFT

AI_PLLVIDEO_CTRL0_ENABLE(x)

AI_PLLVIDEO_CTRL0_ENABLE_MASK

AI_PLLVIDEO_CTRL0_ENABLE_SHIFT

220 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

AI_PLLVIDEO_CTRL0_BYPASS(x)

AI_PLLVIDEO_CTRL0_BYPASS_MASK

AI_PLLVIDEO_CTRL0_BYPASS_SHIFT

AI_PLLVIDEO_CTRL0_PLL_REG_EN(x)

AI_PLLVIDEO_CTRL0_PLL_REG_EN_MASK

AI_PLLVIDEO_CTRL0_PLL_REG_EN_SHIFT

AI_PHY_LDO_STAT0_LINREG_STAT(x)

AI_PHY_LDO_STAT0_LINREG_STAT_MASK

AI_PHY_LDO_STAT0_LINREG_STAT_SHIFT

AI_BANDGAP_STAT0_REFTOP_VBGUP(x)

AI_BANDGAP_STAT0_REFTOP_VBGUP_MASK

AI_BANDGAP_STAT0_REFTOP_VBGUP_SHIFT

AI_RCOSC400M_STAT0_CLK1M_ERR(x)

AI_RCOSC400M_STAT0_CLK1M_ERR_MASK

AI_RCOSC400M_STAT0_CLK1M_ERR_SHIFT

AI_RCOSC400M_CTRL1_HYST_MINUS(x)

AI_RCOSC400M_CTRL1_HYST_MINUS_MASK

AI_RCOSC400M_CTRL1_HYST_MINUS_SHIFT

AI_RCOSC400M_CTRL1_HYST_PLUS(x)

AI_RCOSC400M_CTRL1_HYST_PLUS_MASK

AI_RCOSC400M_CTRL1_HYST_PLUS_SHIFT

AI_RCOSC400M_CTRL1_TARGET_COUNT(x)

AI_RCOSC400M_CTRL1_TARGET_COUNT_MASK

AI_RCOSC400M_CTRL1_TARGET_COUNT_SHIFT

AI_RCOSC400M_CTRL2_TUNE_BYP(x)

AI_RCOSC400M_CTRL2_TUNE_BYP_MASK

AI_RCOSC400M_CTRL2_TUNE_BYP_SHIFT

AI_RCOSC400M_CTRL2_TUNE_EN(x)

AI_RCOSC400M_CTRL2_TUNE_EN_MASK

AI_RCOSC400M_CTRL2_TUNE_EN_SHIFT

AI_RCOSC400M_CTRL2_TUNE_START(x)

AI_RCOSC400M_CTRL2_TUNE_START_MASK

AI_RCOSC400M_CTRL2_TUNE_START_SHIFT

2.3. Anatop_ai 221



MCUXpresso SDK Documentation, Release 25.12.00

AI_RCOSC400M_CTRL2_OSC_TUNE_VAL(x)

AI_RCOSC400M_CTRL2_OSC_TUNE_VAL_MASK

AI_RCOSC400M_CTRL2_OSC_TUNE_VAL_SHIFT

AI_RCOSC400M_CTRL3_CLR_ERR(x)

AI_RCOSC400M_CTRL3_CLR_ERR_MASK

AI_RCOSC400M_CTRL3_CLR_ERR_SHIFT

AI_RCOSC400M_CTRL3_EN_1M_CLK(x)

AI_RCOSC400M_CTRL3_EN_1M_CLK_MASK

AI_RCOSC400M_CTRL3_EN_1M_CLK_SHIFT

AI_RCOSC400M_CTRL3_MUX_1M_CLK(x)

AI_RCOSC400M_CTRL3_MUX_1M_CLK_MASK

AI_RCOSC400M_CTRL3_MUX_1M_CLK_SHIFT

AI_RCOSC400M_CTRL3_COUNT_1M_CLK(x)

AI_RCOSC400M_CTRL3_COUNT_1M_CLK_MASK

AI_RCOSC400M_CTRL3_COUNT_1M_CLK_SHIFT

AI_RCOSC400M_STAT1_CURR_COUNT_VAL(x)

AI_RCOSC400M_STAT1_CURR_COUNT_VAL_MASK

AI_RCOSC400M_STAT1_CURR_COUNT_VAL_SHIFT

AI_RCOSC400M_STAT2_CURR_OSC_TUNE_VAL(x)

AI_RCOSC400M_STAT2_CURR_OSC_TUNE_VAL_MASK

AI_RCOSC400M_STAT2_CURR_OSC_TUNE_VAL_SHIFT

2.4 AOI: Crossbar AND/OR/INVERT Driver

void AOI_Init(AOI_Type *base)
Initializes an AOI instance for operation.

This function un-gates the AOI clock.

Parameters
• base – AOI peripheral address.

void AOI_Deinit(AOI_Type *base)
Deinitializes an AOI instance for operation.

This function shutdowns AOI module.

Parameters
• base – AOI peripheral address.

222 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void AOI_GetEventLogicConfig(AOI_Type *base, aoi_event_t event, aoi_event_config_t *config)
Gets the Boolean evaluation associated.

This function returns the Boolean evaluation associated.

Example:

aoi_event_config_t demoEventLogicStruct;

AOI_GetEventLogicConfig(AOI, kAOI_Event0, &demoEventLogicStruct);

Parameters
• base – AOI peripheral address.

• event – Index of the event which will be set of type aoi_event_t.

• config – Selected input configuration .

void AOI_SetEventLogicConfig(AOI_Type *base, aoi_event_t event, const aoi_event_config_t
*eventConfig)

Configures an AOI event.

This function configures an AOI event according to the aoiEventConfig structure. This func-
tion configures all inputs (A, B, C, and D) of all product terms (0, 1, 2, and 3) of a desired
event.

Example:

aoi_event_config_t demoEventLogicStruct;

demoEventLogicStruct.PT0AC = kAOI_InvInputSignal;
demoEventLogicStruct.PT0BC = kAOI_InputSignal;
demoEventLogicStruct.PT0CC = kAOI_LogicOne;
demoEventLogicStruct.PT0DC = kAOI_LogicOne;

demoEventLogicStruct.PT1AC = kAOI_LogicZero;
demoEventLogicStruct.PT1BC = kAOI_LogicOne;
demoEventLogicStruct.PT1CC = kAOI_LogicOne;
demoEventLogicStruct.PT1DC = kAOI_LogicOne;

demoEventLogicStruct.PT2AC = kAOI_LogicZero;
demoEventLogicStruct.PT2BC = kAOI_LogicOne;
demoEventLogicStruct.PT2CC = kAOI_LogicOne;
demoEventLogicStruct.PT2DC = kAOI_LogicOne;

demoEventLogicStruct.PT3AC = kAOI_LogicZero;
demoEventLogicStruct.PT3BC = kAOI_LogicOne;
demoEventLogicStruct.PT3CC = kAOI_LogicOne;
demoEventLogicStruct.PT3DC = kAOI_LogicOne;

AOI_SetEventLogicConfig(AOI, kAOI_Event0, demoEventLogicStruct);

Parameters
• base – AOI peripheral address.

• event – Event which will be configured of type aoi_event_t.

• eventConfig – Pointer to type aoi_event_config_t structure. The user is re-
sponsible for filling out the members of this structure and passing the
pointer to this function.

FSL_AOI_DRIVER_VERSION
Version 2.0.2.

2.4. AOI: Crossbar AND/OR/INVERT Driver 223



MCUXpresso SDK Documentation, Release 25.12.00

enum _aoi_input_config
AOI input configurations.

The selection item represents the Boolean evaluations.

Values:

enumerator kAOI_LogicZero
Forces the input to logical zero.

enumerator kAOI_InputSignal
Passes the input signal.

enumerator kAOI_InvInputSignal
Inverts the input signal.

enumerator kAOI_LogicOne
Forces the input to logical one.

enum _aoi_event
AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and
3) and the four signal inputs (A, B, C, and D).

Values:

enumerator kAOI_Event0
Event 0 index

enumerator kAOI_Event1
Event 1 index

enumerator kAOI_Event2
Event 2 index

enumerator kAOI_Event3
Event 3 index

typedef enum _aoi_input_config aoi_input_config_t
AOI input configurations.

The selection item represents the Boolean evaluations.

typedef enum _aoi_event aoi_event_t
AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and
3) and the four signal inputs (A, B, C, and D).

typedef struct _aoi_event_config aoi_event_config_t
AOI event configuration structure.

Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to
make whole event configuration.

AOI
AOI peripheral address

struct _aoi_event_config
#include <fsl_aoi.h> AOI event configuration structure.

Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to
make whole event configuration.

224 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

aoi_input_config_t PT0AC
Product term 0 input A

aoi_input_config_t PT0BC
Product term 0 input B

aoi_input_config_t PT0CC
Product term 0 input C

aoi_input_config_t PT0DC
Product term 0 input D

aoi_input_config_t PT1AC
Product term 1 input A

aoi_input_config_t PT1BC
Product term 1 input B

aoi_input_config_t PT1CC
Product term 1 input C

aoi_input_config_t PT1DC
Product term 1 input D

aoi_input_config_t PT2AC
Product term 2 input A

aoi_input_config_t PT2BC
Product term 2 input B

aoi_input_config_t PT2CC
Product term 2 input C

aoi_input_config_t PT2DC
Product term 2 input D

aoi_input_config_t PT3AC
Product term 3 input A

aoi_input_config_t PT3BC
Product term 3 input B

aoi_input_config_t PT3CC
Product term 3 input C

aoi_input_config_t PT3DC
Product term 3 input D

2.5 ASRC: Asynchronous sample rate converter

2.6 ASRC Driver

uint32_t ASRC_GetInstance(ASRC_Type *base)
Get instance number of the ASRC peripheral.

Parameters
• base – ASRC base pointer.

2.5. ASRC: Asynchronous sample rate converter 225



MCUXpresso SDK Documentation, Release 25.12.00

void ASRC_Init(ASRC_Type *base, uint32_t asrcPeripheralClock_Hz)
brief Initializes the asrc peripheral.

This API gates the asrc clock. The asrc module can’t operate unless ASRC_Init is called to
enable the clock.

param base asrc base pointer. param asrcPeripheralClock_Hz peripheral clock of ASRC.

void ASRC_Deinit(ASRC_Type *base)
De-initializes the ASRC peripheral.

This API gates the ASRC clock and disable ASRC module. The ASRC module can’t operate
unless ASRC_Init

Parameters
• base – ASRC base pointer.

void ASRC_SoftwareReset(ASRC_Type *base)
Do software reset .

This software reset bit is self-clear bit, it will generate a software reset signal inside ASRC.
After 9 cycles of the ASRC processing clock, this reset process will stop and this bit will
cleared automatically.

Parameters
• base – ASRC base pointer

status_t ASRC_SetChannelPairConfig(ASRC_Type *base, asrc_channel_pair_t channelPair,
asrc_channel_pair_config_t *config, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure channel pair.

Parameters
• base – ASRC base pointer.

• channelPair – index of channel pair, reference _asrc_channel_pair.

• config – ASRC channel pair configuration pointer.

• inputSampleRate – input audio data sample rate.

• outputSampleRate – output audio data sample rate.

uint32_t ASRC_GetOutSamplesSize(ASRC_Type *base, asrc_channel_pair_t channelPair, uint32_t
inSampleRate, uint32_t outSampleRate, uint32_t
inSamplesize)

Get output sample buffer size.

Note: This API is depends on the ASRC output configuration, should be called after the
ASRC_SetChannelPairConfig.

Parameters
• base – asrc base pointer.

• channelPair – ASRC channel pair number.

• inSampleRate – input sample rate.

• outSampleRate – output sample rate.

• inSamplesize – input sampleS size.

226 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Return values
output – buffer size in byte.

uint32_t ASRC_MapSamplesWidth(ASRC_Type *base, asrc_channel_pair_t channelPair, uint32_t
*inWidth, uint32_t *outWidth)

Map register sample width to real sample width.

Note: This API is depends on the ASRC configuration, should be called after the
ASRC_SetChannelPairConfig.

Parameters
• base – asrc base pointer.

• channelPair – asrc channel pair index.

• inWidth – ASRC channel pair number.

• outWidth – input sample rate.

Return values
input – sample mask value.

uint32_t ASRC_GetRemainFifoSamples(ASRC_Type *base, asrc_channel_pair_t channelPair,
uint32_t *buffer, uint32_t outSampleWidth, uint32_t
remainSamples)

Get left samples in fifo.

Parameters
• base – asrc base pointer.

• channelPair – ASRC channel pair number.

• buffer – input sample numbers.

• outSampleWidth – output sample width.

• remainSamples – output sample rate.

Return values
remain – samples number.

static inline void ASRC_ModuleEnable(ASRC_Type *base, bool enable)
ASRC module enable.

Parameters
• base – ASRC base pointer.

• enable – true is enable, false is disable

static inline void ASRC_ChannelPairEnable(ASRC_Type *base, asrc_channel_pair_t channelPair,
bool enable)

ASRC enable channel pair.

Parameters
• base – ASRC base pointer.

• channelPair – channel pair mask value, reference
_asrc_channel_pair_mask.

• enable – true is enable, false is disable.

2.6. ASRC Driver 227



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ASRC_EnableInterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt enable This function enable the ASRC interrupt with the provided mask.

Parameters
• base – ASRC peripheral base address.

• mask – The interrupts to enable. Logical OR of _asrc_interrupt_mask.

static inline void ASRC_DisableInterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt disable This function disable the ASRC interrupt with the provided mask.

Parameters
• base – ASRC peripheral base address.

• mask – The interrupts to disable. Logical OR of _asrc_interrupt_mask.

static inline uint32_t ASRC_GetStatus(ASRC_Type *base)
Gets the ASRC status flag state.

Parameters
• base – ASRC base pointer

Returns
ASRC Tx status flag value. Use the Status Mask to get the status value needed.

static inline bool ASRC_GetChannelPairInitialStatus(ASRC_Type *base, asrc_channel_pair_t
channel)

Gets the ASRC channel pair initialization state.

Parameters
• base – ASRC base pointer

• channel – ASRC channel pair.

Returns
ASRC Tx status flag value. Use the Status Mask to get the status value needed.

static inline uint32_t ASRC_GetChannelPairFifoStatus(ASRC_Type *base, asrc_channel_pair_t
channelPair)

Gets the ASRC channel A fifo a status flag state.

Parameters
• base – ASRC base pointer

• channelPair – ASRC channel pair.

Returns
ASRC channel pair a fifo status flag value. Use the Status Mask to get the status
value needed.

static inline void ASRC_ChannelPairWriteData(ASRC_Type *base, asrc_channel_pair_t
channelPair, uint32_t data)

Writes data into ASRC channel pair FIFO. Note: ASRC fifo width is 24bit.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair.

• data – Data needs to be written.

228 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ASRC_ChannelPairReadData(ASRC_Type *base, asrc_channel_pair_t
channelPair)

Read data from ASRC channel pair FIFO. Note: ASRC fifo width is 24bit.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair.

Return values
value – read from fifo.

static inline uint32_t ASRC_GetInputDataRegisterAddress(ASRC_Type *base, asrc_channel_pair_t
channelPair)

Get input data fifo address. Note: ASRC fifo width is 24bit.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair.

static inline uint32_t ASRC_GetOutputDataRegisterAddress(ASRC_Type *base,
asrc_channel_pair_t channelPair)

Get output data fifo address. Note: ASRC fifo width is 24bit.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair.

status_t ASRC_SetIdealRatioConfig(ASRC_Type *base, asrc_channel_pair_t channelPair, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure ideal ratio. The ideal ratio should be used when input clock source is not
avalible.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair.

• inputSampleRate – input audio data sample rate.

• outputSampleRate – output audio data sample rate.

status_t ASRC_TransferSetChannelPairConfig(ASRC_Type *base, asrc_handle_t *handle,
asrc_channel_pair_config_t *config, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure channel pair.

Parameters
• base – ASRC base pointer.

• handle – ASRC transactional handle pointer.

• config – ASRC channel pair configuration pointer.

• inputSampleRate – input audio data sample rate.

• outputSampleRate – output audio data sample rate.

void ASRC_TransferCreateHandle(ASRC_Type *base, asrc_handle_t *handle, asrc_channel_pair_t
channelPair, asrc_transfer_callback_t inCallback,
asrc_transfer_callback_t outCallback, void *userData)

2.6. ASRC Driver 229



MCUXpresso SDK Documentation, Release 25.12.00

Initializes the ASRC handle.

This function initializes the handle for the ASRC transactional APIs. Call this function once
to get the handle initialized.

Parameters
• base – ASRC base pointer

• handle – ASRC handle pointer.

• channelPair – ASRC channel pair.

• inCallback – Pointer to the user callback function.

• outCallback – Pointer to the user callback function.

• userData – User parameter passed to the callback function

status_t ASRC_TransferNonBlocking(ASRC_Type *base, asrc_handle_t *handle, asrc_transfer_t
*xfer)

Performs an interrupt non-blocking convert on asrc.

Note: This API returns immediately after the transfer initiates, application should check
the wait and check the callback status.

Parameters
• base – asrc base pointer.

• handle – Pointer to the asrc_handle_t structure which stores the transfer
state.

• xfer – Pointer to the ASRC_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_ASRCBusy – Previous receive still not finished.

status_t ASRC_TransferBlocking(ASRC_Type *base, asrc_channel_pair_t channelPair,
asrc_transfer_t *xfer)

Performs an blocking convert on asrc.

Note: This API returns immediately after the convert finished.

Parameters
• base – asrc base pointer.

• channelPair – channel pair index.

• xfer – Pointer to the ASRC_transfer_t structure.

Return values
kStatus_Success – Successfully started the data receive.

status_t ASRC_TransferGetConvertedCount(ASRC_Type *base, asrc_handle_t *handle, size_t
*count)

Get converted byte count.

Parameters
• base – ASRC base pointer.

230 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to the asrc_handle_t structure which stores the transfer
state.

• count – Bytes count sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_ASRCIdle – There is not a non-blocking transaction currently in
progress.

void ASRC_TransferAbortConvert(ASRC_Type *base, asrc_handle_t *handle)
Aborts the current convert.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
• base – ASRC base pointer.

• handle – Pointer to the asrc_handle_t structure which stores the transfer
state.

void ASRC_TransferTerminateConvert(ASRC_Type *base, asrc_handle_t *handle)
Terminate all ASRC convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortConvert.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

void ASRC_TransferHandleIRQ(ASRC_Type *base, asrc_handle_t *handle)
ASRC convert interrupt handler.

Parameters
• base – ASRC base pointer.

• handle – Pointer to the asrc_handle_t structure.

FSL_ASRC_DRIVER_VERSION
Version 2.1.3

ASRC return status .

Values:

enumerator kStatus_ASRCIdle
ASRC is idle.

enumerator kStatus_ASRCInIdle
ASRC in is idle.

enumerator kStatus_ASRCOutIdle
ASRC out is idle.

enumerator kStatus_ASRCBusy
ASRC is busy.

2.6. ASRC Driver 231



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_ASRCInvalidArgument
ASRC invalid argument.

enumerator kStatus_ASRCClockConfigureFailed
ASRC clock configure failed

enumerator kStatus_ASRCChannelPairConfigureFailed
ASRC clock configure failed

enumerator kStatus_ASRCConvertError
ASRC clock configure failed

enumerator kStatus_ASRCNotSupport
ASRC not support

enumerator kStatus_ASRCQueueFull
ASRC queue is full

enumerator kStatus_ASRCOutQueueIdle
ASRC out queue is idle

enumerator kStatus_ASRCInQueueIdle
ASRC in queue is idle

enum _asrc_channel_pair
ASRC channel pair mask.

Values:

enumerator kASRC_ChannelPairA
channel pair A value

enumerator kASRC_ChannelPairB
channel pair B value

enumerator kASRC_ChannelPairC
channel pair C value

ASRC support sample rate .

Values:

enumerator kASRC_SampleRate_8000HZ
asrc sample rate 8KHZ

enumerator kASRC_SampleRate_11025HZ
asrc sample rate 11.025KHZ

enumerator kASRC_SampleRate_12000HZ
asrc sample rate 12KHZ

enumerator kASRC_SampleRate_16000HZ
asrc sample rate 16KHZ

enumerator kASRC_SampleRate_22050HZ
asrc sample rate 22.05KHZ

enumerator kASRC_SampleRate_24000HZ
asrc sample rate 24KHZ

enumerator kASRC_SampleRate_30000HZ
asrc sample rate 30KHZ

232 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC_SampleRate_32000HZ
asrc sample rate 32KHZ

enumerator kASRC_SampleRate_44100HZ
asrc sample rate 44.1KHZ

enumerator kASRC_SampleRate_48000HZ
asrc sample rate 48KHZ

enumerator kASRC_SampleRate_64000HZ
asrc sample rate 64KHZ

enumerator kASRC_SampleRate_88200HZ
asrc sample rate 88.2KHZ

enumerator kASRC_SampleRate_96000HZ
asrc sample rate 96KHZ

enumerator kASRC_SampleRate_128000HZ
asrc sample rate 128KHZ

enumerator kASRC_SampleRate_176400HZ
asrc sample rate 176.4KHZ

enumerator kASRC_SampleRate_192000HZ
asrc sample rate 192KHZ

The ASRC interrupt enable flag .

Values:

enumerator kASRC_FPInWaitStateInterruptEnable
FP in wait state mask

enumerator kASRC_OverLoadInterruptMask
overload interrupt mask

enumerator kASRC_DataOutputCInterruptMask
data output c interrupt mask

enumerator kASRC_DataOutputBInterruptMask
data output b interrupt mask

enumerator kASRC_DataOutputAInterruptMask
data output a interrupt mask

enumerator kASRC_DataInputCInterruptMask
data input c interrupt mask

enumerator kASRC_DataInputBInterruptMask
data input b interrupt mask

enumerator kASRC_DataInputAInterruptMask
data input a interrupt mask

The ASRC interrupt status .

Values:

enumerator kASRC_StatusDSLCounterReady
DSL counter

2.6. ASRC Driver 233



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC_StatusTaskQueueOverLoad
task queue overload

enumerator kASRC_StatusPairCOutputOverLoad
pair c output overload

enumerator kASRC_StatusPairBOutputOverLoad
pair b output overload

enumerator kASRC_StatusPairAOutputOverLoad
pair a output overload

enumerator kASRC_StatusPairCInputOverLoad
pair c input overload

enumerator kASRC_StatusPairBInputOverLoad
pair b input overload

enumerator kASRC_StatusPairAInputOverLoad
pair a input overload

enumerator kASRC_StatusPairCOutputOverflow
pair c output overflow

enumerator kASRC_StatusPairBOutputOverflow
pair b output overflow

enumerator kASRC_StatusPairAOutputOverflow
pair a output overflow

enumerator kASRC_StatusPairCInputUnderflow
pair c input underflow

enumerator kASRC_StatusPairBInputUnderflow
pair b input under flow

enumerator kASRC_StatusPairAInputUnderflow
pair a input underflow

enumerator kASRC_StatusFPInWaitState
FP in wait state

enumerator kASRC_StatusOverloadError
overload error

enumerator kASRC_StatusInputError
input error status

enumerator kASRC_StatusOutputError
output error status

enumerator kASRC_StatusPairCOutputReady
pair c output ready

enumerator kASRC_StatusPairBOutputReady
pair b output ready

enumerator kASRC_StatusPairAOutputReady
pair a output ready

enumerator kASRC_StatusPairCInputReady
pair c input ready

234 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC_StatusPairBInputReady
pair b input ready

enumerator kASRC_StatusPairAInputReady
pair a input ready

enumerator kASRC_StatusPairAInterrupt
pair A interrupt

enumerator kASRC_StatusPairBInterrupt
pair B interrupt

enumerator kASRC_StatusPairCInterrupt
pair C interrupt

ASRC channel pair status .

Values:

enumerator kASRC_OutputFifoNearFull
channel pair output fifo near full

enumerator kASRC_InputFifoNearEmpty
channel pair input fifo near empty

enum _asrc_ratio
ASRC ideal ratio.

Values:

enumerator kASRC_RatioNotUsed
ideal ratio not used

enumerator kASRC_RatioUseInternalMeasured
ideal ratio use internal measure ratio, can be used for real time streaming audio

enumerator kASRC_RatioUseIdealRatio
ideal ratio use manual configure ratio, can be used for the non-real time streaming
audio

enum _asrc_audio_channel
Number of channels in audio data.

Values:

enumerator kASRC_ChannelsNumber1
channel number is 1

enumerator kASRC_ChannelsNumber2
channel number is 2

enumerator kASRC_ChannelsNumber3
channel number is 3

enumerator kASRC_ChannelsNumber4
channel number is 4

enumerator kASRC_ChannelsNumber5
channel number is 5

enumerator kASRC_ChannelsNumber6
channel number is 6

2.6. ASRC Driver 235



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC_ChannelsNumber7
channel number is 7

enumerator kASRC_ChannelsNumber8
channel number is 8

enumerator kASRC_ChannelsNumber9
channel number is 9

enumerator kASRC_ChannelsNumber10
channel number is 10

enum _asrc_data_width
data width

Values:

enumerator kASRC_DataWidth24Bit
data width 24bit

enumerator kASRC_DataWidth16Bit
data width 16bit

enumerator kASRC_DataWidth8Bit
data width 8bit

enum _asrc_data_align
data alignment

Values:

enumerator kASRC_DataAlignMSB
data alignment MSB

enumerator kASRC_DataAlignLSB
data alignment LSB

enum _asrc_sign_extension
sign extension

Values:

enumerator kASRC_NoSignExtension
no sign extension

enumerator kASRC_SignExtension
sign extension

typedef enum _asrc_channel_pair asrc_channel_pair_t
ASRC channel pair mask.

typedef enum _asrc_ratio asrc_ratio_t
ASRC ideal ratio.

typedef enum _asrc_audio_channel asrc_audio_channel_t
Number of channels in audio data.

typedef enum _asrc_data_width asrc_data_width_t
data width

typedef enum _asrc_data_align asrc_data_align_t
data alignment

236 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _asrc_sign_extension asrc_sign_extension_t
sign extension

typedef struct _asrc_channel_pair_config asrc_channel_pair_config_t
asrc channel pair configuation

typedef struct _asrc_transfer asrc_transfer_t
SAI transfer structure.

typedef struct _asrc_handle asrc_handle_t
asrc handler

typedef void (*asrc_transfer_callback_t)(ASRC_Type *base, asrc_handle_t *handle, status_t
status, void *userData)

ASRC transfer callback prototype.

typedef struct _asrc_in_handle asrc_in_handle_t
asrc in handler

typedef struct _asrc_out_handle asrc_out_handle_t
output handler

ASRC_XFER_QUEUE_SIZE
ASRC transfer queue size, user can refine it according to use case.

FSL_ASRC_CHANNEL_PAIR_COUNT
ASRC channel pair count.

FSL_ASRC_CHANNEL_PAIR_FIFO_DEPTH
ASRC FIFO depth.

ASRC_ASRCTR_AT_MASK(index)
ASRC register access macro.

ASRC_ASRCTR_RATIO_MASK(index)

ASRC_ASRCTR_RATIO(ratio, index)

ASRC_ASRIER_INPUT_INTERRUPT_MASK(index)

ASRC_ASRIER_OUTPUTPUT_INTERRUPT_MASK(index)

ASRC_ASRCNCR_CHANNEL_COUNTER_MASK(index)

ASRC_ASRCNCR_CHANNEL_COUNTER(counter, index)

ASRC_ASRCFG_PRE_MODE_MASK(index)

ASRC_ASRCFG_PRE_MODE(mode, index)

ASRC_ASRCFG_POST_MODE_MASK(index)

ASRC_ASRCFG_POST_MODE(mode, index)

ASRC_ASRCFG_INIT_DONE_MASK(index)

ASRC_ASRCSR_INPUT_CLOCK_SOURCE_MASK(index)

ASRC_ASRCSR_INPUT_CLOCK_SOURCE(source, index)

ASRC_ASRCSR_OUTPUT_CLOCK_SOURCE_MASK(index)

ASRC_ASRCSR_OUTPUT_CLOCK_SOURCE(source, index)

2.6. ASRC Driver 237



MCUXpresso SDK Documentation, Release 25.12.00

ASRC_ASRCDR_INPUT_PRESCALER_MASK(index)

ASRC_ASRCDR_INPUT_PRESCALER(prescaler, index)

ASRC_ASRCDR_INPUT_DIVIDER_MASK(index)

ASRC_ASRCDR_INPUT_DIVIDER(divider, index)

ASRC_ASRCDR_OUTPUT_PRESCALER_MASK(index)

ASRC_ASRCDR_OUTPUT_PRESCALER(prescaler, index)

ASRC_ASRCDR_OUTPUT_DIVIDER_MASK(index)

ASRC_ASRCDR_OUTPUT_DIVIDER(divider, index)

ASCR_ASRCDR_OUTPUT_CLOCK_DIVIDER_PRESCALER(value, index)

ASCR_ASRCDR_INPUT_CLOCK_DIVIDER_PRESCALER(value, index)

ASRC_IDEAL_RATIO_HIGH(base, index)

ASRC_IDEAL_RATIO_LOW(base, index)

ASRC_ASRMCR(base, index)

ASRC_ASRMCR1(base, index)

ASRC_ASRDI(base, index)

ASRC_ASRDO(base, index)

ASRC_ASRDI_ADDR(base, index)

ASRC_ASRDO_ADDR(base, index)

ASRC_ASRFST_ADDR(base, index)

ASRC_GET_CHANNEL_COUNTER(base, index)

struct _asrc_channel_pair_config
#include <fsl_asrc.h> asrc channel pair configuation

Public Members

asrc_audio_channel_t audioDataChannels
audio data channel numbers

asrc_clock_source_t inClockSource
input clock source, reference the clock source definition in SOC header file

uint32_t inSourceClock_Hz
input source clock frequency

asrc_clock_source_t outClockSource
output clock source, reference the clock source definition in SOC header file

uint32_t outSourceClock_Hz
output source clock frequency

asrc_ratio_t sampleRateRatio
sample rate ratio type

238 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

asrc_data_width_t inDataWidth
input data width

asrc_data_align_t inDataAlign
input data alignment

asrc_data_width_t outDataWidth
output data width

asrc_data_align_t outDataAlign
output data alignment

asrc_sign_extension_t outSignExtension
output extension

uint8_t outFifoThreshold
output fifo threshold

uint8_t inFifoThreshold
input fifo threshold

bool bufStallWhenFifoEmptyFull
stall Pair A conversion in case of Buffer near empty full condition

struct _asrc_transfer
#include <fsl_asrc.h> SAI transfer structure.

Public Members

void *inData
Data address to convert.

size_t inDataSize
input data size.

void *outData
Data address to store converted data

size_t outDataSize
output data size.

struct _asrc_in_handle
#include <fsl_asrc.h> asrc in handler

Public Members

asrc_transfer_callback_t callback
Callback function called at convert complete

uint32_t sampleWidth
data width

uint32_t sampleMask
data mask

uint32_t fifoThreshold
fifo threshold

uint8_t *asrcQueue[(4U)]
Transfer queue storing queued transfer

2.6. ASRC Driver 239



MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSamples[(4U)]
Data bytes need to convert

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

struct _asrc_out_handle
#include <fsl_asrc.h> output handler

Public Members

asrc_transfer_callback_t callback
Callback function called at convert complete

uint32_t sampleWidth
data width

uint32_t fifoThreshold
fifo threshold

uint8_t *asrcQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSamples[(4U)]
Data bytes need to convert

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

struct _asrc_handle
#include <fsl_asrc.h> ASRC handle structure.

Public Members

ASRC_Type *base
base address

uint32_t state
Transfer status

void *userData
Callback parameter passed to callback function

asrc_audio_channel_t audioDataChannels
audio channel number

asrc_channel_pair_t channelPair
channel pair mask

asrc_in_handle_t in
asrc input handler

asrc_out_handle_t out
asrc output handler

240 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.7 ASRC EDMA Driver

void ASRC_TransferInCreateHandleEDMA(ASRC_Type *base, asrc_edma_handle_t *handle,
asrc_channel_pair_t channelPair,
asrc_edma_callback_t callback, edma_handle_t
*inDmaHandle, const asrc_p2p_edma_config_t
*periphConfig, void *userData)

Initializes the ASRC IN eDMA handle.

This function initializes the ASRC DMA handle, which can be used for other ASRC transac-
tional APIs. Usually, for a specified ASRC channel pair, call this API once to get the initialized
handle.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair

• handle – ASRC eDMA handle pointer.

• callback – Pointer to user callback function.

• inDmaHandle – DMA handler for ASRC in.

• periphConfig – peripheral configuration.

• userData – User parameter passed to the callback function.

void ASRC_TransferOutCreateHandleEDMA(ASRC_Type *base, asrc_edma_handle_t *handle,
asrc_channel_pair_t channelPair,
asrc_edma_callback_t callback, edma_handle_t
*outDmaHandle, const asrc_p2p_edma_config_t
*periphConfig, void *userData)

Initializes the ASRC OUT eDMA handle.

This function initializes the ASRC DMA handle, which can be used for other ASRC transac-
tional APIs. Usually, for a specified ASRC channel pair, call this API once to get the initialized
handle.

Parameters
• base – ASRC base pointer.

• channelPair – ASRC channel pair

• handle – ASRC eDMA handle pointer.

• callback – Pointer to user callback function.

• outDmaHandle – DMA handler for ASRC out.

• periphConfig – peripheral configuration.

• userData – User parameter passed to the callback function.

status_t ASRC_TransferSetChannelPairConfigEDMA(ASRC_Type *base, asrc_edma_handle_t
*handle, asrc_channel_pair_config_t
*asrcConfig, uint32_t inSampleRate,
uint32_t outSampleRate)

Configures the ASRC P2P channel pair.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

• asrcConfig – asrc configurations.

2.7. ASRC EDMA Driver 241



MCUXpresso SDK Documentation, Release 25.12.00

• inSampleRate – ASRC input sample rate.

• outSampleRate – ASRC output sample rate.

uint32_t ASRC_GetOutSamplesSizeEDMA(ASRC_Type *base, asrc_edma_handle_t *handle,
uint32_t inSampleRate, uint32_t outSampleRate,
uint32_t inSamplesize)

Get output sample buffer size can be transferred by edma.

Note: This API is depends on the ASRC output configuration, should be called after the
ASRC_TransferSetChannelPairConfigEDMA.

Parameters
• base – asrc base pointer.

• handle – ASRC channel pair edma handle.

• inSampleRate – input sample rate.

• outSampleRate – output sample rate.

• inSamplesize – input sampleS size.

Return values
output – buffer size in byte.

status_t ASRC_TransferEDMA(ASRC_Type *base, asrc_edma_handle_t *handle, asrc_transfer_t
*xfer)

Performs a non-blocking ASRC m2m convert using EDMA.

Note: This interface returns immediately after the transfer initiates.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

• xfer – Pointer to the DMA transfer structure.

Return values
• kStatus_Success – Start a ASRC eDMA send successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_ASRCQueueFull – ASRC EDMA driver queue is full.

void ASRC_TransferInAbortEDMA(ASRC_Type *base, asrc_edma_handle_t *handle)
Aborts a ASRC IN transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
ASRC_TransferTerminalP2PEDMA.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

242 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void ASRC_TransferOutAbortEDMA(ASRC_Type *base, asrc_edma_handle_t *handle)
Aborts a ASRC OUT transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
ASRC_TransferTerminalP2PEDMA.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

void ASRC_TransferInTerminalEDMA(ASRC_Type *base, asrc_edma_handle_t *handle)
Terminate In ASRC Convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortPP2PEDMA.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

void ASRC_TransferOutTerminalEDMA(ASRC_Type *base, asrc_edma_handle_t *handle)
Terminate Out ASRC Convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortPP2PEDMA.

Parameters
• base – ASRC base pointer.

• handle – ASRC eDMA handle pointer.

FSL_ASRC_EDMA_DRIVER_VERSION
Version 2.2.0

typedef struct _asrc_edma_handle asrc_edma_handle_t

typedef void (*asrc_edma_callback_t)(ASRC_Type *base, asrc_edma_handle_t *handle, status_t
status, void *userData)

ASRC eDMA transfer callback function for finish and error.

typedef void (*asrc_start_peripheral_t)(bool start)
ASRC trigger peripheral function pointer.

typedef struct _asrc_p2p_edma_config asrc_p2p_edma_config_t
destination peripheral configuration

typedef struct _asrc_in_edma_handle asrc_in_edma_handle_t
@ brief asrc in edma handler

typedef struct _asrc_out_edma_handle asrc_out_edma_handle_t
@ brief asrc out edma handler

ASRC_XFER_IN_QUEUE_SIZE
ASRC IN edma QUEUE size.

<

ASRC_XFER_OUT_QUEUE_SIZE

struct _asrc_p2p_edma_config
#include <fsl_asrc_edma.h> destination peripheral configuration

2.7. ASRC EDMA Driver 243



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

asrc_start_peripheral_t startPeripheral
trigger peripheral start

struct _asrc_in_edma_handle
#include <fsl_asrc_edma.h> @ brief asrc in edma handler

Public Members

edma_handle_t *inDmaHandle
DMA handler for ASRC in

uint8_t tcd[(4U + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA send.

uint32_t sampleWidth
input data width

uint32_t fifoThreshold
ASRC input fifo threshold

uint32_t *asrcQueue[4U]
Transfer queue storing queued transfer.

size_t transferSize[4U]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint32_t state
Internal state for ASRC eDMA transfer

const asrc_p2p_edma_config_t *peripheralConfig
peripheral configuration pointer

struct _asrc_out_edma_handle
#include <fsl_asrc_edma.h> @ brief asrc out edma handler

Public Members

edma_handle_t *outDmaHandle
DMA handler for ASRC out

uint8_t tcd[(((4U) * 2U) + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA send.

uint32_t sampleWidth
output data width

uint32_t fifoThreshold
ASRC output fifo threshold

uint32_t *asrcQueue[((4U) * 2U)]
Transfer queue storing queued transfer.

244 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSize[((4U) * 2U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint32_t state
Internal state for ASRC eDMA transfer

const asrc_p2p_edma_config_t *peripheralConfig
peripheral configuration pointer

struct _asrc_edma_handle
#include <fsl_asrc_edma.h> ASRC DMA transfer handle.

Public Members

asrc_in_edma_handle_t in
asrc in handler

asrc_out_edma_handle_t out
asrc out handler

asrc_channel_pair_t channelPair
channel pair

void *userData
User callback parameter

asrc_edma_callback_t callback
Callback for users while transfer finish or error occurs

2.8 CAAM: Cryptographic Acceleration and Assurance Module

FSL_CAAM_DRIVER_VERSION
CAAM driver version.

Current version: 2.4.0

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

– Add Job Ring 2 and 3.

• Version 2.0.2

– Add Data and Instruction Synchronization Barrier in
caam_input_ring_set_jobs_added() to make sure that the descriptor will be
loaded into CAAM correctly.

• Version 2.0.3

– Use MACRO instead of numbers in descriptor.

– Correct descriptor size mask.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 245



MCUXpresso SDK Documentation, Release 25.12.00

• Version 2.1.0

– Add return codes check and handling.

• Version 2.1.1

– Add DCACHE support.

• Version 2.1.2

– Add data offset feature to provide support for mirrored (high-speed) memory.

• Version 2.1.3

– Fix MISRA-2012 issues.

• Version 2.1.4

– Fix MISRA-2012 issues.

• Version 2.1.5

– Support EXTENDED data size for all AES, HASH and RNG operations.

– Support multiple De-Initialization/Initialization of CAAM driver within one POR
event.

• Version 2.1.6

– Improve DCACHE handling. Requires CAAM used and cached memory set in write-
trough mode.

• Version 2.2.0

– Added API for Blob functions and CRC

• Version 2.2.1

– Fixed AES-CCM decrypt failing with TAG length bigger than 8 byte.

• Version 2.2.2

– Modify RNG to not reseed with each request.

• Version 2.2.3

– Fix DCACHE invalidation in CAAM_HASH_Finish().

• Version 2.2.4

– Fix issue where the outputSize parameter of CAAM_HASH_Finish() has impact on
hash calculation.

• Version 2.3.0

– Add support for SHA HMAC.

• Version 2.3.1

– Modified function caam_aes_ccm_check_input_args() to allow payload be empty as
is specified in NIST800-38C Section 5.3.

• Version 2.3.2

– Fix MISRA-2012 issues.

• Version 2.4.0

– Add new APIs for native asymmetric operations (RSA, ECC) instead of only accel-
erating mathematical primitives and support for black keys and blobs for both
symmetric and asymmetric operations.

246 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

CAAM status return codes.

Values:

enumerator kStatus_CAAM_Again
Non-blocking function shall be called again.

enumerator kStatus_CAAM_DataOverflow
Input data too big.

enum _caam_job_ring_t
CAAM job ring selection.

Values:

enumerator kCAAM_JobRing0
CAAM Job ring 0

enumerator kCAAM_JobRing1
CAAM Job ring 1

enumerator kCAAM_JobRing2
CAAM Job ring 2

enumerator kCAAM_JobRing3
CAAM Job ring 3

enum _caam_wait_mode
CAAM driver wait mechanism.

Values:

enumerator kCAAM_Blocking
CAAM_Wait blocking mode

enumerator kCAAM_Nonblocking
CAAM Wait non-blocking mode

enum _caam_rng_sample_mode
CAAM RNG sample mode. Used by caam_config_t.

Values:

enumerator kCAAM_RNG_SampleModeVonNeumann
Use von Neumann data in both Entropy shifter and Statistical Checker.

enumerator kCAAM_RNG_SampleModeRaw
Use raw data into both Entropy shifter and Statistical Checker.

enumerator kCAAM_RNG_SampleModeVonNeumannRaw
Use von Neumann data in Entropy shifter. Use raw data into Statistical Checker.

enum _caam_rng_ring_osc_div
CAAM RNG ring oscillator divide. Used by caam_config_t.

Values:

enumerator kCAAM_RNG_RingOscDiv0
Ring oscillator with no divide

enumerator kCAAM_RNG_RingOscDiv2
Ring oscillator divided-by-2.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 247



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_RNG_RingOscDiv4
Ring oscillator divided-by-4.

enumerator kCAAM_RNG_RingOscDiv8
Ring oscillator divided-by-8.

enum _caam_priblob
CAAM Private Blob. Used by caam_config_t.

Values:

enumerator kCAAM_PrivSecureBootBlobs
Private secure boot software blobs.

enumerator kCAAM_PrivProvisioningBlobsType1
Private Provisioning Type 1 blobs.

enumerator kCAAM_PrivProvisioningBlobsType2
Private Provisioning Type 2 blobs.

enumerator kCAAM_NormalOperationBlobs
Normal operation blobs.

enum _caam_ext_key_xfr_source
CAAM External Key Transfer command SRC (The source from which the key will be ob-
tained)

Values:

enumerator kCAAM_ExtKeyXfr_KeyRegisterClass1
The Class 1 Key Register is the source.

enumerator kCAAM_ExtKeyXfr_KeyRegisterClass2
The Class 2 Key Register is the source.

enumerator kCAAM_ExtKeyXfr_PkhaRamE
The PKHA E RAM is the source.

enum _caam_ecc_ecdsel
Values:

enumerator kCAAM_ECDSEL_P_192

enumerator kCAAM_ECDSEL_P_224

enumerator kCAAM_ECDSEL_P_256

enumerator kCAAM_ECDSEL_P_384

enumerator kCAAM_ECDSEL_P_521

enumerator kCAAM_ECDSEL_brainpoolP160r1

enumerator kCAAM_ECDSEL_brainpoolP160t1

enumerator kCAAM_ECDSEL_brainpoolP192r1

enumerator kCAAM_ECDSEL_brainpoolP192t1

enumerator kCAAM_ECDSEL_brainpoolP224r1

enumerator kCAAM_ECDSEL_brainpoolP224t1

enumerator kCAAM_ECDSEL_brainpoolP256r1

248 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_ECDSEL_brainpoolP256t1

enumerator kCAAM_ECDSEL_brainpoolP320r1

enumerator kCAAM_ECDSEL_brainpoolP320t1

enumerator kCAAM_ECDSEL_brainpoolP384r1

enumerator kCAAM_ECDSEL_brainpoolP384t1

enumerator kCAAM_ECDSEL_brainpoolP512r1

enumerator kCAAM_ECDSEL_brainpoolP512t1

enumerator kCAAM_ECDSEL_prime192v2

enumerator kCAAM_ECDSEL_prime192v3

enumerator kCAAM_ECDSEL_prime239v1

enumerator kCAAM_ECDSEL_prime239v2

enumerator kCAAM_ECDSEL_prime239v3

enumerator kCAAM_ECDSEL_secp112r1

enumerator kCAAM_ECDSEL_wtls8

enumerator kCAAM_ECDSEL_wtls9

enumerator kCAAM_ECDSEL_secp160k1

enumerator kCAAM_ECDSEL_secp160r1

enumerator kCAAM_ECDSEL_secp160r2

enumerator kCAAM_ECDSEL_secp192k1

enumerator kCAAM_ECDSEL_secp224k1

enumerator kCAAM_ECDSEL_secp256k1

enumerator kCAAM_ECDSEL_B_163

enumerator kCAAM_ECDSEL_B_233

enumerator kCAAM_ECDSEL_B_283

enumerator kCAAM_ECDSEL_B_409

enumerator kCAAM_ECDSEL_B_571

enumerator kCAAM_ECDSEL_K_163

enumerator kCAAM_ECDSEL_K_233

enumerator kCAAM_ECDSEL_K_283

enumerator kCAAM_ECDSEL_K_409

enumerator kCAAM_ECDSEL_K_571

enumerator kCAAM_ECDSEL_wtls1

enumerator kCAAM_ECDSEL_sect113r1

2.8. CAAM: Cryptographic Acceleration and Assurance Module 249



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_ECDSEL_c2pnb163v1

enumerator kCAAM_ECDSEL_c2pnb163v2

enumerator kCAAM_ECDSEL_c2pnb163v3

enumerator kCAAM_ECDSEL_sect163r1

enumerator kCAAM_ECDSEL_sect193r1

enumerator kCAAM_ECDSEL_sect193r2

enumerator kCAAM_ECDSEL_sect239k1

typedef struct _caam_job_callback caam_job_callback_t
CAAM callback function.

typedef enum _caam_job_ring_t caam_job_ring_t
CAAM job ring selection.

typedef struct _caam_handle_t caam_handle_t
CAAM handle Specifies jobRing and optionally the user callback function. The user callback
functions is invoked only if jobRing interrupt has been enabled by the user. By default the
jobRing interrupt is disabled (default job complete test is polling CAAM output ring).

typedef enum _caam_wait_mode caam_wait_mode_t
CAAM driver wait mechanism.

typedef uint32_t caam_desc_aes_ecb_t[64]
Memory buffer to hold CAAM descriptor for AESA ECB job.

typedef uint32_t caam_desc_aes_cbc_t[64]
Memory buffer to hold CAAM descriptor for AESA CBC job.

typedef uint32_t caam_desc_aes_ctr_t[64]
Memory buffer to hold CAAM descriptor for AESA CTR job.

typedef uint32_t caam_desc_aes_ccm_t[64]
Memory buffer to hold CAAM descriptor for AESA CCM job.

typedef uint32_t caam_desc_aes_gcm_t[64]
Memory buffer to hold CAAM descriptor for AESA GCM job.

typedef uint32_t caam_desc_hash_t[64]
Memory buffer to hold CAAM descriptor for MDHA job or AESA CMAC job.

typedef uint32_t caam_desc_rng_t[64]
Memory buffer to hold CAAM descriptor for RNG jobs.

typedef uint32_t caam_desc_cipher_des_t[64]
Memory buffer to hold CAAM descriptor for DESA jobs.

typedef uint32_t caam_desc_pkha_t[64]
Memory buffer to hold CAAM descriptor for PKHA jobs.

typedef uint32_t caam_desc_pkha_ecc_t[64]
Memory buffer to hold CAAM descriptor for PKHA ECC jobs.

typedef uint32_t caam_desc_key_black_t[64]
Memory buffer to hold CAAM descriptor for performing key blackening jobs.

typedef uint32_t caam_desc_gen_enc_blob_t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

250 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef uint32_t caam_desc_gen_dep_blob_t[64]

typedef uint32_t caam_desc_rsa_t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

typedef uint32_t caam_desc_ecc_t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

typedef struct _caam_job_ring_interface caam_job_ring_interface_t

typedef enum _caam_rng_sample_mode caam_rng_sample_mode_t
CAAM RNG sample mode. Used by caam_config_t.

typedef enum _caam_rng_ring_osc_div caam_rng_ring_osc_div_t
CAAM RNG ring oscillator divide. Used by caam_config_t.

typedef enum _caam_priblob caam_priblob_t
CAAM Private Blob. Used by caam_config_t.

typedef struct _caam_config caam_config_t
CAAM configuration structure.

typedef enum _caam_ext_key_xfr_source caam_ext_key_xfr_source_t
CAAM External Key Transfer command SRC (The source from which the key will be ob-
tained)

typedef enum _caam_ecc_ecdsel caam_ecc_ecdsel_t

status_t CAAM_Init(CAAM_Type *base, const caam_config_t *config)
Initializes the CAAM driver.

This function initializes the CAAM driver, including CAAM’s internal RNG.

Parameters
• base – CAAM peripheral base address

• config – Pointer to configuration structure.

Returns
kStatus_Success the CAAM Init has completed with zero termination status
word

Returns
kStatus_Fail the CAAM Init has completed with non-zero termination status
word

status_t CAAM_Deinit(CAAM_Type *base)
Deinitializes the CAAM driver. This function deinitializes the CAAM driver.

Parameters
• base – CAAM peripheral base address

Returns
kStatus_Success the CAAM Deinit has completed with zero termination status
word

Returns
kStatus_Fail the CAAM Deinit has completed with non-zero termination status
word

2.8. CAAM: Cryptographic Acceleration and Assurance Module 251



MCUXpresso SDK Documentation, Release 25.12.00

void CAAM_GetDefaultConfig(caam_config_t *config)
Gets the default configuration structure.

This function initializes the CAAM configuration structure to a default
value. The default values are as follows. caamConfig->rngSampleMode
= kCAAM_RNG_SampleModeVonNeumann; caamConfig->rngRingOscDiv =
kCAAM_RNG_RingOscDiv4;

Parameters
• config – [out] Pointer to configuration structure.

status_t CAAM_Wait(CAAM_Type *base, caam_handle_t *handle, uint32_t *descriptor,
caam_wait_mode_t mode)

Wait for a CAAM job to complete.

This function polls CAAM output ring for a specific job.

The CAAM job ring is specified by the jobRing field in the caam_handle_t structure. The job
to be waited is specified by it’s descriptor address.

This function has two modes, determined by the mode argument. In blocking mode, the
function polls the specified jobRing until the descriptor is available in the CAAM output job
ring. In non-blocking mode, it polls the output ring once and returns status immediately.

The function can be called from multiple threads or interrupt service routines, as inter-
nally it uses global critical section (global interrupt disable enable) to protect it’s operation
against concurrent accesses. The global interrupt is disabled only when the descriptor is
found in the output ring, for a very short time, to remove the descriptor from the output
ring safely.

Parameters
• base – CAAM peripheral base address

• handle – Data structure with CAAM jobRing used for this request

• descriptor –

• mode – Blocking and non-blocking mode. Zero is blocking. Non-zero is
non-blocking.

Returns
kStatus_Success the CAAM job has completed with zero job termination status
word

Returns
kStatus_Fail the CAAM job has completed with non-zero job termination status
word

Returns
kStatus_Again In non-blocking mode, the job is not ready in the CAAM Output
Ring

status_t CAAM_ExternalKeyTransfer(CAAM_Type *base, caam_handle_t *handle,
caam_ext_key_xfr_source_t keySource, size_t keySize)

External Key Transfer.

This function loads the given key source to an CAAM external destination via a private
interface, such as Inline Encryption Engine IEE Private Key bus.

The CAAM job ring is specified by the jobRing field in the caam_handle_t structure.

This function is blocking.

Parameters
• base – CAAM peripheral base address

252 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Data structure with CAAM jobRing used for this request.

• keySource – The source from which the key will be obtained.

• keySize – Size of the key in bytes.

Returns
kStatus_Success the CAAM job has completed with zero job termination status
word

Returns
kStatus_Fail the CAAM job has completed with non-zero job termination status
word

struct _caam_job_callback
#include <fsl_caam.h> CAAM callback function.

Public Members

void (*JobCompleted)(void *userData)
CAAM Job complete callback

struct _caam_handle_t
#include <fsl_caam.h> CAAM handle Specifies jobRing and optionally the user callback func-
tion. The user callback functions is invoked only if jobRing interrupt has been enabled by
the user. By default the jobRing interrupt is disabled (default job complete test is polling
CAAM output ring).

Public Members

caam_job_callback_t callback
Callback function

void *userData
Parameter for CAAM job complete callback

struct _caam_job_ring_interface
#include <fsl_caam.h>

struct _caam_config
#include <fsl_caam.h> CAAM configuration structure.

Public Members

caam_rng_sample_mode_t rngSampleMode
RTMCTL Sample Mode.

caam_rng_ring_osc_div_t rngRingOscDiv
RTMCTL Oscillator Divide.

bool scfgrLockTrngProgramMode
SCFGR Lock TRNG Program Mode.

bool scfgrEnableRandomDataBuffer
SCFGR Enable random data buffer.

bool scfgrRandomRngStateHandle0
SCFGR Random Number Generator State Handle 0.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 253



MCUXpresso SDK Documentation, Release 25.12.00

bool scfgrRandomDpaResistance
SCFGR Random Differential Power Analysis Resistance.

caam_priblob_t scfgrPriblob
SCFGR Private Blob.

2.9 CAAM AES driver

status_t CAAM_AES_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t *key,
size_t keySize)

Encrypts AES using the ECB block mode.

Encrypts AES using the ECB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t *key,
size_t keySize)

Decrypts AES using ECB block mode.

Decrypts AES using ECB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key.

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from decrypt operation

status_t CAAM_AES_EncryptEcbExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t *key, size_t keySize, caam_key_type_t
blackKeyType)

Encrypts AES using the ECB block mode using black key.

Encrypts AES using the ECB block mode.

254 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptEcbExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t *key, size_t keySize, caam_key_type_t
blackKeyType)

Decrypts AES using ECB block mode using black key.

Decrypts AES using ECB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key.

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from decrypt operation

status_t CAAM_AES_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[16], const uint8_t *key, size_t keySize)

Encrypts AES using CBC block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

2.9. CAAM AES driver 255



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[16], const uint8_t *key, size_t keySize)

Decrypts AES using CBC block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from decrypt operation

status_t CAAM_AES_EncryptCbcExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t iv[16], const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Encrypts AES using CBC block mode using black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptCbcExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t iv[16], const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Decrypts AES using CBC block mode using black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

256 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from decrypt operation

status_t CAAM_AES_CryptCtr(CAAM_Type *base, caam_handle_t *handle, const uint8_t *input,
uint8_t *output, size_t size, uint8_t counter[16], const uint8_t
*key, size_t keySize, uint8_t counterlast[16], size_t *szLeft)

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• key – Input key to use for forward AES cipher

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• counterlast – [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from encrypt operation

status_t CAAM_AES_CryptCtrExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *input, uint8_t *output, size_t size, uint8_t
counter[16], const uint8_t *key, size_t keySize, uint8_t
counterlast[16], size_t *szLeft, caam_key_type_t
blackKeyType)

Encrypts or decrypts AES using CTR block mode using black key.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
• base – CAAM peripheral base address

2.9. CAAM AES driver 257



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• key – Input key to use for forward AES cipher

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• counterlast – [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

• blackKeyType – Type of black key

Returns
Status from encrypt operation

status_t CAAM_AES_EncryptTagCcm(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t *tag, size_t tagSize)

Encrypts AES and tags using CCM block mode.

Encrypts AES and optionally tags using CCM block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes. Zero means authentication
only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Generated output tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptTagCcm(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const uint8_t *tag, size_t
tagSize)

258 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Decrypts AES and authenticates using CCM block mode.

Decrypts AES and optionally authenticates using CCM block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes. Zero means authentication
data only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Received tag. Set to NULL to skip tag processing.

• tagSize – Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

Returns
Status from decrypt operation

status_t CAAM_AES_EncryptTagCcmExtended(CAAM_Type *base, caam_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Encrypts AES and tags using CCM block mode using black key.

Encrypts AES and optionally tags using CCM block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes. Zero means authentication
only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

• key – Input key to use for encryption

2.9. CAAM AES driver 259



MCUXpresso SDK Documentation, Release 25.12.00

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Generated output tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

• blackKeyType – Type of black key

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptTagCcmExtended(CAAM_Type *base, caam_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, const uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using CCM block mode using black key.

Decrypts AES and optionally authenticates using CCM block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes. Zero means authentication
data only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Received tag. Set to NULL to skip tag processing.

• tagSize – Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

• blackKeyType – Type of black key

Returns
Status from decrypt operation

status_t CAAM_AES_EncryptTagGcm(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t *tag, size_t tagSize)

Encrypts AES and tags using GCM block mode.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field.

Parameters
• base – CAAM peripheral base address

260 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Output hash tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptTagGcm(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const uint8_t *tag, size_t
tagSize)

Decrypts AES and authenticates using GCM block mode.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Input hash tag to compare. Set to NULL to skip tag processing.

• tagSize – Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

Returns
Status from decrypt operation

2.9. CAAM AES driver 261



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_AES_EncryptTagGcmExtended(CAAM_Type *base, caam_handle_t *handle,
const uint8_t *plaintext, uint8_t *ciphertext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Encrypts AES and tags using GCM block mode using black key.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Uses black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Output hash tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

• blackenKeyType – Type of black key

Returns
Status from encrypt operation

status_t CAAM_AES_DecryptTagGcmExtended(CAAM_Type *base, caam_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, const uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using GCM block mode using black key.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Uses
black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes

• iv – Input initial vector

262 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Input hash tag to compare. Set to NULL to skip tag processing.

• tagSize – Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

• blackenKeyType – Type of black key

Returns
Status from decrypt operation

CAAM_AES_BLOCK_SIZE
AES block size in bytes

2.10 CAAM Key Blankening driver

size_t CAAM_BLACK_KeyBlackenSize(caam_fifost_type_t fifostType, size_t dataSize)
Return size of blacken key based on encryption type and data to encrypt size.

Parameters
• fifostType – Type of AES-CBC or AEC-CCM to encrypt plaintext

• dataSize – Size of data to be encrypted

Returns
size_t Size of blacken key.

status_t CAAM_BLACK_GetKeyBlacken(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *data, size_t dataSize, caam_fifost_type_t
fifostType, uint8_t *blackdata)

Construct a black key.

This function constructs a job descriptor capable of performing a key blackening operation
on a plaintext secure memory resident object.

Parameters
• base – CAAM peripheral base address

• handle – jobRing used for this request

• data – Pointer address uses to pointed the plaintext.

• dataSize – Size of the buffer pointed by the data parameter

• fifostType – Type of AES-CBC or AEC-CCM to encrypt plaintext

• blackdata – [out] Pointer address uses to pointed the black key

Returns
Status of the request

2.11 CAAM Blob driver

2.10. CAAM Key Blankening driver 263



MCUXpresso SDK Documentation, Release 25.12.00

enum _caam_fifost_type
CAAM FIFOST types.

Values:

enumerator kCAAM_FIFOST_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_FIFOST_Type_Ecb_Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_FIFOST_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_FIFOST_Type_Ccm_Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_desc_type
CAAM descriptor types.

Values:

enumerator kCAAM_Descriptor_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Descriptor_Type_Ecb_Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_Descriptor_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_Descriptor_Type_Ccm_Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_key_type
CAAM key types.

Values:

enumerator kCAAM_Key_Type_None

enumerator kCAAM_Key_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Key_Type_Ecb_Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_Key_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_Key_Type_Ccm_Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_ecc_encryption_type
CAAM ecc encryption types.

Values:

enumerator kCAAM_Ecc_Encryption_Type_None

enumerator kCAAM_Ecc_Encryption_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Ecc_Encryption_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

264 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _caam_rsa_key_type
CAAM rsa key encryption types.

Values:

enumerator kCAAM_Rsa_Key_Type_None

enumerator kCAAM_Rsa_Key_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Rsa_Key_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enum _caam_rsa_encryption_type
CAAM rsa encryption types.

Values:

enumerator kCAAM_Rsa_Encryption_Type_None

enumerator kCAAM_Rsa_Encryption_Type_Ecb_Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Rsa_Encryption_Type_Ecb_Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_Rsa_Encryption_Type_Ccm_Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_Rsa_Encryption_Type_Ccm_Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_rsa_format_type
Values:

enumerator kCAAM_Rsa_Format_Type_None
No formatting

enumerator kCAAM_Rsa_Format_Type_PKCS1
EME-PKCS1-v1_5 encryption decoding function

typedef enum _caam_fifost_type caam_fifost_type_t
CAAM FIFOST types.

typedef enum _caam_desc_type caam_desc_type_t
CAAM descriptor types.

typedef enum _caam_key_type caam_key_type_t
CAAM key types.

typedef enum _caam_ecc_encryption_type caam_ecc_encryption_type_t
CAAM ecc encryption types.

typedef enum _caam_rsa_key_type caam_rsa_key_type_t
CAAM rsa key encryption types.

typedef enum _caam_rsa_encryption_type caam_rsa_encryption_type_t
CAAM rsa encryption types.

typedef enum _caam_rsa_format_type caam_rsa_format_type_t

2.11. CAAM Blob driver 265



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_RedBlob_Encapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t *data,
size_t dataSize, uint8_t *blob_data)

Construct a encrypted Red Blob.

This function constructs a job descriptor capable of performing a encrypted blob operation
on a plaintext object.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• keyModifier – Address of the random key modifier generated by RNG

• keyModifierSize – Size of keyModifier buffer in bytes

• data – Data adress

• dataSize – Size of the buffer pointed by the data parameter

• blob_data – [out] Output blob data adress

Returns
Status of the request

status_t CAAM_RedBlob_Decapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t
*blob_data, uint8_t *data, size_t dataSize)

Decrypt red blob.

This function constructs a job descriptor capable of performing decrypting red blob .

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• keyModifier – Address of the random key modifier generated by RNG

• keyModifierSize – Size of keyModifier buffer in bytes

• blob_data – Address of blob data

• data – [out] Output data adress.

• dataSize – Size of the buffer pointed by the data parameter in bytes

Returns
Status of the request

status_t CAAM_BlackBlob_Encapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t *data,
size_t dataSize, uint8_t *blob_data, caam_desc_type_t
blackKeyType)

Construct a encrypted Black Blob.

This function constructs a job descriptor capable of performing a encrypted blob operation
on a plaintext object.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• keyModifier – Address of the random key modifier generated by RNG

• keyModifierSize – Size of keyModifier buffer in bytes

266 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• data – Data adress

• dataSize – Size of the buffer pointed by the data parameter

• blob_data – [out] Output blob data adress

• blackKeyType – Type of black key see enum caam_desc_type_t for more info

Returns
Status of the request

status_t CAAM_BlackBlob_Decapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t
*blob_data, uint8_t *data, size_t dataSize,
caam_desc_type_t blackKeyType)

Construct a decrypted black blob.

This function constructs a job descriptor capable of performing decrypting black blob.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• keyModifier – Address of the random key modifier generated by RNG

• keyModifierSize – Size of keyModifier buffer in bytes

• blob_data – Address of blob data

• data – [out] Output data adress.

• dataSize – Size of the buffer pointed by the data parameter in bytes

• blackKeyType – Type of black key see enum caam_desc_type_t for more info

Returns
Status of the request

2.12 CAAM CRC driver

status_t CAAM_CRC_Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,
caam_crc_algo_t algo, const uint8_t *polynomial, size_t
polynomialSize, caam_aai_crc_alg_t mode)

Initialize CRC context.

This function initializes the CRC context. polynomial shall be supplied if the underlaying
algoritm is kCAAM_CrcCUSTPOLY. polynomial shall be NULL if the underlaying algoritm is
kCAAM_CrcIEEE or kCAAM_CrciSCSI.

This functions is used to initialize the context for CAAM_CRC API

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• ctx – [out] Output crc context

• algo – Underlaying algorithm to use for CRC computation

• polynomial – CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or kCAAM_CrciSCSI)

• polynomialSize – Size of polynomial in bytes (0u if underlaying algorithm is
kCAAM_CrcIEEE or kCAAM_CrciSCSI)

2.12. CAAM CRC driver 267



MCUXpresso SDK Documentation, Release 25.12.00

• mode – Specify how CRC engine manipulates its input and output data

Returns
Status of initialization

status_t CAAM_CRC_Update(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
Add data to current CRC.

Add data to current CRC. This can be called repeatedly. The functions blocks. If it returns
kStatus_Success, the running CRC has been updated (CAAM has processed the input data),
so the memory at input pointer can be released back to system. The context is updated with
the running CRC and with all necessary information to support possible context switch.

Parameters
• ctx – [inout] CRC context

• input – Input data

• inputSize – Size of input data in bytes

Returns
Status of the crc update operation

status_t CAAM_CRC_Finish(caam_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize CRC.

Outputs the final CRC (computed by CAAM_CRC_Update()) and erases the context.

Parameters
• ctx – [inout] Input crc context

• output – [out] Output crc data

• outputSize – [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the crc finish operation

status_t CAAM_CRC(CAAM_Type *base, caam_handle_t *handle, caam_crc_algo_t algo,
caam_aai_crc_alg_t mode, const uint8_t *input, size_t inputSize, const
uint8_t *polynomial, size_t polynomialSize, uint8_t *output, size_t
*outputSize)

Create CRC on given data.

Perform CRC in one function call.

Polynomial shall be supplied if underlaying algorithm is kCAAM_CrcCUSTPOLY. Polynomial
shall be NULL if underlaying algorithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI.

The function is blocking.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• algo – Underlaying algorithm to use for crc computation.

• mode – Specify how CRC engine manipulates its input and output data.

• input – Input data

• inputSize – Size of input data in bytes

• polynomial – CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or kCAAM_CrciSCSI)

268 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• polynomialSize – Size of input polynomial in bytes (0U if underlaying algo-
rithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI)

• output – [out] Output crc data

• outputSize – [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the one call crc operation.

status_t CAAM_CRC_NonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_hash_t descriptor, caam_crc_algo_t algo,
caam_aai_crc_alg_t mode, const uint8_t *input, size_t
inputSize, const uint8_t *polynomial, size_t polynomialSize,
uint8_t *output, size_t *outputSize)

Create CRC on given data.

Perform CRC in one function call.

Polynomial shall be supplied if underlaying algorithm is kCAAM_CrcCUSTPOLY. Polynomial
shall be NULL if underlaying algorithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI.

The function is non-blocking. The request is scheduled at CAAM.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• descriptor – [out] Memory for the CAAM descriptor.

• algo – Underlaying algorithm to use for crc computation.

• mode – Specify how CRC engine manipulates its input and output data.

• input – Input data

• inputSize – Size of input data in bytes

• polynomial – CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or kCAAM_CrciSCSI)

• polynomialSize – Size of input polynomial in bytes (0U if underlaying algo-
rithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI)

• output – [out] Output crc data

• outputSize – [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the one call crc operation.

2.13 CAAM DES driver

status_t CAAM_DES_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key[8U])

Encrypts DES using ECB block mode.

Encrypts DES using ECB block mode.

Parameters
• base – CAAM peripheral base address

2.13. CAAM DES driver 269



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key – Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key[8U])

Decrypts DES using ECB block mode.

Decrypts DES using ECB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key – Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using CBC block mode.

Encrypts DES using CBC block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Ouput ciphertext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key – Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using CBC block mode.

Decrypts DES using CBC block mode.

Parameters

270 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key – Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using CFB block mode.

Encrypts DES using CFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• size – Size of input data in bytes

• iv – Input initial block.

• key – Input key to use for encryption

• ciphertext – [out] Output ciphertext

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using CFB block mode.

Decrypts DES using CFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key – Input key to use for decryption

Returns
Status from encrypt/decrypt operation

2.13. CAAM DES driver 271



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES_EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using OFB block mode.

Encrypts DES using OFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key – Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using OFB block mode.

Decrypts DES using OFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key – Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U])

Encrypts triple DES using ECB block mode with two keys.

Encrypts triple DES using ECB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

272 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U])

Decrypts triple DES using ECB block mode with two keys.

Decrypts triple DES using ECB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using CBC block mode with two keys.

Encrypts triple DES using CBC block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using CBC block mode with two keys.

Decrypts triple DES using CBC block mode with two keys.

Parameters
• base – CAAM peripheral base address

2.13. CAAM DES driver 273



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using CFB block mode with two keys.

Encrypts triple DES using CFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using CFB block mode with two keys.

Decrypts triple DES using CFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

274 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES2_EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using OFB block mode with two keys.

Encrypts triple DES using OFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using OFB block mode with two keys.

Decrypts triple DES using OFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using ECB block mode with three keys.

Encrypts triple DES using ECB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

2.13. CAAM DES driver 275



MCUXpresso SDK Documentation, Release 25.12.00

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using ECB block mode with three keys.

Decrypts triple DES using ECB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using CBC block mode with three keys.

Encrypts triple DES using CBC block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

276 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Decrypts triple DES using CBC block mode with three keys.

Decrypts triple DES using CBC block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Encrypts triple DES using CFB block mode with three keys.

Encrypts triple DES using CFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and ouput data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Decrypts triple DES using CFB block mode with three keys.

Decrypts triple DES using CFB block mode with three keys.

2.13. CAAM DES driver 277



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using OFB block mode with three keys.

Encrypts triple DES using OFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Decrypts triple DES using OFB block mode with three keys.

Decrypts triple DES using OFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

278 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from encrypt/decrypt operation

CAAM_DES_KEY_SIZE
CAAM DES key size - 64 bits.

CAAM_DES_IV_SIZE
CAAM DES IV size - 8 bytes.

CAAM_BLACKEN_ECB_SIZE(x)
CAAM blacken key size for ECB encryption.

CAAM_BLACKEN_CCM_SIZE(x)
CAAM blacken key size for CCM encryption.

CAAM_DSA_PUBLIC_KEY_LENGTH(domain)
CAAM DSA public key length for EC domain.

CAAM_ECC_PUBLIC_KEY_LENGTH(domain)
CAAM ECC public key length for EC domain.

CAAM_ECC_PRIVATE_KEY_LENGTH(domain)
CAAM ECC private key length for EC domain.

CAAM_ECC_SECOND_SIGN_BUFFER_SIZE(domain)
CAAM blacken key size for ECB encryption.

The second part of key size and buffer length needed for compution may differ.

2.14 Caam_driver_ecc

size_t CAAM_ECC_PrivateKeySize(caam_ecc_encryption_type_t encryptKeyType,
caam_ecc_ecdsel_t ecdsel)

Return size of private key based on encryption type and ecliptic curve domain.

Parameters
• encryptKeyType – Type of key encryption.

• ecdsel – Elliptic curve domain selection

Returns
size_t Size of private key.

status_t CAAM_ECC_KeyPair(CAAM_Type *base, caam_handle_t *handle, caam_ecc_ecdsel_t
ecdsel, caam_ecc_encryption_type_t encryptKeyType, uint8_t
*privKey, uint8_t *pubKey)

Generates public and private key for ECC.

The buffer size of privKey can be determined using CAAM_ECC_PRIVATE_KEY_LENGTH.
The buffer size of pubKey can be determined using CAAM_ECC_PUBLIC_KEY_LENGTH. For
encrypted privKey, the buffer size can be determined using CAAM_BLACKEN_ECB_SIZE or
CAAM_BLACKEN_CCM_SIZE macros.

2.14. Caam_driver_ecc 279



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• ecdsel – Elliptic curve domain selection

• encryptKeyType – Type of key encryption

• privKey – [out] Private key

• pubKey – [out] Public key

Returns
Operation status.

status_t CAAM_ECC_Sign(CAAM_Type *base, caam_handle_t *handle, const uint8_t *privKey,
const uint8_t *data, size_t dataSize, caam_ecc_ecdsel_t ecdsel,
caam_ecc_encryption_type_t encryptKeyType, uint8_t *signFirst,
uint8_t *signSecond)

Generates signature using ECC.

The buffer size of signFirst can be determined using CAAM_ECC_PRIVATE_KEY_LENGTH.
! The buffer size of signSecond can be determined using
CAAM_ECC_SECOND_SIGN_BUFFER_SIZE.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• privKey – Private key

• data – Hashed data

• dataSize – Hashed data length

• ecdsel – Elliptic curve domain selection

• encryptKeyType – Type of key encryption

• signFirst – [out] First part of the signature

• signSecond – [out] Second part of the signature

Returns
Operation status.

status_t CAAM_ECC_VerifyPublicKey(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*pubKey, const uint8_t *data, size_t dataSize, const
uint8_t *signFirst, const uint8_t *signSecond,
caam_ecc_ecdsel_t ecdsel, uint8_t *tmp)

Verify ECC signature using public key.

The buffer size of tmp can be determined using CAAM_ECC_PUBLIC_KEY_LENGTH.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• pubKey – Public key

• data – Hashed data

• dataSize – Hashed data length

• signFirst – First part of the signature

280 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• signSecond – Second part of the signature

• ecdsel – Elliptic curve domain selection

• tmp – [inout] Temporary storage for intermediate results

Returns
Operation status.

status_t CAAM_ECC_VerifyPrivateKey(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *privKey, const uint8_t *data, size_t dataSize,
const uint8_t *signFirst, const uint8_t *signSecond,
caam_ecc_ecdsel_t ecdsel, caam_ecc_encryption_type_t
encryptKeyType)

Verify ECC signature using private key.

Faster that verifying using public key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• privKey – Private key

• data – Hashed data

• dataSize – Hashed data length

• signFirst – First part of the signature

• signSecond – Second part of the signature

• ecdsel – Elliptic curve domain selection

• encryptKeyType – Type of key encryption

Returns
Operation status.

2.15 CAAM HASH driver

enum _caam_hash_algo_t
Supported cryptographic block cipher functions for HASH creation.

Values:

enumerator kCAAM_XcbcMac
XCBC-MAC (AES engine)

enumerator kCAAM_Cmac
CMAC (AES engine)

enumerator kCAAM_Sha1
SHA_1 (MDHA engine)

enumerator kCAAM_Sha224
SHA_224 (MDHA engine)

enumerator kCAAM_Sha256
SHA_256 (MDHA engine)

enumerator kCAAM_Sha384
SHA_384 (MDHA engine)

2.15. CAAM HASH driver 281



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_Sha512
SHA_512 (MDHA engine)

enumerator kCAAM_HmacSha1
HMAC_SHA_1 (MDHA engine)

enumerator kCAAM_HmacSha224
HMAC_SHA_224 (MDHA engine)

enumerator kCAAM_HmacSha256
HMAC_SHA_256 (MDHA engine)

enumerator kCAAM_HmacSha384
HMAC_SHA_384 (MDHA engine)

enumerator kCAAM_HmacSha512
HMAC_SHA_512 (MDHA engine)

typedef enum _caam_hash_algo_t caam_hash_algo_t
Supported cryptographic block cipher functions for HASH creation.

typedef uint32_t caam_hash_ctx_t[83]
Storage type used to save hash context.

status_t CAAM_HASH_Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,
caam_hash_algo_t algo, const uint8_t *key, size_t keySize)

Initialize HASH context.

This function initializes the HASH. Key shall be supplied if the underlaying algoritm is AES
XCBC-MAC or CMAC. Key shall be NULL if the underlaying algoritm is SHA.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

This functions is used to initialize the context for both blocking and non-blocking
CAAM_HASH API. For blocking CAAM HASH API, the HASH context contains all informa-
tion required for context switch, such as running hash or MAC. For non-blocking CAAM
HASH API, the HASH context is used to hold SGT. Therefore, the HASH context cannot be
shared between blocking and non-blocking HASH API. With one HASH context, either use
only blocking HASH API or only non-blocking HASH API.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• ctx – [out] Output hash context

• algo – Underlaying algorithm to use for hash computation.

• key – Input key (NULL if underlaying algorithm is SHA)

• keySize – Size of input key in bytes

Returns
Status of initialization

status_t CAAM_HASH_Update(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data
to be hashed. The functions blocks. If it returns kStatus_Success, the running hash or mac
has been updated (CAAM has processed the input data), so the memory at input pointer can
be released back to system. The context is updated with the running hash or mac and with
all necessary information to support possible context switch.

282 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• ctx – [inout] HASH context

• input – Input data

• inputSize – Size of input data in bytes

Returns
Status of the hash update operation

status_t CAAM_HASH_Finish(caam_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize hashing.

Outputs the final hash (computed by CAAM_HASH_Update()) and erases the context.

Parameters
• ctx – [inout] Input hash context

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the hash finish operation

status_t CAAM_HASH(CAAM_Type *base, caam_handle_t *handle, caam_hash_algo_t algo,
const uint8_t *input, size_t inputSize, const uint8_t *key, size_t keySize,
uint8_t *output, size_t *outputSize)

Create HASH on given data.

Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC. Key shall be
NULL if the underlaying algoritm is SHA.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

The function is blocking.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• algo – Underlaying algorithm to use for hash computation.

• input – Input data

• inputSize – Size of input data in bytes

• key – Input key (NULL if underlaying algorithm is SHA)

• keySize – Size of input key in bytes

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

CAAM_SHA_BLOCK_SIZE
CAAM HASH Context size.

up to SHA-512 block size

2.15. CAAM HASH driver 283



MCUXpresso SDK Documentation, Release 25.12.00

CAAM_HASH_BLOCK_SIZE
CAAM hash block size

CAAM_HASH_CTX_SIZE
CAAM HASH Context size.

2.16 Caam_driver_hmac

status_t CAAM_HMAC_Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,
caam_hash_algo_t algo, const uint8_t *key, size_t keySize)

Initialize HMAC context.

This function initializes the HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

This functions is used to initialize the context for both blocking and non-blocking
CAAM_HMAC API.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• ctx – [out] Output HMAC context

• algo – Underlaying algorithm to use for HMAC computation.

• key – Input key

• keySize – Size of input key in bytes

Returns
Status of initialization

status_t CAAM_HMAC(CAAM_Type *base, caam_handle_t *handle, caam_hash_algo_t algo,
const uint8_t *input, size_t inputSize, const uint8_t *key, size_t keySize,
uint8_t *output, size_t *outputSize)

Create Message Authentication Code (MAC) on given data.

Perform the full keyed XCBC-MAC/CMAC, or HMAC-SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC, CMAC, or SHA HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For HMAC, the key can have any size.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• algo – Underlaying algorithm to use for MAC computation.

• input – Input data

• inputSize – Size of input data in bytes

• key – Input key

• keySize – Size of input key in bytes

• output – [out] Output MAC data

284 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• outputSize – [out] Output parameter storing the size of the output MAC in
bytes

Returns
Status of the one call hash operation.

2.17 CAAM PKHA driver

enum _caam_pkha_timing_t
Use of timing equalized version of a PKHA function.

Values:

enumerator kCAAM_PKHA_NoTimingEqualized
Normal version of a PKHA operation

enumerator kCAAM_PKHA_TimingEqualized
Timing-equalized version of a PKHA operation

enum _caam_pkha_f2m_t
Integer vs binary polynomial arithmetic selection.

Values:

enumerator kCAAM_PKHA_IntegerArith
Use integer arithmetic

enumerator kCAAM_PKHA_F2mArith
Use binary polynomial arithmetic

enum _caam_pkha_montgomery_form_t
Montgomery or normal PKHA input format.

Values:

enumerator kCAAM_PKHA_NormalValue
PKHA number is normal integer

enumerator kCAAM_PKHA_MontgomeryFormat
PKHA number is in montgomery format

typedef struct _caam_pkha_ecc_point_t caam_pkha_ecc_point_t
PKHA ECC point structure

typedef enum _caam_pkha_timing_t caam_pkha_timing_t
Use of timing equalized version of a PKHA function.

typedef enum _caam_pkha_f2m_t caam_pkha_f2m_t
Integer vs binary polynomial arithmetic selection.

typedef enum _caam_pkha_montgomery_form_t caam_pkha_montgomery_form_t
Montgomery or normal PKHA input format.

int CAAM_PKHA_CompareBigNum(const uint8_t *a, size_t sizeA, const uint8_t *b, size_t sizeB)

status_t CAAM_PKHA_NormalToMontgomery(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *N, size_t sizeN, uint8_t *A, size_t *sizeA,
uint8_t *B, size_t *sizeB, uint8_t *R2, size_t
*sizeR2, caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType)

2.17. CAAM PKHA driver 285



MCUXpresso SDK Documentation, Release 25.12.00

Converts from integer to Montgomery format.

This function computes R2 mod N and optionally converts A or B into Montgomery format
of A or B.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• N – modulus

• sizeN – size of N in bytes

• A – [inout] The first input in non-Montgomery format. Output Mont-
gomery format of the first input.

• sizeA – [inout] pointer to size variable. On input it holds size of input A in
bytes. On output it holds size of Montgomery format of A in bytes.

• B – [inout] Second input in non-Montgomery format. Output Montgomery
format of the second input.

• sizeB – [inout] pointer to size variable. On input it holds size of input B in
bytes. On output it holds size of Montgomery format of B in bytes.

• R2 – [out] Output Montgomery factor R2 mod N.

• sizeR2 – [out] pointer to size variable. On output it holds size of Mont-
gomery factor R2 mod N in bytes.

• equalTime – Run the function time equalized or no timing equalization.

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_MontgomeryToNormal(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *N, size_t sizeN, uint8_t *A, size_t *sizeA,
uint8_t *B, size_t *sizeB, caam_pkha_timing_t
equalTime, caam_pkha_f2m_t arithType)

Converts from Montgomery format to int.

This function converts Montgomery format of A or B into int A or B.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• N – modulus.

• sizeN – size of N modulus in bytes.

• A – [inout] Input first number in Montgomery format. Output is non-
Montgomery format.

• sizeA – [inout] pointer to size variable. On input it holds size of the input
A in bytes. On output it holds size of non-Montgomery A in bytes.

• B – [inout] Input first number in Montgomery format. Output is non-
Montgomery format.

• sizeB – [inout] pointer to size variable. On input it holds size of the input
B in bytes. On output it holds size of non-Montgomery B in bytes.

• equalTime – Run the function time equalized or no timing equalization.

286 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModAdd(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType)

Performs modular addition - (A + B) mod N.

This function performs modular addition of (A + B) mod N, with either integer or binary
polynomial (F2m) inputs. In the F2m form, this function is equivalent to a bitwise XOR and
it is functionally the same as subtraction.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• B – second addend (integer or binary polynomial)

• sizeB – Size of B in bytes

• N – modulus.

• sizeN – Size of N in bytes.

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModSub1(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize)

Performs modular subtraction - (A - B) mod N.

This function performs modular subtraction of (A - B) mod N with integer inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• B – second addend (integer or binary polynomial)

• sizeB – Size of B in bytes

• N – modulus

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

2.17. CAAM PKHA driver 287



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Operation status.

status_t CAAM_PKHA_ModSub2(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize)

Performs modular subtraction - (B - A) mod N.

This function performs modular subtraction of (B - A) mod N, with integer inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• B – second addend (integer or binary polynomial)

• sizeB – Size of B in bytes

• N – modulus

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

Returns
Operation status.

status_t CAAM_PKHA_ModMul(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType, caam_pkha_montgomery_form_t
montIn, caam_pkha_montgomery_form_t montOut,
caam_pkha_timing_t equalTime)

Performs modular multiplication - (A x B) mod N.

This function performs modular multiplication with either integer or binary polynomial
(F2m) inputs. It can optionally specify whether inputs and/or outputs will be in Mont-
gomery form or not.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• B – second addend (integer or binary polynomial)

• sizeB – Size of B in bytes

• N – modulus.

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

• montIn – Format of inputs

288 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• montOut – Format of output

• equalTime – Run the function time equalized or no timing equalization.
This argument is ignored for F2m modular multiplication.

Returns
Operation status.

status_t CAAM_PKHA_ModExp(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, const uint8_t *E,
size_t sizeE, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType, caam_pkha_montgomery_form_t
montIn, caam_pkha_timing_t equalTime)

Performs modular exponentiation - (A^E) mod N.

This function performs modular exponentiation with either integer or binary polynomial
(F2m) inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• N – modulus

• sizeN – Size of N in bytes

• E – exponent

• sizeE – Size of E in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• montIn – Format of A input (normal or Montgomery)

• arithType – Type of arithmetic to perform (integer or F2m)

• equalTime – Run the function time equalized or no timing equalization.

Returns
Operation status.

status_t CAAM_PKHA_ModRed(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result,
size_t *resultSize, caam_pkha_f2m_t arithType)

Performs modular reduction - (A) mod N.

This function performs modular reduction with either integer or binary polynomial (F2m)
inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• N – modulus

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

2.17. CAAM PKHA driver 289



MCUXpresso SDK Documentation, Release 25.12.00

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModInv(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result, size_t
*resultSize, caam_pkha_f2m_t arithType)

Performs modular inversion - (A^-1) mod N.

This function performs modular inversion with either integer or binary polynomial (F2m)
inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first addend (integer or binary polynomial)

• sizeA – Size of A in bytes

• N – modulus

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModR2(CAAM_Type *base, caam_handle_t *handle, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType)

Computes integer Montgomery factor R^2 mod N.

This function computes a constant to assist in converting operands into the Montgomery
residue system representation.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• N – modulus

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModGcd(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result,
size_t *resultSize, caam_pkha_f2m_t arithType)

Calculates the greatest common divisor - GCD (A, N).

290 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

This function calculates the greatest common divisor of two inputs with either integer or
binary polynomial (F2m) inputs.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – first value (must be smaller than or equal to N)

• sizeA – Size of A in bytes

• N – second value (must be non-zero)

• sizeN – Size of N in bytes

• result – [out] Output array to store result of operation

• resultSize – [out] Output size of operation in bytes

• arithType – Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_PrimalityTest(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*A, size_t sizeA, const uint8_t *B, size_t sizeB, const
uint8_t *N, size_t sizeN, bool *res)

Executes Miller-Rabin primality test.

This function calculates whether or not a candidate prime number is likely to be a prime.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• A – initial random seed

• sizeA – Size of A in bytes

• B – number of trial runs

• sizeB – Size of B in bytes

• N – candidate prime integer

• sizeN – Size of N in bytes

• res – [out] True if the value is likely prime or false otherwise

Returns
Operation status.

status_t CAAM_PKHA_ECC_PointAdd(CAAM_Type *base, caam_handle_t *handle, const
caam_pkha_ecc_point_t *A, const
caam_pkha_ecc_point_t *B, const uint8_t *N, const
uint8_t *R2modN, const uint8_t *aCurveParam, const
uint8_t *bCurveParam, size_t size, caam_pkha_f2m_t
arithType, caam_pkha_ecc_point_t *result)

Adds elliptic curve points - A + B.

This function performs ECC point addition over a prime field (Fp) or binary field (F2m)
using affine coordinates.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

2.17. CAAM PKHA driver 291



MCUXpresso SDK Documentation, Release 25.12.00

• A – Left-hand point

• B – Right-hand point

• N – Prime modulus of the field

• R2modN – NULL (the function computes R2modN internally) or pointer to
pre-computed R2modN (obtained from CAAM_PKHA_ModR2() function).

• aCurveParam – A parameter from curve equation

• bCurveParam – B parameter from curve equation (constant)

• size – Size in bytes of curve points and parameters

• arithType – Type of arithmetic to perform (integer or F2m)

• result – [out] Result point

Returns
Operation status.

status_t CAAM_PKHA_ECC_PointDouble(CAAM_Type *base, caam_handle_t *handle, const
caam_pkha_ecc_point_t *B, const uint8_t *N, const
uint8_t *aCurveParam, const uint8_t *bCurveParam,
size_t size, caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)

Doubles elliptic curve points - B + B.

This function performs ECC point doubling over a prime field (Fp) or binary field (F2m)
using affine coordinates.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• B – Point to double

• N – Prime modulus of the field

• aCurveParam – A parameter from curve equation

• bCurveParam – B parameter from curve equation (constant)

• size – Size in bytes of curve points and parameters

• arithType – Type of arithmetic to perform (integer or F2m)

• result – [out] Result point

Returns
Operation status.

status_t CAAM_PKHA_ECC_PointMul(CAAM_Type *base, caam_handle_t *handle, const
caam_pkha_ecc_point_t *A, const uint8_t *E, size_t sizeE,
const uint8_t *N, const uint8_t *R2modN, const uint8_t
*aCurveParam, const uint8_t *bCurveParam, size_t size,
caam_pkha_timing_t equalTime, caam_pkha_f2m_t
arithType, caam_pkha_ecc_point_t *result)

Multiplies an elliptic curve point by a scalar - E x (A0, A1).

This function performs ECC point multiplication to multiply an ECC point by a scalar integer
multiplier over a prime field (Fp) or a binary field (F2m).

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

292 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• A – Point as multiplicand

• E – Scalar multiple

• sizeE – The size of E, in bytes

• N – Modulus, a prime number for the Fp field or Irreducible polynomial
for F2m field.

• R2modN – NULL (the function computes R2modN internally) or pointer to
pre-computed R2modN (obtained from CAAM_PKHA_ModR2() function).

• aCurveParam – A parameter from curve equation

• bCurveParam – B parameter from curve equation (C parameter for opera-
tion over F2m).

• size – Size in bytes of curve points and parameters

• equalTime – Run the function time equalized or no timing equalization.

• arithType – Type of arithmetic to perform (integer or F2m)

• result – [out] Result point

Returns
Operation status.

struct _caam_pkha_ecc_point_t
#include <fsl_caam.h> PKHA ECC point structure

Public Members

uint8_t *X
X coordinate (affine)

uint8_t *Y
Y coordinate (affine)

2.18 CAAM RNG driver

enum _caam_rng_state_handle
CAAM RNG state handle.

Values:

enumerator kCAAM_RngStateHandle0
CAAM RNG state handle 0

enumerator kCAAM_RngStateHandle1
CAAM RNG state handle 1

enum _caam_rng_random_type
Type of random data to generate.

Values:

enumerator kCAAM_RngDataAny
CAAM RNG any random data bytes

enumerator kCAAM_RngDataOddParity
CAAM RNG odd parity random data bytes

2.18. CAAM RNG driver 293



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_RngDataNonZero
CAAM RNG non zero random data bytes

typedef enum _caam_rng_state_handle caam_rng_state_handle_t
CAAM RNG state handle.

typedef enum _caam_rng_random_type caam_rng_random_type_t
Type of random data to generate.

typedef uint32_t caam_rng_generic256_t[256 / sizeof(uint32_t)]
256-bit value used as optional additional entropy input

typedef struct _caam_rng_user_config caam_rng_config_t
CAAM RNG configuration.

status_t CAAM_RNG_GetDefaultConfig(caam_rng_config_t *config)
Initializes user configuration structure to default.

This function initializes the configure structure to default value. the default value are:

config->autoReseedInterval = 0;
config->personalString = NULL;

Parameters
• config – User configuration structure.

Returns
status of the request

status_t CAAM_RNG_Init(CAAM_Type *base, caam_handle_t *handle, caam_rng_state_handle_t
stateHandle, const caam_rng_config_t *config)

Instantiate the CAAM RNG state handle.

This function instantiates CAAM RNG state handle. The function is blocking and returns
after CAAM has processed the request.

Parameters
• base – CAAM peripheral base address

• handle – CAAM jobRing used for this request

• stateHandle – RNG state handle to instantiate

• config – Pointer to configuration structure.

Returns
Status of the request

status_t CAAM_RNG_Deinit(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle)

Uninstantiate the CAAM RNG state handle.

This function uninstantiates CAAM RNG state handle. The function is blocking and returns
after CAAM has processed the request.

Parameters
• base – CAAM peripheral base address

• handle – jobRing used for this request.

• stateHandle – RNG state handle to uninstantiate

Returns
Status of the request

294 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_RNG_GenerateSecureKey(CAAM_Type *base, caam_handle_t *handle,
caam_rng_generic256_t additionalEntropy)

Generate Secure Key.

This function generates random data writes it to Secure Key registers. The function is block-
ing and returns after CAAM has processed the request. RNG state handle 0 is always used.

Parameters
• base – CAAM peripheral base address

• handle – jobRing used for this request

• additionalEntropy – NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

status_t CAAM_RNG_Reseed(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle, caam_rng_generic256_t
additionalEntropy)

Reseed the CAAM RNG state handle.

This function reseeds the CAAM RNG state handle. For a state handle in nondeterministic
mode, the DRNG is seeded with 384 bits of entropy from the TRNG and an optional 256-bit
additional input from the descriptor via the Class 1 Context Register.

The function is blocking and returns after CAAM has processed the request.

Parameters
• base – CAAM peripheral base address

• handle – jobRing used for this request

• stateHandle – RNG state handle to reseed

• additionalEntropy – NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

status_t CAAM_RNG_GetRandomData(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle, uint8_t *data,
size_t dataSize, caam_rng_random_type_t dataType,
caam_rng_generic256_t additionalEntropy)

Get random data.

This function gets random data from CAAM RNG.

The function is blocking and returns after CAAM has generated the requested data or an
error occurred.

Parameters
• base – CAAM peripheral base address

• handle – jobRing used for this request

• stateHandle – RNG state handle used to generate random data

• data – [out] Pointer address used to store random data

• dataSize – Size of the buffer pointed by the data parameter

• dataType – Type of random data to be generated

• additionalEntropy – NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

2.18. CAAM RNG driver 295



MCUXpresso SDK Documentation, Release 25.12.00

struct _caam_rng_user_config
#include <fsl_caam.h> CAAM RNG configuration.

Public Members

uint32_t autoReseedInterval
Automatic reseed internal. If set to zero, CAAM RNG will use hardware default interval
of 10.000.000 generate requests.

caam_rng_generic256_t *personalString
NULL or pointer to optional personalization string

2.19 Caam_driver_rsa

size_t CAAM_RSA_PrivateExponentSize(caam_rsa_key_type_t prvKeyType, uint32_t
privExponentSize)

Return size for private key buffer based on encryption type and ecliptic curve domain.

Parameters
• prvKeyType – Type of private key

• privExponentSize – Expected length of private exponent without encryption
padding.

Returns
size_t Size for private key buffer.

status_t CAAM_RSA_KeyPair(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*primeP, const uint8_t *primeQ, uint32_t primesSize, const
uint8_t *pubExponent, uint32_t pubExponentSize,
caam_rsa_key_type_t prvKeyType, uint8_t *modulus, uint32_t
modulusSize, uint8_t *privExponent, size_t *privExponentSize)

Generates RSA key.

Generates modulus N and private exponent D give prime numbers P and Q and public ex-
ponent E. Public key is {E,N}. Private key is {D,N}.

! privExponentSize value may differ for different P abd Q with same bit length. For en-
crypted privExponent, the buffer size can be determined using CAAM_BLACKEN_ECB_SIZE
or CAAM_BLACKEN_CCM_SIZE macros.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• primeP – Prime number P

• primeQ – Prime number Q

• primesSize – Byte length of primeP or primeQ (primeP and primeQ must
have the same byte length)

• pubExponent – Public exponent E

• pubExponentSize – Byte length of pubExponent

• prvKeyType – Type of private key

• modulus – [out] Buffer for calculated modulus N

• modulusSize – Byte length of modulus buffer

296 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• privExponent – [out] Buffer for calculated private exponent D

• privExponentSize – [out] Byte length of calculated private exponent.

Returns
Operation status.

status_t CAAM_RSA_Encrypt(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plainText, uint32_t plainTextSize, const uint8_t *modulus,
uint32_t modulusSize, const uint8_t *pubExponent, uint32_t
pubExponentSize, caam_rsa_encryption_type_t dataOutType,
caam_rsa_format_type_t format, uint8_t *cipherText)

Performs the RSA public key primitive.

Performs the RSA public key primitive which can be used when encrypting a secret or ver-
ifying a signature.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plainText – Input data

• plainTextize – Byte length of the input data

• modulus – Modulus N

• modulusSize – Byte length of modulus

• pubExponent – Public exponent E

• pubExponentSize – Byte length of pubExponent

• dataOutType – Type of encryption of output data

• cipherText – [out] Buffer for RSA encrypted data

Returns
Operation status

status_t CAAM_RSA_Decrypt(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*cipherText, const uint8_t *modulus, uint32_t modulusSize,
const uint8_t *privExponent, uint32_t privExponentSize,
caam_rsa_encryption_type_t prvKeyType,
caam_rsa_encryption_type_t dataOutType,
caam_rsa_format_type_t format, uint8_t *plainText, size_t
*rsaDecSize)

Performs the RSA private key primitive.

Performs the RSA private key primitive which can be used when decrypting a secret or
creating a siganture.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• cipherText – Input data

• modulus – Moulus N

• modulusSize – Byte length of modulus

• privExponent – Private exponent D

• privExponentSize – Byte length of privExponent

• prvKeyType – Type of private key encryption

2.19. Caam_driver_rsa 297



MCUXpresso SDK Documentation, Release 25.12.00

• dataOutType – Type of encryption of output data

• plainText – [out] Buffer for RSA encrypted data

• rsaDecSize – [out] Returned output size

Returns
Operation status

2.20 CAAM Blocking APIs

2.21 CAAM Non-blocking APIs

2.22 CAAM Non-blocking AES driver

status_t CAAM_AES_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ecb_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t *key, size_t keySize)

Encrypts AES using the ECB block mode.

Puts AES ECB encrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ecb_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t *key, size_t keySize)

Decrypts AES using ECB block mode.

Puts AES ECB decrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

298 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• key – Input key.

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptEcbNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ecb_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *key, size_t keySize,
caam_key_type_t blackKeyType)

Encrypts AES using the ECB block mode using black key.

Puts AES ECB encrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• plaintext – Input plain text to encrypt

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptEcbNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ecb_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *key, size_t keySize,
caam_key_type_t blackKeyType)

Decrypts AES using ECB block mode using black key.

Puts AES ECB decrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• key – Input key.

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

2.22. CAAM Non-blocking AES driver 299



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_cbc_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t keySize)

Encrypts AES using CBC block mode.

Puts AES CBC encrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_cbc_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t keySize)

Decrypts AES using CBC block mode.

Puts AES CBC decrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptCbcNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_cbc_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

300 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Encrypts AES using CBC block mode using black key.

Puts AES CBC encrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptCbcNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_cbc_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Decrypts AES using CBC block mode using black key.

Puts AES CBC decrypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text

• size – Size of input and output data in bytes. Must be multiple of 16 bytes.

• iv – Input initial vector to combine with the first input block.

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

status_t CAAM_AES_CryptCtrNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ctr_t descriptor, const uint8_t
*input, uint8_t *output, size_t size, uint8_t *counter,
const uint8_t *key, size_t keySize, uint8_t
*counterlast, size_t *szLeft)

2.22. CAAM Non-blocking AES driver 301



MCUXpresso SDK Documentation, Release 25.12.00

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Puts AES CTR crypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

• key – Input key to use for forward AES cipher

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• counterlast – [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from job descriptor push

status_t CAAM_AES_CryptCtrNonBlockingExtended(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ctr_t descriptor, const
uint8_t *input, uint8_t *output, size_t size,
uint8_t *counter, const uint8_t *key, size_t
keySize, uint8_t *counterlast, size_t *szLeft,
caam_key_type_t blackKeyType)

Encrypts or decrypts AES using CTR block mode using black key.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Puts AES CTR crypt descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• input – Input data for CTR block mode

• output – [out] Output data for CTR block mode

• size – Size of input and output data in bytes

• counter – [inout] Input counter (updates on return)

302 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• key – Input key to use for forward AES cipher

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• counterlast – [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

• szLeft – [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptTagCcmNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor, const
uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*key, size_t keySize, uint8_t *tag, size_t
tagSize)

Encrypts AES and tags using CCM block mode.

Puts AES CCM encrypt and tag descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes. Zero means authentication
only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Generated output tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptTagCcmNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor, const
uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*key, size_t keySize, const uint8_t *tag, size_t
tagSize)

2.22. CAAM Non-blocking AES driver 303



MCUXpresso SDK Documentation, Release 25.12.00

Decrypts AES and authenticates using CCM block mode.

Puts AES CCM decrypt and check tag descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes. Zero means authentication
data only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Received tag. Set to NULL to skip tag processing.

• tagSize – Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptTagCcmNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ccm_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t
*tag, size_t tagSize, caam_key_type_t
blackKeyType)

Encrypts AES and tags using CCM block mode using black key.

Puts AES CCM encrypt and tag descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes. Zero means authentication
only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

304 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Generated output tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptTagCcmNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ccm_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const
uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using CCM block mode using black key.

Puts AES CCM decrypt and check tag descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes. Zero means authentication
data only.

• iv – Nonce

• ivSize – Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

• aad – Input additional authentication data. Can be NULL if aadSize is zero.

• aadSize – Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

• key – Input key to use for decryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Received tag. Set to NULL to skip tag processing.

• tagSize – Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

• blackKeyType – Type of black key

Returns
Status from job descriptor push

2.22. CAAM Non-blocking AES driver 305



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_AES_EncryptTagGcmNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor, const
uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*key, size_t keySize, uint8_t *tag, size_t
tagSize)

Encrypts AES and tags using GCM block mode.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Puts AES GCM encrypt and tag descriptor
to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Output hash tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptTagGcmNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor, const
uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*key, size_t keySize, const uint8_t *tag, size_t
tagSize)

Decrypts AES and authenticates using GCM block mode.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Puts
AES GCM decrypt and check tag descriptor to CAAM input job ring.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

306 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Input hash tag to compare. Set to NULL to skip tag processing.

• tagSize – Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

Returns
Status from job descriptor push

status_t CAAM_AES_EncryptTagGcmNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_gcm_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t
*tag, size_t tagSize, caam_key_type_t
blackKeyType)

Encrypts AES and tags using GCM block mode using black key.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Puts AES GCM encrypt and tag descriptor
to CAAM input job ring. Uses black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• plaintext – Input plain text to encrypt

• ciphertext – [out] Output cipher text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – [out] Output hash tag. Set to NULL to skip tag processing.

• tagSize – Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

• blackenKeyType – Type of black key

2.22. CAAM Non-blocking AES driver 307



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from job descriptor push

status_t CAAM_AES_DecryptTagGcmNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_gcm_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const
uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using GCM block mode using black key.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Puts
AES GCM decrypt and check tag descriptor to CAAM input job ring. Uses black key.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] Memory for the CAAM descriptor.

• ciphertext – Input cipher text to decrypt

• plaintext – [out] Output plain text.

• size – Size of input and output data in bytes

• iv – Input initial vector

• ivSize – Size of the IV

• aad – Input additional authentication data

• aadSize – Input size in bytes of AAD

• key – Input key to use for encryption

• keySize – Size of the input key, in bytes. Must be 16, 24, or 32.

• tag – Input hash tag to compare. Set to NULL to skip tag processing.

• tagSize – Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

• blackenKeyType – Type of black key

Returns
Status from job descriptor push

2.23 CAAM Non-blocking DES driver

status_t CAAM_DES_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key[8U])

Encrypts DES using ECB block mode.

Encrypts DES using ECB block mode.

Parameters
• base – CAAM peripheral base address

308 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key – Input key to use for encryption

Returns
Status from descriptor push

status_t CAAM_DES_DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key[8U])

Decrypts DES using ECB block mode.

Decrypts DES using ECB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key – Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using CBC block mode.

Encrypts DES using CBC block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Ouput ciphertext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key – Input key to use for encryption

Returns
Status from descriptor push

2.23. CAAM Non-blocking DES driver 309



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES_DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using CBC block mode.

Decrypts DES using CBC block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key – Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using CFB block mode.

Encrypts DES using CFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• size – Size of input data in bytes

• iv – Input initial block.

• key – Input key to use for encryption

• ciphertext – [out] Output ciphertext

Returns
Status from descriptor push

status_t CAAM_DES_DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using CFB block mode.

Decrypts DES using CFB block mode.

Parameters
• base – CAAM peripheral base address

310 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key – Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using OFB block mode.

Encrypts DES using OFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key – Input key to use for encryption

Returns
Status from descriptor push

status_t CAAM_DES_DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using OFB block mode.

Decrypts DES using OFB block mode.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

2.23. CAAM Non-blocking DES driver 311



MCUXpresso SDK Documentation, Release 25.12.00

• key – Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using ECB block mode with two keys.

Encrypts triple DES using ECB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using ECB block mode with two keys.

Decrypts triple DES using ECB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Encrypts triple DES using CBC block mode with two keys.

Encrypts triple DES using CBC block mode with two keys.

312 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using CBC block mode with two keys.

Decrypts triple DES using CBC block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Encrypts triple DES using CFB block mode with two keys.

Encrypts triple DES using CFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

2.23. CAAM Non-blocking DES driver 313



MCUXpresso SDK Documentation, Release 25.12.00

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using CFB block mode with two keys.

Decrypts triple DES using CFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Encrypts triple DES using OFB block mode with two keys.

Encrypts triple DES using OFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

314 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using OFB block mode with two keys.

Decrypts triple DES using OFB block mode with two keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using ECB block mode with three keys.

Encrypts triple DES using ECB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

2.23. CAAM Non-blocking DES driver 315



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from descriptor push

status_t CAAM_DES3_DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Decrypts triple DES using ECB block mode with three keys.

Decrypts triple DES using ECB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes. Must be multiple of 8 bytes.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using CBC block mode with three keys.

Encrypts triple DES using CBC block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

316 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using CBC block mode with three keys.

Decrypts triple DES using CBC block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using CFB block mode with three keys.

Encrypts triple DES using CFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and ouput data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

2.23. CAAM Non-blocking DES driver 317



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using CFB block mode with three keys.

Decrypts triple DES using CFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input data in bytes

• iv – Input initial block.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using OFB block mode with three keys.

Encrypts triple DES using OFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• plaintext – Input plaintext to encrypt

• ciphertext – [out] Output ciphertext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

318 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using OFB block mode with three keys.

Decrypts triple DES using OFB block mode with three keys.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request. Specifies jobRing.

• descriptor – [out] memory for CAAM commands

• ciphertext – Input ciphertext to decrypt

• plaintext – [out] Output plaintext

• size – Size of input and output data in bytes

• iv – Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

• key1 – First input key for key bundle

• key2 – Second input key for key bundle

• key3 – Third input key for key bundle

Returns
Status from descriptor push

2.24 CAAM Non-blocking HASH driver

status_t CAAM_HASH_UpdateNonBlocking(caam_hash_ctx_t *ctx, const uint8_t *input, size_t
inputSize)

Add input address and size to input data table.

Add data input pointer to a table maintained internally in the context. Each call of this
function creates one entry in the table. The entry consists of the input pointer and in-
putSize. All entries created by one or multiple calls of this function can be processed
in one call to CAAM_HASH_FinishNonBlocking() function. Individual entries can point to
non-continuous data in the memory. The processing will occur in the order in which the
CAAM_HASH_UpdateNonBlocking() have been called.

Memory pointers will be later accessed by CAAM (at time of
CAAM_HASH_FinishNonBlocking()), so the memory must stay valid until
CAAM_HASH_FinishNonBlocking() has been called and CAAM completes the process-
ing.

Parameters
• ctx – [inout] HASH context

• input – Input data

• inputSize – Size of input data in bytes

Returns
Status of the hash update operation

2.24. CAAM Non-blocking HASH driver 319



MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_HASH_FinishNonBlocking(caam_hash_ctx_t *ctx, caam_desc_hash_t descriptor,
uint8_t *output, size_t *outputSize)

Finalize hashing.

The actual algorithm is computed with all input data, the memory pointers are accessed by
CAAM after the function returns. The input data chunks have been specified by prior calls
to CAAM_HASH_UpdateNonBlocking(). The function schedules the request at CAAM, then
returns. After a while, when the CAAM completes processing of the input data chunks, the
result is written to the output[] array, outputSize is written and the context is cleared.

Parameters
• ctx – [inout] Input hash context

• descriptor – [out] Memory for the CAAM descriptor.

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the hash finish operation

status_t CAAM_HASH_NonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_hash_t descriptor, caam_hash_algo_t algo, const
uint8_t *input, size_t inputSize, const uint8_t *key, size_t
keySize, uint8_t *output, size_t *outputSize)

Create HASH on given data.

Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC. Key shall be
NULL if the underlaying algoritm is SHA.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

The function is non-blocking. The request is scheduled at CAAM.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• descriptor – [out] Memory for the CAAM descriptor.

• algo – Underlaying algorithm to use for hash computation.

• input – Input data

• inputSize – Size of input data in bytes

• key – Input key (NULL if underlaying algorithm is SHA)

• keySize – Size of input key in bytes

• output – [out] Output hash data

• outputSize – [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

320 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.25 Caam_nonblocking_driver_hmac

status_t CAAM_HMAC_NonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_hash_t descriptor, caam_hash_algo_t algo,
const uint8_t *input, size_t inputSize, const uint8_t *key,
size_t keySize, uint8_t *output, size_t *outputSize)

Create Message Authentication Code (MAC) on given data.

Perform the full keyed XCBC-MAC/CMAC, or HMAC-SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC, CMAC, or SHA HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For HMAC, the key can have any size, however the func-
tion will block if the supplied key is bigger than the block size of the underlying hashing
algorithm (e.g. >64 bytes for SHA256).

The function is not blocking with the exception of supplying large key sizes. In that case the
function will block until the large key is hashed down with the supplied hashing algorithm
(as per FIPS 198-1), after which operation is resumed to calling non-blocking HMAC.

Parameters
• base – CAAM peripheral base address

• handle – Handle used for this request.

• descriptor – [out] Memory for the CAAM descriptor.

• algo – Underlaying algorithm to use for MAC computation.

• input – Input data

• inputSize – Size of input data in bytes

• key – Input key

• keySize – Size of input key in bytes

• output – [out] Output MAC data

• outputSize – [out] Output parameter storing the size of the output MAC in
bytes

Returns
Status of the one call hash operation.

2.26 CAAM Non-blocking RNG driver

status_t CAAM_RNG_GetRandomDataNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
caam_desc_rng_t descriptor, void *data,
size_t dataSize, caam_rng_random_type_t
dataType, caam_rng_generic256_t
additionalEntropy)

Request random data.

This function schedules the request for random data from CAAM RNG. Memory at memory
pointers will be accessed by CAAM shortly after this function returns, according to actual
CAAM schedule.

Parameters
• base – CAAM peripheral base address

2.25. Caam_nonblocking_driver_hmac 321



MCUXpresso SDK Documentation, Release 25.12.00

• handle – RNG handle used for this request

• stateHandle – RNG state handle used to generate random data

• descriptor – [out] memory for CAAM commands

• data – [out] Pointer address used to store random data

• dataSize – Size of the buffer pointed by the data parameter, in bytes.

• dataType – Type of random data to be generated.

• additionalEntropy – NULL or Pointer to optional 256-bit additional entropy.

Returns
status of the request

2.27 CACHE: ARMV7-M7 CACHE Memory Controller

static inline void L1CACHE_EnableICache(void)
Enables cortex-m7 L1 instruction cache.

static inline void L1CACHE_DisableICache(void)
Disables cortex-m7 L1 instruction cache.

static inline void L1CACHE_InvalidateICache(void)
Invalidate cortex-m7 L1 instruction cache.

void L1CACHE_InvalidateICacheByRange(uint32_t address, uint32_t size_byte)
Invalidate cortex-m7 L1 instruction cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 I-cache line size if startAddr is not aligned. For the size_byte, ap-
plication should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
• address – The start address of the memory to be invalidated.

• size_byte – The memory size.

static inline void L1CACHE_EnableDCache(void)
Enables cortex-m7 L1 data cache.

static inline void L1CACHE_DisableDCache(void)
Disables cortex-m7 L1 data cache.

static inline void L1CACHE_InvalidateDCache(void)
Invalidates cortex-m7 L1 data cache.

static inline void L1CACHE_CleanDCache(void)
Cleans cortex-m7 L1 data cache.

static inline void L1CACHE_CleanInvalidateDCache(void)
Cleans and Invalidates cortex-m7 L1 data cache.

322 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void L1CACHE_InvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
• address – The start address of the memory to be invalidated.

• size_byte – The memory size.

static inline void L1CACHE_CleanDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
• address – The start address of the memory to be cleaned.

• size_byte – The memory size.

static inline void L1CACHE_CleanInvalidateDCacheByRange(uint32_t address, uint32_t
size_byte)

Cleans and Invalidates cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
• address – The start address of the memory to be clean and invalidated.

• size_byte – The memory size.

void ICACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all instruction caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

2.27. CACHE: ARMV7-M7 CACHE Memory Controller 323



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

void DCACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

void DCACHE_CleanByRange(uint32_t address, uint32_t size_byte)
Cleans all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be cleaned.

void DCACHE_CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be cleaned and invalidated.

FSL_CACHE_DRIVER_VERSION
cache driver version 2.0.4.

324 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.28 CACHE: LMEM CACHE Memory Controller

void L1CACHE_EnableCodeCache(void)
Enables the processor code bus cache.

void L1CACHE_DisableCodeCache(void)
Disables the processor code bus cache.

void L1CACHE_InvalidateCodeCache(void)
Invalidates the processor code bus cache.

void L1CACHE_InvalidateCodeCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates processor code bus cache by range.

Note: Address and size should be aligned to “L1CODCACHE_LINESIZE_BYTE”. The star-
tAddr here will be forced to align to L1CODEBUSCACHE_LINESIZE_BYTE if startAddr is not
aligned. For the size_byte, application should make sure the alignment or make sure the
right operation order if the size_byte is not aligned.

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be invalidated.

void L1CACHE_CleanCodeCache(void)
Cleans the processor code bus cache.

void L1CACHE_CleanCodeCacheByRange(uint32_t address, uint32_t size_byte)
Cleans processor code bus cache by range.

Note: Address and size should be aligned to “L1CODEBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1CODEBUSCACHE_LINESIZE_BYTE if startAddr is
not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be cleaned.

void L1CACHE_CleanInvalidateCodeCache(void)
Cleans and invalidates the processor code bus cache.

void L1CACHE_CleanInvalidateCodeCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and invalidate processor code bus cache by range.

Note: Address and size should be aligned to “L1CODEBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1CODEBUSCACHE_LINESIZE_BYTE if startAddr is
not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be Cleaned and Invalidated.

2.28. CACHE: LMEM CACHE Memory Controller 325



MCUXpresso SDK Documentation, Release 25.12.00

static inline void L1CACHE_EnableCodeCacheWriteBuffer(bool enable)
Enables/disables the processor code bus write buffer.

Parameters
• enable – The enable or disable flag. true - enable the code bus write buffer.

false - disable the code bus write buffer.

void L1CACHE_EnableSystemCache(void)
Enables the processor system bus cache.

void L1CACHE_DisableSystemCache(void)
Disables the processor system bus cache.

void L1CACHE_InvalidateSystemCache(void)
Invalidates the processor system bus cache.

void L1CACHE_InvalidateSystemCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates processor system bus cache by range.

Note: Address and size should be aligned to “L1SYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1SYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be invalidated.

void L1CACHE_CleanSystemCache(void)
Cleans the processor system bus cache.

void L1CACHE_CleanSystemCacheByRange(uint32_t address, uint32_t size_byte)
Cleans processor system bus cache by range.

Note: Address and size should be aligned to “L1SYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1SYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be cleaned.

void L1CACHE_CleanInvalidateSystemCache(void)
Cleans and invalidates the processor system bus cache.

void L1CACHE_CleanInvalidateSystemCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates processor system bus cache by range.

Note: Address and size should be aligned to “L1SYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1SYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

326 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• address – The physical address of cache.

• size_byte – size of the memory to be Clean and Invalidated.

static inline void L1CACHE_EnableSystemCacheWriteBuffer(bool enable)
Enables/disables the processor system bus write buffer.

Parameters
• enable – The enable or disable flag. true - enable the code bus write buffer.

false - disable the code bus write buffer.

void L1CACHE_InvalidateICacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m4 L1 instrument cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE) aligned.

Parameters
• address – The start address of the memory to be invalidated.

• size_byte – The memory size.

static inline void L1CACHE_InvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m4 L1 data cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters
• address – The start address of the memory to be invalidated.

• size_byte – The memory size.

void L1CACHE_CleanDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cortex-m4 L1 data cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters
• address – The start address of the memory to be cleaned.

• size_byte – The memory size.

void L1CACHE_CleanInvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates cortex-m4 L1 data cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters
• address – The start address of the memory to be clean and invalidated.

2.28. CACHE: LMEM CACHE Memory Controller 327



MCUXpresso SDK Documentation, Release 25.12.00

• size_byte – The memory size.

static inline void ICACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates instruction cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1ICACHE_LINESIZE_BYTE. The startAddr here will be forced to align to the
cache line size if startAddr is not aligned. For the size_byte, application should make sure
the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

static inline void DCACHE_InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be invalidated.

static inline void DCACHE_CleanByRange(uint32_t address, uint32_t size_byte)
Clean data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be cleaned.

static inline void DCACHE_CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
• address – The physical address.

• size_byte – size of the memory to be Cleaned and Invalidated.

328 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_CACHE_DRIVER_VERSION
cache driver version.

L1CODEBUSCACHE_LINESIZE_BYTE
code bus cache line size is equal to system bus line size, so the unified I/D cache line size
equals too.

The code bus CACHE line size is 16B = 128b.

L1SYSTEMBUSCACHE_LINESIZE_BYTE
The system bus CACHE line size is 16B = 128b.

2.29 CDOG

status_t CDOG_Init(CDOG_Type *base, cdog_config_t *conf)
Initialize CDOG.

This function initializes CDOG block and setting.

Parameters
• base – CDOG peripheral base address

• conf – CDOG configuration structure

Returns
Status of the init operation

void CDOG_Deinit(CDOG_Type *base)
Deinitialize CDOG.

This function deinitializes CDOG secure counter.

Parameters
• base – CDOG peripheral base address

void CDOG_GetDefaultConfig(cdog_config_t *conf)
Sets the default configuration of CDOG.

This function initialize CDOG config structure to default values.

Parameters
• conf – CDOG configuration structure

void CDOG_Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.

This function stops instruction timer and secure counter. This also change state od CDOG
to IDLE.

Parameters
• base – CDOG peripheral base address

• stop – expected value which will be compared with value of secure counter

void CDOG_Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in RELOAD and START registers for instruction timer and secure
counter

Parameters
• base – CDOG peripheral base address

2.29. CDOG 329



MCUXpresso SDK Documentation, Release 25.12.00

• reload – reload value

• start – start value

void CDOG_Check(CDOG_Type *base, uint32_t check)
Checks secure counter.

This function compares stop value in handler with secure counter value by writting to
RELOAD refister.

Parameters
• base – CDOG peripheral base address

• check – expected (stop) value

void CDOG_Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in STOP, RELOAD and START registers for instruction timer and
secure counter.

Parameters
• base – CDOG peripheral base address

• stop – expected value which will be compared with value of secure counter

• reload – reload value for instruction timer

• start – start value for secure timer

void CDOG_Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.

This function add specified value to secure counter.

Parameters
• base – CDOG peripheral base address.

• add – Value to be added.

void CDOG_Add1(CDOG_Type *base)
Add 1 to secure counter.

This function add 1 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add16(CDOG_Type *base)
Add 16 to secure counter.

This function add 16 to secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Add256(CDOG_Type *base)
Add 256 to secure counter.

This function add 256 to secure counter.

Parameters
• base – CDOG peripheral base address.

330 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void CDOG_Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter

This function substract specified value to secure counter.

param base CDOG peripheral base address. param sub Value to be substracted.

void CDOG_Sub1(CDOG_Type *base)
Substract 1 from secure counter.

This function substract specified 1 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub16(CDOG_Type *base)
Substract 16 from secure counter.

This function substract specified 16 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_Sub256(CDOG_Type *base)
Substract 256 from secure counter.

This function substract specified 256 from secure counter.

Parameters
• base – CDOG peripheral base address.

void CDOG_WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

• value – The value to be written.

uint32_t CDOG_ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.

Parameters
• base – CDOG peripheral base address.

Returns
The persistent word.

FSL_CDOG_DRIVER_VERSION
Defines CDOG driver version 2.1.3.

Change log:

• Version 2.1.3

– Re-design multiple instance IRQs and Clocks

– Add fix for RESTART command errata

• Version 2.1.2

– Support multiple IRQs

– Fix default CONTROL values

• Version 2.1.1

2.29. CDOG 331



MCUXpresso SDK Documentation, Release 25.12.00

– Remove bit CONTROL[CONTROL_CTRL]

• Version 2.1.0

– Rename CWT to CDOG

• Version 2.0.2

– Fix MISRA-2012 issues

• Version 2.0.1

– Fix doxygen issues

• Version 2.0.0

– initial version

enum __cdog_debug_Action_ctrl_enum
Values:

enumerator kCDOG_DebugHaltCtrl_Run

enumerator kCDOG_DebugHaltCtrl_Pause

enum __cdog_irq_pause_ctrl_enum
Values:

enumerator kCDOG_IrqPauseCtrl_Run

enumerator kCDOG_IrqPauseCtrl_Pause

enum __cdog_fault_ctrl_enum
Values:

enumerator kCDOG_FaultCtrl_EnableReset

enumerator kCDOG_FaultCtrl_EnableInterrupt

enumerator kCDOG_FaultCtrl_NoAction

enum __code_lock_ctrl_enum
Values:

enumerator kCDOG_LockCtrl_Lock

enumerator kCDOG_LockCtrl_Unlock

typedef uint32_t secure_counter_t

SC_ADD(add)

SC_ADD1

SC_ADD16

SC_ADD256

SC_SUB(sub)

SC_SUB1

SC_SUB16

SC_SUB256

SC_CHECK(val)

struct cdog_config_t
#include <fsl_cdog.h>

332 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.30 Clock Driver

enum _clock_lpcg
Clock LPCG index.

Values:

enumerator kCLOCK_M7
Clock LPCG M7.

enumerator kCLOCK_M4
Clock LPCG M4.

enumerator kCLOCK_Sim_M7
Clock LPCG SIM M7.

enumerator kCLOCK_Sim_M
Clock LPCG SIM M4.

enumerator kCLOCK_Sim_Disp
Clock LPCG SIM DISP.

enumerator kCLOCK_Sim_Per
Clock LPCG SIM PER.

enumerator kCLOCK_Sim_Lpsr
Clock LPCG SIM LPSR.

enumerator kCLOCK_Anadig
Clock LPCG Anadig.

enumerator kCLOCK_Dcdc
Clock LPCG DCDC.

enumerator kCLOCK_Src
Clock LPCG SRC.

enumerator kCLOCK_Ccm
Clock LPCG CCM.

enumerator kCLOCK_Gpc
Clock LPCG GPC.

enumerator kCLOCK_Ssarc
Clock LPCG SSARC.

enumerator kCLOCK_Sim_R
Clock LPCG SIM_R.

enumerator kCLOCK_Wdog1
Clock LPCG WDOG1.

enumerator kCLOCK_Wdog2
Clock LPCG WDOG2.

enumerator kCLOCK_Wdog3
Clock LPCG WDOG3.

enumerator kCLOCK_Wdog4
Clock LPCG WDOG4.

enumerator kCLOCK_Ewm0
Clock LPCG EWM0.

2.30. Clock Driver 333



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Sema
Clock LPCG SEMA.

enumerator kCLOCK_Mu_A
Clock LPCG MU_A.

enumerator kCLOCK_Mu_B
Clock LPCG MU_B.

enumerator kCLOCK_Edma
Clock LPCG EDMA.

enumerator kCLOCK_Edma_Lpsr
Clock LPCG EDMA_LPSR.

enumerator kCLOCK_Romcp
Clock LPCG ROMCP.

enumerator kCLOCK_Ocram
Clock LPCG OCRAM.

enumerator kCLOCK_Flexram
Clock LPCG FLEXRAM.

enumerator kCLOCK_Lmem
Clock LPCG Lmem.

enumerator kCLOCK_Flexspi1
Clock LPCG Flexspi1.

enumerator kCLOCK_Flexspi2
Clock LPCG Flexspi2.

enumerator kCLOCK_Rdc
Clock LPCG RDC.

enumerator kCLOCK_M7_Xrdc
Clock LPCG M7 XRDC.

enumerator kCLOCK_M4_Xrdc
Clock LPCG M4 XRDC.

enumerator kCLOCK_Semc
Clock LPCG SEMC.

enumerator kCLOCK_Xecc
Clock LPCG XECC.

enumerator kCLOCK_Iee
Clock LPCG IEE.

enumerator kCLOCK_Key_Manager
Clock LPCG KEY_MANAGER.

enumerator kCLOCK_Puf
Clock LPCG PUF.

enumerator kCLOCK_Ocotp
Clock LPCG OSOTP.

enumerator kCLOCK_Snvs_Hp
Clock LPCG SNVS_HP.

334 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Snvs
Clock LPCG SNVS.

enumerator kCLOCK_Caam
Clock LPCG Caam.

enumerator kCLOCK_Jtag_Mux
Clock LPCG JTAG_MUX.

enumerator kCLOCK_Cstrace
Clock LPCG CSTRACE.

enumerator kCLOCK_Xbar1
Clock LPCG XBAR1.

enumerator kCLOCK_Xbar2
Clock LPCG XBAR2.

enumerator kCLOCK_Xbar3
Clock LPCG XBAR3.

enumerator kCLOCK_Aoi1
Clock LPCG AOI1.

enumerator kCLOCK_Aoi2
Clock LPCG AOI2.

enumerator kCLOCK_Adc_Etc
Clock LPCG ADC_ETC.

enumerator kCLOCK_Iomuxc
Clock LPCG IOMUXC.

enumerator kCLOCK_Iomuxc_Lpsr
Clock LPCG IOMUXC_LPSR.

enumerator kCLOCK_Gpio
Clock LPCG GPIO.

enumerator kCLOCK_Kpp
Clock LPCG KPP.

enumerator kCLOCK_Flexio1
Clock LPCG FLEXIO1.

enumerator kCLOCK_Flexio2
Clock LPCG FLEXIO2.

enumerator kCLOCK_Lpadc1
Clock LPCG LPADC1.

enumerator kCLOCK_Lpadc2
Clock LPCG LPADC2.

enumerator kCLOCK_Dac
Clock LPCG DAC.

enumerator kCLOCK_Acmp1
Clock LPCG ACMP1.

enumerator kCLOCK_Acmp2
Clock LPCG ACMP2.

2.30. Clock Driver 335



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Acmp3
Clock LPCG ACMP3.

enumerator kCLOCK_Acmp4
Clock LPCG ACMP4.

enumerator kCLOCK_Pit1
Clock LPCG PIT1.

enumerator kCLOCK_Pit2
Clock LPCG PIT2.

enumerator kCLOCK_Gpt1
Clock LPCG GPT1.

enumerator kCLOCK_Gpt2
Clock LPCG GPT2.

enumerator kCLOCK_Gpt3
Clock LPCG GPT3.

enumerator kCLOCK_Gpt4
Clock LPCG GPT4.

enumerator kCLOCK_Gpt5
Clock LPCG GPT5.

enumerator kCLOCK_Gpt6
Clock LPCG GPT6.

enumerator kCLOCK_Qtimer1
Clock LPCG QTIMER1.

enumerator kCLOCK_Qtimer2
Clock LPCG QTIMER2.

enumerator kCLOCK_Qtimer3
Clock LPCG QTIMER3.

enumerator kCLOCK_Qtimer4
Clock LPCG QTIMER4.

enumerator kCLOCK_Enc1
Clock LPCG Enc1.

enumerator kCLOCK_Enc2
Clock LPCG Enc2.

enumerator kCLOCK_Enc3
Clock LPCG Enc3.

enumerator kCLOCK_Enc4
Clock LPCG Enc4.

enumerator kCLOCK_Hrtimer
Clock LPCG Hrtimer.

enumerator kCLOCK_Pwm1
Clock LPCG PWM1.

enumerator kCLOCK_Pwm2
Clock LPCG PWM2.

336 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Pwm3
Clock LPCG PWM3.

enumerator kCLOCK_Pwm4
Clock LPCG PWM4.

enumerator kCLOCK_Can1
Clock LPCG CAN1.

enumerator kCLOCK_Can2
Clock LPCG CAN2.

enumerator kCLOCK_Can3
Clock LPCG CAN3.

enumerator kCLOCK_Lpuart1
Clock LPCG LPUART1.

enumerator kCLOCK_Lpuart2
Clock LPCG LPUART2.

enumerator kCLOCK_Lpuart3
Clock LPCG LPUART3.

enumerator kCLOCK_Lpuart4
Clock LPCG LPUART4.

enumerator kCLOCK_Lpuart5
Clock LPCG LPUART5.

enumerator kCLOCK_Lpuart6
Clock LPCG LPUART6.

enumerator kCLOCK_Lpuart7
Clock LPCG LPUART7.

enumerator kCLOCK_Lpuart8
Clock LPCG LPUART8.

enumerator kCLOCK_Lpuart9
Clock LPCG LPUART9.

enumerator kCLOCK_Lpuart10
Clock LPCG LPUART10.

enumerator kCLOCK_Lpuart11
Clock LPCG LPUART11.

enumerator kCLOCK_Lpuart12
Clock LPCG LPUART12.

enumerator kCLOCK_Lpi2c1
Clock LPCG LPI2C1.

enumerator kCLOCK_Lpi2c2
Clock LPCG LPI2C2.

enumerator kCLOCK_Lpi2c3
Clock LPCG LPI2C3.

enumerator kCLOCK_Lpi2c4
Clock LPCG LPI2C4.

2.30. Clock Driver 337



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Lpi2c5
Clock LPCG LPI2C5.

enumerator kCLOCK_Lpi2c6
Clock LPCG LPI2C6.

enumerator kCLOCK_Lpspi1
Clock LPCG LPSPI1.

enumerator kCLOCK_Lpspi2
Clock LPCG LPSPI2.

enumerator kCLOCK_Lpspi3
Clock LPCG LPSPI3.

enumerator kCLOCK_Lpspi4
Clock LPCG LPSPI4.

enumerator kCLOCK_Lpspi5
Clock LPCG LPSPI5.

enumerator kCLOCK_Lpspi6
Clock LPCG LPSPI6.

enumerator kCLOCK_Sim1
Clock LPCG SIM1.

enumerator kCLOCK_Sim2
Clock LPCG SIM2.

enumerator kCLOCK_Enet
Clock LPCG ENET.

enumerator kCLOCK_Enet_1g
Clock LPCG ENET 1G.

enumerator kCLOCK_Enet_Qos
Clock LPCG ENET QOS.

enumerator kCLOCK_Usb
Clock LPCG USB.

enumerator kCLOCK_Cdog
Clock LPCG CDOG.

enumerator kCLOCK_Usdhc1
Clock LPCG USDHC1.

enumerator kCLOCK_Usdhc2
Clock LPCG USDHC2.

enumerator kCLOCK_Asrc
Clock LPCG ASRC.

enumerator kCLOCK_Mqs
Clock LPCG MQS.

enumerator kCLOCK_Pdm
Clock LPCG PDM.

enumerator kCLOCK_Spdif
Clock LPCG SPDIF.

338 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Sai1
Clock LPCG SAI1.

enumerator kCLOCK_Sai2
Clock LPCG SAI2.

enumerator kCLOCK_Sai3
Clock LPCG SAI3.

enumerator kCLOCK_Sai4
Clock LPCG SAI4.

enumerator kCLOCK_Pxp
Clock LPCG PXP.

enumerator kCLOCK_Gpu2d
Clock LPCG GPU2D.

enumerator kCLOCK_Lcdif
Clock LPCG LCDIF.

enumerator kCLOCK_Lcdifv2
Clock LPCG LCDIFV2.

enumerator kCLOCK_Mipi_Dsi
Clock LPCG MIPI DSI.

enumerator kCLOCK_Mipi_Csi
Clock LPCG MIPI CSI.

enumerator kCLOCK_Csi
Clock LPCG CSI.

enumerator kCLOCK_Dcic_Mipi
Clock LPCG DCIC MIPI.

enumerator kCLOCK_Dcic_Lcd
Clock LPCG DCIC LCD.

enumerator kCLOCK_Video_Mux
Clock LPCG VIDEO MUX.

enumerator kCLOCK_Uniq_Edt_I
Clock LPCG Uniq_Edt_I.

enumerator kCLOCK_IpInvalid
Invalid value.

enum _clock_name
Clock name.

Values:

enumerator kCLOCK_OscRc16M
16MHz RC Oscillator.

enumerator kCLOCK_OscRc48M
48MHz RC Oscillator.

enumerator kCLOCK_OscRc48MDiv2
48MHz RC Oscillator Div2.

2.30. Clock Driver 339



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_OscRc400M
400MHz RC Oscillator.

enumerator kCLOCK_Osc24M
24MHz Oscillator.

enumerator kCLOCK_Osc24MOut
48MHz Oscillator Out.

enumerator kCLOCK_ArmPll
ARM PLL.

enumerator kCLOCK_ArmPllOut
ARM PLL Out.

enumerator kCLOCK_SysPll2
SYS PLL2.

enumerator kCLOCK_SysPll2Out
SYS PLL2 OUT.

enumerator kCLOCK_SysPll2Pfd0
SYS PLL2 PFD0.

enumerator kCLOCK_SysPll2Pfd1
SYS PLL2 PFD1.

enumerator kCLOCK_SysPll2Pfd2
SYS PLL2 PFD2.

enumerator kCLOCK_SysPll2Pfd3
SYS PLL2 PFD3.

enumerator kCLOCK_SysPll3
SYS PLL3.

enumerator kCLOCK_SysPll3Out
SYS PLL3 OUT.

enumerator kCLOCK_SysPll3Div2
SYS PLL3 DIV2

enumerator kCLOCK_SysPll3Pfd0
SYS PLL3 PFD0.

enumerator kCLOCK_SysPll3Pfd1
SYS PLL3 PFD1

enumerator kCLOCK_SysPll3Pfd2
SYS PLL3 PFD2

enumerator kCLOCK_SysPll3Pfd3
SYS PLL3 PFD3

enumerator kCLOCK_SysPll1
SYS PLL1.

enumerator kCLOCK_SysPll1Out
SYS PLL1 OUT.

enumerator kCLOCK_SysPll1Div2
SYS PLL1 DIV2.

340 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_SysPll1Div5
SYS PLL1 DIV5.

enumerator kCLOCK_AudioPll
SYS AUDIO PLL.

enumerator kCLOCK_AudioPllOut
SYS AUDIO PLL OUT.

enumerator kCLOCK_VideoPll
SYS VIDEO PLL.

enumerator kCLOCK_VideoPllOut
SYS VIDEO PLL OUT.

enumerator kCLOCK_CpuClk
SYS CPU CLK.

enumerator kCLOCK_CoreSysClk
SYS CORE SYS CLK.

enum _clock_root
Root clock index.

Values:

enumerator kCLOCK_Root_M7
CLOCK Root M7.

enumerator kCLOCK_Root_M4
CLOCK Root M4.

enumerator kCLOCK_Root_Bus
CLOCK Root Bus.

enumerator kCLOCK_Root_Bus_Lpsr
CLOCK Root Bus Lpsr.

enumerator kCLOCK_Root_Semc
CLOCK Root Semc.

enumerator kCLOCK_Root_Cssys
CLOCK Root Cssys.

enumerator kCLOCK_Root_Cstrace
CLOCK Root Cstrace.

enumerator kCLOCK_Root_M4_Systick
CLOCK Root M4 Systick.

enumerator kCLOCK_Root_M7_Systick
CLOCK Root M7 Systick.

enumerator kCLOCK_Root_Adc1
CLOCK Root Adc1.

enumerator kCLOCK_Root_Adc2
CLOCK Root Adc2.

enumerator kCLOCK_Root_Acmp
CLOCK Root Acmp.

2.30. Clock Driver 341



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_Flexio1
CLOCK Root Flexio1.

enumerator kCLOCK_Root_Flexio2
CLOCK Root Flexio2.

enumerator kCLOCK_Root_Gpt1
CLOCK Root Gpt1.

enumerator kCLOCK_Root_Gpt2
CLOCK Root Gpt2.

enumerator kCLOCK_Root_Gpt3
CLOCK Root Gpt3.

enumerator kCLOCK_Root_Gpt4
CLOCK Root Gpt4.

enumerator kCLOCK_Root_Gpt5
CLOCK Root Gpt5.

enumerator kCLOCK_Root_Gpt6
CLOCK Root Gpt6.

enumerator kCLOCK_Root_Flexspi1
CLOCK Root Flexspi1.

enumerator kCLOCK_Root_Flexspi2
CLOCK Root Flexspi2.

enumerator kCLOCK_Root_Can1
CLOCK Root Can1.

enumerator kCLOCK_Root_Can2
CLOCK Root Can2.

enumerator kCLOCK_Root_Can3
CLOCK Root Can3.

enumerator kCLOCK_Root_Lpuart1
CLOCK Root Lpuart1.

enumerator kCLOCK_Root_Lpuart2
CLOCK Root Lpuart2.

enumerator kCLOCK_Root_Lpuart3
CLOCK Root Lpuart3.

enumerator kCLOCK_Root_Lpuart4
CLOCK Root Lpuart4.

enumerator kCLOCK_Root_Lpuart5
CLOCK Root Lpuart5.

enumerator kCLOCK_Root_Lpuart6
CLOCK Root Lpuart6.

enumerator kCLOCK_Root_Lpuart7
CLOCK Root Lpuart7.

enumerator kCLOCK_Root_Lpuart8
CLOCK Root Lpuart8.

342 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_Lpuart9
CLOCK Root Lpuart9.

enumerator kCLOCK_Root_Lpuart10
CLOCK Root Lpuart10.

enumerator kCLOCK_Root_Lpuart11
CLOCK Root Lpuart11.

enumerator kCLOCK_Root_Lpuart12
CLOCK Root Lpuart12.

enumerator kCLOCK_Root_Lpi2c1
CLOCK Root Lpi2c1.

enumerator kCLOCK_Root_Lpi2c2
CLOCK Root Lpi2c2.

enumerator kCLOCK_Root_Lpi2c3
CLOCK Root Lpi2c3.

enumerator kCLOCK_Root_Lpi2c4
CLOCK Root Lpi2c4.

enumerator kCLOCK_Root_Lpi2c5
CLOCK Root Lpi2c5.

enumerator kCLOCK_Root_Lpi2c6
CLOCK Root Lpi2c6.

enumerator kCLOCK_Root_Lpspi1
CLOCK Root Lpspi1.

enumerator kCLOCK_Root_Lpspi2
CLOCK Root Lpspi2.

enumerator kCLOCK_Root_Lpspi3
CLOCK Root Lpspi3.

enumerator kCLOCK_Root_Lpspi4
CLOCK Root Lpspi4.

enumerator kCLOCK_Root_Lpspi5
CLOCK Root Lpspi5.

enumerator kCLOCK_Root_Lpspi6
CLOCK Root Lpspi6.

enumerator kCLOCK_Root_Emv1
CLOCK Root Emv1.

enumerator kCLOCK_Root_Emv2
CLOCK Root Emv2.

enumerator kCLOCK_Root_Enet1
CLOCK Root Enet1.

enumerator kCLOCK_Root_Enet2
CLOCK Root Enet2.

enumerator kCLOCK_Root_Enet_Qos
CLOCK Root Enet Qos.

2.30. Clock Driver 343



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_Enet_25m
CLOCK Root Enet 25M.

enumerator kCLOCK_Root_Enet_Timer1
CLOCK Root Enet Timer1.

enumerator kCLOCK_Root_Enet_Timer2
CLOCK Root Enet Timer2.

enumerator kCLOCK_Root_Enet_Timer3
CLOCK Root Enet Timer3.

enumerator kCLOCK_Root_Usdhc1
CLOCK Root Usdhc1.

enumerator kCLOCK_Root_Usdhc2
CLOCK Root Usdhc2.

enumerator kCLOCK_Root_Asrc
CLOCK Root Asrc.

enumerator kCLOCK_Root_Mqs
CLOCK Root Mqs.

enumerator kCLOCK_Root_Mic
CLOCK Root MIC.

enumerator kCLOCK_Root_Spdif
CLOCK Root Spdif

enumerator kCLOCK_Root_Sai1
CLOCK Root Sai1.

enumerator kCLOCK_Root_Sai2
CLOCK Root Sai2.

enumerator kCLOCK_Root_Sai3
CLOCK Root Sai3.

enumerator kCLOCK_Root_Sai4
CLOCK Root Sai4.

enumerator kCLOCK_Root_Gc355
CLOCK Root Gc355.

enumerator kCLOCK_Root_Lcdif
CLOCK Root Lcdif.

enumerator kCLOCK_Root_Lcdifv2
CLOCK Root Lcdifv2.

enumerator kCLOCK_Root_Mipi_Ref
CLOCK Root Mipi Ref.

enumerator kCLOCK_Root_Mipi_Esc
CLOCK Root Mipi Esc.

enumerator kCLOCK_Root_Csi2
CLOCK Root Csi2.

enumerator kCLOCK_Root_Csi2_Esc
CLOCK Root Csi2 Esc.

344 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_Csi2_Ui
CLOCK Root Csi2 Ui.

enumerator kCLOCK_Root_Csi
CLOCK Root Csi.

enumerator kCLOCK_Root_Cko1
CLOCK Root CKo1.

enumerator kCLOCK_Root_Cko2
CLOCK Root CKo2.

enum _clock_root_mux_source
The enumerator of clock roots’ clock source mux value.

Values:

enumerator kCLOCK_M7_ClockRoot_MuxOscRc48MDiv2
M7 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_M7_ClockRoot_MuxOsc24MOut
M7 mux from MuxOsc24MOut.

enumerator kCLOCK_M7_ClockRoot_MuxOscRc400M
M7 mux from MuxOscRc400M.

enumerator kCLOCK_M7_ClockRoot_MuxOscRc16M
M7 mux from MuxOscRc16M.

enumerator kCLOCK_M7_ClockRoot_MuxArmPllOut
M7 mux from MuxArmPllOut.

enumerator kCLOCK_M7_ClockRoot_MuxSysPll1Out
M7 mux from MuxSysPll1Out.

enumerator kCLOCK_M7_ClockRoot_MuxSysPll3Out
M7 mux from MuxSysPll3Out.

enumerator kCLOCK_M7_ClockRoot_MuxVideoPllOut
M7 mux from MuxVideoPllOut.

enumerator kCLOCK_M4_ClockRoot_MuxOscRc48MDiv2
M4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_M4_ClockRoot_MuxOsc24MOut
M4 mux from MuxOsc24MOut.

enumerator kCLOCK_M4_ClockRoot_MuxOscRc400M
M4 mux from MuxOscRc400M.

enumerator kCLOCK_M4_ClockRoot_MuxOscRc16M
M4 mux from MuxOscRc16M.

enumerator kCLOCK_M4_ClockRoot_MuxSysPll3Pfd3
M4 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_M4_ClockRoot_MuxSysPll3Out
M4 mux from MuxSysPll3Out.

enumerator kCLOCK_M4_ClockRoot_MuxSysPll2Out
M4 mux from MuxSysPll2Out.

2.30. Clock Driver 345



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_M4_ClockRoot_MuxSysPll1Div5
M4 mux from MuxSysPll1Div5.

enumerator kCLOCK_BUS_ClockRoot_MuxOscRc48MDiv2
BUS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_BUS_ClockRoot_MuxOsc24MOut
BUS mux from MuxOsc24MOut.

enumerator kCLOCK_BUS_ClockRoot_MuxOscRc400M
BUS mux from MuxOscRc400M.

enumerator kCLOCK_BUS_ClockRoot_MuxOscRc16M
BUS mux from MuxOscRc16M.

enumerator kCLOCK_BUS_ClockRoot_MuxSysPll3Out
BUS mux from MuxSysPll3Out.

enumerator kCLOCK_BUS_ClockRoot_MuxSysPll1Div5
BUS mux from MuxSysPll1Div5.

enumerator kCLOCK_BUS_ClockRoot_MuxSysPll2Out
BUS mux from MuxSysPll2Out.

enumerator kCLOCK_BUS_ClockRoot_MuxSysPll2Pfd3
BUS mux from MuxSysPll2Pfd3.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxOscRc48MDiv2
BUS_LPSR mux from MuxOscRc48MDiv2.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxOsc24MOut
BUS_LPSR mux from MuxOsc24MOut.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxOscRc400M
BUS_LPSR mux from MuxOscRc400M.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxOscRc16M
BUS_LPSR mux from MuxOscRc16M.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll3Pfd3
BUS_LPSR mux from MuxSysPll3Pfd3.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll3Out
BUS_LPSR mux from MuxSysPll3Out.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll2Out
BUS_LPSR mux from MuxSysPll2Out.

enumerator kCLOCK_BUS_LPSR_ClockRoot_MuxSysPll1Div5
BUS_LPSR mux from MuxSysPll1Div5.

enumerator kCLOCK_SEMC_ClockRoot_MuxOscRc48MDiv2
SEMC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SEMC_ClockRoot_MuxOsc24MOut
SEMC mux from MuxOsc24MOut.

enumerator kCLOCK_SEMC_ClockRoot_MuxOscRc400M
SEMC mux from MuxOscRc400M.

enumerator kCLOCK_SEMC_ClockRoot_MuxOscRc16M
SEMC mux from MuxOscRc16M.

346 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_SEMC_ClockRoot_MuxSysPll1Div5
SEMC mux from MuxSysPll1Div5.

enumerator kCLOCK_SEMC_ClockRoot_MuxSysPll2Out
SEMC mux from MuxSysPll2Out.

enumerator kCLOCK_SEMC_ClockRoot_MuxSysPll2Pfd1
SEMC mux from MuxSysPll2Pfd1.

enumerator kCLOCK_SEMC_ClockRoot_MuxSysPll3Pfd0
SEMC mux from MuxSysPll3Pfd0.

enumerator kCLOCK_CSSYS_ClockRoot_MuxOscRc48MDiv2
CSSYS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSSYS_ClockRoot_MuxOsc24MOut
CSSYS mux from MuxOsc24MOut.

enumerator kCLOCK_CSSYS_ClockRoot_MuxOscRc400M
CSSYS mux from MuxOscRc400M.

enumerator kCLOCK_CSSYS_ClockRoot_MuxOscRc16M
CSSYS mux from MuxOscRc16M.

enumerator kCLOCK_CSSYS_ClockRoot_MuxSysPll3Div2
CSSYS mux from MuxSysPll3Div2.

enumerator kCLOCK_CSSYS_ClockRoot_MuxSysPll1Div5
CSSYS mux from MuxSysPll1Div5.

enumerator kCLOCK_CSSYS_ClockRoot_MuxSysPll2Out
CSSYS mux from MuxSysPll2Out.

enumerator kCLOCK_CSSYS_ClockRoot_MuxSysPll2Pfd3
CSSYS mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxOscRc48MDiv2
CSTRACE mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxOsc24MOut
CSTRACE mux from MuxOsc24MOut.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxOscRc400M
CSTRACE mux from MuxOscRc400M.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxOscRc16M
CSTRACE mux from MuxOscRc16M.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxSysPll3Div2
CSTRACE mux from MuxSysPll3Div2.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxSysPll1Div5
CSTRACE mux from MuxSysPll1Div5.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxSysPll2Pfd1
CSTRACE mux from MuxSysPll2Pfd1.

enumerator kCLOCK_CSTRACE_ClockRoot_MuxSysPll2Out
CSTRACE mux from MuxSysPll2Out.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxOscRc48MDiv2
M4_SYSTICK mux from MuxOscRc48MDiv2.

2.30. Clock Driver 347



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxOsc24MOut
M4_SYSTICK mux from MuxOsc24MOut.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxOscRc400M
M4_SYSTICK mux from MuxOscRc400M.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxOscRc16M
M4_SYSTICK mux from MuxOscRc16M.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxSysPll3Pfd3
M4_SYSTICK mux from MuxSysPll3Pfd3.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxSysPll3Out
M4_SYSTICK mux from MuxSysPll3Out.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxSysPll2Pfd0
M4_SYSTICK mux from MuxSysPll2Pfd0.

enumerator kCLOCK_M4_SYSTICK_ClockRoot_MuxSysPll1Div5
M4_SYSTICK mux from MuxSysPll1Div5.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxOscRc48MDiv2
M7_SYSTICK mux from MuxOscRc48MDiv2.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxOsc24MOut
M7_SYSTICK mux from MuxOsc24MOut.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxOscRc400M
M7_SYSTICK mux from MuxOscRc400M.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxOscRc16M
M7_SYSTICK mux from MuxOscRc16M.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxSysPll2Out
M7_SYSTICK mux from MuxSysPll2Out.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxSysPll3Div2
M7_SYSTICK mux from MuxSysPll3Div2.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxSysPll1Div5
M7_SYSTICK mux from MuxSysPll1Div5.

enumerator kCLOCK_M7_SYSTICK_ClockRoot_MuxSysPll2Pfd0
M7_SYSTICK mux from MuxSysPll2Pfd0.

enumerator kCLOCK_ADC1_ClockRoot_MuxOscRc48MDiv2
ADC1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ADC1_ClockRoot_MuxOsc24MOut
ADC1 mux from MuxOsc24MOut.

enumerator kCLOCK_ADC1_ClockRoot_MuxOscRc400M
ADC1 mux from MuxOscRc400M.

enumerator kCLOCK_ADC1_ClockRoot_MuxOscRc16M
ADC1 mux from MuxOscRc16M.

enumerator kCLOCK_ADC1_ClockRoot_MuxSysPll3Div2
ADC1 mux from MuxSysPll3Div2.

enumerator kCLOCK_ADC1_ClockRoot_MuxSysPll1Div5
ADC1 mux from MuxSysPll1Div5.

348 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ADC1_ClockRoot_MuxSysPll2Out
ADC1 mux from MuxSysPll2Out.

enumerator kCLOCK_ADC1_ClockRoot_MuxSysPll2Pfd3
ADC1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_ADC2_ClockRoot_MuxOscRc48MDiv2
ADC2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ADC2_ClockRoot_MuxOsc24MOut
ADC2 mux from MuxOsc24MOut.

enumerator kCLOCK_ADC2_ClockRoot_MuxOscRc400M
ADC2 mux from MuxOscRc400M.

enumerator kCLOCK_ADC2_ClockRoot_MuxOscRc16M
ADC2 mux from MuxOscRc16M.

enumerator kCLOCK_ADC2_ClockRoot_MuxSysPll3Div2
ADC2 mux from MuxSysPll3Div2.

enumerator kCLOCK_ADC2_ClockRoot_MuxSysPll1Div5
ADC2 mux from MuxSysPll1Div5.

enumerator kCLOCK_ADC2_ClockRoot_MuxSysPll2Out
ADC2 mux from MuxSysPll2Out.

enumerator kCLOCK_ADC2_ClockRoot_MuxSysPll2Pfd3
ADC2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_ACMP_ClockRoot_MuxOscRc48MDiv2
ACMP mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ACMP_ClockRoot_MuxOsc24MOut
ACMP mux from MuxOsc24MOut.

enumerator kCLOCK_ACMP_ClockRoot_MuxOscRc400M
ACMP mux from MuxOscRc400M.

enumerator kCLOCK_ACMP_ClockRoot_MuxOscRc16M
ACMP mux from MuxOscRc16M.

enumerator kCLOCK_ACMP_ClockRoot_MuxSysPll3Out
ACMP mux from MuxSysPll3Out.

enumerator kCLOCK_ACMP_ClockRoot_MuxSysPll1Div5
ACMP mux from MuxSysPll1Div5.

enumerator kCLOCK_ACMP_ClockRoot_MuxAudioPllOut
ACMP mux from MuxAudioPllOut.

enumerator kCLOCK_ACMP_ClockRoot_MuxSysPll2Pfd3
ACMP mux from MuxSysPll2Pfd3.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxOscRc48MDiv2
FLEXIO1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxOsc24MOut
FLEXIO1 mux from MuxOsc24MOut.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxOscRc400M
FLEXIO1 mux from MuxOscRc400M.

2.30. Clock Driver 349



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxOscRc16M
FLEXIO1 mux from MuxOscRc16M.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxSysPll3Div2
FLEXIO1 mux from MuxSysPll3Div2.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxSysPll1Div5
FLEXIO1 mux from MuxSysPll1Div5.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxSysPll2Out
FLEXIO1 mux from MuxSysPll2Out.

enumerator kCLOCK_FLEXIO1_ClockRoot_MuxSysPll2Pfd3
FLEXIO1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxOscRc48MDiv2
FLEXIO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxOsc24MOut
FLEXIO2 mux from MuxOsc24MOut.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxOscRc400M
FLEXIO2 mux from MuxOscRc400M.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxOscRc16M
FLEXIO2 mux from MuxOscRc16M.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxSysPll3Div2
FLEXIO2 mux from MuxSysPll3Div2.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxSysPll1Div5
FLEXIO2 mux from MuxSysPll1Div5.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxSysPll2Out
FLEXIO2 mux from MuxSysPll2Out.

enumerator kCLOCK_FLEXIO2_ClockRoot_MuxSysPll2Pfd3
FLEXIO2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_GPT1_ClockRoot_MuxOscRc48MDiv2
GPT1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT1_ClockRoot_MuxOsc24MOut
GPT1 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT1_ClockRoot_MuxOscRc400M
GPT1 mux from MuxOscRc400M.

enumerator kCLOCK_GPT1_ClockRoot_MuxOscRc16M
GPT1 mux from MuxOscRc16M.

enumerator kCLOCK_GPT1_ClockRoot_MuxSysPll3Div2
GPT1 mux from MuxSysPll3Div2.

enumerator kCLOCK_GPT1_ClockRoot_MuxSysPll1Div5
GPT1 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT1_ClockRoot_MuxSysPll3Pfd2
GPT1 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_GPT1_ClockRoot_MuxSysPll3Pfd3
GPT1 mux from MuxSysPll3Pfd3.

350 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_GPT2_ClockRoot_MuxOscRc48MDiv2
GPT2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT2_ClockRoot_MuxOsc24MOut
GPT2 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT2_ClockRoot_MuxOscRc400M
GPT2 mux from MuxOscRc400M.

enumerator kCLOCK_GPT2_ClockRoot_MuxOscRc16M
GPT2 mux from MuxOscRc16M.

enumerator kCLOCK_GPT2_ClockRoot_MuxSysPll3Div2
GPT2 mux from MuxSysPll3Div2.

enumerator kCLOCK_GPT2_ClockRoot_MuxSysPll1Div5
GPT2 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT2_ClockRoot_MuxAudioPllOut
GPT2 mux from MuxAudioPllOut.

enumerator kCLOCK_GPT2_ClockRoot_MuxVideoPllOut
GPT2 mux from MuxVideoPllOut.

enumerator kCLOCK_GPT3_ClockRoot_MuxOscRc48MDiv2
GPT3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT3_ClockRoot_MuxOsc24MOut
GPT3 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT3_ClockRoot_MuxOscRc400M
GPT3 mux from MuxOscRc400M.

enumerator kCLOCK_GPT3_ClockRoot_MuxOscRc16M
GPT3 mux from MuxOscRc16M.

enumerator kCLOCK_GPT3_ClockRoot_MuxSysPll3Div2
GPT3 mux from MuxSysPll3Div2.

enumerator kCLOCK_GPT3_ClockRoot_MuxSysPll1Div5
GPT3 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT3_ClockRoot_MuxAudioPllOut
GPT3 mux from MuxAudioPllOut.

enumerator kCLOCK_GPT3_ClockRoot_MuxVideoPllOut
GPT3 mux from MuxVideoPllOut.

enumerator kCLOCK_GPT4_ClockRoot_MuxOscRc48MDiv2
GPT4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT4_ClockRoot_MuxOsc24MOut
GPT4 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT4_ClockRoot_MuxOscRc400M
GPT4 mux from MuxOscRc400M.

enumerator kCLOCK_GPT4_ClockRoot_MuxOscRc16M
GPT4 mux from MuxOscRc16M.

enumerator kCLOCK_GPT4_ClockRoot_MuxSysPll3Div2
GPT4 mux from MuxSysPll3Div2.

2.30. Clock Driver 351



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_GPT4_ClockRoot_MuxSysPll1Div5
GPT4 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT4_ClockRoot_MuxSysPll3Pfd2
GPT4 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_GPT4_ClockRoot_MuxSysPll3Pfd3
GPT4 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_GPT5_ClockRoot_MuxOscRc48MDiv2
GPT5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT5_ClockRoot_MuxOsc24MOut
GPT5 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT5_ClockRoot_MuxOscRc400M
GPT5 mux from MuxOscRc400M.

enumerator kCLOCK_GPT5_ClockRoot_MuxOscRc16M
GPT5 mux from MuxOscRc16M.

enumerator kCLOCK_GPT5_ClockRoot_MuxSysPll3Div2
GPT5 mux from MuxSysPll3Div2.

enumerator kCLOCK_GPT5_ClockRoot_MuxSysPll1Div5
GPT5 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT5_ClockRoot_MuxSysPll3Pfd2
GPT5 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_GPT5_ClockRoot_MuxSysPll3Pfd3
GPT5 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_GPT6_ClockRoot_MuxOscRc48MDiv2
GPT6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT6_ClockRoot_MuxOsc24MOut
GPT6 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT6_ClockRoot_MuxOscRc400M
GPT6 mux from MuxOscRc400M.

enumerator kCLOCK_GPT6_ClockRoot_MuxOscRc16M
GPT6 mux from MuxOscRc16M.

enumerator kCLOCK_GPT6_ClockRoot_MuxSysPll3Div2
GPT6 mux from MuxSysPll3Div2.

enumerator kCLOCK_GPT6_ClockRoot_MuxSysPll1Div5
GPT6 mux from MuxSysPll1Div5.

enumerator kCLOCK_GPT6_ClockRoot_MuxSysPll3Pfd2
GPT6 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_GPT6_ClockRoot_MuxSysPll3Pfd3
GPT6 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxOscRc48MDiv2
FLEXSPI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxOsc24MOut
FLEXSPI1 mux from MuxOsc24MOut.

352 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxOscRc400M
FLEXSPI1 mux from MuxOscRc400M.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxOscRc16M
FLEXSPI1 mux from MuxOscRc16M.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxSysPll3Pfd0
FLEXSPI1 mux from MuxSysPll3Pfd0.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxSysPll2Out
FLEXSPI1 mux from MuxSysPll2Out.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxSysPll2Pfd2
FLEXSPI1 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_FLEXSPI1_ClockRoot_MuxSysPll3Out
FLEXSPI1 mux from MuxSysPll3Out.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxOscRc48MDiv2
FLEXSPI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxOsc24MOut
FLEXSPI2 mux from MuxOsc24MOut.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxOscRc400M
FLEXSPI2 mux from MuxOscRc400M.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxOscRc16M
FLEXSPI2 mux from MuxOscRc16M.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxSysPll3Pfd0
FLEXSPI2 mux from MuxSysPll3Pfd0.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxSysPll2Out
FLEXSPI2 mux from MuxSysPll2Out.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxSysPll2Pfd2
FLEXSPI2 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_FLEXSPI2_ClockRoot_MuxSysPll3Out
FLEXSPI2 mux from MuxSysPll3Out.

enumerator kCLOCK_CAN1_ClockRoot_MuxOscRc48MDiv2
CAN1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CAN1_ClockRoot_MuxOsc24MOut
CAN1 mux from MuxOsc24MOut.

enumerator kCLOCK_CAN1_ClockRoot_MuxOscRc400M
CAN1 mux from MuxOscRc400M.

enumerator kCLOCK_CAN1_ClockRoot_MuxOscRc16M
CAN1 mux from MuxOscRc16M.

enumerator kCLOCK_CAN1_ClockRoot_MuxSysPll3Div2
CAN1 mux from MuxSysPll3Div2.

enumerator kCLOCK_CAN1_ClockRoot_MuxSysPll1Div5
CAN1 mux from MuxSysPll1Div5.

enumerator kCLOCK_CAN1_ClockRoot_MuxSysPll2Out
CAN1 mux from MuxSysPll2Out.

2.30. Clock Driver 353



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CAN1_ClockRoot_MuxSysPll2Pfd3
CAN1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CAN2_ClockRoot_MuxOscRc48MDiv2
CAN2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CAN2_ClockRoot_MuxOsc24MOut
CAN2 mux from MuxOsc24MOut.

enumerator kCLOCK_CAN2_ClockRoot_MuxOscRc400M
CAN2 mux from MuxOscRc400M.

enumerator kCLOCK_CAN2_ClockRoot_MuxOscRc16M
CAN2 mux from MuxOscRc16M.

enumerator kCLOCK_CAN2_ClockRoot_MuxSysPll3Div2
CAN2 mux from MuxSysPll3Div2.

enumerator kCLOCK_CAN2_ClockRoot_MuxSysPll1Div5
CAN2 mux from MuxSysPll1Div5.

enumerator kCLOCK_CAN2_ClockRoot_MuxSysPll2Out
CAN2 mux from MuxSysPll2Out.

enumerator kCLOCK_CAN2_ClockRoot_MuxSysPll2Pfd3
CAN2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CAN3_ClockRoot_MuxOscRc48MDiv2
CAN3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CAN3_ClockRoot_MuxOsc24MOut
CAN3 mux from MuxOsc24MOut.

enumerator kCLOCK_CAN3_ClockRoot_MuxOscRc400M
CAN3 mux from MuxOscRc400M.

enumerator kCLOCK_CAN3_ClockRoot_MuxOscRc16M
CAN3 mux from MuxOscRc16M.

enumerator kCLOCK_CAN3_ClockRoot_MuxSysPll3Pfd3
CAN3 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_CAN3_ClockRoot_MuxSysPll3Out
CAN3 mux from MuxSysPll3Out.

enumerator kCLOCK_CAN3_ClockRoot_MuxSysPll2Pfd3
CAN3 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CAN3_ClockRoot_MuxSysPll1Div5
CAN3 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART1_ClockRoot_MuxOscRc48MDiv2
LPUART1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART1_ClockRoot_MuxOsc24MOut
LPUART1 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART1_ClockRoot_MuxOscRc400M
LPUART1 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART1_ClockRoot_MuxOscRc16M
LPUART1 mux from MuxOscRc16M.

354 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART1_ClockRoot_MuxSysPll3Div2
LPUART1 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART1_ClockRoot_MuxSysPll1Div5
LPUART1 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART1_ClockRoot_MuxSysPll2Out
LPUART1 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART1_ClockRoot_MuxSysPll2Pfd3
LPUART1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART2_ClockRoot_MuxOscRc48MDiv2
LPUART2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART2_ClockRoot_MuxOsc24MOut
LPUART2 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART2_ClockRoot_MuxOscRc400M
LPUART2 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART2_ClockRoot_MuxOscRc16M
LPUART2 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART2_ClockRoot_MuxSysPll3Div2
LPUART2 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART2_ClockRoot_MuxSysPll1Div5
LPUART2 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART2_ClockRoot_MuxSysPll2Out
LPUART2 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART2_ClockRoot_MuxSysPll2Pfd3
LPUART2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART3_ClockRoot_MuxOscRc48MDiv2
LPUART3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART3_ClockRoot_MuxOsc24MOut
LPUART3 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART3_ClockRoot_MuxOscRc400M
LPUART3 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART3_ClockRoot_MuxOscRc16M
LPUART3 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART3_ClockRoot_MuxSysPll3Div2
LPUART3 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART3_ClockRoot_MuxSysPll1Div5
LPUART3 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART3_ClockRoot_MuxSysPll2Out
LPUART3 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART3_ClockRoot_MuxSysPll2Pfd3
LPUART3 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART4_ClockRoot_MuxOscRc48MDiv2
LPUART4 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 355



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART4_ClockRoot_MuxOsc24MOut
LPUART4 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART4_ClockRoot_MuxOscRc400M
LPUART4 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART4_ClockRoot_MuxOscRc16M
LPUART4 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART4_ClockRoot_MuxSysPll3Div2
LPUART4 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART4_ClockRoot_MuxSysPll1Div5
LPUART4 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART4_ClockRoot_MuxSysPll2Out
LPUART4 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART4_ClockRoot_MuxSysPll2Pfd3
LPUART4 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART5_ClockRoot_MuxOscRc48MDiv2
LPUART5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART5_ClockRoot_MuxOsc24MOut
LPUART5 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART5_ClockRoot_MuxOscRc400M
LPUART5 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART5_ClockRoot_MuxOscRc16M
LPUART5 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART5_ClockRoot_MuxSysPll3Div2
LPUART5 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART5_ClockRoot_MuxSysPll1Div5
LPUART5 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART5_ClockRoot_MuxSysPll2Out
LPUART5 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART5_ClockRoot_MuxSysPll2Pfd3
LPUART5 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART6_ClockRoot_MuxOscRc48MDiv2
LPUART6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART6_ClockRoot_MuxOsc24MOut
LPUART6 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART6_ClockRoot_MuxOscRc400M
LPUART6 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART6_ClockRoot_MuxOscRc16M
LPUART6 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART6_ClockRoot_MuxSysPll3Div2
LPUART6 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART6_ClockRoot_MuxSysPll1Div5
LPUART6 mux from MuxSysPll1Div5.

356 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART6_ClockRoot_MuxSysPll2Out
LPUART6 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART6_ClockRoot_MuxSysPll2Pfd3
LPUART6 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART7_ClockRoot_MuxOscRc48MDiv2
LPUART7 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART7_ClockRoot_MuxOsc24MOut
LPUART7 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART7_ClockRoot_MuxOscRc400M
LPUART7 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART7_ClockRoot_MuxOscRc16M
LPUART7 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART7_ClockRoot_MuxSysPll3Div2
LPUART7 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART7_ClockRoot_MuxSysPll1Div5
LPUART7 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART7_ClockRoot_MuxSysPll2Out
LPUART7 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART7_ClockRoot_MuxSysPll2Pfd3
LPUART7 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART8_ClockRoot_MuxOscRc48MDiv2
LPUART8 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART8_ClockRoot_MuxOsc24MOut
LPUART8 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART8_ClockRoot_MuxOscRc400M
LPUART8 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART8_ClockRoot_MuxOscRc16M
LPUART8 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART8_ClockRoot_MuxSysPll3Div2
LPUART8 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART8_ClockRoot_MuxSysPll1Div5
LPUART8 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART8_ClockRoot_MuxSysPll2Out
LPUART8 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART8_ClockRoot_MuxSysPll2Pfd3
LPUART8 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART9_ClockRoot_MuxOscRc48MDiv2
LPUART9 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART9_ClockRoot_MuxOsc24MOut
LPUART9 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART9_ClockRoot_MuxOscRc400M
LPUART9 mux from MuxOscRc400M.

2.30. Clock Driver 357



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART9_ClockRoot_MuxOscRc16M
LPUART9 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART9_ClockRoot_MuxSysPll3Div2
LPUART9 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART9_ClockRoot_MuxSysPll1Div5
LPUART9 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART9_ClockRoot_MuxSysPll2Out
LPUART9 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART9_ClockRoot_MuxSysPll2Pfd3
LPUART9 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART10_ClockRoot_MuxOscRc48MDiv2
LPUART10 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART10_ClockRoot_MuxOsc24MOut
LPUART10 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART10_ClockRoot_MuxOscRc400M
LPUART10 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART10_ClockRoot_MuxOscRc16M
LPUART10 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART10_ClockRoot_MuxSysPll3Div2
LPUART10 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPUART10_ClockRoot_MuxSysPll1Div5
LPUART10 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART10_ClockRoot_MuxSysPll2Out
LPUART10 mux from MuxSysPll2Out.

enumerator kCLOCK_LPUART10_ClockRoot_MuxSysPll2Pfd3
LPUART10 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART11_ClockRoot_MuxOscRc48MDiv2
LPUART11 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART11_ClockRoot_MuxOsc24MOut
LPUART11 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART11_ClockRoot_MuxOscRc400M
LPUART11 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART11_ClockRoot_MuxOscRc16M
LPUART11 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART11_ClockRoot_MuxSysPll3Pfd3
LPUART11 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPUART11_ClockRoot_MuxSysPll3Out
LPUART11 mux from MuxSysPll3Out.

enumerator kCLOCK_LPUART11_ClockRoot_MuxSysPll2Pfd3
LPUART11 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART11_ClockRoot_MuxSysPll1Div5
LPUART11 mux from MuxSysPll1Div5.

358 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART12_ClockRoot_MuxOscRc48MDiv2
LPUART12 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART12_ClockRoot_MuxOsc24MOut
LPUART12 mux from MuxOsc24MOut.

enumerator kCLOCK_LPUART12_ClockRoot_MuxOscRc400M
LPUART12 mux from MuxOscRc400M.

enumerator kCLOCK_LPUART12_ClockRoot_MuxOscRc16M
LPUART12 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART12_ClockRoot_MuxSysPll3Pfd3
LPUART12 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPUART12_ClockRoot_MuxSysPll3Out
LPUART12 mux from MuxSysPll3Out.

enumerator kCLOCK_LPUART12_ClockRoot_MuxSysPll2Pfd3
LPUART12 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPUART12_ClockRoot_MuxSysPll1Div5
LPUART12 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxOscRc48MDiv2
LPI2C1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxOsc24MOut
LPI2C1 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxOscRc400M
LPI2C1 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxOscRc16M
LPI2C1 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxSysPll3Div2
LPI2C1 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxSysPll1Div5
LPI2C1 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxSysPll2Out
LPI2C1 mux from MuxSysPll2Out.

enumerator kCLOCK_LPI2C1_ClockRoot_MuxSysPll2Pfd3
LPI2C1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxOscRc48MDiv2
LPI2C2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxOsc24MOut
LPI2C2 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxOscRc400M
LPI2C2 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxOscRc16M
LPI2C2 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxSysPll3Div2
LPI2C2 mux from MuxSysPll3Div2.

2.30. Clock Driver 359



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPI2C2_ClockRoot_MuxSysPll1Div5
LPI2C2 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxSysPll2Out
LPI2C2 mux from MuxSysPll2Out.

enumerator kCLOCK_LPI2C2_ClockRoot_MuxSysPll2Pfd3
LPI2C2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxOscRc48MDiv2
LPI2C3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxOsc24MOut
LPI2C3 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxOscRc400M
LPI2C3 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxOscRc16M
LPI2C3 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxSysPll3Div2
LPI2C3 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxSysPll1Div5
LPI2C3 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxSysPll2Out
LPI2C3 mux from MuxSysPll2Out.

enumerator kCLOCK_LPI2C3_ClockRoot_MuxSysPll2Pfd3
LPI2C3 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxOscRc48MDiv2
LPI2C4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxOsc24MOut
LPI2C4 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxOscRc400M
LPI2C4 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxOscRc16M
LPI2C4 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxSysPll3Div2
LPI2C4 mux from MuxSysPll3Div2.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxSysPll1Div5
LPI2C4 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxSysPll2Out
LPI2C4 mux from MuxSysPll2Out.

enumerator kCLOCK_LPI2C4_ClockRoot_MuxSysPll2Pfd3
LPI2C4 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxOscRc48MDiv2
LPI2C5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxOsc24MOut
LPI2C5 mux from MuxOsc24MOut.

360 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPI2C5_ClockRoot_MuxOscRc400M
LPI2C5 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxOscRc16M
LPI2C5 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxSysPll3Pfd3
LPI2C5 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxSysPll3Out
LPI2C5 mux from MuxSysPll3Out.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxSysPll2Pfd3
LPI2C5 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C5_ClockRoot_MuxSysPll1Div5
LPI2C5 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxOscRc48MDiv2
LPI2C6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxOsc24MOut
LPI2C6 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxOscRc400M
LPI2C6 mux from MuxOscRc400M.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxOscRc16M
LPI2C6 mux from MuxOscRc16M.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxSysPll3Pfd3
LPI2C6 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxSysPll3Out
LPI2C6 mux from MuxSysPll3Out.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxSysPll2Pfd3
LPI2C6 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPI2C6_ClockRoot_MuxSysPll1Div5
LPI2C6 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxOscRc48MDiv2
LPSPI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxOsc24MOut
LPSPI1 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxOscRc400M
LPSPI1 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxOscRc16M
LPSPI1 mux from MuxOscRc16M.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxSysPll3Pfd2
LPSPI1 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxSysPll1Div5
LPSPI1 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI1_ClockRoot_MuxSysPll2Out
LPSPI1 mux from MuxSysPll2Out.

2.30. Clock Driver 361



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPSPI1_ClockRoot_MuxSysPll2Pfd3
LPSPI1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxOscRc48MDiv2
LPSPI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxOsc24MOut
LPSPI2 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxOscRc400M
LPSPI2 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxOscRc16M
LPSPI2 mux from MuxOscRc16M.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxSysPll3Pfd2
LPSPI2 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxSysPll1Div5
LPSPI2 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxSysPll2Out
LPSPI2 mux from MuxSysPll2Out.

enumerator kCLOCK_LPSPI2_ClockRoot_MuxSysPll2Pfd3
LPSPI2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxOscRc48MDiv2
LPSPI3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxOsc24MOut
LPSPI3 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxOscRc400M
LPSPI3 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxOscRc16M
LPSPI3 mux from MuxOscRc16M.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxSysPll3Pfd2
LPSPI3 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxSysPll1Div5
LPSPI3 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxSysPll2Out
LPSPI3 mux from MuxSysPll2Out.

enumerator kCLOCK_LPSPI3_ClockRoot_MuxSysPll2Pfd3
LPSPI3 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxOscRc48MDiv2
LPSPI4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxOsc24MOut
LPSPI4 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxOscRc400M
LPSPI4 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxOscRc16M
LPSPI4 mux from MuxOscRc16M.

362 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPSPI4_ClockRoot_MuxSysPll3Pfd2
LPSPI4 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxSysPll1Div5
LPSPI4 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxSysPll2Out
LPSPI4 mux from MuxSysPll2Out.

enumerator kCLOCK_LPSPI4_ClockRoot_MuxSysPll2Pfd3
LPSPI4 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxOscRc48MDiv2
LPSPI5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxOsc24MOut
LPSPI5 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxOscRc400M
LPSPI5 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxOscRc16M
LPSPI5 mux from MuxOscRc16M.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxSysPll3Pfd3
LPSPI5 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxSysPll3Out
LPSPI5 mux from MuxSysPll3Out.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxSysPll3Pfd2
LPSPI5 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI5_ClockRoot_MuxSysPll1Div5
LPSPI5 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxOscRc48MDiv2
LPSPI6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxOsc24MOut
LPSPI6 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxOscRc400M
LPSPI6 mux from MuxOscRc400M.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxOscRc16M
LPSPI6 mux from MuxOscRc16M.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxSysPll3Pfd3
LPSPI6 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxSysPll3Out
LPSPI6 mux from MuxSysPll3Out.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxSysPll3Pfd2
LPSPI6 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_LPSPI6_ClockRoot_MuxSysPll1Div5
LPSPI6 mux from MuxSysPll1Div5.

enumerator kCLOCK_EMV1_ClockRoot_MuxOscRc48MDiv2
EMV1 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 363



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_EMV1_ClockRoot_MuxOsc24MOut
EMV1 mux from MuxOsc24MOut.

enumerator kCLOCK_EMV1_ClockRoot_MuxOscRc400M
EMV1 mux from MuxOscRc400M.

enumerator kCLOCK_EMV1_ClockRoot_MuxOscRc16M
EMV1 mux from MuxOscRc16M.

enumerator kCLOCK_EMV1_ClockRoot_MuxSysPll3Div2
EMV1 mux from MuxSysPll3Div2.

enumerator kCLOCK_EMV1_ClockRoot_MuxSysPll1Div5
EMV1 mux from MuxSysPll1Div5.

enumerator kCLOCK_EMV1_ClockRoot_MuxSysPll2Out
EMV1 mux from MuxSysPll2Out.

enumerator kCLOCK_EMV1_ClockRoot_MuxSysPll2Pfd3
EMV1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_EMV2_ClockRoot_MuxOscRc48MDiv2
EMV2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_EMV2_ClockRoot_MuxOsc24MOut
EMV2 mux from MuxOsc24MOut.

enumerator kCLOCK_EMV2_ClockRoot_MuxOscRc400M
EMV2 mux from MuxOscRc400M.

enumerator kCLOCK_EMV2_ClockRoot_MuxOscRc16M
EMV2 mux from MuxOscRc16M.

enumerator kCLOCK_EMV2_ClockRoot_MuxSysPll3Div2
EMV2 mux from MuxSysPll3Div2.

enumerator kCLOCK_EMV2_ClockRoot_MuxSysPll1Div5
EMV2 mux from MuxSysPll1Div5.

enumerator kCLOCK_EMV2_ClockRoot_MuxSysPll2Out
EMV2 mux from MuxSysPll2Out.

enumerator kCLOCK_EMV2_ClockRoot_MuxSysPll2Pfd3
EMV2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_ENET1_ClockRoot_MuxOscRc48MDiv2
ENET1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET1_ClockRoot_MuxOsc24MOut
ENET1 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET1_ClockRoot_MuxOscRc400M
ENET1 mux from MuxOscRc400M.

enumerator kCLOCK_ENET1_ClockRoot_MuxOscRc16M
ENET1 mux from MuxOscRc16M.

enumerator kCLOCK_ENET1_ClockRoot_MuxSysPll1Div2
ENET1 mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET1_ClockRoot_MuxAudioPllOut
ENET1 mux from MuxAudioPllOut.

364 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ENET1_ClockRoot_MuxSysPll1Div5
ENET1 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET1_ClockRoot_MuxSysPll2Pfd1
ENET1 mux from MuxSysPll2Pfd1.

enumerator kCLOCK_ENET2_ClockRoot_MuxOscRc48MDiv2
ENET2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET2_ClockRoot_MuxOsc24MOut
ENET2 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET2_ClockRoot_MuxOscRc400M
ENET2 mux from MuxOscRc400M.

enumerator kCLOCK_ENET2_ClockRoot_MuxOscRc16M
ENET2 mux from MuxOscRc16M.

enumerator kCLOCK_ENET2_ClockRoot_MuxSysPll1Div2
ENET2 mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET2_ClockRoot_MuxAudioPllOut
ENET2 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET2_ClockRoot_MuxSysPll1Div5
ENET2 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET2_ClockRoot_MuxSysPll2Pfd1
ENET2 mux from MuxSysPll2Pfd1.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxOscRc48MDiv2
ENET_QOS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxOsc24MOut
ENET_QOS mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxOscRc400M
ENET_QOS mux from MuxOscRc400M.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxOscRc16M
ENET_QOS mux from MuxOscRc16M.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxSysPll1Div2
ENET_QOS mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxAudioPllOut
ENET_QOS mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxSysPll1Div5
ENET_QOS mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_QOS_ClockRoot_MuxSysPll2Pfd1
ENET_QOS mux from MuxSysPll2Pfd1.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxOscRc48MDiv2
ENET_25M mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxOsc24MOut
ENET_25M mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxOscRc400M
ENET_25M mux from MuxOscRc400M.

2.30. Clock Driver 365



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ENET_25M_ClockRoot_MuxOscRc16M
ENET_25M mux from MuxOscRc16M.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxSysPll1Div2
ENET_25M mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxAudioPllOut
ENET_25M mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxSysPll1Div5
ENET_25M mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_25M_ClockRoot_MuxSysPll2Pfd1
ENET_25M mux from MuxSysPll2Pfd1.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxOscRc48MDiv2
ENET_TIMER1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxOsc24MOut
ENET_TIMER1 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxOscRc400M
ENET_TIMER1 mux from MuxOscRc400M.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxOscRc16M
ENET_TIMER1 mux from MuxOscRc16M.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxSysPll1Div2
ENET_TIMER1 mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxAudioPllOut
ENET_TIMER1 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxSysPll1Div5
ENET_TIMER1 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_TIMER1_ClockRoot_MuxSysPll2Pfd1
ENET_TIMER1 mux from MuxSysPll2Pfd1.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxOscRc48MDiv2
ENET_TIMER2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxOsc24MOut
ENET_TIMER2 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxOscRc400M
ENET_TIMER2 mux from MuxOscRc400M.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxOscRc16M
ENET_TIMER2 mux from MuxOscRc16M.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxSysPll1Div2
ENET_TIMER2 mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxAudioPllOut
ENET_TIMER2 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxSysPll1Div5
ENET_TIMER2 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_TIMER2_ClockRoot_MuxSysPll2Pfd1
ENET_TIMER2 mux from MuxSysPll2Pfd1.

366 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxOscRc48MDiv2
ENET_TIMER3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxOsc24MOut
ENET_TIMER3 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxOscRc400M
ENET_TIMER3 mux from MuxOscRc400M.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxOscRc16M
ENET_TIMER3 mux from MuxOscRc16M.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxSysPll1Div2
ENET_TIMER3 mux from MuxSysPll1Div2.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxAudioPllOut
ENET_TIMER3 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxSysPll1Div5
ENET_TIMER3 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_MuxSysPll2Pfd1
ENET_TIMER3 mux from MuxSysPll2Pfd1.

enumerator kCLOCK_USDHC1_ClockRoot_MuxOscRc48MDiv2
USDHC1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_USDHC1_ClockRoot_MuxOsc24MOut
USDHC1 mux from MuxOsc24MOut.

enumerator kCLOCK_USDHC1_ClockRoot_MuxOscRc400M
USDHC1 mux from MuxOscRc400M.

enumerator kCLOCK_USDHC1_ClockRoot_MuxOscRc16M
USDHC1 mux from MuxOscRc16M.

enumerator kCLOCK_USDHC1_ClockRoot_MuxSysPll2Pfd2
USDHC1 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_USDHC1_ClockRoot_MuxSysPll2Pfd0
USDHC1 mux from MuxSysPll2Pfd0.

enumerator kCLOCK_USDHC1_ClockRoot_MuxSysPll1Div5
USDHC1 mux from MuxSysPll1Div5.

enumerator kCLOCK_USDHC1_ClockRoot_MuxArmPllOut
USDHC1 mux from MuxArmPllOut.

enumerator kCLOCK_USDHC2_ClockRoot_MuxOscRc48MDiv2
USDHC2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_USDHC2_ClockRoot_MuxOsc24MOut
USDHC2 mux from MuxOsc24MOut.

enumerator kCLOCK_USDHC2_ClockRoot_MuxOscRc400M
USDHC2 mux from MuxOscRc400M.

enumerator kCLOCK_USDHC2_ClockRoot_MuxOscRc16M
USDHC2 mux from MuxOscRc16M.

enumerator kCLOCK_USDHC2_ClockRoot_MuxSysPll2Pfd2
USDHC2 mux from MuxSysPll2Pfd2.

2.30. Clock Driver 367



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_USDHC2_ClockRoot_MuxSysPll2Pfd0
USDHC2 mux from MuxSysPll2Pfd0.

enumerator kCLOCK_USDHC2_ClockRoot_MuxSysPll1Div5
USDHC2 mux from MuxSysPll1Div5.

enumerator kCLOCK_USDHC2_ClockRoot_MuxArmPllOut
USDHC2 mux from MuxArmPllOut.

enumerator kCLOCK_ASRC_ClockRoot_MuxOscRc48MDiv2
ASRC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ASRC_ClockRoot_MuxOsc24MOut
ASRC mux from MuxOsc24MOut.

enumerator kCLOCK_ASRC_ClockRoot_MuxOscRc400M
ASRC mux from MuxOscRc400M.

enumerator kCLOCK_ASRC_ClockRoot_MuxOscRc16M
ASRC mux from MuxOscRc16M.

enumerator kCLOCK_ASRC_ClockRoot_MuxSysPll1Div5
ASRC mux from MuxSysPll1Div5.

enumerator kCLOCK_ASRC_ClockRoot_MuxSysPll3Div2
ASRC mux from MuxSysPll3Div2.

enumerator kCLOCK_ASRC_ClockRoot_MuxAudioPllOut
ASRC mux from MuxAudioPllOut.

enumerator kCLOCK_ASRC_ClockRoot_MuxSysPll2Pfd3
ASRC mux from MuxSysPll2Pfd3.

enumerator kCLOCK_MQS_ClockRoot_MuxOscRc48MDiv2
MQS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MQS_ClockRoot_MuxOsc24MOut
MQS mux from MuxOsc24MOut.

enumerator kCLOCK_MQS_ClockRoot_MuxOscRc400M
MQS mux from MuxOscRc400M.

enumerator kCLOCK_MQS_ClockRoot_MuxOscRc16M
MQS mux from MuxOscRc16M.

enumerator kCLOCK_MQS_ClockRoot_MuxSysPll1Div5
MQS mux from MuxSysPll1Div5.

enumerator kCLOCK_MQS_ClockRoot_MuxSysPll3Div2
MQS mux from MuxSysPll3Div2.

enumerator kCLOCK_MQS_ClockRoot_MuxAudioPllOut
MQS mux from MuxAudioPllOut.

enumerator kCLOCK_MQS_ClockRoot_MuxSysPll2Pfd3
MQS mux from MuxSysPll2Pfd3.

enumerator kCLOCK_MIC_ClockRoot_MuxOscRc48MDiv2
MIC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MIC_ClockRoot_MuxOsc24MOut
MIC mux from MuxOsc24MOut.

368 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_MIC_ClockRoot_MuxOscRc400M
MIC mux from MuxOscRc400M.

enumerator kCLOCK_MIC_ClockRoot_MuxOscRc16M
MIC mux from MuxOscRc16M.

enumerator kCLOCK_MIC_ClockRoot_MuxSysPll3Pfd3
MIC mux from MuxSysPll3Pfd3.

enumerator kCLOCK_MIC_ClockRoot_MuxSysPll3Out
MIC mux from MuxSysPll3Out.

enumerator kCLOCK_MIC_ClockRoot_MuxAudioPllOut
MIC mux from MuxAudioPllOut.

enumerator kCLOCK_MIC_ClockRoot_MuxSysPll1Div5
MIC mux from MuxSysPll1Div5.

enumerator kCLOCK_SPDIF_ClockRoot_MuxOscRc48MDiv2
SPDIF mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SPDIF_ClockRoot_MuxOsc24MOut
SPDIF mux from MuxOsc24MOut.

enumerator kCLOCK_SPDIF_ClockRoot_MuxOscRc400M
SPDIF mux from MuxOscRc400M.

enumerator kCLOCK_SPDIF_ClockRoot_MuxOscRc16M
SPDIF mux from MuxOscRc16M.

enumerator kCLOCK_SPDIF_ClockRoot_MuxAudioPllOut
SPDIF mux from MuxAudioPllOut.

enumerator kCLOCK_SPDIF_ClockRoot_MuxSysPll3Out
SPDIF mux from MuxSysPll3Out.

enumerator kCLOCK_SPDIF_ClockRoot_MuxSysPll3Pfd2
SPDIF mux from MuxSysPll3Pfd2.

enumerator kCLOCK_SPDIF_ClockRoot_MuxSysPll2Pfd3
SPDIF mux from MuxSysPll2Pfd3.

enumerator kCLOCK_SAI1_ClockRoot_MuxOscRc48MDiv2
SAI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI1_ClockRoot_MuxOsc24MOut
SAI1 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI1_ClockRoot_MuxOscRc400M
SAI1 mux from MuxOscRc400M.

enumerator kCLOCK_SAI1_ClockRoot_MuxOscRc16M
SAI1 mux from MuxOscRc16M.

enumerator kCLOCK_SAI1_ClockRoot_MuxAudioPllOut
SAI1 mux from MuxAudioPllOut.

enumerator kCLOCK_SAI1_ClockRoot_MuxSysPll3Pfd2
SAI1 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_SAI1_ClockRoot_MuxSysPll1Div5
SAI1 mux from MuxSysPll1Div5.

2.30. Clock Driver 369



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_SAI1_ClockRoot_MuxSysPll2Pfd3
SAI1 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_SAI2_ClockRoot_MuxOscRc48MDiv2
SAI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI2_ClockRoot_MuxOsc24MOut
SAI2 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI2_ClockRoot_MuxOscRc400M
SAI2 mux from MuxOscRc400M.

enumerator kCLOCK_SAI2_ClockRoot_MuxOscRc16M
SAI2 mux from MuxOscRc16M.

enumerator kCLOCK_SAI2_ClockRoot_MuxAudioPllOut
SAI2 mux from MuxAudioPllOut.

enumerator kCLOCK_SAI2_ClockRoot_MuxSysPll3Pfd2
SAI2 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_SAI2_ClockRoot_MuxSysPll1Div5
SAI2 mux from MuxSysPll1Div5.

enumerator kCLOCK_SAI2_ClockRoot_MuxSysPll2Pfd3
SAI2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_SAI3_ClockRoot_MuxOscRc48MDiv2
SAI3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI3_ClockRoot_MuxOsc24MOut
SAI3 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI3_ClockRoot_MuxOscRc400M
SAI3 mux from MuxOscRc400M.

enumerator kCLOCK_SAI3_ClockRoot_MuxOscRc16M
SAI3 mux from MuxOscRc16M.

enumerator kCLOCK_SAI3_ClockRoot_MuxAudioPllOut
SAI3 mux from MuxAudioPllOut.

enumerator kCLOCK_SAI3_ClockRoot_MuxSysPll3Pfd2
SAI3 mux from MuxSysPll3Pfd2.

enumerator kCLOCK_SAI3_ClockRoot_MuxSysPll1Div5
SAI3 mux from MuxSysPll1Div5.

enumerator kCLOCK_SAI3_ClockRoot_MuxSysPll2Pfd3
SAI3 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_SAI4_ClockRoot_MuxOscRc48MDiv2
SAI4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI4_ClockRoot_MuxOsc24MOut
SAI4 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI4_ClockRoot_MuxOscRc400M
SAI4 mux from MuxOscRc400M.

enumerator kCLOCK_SAI4_ClockRoot_MuxOscRc16M
SAI4 mux from MuxOscRc16M.

370 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_SAI4_ClockRoot_MuxSysPll3Pfd3
SAI4 mux from MuxSysPll3Pfd3.

enumerator kCLOCK_SAI4_ClockRoot_MuxSysPll3Out
SAI4 mux from MuxSysPll3Out.

enumerator kCLOCK_SAI4_ClockRoot_MuxAudioPllOut
SAI4 mux from MuxAudioPllOut.

enumerator kCLOCK_SAI4_ClockRoot_MuxSysPll1Div5
SAI4 mux from MuxSysPll1Div5.

enumerator kCLOCK_GC355_ClockRoot_MuxOscRc48MDiv2
GC355 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GC355_ClockRoot_MuxOsc24MOut
GC355 mux from MuxOsc24MOut.

enumerator kCLOCK_GC355_ClockRoot_MuxOscRc400M
GC355 mux from MuxOscRc400M.

enumerator kCLOCK_GC355_ClockRoot_MuxOscRc16M
GC355 mux from MuxOscRc16M.

enumerator kCLOCK_GC355_ClockRoot_MuxSysPll2Out
GC355 mux from MuxSysPll2Out.

enumerator kCLOCK_GC355_ClockRoot_MuxSysPll2Pfd1
GC355 mux from MuxSysPll2Pfd1.

enumerator kCLOCK_GC355_ClockRoot_MuxSysPll3Out
GC355 mux from MuxSysPll3Out.

enumerator kCLOCK_GC355_ClockRoot_MuxVideoPllOut
GC355 mux from MuxVideoPllOut.

enumerator kCLOCK_LCDIF_ClockRoot_MuxOscRc48MDiv2
LCDIF mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LCDIF_ClockRoot_MuxOsc24MOut
LCDIF mux from MuxOsc24MOut.

enumerator kCLOCK_LCDIF_ClockRoot_MuxOscRc400M
LCDIF mux from MuxOscRc400M.

enumerator kCLOCK_LCDIF_ClockRoot_MuxOscRc16M
LCDIF mux from MuxOscRc16M.

enumerator kCLOCK_LCDIF_ClockRoot_MuxSysPll2Out
LCDIF mux from MuxSysPll2Out.

enumerator kCLOCK_LCDIF_ClockRoot_MuxSysPll2Pfd2
LCDIF mux from MuxSysPll2Pfd2.

enumerator kCLOCK_LCDIF_ClockRoot_MuxSysPll3Pfd0
LCDIF mux from MuxSysPll3Pfd0.

enumerator kCLOCK_LCDIF_ClockRoot_MuxVideoPllOut
LCDIF mux from MuxVideoPllOut.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxOscRc48MDiv2
LCDIFV2 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 371



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxOsc24MOut
LCDIFV2 mux from MuxOsc24MOut.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxOscRc400M
LCDIFV2 mux from MuxOscRc400M.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxOscRc16M
LCDIFV2 mux from MuxOscRc16M.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxSysPll2Out
LCDIFV2 mux from MuxSysPll2Out.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxSysPll2Pfd2
LCDIFV2 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxSysPll3Pfd0
LCDIFV2 mux from MuxSysPll3Pfd0.

enumerator kCLOCK_LCDIFV2_ClockRoot_MuxVideoPllOut
LCDIFV2 mux from MuxVideoPllOut.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxOscRc48MDiv2
MIPI_REF mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxOsc24MOut
MIPI_REF mux from MuxOsc24MOut.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxOscRc400M
MIPI_REF mux from MuxOscRc400M.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxOscRc16M
MIPI_REF mux from MuxOscRc16M.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxSysPll2Out
MIPI_REF mux from MuxSysPll2Out.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxSysPll2Pfd0
MIPI_REF mux from MuxSysPll2Pfd0.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxSysPll3Pfd0
MIPI_REF mux from MuxSysPll3Pfd0.

enumerator kCLOCK_MIPI_REF_ClockRoot_MuxVideoPllOut
MIPI_REF mux from MuxVideoPllOut.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxOscRc48MDiv2
MIPI_ESC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxOsc24MOut
MIPI_ESC mux from MuxOsc24MOut.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxOscRc400M
MIPI_ESC mux from MuxOscRc400M.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxOscRc16M
MIPI_ESC mux from MuxOscRc16M.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxSysPll2Out
MIPI_ESC mux from MuxSysPll2Out.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxSysPll2Pfd0
MIPI_ESC mux from MuxSysPll2Pfd0.

372 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxSysPll3Pfd0
MIPI_ESC mux from MuxSysPll3Pfd0.

enumerator kCLOCK_MIPI_ESC_ClockRoot_MuxVideoPllOut
MIPI_ESC mux from MuxVideoPllOut.

enumerator kCLOCK_CSI2_ClockRoot_MuxOscRc48MDiv2
CSI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSI2_ClockRoot_MuxOsc24MOut
CSI2 mux from MuxOsc24MOut.

enumerator kCLOCK_CSI2_ClockRoot_MuxOscRc400M
CSI2 mux from MuxOscRc400M.

enumerator kCLOCK_CSI2_ClockRoot_MuxOscRc16M
CSI2 mux from MuxOscRc16M.

enumerator kCLOCK_CSI2_ClockRoot_MuxSysPll2Pfd2
CSI2 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CSI2_ClockRoot_MuxSysPll3Out
CSI2 mux from MuxSysPll3Out.

enumerator kCLOCK_CSI2_ClockRoot_MuxSysPll2Pfd0
CSI2 mux from MuxSysPll2Pfd0.

enumerator kCLOCK_CSI2_ClockRoot_MuxVideoPllOut
CSI2 mux from MuxVideoPllOut.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxOscRc48MDiv2
CSI2_ESC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxOsc24MOut
CSI2_ESC mux from MuxOsc24MOut.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxOscRc400M
CSI2_ESC mux from MuxOscRc400M.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxOscRc16M
CSI2_ESC mux from MuxOscRc16M.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxSysPll2Pfd2
CSI2_ESC mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxSysPll3Out
CSI2_ESC mux from MuxSysPll3Out.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxSysPll2Pfd0
CSI2_ESC mux from MuxSysPll2Pfd0.

enumerator kCLOCK_CSI2_ESC_ClockRoot_MuxVideoPllOut
CSI2_ESC mux from MuxVideoPllOut.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxOscRc48MDiv2
CSI2_UI mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxOsc24MOut
CSI2_UI mux from MuxOsc24MOut.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxOscRc400M
CSI2_UI mux from MuxOscRc400M.

2.30. Clock Driver 373



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxOscRc16M
CSI2_UI mux from MuxOscRc16M.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxSysPll2Pfd2
CSI2_UI mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxSysPll3Out
CSI2_UI mux from MuxSysPll3Out.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxSysPll2Pfd0
CSI2_UI mux from MuxSysPll2Pfd0.

enumerator kCLOCK_CSI2_UI_ClockRoot_MuxVideoPllOut
CSI2_UI mux from MuxVideoPllOut.

enumerator kCLOCK_CSI_ClockRoot_MuxOscRc48MDiv2
CSI mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CSI_ClockRoot_MuxOsc24MOut
CSI mux from MuxOsc24MOut.

enumerator kCLOCK_CSI_ClockRoot_MuxOscRc400M
CSI mux from MuxOscRc400M.

enumerator kCLOCK_CSI_ClockRoot_MuxOscRc16M
CSI mux from MuxOscRc16M.

enumerator kCLOCK_CSI_ClockRoot_MuxSysPll2Pfd2
CSI mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CSI_ClockRoot_MuxSysPll3Out
CSI mux from MuxSysPll3Out.

enumerator kCLOCK_CSI_ClockRoot_MuxSysPll3Pfd1
CSI mux from MuxSysPll3Pfd1.

enumerator kCLOCK_CSI_ClockRoot_MuxVideoPllOut
CSI mux from MuxVideoPllOut.

enumerator kCLOCK_CKO1_ClockRoot_MuxOscRc48MDiv2
CKO1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CKO1_ClockRoot_MuxOsc24MOut
CKO1 mux from MuxOsc24MOut.

enumerator kCLOCK_CKO1_ClockRoot_MuxOscRc400M
CKO1 mux from MuxOscRc400M.

enumerator kCLOCK_CKO1_ClockRoot_MuxOscRc16M
CKO1 mux from MuxOscRc16M.

enumerator kCLOCK_CKO1_ClockRoot_MuxSysPll2Pfd2
CKO1 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CKO1_ClockRoot_MuxSysPll2Out
CKO1 mux from MuxSysPll2Out.

enumerator kCLOCK_CKO1_ClockRoot_MuxSysPll3Pfd1
CKO1 mux from MuxSysPll3Pfd1.

enumerator kCLOCK_CKO1_ClockRoot_MuxSysPll1Div5
CKO1 mux from MuxSysPll1Div5.

374 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CKO2_ClockRoot_MuxOscRc48MDiv2
CKO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CKO2_ClockRoot_MuxOsc24MOut
CKO2 mux from MuxOsc24MOut.

enumerator kCLOCK_CKO2_ClockRoot_MuxOscRc400M
CKO2 mux from MuxOscRc400M.

enumerator kCLOCK_CKO2_ClockRoot_MuxOscRc16M
CKO2 mux from MuxOscRc16M.

enumerator kCLOCK_CKO2_ClockRoot_MuxSysPll2Pfd3
CKO2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CKO2_ClockRoot_MuxOscRc48M
CKO2 mux from MuxOscRc48M.

enumerator kCLOCK_CKO2_ClockRoot_MuxSysPll3Pfd1
CKO2 mux from MuxSysPll3Pfd1.

enumerator kCLOCK_CKO2_ClockRoot_MuxAudioPllOut
CKO2 mux from MuxAudioPllOut.

enum _clock_group
Clock group enumeration.

Values:

enumerator kCLOCK_Group_FlexRAM
FlexRAM clock group.

enumerator kCLOCK_Group_MipiDsi
Mipi Dsi clock group.

enumerator kCLOCK_Group_Last
Last clock group.

enum _clock_osc
OSC 24M sorce select.

Values:

enumerator kCLOCK_RcOsc
On chip OSC.

enumerator kCLOCK_XtalOsc
24M Xtal OSC

enum _clock_gate_value
Clock gate value.

Values:

enumerator kCLOCK_Off
Clock is off.

enumerator kCLOCK_On
Clock is on

enum _clock_mode_t
System clock mode.

Values:

2.30. Clock Driver 375



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ModeRun
Remain in run mode.

enumerator kCLOCK_ModeWait
Transfer to wait mode.

enumerator kCLOCK_ModeStop
Transfer to stop mode.

enum _clock_usb_src
USB clock source definition.

Values:

enumerator kCLOCK_Usb480M
Use 480M.

enumerator kCLOCK_UsbSrcUnused
Used when the function does not care the clock source.

enum _clock_usb_phy_src
Source of the USB HS PHY.

Values:

enumerator kCLOCK_Usbphy480M
Use 480M.

enum _clock_pll_clk_src
PLL clock source, bypass cloco source also.

Values:

enumerator kCLOCK_PllClkSrc24M
Pll clock source 24M

enumerator kCLOCK_PllSrcClkPN
Pll clock source CLK1_P and CLK1_N

enum _clock_pll_post_div
PLL post divider enumeration.

Values:

enumerator kCLOCK_PllPostDiv2
Divide by 2.

enumerator kCLOCK_PllPostDiv4
Divide by 4.

enumerator kCLOCK_PllPostDiv8
Divide by 8.

enumerator kCLOCK_PllPostDiv1
Divide by 1.

enum _clock_output1_selection
The enumerater of clock output1’s clock source.

Values:

enumerator kCLOCK_CKO1OutputMuxOscRc48MDiv2
CKO1 mux from MuxOscRc48MDiv2.

376 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CKO1OutputMuxOsc24MOut
CKO1 mux from MuxOsc24MOut.

enumerator kCLOCK_CKO1OutputMuxOscRc400M
CKO1 mux from MuxOscRc400M.

enumerator kCLOCK_CKO1OutputMuxOscRc16M
CKO1 mux from MuxOscRc16M.

enumerator kCLOCK_CKO1OutputMuxSysPll2Pfd2
CKO1 mux from MuxSysPll2Pfd2.

enumerator kCLOCK_CKO1OutputMuxSysPll2Out
CKO1 mux from MuxSysPll2Out.

enumerator kkCLOCK_CKO1OutputMuxSysPll3Pfd1
CKO1 mux from MuxSysPll3Pfd1.

enumerator kCLOCK_CKO1OutputMuxSysPll1Div5
CKO1 mux from MuxSysPll1Div5.

enum _clock_output2_selection
The enumerater of clock output2’s clock source.

Values:

enumerator kCLOCK_CKO2OutputOscRc48MDiv2
CKO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CKO2OutputOsc24MOut
CKO2 mux from MuxOsc24MOut.

enumerator kCLOCK_CKO2OutputOscRc400M
CKO2 mux from MuxOscRc400M.

enumerator kCLOCK_CKO2OutputOscRc16M
CKO2 mux from MuxOscRc16M.

enumerator kCLOCK_CKO2OutputSysPll2Pfd3
CKO2 mux from MuxSysPll2Pfd3.

enumerator kCLOCK_CKO2OutputMuxOscRc48M
CKO2 mux from MuxOscRc48M.

enumerator kCLOCK_CKO2OutputMuxSysPll3Pfd1
CKO2 mux from MuxSysPll3Pfd1.

enumerator kCLOCK_CKO2OutputMuxAudioPllOut
CKO2 mux from MuxAudioPllOut.

enum _clock_pll
PLL name.

Values:

enumerator kCLOCK_PllArm
ARM PLL.

enumerator kCLOCK_PllSys1
SYS1 PLL, it has a dedicated frequency of 1GHz.

enumerator kCLOCK_PllSys2
SYS2 PLL, it has a dedicated frequency of 528MHz.

2.30. Clock Driver 377



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_PllSys3
SYS3 PLL, it has a dedicated frequency of 480MHz.

enumerator kCLOCK_PllAudio
Audio PLL.

enumerator kCLOCK_PllVideo
Video PLL.

enumerator kCLOCK_PllInvalid
Invalid value.

enum _clock_pfd
PLL PFD name.

Values:

enumerator kCLOCK_Pfd0
PLL PFD0

enumerator kCLOCK_Pfd1
PLL PFD1

enumerator kCLOCK_Pfd2
PLL PFD2

enumerator kCLOCK_Pfd3
PLL PFD3

enum _clock_control_mode
The enumeration of control mode.

Values:

enumerator kCLOCK_SoftwareMode
Software control mode.

enumerator kCLOCK_GpcMode
GPC control mode.

enum _clock_24MOsc_mode
The enumeration of 24MHz crystal oscillator mode.

Values:

enumerator kCLOCK_24MOscHighGainMode
24MHz crystal oscillator work as high gain mode.

enumerator kCLOCK_24MOscBypassMode
24MHz crystal oscillator work as bypass mode.

enumerator kCLOCK_24MOscLowPowerMode
24MHz crystal oscillator work as low power mode.

enum _clock_16MOsc_source
The enumeration of 16MHz RC oscillator clock source.

Values:

enumerator kCLOCK_16MOscSourceFrom16MOsc
Source from 16MHz RC oscialltor.

enumerator kCLOCK_16MOscSourceFrom24MOsc
Source from 24MHz crystal oscillator.

378 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _clock_1MHzOut_behavior
The enumeration of 1MHz output clock behavior, including disabling 1MHz output, en-
abling locked 1MHz clock output, and enabling free-running 1MHz clock output.

Values:

enumerator kCLOCK_1MHzOutDisable
Disable 1MHz output clock.

enumerator kCLOCK_1MHzOutEnableLocked1Mhz
Enable 1MHz output clock, and select locked 1MHz to output.

enumerator kCLOCK_1MHzOutEnableFreeRunning1Mhz
Enable 1MHZ output clock, and select free-running 1MHz to output.

enum _clock_level
The clock dependence level.

Values:

enumerator kCLOCK_Level0
Not needed in any mode.

enumerator kCLOCK_Level1
Needed in RUN mode.

enumerator kCLOCK_Level2
Needed in RUN and WAIT mode.

enumerator kCLOCK_Level3
Needed in RUN, WAIT and STOP mode.

enumerator kCLOCK_Level4
Always on in any mode.

typedef enum _clock_lpcg clock_lpcg_t
Clock LPCG index.

typedef enum _clock_name clock_name_t
Clock name.

typedef enum _clock_root clock_root_t
Root clock index.

typedef enum _clock_root_mux_source clock_root_mux_source_t
The enumerator of clock roots’ clock source mux value.

typedef enum _clock_group clock_group_t
Clock group enumeration.

typedef struct _clock_group_config clock_group_config_t
The structure used to configure clock group.

typedef enum _clock_osc clock_osc_t
OSC 24M sorce select.

typedef enum _clock_gate_value clock_gate_value_t
Clock gate value.

typedef enum _clock_mode_t clock_mode_t
System clock mode.

typedef enum _clock_usb_src clock_usb_src_t
USB clock source definition.

2.30. Clock Driver 379



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _clock_usb_phy_src clock_usb_phy_src_t
Source of the USB HS PHY.

typedef enum _clock_pll_post_div clock_pll_post_div_t
PLL post divider enumeration.

typedef enum _clock_output1_selection clock_output1_selection_t
The enumerater of clock output1’s clock source.

typedef enum _clock_output2_selection clock_output2_selection_t
The enumerater of clock output2’s clock source.

typedef struct _clock_arm_pll_config clock_arm_pll_config_t
PLL configuration for ARM.

The output clock frequency is:

Fout=Fin*loopDivider /(2 * postDivider).

Fin is always 24MHz.

typedef struct _clock_usb_pll_config clock_usb_pll_config_t
PLL configuration for USB.

typedef struct _clock_pll_ss_config clock_pll_ss_config_t
Spread specturm configure Pll.

typedef struct _clock_sys_pll2_config clock_sys_pll2_config_t
PLL configure for Sys Pll2.

typedef struct _clock_sys_pll1_config clock_sys_pll1_config_t
PLL configure for Sys Pll1.

typedef struct _clock_audio_pll_config clock_av_pll_config_t
PLL configuration for AUDIO and VIDEO.

typedef struct _clock_audio_pll_config clock_audio_pll_config_t

typedef struct _clock_audio_pll_config clock_video_pll_config_t

typedef struct _clock_audio_pll_gpc_config clock_audio_pll_gpc_config_t
PLL configuration fro AUDIO PLL, SYSTEM PLL1 and VIDEO PLL.

typedef struct _clock_audio_pll_gpc_config clock_video_pll_gpc_config_t

typedef struct _clock_audio_pll_gpc_config clock_sys_pll1_gpc_config_t

typedef struct _clock_enet_pll_config clock_enet_pll_config_t
PLL configuration for ENET.

typedef struct _clock_root_config_t clock_root_config_t
Clock root configuration.

typedef struct _clock_root_setpoint_config_t clock_root_setpoint_config_t
Clock root configuration in SetPoint Mode.

typedef enum _clock_pll clock_pll_t
PLL name.

typedef enum _clock_pfd clock_pfd_t
PLL PFD name.

typedef enum _clock_control_mode clock_control_mode_t
The enumeration of control mode.

380 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _clock_24MOsc_mode clock_24MOsc_mode_t
The enumeration of 24MHz crystal oscillator mode.

typedef enum _clock_16MOsc_source clock_16MOsc_source_t
The enumeration of 16MHz RC oscillator clock source.

typedef enum _clock_1MHzOut_behavior clock_1MHzOut_behavior_t
The enumeration of 1MHz output clock behavior, including disabling 1MHz output, en-
abling locked 1MHz clock output, and enabling free-running 1MHz clock output.

typedef enum _clock_level clock_level_t
The clock dependence level.

const clock_name_t s_clockSourceName[][8]

static inline void CLOCK_SetRootClockMux(clock_root_t root, uint8_t src)
Set CCM Root Clock MUX node to certain value.

Parameters
• root – Which root clock node to set, see clock_root_t.

• src – Clock mux value to set, different mux has different value range. See
clock_root_mux_source_t.

static inline uint32_t CLOCK_GetRootClockMux(clock_root_t root)
Get CCM Root Clock MUX value.

Parameters
• root – Which root clock node to get, see clock_root_t.

Returns
Clock mux value.

static inline clock_name_t CLOCK_GetRootClockSource(clock_root_t root, uint32_t src)
Get CCM Root Clock Source.

Parameters
• root – Which root clock node to get, see clock_root_t.

• src – Clock mux value to get, see clock_root_mux_source_t.

Returns
Clock source

static inline void CLOCK_SetRootClockDiv(clock_root_t root, uint32_t div)
Set CCM Root Clock DIV certain value.

Parameters
• root – Which root clock to set, see clock_root_t.

• div – Clock div value to set range is 1-256, different divider has different
value range.

static inline uint32_t CLOCK_GetRootClockDiv(clock_root_t root)
Get CCM DIV node value.

Parameters
• root – Which root clock node to get, see clock_root_t.

Returns
divider set for this root

2.30. Clock Driver 381



MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_PowerOffRootClock(clock_root_t root)
Power Off Root Clock.

Parameters
• root – Which root clock node to set, see clock_root_t.

static inline void CLOCK_PowerOnRootClock(clock_root_t root)
Power On Root Clock.

Parameters
• root – Which root clock node to set, see clock_root_t.

static inline void CLOCK_SetRootClock(clock_root_t root, const clock_root_config_t *config)
Configure Root Clock.

Parameters
• root – Which root clock node to set, see clock_root_t.

• config – root clock config, see clock_root_config_t

static inline void CLOCK_ControlGate(clock_lpcg_t name, clock_gate_value_t value)
Control the clock gate for specific IP.

Note: This API will not have any effect when this clock is in CPULPM or SetPoint Mode

Parameters
• name – Which clock to enable, see clock_lpcg_t.

• value – Clock gate value to set, see clock_gate_value_t.

static inline void CLOCK_EnableClock(clock_lpcg_t name)
Enable the clock for specific IP.

Parameters
• name – Which clock to enable, see clock_lpcg_t.

static inline void CLOCK_DisableClock(clock_lpcg_t name)
Disable the clock for specific IP.

Parameters
• name – Which clock to disable, see clock_lpcg_t.

void CLOCK_SetGroupConfig(clock_group_t group, const clock_group_config_t *config)
Set the clock group configuration.

Parameters
• group – Which group to configure, see clock_group_t.

• config – Configuration to set.

uint32_t CLOCK_GetFreq(clock_name_t name)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t.

Parameters
• name – Clock names defined in clock_name_t

382 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Clock frequency value in hertz

static inline uint32_t CLOCK_GetRootClockFreq(clock_root_t root)
Gets the clock frequency for a specific root clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_root_t.

Parameters
• root – Clock names defined in clock_root_t

Returns
Clock frequency value in hertz

static inline uint32_t CLOCK_GetM7Freq(void)
Get the CCM CPU/core/system frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline uint32_t CLOCK_GetM4Freq(void)
Get the CCM CPU/core/system frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline bool CLOCK_IsPllBypassed(clock_pll_t pll)
Check if PLL is bypassed.

Parameters
• pll – PLL control name (see clock_pll_t enumeration)

Returns
PLL bypass status.

• true: The PLL is bypassed.

• false: The PLL is not bypassed.

static inline bool CLOCK_IsPllEnabled(clock_pll_t pll)
Check if PLL is enabled.

Parameters
• pll – PLL control name (see clock_pll_t enumeration)

Returns
PLL bypass status.

• true: The PLL is enabled.

• false: The PLL is not enabled.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

CCSR_OFFSET
CCM registers offset.

CBCDR_OFFSET

CBCMR_OFFSET

2.30. Clock Driver 383



MCUXpresso SDK Documentation, Release 25.12.00

CSCMR1_OFFSET

CSCMR2_OFFSET

CSCDR1_OFFSET

CDCDR_OFFSET

CSCDR2_OFFSET

CSCDR3_OFFSET

CACRR_OFFSET

CS1CDR_OFFSET

CS2CDR_OFFSET

ARM_PLL_OFFSET
CCM Analog registers offset.

PLL_SYS_OFFSET

PLL_USB1_OFFSET

PLL_AUDIO_OFFSET

PLL_VIDEO_OFFSET

PLL_ENET_OFFSET

PLL_USB2_OFFSET

CCM_TUPLE(reg, shift, mask, busyShift)

CCM_TUPLE_REG(base, tuple)

CCM_TUPLE_SHIFT(tuple)

CCM_TUPLE_MASK(tuple)

CCM_TUPLE_BUSY_SHIFT(tuple)

CCM_BUSY_WAIT

CCM_ANALOG_TUPLE(reg, shift)
CCM ANALOG tuple macros to map corresponding registers and bit fields.

CCM_ANALOG_TUPLE_SHIFT(tuple)

CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off)

CCM_ANALOG_TUPLE_REG(base, tuple)

SYS_PLL1_FREQ
SYS_PLL_FREQ frequency in Hz.

SYS_PLL2_MFI

SYS_PLL2_FREQ

SYS_PLL3_MFI

SYS_PLL3_FREQ

384 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

XTAL_FREQ

LPADC_CLOCKS
Clock gate name array for ADC.

ADC_ETC_CLOCKS
Clock gate name array for ADC.

AOI_CLOCKS
Clock gate name array for AOI.

DCDC_CLOCKS
Clock gate name array for DCDC.

Clock ip name array for DCDC.

DCDC_CLOCKS
Clock gate name array for DCDC.

Clock ip name array for DCDC.

SRC_CLOCKS
Clock gate name array for SRC.

GPC_CLOCKS
Clock gate name array for GPC.

SSARC_CLOCKS
Clock gate name array for SSARC.

WDOG_CLOCKS
Clock gate name array for WDOG.

EWM_CLOCKS
Clock gate name array for EWM.

SEMA_CLOCKS
Clock gate name array for Sema.

MU_CLOCKS
Clock gate name array for MU.

EDMA_CLOCKS
Clock gate name array for EDMA.

FLEXRAM_CLOCKS
Clock gate name array for FLEXRAM.

LMEM_CLOCKS
Clock gate name array for LMEM.

FLEXSPI_CLOCKS
Clock gate name array for FLEXSPI.

RDC_CLOCKS
Clock gate name array for RDC.

SEMC_CLOCKS
Clock ip name array for SEMC.

XECC_CLOCKS
Clock ip name array for XECC.

2.30. Clock Driver 385



MCUXpresso SDK Documentation, Release 25.12.00

IEE_CLOCKS
Clock ip name array for IEE.

KEYMANAGER_CLOCKS
Clock ip name array for KEY_MANAGER.

PUF_CLOCKS
Clock ip name array for PUF.

OCOTP_CLOCKS
Clock ip name array for OCOTP.

CAAM_CLOCKS
Clock ip name array for CAAM.

XBAR_CLOCKS
Clock ip name array for XBAR.

IOMUXC_CLOCKS
Clock ip name array for IOMUXC.

GPIO_CLOCKS
Clock ip name array for GPIO.

KPP_CLOCKS
Clock ip name array for KPP.

FLEXIO_CLOCKS
Clock ip name array for FLEXIO.

DAC_CLOCKS
Clock ip name array for DAC.

CMP_CLOCKS
Clock ip name array for CMP.

PIT_CLOCKS
Clock ip name array for PIT.

GPT_CLOCKS
Clock ip name array for GPT.

TMR_CLOCKS
Clock ip name array for QTIMER.

ENC_CLOCKS
Clock ip name array for ENC.

PWM_CLOCKS
Clock ip name array for PWM.

FLEXCAN_CLOCKS
Clock ip name array for FLEXCAN.

LPUART_CLOCKS
Clock ip name array for LPUART.

LPI2C_CLOCKS
Clock ip name array for LPI2C.

LPSPI_CLOCKS
Clock ip name array for LPSPI.

386 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

EMVSIM_CLOCKS
Clock ip name array for EMVSIM.

ENET_CLOCKS
Clock ip name array for ENET.

ENETQOS_CLOCKS
Clock ip name array for ENET_QOS.

USB_CLOCKS
Clock ip name array for USB.

CDOG_CLOCKS
Clock ip name array for CDOG.

USDHC_CLOCKS
Clock ip name array for USDHC.

ASRC_CLOCKS
Clock ip name array for ASRC.

MQS_CLOCKS
Clock ip name array for MQS.

PDM_CLOCKS
Clock ip name array for PDM.

SPDIF_CLOCKS
Clock ip name array for SPDIF.

SAI_CLOCKS
Clock ip name array for SAI.

PXP_CLOCKS
Clock ip name array for PXP.

GPU2D_CLOCKS
Clock ip name array for GPU2d.

LCDIF_CLOCKS
Clock ip name array for LCDIF.

LCDIFV2_CLOCKS
Clock ip name array for LCDIFV2.

MIPI_DSI_HOST_CLOCKS
Clock ip name array for MIPI_DSI.

MIPI_CSI2RX_CLOCKS
Clock ip name array for MIPI_CSI.

CSI_CLOCKS
Clock ip name array for CSI.

DCIC_CLOCKS
Clock ip name array for DCIC.

DMAMUX_CLOCKS
Clock ip name array for DMAMUX_CLOCKS.

XBARA_CLOCKS
Clock ip name array for XBARA.

2.30. Clock Driver 387



MCUXpresso SDK Documentation, Release 25.12.00

XBARB_CLOCKS
Clock ip name array for XBARB.

CCM_OBS_M7_CLK_ROOT

CCM_OBS_M4_CLK_ROOT

CCM_OBS_BUS_CLK_ROOT

CCM_OBS_BUS_LPSR_CLK_ROOT

CCM_OBS_SEMC_CLK_ROOT

CCM_OBS_CSSYS_CLK_ROOT

CCM_OBS_CSTRACE_CLK_ROOT

CCM_OBS_M4_SYSTICK_CLK_ROOT

CCM_OBS_M7_SYSTICK_CLK_ROOT

CCM_OBS_ADC1_CLK_ROOT

CCM_OBS_ADC2_CLK_ROOT

CCM_OBS_ACMP_CLK_ROOT

CCM_OBS_FLEXIO1_CLK_ROOT

CCM_OBS_FLEXIO2_CLK_ROOT

CCM_OBS_GPT1_CLK_ROOT

CCM_OBS_GPT2_CLK_ROOT

CCM_OBS_GPT3_CLK_ROOT

CCM_OBS_GPT4_CLK_ROOT

CCM_OBS_GPT5_CLK_ROOT

CCM_OBS_GPT6_CLK_ROOT

CCM_OBS_FLEXSPI1_CLK_ROOT

CCM_OBS_FLEXSPI2_CLK_ROOT

CCM_OBS_CAN1_CLK_ROOT

CCM_OBS_CAN2_CLK_ROOT

CCM_OBS_CAN3_CLK_ROOT

CCM_OBS_LPUART1_CLK_ROOT

CCM_OBS_LPUART2_CLK_ROOT

CCM_OBS_LPUART3_CLK_ROOT

CCM_OBS_LPUART4_CLK_ROOT

CCM_OBS_LPUART5_CLK_ROOT

CCM_OBS_LPUART6_CLK_ROOT

388 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_LPUART7_CLK_ROOT

CCM_OBS_LPUART8_CLK_ROOT

CCM_OBS_LPUART9_CLK_ROOT

CCM_OBS_LPUART10_CLK_ROOT

CCM_OBS_LPUART11_CLK_ROOT

CCM_OBS_LPUART12_CLK_ROOT

CCM_OBS_LPI2C1_CLK_ROOT

CCM_OBS_LPI2C2_CLK_ROOT

CCM_OBS_LPI2C3_CLK_ROOT

CCM_OBS_LPI2C4_CLK_ROOT

CCM_OBS_LPI2C5_CLK_ROOT

CCM_OBS_LPI2C6_CLK_ROOT

CCM_OBS_LPSPI1_CLK_ROOT

CCM_OBS_LPSPI2_CLK_ROOT

CCM_OBS_LPSPI3_CLK_ROOT

CCM_OBS_LPSPI4_CLK_ROOT

CCM_OBS_LPSPI5_CLK_ROOT

CCM_OBS_LPSPI6_CLK_ROOT

CCM_OBS_EMV1_CLK_ROOT

CCM_OBS_EMV2_CLK_ROOT

CCM_OBS_ENET1_CLK_ROOT

CCM_OBS_ENET2_CLK_ROOT

CCM_OBS_ENET_QOS_CLK_ROOT

CCM_OBS_ENET_25M_CLK_ROOT

CCM_OBS_ENET_TIMER1_CLK_ROOT

CCM_OBS_ENET_TIMER2_CLK_ROOT

CCM_OBS_ENET_TIMER3_CLK_ROOT

CCM_OBS_USDHC1_CLK_ROOT

CCM_OBS_USDHC2_CLK_ROOT

CCM_OBS_ASRC_CLK_ROOT

CCM_OBS_MQS_CLK_ROOT

CCM_OBS_MIC_CLK_ROOT

CCM_OBS_SPDIF_CLK_ROOT

2.30. Clock Driver 389



MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_SAI1_CLK_ROOT

CCM_OBS_SAI2_CLK_ROOT

CCM_OBS_SAI3_CLK_ROOT

CCM_OBS_SAI4_CLK_ROOT

CCM_OBS_GC355_CLK_ROOT

CCM_OBS_LCDIF_CLK_ROOT

CCM_OBS_LCDIFV2_CLK_ROOT

CCM_OBS_MIPI_REF_CLK_ROOT

CCM_OBS_MIPI_ESC_CLK_ROOT

CCM_OBS_CSI2_CLK_ROOT

CCM_OBS_CSI2_ESC_CLK_ROOT

CCM_OBS_CSI2_UI_CLK_ROOT

CCM_OBS_CSI_CLK_ROOT

CCM_OBS_CCM_CKO1_CLK_ROOT

CCM_OBS_CCM_CKO2_CLK_ROOT

CCM_OBS_CM7_CORE_STCLKEN

CCM_OBS_CCM_FLEXRAM_CLK_ROOT

CCM_OBS_MIPI_DSI_TXESC

CCM_OBS_MIPI_DSI_RXESC

CCM_OBS_OSC_RC_16M

CCM_OBS_OSC_RC_48M

CCM_OBS_OSC_RC_48M_DIV2

CCM_OBS_OSC_RC_400M

CCM_OBS_OSC_24M_OUT

CCM_OBS_ARM_PLL_OUT

CCM_OBS_SYS_PLL2_OUT

CCM_OBS_SYS_PLL2_PFD0

CCM_OBS_SYS_PLL2_PFD1

CCM_OBS_SYS_PLL2_PFD2

CCM_OBS_SYS_PLL2_PFD3

CCM_OBS_SYS_PLL3_OUT

CCM_OBS_SYS_PLL3_DIV2

CCM_OBS_SYS_PLL3_PFD0

390 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_SYS_PLL3_PFD1

CCM_OBS_SYS_PLL3_PFD2

CCM_OBS_SYS_PLL3_PFD3

CCM_OBS_SYS_PLL1_OUT

CCM_OBS_SYS_PLL1_DIV2

CCM_OBS_SYS_PLL1_DIV5

CCM_OBS_PLL_AUDIO_OUT

CCM_OBS_PLL_VIDEO_OUT

CCM_OBS_DIV

clock_ip_name_t

CLOCK_GetCpuClkFreq

CLOCK_GetCoreSysClkFreq
For compatible with other platforms without CCM.

PLL_PFD_COUNT

static inline uint32_t CLOCK_GetRtcFreq(void)
Gets the RTC clock frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline void CLOCK_OSC_SetOsc48MControlMode(clock_control_mode_t controlMode)
Set the control mode of 48MHz RC oscillator.

Parameters
• controlMode – The control mode to be set, please refer to

clock_control_mode_t.

static inline void CLOCK_OSC_EnableOsc48M(bool enable)
Enable/disable 48MHz RC oscillator.

Parameters
• enable – Used to enable or disable the 48MHz RC oscillator.

– true Enable the 48MHz RC oscillator.

– false Dissable the 48MHz RC oscillator.

static inline void CLOCK_OSC_SetOsc48MDiv2ControlMode(clock_control_mode_t controlMode)
Set the control mode of the 24MHz clock sourced from 48MHz RC oscillator.

Parameters
• controlMode – The control mode to be set, please refer to

clock_control_mode_t.

static inline void CLOCK_OSC_EnableOsc48MDiv2(bool enable)
Enable/disable the 24MHz clock sourced from 48MHz RC oscillator.

Note: The 48MHz RC oscillator must be enabled before enabling this 24MHz clock.

2.30. Clock Driver 391



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• enable – Used to enable/disable the 24MHz clock sourced from 48MHz RC

oscillator.

– true Enable the 24MHz clock sourced from 48MHz.

– false Disable the 24MHz clock sourced from 48MHz.

static inline void CLOCK_OSC_SetOsc24MControlMode(clock_control_mode_t controlMode)
Set the control mode of 24MHz crystal oscillator.

Parameters
• controlMode – The control mode to be set, please refer to

clock_control_mode_t.

void CLOCK_OSC_EnableOsc24M(void)
Enable OSC 24Mhz.

This function enables OSC 24Mhz.

static inline void CLOCK_OSC_GateOsc24M(bool enableGate)
Gate/ungate the 24MHz crystal oscillator output.

Note: Gating the 24MHz crystal oscillator can save power.

Parameters
• enableGate – Used to gate/ungate the 24MHz crystal oscillator.

– true Gate the 24MHz crystal oscillator to save power.

– false Ungate the 24MHz crystal oscillator.

void CLOCK_OSC_SetOsc24MWorkMode(clock_24MOsc_mode_t workMode)
Set the work mode of 24MHz crystal oscillator, the available modes are high gian mode, low
power mode, and bypass mode.

Parameters
• workMode – The work mode of 24MHz crystal oscillator, please refer to

clock_24MOsc_mode_t for details.

static inline void CLOCK_OSC_SetOscRc400MControlMode(clock_control_mode_t controlMode)
Set the control mode of 400MHz RC oscillator.

Parameters
• controlMode – The control mode to be set, please refer to

clock_control_mode_t.

void CLOCK_OSC_EnableOscRc400M(void)
Enable OSC RC 400Mhz.

This function enables OSC RC 400Mhz.

static inline void CLOCK_OSC_GateOscRc400M(bool enableGate)
Gate/ungate 400MHz RC oscillator.

Parameters
• enableGate – Used to gate/ungate 400MHz RC oscillator.

– true Gate the 400MHz RC oscillator.

– false Ungate the 400MHz RC oscillator.

392 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK_OSC_TrimOscRc400M(bool enable, bool bypass, uint16_t trim)
Trims OSC RC 400MHz.

Parameters
• enable – Used to enable trim function.

• bypass – Bypass the trim function.

• trim – Trim value.

void CLOCK_OSC_SetOscRc400MRefClkDiv(uint8_t divValue)
Set the divide value for ref_clk to generate slow clock.

Note: slow_clk = ref_clk / (divValue + 1), and the recommand divide value is 24.

Parameters
• divValue – The divide value to be set, the available range is 0~63.

void CLOCK_OSC_SetOscRc400MFastClkCount(uint16_t targetCount)
Set the target count for the fast clock.

Parameters
• targetCount – The desired target for the fast clock, should be the number

of clock cycles of the fast_clk per divided ref_clk.

void CLOCK_OSC_SetOscRc400MHysteresisValue(uint8_t negHysteresis, uint8_t posHysteresis)
Set the negative and positive hysteresis value for the tuned clock.

Note: The hysteresis value should be set after the clock is tuned.

Parameters
• negHysteresis – The negative hysteresis value for the turned clock, this value

in number of clock cycles of the fast clock

• posHysteresis – The positive hysteresis value for the turned clock, this value
in number of clock cycles of the fast clock

void CLOCK_OSC_BypassOscRc400MTuneLogic(bool enableBypass)
Bypass/un-bypass the tune logic.

Parameters
• enableBypass – Used to control whether to bypass the turn logic.

– true Bypass the tune logic and use the programmed oscillator frequency
to run the oscillator. Function CLOCK_OSC_SetOscRc400MTuneValue()
can be used to set oscillator frequency.

– false Use the output of tune logic to run the oscillator.

void CLOCK_OSC_EnableOscRc400MTuneLogic(bool enable)
Start/Stop the tune logic.

Parameters
• enable – Used to start or stop the tune logic.

– true Start tuning

– false Stop tuning and reset the tuning logic.

2.30. Clock Driver 393



MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK_OSC_FreezeOscRc400MTuneValue(bool enableFreeze)
Freeze/Unfreeze the tuning value.

Parameters
• enableFreeze – Used to control whether to freeze the tune value.

– true Freeze the tune at the current tuned value and the oscillator runs
at tje frozen tune value.

– false Unfreezes and continues the tune operation.

void CLOCK_OSC_SetOscRc400MTuneValue(uint8_t tuneValue)
Set the 400MHz RC oscillator tune value when the tune logic is disabled.

Parameters
• tuneValue – The tune value to determine the frequency of Oscillator.

void CLOCK_OSC_Set1MHzOutputBehavior(clock_1MHzOut_behavior_t behavior)
Set the behavior of the 1MHz output clock, such as disable the 1MHz clock output, enable
the free-running 1MHz clock output, enable the locked 1MHz clock output.

Note: The 1MHz clock is divided from 400M RC Oscillator.

Parameters
• behavior – The behavior of 1MHz output clock, please refer to

clock_1MHzOut_behavior_t for details.

void CLOCK_OSC_SetLocked1MHzCount(uint16_t count)
Set the count for the locked 1MHz clock out.

Parameters
• count – Used to set the desired target for the locked 1MHz clock out, the

value in number of clock cycles of the fast clock per divided ref_clk.

bool CLOCK_OSC_CheckLocked1MHzErrorFlag(void)
Check the error flag for locked 1MHz clock out.

Returns
The error flag for locked 1MHz clock out.

• true The count value has been reached within one diviced ref clock period

• false No effect.

void CLOCK_OSC_ClearLocked1MHzErrorFlag(void)
Clear the error flag for locked 1MHz clock out.

uint16_t CLOCK_OSC_GetCurrentOscRc400MFastClockCount(void)
Get current count for the fast clock during the tune process.

Returns
The current count for the fast clock.

uint8_t CLOCK_OSC_GetCurrentOscRc400MTuneValue(void)
Get current tune value used by oscillator during tune process.

Returns
The current tune value.

394 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_OSC_SetOsc16MControlMode(clock_control_mode_t controlMode)
Set the control mode of 16MHz crystal oscillator.

Parameters
• controlMode – The control mode to be set, please refer to

clock_control_mode_t.

void CLOCK_OSC_SetOsc16MConfig(clock_16MOsc_source_t source, bool enablePowerSave,
bool enableClockOut)

Configure the 16MHz oscillator.

Parameters
• source – Used to select the source for 16MHz RC oscillator, please refer to

clock_16MOsc_source_t.

• enablePowerSave – Enable/disable power save mode function at 16MHz OSC.

– true Enable power save mode function at 16MHz osc.

– false Disable power save mode function at 16MHz osc.

• enableClockOut – Enable/Disable clock output for 16MHz RCOSC.

– true Enable clock output for 16MHz RCOSC.

– false Disable clock output for 16MHz RCOSC.

void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
Initialize the ARM PLL.

This function initialize the ARM PLL with specific settings

Parameters
• config – configuration to set to PLL.

status_t CLOCK_CalcArmPllFreq(clock_arm_pll_config_t *config, uint32_t freqInMhz)
Calculate corresponding config values per given frequency.

This function calculates config valudes per given frequency for Arm PLL

Parameters
• config – pll config structure

• freqInMhz – target frequency

status_t CLOCK_InitArmPllWithFreq(uint32_t freqInMhz)
Initializes the Arm PLL with Specific Frequency (in Mhz).

This function initializes the Arm PLL with specific frequency

Parameters
• freqInMhz – target frequency

void CLOCK_DeinitArmPll(void)
De-initialize the ARM PLL.

void CLOCK_CalcPllSpreadSpectrum(uint32_t factor, uint32_t range, uint32_t mod,
clock_pll_ss_config_t *ss)

Calculate spread spectrum step and stop.

This function calculate spread spectrum step and stop according to given parameters. For
integer PLL (syspll2) the factor is mfd, while for other fractional PLLs (audio/video/syspll1),
the factor is denominator.

Parameters

2.30. Clock Driver 395



MCUXpresso SDK Documentation, Release 25.12.00

• factor – factor to calculate step/stop

• range – spread spectrum range

• mod – spread spectrum modulation frequency

• ss – calculated spread spectrum values

void CLOCK_InitSysPll1(const clock_sys_pll1_config_t *config)
Initialize the System PLL1.

This function initializes the System PLL1 with specific settings

Parameters
• config – Configuration to set to PLL1.

void CLOCK_DeinitSysPll1(void)
De-initialize the System PLL1.

void CLOCK_GPC_SetSysPll1OutputFreq(const clock_sys_pll1_gpc_config_t *config)
Set System PLL1 output frequency in GPC mode.

Parameters
• config – Pointer to System PLL1 configure structure.

void CLOCK_InitSysPll2(const clock_sys_pll2_config_t *config)
Initialize the System PLL2.

This function initializes the System PLL2 with specific settings

Parameters
• config – Configuration to configure spread spectrum. This parameter can

be NULL, if no need to enabled spread spectrum

void CLOCK_DeinitSysPll2(void)
De-initialize the System PLL2.

bool CLOCK_IsSysPll2PfdEnabled(clock_pfd_t pfd)
Check if Sys PLL2 PFD is enabled.

Note: Only useful in software control mode.

Parameters
• pfd – PFD control name

Returns
PFD bypass status.

• true: power on.

• false: power off.

void CLOCK_InitSysPll3(void)
Initialize the System PLL3.

This function initializes the System PLL3 with specific settings

void CLOCK_DeinitSysPll3(void)
De-initialize the System PLL3.

396 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

bool CLOCK_IsSysPll3PfdEnabled(clock_pfd_t pfd)
Check if Sys PLL3 PFD is enabled.

Note: Only useful in software control mode.

Parameters
• pfd – PFD control name

Returns
PFD bypass status.

• true: power on.

• false: power off.

void CLOCK_SetPllBypass(clock_pll_t pll, bool bypass)
PLL bypass setting.

Parameters
• pll – PLL control name (see clock_pll_t enumeration)

• bypass – Bypass the PLL.

– true: Bypass the PLL.

– false:Not bypass the PLL.

status_t CLOCK_CalcAvPllFreq(clock_av_pll_config_t *config, uint32_t freqInMhz)
Calculate corresponding config values per given frequency.

This function calculates config valudes per given frequency for Audio/Video PLL.

Parameters
• config – pll config structure

• freqInMhz – target frequency

status_t CLOCK_InitAudioPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange,
uint32_t ssMod)

Initializes the Audio PLL with Specific Frequency (in Mhz).

This function initializes the Audio PLL with specific frequency

Parameters
• freqInMhz – target frequency

• ssEnable – enable spread spectrum or not

• ssRange – range spread spectrum range

• ssMod – spread spectrum modulation frequency

void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
Initializes the Audio PLL.

This function initializes the Audio PLL with specific settings

Parameters
• config – Configuration to set to PLL.

void CLOCK_DeinitAudioPll(void)
De-initialize the Audio PLL.

2.30. Clock Driver 397



MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK_GPC_SetAudioPllOutputFreq(const clock_audio_pll_gpc_config_t *config)
Set Audio PLL output frequency in GPC mode.

Parameters
• config – Pointer to clock_audio_pll_gpc_config_t structure.

status_t CLOCK_InitVideoPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange,
uint32_t ssMod)

Initializes the Video PLL with Specific Frequency (in Mhz).

This function initializes the Video PLL with specific frequency

Parameters
• freqInMhz – target frequency

• ssEnable – enable spread spectrum or not

• ssRange – range spread spectrum range

• ssMod – spread spectrum modulation frequency

void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
Initialize the video PLL.

This function configures the Video PLL with specific settings

Parameters
• config – configuration to set to PLL.

void CLOCK_DeinitVideoPll(void)
De-initialize the Video PLL.

void CLOCK_GPC_SetVideoPllOutputFreq(const clock_video_pll_gpc_config_t *config)
Set Video PLL output frequency in GPC mode.

Parameters
• config – Pointer to Vidoe PLL configure structure.

uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
Get current PLL output frequency.

This function get current output frequency of specific PLL

Parameters
• pll – pll name to get frequency.

Returns
The PLL output frequency in hertz.

void CLOCK_InitPfd(clock_pll_t pll, clock_pfd_t pfd, uint8_t frac)
Initialize PLL PFD.

This function initializes the System PLL PFD. During new value setting, the clock output is
disabled to prevent glitch.

Note: It is recommended that PFD settings are kept between 12-35.

Parameters
• pll – Which PLL of targeting PFD to be operated.

• pfd – Which PFD clock to enable.

398 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• frac – The PFD FRAC value.

void CLOCK_DeinitPfd(clock_pll_t pll, clock_pfd_t pfd)
De-initialize selected PLL PFD.

Parameters
• pll – Which PLL of targeting PFD to be operated.

• pfd – Which PFD clock to enable.

uint32_t CLOCK_GetPfdFreq(clock_pll_t pll, clock_pfd_t pfd)
Get current PFD output frequency.

This function get current output frequency of specific System PLL PFD

Parameters
• pll – Which PLL of targeting PFD to be operated.

• pfd – pfd name to get frequency.

Returns
The PFD output frequency in hertz.

uint32_t CLOCK_GetFreqFromObs(uint32_t obsSigIndex, uint32_t obsIndex)

bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
Enable USB HS clock.

This function only enables the access to USB HS prepheral, upper layer should first call the
CLOCK_EnableUsbhs0PhyPllClock to enable the PHY clock to use USB HS.

Parameters
• src – USB HS does not care about the clock source, here must be

kCLOCK_UsbSrcUnused.

• freq – USB HS does not care about the clock source, so this parameter is
ignored.

Return values
• true – The clock is set successfully.

• false – The clock source is invalid to get proper USB HS clock.

bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
Enable USB HS clock.

This function only enables the access to USB HS prepheral, upper layer should first call the
CLOCK_EnableUsbhs0PhyPllClock to enable the PHY clock to use USB HS.

Parameters
• src – USB HS does not care about the clock source, here must be

kCLOCK_UsbSrcUnused.

• freq – USB HS does not care about the clock source, so this parameter is
ignored.

Return values
• true – The clock is set successfully.

• false – The clock source is invalid to get proper USB HS clock.

bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
Enable USB HS PHY PLL clock.

This function enables the internal 480MHz USB PHY PLL clock.

2.30. Clock Driver 399



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• src – USB HS PHY PLL clock source.

• freq – The frequency specified by src.

Return values
• true – The clock is set successfully.

• false – The clock source is invalid to get proper USB HS clock.

void CLOCK_DisableUsbhs0PhyPllClock(void)
Disable USB HS PHY PLL clock.

This function disables USB HS PHY PLL clock.

bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
Enable USB HS PHY PLL clock.

This function enables the internal 480MHz USB PHY PLL clock.

Parameters
• src – USB HS PHY PLL clock source.

• freq – The frequency specified by src.

Return values
• true – The clock is set successfully.

• false – The clock source is invalid to get proper USB HS clock.

void CLOCK_DisableUsbhs1PhyPllClock(void)
Disable USB HS PHY PLL clock.

This function disables USB HS PHY PLL clock.

static inline void CLOCK_OSCPLL_LockControlMode(clock_name_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
• name – Clock source name, see clock_name_t.

static inline void CLOCK_OSCPLL_LockWhiteList(clock_name_t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
• name – Clock source name, see clock_name_t.

static inline void CLOCK_OSCPLL_SetWhiteList(clock_name_t name, uint8_t domainId)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

400 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• name – Clock source name, see clock_name_t.

• domainId – Domains that on the whitelist can change this clock.

static inline bool CLOCK_OSCPLL_IsSetPointImplemented(clock_name_t name)
Check whether this clock implement SetPoint control scheme.

Parameters
• name – Clock source name, see clock_name_t.

Returns
Clock source SetPoint implement status.

• true: SetPoint is implemented.

• false: SetPoint is not implemented.

static inline void CLOCK_OSCPLL_ControlByUnassignedMode(clock_name_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock source name, see clock_name_t.

void CLOCK_OSCPLL_ControlBySetPointMode(clock_name_t name, uint16_t spValue, uint16_t
stbyValue)

Set this clock works in SetPoint control Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock source name, see clock_name_t.

• spValue – Bit0~Bit15 hold value for Setpoint 0~16 respectively. A bitfield
value of 0 implies clock will be shutdown in this Setpoint. A bitfield value
of 1 implies clock will be turn on in this Setpoint.

• stbyValue – Bit0~Bit15 hold value for Setpoint 0~16 standby. A bitfield value
of 0 implies clock will be shutdown during standby. A bitfield value of 1
represent clock will keep Setpoint setting during standby.

void CLOCK_OSCPLL_ControlByCpuLowPowerMode(clock_name_t name, uint8_t domainId,
clock_level_t level0, clock_level_t level1)

Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock source name, see clock_name_t.

• domainId – Domains that on the whitelist can change this clock.

2.30. Clock Driver 401



MCUXpresso SDK Documentation, Release 25.12.00

• level1 (level0,) – Depend level of this clock.

static inline void CLOCK_OSCPLL_SetCurrentClockLevel(clock_name_t name, clock_level_t
level)

Set clock depend level for current accessing domain.

Note: This setting only take effects in CPU Low Power Mode.

Parameters
• name – Clock source name, see clock_name_t.

• level – Depend level of this clock.

static inline void CLOCK_OSCPLL_ControlByDomainMode(clock_name_t name, uint8_t
domainId)

Set this clock works in Domain Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock source name, see clock_name_t.

• domainId – Domains that on the whitelist can change this clock.

static inline void CLOCK_ROOT_LockControlMode(clock_root_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
• name – Clock root name, see clock_root_t.

static inline void CLOCK_ROOT_LockWhiteList(clock_root_t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
• name – Clock root name, see clock_root_t.

static inline void CLOCK_ROOT_SetWhiteList(clock_root_t name, uint8_t domainId)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

Parameters
• name – Clock root name, see clock_root_t.

402 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• domainId – Domains that on the whitelist can change this clock.

static inline bool CLOCK_ROOT_IsSetPointImplemented(clock_root_t name)
Check whether this clock implement SetPoint control scheme.

Parameters
• name – Clock root name, see clock_root_t.

Returns
Clock root SetPoint implement status.

• true: SetPoint is implemented.

• false: SetPoint is not implemented.

static inline void CLOCK_ROOT_ControlByUnassignedMode(clock_root_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock root name, see clock_root_t.

static inline void CLOCK_ROOT_ConfigSetPoint(clock_root_t name, uint16_t spIndex, const
clock_root_setpoint_config_t *config)

Configure one SetPoint for this clock.

Note: SetPoint value could only be changed in Unassigend Mode.

Parameters
• name – Which clock root to set, see clock_root_t.

• spIndex – Which SetPoint of this clock root to set.

• config – SetPoint config, see clock_root_setpoint_config_t

static inline void CLOCK_ROOT_EnableSetPointControl(clock_root_t name)
Enable SetPoint control for this clock root.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock root name, see clock_root_t.

void CLOCK_ROOT_ControlBySetPointMode(clock_root_t name, const
clock_root_setpoint_config_t *spTable)

Set this clock works in SetPoint controlled Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters

2.30. Clock Driver 403



MCUXpresso SDK Documentation, Release 25.12.00

• name – Clock root name, see clock_root_t.

• spTable – Point to the array that stores clock root settings for each setpoint.
Note that the pointed array must have 16 elements.

static inline void CLOCK_ROOT_ControlByDomainMode(clock_root_t name, uint8_t domainId)
Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock root name, see clock_root_t.

• domainId – Domains that on the whitelist can change this clock.

static inline void CLOCK_LPCG_LockControlMode(clock_lpcg_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

static inline void CLOCK_LPCG_LockWhiteList(clock_lpcg_t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

static inline void CLOCK_LPCG_SetWhiteList(clock_lpcg_t name, uint8_t domainId)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

• domainId – Domains that on the whitelist can change this clock.

static inline bool CLOCK_LPCG_IsSetPointImplemented(clock_lpcg_t name)
Check whether this clock implement SetPoint control scheme.

Parameters
• name – Clock gate name, see clock_lpcg_t.

Returns
Clock gate SetPoint implement status.

• true: SetPoint is implemented.

404 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• false: SetPoint is not implemented.

static inline void CLOCK_LPCG_ControlByUnassignedMode(clock_lpcg_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

void CLOCK_LPCG_ControlBySetPointMode(clock_lpcg_t name, uint16_t spValue, uint16_t
stbyValue)

Set this clock works in SetPoint control Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

• spValue – Bit0~Bit15 hold value for Setpoint 0~16 respectively. A bitfield
value of 0 implies clock will be shutdown in this Setpoint. A bitfield value
of 1 implies clock will be turn on in this Setpoint.

• stbyValue – Bit0~Bit15 hold value for Setpoint 0~16 standby. A bitfield value
of 0 implies clock will be shutdown during standby. A bitfield value of 1
represent clock will keep Setpoint setting during standby.

void CLOCK_LPCG_ControlByCpuLowPowerMode(clock_lpcg_t name, uint8_t domainId,
clock_level_t level0, clock_level_t level1)

Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

• domainId – Domains that on the whitelist can change this clock.

• level1 (level0,) – Depend level of this clock.

static inline void CLOCK_LPCG_SetCurrentClockLevel(clock_lpcg_t name, clock_level_t level)
Set clock depend level for current accessing domain.

Note: This setting only take effects in CPU Low Power Mode.

Parameters
• name – Clock gate name, see clock_lpcg_t.

• level – Depend level of this clock.

2.30. Clock Driver 405



MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_LPCG_ControlByDomainMode(clock_lpcg_t name, uint8_t domainId)
Set this clock works in Domain Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
• name – Clock gate name, see clock_lpcg_t.

• domainId – Domains that on the whitelist can change this clock.

static inline void CLOCK_SetClockOutput1(clock_output1_selection_t selection, uint32_t
divider)

Set the clock source and the divider of the clock output1.

param selection The clock source to be output, please refer to clock_output1_selection_t.
param divider The divider of the output clock signal.

static inline void CLOCK_SetClockOutput2(clock_output2_selection_t selection, uint32_t
divider)

Set the clock source and the divider of the clock output2.

param selection The clock source to be output, please refer to clock_output2_selection_t.
param divider The divider of the output clock signal.

static inline uint32_t CLOCK_GetClockOutCLKO1Freq(void)
Get the frequency of clock output1 clock signal.

Returns
The frequency of clock output1 clock signal.

static inline uint32_t CLOCK_GetClockOutClkO2Freq(void)
Get the frequency of clock output2 clock signal.

Returns
The frequency of clock output2 clock signal.

bool clockOff
Turn off the clock.

uint16_t resetDiv
resetDiv + 1 should be common multiple of all dividers, valid range 0 ~ 255.

uint8_t div0
Divide root clock by div0 + 1, valid range: 0 ~ 15.

clock_pll_post_div_t postDivider
Post divider.

uint32_t loopDivider
PLL loop divider. Valid range: 104-208.

uint8_t loopDivider
PLL loop divider. 0 - Fout=Fref*20; 1 - Fout=Fref*22

uint8_t src
Pll clock source, reference _clock_pll_clk_src

uint16_t stop
Spread spectrum stop value to get frequency change.

406 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t step
Spread spectrum step value to get frequency change step.

uint32_t mfd
Denominator of spread spectrum

clock_pll_ss_config_t *ss
Spread spectrum parameter, it can be NULL, if ssEnable is set to false

bool ssEnable
Enable spread spectrum flag

bool pllDiv2En
Enable Sys Pll1 divide-by-2 clock or not.

bool pllDiv5En
Enable Sys Pll1 divide-by-5 clock or not.

clock_pll_ss_config_t *ss
Spread spectrum parameter, it can be NULL, if ssEnable is set to false

bool ssEnable
Enable spread spectrum flag

uint8_t loopDivider
PLL loop divider. Valid range for DIV_SELECT divider value: 27~54.

uint8_t postDivider
Divider after the PLL, 0x0=divided by 1, 0x1=divided by 2, 0x2=divided by 4, 0x3=divided
by 8, 0x4=divided by 16, 0x5=divided by 32.

uint32_t numerator
30 bit numerator of fractional loop divider.

uint32_t denominator
30 bit denominator of fractional loop divider

clock_pll_ss_config_t *ss
Spread spectrum parameter, it can be NULL, if ssEnable is set to false

bool ssEnable
Enable spread spectrum flag

uint8_t loopDivider
PLL loop divider.

uint32_t numerator
30 bit numerator of fractional loop divider.

uint32_t denominator
30 bit denominator of fractional loop divider

clock_pll_ss_config_t *ss
Spread spectrum parameter, it can be NULL, if ssEnable is set to false

bool ssEnable
Enable spread spectrum flag

bool enableClkOutput
Power on and enable PLL clock output for ENET0 (ref_enetpll0).

bool enableClkOutput25M
Power on and enable PLL clock output for ENET2 (ref_enetpll2).

2.30. Clock Driver 407



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t loopDivider
Controls the frequency of the ENET0 reference clock. b00 25MHz b01 50MHz b10 100MHz
(not 50% duty cycle) b11 125MHz

uint8_t src
Pll clock source, reference _clock_pll_clk_src

bool enableClkOutput1
Power on and enable PLL clock output for ENET1 (ref_enetpll1).

uint8_t loopDivider1
Controls the frequency of the ENET1 reference clock. b00 25MHz b01 50MHz b10 100MHz
(not 50% duty cycle) b11 125MHz

bool clockOff

uint8_t mux
See clock_root_mux_source_t for details.

uint8_t div
it’s the actual divider

uint8_t grade
Indicate speed grade for each SetPoint

bool clockOff

uint8_t mux
See clock_root_mux_source_t for details.

uint8_t div
it’s the actual divider

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _clock_group_config
#include <fsl_clock.h> The structure used to configure clock group.

struct _clock_arm_pll_config
#include <fsl_clock.h> PLL configuration for ARM.

The output clock frequency is:

Fout=Fin*loopDivider /(2 * postDivider).

Fin is always 24MHz.

struct _clock_usb_pll_config
#include <fsl_clock.h> PLL configuration for USB.

struct _clock_pll_ss_config
#include <fsl_clock.h> Spread specturm configure Pll.

408 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _clock_sys_pll2_config
#include <fsl_clock.h> PLL configure for Sys Pll2.

struct _clock_sys_pll1_config
#include <fsl_clock.h> PLL configure for Sys Pll1.

struct _clock_audio_pll_config
#include <fsl_clock.h> PLL configuration for AUDIO and VIDEO.

struct _clock_audio_pll_gpc_config
#include <fsl_clock.h> PLL configuration fro AUDIO PLL, SYSTEM PLL1 and VIDEO PLL.

struct _clock_enet_pll_config
#include <fsl_clock.h> PLL configuration for ENET.

struct _clock_root_config_t
#include <fsl_clock.h> Clock root configuration.

struct _clock_root_setpoint_config_t
#include <fsl_clock.h> Clock root configuration in SetPoint Mode.

2.31 MIPI CSI2 RX: MIPI CSI2 RX Driver

FSL_CSI2RX_DRIVER_VERSION
CSI2RX driver version.

enum _csi2rx_data_lane
CSI2RX data lanes.

Values:

enumerator kCSI2RX_DataLane0
Data lane 0.

enumerator kCSI2RX_DataLane1
Data lane 1.

enumerator kCSI2RX_DataLane2
Data lane 2.

enumerator kCSI2RX_DataLane3
Data lane 3.

enum _csi2rx_payload
CSI2RX payload type.

Values:

enumerator kCSI2RX_PayloadGroup0Null
NULL.

enumerator kCSI2RX_PayloadGroup0Blank
Blank.

enumerator kCSI2RX_PayloadGroup0Embedded
Embedded.

enumerator kCSI2RX_PayloadGroup0YUV420_8Bit
Legacy YUV420 8 bit.

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 409



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI2RX_PayloadGroup0YUV422_8Bit
YUV422 8 bit.

enumerator kCSI2RX_PayloadGroup0YUV422_10Bit
YUV422 10 bit.

enumerator kCSI2RX_PayloadGroup0RGB444
RGB444.

enumerator kCSI2RX_PayloadGroup0RGB555
RGB555.

enumerator kCSI2RX_PayloadGroup0RGB565
RGB565.

enumerator kCSI2RX_PayloadGroup0RGB666
RGB666.

enumerator kCSI2RX_PayloadGroup0RGB888
RGB888.

enumerator kCSI2RX_PayloadGroup0Raw6
Raw 6.

enumerator kCSI2RX_PayloadGroup0Raw7
Raw 7.

enumerator kCSI2RX_PayloadGroup0Raw8
Raw 8.

enumerator kCSI2RX_PayloadGroup0Raw10
Raw 10.

enumerator kCSI2RX_PayloadGroup0Raw12
Raw 12.

enumerator kCSI2RX_PayloadGroup0Raw14
Raw 14.

enumerator kCSI2RX_PayloadGroup1UserDefined1
User defined 8-bit data type 1, 0x30.

enumerator kCSI2RX_PayloadGroup1UserDefined2
User defined 8-bit data type 2, 0x31.

enumerator kCSI2RX_PayloadGroup1UserDefined3
User defined 8-bit data type 3, 0x32.

enumerator kCSI2RX_PayloadGroup1UserDefined4
User defined 8-bit data type 4, 0x33.

enumerator kCSI2RX_PayloadGroup1UserDefined5
User defined 8-bit data type 5, 0x34.

enumerator kCSI2RX_PayloadGroup1UserDefined6
User defined 8-bit data type 6, 0x35.

enumerator kCSI2RX_PayloadGroup1UserDefined7
User defined 8-bit data type 7, 0x36.

enumerator kCSI2RX_PayloadGroup1UserDefined8
User defined 8-bit data type 8, 0x37.

410 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _csi2rx_bit_error
MIPI CSI2RX bit errors.

Values:

enumerator kCSI2RX_BitErrorEccTwoBit
ECC two bit error has occurred.

enumerator kCSI2RX_BitErrorEccOneBit
ECC one bit error has occurred.

enum _csi2rx_ppi_error
MIPI CSI2RX PPI error types.

Values:

enumerator kCSI2RX_PpiErrorSotHs
CSI2RX DPHY PPI error ErrSotHS.

enumerator kCSI2RX_PpiErrorSotSyncHs
CSI2RX DPHY PPI error ErrSotSync_HS.

enumerator kCSI2RX_PpiErrorEsc
CSI2RX DPHY PPI error ErrEsc.

enumerator kCSI2RX_PpiErrorSyncEsc
CSI2RX DPHY PPI error ErrSyncEsc.

enumerator kCSI2RX_PpiErrorControl
CSI2RX DPHY PPI error ErrControl.

enum _csi2rx_interrupt
MIPI CSI2RX interrupt.

Values:

enumerator kCSI2RX_InterruptCrcError

enumerator kCSI2RX_InterruptEccOneBitError

enumerator kCSI2RX_InterruptEccTwoBitError

enumerator kCSI2RX_InterruptUlpsStatusChange

enumerator kCSI2RX_InterruptErrorSotHs

enumerator kCSI2RX_InterruptErrorSotSyncHs

enumerator kCSI2RX_InterruptErrorEsc

enumerator kCSI2RX_InterruptErrorSyncEsc

enumerator kCSI2RX_InterruptErrorControl

enum _csi2rx_ulps_status
MIPI CSI2RX D-PHY ULPS state.

Values:

enumerator kCSI2RX_ClockLaneUlps
Clock lane is in ULPS state.

enumerator kCSI2RX_DataLane0Ulps
Data lane 0 is in ULPS state.

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 411



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI2RX_DataLane1Ulps
Data lane 1 is in ULPS state.

enumerator kCSI2RX_DataLane2Ulps
Data lane 2 is in ULPS state.

enumerator kCSI2RX_DataLane3Ulps
Data lane 3 is in ULPS state.

enumerator kCSI2RX_ClockLaneMark
Clock lane is in mark state.

enumerator kCSI2RX_DataLane0Mark
Data lane 0 is in mark state.

enumerator kCSI2RX_DataLane1Mark
Data lane 1 is in mark state.

enumerator kCSI2RX_DataLane2Mark
Data lane 2 is in mark state.

enumerator kCSI2RX_DataLane3Mark
Data lane 3 is in mark state.

typedef struct _csi2rx_config csi2rx_config_t
CSI2RX configuration.

typedef enum _csi2rx_ppi_error csi2rx_ppi_error_t
MIPI CSI2RX PPI error types.

void CSI2RX_Init(MIPI_CSI2RX_Type *base, const csi2rx_config_t *config)
Enables and configures the CSI2RX peripheral module.

Parameters
• base – CSI2RX peripheral address.

• config – CSI2RX module configuration structure.

void CSI2RX_Deinit(MIPI_CSI2RX_Type *base)
Disables the CSI2RX peripheral module.

Parameters
• base – CSI2RX peripheral address.

static inline uint32_t CSI2RX_GetBitError(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX bit error status.

This function gets the RX bit error status, the return value could be compared with
_csi2rx_bit_error. If one bit ECC error detected, the return value could be passed to the
function CSI2RX_GetEccBitErrorPosition to get the position of the ECC error bit.

Example:

uint32_t bitError;
uint32_t bitErrorPosition;

bitError = CSI2RX_GetBitError(MIPI_CSI2RX);

if (kCSI2RX_BitErrorEccTwoBit & bitError)
{

Two bits error;
}
else if (kCSI2RX_BitErrorEccOneBit & bitError)

(continues on next page)

412 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{

One bits error;
bitErrorPosition = CSI2RX_GetEccBitErrorPosition(bitError);

}

Parameters
• base – CSI2RX peripheral address.

Returns
The RX bit error status.

static inline uint32_t CSI2RX_GetEccBitErrorPosition(uint32_t bitError)
Get ECC one bit error bit position.

If CSI2RX_GetBitError detects ECC one bit error, this function could extract the error bit
position from the return value of CSI2RX_GetBitError.

Parameters
• bitError – The bit error returned by CSI2RX_GetBitError.

Returns
The position of error bit.

static inline uint32_t CSI2RX_GetUlpsStatus(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX D-PHY ULPS status.

Example to check whether data lane 0 is in ULPS status.

uint32_t status = CSI2RX_GetUlpsStatus(MIPI_CSI2RX);

if (kCSI2RX_DataLane0Ulps & status)
{

Data lane 0 is in ULPS status.
}

Parameters
• base – CSI2RX peripheral address.

Returns
The MIPI CSI2RX D-PHY ULPS status, it is OR’ed value or _csi2rx_ulps_status.

static inline uint32_t CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX_Type *base,
csi2rx_ppi_error_t errorType)

Gets the MIPI CSI2RX D-PHY PPI error lanes.

This function checks the PPI error occurred on which data lanes, the returned value is OR’ed
value of csi2rx_ppi_error_t. For example, if the ErrSotHS is detected, to check the ErrSotHS
occurred on which data lanes, use like this:

uint32_t errorDataLanes = CSI2RX_GetPpiErrorDataLanes(MIPI_CSI2RX, kCSI2RX_
↪→PpiErrorSotHs);

if (kCSI2RX_DataLane0 & errorDataLanes)
{

ErrSotHS occurred on data lane 0.
}

if (kCSI2RX_DataLane1 & errorDataLanes)
{

ErrSotHS occurred on data lane 1.
}

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 413



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – CSI2RX peripheral address.

• errorType – What kind of error to check.

Returns
The data lane mask that error errorType occurred.

static inline void CSI2RX_EnableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Enable the MIPI CSI2RX interrupts.

This function enables the MIPI CSI2RX interrupts. The interrupts to enable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to enable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_EnableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_
↪→InterruptEccTwoBitError);

Parameters
• base – CSI2RX peripheral address.

• mask – OR’ed value of _csi2rx_interrupt.

static inline void CSI2RX_DisableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Disable the MIPI CSI2RX interrupts.

This function disables the MIPI CSI2RX interrupts. The interrupts to disable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to disable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_DisableInterrupts(MIPI_CSI2RX, kCSI2RX_InterruptEccOneBitError | kCSI2RX_
↪→InterruptEccTwoBitError);

Parameters
• base – CSI2RX peripheral address.

• mask – OR’ed value of _csi2rx_interrupt.

static inline uint32_t CSI2RX_GetInterruptStatus(MIPI_CSI2RX_Type *base)
Get the MIPI CSI2RX interrupt status.

This function returns the MIPI CSI2RX interrupts status as an OR’ed value of
_csi2rx_interrupt.

Parameters
• base – CSI2RX peripheral address.

Returns
OR’ed value of _csi2rx_interrupt.

CSI2RX_REG_CFG_NUM_LANES(base)

CSI2RX_REG_CFG_DISABLE_DATA_LANES(base)

CSI2RX_REG_BIT_ERR(base)

CSI2RX_REG_IRQ_STATUS(base)

CSI2RX_REG_IRQ_MASK(base)

CSI2RX_REG_ULPS_STATUS(base)

414 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

CSI2RX_REG_PPI_ERRSOT_HS(base)

CSI2RX_REG_PPI_ERRSOTSYNC_HS(base)

CSI2RX_REG_PPI_ERRESC(base)

CSI2RX_REG_PPI_ERRSYNCESC(base)

CSI2RX_REG_PPI_ERRCONTROL(base)

CSI2RX_REG_CFG_DISABLE_PAYLOAD_0(base)

CSI2RX_REG_CFG_DISABLE_PAYLOAD_1(base)

CSI2RX_REG_CFG_IGNORE_VC(base)

CSI2RX_REG_CFG_VID_VC(base)

CSI2RX_REG_CFG_VID_P_FIFO_SEND_LEVEL(base)

CSI2RX_REG_CFG_VID_VSYNC(base)

CSI2RX_REG_CFG_VID_HSYNC_FP(base)

CSI2RX_REG_CFG_VID_HSYNC(base)

CSI2RX_REG_CFG_VID_HSYNC_BP(base)

MIPI_CSI2RX_CSI2RX_CFG_NUM_LANES_csi2rx_cfg_num_lanes_MASK

MIPI_CSI2RX_CSI2RX_IRQ_MASK_csi2rx_irq_mask_MASK

struct _csi2rx_config
#include <fsl_mipi_csi2rx.h> CSI2RX configuration.

Public Members

uint8_t laneNum
Number of active lanes used for receiving data.

uint8_t tHsSettle_EscClk
Number of rx_clk_esc clock periods for T_HS_SETTLE. The T_HS_SETTLE should be in
the range of 85ns + 6UI to 145ns + 10UI.

2.32 CSI: CMOS Sensor Interface

status_t CSI_Init(CSI_Type *base, const csi_config_t *config)
Initialize the CSI.

This function enables the CSI peripheral clock, and resets the CSI registers.

Parameters
• base – CSI peripheral base address.

• config – Pointer to the configuration structure.

Return values
• kStatus_Success – Initialize successfully.

• kStatus_InvalidArgument – Initialize failed because of invalid argument.

2.32. CSI: CMOS Sensor Interface 415



MCUXpresso SDK Documentation, Release 25.12.00

void CSI_Deinit(CSI_Type *base)
De-initialize the CSI.

This function disables the CSI peripheral clock.

Parameters
• base – CSI peripheral base address.

void CSI_Reset(CSI_Type *base)
Reset the CSI.

This function resets the CSI peripheral registers to default status.

Parameters
• base – CSI peripheral base address.

void CSI_GetDefaultConfig(csi_config_t *config)
Get the default configuration for to initialize the CSI.

The default configuration value is:

config->width = 320U;
config->height = 240U;
config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
config->bytesPerPixel = 2U;
config->linePitch_Bytes = 320U * 2U;
config->workMode = kCSI_GatedClockMode;
config->dataBus = kCSI_DataBus8Bit;
config->useExtVsync = true;

Parameters
• config – Pointer to the CSI configuration.

void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo)
Clear the CSI FIFO.

This function clears the CSI FIFO.

Parameters
• base – CSI peripheral base address.

• fifo – The FIFO to clear.

void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo)
Reflash the CSI FIFO DMA.

This function reflashes the CSI FIFO DMA.

For RXFIFO, there are two frame buffers. When the CSI module started, it saves the frames
to frame buffer 0 then frame buffer 1, the two buffers will be written by turns. After reflash
DMA using this function, the CSI is reset to save frame to buffer 0.

Parameters
• base – CSI peripheral base address.

• fifo – The FIFO DMA to reflash.

void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable)
Enable or disable the CSI FIFO DMA request.

Parameters
• base – CSI peripheral base address.

• fifo – The FIFO DMA reques to enable or disable.

416 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• enable – True to enable, false to disable.

static inline void CSI_Start(CSI_Type *base)
Start to receive data.

Parameters
• base – CSI peripheral base address.

static inline void CSI_Stop(CSI_Type *base)
Stop to receiving data.

Parameters
• base – CSI peripheral base address.

void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr)
Set the RX frame buffer address.

Parameters
• base – CSI peripheral base address.

• index – Buffer index.

• addr – Frame buffer address to set.

void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask)
Enables CSI interrupt requests.

Parameters
• base – CSI peripheral base address.

• mask – The interrupts to enable, pass in as OR’ed value of
_csi_interrupt_enable.

void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask)
Disable CSI interrupt requests.

Parameters
• base – CSI peripheral base address.

• mask – The interrupts to disable, pass in as OR’ed value of
_csi_interrupt_enable.

static inline uint32_t CSI_GetStatusFlags(CSI_Type *base)
Gets the CSI status flags.

Parameters
• base – CSI peripheral base address.

Returns
status flag, it is OR’ed value of _csi_flags.

static inline void CSI_ClearStatusFlags(CSI_Type *base, uint32_t statusMask)
Clears the CSI status flag.

The flags to clear are passed in as OR’ed value of _csi_flags. The following flags are cleared
automatically by hardware:

• kCSI_RxFifoFullFlag,

• kCSI_StatFifoFullFlag,

• kCSI_Field0PresentFlag,

2.32. CSI: CMOS Sensor Interface 417



MCUXpresso SDK Documentation, Release 25.12.00

• kCSI_Field1PresentFlag,

• kCSI_RxFifoDataReadyFlag,

Parameters
• base – CSI peripheral base address.

• statusMask – The status flags mask, OR’ed value of _csi_flags.

status_t CSI_TransferCreateHandle(CSI_Type *base, csi_handle_t *handle, csi_transfer_callback_t
callback, void *userData)

Initializes the CSI handle.

This function initializes CSI handle, it should be called before any other CSI transactional
functions.

Parameters
• base – CSI peripheral base address.

• handle – Pointer to the handle structure.

• callback – Callback function for CSI transfer.

• userData – Callback function parameter.

Return values
kStatus_Success – Handle created successfully.

status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle)
Start the transfer using transactional functions.

When the empty frame buffers have been submit to CSI driver using function
CSI_TransferSubmitEmptyBuffer, user could call this function to start the transfer. The in-
coming frame will be saved to the empty frame buffer, and user could be optionally notified
through callback function.

Parameters
• base – CSI peripheral base address.

• handle – Pointer to the handle structure.

Return values
• kStatus_Success – Started successfully.

• kStatus_CSI_NoEmptyBuffer – Could not start because no empty frame
buffer in queue.

status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle)
Stop the transfer using transactional functions.

The driver does not clean the full frame buffers in queue. In other words, after call-
ing this function, user still could get the full frame buffers in queue using function
CSI_TransferGetFullBuffer.

Parameters
• base – CSI peripheral base address.

• handle – Pointer to the handle structure.

Return values
kStatus_Success – Stoped successfully.

418 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t
frameBuffer)

Submit empty frame buffer to queue.

This function could be called before CSI_TransferStart or after CSI_TransferStart. If there
is no room in queue to store the empty frame buffer, this function returns error.

Parameters
• base – CSI peripheral base address.

• handle – Pointer to the handle structure.

• frameBuffer – Empty frame buffer to submit.

Return values
• kStatus_Success – Started successfully.

• kStatus_CSI_QueueFull – Could not submit because there is no room in
queue.

status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer)
Get one full frame buffer from queue.

After the transfer started using function CSI_TransferStart, the incoming frames will be
saved to the empty frame buffers in queue. This function gets the full-filled frame buffer
from the queue. If there is no full frame buffer in queue, this function returns error.

Parameters
• base – CSI peripheral base address.

• handle – Pointer to the handle structure.

• frameBuffer – Full frame buffer.

Return values
• kStatus_Success – Started successfully.

• kStatus_CSI_NoFullBuffer – There is no full frame buffer in queue.

void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle)
CSI IRQ handle function.

This function handles the CSI IRQ request to work with CSI driver transactional APIs.

Parameters
• base – CSI peripheral base address.

• handle – CSI handle pointer.

FSL_CSI_DRIVER_VERSION

Error codes for the CSI driver.

Values:

enumerator kStatus_CSI_NoEmptyBuffer
No empty frame buffer in queue to load to CSI.

enumerator kStatus_CSI_NoFullBuffer
No full frame buffer in queue to read out.

enumerator kStatus_CSI_QueueFull
Queue is full, no room to save new empty buffer.

2.32. CSI: CMOS Sensor Interface 419



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_CSI_FrameDone
New frame received and saved to queue.

enum _csi_work_mode
CSI work mode.

The CCIR656 interlace mode is not supported currently.

Values:

enumerator kCSI_GatedClockMode
HSYNC, VSYNC, and PIXCLK signals are used.

enumerator kCSI_NonGatedClockMode
VSYNC, and PIXCLK signals are used.

enumerator kCSI_CCIR656ProgressiveMode
CCIR656 progressive mode.

enum _csi_data_bus
CSI data bus witdh.

Values:

enumerator kCSI_DataBus8Bit
8-bit data bus.

enumerator kCSI_DataBus16Bit
16-bit data bus.

enumerator kCSI_DataBus24Bit
24-bit data bus.

enum _csi_polarity_flags
CSI signal polarity.

Values:

enumerator kCSI_HsyncActiveLow
HSYNC is active low.

enumerator kCSI_HsyncActiveHigh
HSYNC is active high.

enumerator kCSI_DataLatchOnRisingEdge
Pixel data latched at rising edge of pixel clock.

enumerator kCSI_DataLatchOnFallingEdge
Pixel data latched at falling edge of pixel clock.

enumerator kCSI_VsyncActiveHigh
VSYNC is active high.

enumerator kCSI_VsyncActiveLow
VSYNC is active low.

enum _csi_fifo
The CSI FIFO, used for FIFO operation.

Values:

enumerator kCSI_RxFifo
RXFIFO.

420 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI_StatFifo
STAT FIFO.

enumerator kCSI_AllFifo
Both RXFIFO and STAT FIFO.

enum _csi_interrupt_enable
CSI feature interrupt source.

Values:

enumerator kCSI_EndOfFrameInterruptEnable
End of frame interrupt enable.

enumerator kCSI_ChangeOfFieldInterruptEnable
Change of field interrupt enable.

enumerator kCSI_StatFifoOverrunInterruptEnable
STAT FIFO overrun interrupt enable.

enumerator kCSI_RxFifoOverrunInterruptEnable
RXFIFO overrun interrupt enable.

enumerator kCSI_StatFifoDmaDoneInterruptEnable
STAT FIFO DMA done interrupt enable.

enumerator kCSI_StatFifoFullInterruptEnable
STAT FIFO full interrupt enable.

enumerator kCSI_RxBuffer1DmaDoneInterruptEnable
RX frame buffer 1 DMA transfer done.

enumerator kCSI_RxBuffer0DmaDoneInterruptEnable
RX frame buffer 0 DMA transfer done.

enumerator kCSI_RxFifoFullInterruptEnable
RXFIFO full interrupt enable.

enumerator kCSI_StartOfFrameInterruptEnable
Start of frame (SOF) interrupt enable.

enumerator kCSI_EccErrorInterruptEnable
ECC error detection interrupt enable.

enumerator kCSI_AhbResErrorInterruptEnable
AHB response Error interrupt enable.

enumerator kCSI_BaseAddrChangeErrorInterruptEnable
The DMA output buffer base address changes before DMA completed.

enumerator kCSI_Field0DoneInterruptEnable
Field 0 done interrupt enable.

enumerator kCSI_Field1DoneInterruptEnable
Field 1 done interrupt enable.

enum _csi_flags
CSI status flags.

The following status register flags can be cleared:

• kCSI_EccErrorFlag

• kCSI_AhbResErrorFlag

2.32. CSI: CMOS Sensor Interface 421



MCUXpresso SDK Documentation, Release 25.12.00

• kCSI_ChangeOfFieldFlag

• kCSI_StartOfFrameFlag

• kCSI_EndOfFrameFlag

• kCSI_RxBuffer1DmaDoneFlag

• kCSI_RxBuffer0DmaDoneFlag

• kCSI_StatFifoDmaDoneFlag

• kCSI_StatFifoOverrunFlag

• kCSI_RxFifoOverrunFlag

• kCSI_Field0DoneFlag

• kCSI_Field1DoneFlag

• kCSI_BaseAddrChangeErrorFlag

Values:

enumerator kCSI_RxFifoDataReadyFlag
RXFIFO data ready.

enumerator kCSI_EccErrorFlag
ECC error detected.

enumerator kCSI_AhbResErrorFlag
Hresponse (AHB bus response) Error.

enumerator kCSI_ChangeOfFieldFlag
Change of field.

enumerator kCSI_Field0PresentFlag
Field 0 present in CCIR mode.

enumerator kCSI_Field1PresentFlag
Field 1 present in CCIR mode.

enumerator kCSI_StartOfFrameFlag
Start of frame (SOF) detected.

enumerator kCSI_EndOfFrameFlag
End of frame (EOF) detected.

enumerator kCSI_RxFifoFullFlag
RXFIFO full (Number of data reaches trigger level).

enumerator kCSI_RxBuffer1DmaDoneFlag
RX frame buffer 1 DMA transfer done.

enumerator kCSI_RxBuffer0DmaDoneFlag
RX frame buffer 0 DMA transfer done.

enumerator kCSI_StatFifoFullFlag
STAT FIFO full (Reach trigger level).

enumerator kCSI_StatFifoDmaDoneFlag
STAT FIFO DMA transfer done.

enumerator kCSI_StatFifoOverrunFlag
STAT FIFO overrun.

422 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI_RxFifoOverrunFlag
RXFIFO overrun.

enumerator kCSI_Field0DoneFlag
Field 0 transfer done.

enumerator kCSI_Field1DoneFlag
Field 1 transfer done.

enumerator kCSI_BaseAddrChangeErrorFlag
The DMA output buffer base address changes before DMA completed.

typedef enum _csi_work_mode csi_work_mode_t
CSI work mode.

The CCIR656 interlace mode is not supported currently.

typedef enum _csi_data_bus csi_data_bus_t
CSI data bus witdh.

typedef struct _csi_config csi_config_t
Configuration to initialize the CSI module.

typedef enum _csi_fifo csi_fifo_t
The CSI FIFO, used for FIFO operation.

typedef struct _csi_handle csi_handle_t

typedef void (*csi_transfer_callback_t)(CSI_Type *base, csi_handle_t *handle, status_t status,
void *userData)

CSI transfer callback function.

When a new frame is received and saved to the frame buffer queue, the callback is called
and the pass the status kStatus_CSI_FrameDone to upper layer.

CSI_REG_CR1(base)

CSI_REG_CR2(base)

CSI_REG_CR3(base)

CSI_REG_CR18(base)

CSI_REG_SR(base)

CSI_REG_DMASA_FB1(base)

CSI_REG_DMASA_FB2(base)

CSI_REG_IMAG_PARA(base)

CSI_REG_FBUF_PARA(base)

CSI_DRIVER_QUEUE_SIZE
Size of the frame buffer queue used in CSI transactional function.

CSI_DRIVER_FRAG_MODE
Enable fragment capture function or not.

CSI_CR1_INT_EN_MASK

CSI_CR3_INT_EN_MASK

CSI_CR18_INT_EN_MASK

struct _csi_config
#include <fsl_csi.h> Configuration to initialize the CSI module.

2.32. CSI: CMOS Sensor Interface 423



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint16_t width
Pixels of the input frame.

uint16_t height
Lines of the input frame.

uint32_t polarityFlags
Timing signal polarity flags, OR’ed value of _csi_polarity_flags.

uint8_t bytesPerPixel
Bytes per pixel, valid values are:

• 2: Used for RGB565, YUV422, and so on.

• 4: Used for XRGB8888, XYUV444, and so on.

uint16_t linePitch_Bytes
Frame buffer line pitch, must be 8-byte aligned.

csi_work_mode_t workMode
CSI work mode.

csi_data_bus_t dataBus
Data bus width.

bool useExtVsync
In CCIR656 progressive mode, set true to use external VSYNC signal, set false to use
internal VSYNC signal decoded from SOF.

struct buf_queue_t
#include <fsl_csi.h>

struct _csi_handle
#include <fsl_csi.h> CSI handle structure.

Please see the user guide for the details of the CSI driver queue mechanism.

Public Members

volatile uint8_t activeBufferNum
How many frame buffers are in progress currently.

volatile uint8_t dmaDoneBufferIdx
Index of the current full-filled framebuffer.

volatile bool transferStarted
User has called CSI_TransferStart to start frame receiving.

csi_transfer_callback_t callback
Callback function.

void *userData
CSI callback function parameter.

2.33 DAC12: 12-bit Digital-to-Analog Converter Driver

424 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void DAC12_GetHardwareInfo(DAC_Type *base, dac12_hardware_info_t *info)
Get hardware information about this module.

Parameters
• base – DAC12 peripheral base address.

• info – Pointer to info structure, see to dac12_hardware_info_t.

void DAC12_Init(DAC_Type *base, const dac12_config_t *config)
Initialize the DAC12 module.

Parameters
• base – DAC12 peripheral base address.

• config – Pointer to configuration structure, see to dac12_config_t.

void DAC12_GetDefaultConfig(dac12_config_t *config)
Initializes the DAC12 user configuration structure.

This function initializes the user configuration structure to a default value. The default
values are:

config->fifoWatermarkLevel = 0U;
config->fifoWorkMode = kDAC12_FIFODisabled;
config->referenceVoltageSource = kDAC12_ReferenceVoltageSourceAlt1;
config->fifoTriggerMode = kDAC12_FIFOTriggerByHardwareMode;
config->referenceCurrentSource = kDAC12_ReferenceCurrentSourceAlt0;
config->speedMode = kDAC12_SpeedLowMode;
config->speedMode = false;
config->currentReferenceInternalTrimValue = 0x4;

Parameters
• config – Pointer to the configuration structure. See “dac12_config_t”.

void DAC12_Deinit(DAC_Type *base)
De-initialize the DAC12 module.

Parameters
• base – DAC12 peripheral base address.

static inline void DAC12_Enable(DAC_Type *base, bool enable)
Enable the DAC12’s converter or not.

Parameters
• base – DAC12 peripheral base address.

• enable – Enable the DAC12’s converter or not.

static inline void DAC12_ResetConfig(DAC_Type *base)
Reset all internal logic and registers.

Parameters
• base – DAC12 peripheral base address.

static inline void DAC12_ResetFIFO(DAC_Type *base)
Reset the FIFO pointers.

FIFO pointers should only be reset when the DAC12 is disabled. This function can be used
to configure both pointers to the same address to reset the FIFO as empty.

Parameters
• base – DAC12 peripheral base address.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver 425



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t DAC12_GetStatusFlags(DAC_Type *base)
Get status flags.

Parameters
• base – DAC12 peripheral base address.

Returns
Mask of current status flags. See to _dac12_status_flags.

static inline void DAC12_ClearStatusFlags(DAC_Type *base, uint32_t flags)
Clear status flags.

Note: Not all the flags can be cleared by this API. Several flags need special condition to
clear them according to target chip’s reference manual document.

Parameters
• base – DAC12 peripheral base address.

• flags – Mask of status flags to be cleared. See to _dac12_status_flags.

static inline void DAC12_EnableInterrupts(DAC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – DAC12 peripheral base address.

• mask – Mask value of interrupts to be enabled. See to
_dac12_interrupt_enable.

static inline void DAC12_DisableInterrupts(DAC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – DAC12 peripheral base address.

• mask – Mask value of interrupts to be disabled. See to
_dac12_interrupt_enable.

static inline void DAC12_EnableDMA(DAC_Type *base, bool enable)
Enable DMA or not.

When DMA is enabled, the DMA request will be generated by original interrupts. The in-
terrupts will not be presented on this module at the same time.

static inline void DAC12_SetData(DAC_Type *base, uint32_t value)
Set data into the entry of FIFO buffer.

When the DAC FIFO is disabled, and the one entry buffer is enabled, the DAC converts the
data in the buffer to analog output voltage. Any write to the DATA register will replace the
data in the buffer and push data to analog conversion without trigger support. When the
DAC FIFO is enabled. Writing data would increase the write pointer of FIFO. Also, the data
would be restored into the FIFO buffer.

Parameters
• base – DAC12 peripheral base address.

• value – Setting value into FIFO buffer.

static inline void DAC12_DoSoftwareTrigger(DAC_Type *base)
Do trigger the FIFO by software.

When the DAC FIFO is enabled, and software trigger is used. Doing trigger would increase
the read pointer, and the data in the entry pointed by read pointer would be converted as
new output.

426 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – DAC12 peripheral base address.

static inline uint32_t DAC12_GetFIFOReadPointer(DAC_Type *base)
Get the current read pointer of FIFO.

Parameters
• base – DAC12 peripheral base address.

Returns
Read pointer index of FIFO buffer.

static inline uint32_t DAC12_GetFIFOWritePointer(DAC_Type *base)
Get the current write pointer of FIFO.

Parameters
• base – DAC12 peripheral base address.

Returns
Write pointer index of FIFO buffer

FSL_DAC12_DRIVER_VERSION
DAC12 driver version 2.1.2.

enum _dac12_status_flags
DAC12 flags.

Values:

enumerator kDAC12_OverflowFlag
FIFO overflow status flag, which indicates that more data has been written into FIFO
than it can hold.

enumerator kDAC12_UnderflowFlag
FIFO underflow status flag, which means that there is a new trigger after the FIFO is
nearly empty.

enumerator kDAC12_WatermarkFlag
FIFO wartermark status flag, which indicates the remaining FIFO data is less than the
watermark setting.

enumerator kDAC12_NearlyEmptyFlag
FIFO nearly empty flag, which means there is only one data remaining in FIFO.

enumerator kDAC12_FullFlag
FIFO full status flag, which means that the FIFO read pointer equals the write pointer,
as the write pointer increase.

enum _dac12_interrupt_enable
DAC12 interrupts.

Values:

enumerator kDAC12_UnderOrOverflowInterruptEnable
Underflow and overflow interrupt enable.

enumerator kDAC12_WatermarkInterruptEnable
Watermark interrupt enable.

enumerator kDAC12_NearlyEmptyInterruptEnable
Nearly empty interrupt enable.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver 427



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDAC12_FullInterruptEnable
Full interrupt enable.

enum _dac12_fifo_size_info
DAC12 FIFO size information provided by hardware.

Values:

enumerator kDAC12_FIFOSize2
FIFO depth is 2.

enumerator kDAC12_FIFOSize4
FIFO depth is 4.

enumerator kDAC12_FIFOSize8
FIFO depth is 8.

enumerator kDAC12_FIFOSize16
FIFO depth is 16.

enumerator kDAC12_FIFOSize32
FIFO depth is 32.

enumerator kDAC12_FIFOSize64
FIFO depth is 64.

enumerator kDAC12_FIFOSize128
FIFO depth is 128.

enumerator kDAC12_FIFOSize256
FIFO depth is 256.

enum _dac12_fifo_work_mode
DAC12 FIFO work mode.

Values:

enumerator kDAC12_FIFODisabled
FIFO disabled and only one level buffer is enabled. Any data written from this buffer
goes to conversion.

enumerator kDAC12_FIFOWorkAsNormalMode
Data will first read from FIFO to buffer then go to conversion.

enumerator kDAC12_FIFOWorkAsSwingMode
In Swing mode, the FIFO must be set up to be full. In Swing back mode, a trigger
changes the read pointer to make it swing between the FIFO Full and Nearly Empty
state. That is, the trigger increases the read pointer till FIFO is nearly empty and de-
creases the read pointer till the FIFO is full.

enum _dac12_reference_voltage_source
DAC12 reference voltage source.

Values:

enumerator kDAC12_ReferenceVoltageSourceAlt1
The DAC selects DACREF_1 as the reference voltage.

enumerator kDAC12_ReferenceVoltageSourceAlt2
The DAC selects DACREF_2 as the reference voltage.

enum _dac12_fifo_trigger_mode
DAC12 FIFO trigger mode.

Values:

428 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDAC12_FIFOTriggerByHardwareMode
Buffer would be triggered by hardware.

enumerator kDAC12_FIFOTriggerBySoftwareMode
Buffer would be triggered by software.

enum _dac12_reference_current_source
DAC internal reference current source.

Analog module needs reference current to keep working . Such reference current can
generated by IP itself, or by on-chip PMC’s “reference part”. If no current reference
be selected, analog module can’t working normally ,even when other register can still
be assigned, DAC would waste current but no function. To make the DAC work, either
kDAC12_ReferenceCurrentSourceAltx should be selected.

Values:

enumerator kDAC12_ReferenceCurrentSourceDisabled
None of reference current source is enabled.

enumerator kDAC12_ReferenceCurrentSourceAlt0
Use the internal reference current generated by the module itself.

enumerator kDAC12_ReferenceCurrentSourceAlt1
Use the ZTC(Zero Temperature Coefficient) reference current generated by on-chip
power management module.

enumerator kDAC12_ReferenceCurrentSourceAlt2
Use the PTAT(Proportional To Absolution Temperature) reference current generated
by power management module.

enum _dac12_speed_mode
DAC analog buffer speed mode for conversion.

Values:

enumerator kDAC12_SpeedLowMode
Low speed mode.

enumerator kDAC12_SpeedMiddleMode
Middle speed mode.

enumerator kDAC12_SpeedHighMode
High speed mode.

typedef enum _dac12_fifo_size_info dac12_fifo_size_info_t
DAC12 FIFO size information provided by hardware.

typedef enum _dac12_fifo_work_mode dac12_fifo_work_mode_t
DAC12 FIFO work mode.

typedef enum _dac12_reference_voltage_source dac12_reference_voltage_source_t
DAC12 reference voltage source.

typedef enum _dac12_fifo_trigger_mode dac12_fifo_trigger_mode_t
DAC12 FIFO trigger mode.

typedef enum _dac12_reference_current_source dac12_reference_current_source_t
DAC internal reference current source.

Analog module needs reference current to keep working . Such reference current can
generated by IP itself, or by on-chip PMC’s “reference part”. If no current reference
be selected, analog module can’t working normally ,even when other register can still
be assigned, DAC would waste current but no function. To make the DAC work, either
kDAC12_ReferenceCurrentSourceAltx should be selected.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver 429



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _dac12_speed_mode dac12_speed_mode_t
DAC analog buffer speed mode for conversion.

typedef struct _dac12_hardware_info dac12_hardware_info_t
DAC12 hardware information.

DAC12_CR_W1C_FLAGS_MASK
Define “write 1 to clear” flags.

DAC12_CR_ALL_FLAGS_MASK
Define all the flag bits in DACx_CR register.

struct _dac12_hardware_info
#include <fsl_dac12.h> DAC12 hardware information.

Public Members

dac12_fifo_size_info_t fifoSizeInfo
The number of words in this device’s DAC buffer.

struct dac12_config_t
#include <fsl_dac12.h> DAC12 module configuration.

Actually, the most fields are for FIFO buffer.

Public Members

uint32_t fifoWatermarkLevel
FIFO’s watermark, the max value can be the hardware FIFO size.

dac12_fifo_work_mode_t fifoWorkMode
FIFI’s work mode about pointers.

dac12_reference_voltage_source_t referenceVoltageSource
Select the reference voltage source.

dac12_reference_current_source_t referenceCurrentSource
Select the trigger mode for FIFO. Select the reference current source.

dac12_speed_mode_t speedMode
Select the speed mode for conversion.

bool enableAnalogBuffer
Enable analog buffer for high drive.

2.34 Dcdc_soc

void DCDC_Init(DCDC_Type *base, const dcdc_config_t *config)
Initializes the basic resource of DCDC module, such as control mode, etc.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to the dcdc_config_t structure.

430 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void DCDC_Deinit(DCDC_Type *base)
De-initializes the DCDC module.

Parameters
• base – DCDC peripheral base address.

void DCDC_GetDefaultConfig(dcdc_config_t *config)
Gets the default setting for DCDC, such as control mode, etc.

This function initializes the user configuration structure to a default value. The default
values are:

config->controlMode = kDCDC_StaticControl;
config->trimInputMode = kDCDC_SampleTrimInput;
config->enableDcdcTimeout = false;
config->enableSwitchingConverterOutput = false;

Parameters
• config – Pointer to configuration structure. See to dcdc_config_t.

static inline void DCDC_EnterLowPowerModeViaStandbyRequest(DCDC_Type *base, bool enable)
Makes the DCDC enter into low power mode for GPC standby request or not.

Parameters
• base – DCDC peripheral base address.

• enable – Used to control the behavior.

– true Makes DCDC enter into low power mode for GPC standby mode.

static inline void DCDC_EnterLowPowerMode(DCDC_Type *base, bool enable)
Makes DCDC enter into low power mode or not, before entering low power mode must
disable stepping for VDD1P8 and VDD1P0.

Parameters
• base – DCDC peripheral base address.

• enable – Used to control the behavior.

– true Makes DCDC enter into low power mode.

static inline void DCDC_EnterStandbyMode(DCDC_Type *base, bool enable)
Makes DCDC enter into standby mode or not.

Parameters
• base – DCDC peripheral base address.

• enable – Used to control the behavior.

– true Makes DCDC enter into standby mode.

static inline void DCDC_SetVDD1P0StandbyModeTargetVoltage(DCDC_Type *base,
dcdc_standby_mode_1P0_target_vol_t
targetVoltage)

Sets the target value(ranges from 0.625V to 1.4V) of VDD1P0 in standby mode, 25mV each
step.

Parameters
• base – DCDC peripheral base address.

• targetVoltage – The target value of VDD1P0 in standby mode, see
dcdc_standby_mode_1P0_target_vol_t.

2.34. Dcdc_soc 431



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t DCDC_GetVDD1P0StandbyModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P0 in standby mode, the result takes “mV” as the unit.

Parameters
• base – DCDC peripheral base address.

Returns
The VDD1P0’s voltage value in standby mode and the unit is “mV”.

static inline void DCDC_SetVDD1P8StandbyModeTargetVoltage(DCDC_Type *base,
dcdc_standby_mode_1P8_target_vol_t
targetVoltage)

Sets the target value(ranges from 1.525V to 2.3V) of VDD1P8 in standby mode, 25mV each
step.

Parameters
• base – DCDC peripheral base address.

• targetVoltage – The target value of VDD1P8 in standby mode, see
dcdc_standby_mode_1P8_target_vol_t.

static inline uint16_t DCDC_GetVDD1P8StandbyModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P8 in standby mode, the result takes “mV” as the unit.

Parameters
• base – DCDC peripheral base address.

Returns
The VDD1P8’s voltage value in standby mode and the unit is “mV”.

static inline void DCDC_SetVDD1P0BuckModeTargetVoltage(DCDC_Type *base,
dcdc_buck_mode_1P0_target_vol_t
targetVoltage)

Sets the target value(ranges from 0.6V to 1.375V) of VDD1P0 in buck mode, 25mV each step.

Parameters
• base – DCDC peripheral base address.

• targetVoltage – The target value of VDD1P0 in buck mode, see
dcdc_buck_mode_1P0_target_vol_t.

static inline uint16_t DCDC_GetVDD1P0BuckModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P0 in buck mode, the result takes “mV” as the unit.

Parameters
• base – DCDC peripheral base address.

Returns
The VDD1P0’s voltage value in buck mode and the unit is “mV”.

static inline void DCDC_SetVDD1P8BuckModeTargetVoltage(DCDC_Type *base,
dcdc_buck_mode_1P8_target_vol_t
targetVoltage)

Sets the target value(ranges from 1.5V to 2.275V) of VDD1P8 in buck mode, 25mV each step.

Parameters
• base – DCDC peripheral base address.

• targetVoltage – The target value of VDD1P8 in buck mode, see
dcdc_buck_mode_1P8_target_vol_t.

432 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t DCDC_GetVDD1P8BuckModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P8 in buck mode, the result takes “mV” as the unit.

Parameters
• base – DCDC peripheral base address.

Returns
The VDD1P8’s voltage value in buck mode and the unit is “mV”.

static inline void DCDC_EnableVDD1P0TargetVoltageStepping(DCDC_Type *base, bool enable)
Enables/Disables stepping for VDD1P0, before entering low power modes the stepping for
VDD1P0 must be disabled.

Parameters
• base – DCDC peripheral base address.

• enable – Used to control the behavior.

– true Enables stepping for VDD1P0.

– false Disables stepping for VDD1P0.

static inline void DCDC_EnableVDD1P8TargetVoltageStepping(DCDC_Type *base, bool enable)
Enables/Disables stepping for VDD1P8, before entering low power modes the stepping for
VDD1P8 must be disabled.

Parameters
• base – DCDC peripheral base address.

• enable – Used to control the behavior.

– true Enables stepping for VDD1P8.

– false Disables stepping for VDD1P8.

void DCDC_GetDefaultDetectionConfig(dcdc_detection_config_t *config)
Gets the default setting for detection configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableXtalokDetection = false;
config->powerDownOverVoltageVdd1P8Detection = true;
config->powerDownOverVoltageVdd1P0Detection = true;
config->powerDownLowVoltageDetection = false;
config->powerDownOverCurrentDetection = true;
config->powerDownPeakCurrentDetection = true;
config->powerDownZeroCrossDetection = true;
config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;

Parameters
• config – Pointer to configuration structure. See to dcdc_detection_config_t.

void DCDC_SetDetectionConfig(DCDC_Type *base, const dcdc_detection_config_t *config)
Configures the DCDC detection.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to configuration structure. See to dcdc_detection_config_t.

2.34. Dcdc_soc 433



MCUXpresso SDK Documentation, Release 25.12.00

static inline void DCDC_EnableOutputRangeComparator(DCDC_Type *base, bool enable)
Enables/Disables the output range comparator.

The output range comparator is disabled by default.

Parameters
• base – DCDC peripheral base address.

• enable – Enable the feature or not.

– true Enable the output range comparator.

– false Disable the output range comparator.

void DCDC_SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
Configures the DCDC clock source.

Parameters
• base – DCDC peripheral base address.

• clockSource – Clock source for DCDC. See to dcdc_clock_source_t.

void DCDC_GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
Gets the default setting for low power configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableAdjustHystereticValue = false;

Parameters
• config – Pointer to configuration structure. See to

dcdc_low_power_config_t.

void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power_config_t *config)
Configures the DCDC low power.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to configuration structure. See to
dcdc_low_power_config_t.

static inline void DCDC_SetBandgapVoltageTrimValue(DCDC_Type *base, uint32_t trimValue)
Sets the bangap trim value(0~31) to trim bandgap voltage.

Parameters
• base – DCDC peripheral base address.

• trimValue – The bangap trim value. Available range is 0U-31U.

void DCDC_GetDefaultLoopControlConfig(dcdc_loop_control_config_t *config)
Gets the default setting for loop control configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableCommonHysteresis = false;
config->enableCommonThresholdDetection = false;
config->enableInvertHysteresisSign = false;
config->enableRCThresholdDetection = false;
config->enableRCScaleCircuit = 0U;
config->complementFeedForwardStep = 0U;

(continues on next page)

434 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
config->controlParameterMagnitude = 2U;
config->integralProportionalRatio = 2U;

Parameters
• config – Pointer to configuration structure. See to

dcdc_loop_control_config_t.

void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
Configures the DCDC loop control.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to configuration structure. See to
dcdc_loop_control_config_t.

void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power_config_t *config)
Configures for the min power.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to configuration structure. See to
dcdc_min_power_config_t.

static inline void DCDC_SetLPComparatorBiasValue(DCDC_Type *base,
dcdc_comparator_current_bias_t biasValue)

Sets the current bias of low power comparator.

Parameters
• base – DCDC peripheral base address.

• biasValue – The current bias of low power comparator. Refer to
dcdc_comparator_current_bias_t.

void DCDC_SetInternalRegulatorConfig(DCDC_Type *base, const
dcdc_internal_regulator_config_t *config)

Configures the DCDC internal regulator.

Parameters
• base – DCDC peripheral base address.

• config – Pointer to configuration structure. See to
dcdc_internal_regulator_config_t.

static inline void DCDC_EnableAdjustDelay(DCDC_Type *base, bool enable)
Adjusts delay to reduce ground noise.

Parameters
• base – DCDC peripheral base address.

• enable – Enable the feature or not.

static inline void DCDC_EnableImproveTransition(DCDC_Type *base, bool enable)
Enables/Disables to improve the transition from heavy load to light load.

Note: It is valid while zero cross detection is enabled. If ouput exceeds the threshold, DCDC
would return CCM from DCM.

2.34. Dcdc_soc 435



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – DCDC peripheral base address.

• enable – Enable the feature or not.

void DCDC_SetPointInit(DCDC_Type *base, const dcdc_setpoint_config_t *config)
Initializes DCDC module when the control mode selected as setpoint mode.

Note: The function should be invoked in the initial step to config the DCDC via setpoint
control mode.

Parameters
• base – DCDC peripheral base address.

• config – The pointer to the structure dcdc_setpoint_config_t.

static inline void DCDC_SetPointDeinit(DCDC_Type *base, uint32_t setpointMap)
Disable DCDC module when the control mode selected as setpoint mode.

Parameters
• base – DCDC peripheral base address.

• setpointMap – The map of the setpoint to disable the DCDC module, Should
be the OR’ed value of _dcdc_setpoint_map.

static inline uint32_t DCDC_GetStatusFlags(DCDC_Type *base)
Get DCDC status flags.

Parameters
• base – peripheral base address.

Returns
Mask of asserted status flags. See to _dcdc_status_flags.

void DCDC_BootIntoDCM(DCDC_Type *base)
Boots DCDC into DCM(discontinous conduction mode).

pwd_zcd=0x0;
DM_CTRL = 1'b1;
pwd_cmp_offset=0x0;
dcdc_loopctrl_en_rcscale=0x3 or 0x5;
DCM_set_ctrl=1'b1;

Parameters
• base – DCDC peripheral base address.

void DCDC_BootIntoCCM(DCDC_Type *base)
Boots DCDC into CCM(continous conduction mode).

pwd_zcd=0x1;
pwd_cmp_offset=0x0;
dcdc_loopctrl_en_rcscale=0x3;

Parameters
• base – DCDC peripheral base address.

436 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _dcdc_status_flags
The enumeration of DCDC status flags.

Values:

enumerator kDCDC_AlreadySettledStatusFlag
Indicate DCDC status. 1’b1: DCDC already settled 1’b0: DCDC is settling.

enum _dcdc_setpoint_map
System setpoints enumeration.

Values:

enumerator kDCDC_SetPoint0
Set point 0.

enumerator kDCDC_SetPoint1
Set point 1.

enumerator kDCDC_SetPoint2
Set point 2.

enumerator kDCDC_SetPoint3
Set point 3.

enumerator kDCDC_SetPoint4
Set point 4.

enumerator kDCDC_SetPoint5
Set point 5.

enumerator kDCDC_SetPoint6
Set point 6.

enumerator kDCDC_SetPoint7
Set point 7.

enumerator kDCDC_SetPoint8
Set point 8.

enumerator kDCDC_SetPoint9
Set point 9.

enumerator kDCDC_SetPoint10
Set point 10.

enumerator kDCDC_SetPoint11
Set point 11.

enumerator kDCDC_SetPoint12
Set point 12.

enumerator kDCDC_SetPoint13
Set point 13.

enumerator kDCDC_SetPoint14
Set point 14.

enumerator kDCDC_SetPoint15
Set point 15.

enum _dcdc_control_mode
DCDC control mode, including setpoint control mode and static control mode.

Values:

2.34. Dcdc_soc 437



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_StaticControl
Static control.

enumerator kDCDC_SetPointControl
Controlled by GPC set points.

enum _dcdc_trim_input_mode
DCDC trim input mode, including sample trim input and hold trim input.

Values:

enumerator kDCDC_SampleTrimInput
Sample trim input.

enumerator kDCDC_HoldTrimInput
Hold trim input.

enum _dcdc_standby_mode_1P0_target_vol
The enumeration VDD1P0’s target voltage value in standby mode.

Values:

enumerator kDCDC_1P0StbyTarget0P625V
In standby mode, the target voltage value of VDD1P0 is 0.625V.

enumerator kDCDC_1P0StbyTarget0P65V
In standby mode, the target voltage value of VDD1P0 is 0.65V.

enumerator kDCDC_1P0StbyTarget0P675V
In standby mode, the target voltage value of VDD1P0 is 0.675V.

enumerator kDCDC_1P0StbyTarget0P7V
In standby mode, the target voltage value of VDD1P0 is 0.7V.

enumerator kDCDC_1P0StbyTarget0P725V
In standby mode, the target voltage value of VDD1P0 is 0.725V.

enumerator kDCDC_1P0StbyTarget0P75V
In standby mode, the target voltage value of VDD1P0 is 0.75V.

enumerator kDCDC_1P0StbyTarget0P775V
In standby mode, the target voltage value of VDD1P0 is 0.775V.

enumerator kDCDC_1P0StbyTarget0P8V
In standby mode, the target voltage value of VDD1P0 is 0.8V.

enumerator kDCDC_1P0StbyTarget0P825V
In standby mode, the target voltage value of VDD1P0 is 0.825V.

enumerator kDCDC_1P0StbyTarget0P85V
In standby mode, the target voltage value of VDD1P0 is 0.85V.

enumerator kDCDC_1P0StbyTarget0P875V
In standby mode, the target voltage value of VDD1P0 is 0.875V.

enumerator kDCDC_1P0StbyTarget0P9V
In standby mode, the target voltage value of VDD1P0 is 0.9V.

enumerator kDCDC_1P0StbyTarget0P925V
In standby mode, the target voltage value of VDD1P0 is 0.925V.

enumerator kDCDC_1P0StbyTarget0P95V
In standby mode, the target voltage value of VDD1P0 is 0.95V.

438 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P0StbyTarget0P975V
In standby mode, the target voltage value of VDD1P0 is 0.975V.

enumerator kDCDC_1P0StbyTarget1P0V
In standby mode, the target voltage value of VDD1P0 is 1.0V.

enumerator kDCDC_1P0StbyTarget1P025V
In standby mode, the target voltage value of VDD1P0 is 1.025V.

enumerator kDCDC_1P0StbyTarget1P05V
In standby mode, the target voltage value of VDD1P0 is 1.05V.

enumerator kDCDC_1P0StbyTarget1P075V
In standby mode, the target voltage value of VDD1P0 is 1.075V.

enumerator kDCDC_1P0StbyTarget1P1V
In standby mode, the target voltage value of VDD1P0 is 1.1V.

enumerator kDCDC_1P0StbyTarget1P125V
In standby mode, the target voltage value of VDD1P0 is 1.125V.

enumerator kDCDC_1P0StbyTarget1P15V
In standby mode, the target voltage value of VDD1P0 is 1.15V.

enumerator kDCDC_1P0StbyTarget1P175V
In standby mode, the target voltage value of VDD1P0 is 1.175V.

enumerator kDCDC_1P0StbyTarget1P2V
In standby mode, the target voltage value of VDD1P0 is 1.2V.

enumerator kDCDC_1P0StbyTarget1P225V
In standby mode, the target voltage value of VDD1P0 is 1.225V.

enumerator kDCDC_1P0StbyTarget1P25V
In standby mode, the target voltage value of VDD1P0 is 1.25V.

enumerator kDCDC_1P0StbyTarget1P275V
In standby mode, the target voltage value of VDD1P0 is 1.275V.

enumerator kDCDC_1P0StbyTarget1P3V
In standby mode, the target voltage value of VDD1P0 is 1.3V.

enumerator kDCDC_1P0StbyTarget1P325V
In standby mode, the target voltage value of VDD1P0 is 1.325V.

enumerator kDCDC_1P0StbyTarget1P35V
In standby mode, the target voltage value of VDD1P0 is 1.35V.

enumerator kDCDC_1P0StbyTarget1P375V
In standby mode, the target voltage value of VDD1P0 is 1.375V.

enumerator kDCDC_1P0StbyTarget1P4V
In standby mode, The target voltage value of VDD1P0 is 1.4V

enum _dcdc_standby_mode_1P8_target_vol
The enumeration VDD1P8’s target voltage value in standby mode.

Values:

enumerator kDCDC_1P8StbyTarget1P525V
In standby mode, the target voltage value of VDD1P8 is 1.525V.

2.34. Dcdc_soc 439



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P8StbyTarget1P55V
In standby mode, the target voltage value of VDD1P8 is 1.55V.

enumerator kDCDC_1P8StbyTarget1P575V
In standby mode, the target voltage value of VDD1P8 is 1.575V.

enumerator kDCDC_1P8StbyTarget1P6V
In standby mode, the target voltage value of VDD1P8 is 1.6V.

enumerator kDCDC_1P8StbyTarget1P625V
In standby mode, the target voltage value of VDD1P8 is 1.625V.

enumerator kDCDC_1P8StbyTarget1P65V
In standby mode, the target voltage value of VDD1P8 is 1.65V.

enumerator kDCDC_1P8StbyTarget1P675V
In standby mode, the target voltage value of VDD1P8 is 1.675V.

enumerator kDCDC_1P8StbyTarget1P7V
In standby mode, the target voltage value of VDD1P8 is 1.7V.

enumerator kDCDC_1P8StbyTarget1P725V
In standby mode, the target voltage value of VDD1P8 is 1.725V.

enumerator kDCDC_1P8StbyTarget1P75V
In standby mode, the target voltage value of VDD1P8 is 1.75V.

enumerator kDCDC_1P8StbyTarget1P775V
In standby mode, the target voltage value of VDD1P8 is 1.775V.

enumerator kDCDC_1P8StbyTarget1P8V
In standby mode, the target voltage value of VDD1P8 is 1.8V.

enumerator kDCDC_1P8StbyTarget1P825V
In standby mode, the target voltage value of VDD1P8 is 1.825V.

enumerator kDCDC_1P8StbyTarget1P85V
In standby mode, the target voltage value of VDD1P8 is 1.85V.

enumerator kDCDC_1P8StbyTarget1P875V
In standby mode, the target voltage value of VDD1P8 is 1.875V.

enumerator kDCDC_1P8StbyTarget1P9V
In standby mode, the target voltage value of VDD1P8 is 1.9V.

enumerator kDCDC_1P8StbyTarget1P925V
In standby mode, the target voltage value of VDD1P8 is 1.925V.

enumerator kDCDC_1P8StbyTarget1P95V
In standby mode, the target voltage value of VDD1P8 is 1.95V.

enumerator kDCDC_1P8StbyTarget1P975V
In standby mode, the target voltage value of VDD1P8 is 1.975V.

enumerator kDCDC_1P8StbyTarget2P0V
In standby mode, the target voltage value of VDD1P8 is 2.0V.

enumerator kDCDC_1P8StbyTarget2P025V
In standby mode, the target voltage value of VDD1P8 is 2.025V.

enumerator kDCDC_1P8StbyTarget2P05V
In standby mode, the target voltage value of VDD1P8 is 2.05V.

440 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P8StbyTarget2P075V
In standby mode, the target voltage value of VDD1P8 is 2.075V.

enumerator kDCDC_1P8StbyTarget2P1V
In standby mode, the target voltage value of VDD1P8 is 2.1V.

enumerator kDCDC_1P8StbyTarget2P125V
In standby mode, the target voltage value of VDD1P8 is 2.125V.

enumerator kDCDC_1P8StbyTarget2P15V
In standby mode, the target voltage value of VDD1P8 is 2.15V.

enumerator kDCDC_1P8StbyTarget2P175V
In standby mode, the target voltage value of VDD1P8 is 2.175V.

enumerator kDCDC_1P8StbyTarget2P2V
In standby mode, the target voltage value of VDD1P8 is 2.2V.

enumerator kDCDC_1P8StbyTarget2P225V
In standby mode, the target voltage value of VDD1P8 is 2.225V.

enumerator kDCDC_1P8StbyTarget2P25V
In standby mode, the target voltage value of VDD1P8 is 2.25V.

enumerator kDCDC_1P8StbyTarget2P275V
In standby mode, the target voltage value of VDD1P8 is 2.275V.

enumerator kDCDC_1P8StbyTarget2P3V
In standby mode, the target voltage value is 2.3V.

enum _dcdc_buck_mode_1P0_target_vol
The enumeration VDD1P0’s target voltage value in buck mode.

Values:

enumerator kDCDC_1P0BuckTarget0P6V
In buck mode, the target voltage value of VDD1P0 is 0.6V.

enumerator kDCDC_1P0BuckTarget0P625V
In buck mode, the target voltage value of VDD1P0 is 0.625V.

enumerator kDCDC_1P0BuckTarget0P65V
In buck mode, the target voltage value of VDD1P0 is 0.65V.

enumerator kDCDC_1P0BuckTarget0P675V
In buck mode, the target voltage value of VDD1P0 is 0.675V.

enumerator kDCDC_1P0BuckTarget0P7V
In buck mode, the target voltage value of VDD1P0 is 0.7V.

enumerator kDCDC_1P0BuckTarget0P725V
In buck mode, the target voltage value of VDD1P0 is 0.725V.

enumerator kDCDC_1P0BuckTarget0P75V
In buck mode, the target voltage value of VDD1P0 is 0.75V.

enumerator kDCDC_1P0BuckTarget0P775V
In buck mode, the target voltage value of VDD1P0 is 0.775V.

enumerator kDCDC_1P0BuckTarget0P8V
In buck mode, the target voltage value of VDD1P0 is 0.8V.

2.34. Dcdc_soc 441



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P0BuckTarget0P825V
In buck mode, the target voltage value of VDD1P0 is 0.825V.

enumerator kDCDC_1P0BuckTarget0P85V
In buck mode, the target voltage value of VDD1P0 is 0.85V.

enumerator kDCDC_1P0BuckTarget0P875V
In buck mode, the target voltage value of VDD1P0 is 0.875V.

enumerator kDCDC_1P0BuckTarget0P9V
In buck mode, the target voltage value of VDD1P0 is 0.9V.

enumerator kDCDC_1P0BuckTarget0P925V
In buck mode, the target voltage value of VDD1P0 is 0.925V.

enumerator kDCDC_1P0BuckTarget0P95V
In buck mode, the target voltage value of VDD1P0 is 0.95V.

enumerator kDCDC_1P0BuckTarget0P975V
In buck mode, the target voltage value of VDD1P0 is 0.975V.

enumerator kDCDC_1P0BuckTarget1P0V
In buck mode, the target voltage value of VDD1P0 is 1.0V.

enumerator kDCDC_1P0BuckTarget1P025V
In buck mode, the target voltage value of VDD1P0 is 1.025V.

enumerator kDCDC_1P0BuckTarget1P05V
In buck mode, the target voltage value of VDD1P0 is 1.05V.

enumerator kDCDC_1P0BuckTarget1P075V
In buck mode, the target voltage value of VDD1P0 is 1.075V.

enumerator kDCDC_1P0BuckTarget1P1V
In buck mode, the target voltage value of VDD1P0 is 1.1V.

enumerator kDCDC_1P0BuckTarget1P125V
In buck mode, the target voltage value of VDD1P0 is 1.125V.

enumerator kDCDC_1P0BuckTarget1P15V
In buck mode, the target voltage value of VDD1P0 is 1.15V.

enumerator kDCDC_1P0BuckTarget1P175V
In buck mode, the target voltage value of VDD1P0 is 1.175V.

enumerator kDCDC_1P0BuckTarget1P2V
In buck mode, the target voltage value of VDD1P0 is 1.2V.

enumerator kDCDC_1P0BuckTarget1P225V
In buck mode, the target voltage value of VDD1P0 is 1.225V.

enumerator kDCDC_1P0BuckTarget1P25V
In buck mode, the target voltage value of VDD1P0 is 1.25V.

enumerator kDCDC_1P0BuckTarget1P275V
In buck mode, the target voltage value of VDD1P0 is 1.275V.

enumerator kDCDC_1P0BuckTarget1P3V
In buck mode, the target voltage value of VDD1P0 is 1.3V.

enumerator kDCDC_1P0BuckTarget1P325V
In buck mode, the target voltage value of VDD1P0 is 1.325V.

442 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P0BuckTarget1P35V
In buck mode, the target voltage value of VDD1P0 is 1.35V.

enumerator kDCDC_1P0BuckTarget1P375V
In buck mode, the target voltage value of VDD1P0 is 1.375V.

enum _dcdc_buck_mode_1P8_target_vol
The enumeration VDD1P8’s target voltage value in buck mode.

Values:

enumerator kDCDC_1P8BuckTarget1P5V
In buck mode, the target voltage value of VDD1P0 is 1.5V.

enumerator kDCDC_1P8BuckTarget1P525V
In buck mode, the target voltage value of VDD1P0 is 1.525V.

enumerator kDCDC_1P8BuckTarget1P55V
In buck mode, the target voltage value of VDD1P0 is 1.55V.

enumerator kDCDC_1P8BuckTarget1P575V
In buck mode, the target voltage value of VDD1P0 is 1.575V.

enumerator kDCDC_1P8BuckTarget1P6V
In buck mode, the target voltage value of VDD1P0 is 1.6V.

enumerator kDCDC_1P8BuckTarget1P625V
In buck mode, the target voltage value of VDD1P0 is 1.625V.

enumerator kDCDC_1P8BuckTarget1P65V
In buck mode, the target voltage value of VDD1P0 is 1.65V.

enumerator kDCDC_1P8BuckTarget1P675V
In buck mode, the target voltage value of VDD1P0 is 1.675V.

enumerator kDCDC_1P8BuckTarget1P7V
In buck mode, the target voltage value of VDD1P0 is 1.7V.

enumerator kDCDC_1P8BuckTarget1P725V
In buck mode, the target voltage value of VDD1P0 is 1.725V.

enumerator kDCDC_1P8BuckTarget1P75V
In buck mode, the target voltage value of VDD1P0 is 1.75V.

enumerator kDCDC_1P8BuckTarget1P775V
In buck mode, the target voltage value of VDD1P0 is 1.775V.

enumerator kDCDC_1P8BuckTarget1P8V
In buck mode, the target voltage value of VDD1P0 is 1.8V.

enumerator kDCDC_1P8BuckTarget1P825V
In buck mode, the target voltage value of VDD1P0 is 1.825V.

enumerator kDCDC_1P8BuckTarget1P85V
In buck mode, the target voltage value of VDD1P0 is 1.85V.

enumerator kDCDC_1P8BuckTarget1P875V
In buck mode, the target voltage value of VDD1P0 is 1.875V.

enumerator kDCDC_1P8BuckTarget1P9V
In buck mode, the target voltage value of VDD1P0 is 1.9V.

2.34. Dcdc_soc 443



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_1P8BuckTarget1P925V
In buck mode, the target voltage value of VDD1P0 is 1.925V.

enumerator kDCDC_1P8BuckTarget1P95V
In buck mode, the target voltage value of VDD1P0 is 1.95V.

enumerator kDCDC_1P8BuckTarget1P975V
In buck mode, the target voltage value of VDD1P0 is 1.975V.

enumerator kDCDC_1P8BuckTarget2P0V
In buck mode, the target voltage value of VDD1P0 is 2.0V.

enumerator kDCDC_1P8BuckTarget2P025V
In buck mode, the target voltage value of VDD1P0 is 2.025V.

enumerator kDCDC_1P8BuckTarget2P05V
In buck mode, the target voltage value of VDD1P0 is 2.05V.

enumerator kDCDC_1P8BuckTarget2P075V
In buck mode, the target voltage value of VDD1P0 is 2.075V.

enumerator kDCDC_1P8BuckTarget2P1V
In buck mode, the target voltage value of VDD1P0 is 2.1V.

enumerator kDCDC_1P8BuckTarget2P125V
In buck mode, the target voltage value of VDD1P0 is 2.125V.

enumerator kDCDC_1P8BuckTarget2P15V
In buck mode, the target voltage value of VDD1P0 is 2.15V.

enumerator kDCDC_1P8BuckTarget2P175V
In buck mode, the target voltage value of VDD1P0 is 2.175V.

enumerator kDCDC_1P8BuckTarget2P2V
In buck mode, the target voltage value of VDD1P0 is 2.2V.

enumerator kDCDC_1P8BuckTarget2P225V
In buck mode, the target voltage value of VDD1P0 is 2.225V.

enumerator kDCDC_1P8BuckTarget2P25V
In buck mode, the target voltage value of VDD1P0 is 2.25V.

enumerator kDCDC_1P8BuckTarget2P275V
In buck mode, the target voltage value of VDD1P0 is 2.275V.

enum _dcdc_comparator_current_bias
The current bias of low power comparator.

Values:

enumerator kDCDC_ComparatorCurrentBias50nA
The current bias of low power comparator is 50nA.

enumerator kDCDC_ComparatorCurrentBias100nA
The current bias of low power comparator is 100nA.

enumerator kDCDC_ComparatorCurrentBias200nA
The current bias of low power comparator is 200nA.

enumerator kDCDC_ComparatorCurrentBias400nA
The current bias of low power comparator is 400nA.

444 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _dcdc_peak_current_threshold
The threshold if peak current detection.

Values:

enumerator kDCDC_PeakCurrentRunMode250mALPMode1P5A
Over peak current threshold in low power mode is 250mA, in run mode is 1.5A

enumerator kDCDC_PeakCurrentRunMode200mALPMode1P5A
Over peak current threshold in low power mode is 200mA, in run mode is 1.5A

enumerator kDCDC_PeakCurrentRunMode250mALPMode2A
Over peak current threshold in low power mode is 250mA, in run mode is 2A

enumerator kDCDC_PeakCurrentRunMode200mALPMode2A
Over peak current threshold in low power mode is 200mA, in run mode is 2A

enum _dcdc_clock_source
Oscillator clock option.

Values:

enumerator kDCDC_ClockAutoSwitch
Automatic clock switch from internal oscillator to external clock.

enumerator kDCDC_ClockInternalOsc
Use internal oscillator.

enumerator kDCDC_ClockExternalOsc
Use external 24M crystal oscillator.

enum _dcdc_voltage_output_sel
Voltage output option.

Values:

enumerator kDCDC_VoltageOutput1P8
1.8V output.

enumerator kDCDC_VoltageOutput1P0
1.0V output.

typedef enum _dcdc_control_mode dcdc_control_mode_t
DCDC control mode, including setpoint control mode and static control mode.

typedef enum _dcdc_trim_input_mode dcdc_trim_input_mode_t
DCDC trim input mode, including sample trim input and hold trim input.

typedef enum _dcdc_standby_mode_1P0_target_vol dcdc_standby_mode_1P0_target_vol_t
The enumeration VDD1P0’s target voltage value in standby mode.

typedef enum _dcdc_standby_mode_1P8_target_vol dcdc_standby_mode_1P8_target_vol_t
The enumeration VDD1P8’s target voltage value in standby mode.

typedef enum _dcdc_buck_mode_1P0_target_vol dcdc_buck_mode_1P0_target_vol_t
The enumeration VDD1P0’s target voltage value in buck mode.

typedef enum _dcdc_buck_mode_1P8_target_vol dcdc_buck_mode_1P8_target_vol_t
The enumeration VDD1P8’s target voltage value in buck mode.

typedef enum _dcdc_comparator_current_bias dcdc_comparator_current_bias_t
The current bias of low power comparator.

2.34. Dcdc_soc 445



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _dcdc_peak_current_threshold dcdc_peak_current_threshold_t
The threshold if peak current detection.

typedef enum _dcdc_clock_source dcdc_clock_source_t
Oscillator clock option.

typedef enum _dcdc_voltage_output_sel dcdc_voltage_output_sel_t
Voltage output option.

typedef struct _dcdc_config dcdc_config_t
Configuration for DCDC.

typedef struct _dcdc_min_power_config dcdc_min_power_config_t
Configuration for min power setting.

typedef struct _dcdc_detection_config dcdc_detection_config_t
Configuration for DCDC detection.

typedef struct _dcdc_loop_control_config dcdc_loop_control_config_t
Configuration for the loop control.

typedef struct _dcdc_internal_regulator_config dcdc_internal_regulator_config_t
Configuration for DCDC internal regulator.

typedef struct _dcdc_low_power_config dcdc_low_power_config_t
Configuration for DCDC low power.

typedef struct _dcdc_setpoint_config dcdc_setpoint_config_t
DCDC configuration in set point mode.

FSL_DCDC_DRIVER_VERSION
DCDC driver version.

Version 2.1.2.

STANDBY_MODE_VDD1P0_TARGET_VOLTAGE
The array of VDD1P0 target voltage in standby mode.

STANDBY_MODE_VDD1P8_TARGET_VOLTAGE
The array of VDD1P8 target voltage in standby mode.

BUCK_MODE_VDD1P0_TARGET_VOLTAGE
The array of VDD1P0 target voltage in buck mode.

BUCK_MODE_VDD1P8_TARGET_VOLTAGE
The array of VDD1P8 target voltage in buck mode.

struct _dcdc_config
#include <fsl_dcdc.h> Configuration for DCDC.

Public Members

dcdc_control_mode_t controlMode
DCDC control mode.

dcdc_trim_input_mode_t trimInputMode
Hold trim input.

bool enableDcdcTimeout
Enable internal count for DCDC_OK timeout.

446 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

bool enableSwitchingConverterOutput
Enable the VDDIO switching converter output.

struct _dcdc_min_power_config
#include <fsl_dcdc.h> Configuration for min power setting.

Public Members

bool enableUseHalfFreqForContinuous
Set DCDC clock to half frequency for the continuous mode.

struct _dcdc_detection_config
#include <fsl_dcdc.h> Configuration for DCDC detection.

Public Members

bool enableXtalokDetection
Enable xtalok detection circuit.

bool powerDownOverVoltageVdd1P8Detection
Power down over-voltage detection comparator for VDD1P8.

bool powerDownOverVoltageVdd1P0Detection
Power down over-voltage detection comparator for VDD1P0.

bool powerDownLowVoltageDetection
Power down low-voltage detection comparator.

bool powerDownOverCurrentDetection
Power down over-current detection.

bool powerDownPeakCurrentDetection
Power down peak-current detection.

bool powerDownZeroCrossDetection
Power down the zero cross detection function for discontinuous conductor mode.

dcdc_peak_current_threshold_t PeakCurrentThreshold
The threshold of peak current detection.

struct _dcdc_loop_control_config
#include <fsl_dcdc.h> Configuration for the loop control.

Public Members

bool enableCommonHysteresis
Enable hysteresis in switching converter common mode analog comparators. This fea-
ture will improve transient supply ripple and efficiency.

bool enableCommonThresholdDetection
Increase the threshold detection for common mode analog comparator.

bool enableDifferentialHysteresis
Enable hysteresis in switching converter differential mode analog comparators. This
feature will improve transient supply ripple and efficiency.

bool enableDifferentialThresholdDetection
Increase the threshold detection for differential mode analog comparators.

2.34. Dcdc_soc 447



MCUXpresso SDK Documentation, Release 25.12.00

bool enableInvertHysteresisSign
Invert the sign of the hysteresis in DC-DC analog comparators.

bool enableRCThresholdDetection
Increase the threshold detection for RC scale circuit.

uint32_t enableRCScaleCircuit
Available range is 0~7. Enable analog circuit of DC-DC converter to respond faster
under transient load conditions.

uint32_t complementFeedForwardStep
Available range is 0~7. Two’s complement feed forward step in duty cycle in the switch-
ing DC-DC converter. Each time this field makes a transition from 0x0, the loop filter
of the DC-DC converter is stepped once by a value proportional to the change. This can
be used to force a certain control loop behavior, such as improving response under
known heavy load transients.

uint32_t controlParameterMagnitude
Available range is 0~15. Magnitude of proportional control parameter in the switching
DC-DC converter control loop.

uint32_t integralProportionalRatio
Available range is 0~3.Ratio of integral control parameter to proportional control pa-
rameter in the switching DC-DC converter, and can be used to optimize efficiency and
loop response.

struct _dcdc_internal_regulator_config
#include <fsl_dcdc.h> Configuration for DCDC internal regulator.

Public Members

uint32_t feedbackPoint
Available range is 0~3. Select the feedback point of the internal regulator.

struct _dcdc_low_power_config
#include <fsl_dcdc.h> Configuration for DCDC low power.

Public Members

bool enableAdjustHystereticValue
Adjust hysteretic value in low power from 12.5mV to 25mV.

struct _dcdc_setpoint_config
#include <fsl_dcdc.h> DCDC configuration in set point mode.

Public Members

uint32_t enableDCDCMap
The setpoint map that enable the DCDC module. Should be the OR’ed value of
_dcdc_setpoint_map.

uint32_t enableDigLogicMap
The setpoint map that enable the DCDC dig logic. Should be the OR’ed value of
_dcdc_setpoint_map.

uint32_t lowpowerMap
The setpoint map that enable the DCDC Low powermode. Should be the OR’ed value
of _dcdc_setpoint_map.

448 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t standbyMap
The setpoint map that enable the DCDC standby mode. Should be the OR’ed value of
_dcdc_setpoint_map.

uint32_t standbyLowpowerMap
The setpoint map that enable the DCDC low power mode, when the related setpoint is
in standby mode. Please refer to _dcdc_setpoint_map.

dcdc_buck_mode_1P8_target_vol_t *buckVDD1P8TargetVoltage
Point to the array that store the target voltage level of VDD1P8 in buck mode, please
refer to dcdc_buck_mode_1P8_target_vol_t. Note that the pointed array must have 16
elements.

dcdc_buck_mode_1P0_target_vol_t *buckVDD1P0TargetVoltage
Point to the array that store the target voltage level of VDD1P0 in buck mode, please
refer to dcdc_buck_mode_1P0_target_vol_t. Note that the pointed array must have 16
elements.

dcdc_standby_mode_1P8_target_vol_t *standbyVDD1P8TargetVoltage
Point to the array that store the target voltage level of VDD1P8 in standby mode, please
refer to dcdc_standby_mode_1P8_target_vol_t. Note that the pointed array must have
16 elements.

dcdc_standby_mode_1P0_target_vol_t *standbyVDD1P0TargetVoltage
Point to the array that store the target voltage level of VDD1P0 in standby mode, please
refer to dcdc_standby_mode_1P0_target_vol_t. Note that the pointed array must have
16 elements.

2.35 DCIC

void DCIC_Init(DCIC_Type *base, const dcic_config_t *config)
Initializes the DCIC.

This function resets DCIC registers to default value, then set the configurations. This func-
tion does not start the DCIC to work, application should call DCIC_DisableRegion to config-
ure regions, then call DCIC_Enable to start the DCIC to work.

Parameters
• base – DCIC peripheral base address.

• config – Pointer to the configuration.

void DCIC_Deinit(DCIC_Type *base)
Deinitialize the DCIC.

Disable the DCIC functions.

Parameters
• base – DCIC peripheral base address.

void DCIC_GetDefaultConfig(dcic_config_t *config)
Get the default configuration to initialize DCIC.

The default configuration is:

config->polarityFlags = kDCIC_VsyncActiveLow | kDCIC_HsyncActiveLow |
kDCIC_DataEnableActiveLow | kDCIC_DriveDataOnFallingClkEdge;

config->enableExternalSignal = false;
config->enableInterrupts = 0;

2.35. DCIC 449



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• config – Pointer to the configuration.

static inline void DCIC_Enable(DCIC_Type *base, bool enable)
Enable or disable the DCIC module.

Parameters
• base – DCIC peripheral base address.

• enable – Use true to enable, false to disable.

static inline uint32_t DCIC_GetStatusFlags(DCIC_Type *base)
Get status flags.

The flag kDCIC_ErrorInterruptStatus is asserted if any region mismatch flag asserted.

base DCIC peripheral base address.

Returns
Masks of asserted status flags, _DCIC_status_flags.

static inline void DCIC_ClearStatusFlags(DCIC_Type *base, uint32_t mask)
Clear status flags.

The flag kDCIC_ErrorInterruptStatus should be cleared by clearing all asserted region mis-
match flags.

base DCIC peripheral base address.

mask Mask of status values that would be cleared, _DCIC_status_flags.

static inline void DCIC_LockInterruptEnabledStatus(DCIC_Type *base)
Lock the interrupt enabled status.

Once this function is called, the interrupt enabled status could not be changed until reset.

Parameters
• base – DCIC peripheral base address.

static inline void DCIC_EnableInterrupts(DCIC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – DCIC peripheral base address.

• mask – Mask of interrupt events that would be enabled. See to
“_dcic_interrupt_enable_t”.

static inline void DCIC_DisableInterrupts(DCIC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – DCIC peripheral base address.

• mask – Mask of interrupt events that would be disabled. See to
“_dcic_interrupt_enable_t”.

void DCIC_EnableRegion(DCIC_Type *base, uint8_t regionIdx, const dcic_region_config_t
*config)

Enable the region of interest (ROI) with configuration.

Enable the ROI with configuration. To change the configuration except reference CRC value,
the region should be disabled first by DCIC_DisableRegion, then call this function again.
The reference CRC value could be changed by DCIC_SetRegionRefCrc without disabling the

450 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

region. If the configuration is locked, only the reference CRC value could be changed, the
region size and position, enable status could not be changed until reset.

Parameters
• base – DCIC peripheral base address.

• regionIdx – Region index, from 0 to (DCIC_REGION_COUNT - 1).

• config – Pointer to the configuration.

static inline void DCIC_DisableRegion(DCIC_Type *base, uint8_t regionIdx)
Disable the region of interest (ROI).

Parameters
• base – DCIC peripheral base address.

• regionIdx – Region index, from 0 to (DCIC_REGION_COUNT - 1).

static inline void DCIC_SetRegionRefCrc(DCIC_Type *base, uint8_t regionIdx, uint32_t crc)
Set the reference CRC of interest (ROI).

Parameters
• base – DCIC peripheral base address.

• regionIdx – Region index, from 0 to (DCIC_REGION_COUNT - 1).

• crc – The reference CRC value.

static inline uint32_t DCIC_GetRegionCalculatedCrc(DCIC_Type *base, uint8_t regionIdx)
Get the DCIC calculated CRC.

Parameters
• base – DCIC peripheral base address.

• regionIdx – Region index, from 0 to (DCIC_REGION_COUNT - 1).

Returns
The calculated CRC value.

static inline void DCIC_EnableMismatchExternalSignal(DCIC_Type *base, bool enable)
Enable or disable output the mismatch external signal.

The mismatch status can be output to external pins. If enabled:

• If kDCIC_ErrorInterruptStatus asserted, the output signal frequency is DCIC clock / 16.

• If kDCIC_ErrorInterruptStatus not asserted, the output signal frequency is DCIC clock
/ 4.

• If integrity check is disabled, the signal is idle.

Parameters
• base – DCIC peripheral base address.

• enable – Use true to enable, false to disable.

enum _DCIC_polarity_flags
DCIC display signal polarity flags .

Values:

enumerator kDCIC_VsyncActiveHigh
VSYNC active high.

2.35. DCIC 451



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCIC_HsyncActiveHigh
HSYNC active high.

enumerator kDCIC_DataEnableActiveHigh
Data enable line active high.

enumerator kDCIC_DriveDataOnFallingClkEdge
Output data on rising clock edge, capture data on falling clock edge.

enumerator kDCIC_VsyncActiveLow
VSYNC active low.

enumerator kDCIC_HsyncActiveLow
HSYNC active low.

enumerator kDCIC_DataEnableActiveLow
Data enable line active low.

enumerator kDCIC_DriveDataOnRisingClkEdge
Output data on falling clock edge, capture data on rising clock edge.

enum _DCIC_status_flags
Status flags. .

Values:

enumerator kDCIC_FunctionalInterruptStatus
Asserted when match results ready.

enumerator kDCIC_ErrorInterruptStatus
Asserted when there is a signature mismatch.

enumerator kDCIC_Region0MismatchStatus
Region 0 CRC32 value mismatch.

enumerator kDCIC_Region1MismatchStatus
Region 1 CRC32 value mismatch.

enumerator kDCIC_Region2MismatchStatus
Region 2 CRC32 value mismatch.

enumerator kDCIC_Region3MismatchStatus
Region 3 CRC32 value mismatch.

enumerator kDCIC_Region4MismatchStatus
Region 4 CRC32 value mismatch.

enumerator kDCIC_Region5MismatchStatus
Region 5 CRC32 value mismatch.

enumerator kDCIC_Region6MismatchStatus
Region 6 CRC32 value mismatch.

enumerator kDCIC_Region7MismatchStatus
Region 7 CRC32 value mismatch.

enumerator kDCIC_Region8MismatchStatus
Region 8 CRC32 value mismatch.

enumerator kDCIC_Region9MismatchStatus
Region 9 CRC32 value mismatch.

452 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCIC_Region10MismatchStatus
Region 10 CRC32 value mismatch.

enumerator kDCIC_Region11MismatchStatus
Region 11 CRC32 value mismatch.

enumerator kDCIC_Region12MismatchStatus
Region 12 CRC32 value mismatch.

enumerator kDCIC_Region13MismatchStatus
Region 13 CRC32 value mismatch.

enumerator kDCIC_Region14MismatchStatus
Region 14 CRC32 value mismatch.

enumerator kDCIC_Region15MismatchStatus
Region 15 CRC32 value mismatch.

enum _dcic_interrupt_enable
Interrupts. .

Values:

enumerator kDCIC_FunctionalInterruptEnable
Interrupt when match results ready.

enumerator kDCIC_ErrorInterruptEnable
Interrupt when there is a signature mismatch.

typedef struct _dcic_config dcic_config_t
DCIC configuration.

typedef struct _dcic_region_config dcic_region_config_t
Region of interest (ROI) configuration.

DCIC_REGION_COUNT

FSL_DCIC_DRIVER_VERSION
DCIC driver version.

DCIC_CRC32_POLYNOMIAL
CRC32 calculation polynomial.

DCIC_CRC32_INIT_VALUE
CRC32 calculation initialize value.

DCIC_REGION_MISMATCH_STATUS(region)
ROI CRC32 value mismatch status.

struct _dcic_config
#include <fsl_dcic.h> DCIC configuration.

Public Members

bool enableExternalSignal
Enable the mismatch external signal. When enabled, the mismatch status could be
monitored from the extern pin.

uint8_t polarityFlags
Display signal polarity, logical OR’ed of _DCIC_polarity_flags.

2.35. DCIC 453



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t enableInterrupts
Interrupts to enable, should be OR’ed of _dcic_interrupt_enable.

struct _dcic_region_config
#include <fsl_dcic.h> Region of interest (ROI) configuration.

Public Members

bool lock
Lock the region configuration except reference CRC32 value setting.

uint16_t upperLeftX
X of upper left corner. Range: 0 to 2^13-1.

uint16_t upperLeftY
Y of upper left corner. Range: 0 to 2^12-1.

uint16_t lowerRightX
X of lower right corner. Range: 0 to 2^13-1.

uint16_t lowerRightY
Y of lower right corner. Range: 0 to 2^12-1.

uint32_t refCrc
Reference CRC32 value.

2.36 DCIC: Display Content Integrity Checker

2.37 DMAMUX: Direct Memory Access Multiplexer Driver

void DMAMUX_Init(DMAMUX_Type *base)
Initializes the DMAMUX peripheral.

This function ungates the DMAMUX clock.

Parameters
• base – DMAMUX peripheral base address.

void DMAMUX_Deinit(DMAMUX_Type *base)
Deinitializes the DMAMUX peripheral.

This function gates the DMAMUX clock.

Parameters
• base – DMAMUX peripheral base address.

static inline void DMAMUX_EnableChannel(DMAMUX_Type *base, uint32_t channel)
Enables the DMAMUX channel.

This function enables the DMAMUX channel.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

454 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void DMAMUX_DisableChannel(DMAMUX_Type *base, uint32_t channel)
Disables the DMAMUX channel.

This function disables the DMAMUX channel.

Note: The user must disable the DMAMUX channel before configuring it.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

static inline void DMAMUX_SetSource(DMAMUX_Type *base, uint32_t channel, int32_t source)
Configures the DMAMUX channel source.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

• source – Channel source, which is used to trigger the DMA transfer.User
need to use the dma_request_source_t type as the input parameter.

static inline void DMAMUX_EnablePeriodTrigger(DMAMUX_Type *base, uint32_t channel)
Enables the DMAMUX period trigger.

This function enables the DMAMUX period trigger feature.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

static inline void DMAMUX_DisablePeriodTrigger(DMAMUX_Type *base, uint32_t channel)
Disables the DMAMUX period trigger.

This function disables the DMAMUX period trigger.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

static inline void DMAMUX_EnableAlwaysOn(DMAMUX_Type *base, uint32_t channel, bool
enable)

Enables the DMA channel to be always ON.

This function enables the DMAMUX channel always ON feature.

Parameters
• base – DMAMUX peripheral base address.

• channel – DMAMUX channel number.

• enable – Switcher of the always ON feature. “true” means enabled, “false”
means disabled.

FSL_DMAMUX_DRIVER_VERSION
DMAMUX driver version 2.1.1.

DMAMUX_CHANNEL_ENDIAN_CONVERTn(channel)
Macro used for dmamux channel endian convert.

2.37. DMAMUX: Direct Memory Access Multiplexer Driver 455



MCUXpresso SDK Documentation, Release 25.12.00

2.38 eDMA: Enhanced Direct Memory Access (eDMA) Con-
troller Driver

void EDMA_Init(DMA_Type *base, const edma_config_t *config)
Initializes the eDMA peripheral.

This function ungates the eDMA clock and configures the eDMA peripheral according to the
configuration structure. All emda enabled request will be cleared in this function.

Note: This function enables the minor loop map feature.

Parameters
• base – eDMA peripheral base address.

• config – A pointer to the configuration structure, see “edma_config_t”.

void EDMA_Deinit(DMA_Type *base)
Deinitializes the eDMA peripheral.

This function gates the eDMA clock.

Parameters
• base – eDMA peripheral base address.

void EDMA_InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd)
Push content of TCD structure into hardware TCD register.

Parameters
• base – EDMA peripheral base address.

• channel – EDMA channel number.

• tcd – Point to TCD structure.

void EDMA_GetDefaultConfig(edma_config_t *config)
Gets the eDMA default configuration structure.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config.enableContinuousLinkMode = false;
config.enableHaltOnError = true;
config.enableRoundRobinArbitration = false;
config.enableDebugMode = false;

Parameters
• config – A pointer to the eDMA configuration structure.

static inline void EDMA_EnableContinuousChannelLinkMode(DMA_Type *base, bool enable)
Enable/Disable continuous channel link mode.

Note: Do not use continuous link mode with a channel linking to itself if there is only
one minor loop iteration per service request, for example, if the channel’s NBYTES value
is the same as either the source or destination size. The same data transfer profile can
be achieved by simply increasing the NBYTES value, which provides more efficient, faster
processing.

456 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – EDMA peripheral base address.

• enable – true is enable, false is disable.

static inline void EDMA_EnableMinorLoopMapping(DMA_Type *base, bool enable)
Enable/Disable minor loop mapping.

The TCDn.word2 is redefined to include individual enable fields, an offset field, and the
NBYTES field.

Parameters
• base – EDMA peripheral base address.

• enable – true is enable, false is disable.

void EDMA_ResetChannel(DMA_Type *base, uint32_t channel)
Sets all TCD registers to default values.

This function sets TCD registers for this channel to default values.

Note: This function must not be called while the channel transfer is ongoing or it causes
unpredictable results.

Note: This function enables the auto stop request feature.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

void EDMA_SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config_t
*config, edma_tcd_t *nextTcd)

Configures the eDMA transfer attribute.

This function configures the transfer attribute, including source address, destination ad-
dress, transfer size, address offset, and so on. It also configures the scatter gather feature
if the user supplies the TCD address. Example:

edma_transfer_t config;
edma_tcd_t tcd;
config.srcAddr = ..;
config.destAddr = ..;
...
EDMA_SetTransferConfig(DMA0, channel, &config, &stcd);

Note: If nextTcd is not NULL, it means scatter gather feature is enabled and DREQ bit is
cleared in the previous transfer configuration, which is set in the eDMA_ResetChannel.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• config – Pointer to eDMA transfer configuration structure.

• nextTcd – Point to TCD structure. It can be NULL if users do not want to
enable scatter/gather feature.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 457



MCUXpresso SDK Documentation, Release 25.12.00

void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const
edma_minor_offset_config_t *config)

Configures the eDMA minor offset feature.

The minor offset means that the signed-extended value is added to the source address or
destination address after each minor loop.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• config – A pointer to the minor offset configuration structure.

void EDMA_SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const
edma_channel_Preemption_config_t *config)

Configures the eDMA channel preemption feature.

This function configures the channel preemption attribute and the priority of the channel.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number

• config – A pointer to the channel preemption configuration structure.

void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t
linkType, uint32_t linkedChannel)

Sets the channel link for the eDMA transfer.

This function configures either the minor link or the major link mode. The minor link
means that the channel link is triggered every time CITER decreases by 1. The major link
means that the channel link is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• linkType – A channel link type, which can be one of the following:

– kEDMA_LinkNone

– kEDMA_MinorLink

– kEDMA_MajorLink

• linkedChannel – The linked channel number.

void EDMA_SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA transfer.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after
the completion of each read/write access to control the bus request bandwidth seen by the
crossbar switch.

Parameters
• base – eDMA peripheral base address.

458 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• channel – eDMA channel number.

• bandWidth – A bandwidth setting, which can be one of the following:

– kEDMABandwidthStallNone

– kEDMABandwidthStall4Cycle

– kEDMABandwidthStall8Cycle

void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo,
edma_modulo_t destModulo)

Sets the source modulo and the destination modulo for the eDMA transfer.

This function defines a specific address range specified to be the value after (SADDR +
SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides
the ability to implement a circular data queue easily.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• srcModulo – A source modulo value.

• destModulo – A destination modulo value.

static inline void EDMA_EnableAsyncRequest(DMA_Type *base, uint32_t channel, bool enable)
Enables an async request for the eDMA transfer.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• enable – The command to enable (true) or disable (false).

static inline void EDMA_EnableAutoStopRequest(DMA_Type *base, uint32_t channel, bool
enable)

Enables an auto stop request for the eDMA transfer.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware
channel request.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• enable – The command to enable (true) or disable (false).

void EDMA_EnableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Enables the interrupt source for the eDMA transfer.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• mask – The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Disables the interrupt source for the eDMA transfer.

Parameters
• base – eDMA peripheral base address.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 459



MCUXpresso SDK Documentation, Release 25.12.00

• channel – eDMA channel number.

• mask – The mask of the interrupt source to be set. Use the defined
edma_interrupt_enable_t type.

void EDMA_SetMajorOffsetConfig(DMA_Type *base, uint32_t channel, int32_t sourceOffset,
int32_t destOffset)

Configures the eDMA channel TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count

Parameters
• base – eDMA peripheral base address.

• channel – edma channel number.

• sourceOffset – source address offset will be applied to source address after
major loop done.

• destOffset – destination address offset will be applied to source address af-
ter major loop done.

void EDMA_TcdReset(edma_tcd_t *tcd)
Sets all fields to default values for the TCD structure.

This function sets all fields for this TCD structure to default value.

Note: This function enables the auto stop request feature.

Parameters
• tcd – Pointer to the TCD structure.

void EDMA_TcdSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config,
edma_tcd_t *nextTcd)

Configures the eDMA TCD transfer attribute.

The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware
TCD registers. The TCD is used in the scatter-gather mode. This function configures the
TCD transfer attribute, including source address, destination address, transfer size, address
offset, and so on. It also configures the scatter gather feature if the user supplies the next
TCD address. Example:

edma_transfer_t config = {
...
}
edma_tcd_t tcd __aligned(32);
edma_tcd_t nextTcd __aligned(32);
EDMA_TcdSetTransferConfig(&tcd, &config, &nextTcd);

Note: TCD address should be 32 bytes aligned or it causes an eDMA error.

Note: If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is
cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.

Parameters
• tcd – Pointer to the TCD structure.

• config – Pointer to eDMA transfer configuration structure.

460 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• nextTcd – Pointer to the next TCD structure. It can be NULL if users do not
want to enable scatter/gather feature.

void EDMA_TcdSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config_t
*config)

Configures the eDMA TCD minor offset feature.

A minor offset is a signed-extended value added to the source address or a destination ad-
dress after each minor loop.

Parameters
• tcd – A point to the TCD structure.

• config – A pointer to the minor offset configuration structure.

void EDMA_TcdSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t linkType, uint32_t
linkedChannel)

Sets the channel link for the eDMA TCD.

This function configures either a minor link or a major link. The minor link means the
channel link is triggered every time CITER decreases by 1. The major link means that the
channel link is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
• tcd – Point to the TCD structure.

• linkType – Channel link type, it can be one of:

– kEDMA_LinkNone

– kEDMA_MinorLink

– kEDMA_MajorLink

• linkedChannel – The linked channel number.

static inline void EDMA_TcdSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA TCD.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after
the completion of each read/write access to control the bus request bandwidth seen by the
crossbar switch.

Parameters
• tcd – A pointer to the TCD structure.

• bandWidth – A bandwidth setting, which can be one of the following:

– kEDMABandwidthStallNone

– kEDMABandwidthStall4Cycle

– kEDMABandwidthStall8Cycle

void EDMA_TcdSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t
destModulo)

Sets the source modulo and the destination modulo for the eDMA TCD.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 461



MCUXpresso SDK Documentation, Release 25.12.00

This function defines a specific address range specified to be the value after (SADDR +
SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides
the ability to implement a circular data queue easily.

Parameters
• tcd – A pointer to the TCD structure.

• srcModulo – A source modulo value.

• destModulo – A destination modulo value.

static inline void EDMA_TcdEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)
Sets the auto stop request for the eDMA TCD.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware
channel request.

Parameters
• tcd – A pointer to the TCD structure.

• enable – The command to enable (true) or disable (false).

void EDMA_TcdEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Enables the interrupt source for the eDMA TCD.

Parameters
• tcd – Point to the TCD structure.

• mask – The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_TcdDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Disables the interrupt source for the eDMA TCD.

Parameters
• tcd – Point to the TCD structure.

• mask – The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_TcdSetMajorOffsetConfig(edma_tcd_t *tcd, int32_t sourceOffset, int32_t destOffset)
Configures the eDMA TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count

Parameters
• tcd – A point to the TCD structure.

• sourceOffset – source address offset wiil be applied to source address after
major loop done.

• destOffset – destination address offset will be applied to source address af-
ter major loop done.

static inline void EDMA_EnableChannelRequest(DMA_Type *base, uint32_t channel)
Enables the eDMA hardware channel request.

This function enables the hardware channel request.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

462 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void EDMA_DisableChannelRequest(DMA_Type *base, uint32_t channel)
Disables the eDMA hardware channel request.

This function disables the hardware channel request.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

static inline void EDMA_TriggerChannelStart(DMA_Type *base, uint32_t channel)
Starts the eDMA transfer by using the software trigger.

This function starts a minor loop transfer.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

uint32_t EDMA_GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel)
Gets the remaining major loop count from the eDMA current channel TCD.

This function checks the TCD (Task Control Descriptor) status for a specified eDMA channel
and returns the number of major loop count that has not finished.

Note: 1. This function can only be used to get unfinished major loop count of transfer
without the next TCD, or it might be inaccuracy.

a. The unfinished/remaining transfer bytes cannot be obtained directly from registers
while the channel is running. Because to calculate the remaining bytes, the initial
NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA
IP does not support getting it while a channel is active. In another word, the NBYTES
value reading is always the actual (decrementing) NBYTES value the dma_engine is
working with while a channel is running. Consequently, to get the remaining transfer
bytes, a software-saved initial value of NBYTES (for example copied before enabling
the channel) is needed. The formula to calculate it is shown below: RemainingBytes =
RemainingMajorLoopCount * NBYTES(initially configured)

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

Returns
Major loop count which has not been transferred yet for the current TCD.

static inline uint32_t EDMA_GetErrorStatusFlags(DMA_Type *base)
Gets the eDMA channel error status flags.

Parameters
• base – eDMA peripheral base address.

Returns
The mask of error status flags. Users need to use the _edma_error_status_flags
type to decode the return variables.

uint32_t EDMA_GetChannelStatusFlags(DMA_Type *base, uint32_t channel)
Gets the eDMA channel status flags.

Parameters

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 463



MCUXpresso SDK Documentation, Release 25.12.00

• base – eDMA peripheral base address.

• channel – eDMA channel number.

Returns
The mask of channel status flags. Users need to use the
_edma_channel_status_flags type to decode the return variables.

void EDMA_ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask)
Clears the eDMA channel status flags.

Parameters
• base – eDMA peripheral base address.

• channel – eDMA channel number.

• mask – The mask of channel status to be cleared. Users need to use the
defined _edma_channel_status_flags type.

void EDMA_CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the eDMA handle.

This function is called if using the transactional API for eDMA. This function initializes the
internal state of the eDMA handle.

Parameters
• handle – eDMA handle pointer. The eDMA handle stores callback function

and parameters.

• base – eDMA peripheral base address.

• channel – eDMA channel number.

void EDMA_InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)
Installs the TCDs memory pool into the eDMA handle.

This function is called after the EDMA_CreateHandle to use scatter/gather feature. This
function shall only be used while users need to use scatter gather mode. Scatter gather
mode enables EDMA to load a new transfer control block (tcd) in hardware, and automati-
cally reconfigure that DMA channel for a new transfer. Users need to prepare tcd memory
and also configure tcds using interface EDMA_SubmitTransfer.

Parameters
• handle – eDMA handle pointer.

• tcdPool – A memory pool to store TCDs. It must be 32 bytes aligned.

• tcdSize – The number of TCD slots.

void EDMA_SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)
Installs a callback function for the eDMA transfer.

This callback is called in the eDMA IRQ handler. Use the callback to do something after
the current major loop transfer completes. This function will be called every time one tcd
finished transfer.

Parameters
• handle – eDMA handle pointer.

• callback – eDMA callback function pointer.

• userData – A parameter for the callback function.

464 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void EDMA_PrepareTransferConfig(edma_transfer_config_t *config, void *srcAddr, uint32_t
srcWidth, int16_t srcOffset, void *destAddr, uint32_t
destWidth, int16_t destOffset, uint32_t bytesEachRequest,
uint32_t transferBytes)

Prepares the eDMA transfer structure configurations.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC
is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error
(SAE).

Parameters
• config – The user configuration structure of type edma_transfer_t.

• srcAddr – eDMA transfer source address.

• srcWidth – eDMA transfer source address width(bytes).

• srcOffset – source address offset.

• destAddr – eDMA transfer destination address.

• destWidth – eDMA transfer destination address width(bytes).

• destOffset – destination address offset.

• bytesEachRequest – eDMA transfer bytes per channel request.

• transferBytes – eDMA transfer bytes to be transferred.

void EDMA_PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth,
void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest,
uint32_t transferBytes, edma_transfer_type_t transferType)

Prepares the eDMA transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC
is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error
(SAE).

Parameters
• config – The user configuration structure of type edma_transfer_t.

• srcAddr – eDMA transfer source address.

• srcWidth – eDMA transfer source address width(bytes).

• destAddr – eDMA transfer destination address.

• destWidth – eDMA transfer destination address width(bytes).

• bytesEachRequest – eDMA transfer bytes per channel request.

• transferBytes – eDMA transfer bytes to be transferred.

• transferType – eDMA transfer type.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 465



MCUXpresso SDK Documentation, Release 25.12.00

status_t EDMA_SubmitTransfer(edma_handle_t *handle, const edma_transfer_config_t *config)
Submits the eDMA transfer request.

This function submits the eDMA transfer request according to the transfer configuration
structure. In scatter gather mode, call this function will add a configured tcd to the circular
list of tcd pool. The tcd pools is setup by call function EDMA_InstallTCDMemory before.

Parameters
• handle – eDMA handle pointer.

• config – Pointer to eDMA transfer configuration structure.

Return values
• kStatus_EDMA_Success – It means submit transfer request succeed.

• kStatus_EDMA_QueueFull – It means TCD queue is full. Submit transfer
request is not allowed.

• kStatus_EDMA_Busy – It means the given channel is busy, need to submit
request later.

void EDMA_StartTransfer(edma_handle_t *handle)
eDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
• handle – eDMA handle pointer.

void EDMA_StopTransfer(edma_handle_t *handle)
eDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
EDMA_StartTransfer() again to resume the transfer.

Parameters
• handle – eDMA handle pointer.

void EDMA_AbortTransfer(edma_handle_t *handle)
eDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this API.

Parameters
• handle – DMA handle pointer.

static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)
Get unused TCD slot number.

This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will
return 0.

Parameters
• handle – DMA handle pointer.

Returns
The unused tcd slot number.

static inline uint32_t EDMA_GetNextTCDAddress(edma_handle_t *handle)
Get the next tcd address.

This function gets the next tcd address. If this is last TCD, return 0.

466 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• handle – DMA handle pointer.

Returns
The next TCD address.

void EDMA_HandleIRQ(edma_handle_t *handle)
eDMA IRQ handler for the current major loop transfer completion.

This function clears the channel major interrupt flag and calls the callback function if it is
not NULL.

Note: For the case using TCD queue, when the major iteration count is exhausted, additional
operations are performed. These include the final address adjustments and reloading of
the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this
time, as does a possible fetch of a new TCD from memory using the scatter/gather address
pointer included in the descriptor (if scatter/gather is enabled).

For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been
loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA
bitfield lies in the TCD_CSR register, the sga_index in this case should be 2 (DLAST_SGA of
TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U)
which indicates the number of TCDs can be loaded in the memory pool (because TCD[0]
and TCD[1] have been loaded into the eDMA engine at this point already.).

For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The
last ISR does not load a new TCD) from the memory pool to the eDMA engine when major
loop completes. Therefore, ensure that the header and tcdUsed updated are identical for
them. tcdUsed are both 0 in this case as no TCD to be loaded.

See the “eDMA basic data flow” in the eDMA Functional description section of the Reference
Manual for further details.

Parameters
• handle – eDMA handle pointer.

FSL_EDMA_DRIVER_VERSION
eDMA driver version

Version 2.4.7.

enum _edma_transfer_size
eDMA transfer configuration

Values:

enumerator kEDMA_TransferSize1Bytes
Source/Destination data transfer size is 1 byte every time

enumerator kEDMA_TransferSize2Bytes
Source/Destination data transfer size is 2 bytes every time

enumerator kEDMA_TransferSize4Bytes
Source/Destination data transfer size is 4 bytes every time

enumerator kEDMA_TransferSize8Bytes
Source/Destination data transfer size is 8 bytes every time

enumerator kEDMA_TransferSize16Bytes
Source/Destination data transfer size is 16 bytes every time

enumerator kEDMA_TransferSize32Bytes
Source/Destination data transfer size is 32 bytes every time

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 467



MCUXpresso SDK Documentation, Release 25.12.00

enum _edma_modulo
eDMA modulo configuration

Values:

enumerator kEDMA_ModuloDisable
Disable modulo

enumerator kEDMA_Modulo2bytes
Circular buffer size is 2 bytes.

enumerator kEDMA_Modulo4bytes
Circular buffer size is 4 bytes.

enumerator kEDMA_Modulo8bytes
Circular buffer size is 8 bytes.

enumerator kEDMA_Modulo16bytes
Circular buffer size is 16 bytes.

enumerator kEDMA_Modulo32bytes
Circular buffer size is 32 bytes.

enumerator kEDMA_Modulo64bytes
Circular buffer size is 64 bytes.

enumerator kEDMA_Modulo128bytes
Circular buffer size is 128 bytes.

enumerator kEDMA_Modulo256bytes
Circular buffer size is 256 bytes.

enumerator kEDMA_Modulo512bytes
Circular buffer size is 512 bytes.

enumerator kEDMA_Modulo1Kbytes
Circular buffer size is 1 K bytes.

enumerator kEDMA_Modulo2Kbytes
Circular buffer size is 2 K bytes.

enumerator kEDMA_Modulo4Kbytes
Circular buffer size is 4 K bytes.

enumerator kEDMA_Modulo8Kbytes
Circular buffer size is 8 K bytes.

enumerator kEDMA_Modulo16Kbytes
Circular buffer size is 16 K bytes.

enumerator kEDMA_Modulo32Kbytes
Circular buffer size is 32 K bytes.

enumerator kEDMA_Modulo64Kbytes
Circular buffer size is 64 K bytes.

enumerator kEDMA_Modulo128Kbytes
Circular buffer size is 128 K bytes.

enumerator kEDMA_Modulo256Kbytes
Circular buffer size is 256 K bytes.

468 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_Modulo512Kbytes
Circular buffer size is 512 K bytes.

enumerator kEDMA_Modulo1Mbytes
Circular buffer size is 1 M bytes.

enumerator kEDMA_Modulo2Mbytes
Circular buffer size is 2 M bytes.

enumerator kEDMA_Modulo4Mbytes
Circular buffer size is 4 M bytes.

enumerator kEDMA_Modulo8Mbytes
Circular buffer size is 8 M bytes.

enumerator kEDMA_Modulo16Mbytes
Circular buffer size is 16 M bytes.

enumerator kEDMA_Modulo32Mbytes
Circular buffer size is 32 M bytes.

enumerator kEDMA_Modulo64Mbytes
Circular buffer size is 64 M bytes.

enumerator kEDMA_Modulo128Mbytes
Circular buffer size is 128 M bytes.

enumerator kEDMA_Modulo256Mbytes
Circular buffer size is 256 M bytes.

enumerator kEDMA_Modulo512Mbytes
Circular buffer size is 512 M bytes.

enumerator kEDMA_Modulo1Gbytes
Circular buffer size is 1 G bytes.

enumerator kEDMA_Modulo2Gbytes
Circular buffer size is 2 G bytes.

enum _edma_bandwidth
Bandwidth control.

Values:

enumerator kEDMA_BandwidthStallNone
No eDMA engine stalls.

enumerator kEDMA_BandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.

enumerator kEDMA_BandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.

enum _edma_channel_link_type
Channel link type.

Values:

enumerator kEDMA_LinkNone
No channel link

enumerator kEDMA_MinorLink
Channel link after each minor loop

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 469



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_MajorLink
Channel link while major loop count exhausted

_edma_channel_status_flags eDMA channel status flags.

Values:

enumerator kEDMA_DoneFlag
DONE flag, set while transfer finished, CITER value exhausted

enumerator kEDMA_ErrorFlag
eDMA error flag, an error occurred in a transfer

enumerator kEDMA_InterruptFlag
eDMA interrupt flag, set while an interrupt occurred of this channel

_edma_error_status_flags eDMA channel error status flags.

Values:

enumerator kEDMA_DestinationBusErrorFlag
Bus error on destination address

enumerator kEDMA_SourceBusErrorFlag
Bus error on the source address

enumerator kEDMA_ScatterGatherErrorFlag
Error on the Scatter/Gather address, not 32byte aligned.

enumerator kEDMA_NbytesErrorFlag
NBYTES/CITER configuration error

enumerator kEDMA_DestinationOffsetErrorFlag
Destination offset not aligned with destination size

enumerator kEDMA_DestinationAddressErrorFlag
Destination address not aligned with destination size

enumerator kEDMA_SourceOffsetErrorFlag
Source offset not aligned with source size

enumerator kEDMA_SourceAddressErrorFlag
Source address not aligned with source size

enumerator kEDMA_ErrorChannelFlag
Error channel number of the cancelled channel number

enumerator kEDMA_ChannelPriorityErrorFlag
Channel priority is not unique.

enumerator kEDMA_TransferCanceledFlag
Transfer cancelled

enumerator kEDMA_ValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.

enum _edma_interrupt_enable
eDMA interrupt source

Values:

470 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_ErrorInterruptEnable
Enable interrupt while channel error occurs.

enumerator kEDMA_MajorInterruptEnable
Enable interrupt while major count exhausted.

enumerator kEDMA_HalfInterruptEnable
Enable interrupt while major count to half value.

enum _edma_transfer_type
eDMA transfer type

Values:

enumerator kEDMA_MemoryToMemory
Transfer from memory to memory

enumerator kEDMA_PeripheralToMemory
Transfer from peripheral to memory

enumerator kEDMA_MemoryToPeripheral
Transfer from memory to peripheral

enumerator kEDMA_PeripheralToPeripheral
Transfer from Peripheral to peripheral

_edma_transfer_status eDMA transfer status

Values:

enumerator kStatus_EDMA_QueueFull
TCD queue is full.

enumerator kStatus_EDMA_Busy
Channel is busy and can’t handle the transfer request.

typedef enum _edma_transfer_size edma_transfer_size_t
eDMA transfer configuration

typedef enum _edma_modulo edma_modulo_t
eDMA modulo configuration

typedef enum _edma_bandwidth edma_bandwidth_t
Bandwidth control.

typedef enum _edma_channel_link_type edma_channel_link_type_t
Channel link type.

typedef enum _edma_interrupt_enable edma_interrupt_enable_t
eDMA interrupt source

typedef enum _edma_transfer_type edma_transfer_type_t
eDMA transfer type

typedef struct _edma_config edma_config_t
eDMA global configuration structure.

typedef struct _edma_transfer_config edma_transfer_config_t
eDMA transfer configuration

This structure configures the source/destination transfer attribute.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 471



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _edma_channel_Preemption_config edma_channel_Preemption_config_t
eDMA channel priority configuration

typedef struct _edma_minor_offset_config edma_minor_offset_config_t
eDMA minor offset configuration

typedef struct _edma_tcd edma_tcd_t
eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used
to configure the scatter/gather feature as a next hardware TCD.

typedef void (*edma_callback)(struct _edma_handle *handle, void *userData, bool transferDone,
uint32_t tcds)

Define callback function for eDMA.

This callback function is called in the EDMA interrupt handle. In normal mode, run into
callback function means the transfer users need is done. In scatter gather mode, run into
callback function means a transfer control block (tcd) is finished. Not all transfer finished,
users can get the finished tcd numbers using interface EDMA_GetUnusedTCDNumber.

Param handle
EDMA handle pointer, users shall not touch the values inside.

Param userData
The callback user parameter pointer. Users can use this parameter to involve
things users need to change in EDMA callback function.

Param transferDone
If the current loaded transfer done. In normal mode it means if all transfer
done. In scatter gather mode, this parameter shows is the current transfer
block in EDMA register is done. As the load of core is different, it will be dif-
ferent if the new tcd loaded into EDMA registers while this callback called. If
true, it always means new tcd still not loaded into registers, while false means
new tcd already loaded into registers.

Param tcds
How many tcds are done from the last callback. This parameter only used in
scatter gather mode. It tells user how many tcds are finished between the last
callback and this.

typedef struct _edma_handle edma_handle_t
eDMA transfer handle structure

DMA_DCHPRI_INDEX(channel)
Compute the offset unit from DCHPRI3.

struct _edma_config
#include <fsl_edma.h> eDMA global configuration structure.

Public Members

bool enableContinuousLinkMode
Enable (true) continuous link mode. Upon minor loop completion, the channel acti-
vates again if that channel has a minor loop channel link enabled and the link channel
is itself.

bool enableHaltOnError
Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently,
all service requests are ignored until the HALT bit is cleared.

472 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

bool enableRoundRobinArbitration
Enable (true) round robin channel arbitration method or fixed priority arbitration is
used for channel selection

bool enableDebugMode
Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a
new channel. Executing channels are allowed to complete.

struct _edma_transfer_config
#include <fsl_edma.h> eDMA transfer configuration

This structure configures the source/destination transfer attribute.

Public Members

uint32_t srcAddr
Source data address.

uint32_t destAddr
Destination data address.

edma_transfer_size_t srcTransferSize
Source data transfer size.

edma_transfer_size_t destTransferSize
Destination data transfer size.

int16_t srcOffset
Sign-extended offset applied to the current source address to form the next-state value
as each source read is completed.

int16_t destOffset
Sign-extended offset applied to the current destination address to form the next-state
value as each destination write is completed.

uint32_t minorLoopBytes
Bytes to transfer in a minor loop

uint32_t majorLoopCounts
Major loop iteration count.

struct _edma_channel_Preemption_config
#include <fsl_edma.h> eDMA channel priority configuration

Public Members

bool enableChannelPreemption
If true: a channel can be suspended by other channel with higher priority

bool enablePreemptAbility
If true: a channel can suspend other channel with low priority

uint8_t channelPriority
Channel priority

struct _edma_minor_offset_config
#include <fsl_edma.h> eDMA minor offset configuration

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 473



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableSrcMinorOffset
Enable(true) or Disable(false) source minor loop offset.

bool enableDestMinorOffset
Enable(true) or Disable(false) destination minor loop offset.

uint32_t minorOffset
Offset for a minor loop mapping.

struct _edma_tcd
#include <fsl_edma.h> eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used
to configure the scatter/gather feature as a next hardware TCD.

Public Members

__IO uint32_t SADDR
SADDR register, used to save source address

__IO uint16_t SOFF
SOFF register, save offset bytes every transfer

__IO uint16_t ATTR
ATTR register, source/destination transfer size and modulo

__IO uint32_t NBYTES
Nbytes register, minor loop length in bytes

__IO uint32_t SLAST
SLAST register

__IO uint32_t DADDR
DADDR register, used for destination address

__IO uint16_t DOFF
DOFF register, used for destination offset

__IO uint16_t CITER
CITER register, current minor loop numbers, for unfinished minor loop.

__IO uint32_t DLAST_SGA
DLASTSGA register, next tcd address used in scatter-gather mode

__IO uint16_t CSR
CSR register, for TCD control status

__IO uint16_t BITER
BITER register, begin minor loop count.

struct _edma_handle
#include <fsl_edma.h> eDMA transfer handle structure

Public Members

edma_callback callback
Callback function for major count exhausted.

474 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void *userData
Callback function parameter.

DMA_Type *base
eDMA peripheral base address.

edma_tcd_t *tcdPool
Pointer to memory stored TCDs.

uint8_t channel
eDMA channel number.

volatile int8_t header
The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.

volatile int8_t tail
The last TCD index. Should point to the next TCD to be stored into the memory pool.

volatile int8_t tcdUsed
The number of used TCD slots. Should reflect the number of TCDs can be used/loaded
in the memory.

volatile int8_t tcdSize
The total number of TCD slots in the queue.

uint8_t flags
The status of the current channel.

2.39 eLCDIF: Enhanced LCD Interface

void ELCDIF_RgbModeInit(LCDIF_Type *base, const elcdif_rgb_mode_config_t *config)
Initializes the eLCDIF to work in RGB mode (DOTCLK mode).

This function ungates the eLCDIF clock and configures the eLCDIF peripheral according to
the configuration structure.

Parameters
• base – eLCDIF peripheral base address.

• config – Pointer to the configuration structure.

void ELCDIF_RgbModeGetDefaultConfig(elcdif_rgb_mode_config_t *config)
Gets the eLCDIF default configuration structure for RGB (DOTCLK) mode.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config->panelWidth = 480U;
config->panelHeight = 272U;
config->hsw = 41;
config->hfp = 4;
config->hbp = 8;
config->vsw = 10;
config->vfp = 4;
config->vbp = 2;
config->polarityFlags = kELCDIF_VsyncActiveLow |

kELCDIF_HsyncActiveLow |
kELCDIF_DataEnableActiveLow |
kELCDIF_DriveDataOnFallingClkEdge;

config->bufferAddr = 0U;
(continues on next page)

2.39. eLCDIF: Enhanced LCD Interface 475



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
config->pixelFormat = kELCDIF_PixelFormatRGB888;
config->dataBus = kELCDIF_DataBus24Bit;

Parameters
• config – Pointer to the eLCDIF configuration structure.

void ELCDIF_Deinit(LCDIF_Type *base)
Deinitializes the eLCDIF peripheral.

Parameters
• base – eLCDIF peripheral base address.

void ELCDIF_RgbModeSetPixelFormat(LCDIF_Type *base, elcdif_pixel_format_t pixelFormat)
Set the pixel format in RGB (DOTCLK) mode.

Parameters
• base – eLCDIF peripheral base address.

• pixelFormat – The pixel format.

static inline void ELCDIF_RgbModeStart(LCDIF_Type *base)
Start to display in RGB (DOTCLK) mode.

Parameters
• base – eLCDIF peripheral base address.

void ELCDIF_RgbModeStop(LCDIF_Type *base)
Stop display in RGB (DOTCLK) mode and wait until finished.

Parameters
• base – eLCDIF peripheral base address.

static inline void ELCDIF_SetNextBufferAddr(LCDIF_Type *base, uint32_t bufferAddr)
Set the next frame buffer address to display.

Parameters
• base – eLCDIF peripheral base address.

• bufferAddr – The frame buffer address to set.

void ELCDIF_Reset(LCDIF_Type *base)
Reset the eLCDIF peripheral.

Parameters
• base – eLCDIF peripheral base address.

void ELCDIF_SetPixelComponentOrder(LCDIF_Type *base, elcdif_pixel_component_order_t
order)

Set the order of the RGB components of each pixel in lines.

Parameters
• base – eLCDIF peripheral base address.

• order – The pixel component order

476 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ELCDIF_GetCrcValue(const LCDIF_Type *base)
Get the CRC value of the frame sent out.

When a frame is sent complete (the interrupt kELCDIF_CurFrameDone assert), this function
can be used to get the CRC value of the frame sent.

Note: The CRC value is dependent on the LCD_DATABUS_WIDTH.

Parameters
• base – eLCDIF peripheral base address.

Returns
The CRC value.

static inline uint32_t ELCDIF_GetBusMasterErrorAddr(const LCDIF_Type *base)
Get the bus master error virtual address.

When bus master error occurs (the interrupt kELCDIF_BusMasterError assert), this func-
tion can get the virtual address at which the AXI master received an error response from
the slave.

Parameters
• base – eLCDIF peripheral base address.

Returns
The error virtual address.

static inline uint32_t ELCDIF_GetStatus(const LCDIF_Type *base)
Get the eLCDIF status.

The status flags are returned as a mask value, application could check the corresponding
bit. Example:

uint32_t statusFlags;
statusFlags = ELCDIF_GetStatus(LCDIF);

if (kELCDIF_LFifoFull & statusFlags)
{
}

if (kELCDIF_TxFifoEmpty & statusFlags)
{
}

Parameters
• base – eLCDIF peripheral base address.

Returns
The mask value of status flags, it is OR’ed value of _elcdif_status_flags.

static inline uint32_t ELCDIF_GetLFifoCount(const LCDIF_Type *base)
Get current count in Latency buffer (LFIFO).

Parameters
• base – eLCDIF peripheral base address.

Returns
The LFIFO current count

2.39. eLCDIF: Enhanced LCD Interface 477



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ELCDIF_EnableInterrupts(LCDIF_Type *base, uint32_t mask)
Enables eLCDIF interrupt requests.

Parameters
• base – eLCDIF peripheral base address.

• mask – interrupt source, OR’ed value of _elcdif_interrupt_enable.

static inline void ELCDIF_DisableInterrupts(LCDIF_Type *base, uint32_t mask)
Disables eLCDIF interrupt requests.

Parameters
• base – eLCDIF peripheral base address.

• mask – interrupt source, OR’ed value of _elcdif_interrupt_enable.

static inline uint32_t ELCDIF_GetInterruptStatus(const LCDIF_Type *base)
Get eLCDIF interrupt peding status.

Parameters
• base – eLCDIF peripheral base address.

Returns
Interrupt pending status, OR’ed value of _elcdif_interrupt_flags.

static inline void ELCDIF_ClearInterruptStatus(LCDIF_Type *base, uint32_t mask)
Clear eLCDIF interrupt peding status.

Parameters
• base – eLCDIF peripheral base address.

• mask – of the flags to clear, OR’ed value of _elcdif_interrupt_flags.

static inline void ELCDIF_EnableLut(LCDIF_Type *base, bool enable)
Enable or disable the LUT.

Parameters
• base – eLCDIF peripheral base address.

• enable – True to enable, false to disable.

status_t ELCDIF_UpdateLut(LCDIF_Type *base, elcdif_lut_t lut, uint16_t startIndex, const
uint32_t *lutData, uint16_t count)

Load the LUT value.

This function loads the LUT value to the specific LUT memory, user can specify the start
entry index.

Parameters
• base – eLCDIF peripheral base address.

• lut – Which LUT to load.

• startIndex – The start index of the LUT entry to update.

• lutData – The LUT data to load.

• count – Count of lutData.

Return values
• kStatus_Success – Initialization success.

• kStatus_InvalidArgument – Wrong argument.

478 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_ELCDIF_DRIVER_VERSION
eLCDIF driver version

enum _elcdif_polarity_flags
eLCDIF signal polarity flags

Values:

enumerator kELCDIF_VsyncActiveLow
VSYNC active low.

enumerator kELCDIF_HsyncActiveLow
HSYNC active low.

enumerator kELCDIF_DataEnableActiveLow
Data enable line active low.

enumerator kELCDIF_DriveDataOnFallingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enumerator kELCDIF_VsyncActiveHigh
VSYNC active high.

enumerator kELCDIF_HsyncActiveHigh
HSYNC active high.

enumerator kELCDIF_DataEnableActiveHigh
Data enable line active high.

enumerator kELCDIF_DriveDataOnRisingClkEdge
Drive data on falling clock edge, capture data on rising clock edge.

enum _elcdif_interrupt_enable
The eLCDIF interrupts to enable.

Values:

enumerator kELCDIF_BusMasterErrorInterruptEnable
Bus master error interrupt.

enumerator kELCDIF_TxFifoOverflowInterruptEnable
TXFIFO overflow interrupt.

enumerator kELCDIF_TxFifoUnderflowInterruptEnable
TXFIFO underflow interrupt.

enumerator kELCDIF_CurFrameDoneInterruptEnable
Interrupt when hardware enters vertical blanking state.

enumerator kELCDIF_VsyncEdgeInterruptEnable
Interrupt when hardware encounters VSYNC edge.

enum _elcdif_interrupt_flags
The eLCDIF interrupt status flags.

Values:

enumerator kELCDIF_BusMasterError
Bus master error interrupt.

enumerator kELCDIF_TxFifoOverflow
TXFIFO overflow interrupt.

2.39. eLCDIF: Enhanced LCD Interface 479



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF_TxFifoUnderflow
TXFIFO underflow interrupt.

enumerator kELCDIF_CurFrameDone
Interrupt when hardware enters vertical blanking state.

enumerator kELCDIF_VsyncEdge
Interrupt when hardware encounters VSYNC edge.

enum _elcdif_status_flags
eLCDIF status flags

Values:

enumerator kELCDIF_LFifoFull
LFIFO full.

enumerator kELCDIF_LFifoEmpty
LFIFO empty.

enumerator kELCDIF_TxFifoFull
TXFIFO full.

enumerator kELCDIF_TxFifoEmpty
TXFIFO empty.

enum _elcdif_pixel_format
The pixel format.

This enumerator should be defined together with the array s_pixelFormatReg. To support
new pixel format, enhance this enumerator and s_pixelFormatReg.

Values:

enumerator kELCDIF_PixelFormatRAW8
RAW 8 bit, four data use 32 bits.

enumerator kELCDIF_PixelFormatRGB565
RGB565, two pixel use 32 bits.

enumerator kELCDIF_PixelFormatRGB666
RGB666 unpacked, one pixel uses 32 bits, high byte unused, upper 2 bits of other bytes
unused.

enumerator kELCDIF_PixelFormatXRGB8888
XRGB8888 unpacked, one pixel uses 32 bits, high byte unused.

enumerator kELCDIF_PixelFormatRGB888
RGB888 packed, one pixel uses 24 bits.

enum _elcdif_lcd_data_bus
The LCD data bus type.

Values:

enumerator kELCDIF_DataBus8Bit
8-bit data bus.

enumerator kELCDIF_DataBus16Bit
16-bit data bus, support RGB565.

enumerator kELCDIF_DataBus18Bit
18-bit data bus, support RGB666.

480 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF_DataBus24Bit
24-bit data bus, support RGB888.

enum _elcdif_as_pixel_format
eLCDIF alpha surface pixel format.

Values:

enumerator kELCDIF_AsPixelFormatARGB8888
32-bit pixels with alpha.

enumerator kELCDIF_AsPixelFormatRGB888
32-bit pixels without alpha (unpacked 24-bit format)

enumerator kELCDIF_AsPixelFormatARGB1555
16-bit pixels with alpha.

enumerator kELCDIF_AsPixelFormatARGB4444
16-bit pixels with alpha.

enumerator kELCDIF_AsPixelFormatRGB555
16-bit pixels without alpha.

enumerator kELCDIF_AsPixelFormatRGB444
16-bit pixels without alpha.

enumerator kELCDIF_AsPixelFormatRGB565
16-bit pixels without alpha.

enum _elcdif_alpha_mode
eLCDIF alpha mode during blending.

Values:

enumerator kELCDIF_AlphaEmbedded
The alpha surface pixel alpha value will be used for blend.

enumerator kELCDIF_AlphaOverride
The user defined alpha value will be used for blend directly.

enumerator kELCDIF_AlphaMultiply
The alpha surface pixel alpha value scaled the user defined alpha value will be used
for blend, for example, pixel alpha set set to 200, user defined alpha set to 100, then
the reault alpha is 200 * 100 / 255.

enumerator kELCDIF_AlphaRop
Raster operation.

enum _elcdif_rop_mode
eLCDIF ROP mode during blending.

Explanation:

• AS: Alpha surface

• PS: Process surface

• nAS: Alpha surface NOT value

• nPS: Process surface NOT value

Values:

enumerator kELCDIF_RopMaskAs
AS AND PS.

2.39. eLCDIF: Enhanced LCD Interface 481



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF_RopMaskNotAs
nAS AND PS.

enumerator kELCDIF_RopMaskAsNot
AS AND nPS.

enumerator kELCDIF_RopMergeAs
AS OR PS.

enumerator kELCDIF_RopMergeNotAs
nAS OR PS.

enumerator kELCDIF_RopMergeAsNot
AS OR nPS.

enumerator kELCDIF_RopNotCopyAs
nAS.

enumerator kELCDIF_RopNot
nPS.

enumerator kELCDIF_RopNotMaskAs
AS NAND PS.

enumerator kELCDIF_RopNotMergeAs
AS NOR PS.

enumerator kELCDIF_RopXorAs
AS XOR PS.

enumerator kELCDIF_RopNotXorAs
AS XNOR PS.

enum _elcdif_lut
eLCDIF LUT

The Lookup Table (LUT) is used to expand the 8 bits pixel to 24 bits pixel before output to
external displayer.

There are two 256x24 bits LUT memory in LCDIF, the LSB of frame buffer address determins
which memory to use.

Values:

enumerator kELCDIF_Lut0
LUT 0.

enumerator kELCDIF_Lut1
LUT 1.

enum _elcdif_pixel_component_order
eLCDIF pixel component order.

Values:

enumerator kELCDIF_PixelComponentOrderRGB
Input order RGB.

enumerator kELCDIF_PixelComponentOrderRBG
Input order RBG.

enumerator kELCDIF_PixelComponentOrderGBR
Input order GBR.

482 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF_PixelComponentOrderGRB
Input order GRB.

enumerator kELCDIF_PixelComponentOrderBRG
Input order BRG.

enumerator kELCDIF_PixelComponentOrderBGR
Input order BGR.

typedef enum _elcdif_pixel_format elcdif_pixel_format_t
The pixel format.

This enumerator should be defined together with the array s_pixelFormatReg. To support
new pixel format, enhance this enumerator and s_pixelFormatReg.

typedef enum _elcdif_lcd_data_bus elcdif_lcd_data_bus_t
The LCD data bus type.

typedef struct _elcdif_pixel_format_reg elcdif_pixel_format_reg_t
The register value when using different pixel format.

These register bits control the pixel format:

• CTRL[DATA_FORMAT_24_BIT]

• CTRL[DATA_FORMAT_18_BIT]

• CTRL[DATA_FORMAT_16_BIT]

• CTRL[WORD_LENGTH]

• CTRL1[BYTE_PACKING_FORMAT]

typedef struct _elcdif_rgb_mode_config elcdif_rgb_mode_config_t
eLCDIF configure structure for RGB mode (DOTCLK mode).

typedef enum _elcdif_as_pixel_format elcdif_as_pixel_format_t
eLCDIF alpha surface pixel format.

typedef struct _elcdif_as_buffer_config elcdif_as_buffer_config_t
eLCDIF alpha surface buffer configuration.

typedef enum _elcdif_alpha_mode elcdif_alpha_mode_t
eLCDIF alpha mode during blending.

typedef enum _elcdif_rop_mode elcdif_rop_mode_t
eLCDIF ROP mode during blending.

Explanation:

• AS: Alpha surface

• PS: Process surface

• nAS: Alpha surface NOT value

• nPS: Process surface NOT value

typedef struct _elcdif_as_blend_config elcdif_as_blend_config_t
eLCDIF alpha surface blending configuration.

typedef enum _elcdif_lut elcdif_lut_t
eLCDIF LUT

The Lookup Table (LUT) is used to expand the 8 bits pixel to 24 bits pixel before output to
external displayer.

There are two 256x24 bits LUT memory in LCDIF, the LSB of frame buffer address determins
which memory to use.

2.39. eLCDIF: Enhanced LCD Interface 483



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _elcdif_pixel_component_order elcdif_pixel_component_order_t
eLCDIF pixel component order.

ELCDIF_CTRL1_IRQ_MASK

ELCDIF_CTRL1_IRQ_EN_MASK

ELCDIF_AS_CTRL_IRQ_MASK

ELCDIF_AS_CTRL_IRQ_EN_MASK

FSL_FEATURE_LCDIF_HAS_PXP_HANDSHAKE

ELCDIF_ADDR_CPU_2_IP(addr)

ELCDIF_LUT_ENTRY_NUM

struct _elcdif_pixel_format_reg
#include <fsl_elcdif.h> The register value when using different pixel format.

These register bits control the pixel format:

• CTRL[DATA_FORMAT_24_BIT]

• CTRL[DATA_FORMAT_18_BIT]

• CTRL[DATA_FORMAT_16_BIT]

• CTRL[WORD_LENGTH]

• CTRL1[BYTE_PACKING_FORMAT]

Public Members

uint32_t regCtrl
Value of register CTRL.

uint32_t regCtrl1
Value of register CTRL1.

struct _elcdif_rgb_mode_config
#include <fsl_elcdif.h> eLCDIF configure structure for RGB mode (DOTCLK mode).

Public Members

uint16_t panelWidth
Display panel width, pixels per line.

uint16_t panelHeight
Display panel height, how many lines per panel.

uint8_t hsw
HSYNC pulse width.

uint8_t hfp
Horizontal front porch.

uint8_t hbp
Horizontal back porch.

uint8_t vsw
VSYNC pulse width.

484 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t vfp
Vrtical front porch.

uint8_t vbp
Vertical back porch.

uint32_t polarityFlags
OR’ed value of _elcdif_polarity_flags, used to contol the signal polarity.

uint32_t bufferAddr
Frame buffer address.

elcdif_pixel_format_t pixelFormat
Pixel format.

elcdif_lcd_data_bus_t dataBus
LCD data bus.

struct _elcdif_as_buffer_config
#include <fsl_elcdif.h> eLCDIF alpha surface buffer configuration.

Public Members

uint32_t bufferAddr
Buffer address.

elcdif_as_pixel_format_t pixelFormat
Pixel format.

struct _elcdif_as_blend_config
#include <fsl_elcdif.h> eLCDIF alpha surface blending configuration.

Public Members

uint8_t alpha
User defined alpha value, only used when alphaMode is kELCDIF_AlphaOverride or
kELCDIF_AlphaRop.

bool invertAlpha
Set true to invert the alpha.

elcdif_alpha_mode_t alphaMode
Alpha mode.

elcdif_rop_mode_t ropMode
ROP mode, only valid when alphaMode is kELCDIF_AlphaRop.

2.40 ENC: Quadrature Encoder/Decoder

void ENC_Init(ENC_Type *base, const enc_config_t *config)
Initialization for the ENC module.

This function is to make the initialization for the ENC module. It should be called firstly
before any operation to the ENC with the operations like:

• Enable the clock for ENC module.

• Configure the ENC’s working attributes.

2.40. ENC: Quadrature Encoder/Decoder 485



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – ENC peripheral base address.

• config – Pointer to configuration structure. See to “enc_config_t”.

void ENC_Deinit(ENC_Type *base)
De-initialization for the ENC module.

This function is to make the de-initialization for the ENC module. It could be called when
ENC is no longer used with the operations like:

• Disable the clock for ENC module.

Parameters
• base – ENC peripheral base address.

void ENC_GetDefaultConfig(enc_config_t *config)
Get an available pre-defined settings for ENC’s configuration.

This function initializes the ENC configuration structure with an available settings, the de-
fault value are:

config->enableReverseDirection = false;
config->decoderWorkMode = kENC_DecoderWorkAsNormalMode;
config->HOMETriggerMode = kENC_HOMETriggerDisabled;
config->INDEXTriggerMode = kENC_INDEXTriggerDisabled;
config->enableTRIGGERClearPositionCounter = false;
config->enableTRIGGERClearHoldPositionCounter = false;
config->enableWatchdog = false;
config->watchdogTimeoutValue = 0U;
config->filterCount = 0U;
config->filterSamplePeriod = 0U;
config->positionMatchMode = kENC_
↪→POSMATCHOnPositionCounterEqualToComapreValue;
config->positionCompareValue = 0xFFFFFFFFU;
config->revolutionCountCondition = kENC_RevolutionCountOnINDEXPulse;
config->enableModuloCountMode = false;
config->positionModulusValue = 0U;
config->positionInitialValue = 0U;
config->prescalerValue = kENC_ClockDiv1;
config->enablePeriodMeasurementFunction = true;

Parameters
• config – Pointer to a variable of configuration structure. See to

“enc_config_t”.

void ENC_DoSoftwareLoadInitialPositionValue(ENC_Type *base)
Load the initial position value to position counter.

This function is to transfer the initial position value (UINIT and LINIT) contents to position
counter (UPOS and LPOS), so that to provide the consistent operation the position counter
registers.

Parameters
• base – ENC peripheral base address.

void ENC_SetSelfTestConfig(ENC_Type *base, const enc_self_test_config_t *config)
Enable and configure the self test function.

This function is to enable and configuration the self test function. It controls and sets the
frequency of a quadrature signal generator. It provides a quadrature test signal to the in-

486 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

puts of the quadrature decoder module. It is a factory test feature; however, it may be
useful to customers’ software development and testing.

Parameters
• base – ENC peripheral base address.

• config – Pointer to configuration structure. See to “enc_self_test_config_t”.
Pass “NULL” to disable.

void ENC_EnableWatchdog(ENC_Type *base, bool enable)
Enable watchdog for ENC module.

Parameters
• base – ENC peripheral base address

• enable – Enables or disables the watchdog

void ENC_SetInitialPositionValue(ENC_Type *base, uint32_t value)
Set initial position value for ENC module.

Parameters
• base – ENC peripheral base address

• value – Positive initial value

uint32_t ENC_GetStatusFlags(ENC_Type *base)
Get the status flags.

Parameters
• base – ENC peripheral base address.

Returns
Mask value of status flags. For available mask, see to “_enc_status_flags”.

void ENC_ClearStatusFlags(ENC_Type *base, uint32_t mask)
Clear the status flags.

Parameters
• base – ENC peripheral base address.

• mask – Mask value of status flags to be cleared. For available mask, see to
“_enc_status_flags”.

static inline uint16_t ENC_GetSignalStatusFlags(ENC_Type *base)
Get the signals’ real-time status.

Parameters
• base – ENC peripheral base address.

Returns
Mask value of signals’ real-time status. For available mask, see to
“_enc_signal_status_flags”

void ENC_EnableInterrupts(ENC_Type *base, uint32_t mask)
Enable the interrupts.

Parameters
• base – ENC peripheral base address.

• mask – Mask value of interrupts to be enabled. For available mask, see to
“_enc_interrupt_enable”.

2.40. ENC: Quadrature Encoder/Decoder 487



MCUXpresso SDK Documentation, Release 25.12.00

void ENC_DisableInterrupts(ENC_Type *base, uint32_t mask)
Disable the interrupts.

Parameters
• base – ENC peripheral base address.

• mask – Mask value of interrupts to be disabled. For available mask, see to
“_enc_interrupt_enable”.

uint32_t ENC_GetEnabledInterrupts(ENC_Type *base)
Get the enabled interrupts’ flags.

Parameters
• base – ENC peripheral base address.

Returns
Mask value of enabled interrupts.

uint32_t ENC_GetPositionValue(ENC_Type *base)
Get the current position counter’s value.

Parameters
• base – ENC peripheral base address.

Returns
Current position counter’s value.

uint32_t ENC_GetHoldPositionValue(ENC_Type *base)
Get the hold position counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
• base – ENC peripheral base address.

Returns
Hold position counter’s value.

static inline uint16_t ENC_GetPositionDifferenceValue(ENC_Type *base)
Get the position difference counter’s value.

Parameters
• base – ENC peripheral base address.

Returns
The position difference counter’s value.

static inline uint16_t ENC_GetHoldPositionDifferenceValue(ENC_Type *base)
Get the hold position difference counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
• base – ENC peripheral base address.

Returns
Hold position difference counter’s value.

488 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t ENC_GetRevolutionValue(ENC_Type *base)
Get the position revolution counter’s value.

Parameters
• base – ENC peripheral base address.

Returns
The position revolution counter’s value.

static inline uint16_t ENC_GetHoldRevolutionValue(ENC_Type *base)
Get the hold position revolution counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
• base – ENC peripheral base address.

Returns
Hold position revolution counter’s value.

static inline uint16_t ENC_GetLastEdgeTimeValue(ENC_Type *base)
Get the last edge time value.

Parameters
• base – ENC peripheral base address.

Returns
The last edge time hold value.

static inline uint16_t ENC_GetHoldLastEdgeTimeValue(ENC_Type *base)
Get the last edge time hold value.

Parameters
• base – ENC peripheral base address.

Returns
The last edge time hold value.

static inline uint16_t ENC_GetPositionDifferencePeriodValue(ENC_Type *base)
Get the position difference period value.

Parameters
• base – ENC peripheral base address.

Returns
The position difference period hold value.

static inline uint16_t ENC_GetPositionDifferencePeriodBufferValue(ENC_Type *base)
Get the position difference period buffer value.

Parameters
• base – ENC peripheral base address.

Returns
The position difference period hold value.

static inline uint16_t ENC_GetHoldPositionDifferencePeriodValue(ENC_Type *base)
Get the position difference period hold value.

Parameters
• base – ENC peripheral base address.

2.40. ENC: Quadrature Encoder/Decoder 489



MCUXpresso SDK Documentation, Release 25.12.00

Returns
The position difference period hold value.

enum _enc_interrupt_enable
Interrupt enable/disable mask.

Values:

enumerator kENC_HOMETransitionInterruptEnable
HOME interrupt enable.

enumerator kENC_INDEXPulseInterruptEnable
INDEX pulse interrupt enable.

enumerator kENC_WatchdogTimeoutInterruptEnable
Watchdog timeout interrupt enable.

enumerator kENC_PositionCompareInerruptEnable
Position compare interrupt enable.

enumerator kENC_PositionRollOverInterruptEnable
Roll-over interrupt enable.

enumerator kENC_PositionRollUnderInterruptEnable
Roll-under interrupt enable.

enum _enc_status_flags
Status flag mask.

These flags indicate the counter’s events.

Values:

enumerator kENC_HOMETransitionFlag
HOME signal transition interrupt request.

enumerator kENC_INDEXPulseFlag
INDEX Pulse Interrupt Request.

enumerator kENC_WatchdogTimeoutFlag
Watchdog timeout interrupt request.

enumerator kENC_PositionCompareFlag
Position compare interrupt request.

enumerator kENC_PositionRollOverFlag
Roll-over interrupt request.

enumerator kENC_PositionRollUnderFlag
Roll-under interrupt request.

enumerator kENC_LastCountDirectionFlag
Last count was in the up direction, or the down direction.

enum _enc_signal_status_flags
Signal status flag mask.

These flags indicate the counter’s signal.

Values:

enumerator kENC_RawHOMEStatusFlag
Raw HOME input.

490 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC_RawINDEXStatusFlag
Raw INDEX input.

enumerator kENC_RawPHBStatusFlag
Raw PHASEB input.

enumerator kENC_RawPHAEXStatusFlag
Raw PHASEA input.

enumerator kENC_FilteredHOMEStatusFlag
The filtered version of HOME input.

enumerator kENC_FilteredINDEXStatusFlag
The filtered version of INDEX input.

enumerator kENC_FilteredPHBStatusFlag
The filtered version of PHASEB input.

enumerator kENC_FilteredPHAStatusFlag
The filtered version of PHASEA input.

enum _enc_home_trigger_mode
Define HOME signal’s trigger mode.

The ENC would count the trigger from HOME signal line.

Values:

enumerator kENC_HOMETriggerDisabled
HOME signal’s trigger is disabled.

enumerator kENC_HOMETriggerOnRisingEdge
Use positive going edge-to-trigger initialization of position counters.

enumerator kENC_HOMETriggerOnFallingEdge
Use negative going edge-to-trigger initialization of position counters.

enum _enc_index_trigger_mode
Define INDEX signal’s trigger mode.

The ENC would count the trigger from INDEX signal line.

Values:

enumerator kENC_INDEXTriggerDisabled
INDEX signal’s trigger is disabled.

enumerator kENC_INDEXTriggerOnRisingEdge
Use positive going edge-to-trigger initialization of position counters.

enumerator kENC_INDEXTriggerOnFallingEdge
Use negative going edge-to-trigger initialization of position counters.

enum _enc_decoder_work_mode
Define type for decoder work mode.

The normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
When in signal phase count mode, a positive transition of the PHASEA input generates a
count signal while the PHASEB input and the reverse direction control the counter direc-
tion. If the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB =
1 means counting down. Otherwise, the direction is reversed.

Values:

2.40. ENC: Quadrature Encoder/Decoder 491



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC_DecoderWorkAsNormalMode
Use standard quadrature decoder with PHASEA and PHASEB.

enumerator kENC_DecoderWorkAsSignalPhaseCountMode
PHASEA input generates a count signal while PHASEB input control the direction.

enum _enc_position_match_mode
Define type for the condition of POSMATCH pulses.

Values:

enumerator kENC_POSMATCHOnPositionCounterEqualToComapreValue
POSMATCH pulses when a match occurs between the position counters (POS) and the
compare value (COMP).

enumerator kENC_POSMATCHOnReadingAnyPositionCounter
POSMATCH pulses when any position counter register is read.

enum _enc_revolution_count_condition
Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

Values:

enumerator kENC_RevolutionCountOnINDEXPulse
Use INDEX pulse to increment/decrement revolution counter.

enumerator kENC_RevolutionCountOnRollOverModulus
Use modulus counting roll-over/under to increment/decrement revolution counter.

enum _enc_self_test_direction
Define type for direction of self test generated signal.

Values:

enumerator kENC_SelfTestDirectionPositive
Self test generates the signal in positive direction.

enumerator kENC_SelfTestDirectionNegative
Self test generates the signal in negative direction.

enum _enc_prescaler
Define prescaler value for clock in CTRL3.

The clock is prescaled by a value of 2^PRSC which means that the prescaler logic can divide
the clock by a minimum of 1 and a maximum of 32,768.

Values:

enumerator kENC_ClockDiv1

enumerator kENC_ClockDiv2

enumerator kENC_ClockDiv4

enumerator kENC_ClockDiv8

enumerator kENC_ClockDiv16

enumerator kENC_ClockDiv32

enumerator kENC_ClockDiv64

enumerator kENC_ClockDiv128

492 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC_ClockDiv256

enumerator kENC_ClockDiv512

enumerator kENC_ClockDiv1024

enumerator kENC_ClockDiv2048

enumerator kENC_ClockDiv4096

enumerator kENC_ClockDiv8192

enumerator kENC_ClockDiv16384

enumerator kENC_ClockDiv32768

enum _enc_filter_prescaler
Define input filter prescaler value.

The input filter prescaler value is to prescale the IPBus clock. (Frequency of FILT clock) =
(Frequency of IPBus clock) / 2^FILT_PRSC.

Values:

enumerator kENC_FilterPrescalerDiv1
Input filter prescaler is 1.

enumerator kENC_FilterPrescalerDiv2
Input filter prescaler is 2.

enumerator kENC_FilterPrescalerDiv4
Input filter prescaler is 4.

enumerator kENC_FilterPrescalerDiv8
Input filter prescaler is 8.

enumerator kENC_FilterPrescalerDiv16
Input filter prescaler is 16.

enumerator kENC_FilterPrescalerDiv32
Input filter prescaler is 32.

enumerator kENC_FilterPrescalerDiv64
Input filter prescaler is 64.

enumerator kENC_FilterPrescalerDiv128
Input filter prescaler is 128.

typedef enum _enc_home_trigger_mode enc_home_trigger_mode_t
Define HOME signal’s trigger mode.

The ENC would count the trigger from HOME signal line.

typedef enum _enc_index_trigger_mode enc_index_trigger_mode_t
Define INDEX signal’s trigger mode.

The ENC would count the trigger from INDEX signal line.

typedef enum _enc_decoder_work_mode enc_decoder_work_mode_t
Define type for decoder work mode.

The normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
When in signal phase count mode, a positive transition of the PHASEA input generates a
count signal while the PHASEB input and the reverse direction control the counter direc-
tion. If the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB =
1 means counting down. Otherwise, the direction is reversed.

2.40. ENC: Quadrature Encoder/Decoder 493



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _enc_position_match_mode enc_position_match_mode_t
Define type for the condition of POSMATCH pulses.

typedef enum _enc_revolution_count_condition enc_revolution_count_condition_t
Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

typedef enum _enc_self_test_direction enc_self_test_direction_t
Define type for direction of self test generated signal.

typedef enum _enc_prescaler enc_prescaler_t
Define prescaler value for clock in CTRL3.

The clock is prescaled by a value of 2^PRSC which means that the prescaler logic can divide
the clock by a minimum of 1 and a maximum of 32,768.

typedef enum _enc_filter_prescaler enc_filter_prescaler_t
Define input filter prescaler value.

The input filter prescaler value is to prescale the IPBus clock. (Frequency of FILT clock) =
(Frequency of IPBus clock) / 2^FILT_PRSC.

typedef struct _enc_config enc_config_t
Define user configuration structure for ENC module.

typedef struct _enc_self_test_config enc_self_test_config_t
Define configuration structure for self test module.

The self test module provides a quadrature test signal to the inputs of the quadrature de-
coder module. This is a factory test feature. It is also useful to customers’ software devel-
opment and testing.

FSL_ENC_DRIVER_VERSION

struct _enc_config
#include <fsl_enc.h> Define user configuration structure for ENC module.

Public Members

bool enableReverseDirection
Enable reverse direction counting.

enc_decoder_work_mode_t decoderWorkMode
Enable signal phase count mode.

enc_home_trigger_mode_t HOMETriggerMode
Enable HOME to initialize position counters.

enc_index_trigger_mode_t INDEXTriggerMode
Enable INDEX to initialize position counters.

bool enableTRIGGERClearPositionCounter
Clear POSD, REV, UPOS and LPOS on rising edge of TRIGGER, or not.

bool enableTRIGGERClearHoldPositionCounter
Enable update of hold registers on rising edge of TRIGGER, or not.

bool enableWatchdog
Enable the watchdog to detect if the target is moving or not.

494 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t watchdogTimeoutValue
Watchdog timeout count value. It stores the timeout count for the quadrature decoder
module watchdog timer. This field is only available when “enableWatchdog” = true.
The available value is a 16-bit unsigned number.

enc_filter_prescaler_t filterPrescaler
Input filter prescaler.

uint16_t filterCount
Input Filter Sample Count. This value should be chosen to reduce the probability of
noisy samples causing an incorrect transition to be recognized. The value represent
the number of consecutive samples that must agree prior to the input filter accepting
an input transition. A value of 0x0 represents 3 samples. A value of 0x7 represents 10
samples. The Available range is 0 - 7.

uint16_t filterSamplePeriod
Input Filter Sample Period. This value should be set such that the sampling period is
larger than the period of the expected noise. This value represents the sampling period
(in IPBus clock cycles) of the decoder input signals. The available range is 0 - 255.

enc_position_match_mode_t positionMatchMode
The condition of POSMATCH pulses.

uint32_t positionCompareValue
Position compare value. The available value is a 32-bit number.

enc_revolution_count_condition_t revolutionCountCondition
Revolution Counter Modulus Enable.

bool enableModuloCountMode
Enable Modulo Counting.

uint32_t positionModulusValue
Position modulus value. This value would be available only when “enableModulo-
CountMode” = true. The available value is a 32-bit number.

uint32_t positionInitialValue
Position initial value. The available value is a 32-bit number.

bool enablePeriodMeasurementFunction
Enable period measurement function.

enc_prescaler_t prescalerValue
The value of prescaler.

struct _enc_self_test_config
#include <fsl_enc.h> Define configuration structure for self test module.

The self test module provides a quadrature test signal to the inputs of the quadrature de-
coder module. This is a factory test feature. It is also useful to customers’ software devel-
opment and testing.

Public Members

enc_self_test_direction_t signalDirection
Direction of self test generated signal.

uint16_t signalCount
Hold the number of quadrature advances to generate. The available range is 0 - 255.

2.40. ENC: Quadrature Encoder/Decoder 495



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t signalPeriod
Hold the period of quadrature phase in IPBus clock cycles. The available range is 0 -
31.

2.41 ENET: Ethernet MAC Driver

void ENET_GetDefaultConfig(enet_config_t *config)
Gets the ENET default configuration structure.

The purpose of this API is to get the default ENET MAC controller configure structure for
ENET_Init(). User may use the initialized structure unchanged in ENET_Init(), or modify
some fields of the structure before calling ENET_Init(). Example:

enet_config_t config;
ENET_GetDefaultConfig(&config);

Parameters
• config – The ENET mac controller configuration structure pointer.

status_t ENET_Up(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const
enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)

Initializes the ENET module.

This function initializes the module with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Up().

Parameters
• base – ENET peripheral base address.

• handle – ENET handler pointer.

• config – ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

• bufferConfig – ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

• macAddr – ENET mac address of Ethernet device. This MAC address should
be provided.

• srcClock_Hz – The internal module clock source for MII clock.

Return values
• kStatus_Success – Succeed to initialize the ethernet driver.

496 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_ENET_InitMemoryFail – Init fails since buffer memory is not
enough.

status_t ENET_Init(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const
enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)

Initializes the ENET module.

This function ungates the module clock and initializes it with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Init().

Parameters
• base – ENET peripheral base address.

• handle – ENET handler pointer.

• config – ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

• bufferConfig – ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

• macAddr – ENET mac address of Ethernet device. This MAC address should
be provided.

• srcClock_Hz – The internal module clock source for MII clock.

Return values
• kStatus_Success – Succeed to initialize the ethernet driver.

• kStatus_ENET_InitMemoryFail – Init fails since buffer memory is not
enough.

void ENET_Down(ENET_Type *base)
Stops the ENET module.

This function disables the ENET module.

Parameters
• base – ENET peripheral base address.

void ENET_Deinit(ENET_Type *base)
Deinitializes the ENET module.

This function gates the module clock, clears ENET interrupts, and disables the ENET mod-
ule.

Parameters
• base – ENET peripheral base address.

2.41. ENET: Ethernet MAC Driver 497



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ENET_Reset(ENET_Type *base)
Resets the ENET module.

This function restores the ENET module to reset state. Note that this function sets all regis-
ters to reset state. As a result, the ENET module can’t work after calling this function.

Parameters
• base – ENET peripheral base address.

void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
Sets the ENET MII speed and duplex.

This API is provided to dynamically change the speed and dulpex for MAC.

Parameters
• base – ENET peripheral base address.

• speed – The speed of the RMII mode.

• duplex – The duplex of the RMII mode.

void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
Sets the ENET SMI(serial management interface)- MII management interface.

Parameters
• base – ENET peripheral base address.

• srcClock_Hz – This is the ENET module clock frequency. See clock distri-
bution.

• isPreambleDisabled – The preamble disable flag.

– true Enables the preamble.

– false Disables the preamble.

static inline bool ENET_GetSMI(ENET_Type *base)
Gets the ENET SMI- MII management interface configuration.

This API is used to get the SMI configuration to check whether the MII management inter-
face has been set.

Parameters
• base – ENET peripheral base address.

Returns
The SMI setup status true or false.

static inline uint32_t ENET_ReadSMIData(ENET_Type *base)
Reads data from the PHY register through an SMI interface.

Parameters
• base – ENET peripheral base address.

Returns
The data read from PHY

static inline void ENET_StartSMIWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr,
enet_mii_write_t operation, uint16_t data)

Sends the MDIO IEEE802.3 Clause 22 format write command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOWrite() can be called. For cus-
tomized requirements, implement with combining separated APIs.

Parameters

498 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – ENET peripheral base address.

• phyAddr – The PHY address. Range from 0 ~ 31.

• regAddr – The PHY register address. Range from 0 ~ 31.

• operation – The write operation.

• data – The data written to PHY.

static inline void ENET_StartSMIRead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr,
enet_mii_read_t operation)

Sends the MDIO IEEE802.3 Clause 22 format read command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIORead() can be called. For cus-
tomized requirements, implement with combining separated APIs.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address. Range from 0 ~ 31.

• regAddr – The PHY register address. Range from 0 ~ 31.

• operation – The read operation.

status_t ENET_MDIOWrite(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t data)
MDIO write with IEEE802.3 Clause 22 format.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address. Range from 0 ~ 31.

• regAddr – The PHY register. Range from 0 ~ 31.

• data – The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_MDIORead(ENET_Type *base, uint8_t phyAddr, uint8_t regAddr, uint16_t
*pData)

MDIO read with IEEE802.3 Clause 22 format.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address. Range from 0 ~ 31.

• regAddr – The PHY register. Range from 0 ~ 31.

• pData – The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

2.41. ENET: Ethernet MAC Driver 499



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ENET_StartExtC45SMIWriteReg(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t regAddr)

Sends the MDIO IEEE802.3 Clause 45 format write register command.

After calling this function, need to check whether the transmission is
over then do next MDIO operation. For ease of use, encapsulated
ENET_MDIOC45Write()/ENET_MDIOC45Read() can be called. For customized require-
ments, implement with combining separated APIs.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

static inline void ENET_StartExtC45SMIWriteData(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t data)

Sends the MDIO IEEE802.3 Clause 45 format write data command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOC45Write() can be called. For
customized requirements, implement with combining separated APIs.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• data – The data written to PHY.

static inline void ENET_StartExtC45SMIReadData(ENET_Type *base, uint8_t portAddr, uint8_t
devAddr)

Sends the MDIO IEEE802.3 Clause 45 format read data command.

After calling this function, need to check whether the transmission is over then do next
MDIO operation. For ease of use, encapsulated ENET_MDIOC45Read() can be called. For
customized requirements, implement with combining separated APIs.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

status_t ENET_MDIOC45Write(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t
regAddr, uint16_t data)

MDIO write with IEEE802.3 Clause 45 format.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

• data – The data written to PHY.

500 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_MDIOC45Read(ENET_Type *base, uint8_t portAddr, uint8_t devAddr, uint16_t
regAddr, uint16_t *pData)

MDIO read with IEEE802.3 Clause 45 format.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

• pData – The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

static inline void ENET_SetRGMIIClockDelay(ENET_Type *base, bool txEnabled, bool
rxEnabled)

Control the usage of the delayed tx/rx RGMII clock.

Parameters
• base – ENET peripheral base address.

• txEnabled – Enable or disable to generate the delayed version of
RGMII_TXC.

• rxEnabled – Enable or disable to use the delayed version of RGMII_RXC.

void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
Sets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
Gets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address)
Adds the ENET device to a multicast group.

Parameters
• base – ENET peripheral base address.

• address – The six-byte multicast group address which is provided by appli-
cation.

2.41. ENET: Ethernet MAC Driver 501



MCUXpresso SDK Documentation, Release 25.12.00

void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
Moves the ENET device from a multicast group.

Parameters
• base – ENET peripheral base address.

• address – The six-byte multicast group address which is provided by appli-
cation.

static inline void ENET_ActiveRead(ENET_Type *base)
Activates frame reception for multiple rings.

This function is to active the enet read process.

Note: This must be called after the MAC configuration and state are ready. It must be
called after the ENET_Init(). This should be called when the frame reception is required.

Parameters
• base – ENET peripheral base address.

static inline void ENET_EnableSleepMode(ENET_Type *base, bool enable)
Enables/disables the MAC to enter sleep mode. This function is used to set the MAC en-
ter sleep mode. When entering sleep mode, the magic frame wakeup interrupt should be
enabled to wake up MAC from the sleep mode and reset it to normal mode.

Parameters
• base – ENET peripheral base address.

• enable – True enable sleep mode, false disable sleep mode.

static inline void ENET_GetAccelFunction(ENET_Type *base, uint32_t *txAccelOption, uint32_t
*rxAccelOption)

Gets ENET transmit and receive accelerator functions from MAC controller.

Parameters
• base – ENET peripheral base address.

• txAccelOption – The transmit accelerator option. The
“enet_tx_accelerator_t” is recommended to be used to as the mask to
get the exact the accelerator option.

• rxAccelOption – The receive accelerator option. The
“enet_rx_accelerator_t” is recommended to be used to as the mask to
get the exact the accelerator option.

static inline void ENET_EnableInterrupts(ENET_Type *base, uint32_t mask)
Enables the ENET interrupt.

This function enables the ENET interrupt according to the provided mask. The mask is a
logical OR of enumeration members. See enet_interrupt_enable_t. For example, to enable
the TX frame interrupt and RX frame interrupt, do the following.

ENET_EnableInterrupts(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to enable. This is a logical OR of the enumeration
enet_interrupt_enable_t.

502 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ENET_DisableInterrupts(ENET_Type *base, uint32_t mask)
Disables the ENET interrupt.

This function disables the ENET interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See enet_interrupt_enable_t. For example, to disable
the TX frame interrupt and RX frame interrupt, do the following.

ENET_DisableInterrupts(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to disable. This is a logical OR of the enumeration
enet_interrupt_enable_t.

static inline uint32_t ENET_GetInterruptStatus(ENET_Type *base)
Gets the ENET interrupt status flag.

Parameters
• base – ENET peripheral base address.

Returns
The event status of the interrupt source. This is the logical OR of members of
the enumeration enet_interrupt_enable_t.

static inline void ENET_ClearInterruptStatus(ENET_Type *base, uint32_t mask)
Clears the ENET interrupt events status flag.

This function clears enabled ENET interrupts according to the provided mask. The mask
is a logical OR of enumeration members. See the enet_interrupt_enable_t. For example, to
clear the TX frame interrupt and RX frame interrupt, do the following.

ENET_ClearInterruptStatus(ENET, kENET_TxFrameInterrupt | kENET_RxFrameInterrupt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupt source to be cleared. This is the logical OR of mem-
bers of the enumeration enet_interrupt_enable_t.

void ENET_SetRxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Rx IRQ handler.

Parameters
• base – ENET peripheral base address.

• ISRHandler – The handler to install.

void ENET_SetTxISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Tx IRQ handler.

Parameters
• base – ENET peripheral base address.

• ISRHandler – The handler to install.

void ENET_SetErrISRHandler(ENET_Type *base, enet_isr_t ISRHandler)
Set the second level Err IRQ handler.

Parameters
• base – ENET peripheral base address.

2.41. ENET: Ethernet MAC Driver 503



MCUXpresso SDK Documentation, Release 25.12.00

• ISRHandler – The handler to install.

void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t
*eErrorStatic, uint8_t ringId)

Gets the error statistics of a received frame for ENET specified ring.

This API must be called after the ENET_GetRxFrameSize and before the
ENET_ReadFrame(). If the ENET_GetRxFrameSize returns kStatus_ENET_RxFrameError,
the ENET_GetRxErrBeforeReadFrame can be used to get the exact error statistics. This is
an example.

status = ENET_GetRxFrameSize(&g_handle, &length, 0);
if (status == kStatus_ENET_RxFrameError)
{

Comments: Get the error information of the received frame.
ENET_GetRxErrBeforeReadFrame(&g_handle, &eErrStatic, 0);
Comments: update the receive buffer.
ENET_ReadFrame(EXAMPLE_ENET, &g_handle, NULL, 0);

}

Parameters
• handle – The ENET handler structure pointer. This is the same handler

pointer used in the ENET_Init.

• eErrorStatic – The error statistics structure pointer.

• ringId – The ring index, range from 0 ~
(FSL_FEATURE_ENET_INSTANCE_QUEUEn(x) - 1).

void ENET_EnableStatistics(ENET_Type *base, bool enable)
Enables/disables collection of transfer statistics.

Note that this function does not reset any of the already collected data, use the function
ENET_ResetStatistics to clear the transfer statistics if needed.

Parameters
• base – ENET peripheral base address.

• enable – True enable statistics collection, false disable statistics collection.

void ENET_GetStatistics(ENET_Type *base, enet_transfer_stats_t *statistics)
Gets transfer statistics.

Copies the actual value of hardware counters into the provided structure. Calling this func-
tion does not reset the counters in hardware.

Parameters
• base – ENET peripheral base address.

• statistics – The statistics structure pointer.

void ENET_ResetStatistics(ENET_Type *base)
Resets transfer statistics.

Sets the value of hardware transfer counters to zero.

Parameters
• base – ENET peripheral base address.

status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length, uint8_t ringId)
Gets the size of the read frame for specified ring.

This function gets a received frame size from the ENET buffer descriptors.

504 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Note: The FCS of the frame is automatically removed by MAC and the size is the length
without the FCS. After calling ENET_GetRxFrameSize, ENET_ReadFrame() should be called
to receive frame and update the BD if the result is not “kStatus_ENET_RxFrameEmpty”.

Parameters
• handle – The ENET handler structure. This is the same handler pointer

used in the ENET_Init.

• length – The length of the valid frame received.

• ringId – The ring index or ring number.

Return values
• kStatus_ENET_RxFrameEmpty – No frame received. Should not call

ENET_ReadFrame to read frame.

• kStatus_ENET_RxFrameError – Data error happens. ENET_ReadFrame
should be called with NULL data and NULL length to update the receive
buffers.

• kStatus_Success – Receive a frame Successfully then the ENET_ReadFrame
should be called with the right data buffer and the captured data length
input.

status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t
length, uint8_t ringId, uint32_t *ts)

Reads a frame from the ENET device. This function reads a frame (both the data and the
length) from the ENET buffer descriptors. User can get timestamp through ts pointer if the
ts is not NULL.

Note: It doesn’t store the timestamp in the receive timestamp queue. The
ENET_GetRxFrameSize should be used to get the size of the prepared data buffer. This
API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes aligned data
buffer in 32 bits platforms provided by user may let compiler use optimization instruction
to reduce time consumption. This is an example:

uint32_t length;
enet_handle_t g_handle;
Comments: Get the received frame size firstly.
status = ENET_GetRxFrameSize(&g_handle, &length, 0);
if (length != 0)
{

Comments: Allocate memory here with the size of ”length”
uint8_t *data = memory allocate interface;
if (!data)
{

ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL);
Comments: Add the console warning log.

}
else
{

status = ENET_ReadFrame(ENET, &g_handle, data, length, 0, NULL);
Comments: Call stack input API to deliver the data to stack

}
}
else if (status == kStatus_ENET_RxFrameError)
{

Comments: Update the received buffer when a error frame is received.
(continues on next page)

2.41. ENET: Ethernet MAC Driver 505



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
ENET_ReadFrame(ENET, &g_handle, NULL, 0, 0, NULL);

}

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_Init.

• data – The data buffer provided by user to store the frame which memory
size should be at least “length”.

• length – The size of the data buffer which is still the length of the received
frame.

• ringId – The ring index or ring number.

• ts – The timestamp address to store received timestamp.

Returns
The execute status, successful or failure.

status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data,
uint32_t length, uint8_t ringId, bool tsFlag, void *context)

Transmits an ENET frame for specified ring.

Note: The CRC is automatically appended to the data. Input the data to send without
the CRC. This API uses memcpy to copy data from DMA buffer to application buffer, 4 bytes
aligned data buffer in 32 bits platforms provided by user may let compiler use optimization
instruction to reduce time consumption.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• data – The data buffer provided by user to send.

• length – The length of the data to send.

• ringId – The ring index or ring number.

• tsFlag – Timestamp enable flag.

• context – Used by user to handle some events after transmit over.

Return values
• kStatus_Success – Send frame succeed.

• kStatus_ENET_TxFrameBusy – Transmit buffer descriptor is busy under
transmission. The transmit busy happens when the data send rate is over
the MAC capacity. The waiting mechanism is recommended to be added
after each call return with kStatus_ENET_TxFrameBusy.

status_t ENET_SetTxReclaim(enet_handle_t *handle, bool isEnable, uint8_t ringId)
Enable or disable tx descriptors reclaim mechanism.

506 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Note: This function must be called when no pending send frame action. Set enable if you
want to reclaim context or timestamp in interrupt.

Parameters
• handle – The ENET handler pointer. This is the same handler pointer used

in the ENET_Init.

• isEnable – Enable or disable flag.

• ringId – The ring index or ring number.

Return values
• kStatus_Success – Succeed to enable/disable Tx reclaim.

• kStatus_Fail – Fail to enable/disable Tx reclaim.

void ENET_ReclaimTxDescriptor(ENET_Type *base, enet_handle_t *handle, uint8_t ringId)
Reclaim tx descriptors. This function is used to update the tx descriptor status and store
the tx timestamp when the 1588 feature is enabled. This is called by the transmit interupt
IRQ handler after the complete of a frame transmission.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• ringId – The ring index or ring number.

status_t ENET_GetRxFrame(ENET_Type *base, enet_handle_t *handle, enet_rx_frame_struct_t
*rxFrame, uint8_t ringId)

Receives one frame in specified BD ring with zero copy.

This function uses the user-defined allocation and free callbacks. Every time appli-
cation gets one frame through this function, driver stores the buffer address(es) in
enet_buffer_struct_t and allocate new buffer(s) for the BD(s). If there’s no memory buffer in
the pool, this function drops current one frame to keep the Rx frame in BD ring is as fresh
as possible.

Note: Application must provide a memory pool including at least BD number + n buffers
in order for this function to work properly, because each BD must always take one buffer
while driver is running, then other extra n buffer(s) can be taken by application. Here n
is the ceil(max_frame_length(set by RCR) / bd_rx_size(set by MRBR)). Application must also
provide an array structure in rxFrame->rxBuffArray with n index to receive one complete
frame in any case.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• rxFrame – The received frame information structure provided by user.

• ringId – The ring index or ring number.

Return values
• kStatus_Success – Succeed to get one frame and allocate new memory for

Rx buffer.

2.41. ENET: Ethernet MAC Driver 507



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_ENET_RxFrameEmpty – There’s no Rx frame in the BD.

• kStatus_ENET_RxFrameError – There’s issue in this receiving.

• kStatus_ENET_RxFrameDrop – There’s no new buffer memory for BD,
drop this frame.

status_t ENET_StartTxFrame(ENET_Type *base, enet_handle_t *handle, enet_tx_frame_struct_t
*txFrame, uint8_t ringId)

Sends one frame in specified BD ring with zero copy.

This function supports scattered buffer transmit, user needs to provide the buffer array.

Note: Tx reclaim should be enabled to ensure the Tx buffer ownership can be given back
to application after Tx is over.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• txFrame – The Tx frame structure.

• ringId – The ring index or ring number.

Return values
• kStatus_Success – Succeed to send one frame.

• kStatus_ENET_TxFrameBusy – The BD is not ready for Tx or the reclaim
operation still not finishs.

• kStatus_ENET_TxFrameOverLen – The Tx frame length is over max ether-
net frame length.

void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
The transmit IRQ handler.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer.

void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle)
The receive IRQ handler.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer.

void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
Some special IRQ handler including the error, mii, wakeup irq handler.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer.

void ENET_Ptp1588IRQHandler(ENET_Type *base)
the common IRQ handler for the 1588 irq handler.

This is used for the 1588 timer interrupt.

508 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – ENET peripheral base address.

void ENET_CommonFrame0IRQHandler(ENET_Type *base)
the common IRQ handler for the tx/rx/error etc irq handler.

This is used for the combined tx/rx/error interrupt for single/mutli-ring (frame 0).

Parameters
• base – ENET peripheral base address.

FSL_ENET_DRIVER_VERSION
Defines the driver version.

ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK
Empty bit mask.

ENET_BUFFDESCRIPTOR_RX_SOFTOWNER1_MASK
Software owner one mask.

ENET_BUFFDESCRIPTOR_RX_WRAP_MASK
Next buffer descriptor is the start address.

ENET_BUFFDESCRIPTOR_RX_SOFTOWNER2_Mask
Software owner two mask.

ENET_BUFFDESCRIPTOR_RX_LAST_MASK
Last BD of the frame mask.

ENET_BUFFDESCRIPTOR_RX_MISS_MASK
Received because of the promiscuous mode.

ENET_BUFFDESCRIPTOR_RX_BROADCAST_MASK
Broadcast packet mask.

ENET_BUFFDESCRIPTOR_RX_MULTICAST_MASK
Multicast packet mask.

ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK
Length violation mask.

ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK
Non-octet aligned frame mask.

ENET_BUFFDESCRIPTOR_RX_CRC_MASK
CRC error mask.

ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK
FIFO overrun mask.

ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK
Frame is truncated mask.

ENET_BUFFDESCRIPTOR_TX_READY_MASK
Ready bit mask.

ENET_BUFFDESCRIPTOR_TX_SOFTOWENER1_MASK
Software owner one mask.

ENET_BUFFDESCRIPTOR_TX_WRAP_MASK
Wrap buffer descriptor mask.

2.41. ENET: Ethernet MAC Driver 509



MCUXpresso SDK Documentation, Release 25.12.00

ENET_BUFFDESCRIPTOR_TX_SOFTOWENER2_MASK
Software owner two mask.

ENET_BUFFDESCRIPTOR_TX_LAST_MASK
Last BD of the frame mask.

ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK
Transmit CRC mask.

ENET_FRAME_MAX_FRAMELEN
Default maximum Ethernet frame size without VLAN tag.

ENET_FRAME_VLAN_TAGLEN
Ethernet single VLAN tag size.

ENET_FRAME_CRC_LEN
CRC size in a frame.

ENET_FRAME_TX_LEN_LIMITATION(x)

ENET_FIFO_MIN_RX_FULL
ENET minimum receive FIFO full.

ENET_RX_MIN_BUFFERSIZE
ENET minimum buffer size.

ENET_PHY_MAXADDRESS
Maximum PHY address.

ENET_TX_INTERRUPT
Enet Tx interrupt flag.

ENET_RX_INTERRUPT
Enet Rx interrupt flag.

ENET_TS_INTERRUPT
Enet timestamp interrupt flag.

ENET_ERR_INTERRUPT
Enet error interrupt flag.

Defines the status return codes for transaction.

Values:

enumerator kStatus_ENET_InitMemoryFail
Init fails since buffer memory is not enough.

enumerator kStatus_ENET_RxFrameError
A frame received but data error happen.

enumerator kStatus_ENET_RxFrameFail
Failed to receive a frame.

enumerator kStatus_ENET_RxFrameEmpty
No frame arrive.

enumerator kStatus_ENET_RxFrameDrop
Rx frame is dropped since no buffer memory.

enumerator kStatus_ENET_TxFrameOverLen
Tx frame over length.

510 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_ENET_TxFrameBusy
Tx buffer descriptors are under process.

enumerator kStatus_ENET_TxFrameFail
Transmit frame fail.

enum _enet_mii_mode
Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.

Values:

enumerator kENET_MiiMode
MII mode for data interface.

enumerator kENET_RmiiMode
RMII mode for data interface.

enumerator kENET_RgmiiMode
RGMII mode for data interface.

enum _enet_mii_speed
Defines the 10/100/1000 Mbps speed for the MII data interface.

Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.

Values:

enumerator kENET_MiiSpeed10M
Speed 10 Mbps.

enumerator kENET_MiiSpeed100M
Speed 100 Mbps.

enumerator kENET_MiiSpeed1000M
Speed 1000M bps.

enum _enet_mii_duplex
Defines the half or full duplex for the MII data interface.

Values:

enumerator kENET_MiiHalfDuplex
Half duplex mode.

enumerator kENET_MiiFullDuplex
Full duplex mode.

enum _enet_mii_write
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

Values:

enumerator kENET_MiiWriteNoCompliant
Write frame operation, but not MII-compliant.

enumerator kENET_MiiWriteValidFrame
Write frame operation for a valid MII management frame.

enum _enet_mii_read
Defines the read operation for the MII management frame.

Values:

enumerator kENET_MiiReadValidFrame
Read frame operation for a valid MII management frame.

2.41. ENET: Ethernet MAC Driver 511



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_MiiReadNoCompliant
Read frame operation, but not MII-compliant.

enum _enet_mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.

Values:

enumerator kENET_MiiAddrWrite_C45
Address Write operation.

enumerator kENET_MiiWriteFrame_C45
Write frame operation for a valid MII management frame.

enumerator kENET_MiiReadFrame_C45
Read frame operation for a valid MII management frame.

enum _enet_special_control_flag
Defines a special configuration for ENET MAC controller.

These control flags are provided for special user requirements. Normally, these control
flags are unused for ENET initialization. For special requirements, set the flags to mac-
SpecialConfig in the enet_config_t. The kENET_ControlStoreAndFwdDisable is used to dis-
able the FIFO store and forward. FIFO store and forward means that the FIFO read/send is
started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifo-
FullThreshold and txFifoWatermark in the enet_config_t.

Values:

enumerator kENET_ControlFlowControlEnable
Enable ENET flow control: pause frame.

enumerator kENET_ControlRxPayloadCheckEnable
Enable ENET receive payload length check.

enumerator kENET_ControlRxPadRemoveEnable
Padding is removed from received frames.

enumerator kENET_ControlRxBroadCastRejectEnable
Enable broadcast frame reject.

enumerator kENET_ControlMacAddrInsert
Enable MAC address insert.

enumerator kENET_ControlStoreAndFwdDisable
Enable FIFO store and forward.

enumerator kENET_ControlSMIPreambleDisable
Enable SMI preamble.

enumerator kENET_ControlPromiscuousEnable
Enable promiscuous mode.

enumerator kENET_ControlMIILoopEnable
Enable ENET MII loop back.

enumerator kENET_ControlVLANTagEnable
Enable normal VLAN (single vlan tag).

enumerator kENET_ControlSVLANEnable
Enable S-VLAN.

enumerator kENET_ControlVLANUseSecondTag
Enable extracting the second vlan tag for further processing.

512 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _enet_interrupt_enable
List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

Values:

enumerator kENET_BabrInterrupt
Babbling receive error interrupt source

enumerator kENET_BabtInterrupt
Babbling transmit error interrupt source

enumerator kENET_GraceStopInterrupt
Graceful stop complete interrupt source

enumerator kENET_TxFrameInterrupt
TX FRAME interrupt source

enumerator kENET_TxBufferInterrupt
TX BUFFER interrupt source

enumerator kENET_RxFrameInterrupt
RX FRAME interrupt source

enumerator kENET_RxBufferInterrupt
RX BUFFER interrupt source

enumerator kENET_MiiInterrupt
MII interrupt source

enumerator kENET_EBusERInterrupt
Ethernet bus error interrupt source

enumerator kENET_LateCollisionInterrupt
Late collision interrupt source

enumerator kENET_RetryLimitInterrupt
Collision Retry Limit interrupt source

enumerator kENET_UnderrunInterrupt
Transmit FIFO underrun interrupt source

enumerator kENET_PayloadRxInterrupt
Payload Receive error interrupt source

enumerator kENET_WakeupInterrupt
WAKEUP interrupt source

enumerator kENET_TsAvailInterrupt
TS AVAIL interrupt source for PTP

enumerator kENET_TsTimerInterrupt
TS WRAP interrupt source for PTP

enum _enet_event
Defines the common interrupt event for callback use.

Values:

enumerator kENET_RxEvent
Receive event.

2.41. ENET: Ethernet MAC Driver 513



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_TxEvent
Transmit event.

enumerator kENET_ErrEvent
Error event: BABR/BABT/EBERR/LC/RL/UN/PLR .

enumerator kENET_WakeUpEvent
Wake up from sleep mode event.

enumerator kENET_TimeStampEvent
Time stamp event.

enumerator kENET_TimeStampAvailEvent
Time stamp available event.

enum _enet_idle_slope
Defines certain idle slope for bandwidth fraction.

Values:

enumerator kENET_IdleSlope1
The bandwidth fraction is about 0.002.

enumerator kENET_IdleSlope2
The bandwidth fraction is about 0.003.

enumerator kENET_IdleSlope4
The bandwidth fraction is about 0.008.

enumerator kENET_IdleSlope8
The bandwidth fraction is about 0.02.

enumerator kENET_IdleSlope16
The bandwidth fraction is about 0.03.

enumerator kENET_IdleSlope32
The bandwidth fraction is about 0.06.

enumerator kENET_IdleSlope64
The bandwidth fraction is about 0.11.

enumerator kENET_IdleSlope128
The bandwidth fraction is about 0.20.

enumerator kENET_IdleSlope256
The bandwidth fraction is about 0.33.

enumerator kENET_IdleSlope384
The bandwidth fraction is about 0.43.

enumerator kENET_IdleSlope512
The bandwidth fraction is about 0.50.

enumerator kENET_IdleSlope640
The bandwidth fraction is about 0.56.

enumerator kENET_IdleSlope768
The bandwidth fraction is about 0.60.

enumerator kENET_IdleSlope896
The bandwidth fraction is about 0.64.

514 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_IdleSlope1024
The bandwidth fraction is about 0.67.

enumerator kENET_IdleSlope1152
The bandwidth fraction is about 0.69.

enumerator kENET_IdleSlope1280
The bandwidth fraction is about 0.71.

enumerator kENET_IdleSlope1408
The bandwidth fraction is about 0.73.

enumerator kENET_IdleSlope1536
The bandwidth fraction is about 0.75.

enum _enet_tx_accelerator
Defines the transmit accelerator configuration.

Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata
ERR052152.

Values:

enumerator kENET_TxAccelIsShift16Enabled
Transmit FIFO shift-16.

enumerator kENET_TxAccelIpCheckEnabled
Insert IP header checksum.

enumerator kENET_TxAccelProtoCheckEnabled
Insert protocol checksum (TCP, UDP, ICMPv4).

enum _enet_rx_accelerator
Defines the receive accelerator configuration.

Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in er-
rata ERR052152.

Values:

enumerator kENET_RxAccelPadRemoveEnabled
Padding removal for short IP frames.

enumerator kENET_RxAccelIpCheckEnabled
Discard with wrong IP header checksum.

enumerator kENET_RxAccelProtoCheckEnabled
Discard with wrong protocol checksum (TCP, UDP, ICMPv4).

enumerator kENET_RxAccelMacCheckEnabled
Discard with Mac layer errors.

enumerator kENET_RxAccelisShift16Enabled
Receive FIFO shift-16.

typedef enum _enet_mii_mode enet_mii_mode_t
Defines the MII/RMII/RGMII mode for data interface between the MAC and the PHY.

typedef enum _enet_mii_speed enet_mii_speed_t
Defines the 10/100/1000 Mbps speed for the MII data interface.

Notice: “kENET_MiiSpeed1000M” only supported when mii mode is “kENET_RgmiiMode”.

2.41. ENET: Ethernet MAC Driver 515



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _enet_mii_duplex enet_mii_duplex_t
Defines the half or full duplex for the MII data interface.

typedef enum _enet_mii_write enet_mii_write_t
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

typedef enum _enet_mii_read enet_mii_read_t
Defines the read operation for the MII management frame.

typedef enum _enet_mii_extend_opcode enet_mii_extend_opcode
Define the MII opcode for extended MDIO_CLAUSES_45 Frame.

typedef enum _enet_special_control_flag enet_special_control_flag_t
Defines a special configuration for ENET MAC controller.

These control flags are provided for special user requirements. Normally, these control
flags are unused for ENET initialization. For special requirements, set the flags to mac-
SpecialConfig in the enet_config_t. The kENET_ControlStoreAndFwdDisable is used to dis-
able the FIFO store and forward. FIFO store and forward means that the FIFO read/send is
started when a complete frame is stored in TX/RX FIFO. If this flag is set, configure rxFifo-
FullThreshold and txFifoWatermark in the enet_config_t.

typedef enum _enet_interrupt_enable enet_interrupt_enable_t
List of interrupts supported by the peripheral. This enumeration uses one-bit encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

typedef enum _enet_event enet_event_t
Defines the common interrupt event for callback use.

typedef enum _enet_idle_slope enet_idle_slope_t
Defines certain idle slope for bandwidth fraction.

typedef enum _enet_tx_accelerator enet_tx_accelerator_t
Defines the transmit accelerator configuration.

Note that the hardware does not insert ICMPv6 protocol checksums as mentioned in errata
ERR052152.

typedef enum _enet_rx_accelerator enet_rx_accelerator_t
Defines the receive accelerator configuration.

Note that the hardware does not validate ICMPv6 protocol checksums as mentioned in er-
rata ERR052152.

typedef struct _enet_rx_bd_struct enet_rx_bd_struct_t
Defines the receive buffer descriptor structure for the little endian system.

typedef struct _enet_tx_bd_struct enet_tx_bd_struct_t
Defines the enhanced transmit buffer descriptor structure for the little endian system.

typedef struct _enet_data_error_stats enet_data_error_stats_t
Defines the ENET data error statistics structure.

typedef struct _enet_rx_frame_error enet_rx_frame_error_t
Defines the Rx frame error structure.

typedef struct _enet_transfer_stats enet_transfer_stats_t
Defines the ENET transfer statistics structure.

typedef struct enet_frame_info enet_frame_info_t
Defines the frame info structure.

516 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _enet_tx_dirty_ring enet_tx_dirty_ring_t
Defines the ENET transmit dirty addresses ring/queue structure.

typedef void *(*enet_rx_alloc_callback_t)(ENET_Type *base, void *userData, uint8_t ringId)
Defines the ENET Rx memory buffer alloc function pointer.

typedef void (*enet_rx_free_callback_t)(ENET_Type *base, void *buffer, void *userData, uint8_t
ringId)

Defines the ENET Rx memory buffer free function pointer.

typedef struct _enet_buffer_config enet_buffer_config_t
Defines the receive buffer descriptor configuration structure.

Note that for the internal DMA requirements, the buffers have a corresponding alignment
requirements.

a. The aligned receive and transmit buffer size must be evenly divisible by
ENET_BUFF_ALIGNMENT. when the data buffers are in cacheable region when
cache is enabled, all those size should be aligned to the maximum value of
“ENET_BUFF_ALIGNMENT” and the cache line size.

b. The aligned transmit and receive buffer descriptor start address must be at
least 64 bit aligned. However, it’s recommended to be evenly divisible by
ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region
when cache is enabled.

c. The aligned transmit and receive data buffer start address must be evenly divisible
by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size
equal to “rxBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with
the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in
cacheable region when cache is enabled, all those size should be aligned to the maxi-
mum value of “ENET_BUFF_ALIGNMENT” and the cache line size.

typedef struct _enet_intcoalesce_config enet_intcoalesce_config_t
Defines the interrupt coalescing configure structure.

typedef struct _enet_avb_config enet_avb_config_t
Defines the ENET AVB Configure structure.

This is used for to configure the extended ring 1 and ring 2.

a. The classification match format is (CMP3 « 12) | (CMP2 « 8) | (CMP1 « 4) | CMP0. com-
posed of four 3-bit compared VLAN priority field cmp0~cmp3, cm0 ~ cmp3 are used in
parallel.

If CMP1,2,3 are not unused, please set them to the same value as CMP0.

a. The idleSlope is used to calculate the Band Width fraction, BW fraction = 1 / (1 +
512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined
must not exceed 0.75.

typedef struct _enet_handle enet_handle_t

typedef void (*enet_callback_t)(ENET_Type *base, enet_handle_t *handle, enet_event_t event,
enet_frame_info_t *frameInfo, void *userData)

ENET callback function.

typedef struct _enet_config enet_config_t
Defines the basic configuration structure for the ENET device.

Note:

a. macSpecialConfig is used for a special control configuration, A logical OR of
“enet_special_control_flag_t”. For a special configuration for MAC, set this parameter
to 0.

2.41. ENET: Ethernet MAC Driver 517



MCUXpresso SDK Documentation, Release 25.12.00

b. txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64
bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written
to TX FIFO …. 3 - 192 bytes written to TX FIFO …. The maximum of txWatermark is
0x2F - 4032 bytes written to TX FIFO …. txWatermark allows minimizing the transmit
latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due
to contention for the system bus.

c. rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It
is in 64-bit words. The minimum is ENET_FIFO_MIN_RX_FULL and the maximum is
0xFF. If the end of the frame is stored in FIFO and the frame size if smaller than the
txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThresh-
old in the receive direction.

d. When “kENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that
the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for
flow control enabled case.

e. When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure
that the rxFifoFullThreshold and txFifoWatermark are set for store and forward dis-
able.

f. The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are dis-
abled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended
to be used to enable the transmit and receive accelerator. After the accelera-
tors are enabled, the store and forward feature should be enabled. As a result,
kENET_ControlStoreAndFwdDisabled should not be set.

g. The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.

typedef struct _enet_tx_bd_ring enet_tx_bd_ring_t
Defines the ENET transmit buffer descriptor ring/queue structure.

typedef struct _enet_rx_bd_ring enet_rx_bd_ring_t
Defines the ENET receive buffer descriptor ring/queue structure.

typedef struct _enet_buffer_struct enet_buffer_struct_t

typedef struct _enet_rx_frame_attribute_struct enet_rx_frame_attribute_t

typedef struct _enet_rx_frame_struct enet_rx_frame_struct_t

typedef struct _enet_tx_frame_struct enet_tx_frame_struct_t

typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle)
Define interrupt IRQ handler.

const clock_ip_name_t s_enetClock[]
Pointers to enet clocks for each instance.

const clock_ip_name_t s_enetExtraClock[]

uint32_t ENET_GetInstance(ENET_Type *base)
Get the ENET instance from peripheral base address.

Parameters
• base – ENET peripheral base address.

Returns
ENET instance.

ENET_BUFFDESCRIPTOR_RX_ERR_MASK
Defines the receive error status flag mask.

518 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _enet_rx_bd_struct
#include <fsl_enet.h> Defines the receive buffer descriptor structure for the little endian
system.

Public Members

uint16_t length
Buffer descriptor data length.

uint16_t control
Buffer descriptor control and status.

uint32_t buffer
Data buffer pointer.

struct _enet_tx_bd_struct
#include <fsl_enet.h>Defines the enhanced transmit buffer descriptor structure for the little
endian system.

Public Members

uint16_t length
Buffer descriptor data length.

uint16_t control
Buffer descriptor control and status.

uint32_t buffer
Data buffer pointer.

struct _enet_data_error_stats
#include <fsl_enet.h> Defines the ENET data error statistics structure.

Public Members

uint32_t statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].

uint32_t statsRxAlignErr
Receive non-octet alignment/

uint32_t statsRxFcsErr
Receive CRC error.

uint32_t statsRxOverRunErr
Receive over run.

uint32_t statsRxTruncateErr
Receive truncate.

struct _enet_rx_frame_error
#include <fsl_enet.h> Defines the Rx frame error structure.

2.41. ENET: Ethernet MAC Driver 519



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool statsRxTruncateErr
Receive truncate.

bool statsRxOverRunErr
Receive over run.

bool statsRxFcsErr
Receive CRC error.

bool statsRxAlignErr
Receive non-octet alignment.

bool statsRxLenGreaterErr
Receive length greater than RCR[MAX_FL].

struct _enet_transfer_stats
#include <fsl_enet.h> Defines the ENET transfer statistics structure.

Public Members

uint32_t statsRxFrameCount
Rx frame number.

uint32_t statsRxFrameOk
Good Rx frame number.

uint32_t statsRxCrcErr
Rx frame number with CRC error.

uint32_t statsRxAlignErr
Rx frame number with alignment error.

uint32_t statsRxDropInvalidSFD
Dropped frame number due to invalid SFD.

uint32_t statsRxFifoOverflowErr
Rx FIFO overflow count.

uint32_t statsTxFrameCount
Tx frame number.

uint32_t statsTxFrameOk
Good Tx frame number.

uint32_t statsTxCrcAlignErr
The transmit frame is error.

uint32_t statsTxFifoUnderRunErr
Tx FIFO underrun count.

struct enet_frame_info
#include <fsl_enet.h> Defines the frame info structure.

Public Members

void *context
User specified data

struct _enet_tx_dirty_ring
#include <fsl_enet.h> Defines the ENET transmit dirty addresses ring/queue structure.

520 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

enet_frame_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.

uint16_t txGenIdx
tx generate index.

uint16_t txConsumIdx
tx consume index.

uint16_t txRingLen
tx ring length.

bool isFull
tx ring is full flag.

struct _enet_buffer_config
#include <fsl_enet.h> Defines the receive buffer descriptor configuration structure.

Note that for the internal DMA requirements, the buffers have a corresponding alignment
requirements.

a. The aligned receive and transmit buffer size must be evenly divisible by
ENET_BUFF_ALIGNMENT. when the data buffers are in cacheable region when
cache is enabled, all those size should be aligned to the maximum value of
“ENET_BUFF_ALIGNMENT” and the cache line size.

b. The aligned transmit and receive buffer descriptor start address must be at
least 64 bit aligned. However, it’s recommended to be evenly divisible by
ENET_BUFF_ALIGNMENT. buffer descriptors should be put in non-cacheable region
when cache is enabled.

c. The aligned transmit and receive data buffer start address must be evenly divisible
by ENET_BUFF_ALIGNMENT. Receive buffers should be continuous with the total size
equal to “rxBdNumber * rxBuffSizeAlign”. Transmit buffers should be continuous with
the total size equal to “txBdNumber * txBuffSizeAlign”. when the data buffers are in
cacheable region when cache is enabled, all those size should be aligned to the maxi-
mum value of “ENET_BUFF_ALIGNMENT” and the cache line size.

Public Members

uint16_t rxBdNumber
Receive buffer descriptor number.

uint16_t txBdNumber
Transmit buffer descriptor number.

uint16_t rxBuffSizeAlign
Aligned receive data buffer size.

uint16_t txBuffSizeAlign
Aligned transmit data buffer size.

volatile enet_rx_bd_struct_t *rxBdStartAddrAlign
Aligned receive buffer descriptor start address: should be non-cacheable.

volatile enet_tx_bd_struct_t *txBdStartAddrAlign
Aligned transmit buffer descriptor start address: should be non-cacheable.

uint8_t *rxBufferAlign
Receive data buffer start address.

2.41. ENET: Ethernet MAC Driver 521



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t *txBufferAlign
Transmit data buffer start address.

bool rxMaintainEnable
Receive buffer cache maintain.

bool txMaintainEnable
Transmit buffer cache maintain.

enet_frame_info_t *txFrameInfo
Transmit frame information start address.

struct _enet_intcoalesce_config
#include <fsl_enet.h> Defines the interrupt coalescing configure structure.

Public Members

uint8_t txCoalesceFrameCount[1]
Transmit interrupt coalescing frame count threshold.

uint16_t txCoalesceTimeCount[1]
Transmit interrupt coalescing timer count threshold.

uint8_t rxCoalesceFrameCount[1]
Receive interrupt coalescing frame count threshold.

uint16_t rxCoalesceTimeCount[1]
Receive interrupt coalescing timer count threshold.

struct _enet_avb_config
#include <fsl_enet.h> Defines the ENET AVB Configure structure.

This is used for to configure the extended ring 1 and ring 2.

a. The classification match format is (CMP3 « 12) | (CMP2 « 8) | (CMP1 « 4) | CMP0. com-
posed of four 3-bit compared VLAN priority field cmp0~cmp3, cm0 ~ cmp3 are used in
parallel.

If CMP1,2,3 are not unused, please set them to the same value as CMP0.

a. The idleSlope is used to calculate the Band Width fraction, BW fraction = 1 / (1 +
512/idleSlope). For avb configuration, the BW fraction of Class 1 and Class 2 combined
must not exceed 0.75.

Public Members

uint16_t rxClassifyMatch[1 - 1]
The classification match value for the ring.

enet_idle_slope_t idleSlope[1 - 1]
The idle slope for certian bandwidth fraction.

struct _enet_config
#include <fsl_enet.h> Defines the basic configuration structure for the ENET device.

Note:

a. macSpecialConfig is used for a special control configuration, A logical OR of
“enet_special_control_flag_t”. For a special configuration for MAC, set this parameter
to 0.

522 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

b. txWatermark is used for a cut-through operation. It is in steps of 64 bytes: 0/1 - 64
bytes written to TX FIFO before transmission of a frame begins. 2 - 128 bytes written
to TX FIFO …. 3 - 192 bytes written to TX FIFO …. The maximum of txWatermark is
0x2F - 4032 bytes written to TX FIFO …. txWatermark allows minimizing the transmit
latency to set the txWatermark to 0 or 1 or for larger bus access latency 3 or larger due
to contention for the system bus.

c. rxFifoFullThreshold is similar to the txWatermark for cut-through operation in RX. It
is in 64-bit words. The minimum is ENET_FIFO_MIN_RX_FULL and the maximum is
0xFF. If the end of the frame is stored in FIFO and the frame size if smaller than the
txWatermark, the frame is still transmitted. The rule is the same for rxFifoFullThresh-
old in the receive direction.

d. When “kENET_ControlFlowControlEnable” is set in the macSpecialConfig, ensure that
the pauseDuration, rxFifoEmptyThreshold, and rxFifoStatEmptyThreshold are set for
flow control enabled case.

e. When “kENET_ControlStoreAndFwdDisabled” is set in the macSpecialConfig, ensure
that the rxFifoFullThreshold and txFifoWatermark are set for store and forward dis-
able.

f. The rxAccelerConfig and txAccelerConfig default setting with 0 - accelerator are dis-
abled. The “enet_tx_accelerator_t” and “enet_rx_accelerator_t” are recommended
to be used to enable the transmit and receive accelerator. After the accelera-
tors are enabled, the store and forward feature should be enabled. As a result,
kENET_ControlStoreAndFwdDisabled should not be set.

g. The intCoalesceCfg can be used in the rx or tx enabled cases to decrese the CPU loading.

Public Members

uint32_t macSpecialConfig
Mac special configuration. A logical OR of “enet_special_control_flag_t”.

uint32_t interrupt
Mac interrupt source. A logical OR of “enet_interrupt_enable_t”.

uint16_t rxMaxFrameLen
Receive maximum frame length.

enet_mii_mode_t miiMode
MII mode.

enet_mii_speed_t miiSpeed
MII Speed.

enet_mii_duplex_t miiDuplex
MII duplex.

uint8_t rxAccelerConfig
Receive accelerator, A logical OR of “enet_rx_accelerator_t”.

uint8_t txAccelerConfig
Transmit accelerator, A logical OR of “enet_rx_accelerator_t”.

uint16_t pauseDuration
For flow control enabled case: Pause duration.

uint8_t rxFifoEmptyThreshold
For flow control enabled case: when RX FIFO level reaches this value, it makes MAC
generate XOFF pause frame.

2.41. ENET: Ethernet MAC Driver 523



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t rxFifoStatEmptyThreshold
For flow control enabled case: number of frames in the receive FIFO, independent of
size, that can be accept. If the limit is reached, reception continues and a pause frame
is triggered.

uint8_t rxFifoFullThreshold
For store and forward disable case, the data required in RX FIFO to notify the MAC
receive ready status.

uint8_t txFifoWatermark
For store and forward disable case, the data required in TX FIFO before a frame trans-
mit start.

enet_intcoalesce_config_t *intCoalesceCfg
If the interrupt coalsecence is not required in the ring n(0,1,2), please set to NULL.

uint8_t ringNum
Number of used rings. default with 1 &#8212; single ring.

enet_rx_alloc_callback_t rxBuffAlloc
Callback function to alloc memory, must be provided for zero-copy Rx.

enet_rx_free_callback_t rxBuffFree
Callback function to free memory, must be provided for zero-copy Rx.

enet_callback_t callback
General callback function.

void *userData
Callback function parameter.

struct _enet_tx_bd_ring
#include <fsl_enet.h> Defines the ENET transmit buffer descriptor ring/queue structure.

Public Members

volatile enet_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.

uint16_t txGenIdx
The current available transmit buffer descriptor pointer.

uint16_t txConsumIdx
Transmit consume index.

volatile uint16_t txDescUsed
Transmit descriptor used number.

uint16_t txRingLen
Transmit ring length.

struct _enet_rx_bd_ring
#include <fsl_enet.h> Defines the ENET receive buffer descriptor ring/queue structure.

Public Members

volatile enet_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.

524 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t rxGenIdx
The current available receive buffer descriptor pointer.

uint16_t rxRingLen
Receive ring length.

struct _enet_handle
#include <fsl_enet.h> Defines the ENET handler structure.

Public Members

enet_rx_bd_ring_t rxBdRing[1]
Receive buffer descriptor.

enet_tx_bd_ring_t txBdRing[1]
Transmit buffer descriptor.

uint16_t rxBuffSizeAlign[1]
Receive buffer size alignment.

uint16_t txBuffSizeAlign[1]
Transmit buffer size alignment.

bool rxMaintainEnable[1]
Receive buffer cache maintain.

bool txMaintainEnable[1]
Transmit buffer cache maintain.

uint8_t ringNum
Number of used rings.

enet_callback_t callback
Callback function.

void *userData
Callback function parameter.

enet_tx_dirty_ring_t txDirtyRing[1]
Ring to store tx frame information.

bool txReclaimEnable[1]
Tx reclaim enable flag.

enet_rx_alloc_callback_t rxBuffAlloc
Callback function to alloc memory for zero copy Rx.

enet_rx_free_callback_t rxBuffFree
Callback function to free memory for zero copy Rx.

uint8_t multicastCount[64]
Multicast collisions counter

uint32_t enetClock
The clock of enet peripheral, to caculate core cycles for PTP timestamp.

uint32_t tsDelayCount
The count of core cycles for PTP timestamp capture delay.

struct _enet_buffer_struct
#include <fsl_enet.h>

2.41. ENET: Ethernet MAC Driver 525



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

void *buffer
The buffer store the whole or partial frame.

uint16_t length
The byte length of this buffer.

struct _enet_rx_frame_attribute_struct
#include <fsl_enet.h>

Public Members

bool promiscuous
This frame is received because of promiscuous mode.

struct _enet_rx_frame_struct
#include <fsl_enet.h>

Public Members

enet_buffer_struct_t *rxBuffArray
Rx frame buffer structure.

uint16_t totLen
Rx frame total length.

enet_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.

enet_rx_frame_error_t rxFrameError
Rx frame error.

struct _enet_tx_frame_struct
#include <fsl_enet.h>

Public Members

enet_buffer_struct_t *txBuffArray
Tx frame buffer structure.

uint32_t txBuffNum
Buffer number of this Tx frame.

void *context
Driver reclaims and gives it in Tx over callback, usually store network packet header.

2.42 EQOS-TSN: Ethernet QoS with TSN Driver

2.43 Enet_qos_qos

526 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void ENET_QOS_GetDefaultConfig(enet_qos_config_t *config)
Gets the ENET default configuration structure.

The purpose of this API is to get the default ENET configure structure for ENET_QOS_Init().
User may use the initialized structure unchanged in ENET_QOS_Init(), or modify some fields
of the structure before calling ENET_QOS_Init(). Example:

enet_qos_config_t config;
ENET_QOS_GetDefaultConfig(&config);

Parameters
• config – The ENET mac controller configuration structure pointer.

status_t ENET_QOS_Up(ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t
*macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)

Initializes the ENET module.

This function initializes it with the ENET basic configuration.

Parameters
• base – ENET peripheral base address.

• config – ENET mac configuration structure pointer. The “enet_qos_config_t”
type mac configuration return from ENET_QOS_GetDefaultConfig can be
used directly. It is also possible to verify the Mac configuration using other
methods.

• macAddr – Pointer to ENET mac address array of Ethernet device. This MAC
address should be provided.

• macCount – Count of macAddr in the ENET mac address array

• refclkSrc_Hz – ENET input reference clock.

status_t ENET_QOS_Init(ENET_QOS_Type *base, const enet_qos_config_t *config, uint8_t
*macAddr, uint8_t macCount, uint32_t refclkSrc_Hz)

Initializes the ENET module.

This function ungates the module clock and initializes it with the ENET basic configuration.

Parameters
• base – ENET peripheral base address.

• config – ENET mac configuration structure pointer. The “enet_qos_config_t”
type mac configuration return from ENET_QOS_GetDefaultConfig can be
used directly. It is also possible to verify the Mac configuration using other
methods.

• macAddr – Pointer to ENET mac address array of Ethernet device. This MAC
address should be provided.

• macCount – Count of macAddr in the ENET mac address array

• refclkSrc_Hz – ENET input reference clock.

void ENET_QOS_Down(ENET_QOS_Type *base)
Stops the ENET module.

This function disables the ENET module.

Parameters
• base – ENET peripheral base address.

2.43. Enet_qos_qos 527



MCUXpresso SDK Documentation, Release 25.12.00

void ENET_QOS_Deinit(ENET_QOS_Type *base)
Deinitializes the ENET module.

This function gates the module clock and disables the ENET module.

Parameters
• base – ENET peripheral base address.

uint32_t ENET_QOS_GetInstance(ENET_QOS_Type *base)
Get the ENET instance from peripheral base address.

Parameters
• base – ENET peripheral base address.

Returns
ENET instance.

status_t ENET_QOS_DescriptorInit(ENET_QOS_Type *base, enet_qos_config_t *config,
enet_qos_buffer_config_t *bufferConfig)

Initialize for all ENET descriptors.

Note: This function is do all tx/rx descriptors initialization. Because this API read all
interrupt registers first and then set the interrupt flag for all descriptors, if the inter-
rupt register is set. so the descriptor initialization should be called after ENET_QOS_Init(),
ENET_QOS_EnableInterrupts() and ENET_QOS_CreateHandle()(if transactional APIs are
used).

Parameters
• base – ENET peripheral base address.

• config – The configuration for ENET.

• bufferConfig – All buffers configuration.

status_t ENET_QOS_RxBufferAllocAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
Allocates Rx buffers for all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers
are dynamic. This function will populate initial buffers in all BDs for receiving. Then
ENET_QOS_GetRxFrame() is used to get Rx frame with zero copy, it will allocate new buffer
to replace the buffer in BD taken by application application should free those buffers after
they’re used.

Note: This function should be called after ENET_QOS_CreateHandler() and buffer allocat-
ing callback function should be ready.

Parameters
• base – ENET_QOS peripheral base address.

• handle – The ENET_QOS handler structure. This is the same handler
pointer used in the ENET_QOS_Init.

void ENET_QOS_RxBufferFreeAll(ENET_QOS_Type *base, enet_qos_handle_t *handle)
Frees Rx buffers in all BDs. It’s used for zero copy Rx. In zero copy Rx case, Rx buffers are
dynamic. This function will free left buffers in all BDs.

Parameters
• base – ENET_QOS peripheral base address.

528 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – The ENET_QOS handler structure. This is the same handler
pointer used in the ENET_QOS_Init.

void ENET_QOS_StartRxTx(ENET_QOS_Type *base, uint8_t txRingNum, uint8_t rxRingNum)
Starts the ENET rx/tx. This function enable the tx/rx and starts the rx/tx DMA. This shall be
set after ENET initialization and before starting to receive the data.

Note: This must be called after all the ENET initialization. And should be called when the
ENET receive/transmit is required.

Parameters
• base – ENET peripheral base address.

• rxRingNum – The number of the used rx rings. It shall not be larger than
the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with 1, the ring
0 will be used.

• txRingNum – The number of the used tx rings. It shall not be larger than
the ENET_QOS_RING_NUM_MAX(2). If the ringNum is set with 1, the ring
0 will be used.

status_t ENET_QOS_SetMII(ENET_QOS_Type *base, enet_qos_mii_speed_t speed,
enet_qos_mii_duplex_t duplex)

Sets the ENET MII speed and duplex.

This API is provided to dynamically change the speed and duplex for MAC.

Parameters
• base – ENET peripheral base address.

• speed – The speed of the RMII mode.

• duplex – The duplex of the RMII mode.

Returns
kStatus_Success The ENET MII speed and duplex has been set successfully.

Returns
kStatus_InvalidArgument Could not set the desired ENET MII speed and du-
plex combination.

void ENET_QOS_SetSMI(ENET_QOS_Type *base, uint32_t csrClock_Hz)
Sets the ENET SMI(serial management interface)- MII management interface.

Parameters
• base – ENET peripheral base address.

• csrClock_Hz – CSR clock frequency in HZ

static inline bool ENET_QOS_IsSMIBusy(ENET_QOS_Type *base)
Checks if the SMI is busy.

Parameters
• base – ENET peripheral base address.

Returns
The status of MII Busy status.

static inline uint16_t ENET_QOS_ReadSMIData(ENET_QOS_Type *base)
Reads data from the PHY register through SMI interface.

Parameters

2.43. Enet_qos_qos 529



MCUXpresso SDK Documentation, Release 25.12.00

• base – ENET peripheral base address.

Returns
The data read from PHY

void ENET_QOS_StartSMIWrite(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr,
uint16_t data)

Sends the MDIO IEEE802.3 Clause 22 format write command. After send command, user
needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register address.

• data – The data written to PHY.

void ENET_QOS_StartSMIRead(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr)
Sends the MDIO IEEE802.3 Clause 22 format read command. After send command, user
needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register address.

void ENET_QOS_StartExtC45SMIWrite(ENET_QOS_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t regAddr, uint16_t data)

Sends the MDIO IEEE802.3 Clause 45 format write command. After send command, user
needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

• data – The data written to PHY.

void ENET_QOS_StartExtC45SMIRead(ENET_QOS_Type *base, uint8_t portAddr, uint8_t
devAddr, uint16_t regAddr)

Sends the MDIO IEEE802.3 Clause 45 format read command. After send command, user
needs to check whether the transmission is over with ENET_QOS_IsSMIBusy().

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

status_t ENET_QOS_MDIOWrite(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr,
uint16_t data)

MDIO write with IEEE802.3 MDIO Clause 22 format.

Parameters
• base – ENET peripheral base address.

530 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• phyAddr – The PHY address.

• regAddr – The PHY register.

• data – The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_QOS_MDIORead(ENET_QOS_Type *base, uint8_t phyAddr, uint8_t regAddr,
uint16_t *pData)

MDIO read with IEEE802.3 MDIO Clause 22 format.

Parameters
• base – ENET peripheral base address.

• phyAddr – The PHY address.

• regAddr – The PHY register.

• pData – The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_QOS_MDIOC45Write(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr,
uint16_t regAddr, uint16_t data)

MDIO write with IEEE802.3 Clause 45 format.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

• data – The data written to PHY.

Returns
kStatus_Success MDIO access succeeds.

Returns
kStatus_Timeout MDIO access timeout.

status_t ENET_QOS_MDIOC45Read(ENET_QOS_Type *base, uint8_t portAddr, uint8_t devAddr,
uint16_t regAddr, uint16_t *pData)

MDIO read with IEEE802.3 Clause 45 format.

Parameters
• base – ENET peripheral base address.

• portAddr – The MDIO port address(PHY address).

• devAddr – The device address.

• regAddr – The PHY register address.

• pData – The data read from PHY.

Returns
kStatus_Success MDIO access succeeds.

2.43. Enet_qos_qos 531



MCUXpresso SDK Documentation, Release 25.12.00

Returns
kStatus_Timeout MDIO access timeout.

static inline void ENET_QOS_SetMacAddr(ENET_QOS_Type *base, uint8_t *macAddr, uint8_t
index)

Sets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

• index – Configure macAddr to MAC_ADDRESS[index] register.

void ENET_QOS_GetMacAddr(ENET_QOS_Type *base, uint8_t *macAddr, uint8_t index)
Gets the ENET module Mac address.

Parameters
• base – ENET peripheral base address.

• macAddr – The six-byte Mac address pointer. The pointer is allocated by
application and input into the API.

• index – Get macAddr from MAC_ADDRESS[index] register.

void ENET_QOS_AddMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
Adds the ENET_QOS device to a multicast group.

Parameters
• base – ENET_QOS peripheral base address.

• address – The six-byte multicast group address which is provided by appli-
cation.

void ENET_QOS_LeaveMulticastGroup(ENET_QOS_Type *base, uint8_t *address)
Moves the ENET_QOS device from a multicast group.

Parameters
• base – ENET_QOS peripheral base address.

• address – The six-byte multicast group address which is provided by appli-
cation.

static inline void ENET_QOS_AcceptAllMulticast(ENET_QOS_Type *base)
Enable ENET device to accept all multicast frames.

Parameters
• base – ENET peripheral base address.

static inline void ENET_QOS_RejectAllMulticast(ENET_QOS_Type *base)
ENET device reject to accept all multicast frames.

Parameters
• base – ENET peripheral base address.

void ENET_QOS_EnterPowerDown(ENET_QOS_Type *base, uint32_t *wakeFilter)
Set the MAC to enter into power down mode. the remote power wake up frame and magic
frame can wake up the ENET from the power down mode.

Parameters
• base – ENET peripheral base address.

532 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• wakeFilter – The wakeFilter provided to configure the wake up frame fil-
ter. Set the wakeFilter to NULL is not required. But if you have the filter
requirement, please make sure the wakeFilter pointer shall be eight con-
tinuous 32-bits configuration.

static inline void ENET_QOS_ExitPowerDown(ENET_QOS_Type *base)
Set the MAC to exit power down mode. Exit from the power down mode and recover to
normal work mode.

Parameters
• base – ENET peripheral base address.

status_t ENET_QOS_EnableRxParser(ENET_QOS_Type *base, bool enable)
Enable/Disable Rx parser,please notice that for enable/disable Rx Parser, should better dis-
able Receive first.

Parameters
• base – ENET_QOS peripheral base address.

• enable – Enable/Disable Rx parser function

Return values
• kStatus_Success – Configure rx parser success.

• kStatus_ENET_QOS_Timeout – Poll status flag timeout.

void ENET_QOS_EnableInterrupts(ENET_QOS_Type *base, uint32_t mask)
Enables the ENET DMA and MAC interrupts.

This function enables the ENET interrupt according to the provided mask. The mask is a
logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t. For
example, to enable the dma and mac interrupt, do the following.

ENET_QOS_EnableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_
↪→QOS_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to enable. This is a logical OR of
both enumeration :: enet_qos_dma_interrupt_enable_t and
enet_qos_mac_interrupt_enable_t.

void ENET_QOS_DisableInterrupts(ENET_QOS_Type *base, uint32_t mask)
Disables the ENET DMA and MAC interrupts.

This function disables the ENET interrupt according to the provided mask. The mask is a
logical OR of enet_qos_dma_interrupt_enable_t and enet_qos_mac_interrupt_enable_t. For
example, to disable the dma and mac interrupt, do the following.

ENET_QOS_DisableInterrupts(ENET, kENET_QOS_DmaRx | kENET_QOS_DmaTx | kENET_
↪→QOS_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupts to disables. This is a logical OR of
both enumeration :: enet_qos_dma_interrupt_enable_t and
enet_qos_mac_interrupt_enable_t.

2.43. Enet_qos_qos 533



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ENET_QOS_GetDmaInterruptStatus(ENET_QOS_Type *base, uint8_t
channel)

Gets the ENET DMA interrupt status flag.

Parameters
• base – ENET peripheral base address.

• channel – The DMA Channel. Shall not be larger than
ENET_QOS_RING_NUM_MAX.

Returns
The event status of the interrupt source. This is the logical OR of members of
the enumeration :: enet_qos_dma_interrupt_enable_t.

static inline void ENET_QOS_ClearDmaInterruptStatus(ENET_QOS_Type *base, uint8_t channel,
uint32_t mask)

Clear the ENET DMA interrupt status flag.

Parameters
• base – ENET peripheral base address.

• channel – The DMA Channel. Shall not be larger than
ENET_QOS_RING_NUM_MAX.

• mask – The interrupt status to be cleared. This is the logical OR of members
of the enumeration :: enet_qos_dma_interrupt_enable_t.

static inline uint32_t ENET_QOS_GetMacInterruptStatus(ENET_QOS_Type *base)
Gets the ENET MAC interrupt status flag.

Parameters
• base – ENET peripheral base address.

Returns
The event status of the interrupt source. Use the
enum in enet_qos_mac_interrupt_enable_t and right shift
ENET_QOS_MACINT_ENUM_OFFSET to mask the returned value to get
the exact interrupt status.

void ENET_QOS_ClearMacInterruptStatus(ENET_QOS_Type *base, uint32_t mask)
Clears the ENET mac interrupt events status flag.

This function clears enabled ENET interrupts according to the provided mask. The mask
is a logical OR of enumeration members. See the enet_qos_mac_interrupt_enable_t. For
example, to clear the TX frame interrupt and RX frame interrupt, do the following.

ENET_QOS_ClearMacInterruptStatus(ENET, kENET_QOS_MacPmt);

Parameters
• base – ENET peripheral base address.

• mask – ENET interrupt source to be cleared. This is the logical OR of mem-
bers of the enumeration :: enet_qos_mac_interrupt_enable_t.

static inline bool ENET_QOS_IsTxDescriptorDmaOwn(enet_qos_tx_bd_struct_t *txDesc)
Get the tx descriptor DMA Own flag.

Parameters
• txDesc – The given tx descriptor.

Return values
True – the dma own tx descriptor, false application own tx descriptor.

534 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void ENET_QOS_SetupTxDescriptor(enet_qos_tx_bd_struct_t *txDesc, void *buffer1, uint32_t
bytes1, void *buffer2, uint32_t bytes2, uint32_t framelen,
bool intEnable, bool tsEnable, enet_qos_desc_flag flag,
uint8_t slotNum)

Setup a given tx descriptor. This function is a low level functional API to setup or prepare
a given tx descriptor.

Note: This must be called after all the ENET initialization. And should be called when the
ENET receive/transmit is required. Transmit buffers are ‘zero-copy’ buffers, so the buffer
must remain in memory until the packet has been fully transmitted. The buffers should be
free or requeued in the transmit interrupt irq handler.

Parameters
• txDesc – The given tx descriptor.

• buffer1 – The first buffer address in the descriptor.

• bytes1 – The bytes in the fist buffer.

• buffer2 – The second buffer address in the descriptor.

• bytes2 – The bytes in the second buffer.

• framelen – The length of the frame to be transmitted.

• intEnable – Interrupt enable flag.

• tsEnable – The timestamp enable.

• flag – The flag of this tx descriptor, enet_qos_desc_flag .

• slotNum – The slot num used for AV only.

static inline void ENET_QOS_UpdateTxDescriptorTail(ENET_QOS_Type *base, uint8_t channel,
uint32_t txDescTailAddrAlign)

Update the tx descriptor tail pointer. This function is a low level functional API to update
the the tx descriptor tail. This is called after you setup a new tx descriptor to update the tail
pointer to make the new descriptor accessible by DMA.

Parameters
• base – ENET peripheral base address.

• channel – The tx DMA channel.

• txDescTailAddrAlign – The new tx tail pointer address.

static inline void ENET_QOS_UpdateRxDescriptorTail(ENET_QOS_Type *base, uint8_t channel,
uint32_t rxDescTailAddrAlign)

Update the rx descriptor tail pointer. This function is a low level functional API to update
the the rx descriptor tail. This is called after you setup a new rx descriptor to update the tail
pointer to make the new descriptor accessible by DMA and to anouse the rx poll command
for DMA.

Parameters
• base – ENET peripheral base address.

• channel – The rx DMA channel.

• rxDescTailAddrAlign – The new rx tail pointer address.

2.43. Enet_qos_qos 535



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ENET_QOS_GetRxDescriptor(enet_qos_rx_bd_struct_t *rxDesc)
Gets the context in the ENET rx descriptor. This function is a low level functional API to get
the the status flag from a given rx descriptor.

Note: This must be called after all the ENET initialization. And should be called when the
ENET receive/transmit is required.

Parameters
• rxDesc – The given rx descriptor.

Return values
The – RDES3 regions for write-back format rx buffer descriptor.

void ENET_QOS_UpdateRxDescriptor(enet_qos_rx_bd_struct_t *rxDesc, void *buffer1, void
*buffer2, bool intEnable, bool doubleBuffEnable)

Updates the buffers and the own status for a given rx descriptor. This function is a low level
functional API to Updates the buffers and the own status for a given rx descriptor.

Note: This must be called after all the ENET initialization. And should be called when the
ENET receive/transmit is required.

Parameters
• rxDesc – The given rx descriptor.

• buffer1 – The first buffer address in the descriptor.

• buffer2 – The second buffer address in the descriptor.

• intEnable – Interrupt enable flag.

• doubleBuffEnable – The double buffer enable flag.

status_t ENET_QOS_ConfigureRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t
*rxpConfig, uint16_t entryCount)

Configure flexible rx parser.

This function is used to configure the flexible rx parser table.

Parameters
• base – ENET peripheral base address..

• rxpConfig – The rx parser configuration pointer.

• entryCount – The rx parser entry count.

Return values
• kStatus_Success – Configure rx parser success.

• kStatus_ENET_QOS_Timeout – Poll status flag timeout.

status_t ENET_QOS_ReadRxParser(ENET_QOS_Type *base, enet_qos_rxp_config_t *rxpConfig,
uint16_t entryIndex)

Read flexible rx parser configuration at specified index.

This function is used to read flexible rx parser configuration at specified index.

Parameters
• base – ENET peripheral base address..

• rxpConfig – The rx parser configuration pointer.

536 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• entryIndex – The rx parser entry index to read, start from 0.

Return values
• kStatus_Success – Configure rx parser success.

• kStatus_ENET_QOS_Timeout – Poll status flag timeout.

status_t ENET_QOS_EstProgramGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t
ptpClk_Hz)

Program Gate Control List.

This function is used to program the Enhanced Scheduled Transmisson. (IEEE802.1Qbv)

Parameters
• base – ENET peripheral base address..

• gcl – Pointer to the Gate Control List structure.

• ptpClk_Hz – frequency of the PTP clock.

status_t ENET_QOS_EstReadGcl(ENET_QOS_Type *base, enet_qos_est_gcl_t *gcl, uint32_t
listLen, bool hwList)

Read Gate Control List.

This function is used to read the Enhanced Scheduled Transmisson list. (IEEE802.1Qbv)

Parameters
• base – ENET peripheral base address..

• gcl – Pointer to the Gate Control List structure.

• listLen – length of the provided opList array in gcl structure.

• hwList – Boolean if True read HW list, false read SW list.

static inline void ENET_QOS_FpeEnable(ENET_QOS_Type *base)
Enable Frame Preemption.

This function is used to enable frame preemption. (IEEE802.1Qbu)

Parameters
• base – ENET peripheral base address..

static inline void ENET_QOS_FpeDisable(ENET_QOS_Type *base)
Disable Frame Preemption.

This function is used to disable frame preemption. (IEEE802.1Qbu)

Parameters
• base – ENET peripheral base address..

static inline void ENET_QOS_FpeConfigPreemptable(ENET_QOS_Type *base, uint8_t
queueMask)

Configure preemptable transmit queues.

This function is used to configure the preemptable queues. (IEEE802.1Qbu)

Parameters
• base – ENET peripheral base address..

• queueMask – bitmask representing queues to set in preemptable mode. The
N-th bit represents the queue N.

2.43. Enet_qos_qos 537



MCUXpresso SDK Documentation, Release 25.12.00

void ENET_QOS_AVBConfigure(ENET_QOS_Type *base, const enet_qos_cbs_config_t *config,
uint8_t queueIndex)

Sets the ENET AVB feature.

ENET_QOS AVB feature configuration, set transmit bandwidth. This API is called when the
AVB feature is required.

Parameters
• base – ENET_QOS peripheral base address.

• config – The ENET_QOS AVB feature configuration structure.

• queueIndex – ENET_QOS queue index.

void ENET_QOS_GetStatistics(ENET_QOS_Type *base, enet_qos_transfer_stats_t *statistics)
Gets statistical data in transfer.

Parameters
• base – ENET_QOS peripheral base address.

• statistics – The statistics structure pointer.

void ENET_QOS_CreateHandler(ENET_QOS_Type *base, enet_qos_handle_t *handle,
enet_qos_config_t *config, enet_qos_buffer_config_t
*bufferConfig, enet_qos_callback_t callback, void *userData)

Create ENET Handler.

This is a transactional API and it’s provided to store all data which are needed during the
whole transactional process. This API should not be used when you use functional APIs to
do data tx/rx. This is function will store many data/flag for transactional use, so all configure
API such as ENET_QOS_Init(), ENET_QOS_DescriptorInit(), ENET_QOS_EnableInterrupts()
etc.

Note: as our transactional transmit API use the zero-copy transmit buffer. so there are two
thing we emphasize here:

a. tx buffer free/requeue for application should be done in the tx interrupt handler.
Please set callback: kENET_QOS_TxIntEvent with tx buffer free/requeue process APIs.

b. the tx interrupt is forced to open.

Parameters
• base – ENET peripheral base address.

• handle – ENET handler.

• config – ENET configuration.

• bufferConfig – ENET buffer configuration.

• callback – The callback function.

• userData – The application data.

status_t ENET_QOS_GetRxFrameSize(ENET_QOS_Type *base, enet_qos_handle_t *handle,
uint32_t *length, uint8_t channel)

Gets the size of the read frame. This function gets a received frame size from the ENET
buffer descriptors.

Note: The FCS of the frame is automatically removed by MAC and the
size is the length without the FCS. After calling ENET_QOS_GetRxFrameSize,

538 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

ENET_QOS_ReadFrame() should be called to update the receive buffers If the result is
not “kStatus_ENET_QOS_RxFrameEmpty”.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_QOS_Init.

• length – The length of the valid frame received.

• channel – The DMAC channel for the rx.

Return values
• kStatus_ENET_QOS_RxFrameEmpty – No frame received. Should not call

ENET_QOS_ReadFrame to read frame.

• kStatus_ENET_QOS_RxFrameError – Data error happens.
ENET_QOS_ReadFrame should be called with NULL data and NULL
length to update the receive buffers.

• kStatus_Success – Receive a frame Successfully then the
ENET_QOS_ReadFrame should be called with the right data buffer
and the captured data length input.

status_t ENET_QOS_ReadFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t
*data, uint32_t length, uint8_t channel, enet_qos_ptp_time_t
*ts)

Reads a frame from the ENET device. This function reads a frame from the ENET DMA
descriptors. The ENET_QOS_GetRxFrameSize should be used to get the size of the prepared
data buffer. For example use rx dma channel 0:

uint32_t length;
enet_qos_handle_t g_handle;
status = ENET_QOS_GetRxFrameSize(&g_handle, &length, 0);
if (length != 0)
{

uint8_t *data = memory allocate interface;
if (!data)
{

ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0);
}
else
{

status = ENET_QOS_ReadFrame(ENET, &g_handle, data, length, 0);
}

}
else if (status == kStatus_ENET_QOS_RxFrameError)
{

ENET_QOS_ReadFrame(ENET, &g_handle, NULL, 0, 0);
}

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler structure. This is the same handler pointer
used in the ENET_QOS_Init.

• data – The data buffer provided by user to store the frame which memory
size should be at least “length”.

2.43. Enet_qos_qos 539



MCUXpresso SDK Documentation, Release 25.12.00

• length – The size of the data buffer which is still the length of the received
frame.

• channel – The rx DMA channel. shall not be larger than 2.

• ts – Pointer to the structure enet_qos_ptp_time_t to save frame timestamp.

Returns
The execute status, successful or failure.

status_t ENET_QOS_SendFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle, uint8_t
*data, uint32_t length, uint8_t channel, bool isNeedTs, void
*context, enet_qos_tx_offload_t txOffloadOps)

Transmits an ENET frame.

Note: The CRC is automatically appended to the data. Input the data to send without the
CRC.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_QOS_Init.

• data – The data buffer provided by user to be send.

• length – The length of the data to be send.

• channel – Channel to send the frame, same with queue index.

• isNeedTs – True to enable timestamp save for the frame

• context – pointer to user context to be kept in the tx dirty frame informa-
tion.

• txOffloadOps – The Tx frame checksum offload option.

Return values
• kStatus_Success – Send frame succeed.

• kStatus_ENET_QOS_TxFrameBusy – Transmit buffer descriptor is busy
under transmission. The transmit busy happens when the data send rate
is over the MAC capacity. The waiting mechanism is recommended to be
added after each call return with kStatus_ENET_QOS_TxFrameBusy.

void ENET_QOS_ReclaimTxDescriptor(ENET_QOS_Type *base, enet_qos_handle_t *handle,
uint8_t channel)

Reclaim tx descriptors. This function is used to update the tx descriptor status and store
the tx timestamp when the 1588 feature is enabled. This is called by the transmit interrupt
IRQ handler after the complete of a frame transmission.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_QOS_Init.

• channel – The tx DMA channel.

void ENET_QOS_CommonIRQHandler(ENET_QOS_Type *base, enet_qos_handle_t *handle)
The ENET IRQ handler.

Parameters

540 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – ENET peripheral base address.

• handle – The ENET handler pointer.

void ENET_QOS_SetISRHandler(ENET_QOS_Type *base, enet_qos_isr_t ISRHandler)
Set the second level IRQ handler, allow user to overwrite the default second level weak IRQ
handler.

Parameters
• base – ENET peripheral base address.

• ISRHandler – The handler to install.

status_t ENET_QOS_Ptp1588CorrectTimerInCoarse(ENET_QOS_Type *base, enet_qos_systime_op
operation, uint32_t second, uint32_t
nanosecond)

Correct the ENET PTP 1588 timer in coarse method.

Parameters
• base – ENET peripheral base address.

• operation – The system time operation, refer to “enet_qos_systime_op”

• second – The correction second.

• nanosecond – The correction nanosecond.

status_t ENET_QOS_Ptp1588CorrectTimerInFine(ENET_QOS_Type *base, uint32_t addend)
Correct the ENET PTP 1588 timer in fine method.

Note: Should take refer to the chapter “System time correction” and see the description
for the “fine correction method”.

Parameters
• base – ENET peripheral base address.

• addend – The addend value to be set in the fine method

static inline uint32_t ENET_QOS_Ptp1588GetAddend(ENET_QOS_Type *base)
Get the ENET Time stamp current addend value.

Parameters
• base – ENET peripheral base address.

Returns
The addend value.

void ENET_QOS_Ptp1588GetTimerNoIRQDisable(ENET_QOS_Type *base, uint64_t *second,
uint32_t *nanosecond)

Gets the current ENET time from the PTP 1588 timer without IRQ disable.

Parameters
• base – ENET peripheral base address.

• second – The PTP 1588 system timer second.

• nanosecond – The PTP 1588 system timer nanosecond. For the unit of the
nanosecond is 1ns. so the nanosecond is the real nanosecond.

2.43. Enet_qos_qos 541



MCUXpresso SDK Documentation, Release 25.12.00

static inline status_t ENET_Ptp1588PpsControl(ENET_QOS_Type *base,
enet_qos_ptp_pps_instance_t instance,
enet_qos_ptp_pps_trgt_mode_t trgtMode,
enet_qos_ptp_pps_cmd_t cmd)

Sets the ENET PTP 1588 PPS control. All channels operate in flexible PPS output mode.

Parameters
• base – ENET peripheral base address.

• instance – The ENET QOS PTP PPS instance.

• trgtMode – The target time register mode.

• cmd – The target flexible PPS output control command.

status_t ENET_QOS_Ptp1588PpsSetTrgtTime(ENET_QOS_Type *base,
enet_qos_ptp_pps_instance_t instance, uint32_t
seconds, uint32_t nanoseconds)

Sets the ENET OQS PTP 1588 PPS target time registers.

Parameters
• base – ENET QOS peripheral base address.

• instance – The ENET QOS PTP PPS instance.

• seconds – The target seconds.

• nanoseconds – The target nanoseconds.

static inline void ENET_QOS_Ptp1588PpsSetWidth(ENET_QOS_Type *base,
enet_qos_ptp_pps_instance_t instance,
uint32_t width)

Sets the ENET OQS PTP 1588 PPS output signal interval.

Parameters
• base – ENET QOS peripheral base address.

• instance – The ENET QOS PTP PPS instance.

• width – Signal Width. It is stored in terms of number of units of sub-second
increment value. The width value must be lesser than interval value.

static inline void ENET_QOS_Ptp1588PpsSetInterval(ENET_QOS_Type *base,
enet_qos_ptp_pps_instance_t instance,
uint32_t interval)

Sets the ENET OQS PTP 1588 PPS output signal width.

Parameters
• base – ENET QOS peripheral base address.

• instance – The ENET QOS PTP PPS instance.

• interval – Signal Interval. It is stored in terms of number of units of sub-
second increment value.

void ENET_QOS_Ptp1588GetTimer(ENET_QOS_Type *base, uint64_t *second, uint32_t
*nanosecond)

Gets the current ENET time from the PTP 1588 timer.

Parameters
• base – ENET peripheral base address.

• second – The PTP 1588 system timer second.

542 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• nanosecond – The PTP 1588 system timer nanosecond. For the unit of the
nanosecond is 1ns.so the nanosecond is the real nanosecond.

void ENET_QOS_GetTxFrame(enet_qos_handle_t *handle, enet_qos_frame_info_t *txFrame,
uint8_t channel)

Gets the time stamp of the transmit frame.

This function is used for PTP stack to get the timestamp captured by the ENET driver.

Parameters
• handle – The ENET handler pointer.This is the same state pointer used in

ENET_QOS_Init.

• txFrame – Input parameter, pointer to enet_qos_frame_info_t for saving
read out frame information.

• channel – Channel for searching the tx frame.

status_t ENET_QOS_GetRxFrame(ENET_QOS_Type *base, enet_qos_handle_t *handle,
enet_qos_rx_frame_struct_t *rxFrame, uint8_t channel)

Receives one frame in specified BD ring with zero copy.

This function will use the user-defined allocate and free callback. Every time application
gets one frame through this function, driver will allocate new buffers for the BDs whose
buffers have been taken by application.

Note: This function will drop current frame and update related BDs as available for DMA
if new buffers allocating fails. Application must provide a memory pool including at least
BD number + 1 buffers(+2 if enable double buffer) to make this function work normally.
If user calls this function in Rx interrupt handler, be careful that this function makes Rx
BD ready with allocating new buffer(normal) or updating current BD(out of memory). If
there’s always new Rx frame input, Rx interrupt will be triggered forever. Application need
to disable Rx interrupt according to specific design in this case.

Parameters
• base – ENET peripheral base address.

• handle – The ENET handler pointer. This is the same handler pointer used
in the ENET_Init.

• rxFrame – The received frame information structure provided by user.

• channel – Channel for searching the rx frame.

Return values
• kStatus_Success – Succeed to get one frame and allocate new memory for

Rx buffer.

• kStatus_ENET_QOS_RxFrameEmpty – There’s no Rx frame in the BD.

• kStatus_ENET_QOS_RxFrameError – There’s issue in this receiving.

• kStatus_ENET_QOS_RxFrameDrop – There’s no new buffer memory for
BD, drop this frame.

FSL_ENET_QOS_DRIVER_VERSION
Defines the driver version.

ENET_QOS_RXDESCRIP_RD_BUFF1VALID_MASK
Defines for read format.

Buffer1 address valid.

2.43. Enet_qos_qos 543



MCUXpresso SDK Documentation, Release 25.12.00

ENET_QOS_RXDESCRIP_RD_BUFF2VALID_MASK
Buffer2 address valid.

ENET_QOS_RXDESCRIP_RD_IOC_MASK
Interrupt enable on complete.

ENET_QOS_RXDESCRIP_RD_OWN_MASK
Own bit.

ENET_QOS_RXDESCRIP_WR_ERR_MASK
Defines for write back format.

ENET_QOS_RXDESCRIP_WR_PYLOAD_MASK

ENET_QOS_RXDESCRIP_WR_PTPMSGTYPE_MASK

ENET_QOS_RXDESCRIP_WR_PTPTYPE_MASK

ENET_QOS_RXDESCRIP_WR_PTPVERSION_MASK

ENET_QOS_RXDESCRIP_WR_PTPTSA_MASK

ENET_QOS_RXDESCRIP_WR_PACKETLEN_MASK

ENET_QOS_RXDESCRIP_WR_ERRSUM_MASK

ENET_QOS_RXDESCRIP_WR_TYPE_MASK

ENET_QOS_RXDESCRIP_WR_DE_MASK

ENET_QOS_RXDESCRIP_WR_RE_MASK

ENET_QOS_RXDESCRIP_WR_OE_MASK

ENET_QOS_RXDESCRIP_WR_RWT_MASK

ENET_QOS_RXDESCRIP_WR_GP_MASK

ENET_QOS_RXDESCRIP_WR_CRC_MASK

ENET_QOS_RXDESCRIP_WR_RS0V_MASK

ENET_QOS_RXDESCRIP_WR_RS1V_MASK

ENET_QOS_RXDESCRIP_WR_RS2V_MASK

ENET_QOS_RXDESCRIP_WR_LD_MASK

ENET_QOS_RXDESCRIP_WR_FD_MASK

ENET_QOS_RXDESCRIP_WR_CTXT_MASK

ENET_QOS_RXDESCRIP_WR_OWN_MASK

ENET_QOS_RXDESCRIP_WR_SA_FAILURE_MASK

ENET_QOS_RXDESCRIP_WR_DA_FAILURE_MASK

ENET_QOS_TXDESCRIP_RD_BL1_MASK
Defines for read format.

ENET_QOS_TXDESCRIP_RD_BL2_MASK

ENET_QOS_TXDESCRIP_RD_BL1(n)

544 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

ENET_QOS_TXDESCRIP_RD_BL2(n)

ENET_QOS_TXDESCRIP_RD_TTSE_MASK

ENET_QOS_TXDESCRIP_RD_IOC_MASK

ENET_QOS_TXDESCRIP_RD_FL_MASK

ENET_QOS_TXDESCRIP_RD_FL(n)

ENET_QOS_TXDESCRIP_RD_CIC(n)

ENET_QOS_TXDESCRIP_RD_TSE_MASK

ENET_QOS_TXDESCRIP_RD_SLOT(n)

ENET_QOS_TXDESCRIP_RD_SAIC(n)

ENET_QOS_TXDESCRIP_RD_CPC(n)

ENET_QOS_TXDESCRIP_RD_LDFD(n)

ENET_QOS_TXDESCRIP_RD_LD_MASK

ENET_QOS_TXDESCRIP_RD_FD_MASK

ENET_QOS_TXDESCRIP_RD_CTXT_MASK

ENET_QOS_TXDESCRIP_RD_OWN_MASK

ENET_QOS_TXDESCRIP_WB_TTSS_MASK
Defines for write back format.

ENET_QOS_ABNORM_INT_MASK

ENET_QOS_NORM_INT_MASK

ENET_QOS_RING_NUM_MAX
The Maximum number of tx/rx descriptor rings.

ENET_QOS_FRAME_MAX_FRAMELEN
Default maximum Ethernet frame size.

ENET_QOS_FCS_LEN
Ethernet FCS length.

ENET_QOS_ADDR_ALIGNMENT
Recommended Ethernet buffer alignment.

ENET_QOS_BUFF_ALIGNMENT
Receive buffer alignment shall be 4bytes-aligned.

ENET_QOS_MTL_RXFIFOSIZE
The rx fifo size.

ENET_QOS_MTL_TXFIFOSIZE
The tx fifo size.

ENET_QOS_MACINT_ENUM_OFFSET
The offest for mac interrupt in enum type.

ENET_QOS_RXP_ENTRY_COUNT
RXP table entry count, implied by FRPES in MAC_HW_FEATURE3

2.43. Enet_qos_qos 545



MCUXpresso SDK Documentation, Release 25.12.00

ENET_QOS_RXP_BUFFER_SIZE
RXP Buffer size, implied by FRPBS in MAC_HW_FEATURE3

ENET_QOS_EST_WID
Width of the time interval in Gate Control List

ENET_QOS_EST_DEP
Maxmimum depth of Gate Control List

Defines the status return codes for transaction.

Values:

enumerator kStatus_ENET_QOS_InitMemoryFail
Init fails since buffer memory is not enough.

enumerator kStatus_ENET_QOS_RxFrameError
A frame received but data error happen.

enumerator kStatus_ENET_QOS_RxFrameFail
Failed to receive a frame.

enumerator kStatus_ENET_QOS_RxFrameEmpty
No frame arrive.

enumerator kStatus_ENET_QOS_RxFrameDrop
Rx frame is dropped since no buffer memory.

enumerator kStatus_ENET_QOS_TxFrameBusy
Transmit descriptors are under process.

enumerator kStatus_ENET_QOS_TxFrameFail
Transmit frame fail.

enumerator kStatus_ENET_QOS_TxFrameOverLen
Transmit oversize.

enumerator kStatus_ENET_QOS_Est_SwListBusy
SW Gcl List not yet processed by HW.

enumerator kStatus_ENET_QOS_Est_SwListWriteAbort
SW Gcl List write aborted .

enumerator kStatus_ENET_QOS_Est_InvalidParameter
Invalid parameter in Gcl List .

enumerator kStatus_ENET_QOS_Est_BtrError
Base Time Error when loading list.

enumerator kStatus_ENET_QOS_TrgtBusy
Target time register busy.

enumerator kStatus_ENET_QOS_Timeout
Target time register busy.

enumerator kStatus_ENET_QOS_PpsBusy
Pps command busy.

enum _enet_qos_mii_mode
Defines the MII/RGMII mode for data interface between the MAC and the PHY.

Values:

546 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_QOS_MiiMode
MII mode for data interface.

enumerator kENET_QOS_RgmiiMode
RGMII mode for data interface.

enumerator kENET_QOS_RmiiMode
RMII mode for data interface.

enum _enet_qos_mii_speed
Defines the 10/100/1000 Mbps speed for the MII data interface.

Values:

enumerator kENET_QOS_MiiSpeed10M
Speed 10 Mbps.

enumerator kENET_QOS_MiiSpeed100M
Speed 100 Mbps.

enumerator kENET_QOS_MiiSpeed1000M
Speed 1000 Mbps.

enumerator kENET_QOS_MiiSpeed2500M
Speed 2500 Mbps.

enum _enet_qos_mii_duplex
Defines the half or full duplex for the MII data interface.

Values:

enumerator kENET_QOS_MiiHalfDuplex
Half duplex mode.

enumerator kENET_QOS_MiiFullDuplex
Full duplex mode.

enum _enet_qos_mii_normal_opcode
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

Values:

enumerator kENET_QOS_MiiWriteFrame
Write frame operation for a valid MII management frame.

enumerator kENET_QOS_MiiReadFrame
Read frame operation for a valid MII management frame.

enum _enet_qos_dma_burstlen
Define the DMA maximum transmit burst length.

Values:

enumerator kENET_QOS_BurstLen1
DMA burst length 1.

enumerator kENET_QOS_BurstLen2
DMA burst length 2.

enumerator kENET_QOS_BurstLen4
DMA burst length 4.

enumerator kENET_QOS_BurstLen8
DMA burst length 8.

2.43. Enet_qos_qos 547



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_QOS_BurstLen16
DMA burst length 16.

enumerator kENET_QOS_BurstLen32
DMA burst length 32.

enumerator kENET_QOS_BurstLen64
DMA burst length 64. eight times enabled.

enumerator kENET_QOS_BurstLen128
DMA burst length 128. eight times enabled.

enumerator kENET_QOS_BurstLen256
DMA burst length 256. eight times enabled.

enum _enet_qos_desc_flag
Define the flag for the descriptor.

Values:

enumerator kENET_QOS_MiddleFlag
It’s a middle descriptor of the frame.

enumerator kENET_QOS_LastFlagOnly
It’s the last descriptor of the frame.

enumerator kENET_QOS_FirstFlagOnly
It’s the first descriptor of the frame.

enumerator kENET_QOS_FirstLastFlag
It’s the first and last descriptor of the frame.

enum _enet_qos_systime_op
Define the system time adjust operation control.

Values:

enumerator kENET_QOS_SystimeAdd
System time add to.

enumerator kENET_QOS_SystimeSubtract
System time subtract.

enum _enet_qos_ts_rollover_type
Define the system time rollover control.

Values:

enumerator kENET_QOS_BinaryRollover
System time binary rollover.

enumerator kENET_QOS_DigitalRollover
System time digital rollover.

enum _enet_qos_special_config
Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need
to set this control flags for ENET initialization. But if you have some special requirements,
set the flags to specialControl in the enet_qos_config_t.

Note: “kENET_QOS_StoreAndForward” is recommended to be set.

Values:

548 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_QOS_DescDoubleBuffer
The double buffer is used in the tx/rx descriptor.

enumerator kENET_QOS_StoreAndForward
The rx/tx store and forward enable.

enumerator kENET_QOS_PromiscuousEnable
The promiscuous enabled.

enumerator kENET_QOS_FlowControlEnable
The flow control enabled.

enumerator kENET_QOS_BroadCastRxDisable
The broadcast disabled.

enumerator kENET_QOS_MulticastAllEnable
All multicast are passed.

enumerator kENET_QOS_8023AS2KPacket
8023as support for 2K packets.

enumerator kENET_QOS_HashMulticastEnable
The multicast packets are filtered through hash table.

enumerator kENET_QOS_RxChecksumOffloadEnable
The Rx checksum offload enabled.

enum _enet_qos_dma_interrupt_enable
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-bot
encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_QOS_DmaTx
Tx interrupt.

enumerator kENET_QOS_DmaTxStop
Tx stop interrupt.

enumerator kENET_QOS_DmaTxBuffUnavail
Tx buffer unavailable.

enumerator kENET_QOS_DmaRx
Rx interrupt.

enumerator kENET_QOS_DmaRxBuffUnavail
Rx buffer unavailable.

enumerator kENET_QOS_DmaRxStop
Rx stop.

enumerator kENET_QOS_DmaRxWatchdogTimeout
Rx watchdog timeout.

enumerator kENET_QOS_DmaEarlyTx
Early transmit.

enumerator kENET_QOS_DmaEarlyRx
Early receive.

enumerator kENET_QOS_DmaBusErr
Fatal bus error.

2.43. Enet_qos_qos 549



MCUXpresso SDK Documentation, Release 25.12.00

enum _enet_qos_mac_interrupt_enable
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-bot
encoding to allow a logical OR of multiple members.

Values:

enumerator kENET_QOS_MacTimestamp

enum _enet_qos_event
Defines the common interrupt event for callback use.

Values:

enumerator kENET_QOS_RxIntEvent
Receive interrupt event.

enumerator kENET_QOS_TxIntEvent
Transmit interrupt event.

enumerator kENET_QOS_WakeUpIntEvent
Wake up interrupt event.

enumerator kENET_QOS_TimeStampIntEvent
Time stamp interrupt event.

enum _enet_qos_queue_mode
Define the MTL mode for multiple queues/rings.

Values:

enumerator kENET_QOS_AVB_Mode
Enable queue in AVB mode.

enumerator kENET_QOS_DCB_Mode
Enable queue in DCB mode.

enum _enet_qos_mtl_multiqueue_txsche
Define the MTL tx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_QOS_txWeightRR
Tx weight round-robin.

enumerator kENET_QOS_txWeightFQ
Tx weight fair queuing.

enumerator kENET_QOS_txDefictWeightRR
Tx deficit weighted round-robin.

enumerator kENET_QOS_txStrPrio
Tx strict priority.

enum _enet_qos_mtl_multiqueue_rxsche
Define the MTL rx scheduling algorithm for multiple queues/rings.

Values:

enumerator kENET_QOS_rxStrPrio
Rx strict priority, Queue 0 has the lowest priority.

enumerator kENET_QOS_rxWeightStrPrio
Weighted Strict Priority.

550 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _enet_qos_mtl_rxqueuemap
Define the MTL rx queue and DMA channel mapping.

Values:

enumerator kENET_QOS_StaticDirctMap
The received fame in rx Qn(n = 0,1) directly map to dma channel n.

enumerator kENET_QOS_DynamicMap
The received frame in rx Qn(n = 0,1) map to the dma channel m(m = 0,1) related with
the same Mac.

enum _enet_qos_rx_queue_route
Defines the package type for receive queue routing.

Values:

enumerator kENET_QOS_PacketNoQ

enumerator kENET_QOS_PacketAVCPQ

enumerator kENET_QOS_PacketPTPQ

enumerator kENET_QOS_PacketUPQ

enumerator kENET_QOS_PacketMCBCQ

enum _enet_qos_ptp_event_type
Defines the ENET PTP message related constant.

Values:

enumerator kENET_QOS_PtpEventMsgType
PTP event message type.

enumerator kENET_QOS_PtpSrcPortIdLen
PTP message sequence id length.

enumerator kENET_QOS_PtpEventPort
PTP event port number.

enumerator kENET_QOS_PtpGnrlPort
PTP general port number.

enum _enet_qos_ptp_pps_instance
Defines the PPS instance numbers.

Values:

enumerator kENET_QOS_PtpPpsIstance0
PPS instance 0.

enumerator kENET_QOS_PtpPpsIstance1
PPS instance 1.

enumerator kENET_QOS_PtpPpsIstance2
PPS instance 2.

enumerator kENET_QOS_PtpPpsIstance3
PPS instance 3.

enum _enet_qos_ptp_pps_trgt_mode
Defines the Target Time register mode.

Values:

2.43. Enet_qos_qos 551



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_QOS_PtpPpsTrgtModeOnlyInt
Only interrupts.

enumerator kENET_QOS_PtpPpsTrgtModeIntSt
Both interrupt and output signal.

enumerator kENET_QOS_PtpPpsTrgtModeOnlySt
Only output signal.

enum _enet_qos_ptp_pps_cmd
Defines commands for ppscmd register.

Values:

enumerator kENET_QOS_PtpPpsCmdNC
No Command.

enumerator kENET_QOS_PtpPpsCmdSSP
Start Single Pulse.

enumerator kENET_QOS_PtpPpsCmdSPT
Start Pulse Train.

enumerator kENET_QOS_PtpPpsCmdCS
Cancel Start.

enumerator kENET_QOS_PtpPpsCmdSPTAT
Stop Pulse Train At Time.

enumerator kENET_QOS_PtpPpsCmdSPTI
Stop Pulse Train Immediately.

enumerator kENET_QOS_PtpPpsCmdCSPT
Cancel Stop Pulse Train.

enum _enet_qos_ets_list_length
Defines the enmueration of ETS list length.

Values:

enumerator kENET_QOS_Ets_List_64
List length of 64

enumerator kENET_QOS_Ets_List_128
List length of 128

enumerator kENET_QOS_Ets_List_256
List length of 256

enumerator kENET_QOS_Ets_List_512
List length of 512

enumerator kENET_QOS_Ets_List_1024
List length of 1024

enum _enet_qos_ets_gccr_addr
Defines the enmueration of ETS gate control address.

Values:

enumerator kENET_QOS_Ets_btr_low
BTR Low

552 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENET_QOS_Ets_btr_high
BTR High

enumerator kENET_QOS_Ets_ctr_low
CTR Low

enumerator kENET_QOS_Ets_ctr_high
CTR High

enumerator kENET_QOS_Ets_ter
TER

enumerator kENET_QOS_Ets_llr
LLR

enum _enet_qos_rxp_dma_chn
Defines the enmueration of DMA channel used for rx parser entry.

Values:

enumerator kENET_QOS_Rxp_DMAChn0
DMA Channel 0 used for RXP entry match

enumerator kENET_QOS_Rxp_DMAChn1
DMA Channel 1 used for RXP entry match

enumerator kENET_QOS_Rxp_DMAChn2
DMA Channel 2 used for RXP entry match

enumerator kENET_QOS_Rxp_DMAChn3
DMA Channel 3 used for RXP entry match

enumerator kENET_QOS_Rxp_DMAChn4
DMA Channel 4 used for RXP entry match

enum _enet_qos_tx_offload
Define the Tx checksum offload options.

Values:

enumerator kENET_QOS_TxOffloadDisable
Disable Tx checksum offload.

enumerator kENET_QOS_TxOffloadIPHeader
Enable IP header checksum calculation and insertion.

enumerator kENET_QOS_TxOffloadIPHeaderPlusPayload
Enable IP header and payload checksum calculation and insertion.

enumerator kENET_QOS_TxOffloadAll
Enable IP header, payload and pseudo header checksum calculation and insertion.

typedef enum _enet_qos_mii_mode enet_qos_mii_mode_t
Defines the MII/RGMII mode for data interface between the MAC and the PHY.

typedef enum _enet_qos_mii_speed enet_qos_mii_speed_t
Defines the 10/100/1000 Mbps speed for the MII data interface.

typedef enum _enet_qos_mii_duplex enet_qos_mii_duplex_t
Defines the half or full duplex for the MII data interface.

typedef enum _enet_qos_mii_normal_opcode enet_qos_mii_normal_opcode
Define the MII opcode for normal MDIO_CLAUSES_22 Frame.

2.43. Enet_qos_qos 553



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _enet_qos_dma_burstlen enet_qos_dma_burstlen
Define the DMA maximum transmit burst length.

typedef enum _enet_qos_desc_flag enet_qos_desc_flag
Define the flag for the descriptor.

typedef enum _enet_qos_systime_op enet_qos_systime_op
Define the system time adjust operation control.

typedef enum _enet_qos_ts_rollover_type enet_qos_ts_rollover_type
Define the system time rollover control.

typedef enum _enet_qos_special_config enet_qos_special_config_t
Defines some special configuration for ENET.

These control flags are provided for special user requirements. Normally, these is no need
to set this control flags for ENET initialization. But if you have some special requirements,
set the flags to specialControl in the enet_qos_config_t.

Note: “kENET_QOS_StoreAndForward” is recommended to be set.

typedef enum _enet_qos_dma_interrupt_enable enet_qos_dma_interrupt_enable_t
List of DMA interrupts supported by the ENET interrupt. This enumeration uses one-bot
encoding to allow a logical OR of multiple members.

typedef enum _enet_qos_mac_interrupt_enable enet_qos_mac_interrupt_enable_t
List of mac interrupts supported by the ENET interrupt. This enumeration uses one-bot
encoding to allow a logical OR of multiple members.

typedef enum _enet_qos_event enet_qos_event_t
Defines the common interrupt event for callback use.

typedef enum _enet_qos_queue_mode enet_qos_queue_mode_t
Define the MTL mode for multiple queues/rings.

typedef enum _enet_qos_mtl_multiqueue_txsche enet_qos_mtl_multiqueue_txsche
Define the MTL tx scheduling algorithm for multiple queues/rings.

typedef enum _enet_qos_mtl_multiqueue_rxsche enet_qos_mtl_multiqueue_rxsche
Define the MTL rx scheduling algorithm for multiple queues/rings.

typedef enum _enet_qos_mtl_rxqueuemap enet_qos_mtl_rxqueuemap_t
Define the MTL rx queue and DMA channel mapping.

typedef enum _enet_qos_rx_queue_route enet_qos_rx_queue_route_t
Defines the package type for receive queue routing.

typedef enum _enet_qos_ptp_event_type enet_qos_ptp_event_type_t
Defines the ENET PTP message related constant.

typedef enum _enet_qos_ptp_pps_instance enet_qos_ptp_pps_instance_t
Defines the PPS instance numbers.

typedef enum _enet_qos_ptp_pps_trgt_mode enet_qos_ptp_pps_trgt_mode_t
Defines the Target Time register mode.

typedef enum _enet_qos_ptp_pps_cmd enet_qos_ptp_pps_cmd_t
Defines commands for ppscmd register.

typedef enum _enet_qos_ets_list_length enet_qos_ets_list_length_t
Defines the enmueration of ETS list length.

554 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _enet_qos_ets_gccr_addr enet_qos_ets_gccr_addr_t
Defines the enmueration of ETS gate control address.

typedef enum _enet_qos_rxp_dma_chn enet_qos_rxp_dma_chn_t
Defines the enmueration of DMA channel used for rx parser entry.

typedef enum _enet_qos_tx_offload enet_qos_tx_offload_t
Define the Tx checksum offload options.

typedef struct _enet_qos_rx_bd_struct enet_qos_rx_bd_struct_t
Defines the receive descriptor structure has the read-format and write-back format struc-
ture. They both has the same size with different region definition. so we define the read-
format region as the receive descriptor structure Use the read-format region mask bits in
the descriptor initialization Use the write-back format region mask bits in the receive data
process.

typedef struct _enet_qos_tx_bd_struct enet_qos_tx_bd_struct_t
Defines the transmit descriptor structure has the read-format and write-back format struc-
ture. They both has the same size with different region definition. so we define the read-
format region as the transmit descriptor structure Use the read-format region mask bits in
the descriptor initialization Use the write-back format region mask bits in the transmit data
process.

typedef struct _enet_qos_tx_bd_config_struct enet_qos_tx_bd_config_struct_t
Defines the Tx BD configuration structure.

typedef struct _enet_qos_ptp_time enet_qos_ptp_time_t
Defines the ENET PTP time stamp structure.

typedef struct enet_qos_frame_info enet_qos_frame_info_t
Defines the frame info structure.

typedef struct _enet_qos_tx_dirty_ring enet_qos_tx_dirty_ring_t
Defines the ENET transmit dirty addresses ring/queue structure.

typedef struct _enet_qos_ptp_config enet_qos_ptp_config_t
Defines the ENET PTP configuration structure.

typedef struct _enet_qos_est_gate_op enet_qos_est_gate_op_t
Defines the EST gate operation structure.

typedef struct _enet_qos_est_gcl enet_qos_est_gcl_t
Defines the EST gate control list structure.

typedef struct _enet_qos_rxp_config enet_qos_rxp_config_t
Defines the ENET_QOS Rx parser configuration structure.

typedef struct _enet_qos_buffer_config enet_qos_buffer_config_t
Defines the buffer descriptor configure structure.

Note:
a. The receive and transmit descriptor start address pointer and tail pointer must be

word-aligned.

b. The recommended minimum tx/rx ring length is 4.

c. The tx/rx descriptor tail address shall be the address pointer to the address just af-
ter the end of the last last descriptor. because only the descriptors between the start
address and the tail address will be used by DMA.

2.43. Enet_qos_qos 555



MCUXpresso SDK Documentation, Release 25.12.00

d. The descriptor address is the start address of all used contiguous memory. for exam-
ple, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor
memories for rx descriptor ring 0.

e. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double
buffers) rx buffers. It means the *rxBufferStartAddr is the rx buffer for the first de-
scriptor the *rxBufferStartAddr + 1 is the rx buffer for the second descriptor or the rx
buffer for the second buffer in the first descriptor. so please make sure the rxBuffer-
StartAddr is the address of a rxRingLen or 2*rxRingLen array.

typedef struct _enet_qos_cbs_config enet_qos_cbs_config_t
Defines the CBS configuration for queue.

typedef struct enet_qos_tx_queue_config enet_qos_queue_tx_config_t
Defines the queue configuration structure.

typedef struct enet_qos_rx_queue_config enet_qos_queue_rx_config_t
Defines the queue configuration structure.

typedef struct enet_qos_multiqueue_config enet_qos_multiqueue_config_t
Defines the configuration when multi-queue is used.

typedef void *(*enet_qos_rx_alloc_callback_t)(ENET_QOS_Type *base, void *userData, uint8_t
channel)

Defines the Rx memory buffer alloc function pointer.

typedef void (*enet_qos_rx_free_callback_t)(ENET_QOS_Type *base, void *buffer, void
*userData, uint8_t channel)

Defines the Rx memory buffer free function pointer.

typedef struct _enet_qos_config enet_qos_config_t
Defines the basic configuration structure for the ENET device.

Note: Default the signal queue is used so the “*multiqueueCfg” is set default with NULL.
Set the pointer with a valid configuration pointer if the multiple queues are required. If
multiple queue is enabled, please make sure the buffer configuration for all are prepared
also.

typedef struct _enet_qos_handle enet_qos_handle_t

typedef void (*enet_qos_callback_t)(ENET_QOS_Type *base, enet_qos_handle_t *handle,
enet_qos_event_t event, uint8_t channel, void *userData)

ENET callback function.

typedef struct _enet_qos_tx_bd_ring enet_qos_tx_bd_ring_t
Defines the ENET transmit buffer descriptor ring/queue structure.

typedef struct _enet_qos_rx_bd_ring enet_qos_rx_bd_ring_t
Defines the ENET receive buffer descriptor ring/queue structure.

typedef struct _enet_qos_state enet_qos_state_t
Defines the ENET state structure.

Note: The structure contains saved state for the instance. It could be stored in
enet_qos_handle_t, but that’s used only with the transactional API.

typedef struct _enet_qos_buffer_struct enet_qos_buffer_struct_t
Defines the frame buffer structure.

556 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _enet_qos_rx_frame_error enet_qos_rx_frame_error_t
Defines the Rx frame error structure.

typedef struct _enet_qos_rx_frame_attribute_struct enet_qos_rx_frame_attribute_t

typedef struct _enet_qos_rx_frame_struct enet_qos_rx_frame_struct_t
Defines the Rx frame data structure.

typedef struct _enet_qos_transfer_stats enet_qos_transfer_stats_t
Defines the ENET QOS transfer statistics structure.

typedef void (*enet_qos_isr_t)(ENET_QOS_Type *base, enet_qos_handle_t *handle)

const clock_ip_name_t s_enetqosClock[]
Pointers to enet clocks for each instance.

void ENET_QOS_SetSYSControl(enet_qos_mii_mode_t miiMode)
Set ENET system configuration.

Note: User needs to provide the implementation because the implementation is SoC spe-
cific. This function set the phy selection and enable clock. It should be called before any
other ethernet operation.

Parameters
• miiMode – The MII/RGMII/RMII mode for interface between the phy and

Ethernet.

void ENET_QOS_EnableClock(bool enable)
Enable/Disable ENET qos clock.

Note: User needs to provide the implementation because the implementation is SoC spe-
cific. This function should be called before config RMII mode.

struct _enet_qos_rx_bd_struct
#include <fsl_enet_qos.h> Defines the receive descriptor structure has the read-format and
write-back format structure. They both has the same size with different region definition.
so we define the read-format region as the receive descriptor structure Use the read-format
region mask bits in the descriptor initialization Use the write-back format region mask bits
in the receive data process.

Public Members

__IO uint32_t buff1Addr
Buffer 1 address

__IO uint32_t reserved
Reserved

__IO uint32_t buff2Addr
Buffer 2 or next descriptor address

__IO uint32_t control
Buffer 1/2 byte counts and control

2.43. Enet_qos_qos 557



MCUXpresso SDK Documentation, Release 25.12.00

struct _enet_qos_tx_bd_struct
#include <fsl_enet_qos.h> Defines the transmit descriptor structure has the read-format and
write-back format structure. They both has the same size with different region definition.
so we define the read-format region as the transmit descriptor structure Use the read-
format region mask bits in the descriptor initialization Use the write-back format region
mask bits in the transmit data process.

Public Members

__IO uint32_t buff1Addr
Buffer 1 address

__IO uint32_t buff2Addr
Buffer 2 address

__IO uint32_t buffLen
Buffer 1/2 byte counts

__IO uint32_t controlStat
TDES control and status word

struct _enet_qos_tx_bd_config_struct
#include <fsl_enet_qos.h> Defines the Tx BD configuration structure.

Public Members

void *buffer1
The first buffer address in the descriptor.

uint32_t bytes1
The bytes in the fist buffer.

void *buffer2
The second buffer address in the descriptor.

uint32_t bytes2
The bytes in the second buffer.

uint32_t framelen
The length of the frame to be transmitted.

bool intEnable
Interrupt enable flag.

bool tsEnable
The timestamp enable.

enet_qos_tx_offload_t txOffloadOps
The Tx checksum offload option.

enet_qos_desc_flag flag
The flag of this tx desciriptor, see “enet_qos_desc_flag”.

struct _enet_qos_ptp_time
#include <fsl_enet_qos.h> Defines the ENET PTP time stamp structure.

558 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint64_t second
Second.

uint32_t nanosecond
Nanosecond.

struct enet_qos_frame_info
#include <fsl_enet_qos.h> Defines the frame info structure.

Public Members

void *context
User specified data, could be buffer address for free

bool isTsAvail
Flag indicates timestamp available status

enet_qos_ptp_time_t timeStamp
Timestamp of frame

struct _enet_qos_tx_dirty_ring
#include <fsl_enet_qos.h> Defines the ENET transmit dirty addresses ring/queue structure.

Public Members

enet_qos_frame_info_t *txDirtyBase
Dirty buffer descriptor base address pointer.

uint16_t txGenIdx
tx generate index.

uint16_t txConsumIdx
tx consume index.

uint16_t txRingLen
tx ring length.

bool isFull
tx ring is full flag, add this parameter to avoid waste one element.

struct _enet_qos_ptp_config
#include <fsl_enet_qos.h> Defines the ENET PTP configuration structure.

Public Members

bool fineUpdateEnable
Use the fine update.

uint32_t defaultAddend
Default addend value when fine update is enable, could be 2^32 / (refClk_Hz /
ENET_QOS_MICRSECS_ONESECOND / ENET_QOS_SYSTIME_REQUIRED_CLK_MHZ).

bool ptp1588V2Enable
The desired system time frequency. Must be lower than reference clock. (Only used
with fine correction method). ptp 1588 version 2 is used.

2.43. Enet_qos_qos 559



MCUXpresso SDK Documentation, Release 25.12.00

enet_qos_ts_rollover_type tsRollover
1588 time nanosecond rollover.

struct _enet_qos_est_gate_op
#include <fsl_enet_qos.h> Defines the EST gate operation structure.

struct _enet_qos_est_gcl
#include <fsl_enet_qos.h> Defines the EST gate control list structure.

Public Members

bool enable
Enable or disable EST

uint64_t cycleTime
Base Time 32 bits seconds 32 bits nanoseconds

uint32_t extTime
Cycle Time 32 bits seconds 32 bits nanoseconds

uint32_t numEntries
Time Extension 32 bits seconds 32 bits nanoseconds

enet_qos_est_gate_op_t *opList
Number of entries

struct _enet_qos_rxp_config
#include <fsl_enet_qos.h> Defines the ENET_QOS Rx parser configuration structure.

Public Members

uint32_t matchEnable
4-byte match data used for comparing with incoming packet

uint8_t acceptFrame
When matchEnable is set to 1, the matchData is used for comparing

uint8_t rejectFrame
When acceptFrame = 1 and data is matched, the frame will be sent to DMA channel

uint8_t inverseMatch
When rejectFrame = 1 and data is matched, the frame will be dropped

uint8_t nextControl
Inverse match

uint8_t reserved
Next instruction indexing control

uint8_t frameOffset
Reserved control fields

uint8_t okIndex
Frame offset in the packet data to be compared for match, in terms of 4 bytes.

uint8_t dmaChannel
Memory Index to be used next.

560 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t reserved2
The DMA channel enet_qos_rxp_dma_chn_t used for receiving the frame when frame
match and acceptFrame = 1

struct _enet_qos_buffer_config
#include <fsl_enet_qos.h> Defines the buffer descriptor configure structure.

Note:
a. The receive and transmit descriptor start address pointer and tail pointer must be

word-aligned.

b. The recommended minimum tx/rx ring length is 4.

c. The tx/rx descriptor tail address shall be the address pointer to the address just af-
ter the end of the last last descriptor. because only the descriptors between the start
address and the tail address will be used by DMA.

d. The descriptor address is the start address of all used contiguous memory. for exam-
ple, the rxDescStartAddrAlign is the start address of rxRingLen contiguous descriptor
memories for rx descriptor ring 0.

e. The “*rxBufferstartAddr” is the first element of rxRingLen (2*rxRingLen for double
buffers) rx buffers. It means the *rxBufferStartAddr is the rx buffer for the first de-
scriptor the *rxBufferStartAddr + 1 is the rx buffer for the second descriptor or the rx
buffer for the second buffer in the first descriptor. so please make sure the rxBuffer-
StartAddr is the address of a rxRingLen or 2*rxRingLen array.

Public Members

uint8_t rxRingLen
The length of receive buffer descriptor ring.

uint8_t txRingLen
The length of transmit buffer descriptor ring.

enet_qos_tx_bd_struct_t *txDescStartAddrAlign
Aligned transmit descriptor start address.

enet_qos_tx_bd_struct_t *txDescTailAddrAlign
Aligned transmit descriptor tail address.

enet_qos_frame_info_t *txDirtyStartAddr
Start address of the dirty tx frame information.

enet_qos_rx_bd_struct_t *rxDescStartAddrAlign
Aligned receive descriptor start address.

enet_qos_rx_bd_struct_t *rxDescTailAddrAlign
Aligned receive descriptor tail address.

uint32_t *rxBufferStartAddr
Start address of the rx buffers.

uint32_t rxBuffSizeAlign
Aligned receive data buffer size.

bool rxBuffNeedMaintain
Whether receive data buffer need cache maintain.

struct _enet_qos_cbs_config
#include <fsl_enet_qos.h> Defines the CBS configuration for queue.

2.43. Enet_qos_qos 561



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint16_t sendSlope
Send slope configuration.

uint16_t idleSlope
Idle slope configuration.

uint32_t highCredit
High credit.

uint32_t lowCredit
Low credit.

struct enet_qos_tx_queue_config
#include <fsl_enet_qos.h> Defines the queue configuration structure.

Public Members

enet_qos_queue_mode_t mode
tx queue mode configuration.

uint32_t weight
Refer to the MTL TxQ Quantum Weight register.

uint32_t priority
Refer to Transmit Queue Priority Mapping register.

enet_qos_cbs_config_t *cbsConfig
CBS configuration if queue use AVB mode.

struct enet_qos_rx_queue_config
#include <fsl_enet_qos.h> Defines the queue configuration structure.

Public Members

enet_qos_queue_mode_t mode
rx queue mode configuration.

uint8_t mapChannel
tx queue map dma channel.

uint32_t priority
Rx queue priority.

enet_qos_rx_queue_route_t packetRoute
Receive packet routing.

struct enet_qos_multiqueue_config
#include <fsl_enet_qos.h> Defines the configuration when multi-queue is used.

Public Members

enet_qos_dma_burstlen burstLen
Burst len for the multi-queue.

uint8_t txQueueUse
Used Tx queue count.

562 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enet_qos_mtl_multiqueue_txsche mtltxSche
Transmit schedule for multi-queue.

enet_qos_queue_tx_config_t txQueueConfig[ENET_QOS_DMA_CH_COUNT]
Tx Queue configuration.

uint8_t rxQueueUse
Used Rx queue count.

enet_qos_mtl_multiqueue_rxsche mtlrxSche
Receive schedule for multi-queue.

enet_qos_queue_rx_config_t rxQueueConfig[ENET_QOS_DMA_CH_COUNT]
Rx Queue configuration.

struct _enet_qos_config
#include <fsl_enet_qos.h> Defines the basic configuration structure for the ENET device.

Note: Default the signal queue is used so the “*multiqueueCfg” is set default with NULL.
Set the pointer with a valid configuration pointer if the multiple queues are required. If
multiple queue is enabled, please make sure the buffer configuration for all are prepared
also.

Public Members

uint16_t specialControl
The logic or of enet_qos_special_config_t

enet_qos_multiqueue_config_t *multiqueueCfg
Use multi-queue.

enet_qos_mii_mode_t miiMode
MII mode.

enet_qos_mii_speed_t miiSpeed
MII Speed.

enet_qos_mii_duplex_t miiDuplex
MII duplex.

uint16_t pauseDuration
Used in the tx flow control frame, only valid when kENET_QOS_FlowControlEnable is
set.

enet_qos_ptp_config_t *ptpConfig
PTP 1588 feature configuration

uint32_t csrClock_Hz
CSR clock frequency in HZ.

enet_qos_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.

enet_qos_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.

struct _enet_qos_tx_bd_ring
#include <fsl_enet_qos.h> Defines the ENET transmit buffer descriptor ring/queue structure.

2.43. Enet_qos_qos 563



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

enet_qos_tx_bd_struct_t *txBdBase
Buffer descriptor base address pointer.

uint16_t txGenIdx
tx generate index.

uint16_t txConsumIdx
tx consume index.

volatile uint16_t txDescUsed
tx descriptor used number.

uint16_t txRingLen
tx ring length.

struct _enet_qos_rx_bd_ring
#include <fsl_enet_qos.h> Defines the ENET receive buffer descriptor ring/queue structure.

Public Members

enet_qos_rx_bd_struct_t *rxBdBase
Buffer descriptor base address pointer.

uint16_t rxGenIdx
The current available receive buffer descriptor pointer.

uint16_t rxRingLen
Receive ring length.

uint32_t rxBuffSizeAlign
Receive buffer size.

struct _enet_qos_handle
#include <fsl_enet_qos.h> Defines the ENET handler structure.

Public Members

uint8_t txQueueUse
Used tx queue count.

uint8_t rxQueueUse
Used rx queue count.

bool doubleBuffEnable
The double buffer is used in the descriptor.

bool rxintEnable
Rx interrupt enabled.

bool rxMaintainEnable[ENET_QOS_DMA_CH_COUNT]
Rx buffer cache maintain enabled.

enet_qos_rx_bd_ring_t rxBdRing[ENET_QOS_DMA_CH_COUNT]
Receive buffer descriptor.

enet_qos_tx_bd_ring_t txBdRing[ENET_QOS_DMA_CH_COUNT]
Transmit buffer descriptor.

564 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enet_qos_tx_dirty_ring_t txDirtyRing[ENET_QOS_DMA_CH_COUNT]
Transmit dirty buffers addresses.

uint32_t *rxBufferStartAddr[ENET_QOS_DMA_CH_COUNT]
Rx buffer start address for reInitialize.

enet_qos_callback_t callback
Callback function.

void *userData
Callback function parameter.

uint8_t multicastCount[64]
Multicast collisions counter

enet_qos_rx_alloc_callback_t rxBuffAlloc
Callback to alloc memory, must be provided for zero-copy Rx.

enet_qos_rx_free_callback_t rxBuffFree
Callback to free memory, must be provided for zero-copy Rx.

struct _enet_qos_state
#include <fsl_enet_qos.h> Defines the ENET state structure.

Note: The structure contains saved state for the instance. It could be stored in
enet_qos_handle_t, but that’s used only with the transactional API.

Public Members

enet_qos_mii_mode_t miiMode
MII mode.

struct _enet_qos_buffer_struct
#include <fsl_enet_qos.h> Defines the frame buffer structure.

Public Members

void *buffer
The buffer store the whole or partial frame.

uint16_t length
The byte length of this buffer.

struct _enet_qos_rx_frame_error
#include <fsl_enet_qos.h> Defines the Rx frame error structure.

Public Members

bool rxDstAddrFilterErr
Destination Address Filter Fail.

bool rxSrcAddrFilterErr
SA Address Filter Fail.

bool rxDribbleErr
Dribble error.

2.43. Enet_qos_qos 565



MCUXpresso SDK Documentation, Release 25.12.00

bool rxReceiveErr
Receive error.

bool rxOverFlowErr
Receive over flow.

bool rxWatchDogErr
Watch dog timeout.

bool rxGaintPacketErr
Receive gaint packet.

bool rxCrcErr
Receive CRC error.

struct _enet_qos_rx_frame_attribute_struct
#include <fsl_enet_qos.h>

Public Members

bool isTsAvail
Rx frame timestamp is available or not.

enet_qos_ptp_time_t timestamp
The nanosecond part timestamp of this Rx frame.

struct _enet_qos_rx_frame_struct
#include <fsl_enet_qos.h> Defines the Rx frame data structure.

Public Members

enet_qos_buffer_struct_t *rxBuffArray
Rx frame buffer structure.

uint16_t totLen
Rx frame total length.

enet_qos_rx_frame_attribute_t rxAttribute
Rx frame attribute structure.

enet_qos_rx_frame_error_t rxFrameError
Rx frame error.

struct _enet_qos_transfer_stats
#include <fsl_enet_qos.h> Defines the ENET QOS transfer statistics structure.

Public Members

uint32_t statsRxFrameCount
Rx frame number.

uint32_t statsRxCrcErr
Rx frame number with CRC error.

uint32_t statsRxAlignErr
Rx frame number with alignment error.

uint32_t statsRxLengthErr
Rx frame length field doesn’t equal to packet size.

566 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t statsRxFifoOverflowErr
Rx FIFO overflow count.

uint32_t statsTxFrameCount
Tx frame number.

uint32_t statsTxFifoUnderRunErr
Tx FIFO underrun count.

2.44 EWM: External Watchdog Monitor Driver

void EWM_Init(EWM_Type *base, const ewm_config_t *config)
Initializes the EWM peripheral.

This function is used to initialize the EWM. After calling, the EWM runs immediately ac-
cording to the configuration. Note that, except for the interrupt enable control bit, other
control bits and registers are write once after a CPU reset. Modifying them more than once
generates a bus transfer error.

This is an example.

ewm_config_t config;
EWM_GetDefaultConfig(&config);
config.compareHighValue = 0xAAU;
EWM_Init(ewm_base,&config);

Parameters
• base – EWM peripheral base address

• config – The configuration of the EWM

void EWM_Deinit(EWM_Type *base)
Deinitializes the EWM peripheral.

This function is used to shut down the EWM.

Parameters
• base – EWM peripheral base address

void EWM_GetDefaultConfig(ewm_config_t *config)
Initializes the EWM configuration structure.

This function initializes the EWM configuration structure to default values. The default
values are as follows.

ewmConfig->enableEwm = true;
ewmConfig->enableEwmInput = false;
ewmConfig->setInputAssertLogic = false;
ewmConfig->enableInterrupt = false;
ewmConfig->ewm_lpo_clock_source_t = kEWM_LpoClockSource0;
ewmConfig->prescaler = 0;
ewmConfig->compareLowValue = 0;
ewmConfig->compareHighValue = 0xFEU;

See also:
ewm_config_t

Parameters

2.44. EWM: External Watchdog Monitor Driver 567



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the EWM configuration structure.

static inline void EWM_EnableInterrupts(EWM_Type *base, uint32_t mask)
Enables the EWM interrupt.

This function enables the EWM interrupt.

Parameters
• base – EWM peripheral base address

• mask – The interrupts to enable The parameter can be combination of the
following source if defined

– kEWM_InterruptEnable

static inline void EWM_DisableInterrupts(EWM_Type *base, uint32_t mask)
Disables the EWM interrupt.

This function enables the EWM interrupt.

Parameters
• base – EWM peripheral base address

• mask – The interrupts to disable The parameter can be combination of the
following source if defined

– kEWM_InterruptEnable

static inline uint32_t EWM_GetStatusFlags(EWM_Type *base)
Gets all status flags.

This function gets all status flags.

This is an example for getting the running flag.

uint32_t status;
status = EWM_GetStatusFlags(ewm_base) & kEWM_RunningFlag;

See also:
_ewm_status_flags_t

• True: a related status flag has been set.

• False: a related status flag is not set.

Parameters
• base – EWM peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

void EWM_Refresh(EWM_Type *base)
Services the EWM.

This function resets the EWM counter to zero.

Parameters
• base – EWM peripheral base address

FSL_EWM_DRIVER_VERSION
EWM driver version 2.0.4.

568 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _ewm_lpo_clock_source
Describes EWM clock source.

Values:

enumerator kEWM_LpoClockSource0
EWM clock sourced from lpo_clk[0]

enumerator kEWM_LpoClockSource1
EWM clock sourced from lpo_clk[1]

enumerator kEWM_LpoClockSource2
EWM clock sourced from lpo_clk[2]

enumerator kEWM_LpoClockSource3
EWM clock sourced from lpo_clk[3]

enum _ewm_interrupt_enable_t
EWM interrupt configuration structure with default settings all disabled.

This structure contains the settings for all of EWM interrupt configurations.

Values:

enumerator kEWM_InterruptEnable
Enable the EWM to generate an interrupt

enum _ewm_status_flags_t
EWM status flags.

This structure contains the constants for the EWM status flags for use in the EWM functions.

Values:

enumerator kEWM_RunningFlag
Running flag, set when EWM is enabled

typedef enum _ewm_lpo_clock_source ewm_lpo_clock_source_t
Describes EWM clock source.

typedef struct _ewm_config ewm_config_t
Data structure for EWM configuration.

This structure is used to configure the EWM.

struct _ewm_config
#include <fsl_ewm.h> Data structure for EWM configuration.

This structure is used to configure the EWM.

Public Members

bool enableEwm
Enable EWM module

bool enableEwmInput
Enable EWM_in input

bool setInputAssertLogic
EWM_in signal assertion state

bool enableInterrupt
Enable EWM interrupt

2.44. EWM: External Watchdog Monitor Driver 569



MCUXpresso SDK Documentation, Release 25.12.00

ewm_lpo_clock_source_t clockSource
Clock source select

uint8_t prescaler
Clock prescaler value

uint8_t compareLowValue
Compare low-register value

uint8_t compareHighValue
Compare high-register value

2.45 FlexCAN: Flex Controller Area Network Driver

2.46 FlexCAN Driver

bool FLEXCAN_IsInstanceHasFDMode(CAN_Type *base)
Determine whether the FlexCAN instance support CAN FD mode at run time.

Note: Use this API only if different soc parts share the SOC part name macro define. Oth-
erwise, a different SOC part name can be used to determine at compile time whether the
FlexCAN instance supports CAN FD mode or not. If need use this API to determine if CAN FD
mode is supported, the FLEXCAN_Init function needs to be executed first, and then call this
API and use the return to value determines whether to supports CAN FD mode, if return
true, continue calling FLEXCAN_FDInit to enable CAN FD mode.

Parameters
• base – FlexCAN peripheral base address.

Returns
return TRUE if instance support CAN FD mode, FALSE if instance only support
classic CAN (2.0) mode.

uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
Get Mailbox offset number by dword.

This function gets the offset number of the specified mailbox. Mailbox is not consecutive be-
tween memory regions when payload is not 8 bytes so need to calculate the specified mail-
box address. For example, in the first memory region, MB[0].CS address is 0x4002_4080.
For 32 bytes payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning
10 dword after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – Mailbox index.

Returns
Mailbox address offset in word.

status_t FLEXCAN_EnterFreezeMode(CAN_Type *base)
Enter FlexCAN Freeze Mode.

This function makes the FlexCAN work under Freeze Mode.

Parameters

570 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexCAN peripheral base address.

Returns
kStatus_Success Enter Freeze Mode successful kStatus_Timeout Timeout
when wait for Freeze Mode Acknowledge

status_t FLEXCAN_ExitFreezeMode(CAN_Type *base)
Exit FlexCAN Freeze Mode.

This function makes the FlexCAN leave Freeze Mode.

Parameters
• base – FlexCAN peripheral base address.

Returns
kStatus_Success Enter Freeze Mode successful kStatus_Timeout Timeout
when wait for Freeze Mode Acknowledge

uint32_t FLEXCAN_GetInstance(CAN_Type *base)
Get the FlexCAN instance from peripheral base address.

Parameters
• base – FlexCAN peripheral base address.

Returns
FlexCAN instance.

bool FLEXCAN_CalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t
sourceClock_Hz, flexcan_timing_config_t
*pTimingConfig)

Calculates the improved timing values by specific bit Rates for classical CAN.

This function use to calculates the Classical CAN timing values according to the given bit
rate. The Calculated timing values will be set in CTRL1/CBT/ENCBT register. The calculation
is based on the recommendation of the CiA 301 v4.2.0 and previous version document.

Parameters
• base – FlexCAN peripheral base address.

• bitRate – The classical CAN speed in bps defined by user, should be less
than or equal to 1Mbps.

• sourceClock_Hz – The Source clock frequency in Hz.

• pTimingConfig – Pointer to the FlexCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration.

void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t sourceClock_Hz)
Initializes a FlexCAN instance.

This function initializes the FlexCAN module with user-defined settings. This example
shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_Init
function by passing in these parameters.

flexcan_config_t flexcanConfig;
flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
flexcanConfig.bitRate = 1000000U;
flexcanConfig.maxMbNum = 16;
flexcanConfig.enableLoopBack = false;
flexcanConfig.enableSelfWakeup = false;
flexcanConfig.enableIndividMask = false;
flexcanConfig.enableDoze = false;

(continues on next page)

2.46. FlexCAN Driver 571



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
flexcanConfig.disableSelfReception = false;
flexcanConfig.enableListenOnlyMode = false;
flexcanConfig.timingConfig = timingConfig;
FLEXCAN_Init(CAN0, &flexcanConfig, 40000000UL);

Parameters
• base – FlexCAN peripheral base address.

• pConfig – Pointer to the user-defined configuration structure.

• sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.

bool FLEXCAN_FDCalculateImprovedTimingValues(CAN_Type *base, uint32_t bitRate, uint32_t
bitRateFD, uint32_t sourceClock_Hz,
flexcan_timing_config_t *pTimingConfig)

Calculates the improved timing values by specific bit rates for CANFD.

This function use to calculates the CANFD timing values according to the given nominal
phase bit rate and data phase bit rate. The Calculated timing values will be set in CBT/ENCBT
and FDCBT/EDCBT registers. The calculation is based on the recommendation of the CiA
1301 v1.0.0 document.

Parameters
• base – FlexCAN peripheral base address.

• bitRate – The CANFD bus control speed in bps defined by user.

• bitRateFD – The CAN FD data phase speed in bps defined by user. Equal to
bitRate means disable bit rate switching.

• sourceClock_Hz – The Source clock frequency in Hz.

• pTimingConfig – Pointer to the FlexCAN timing configuration structure.

Returns
TRUE if timing configuration found, FALSE if failed to find configuration

void FLEXCAN_FDInit(CAN_Type *base, const flexcan_config_t *pConfig, uint32_t
sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)

Initializes a FlexCAN instance.

This function initializes the FlexCAN module with user-defined settings. This example
shows how to set up the flexcan_config_t parameters and how to call the FLEXCAN_FDInit
function by passing in these parameters.

flexcan_config_t flexcanConfig;
flexcanConfig.clkSrc = kFLEXCAN_ClkSrc0;
flexcanConfig.bitRate = 1000000U;
flexcanConfig.bitRateFD = 2000000U;
flexcanConfig.maxMbNum = 16;
flexcanConfig.enableLoopBack = false;
flexcanConfig.enableSelfWakeup = false;
flexcanConfig.enableIndividMask = false;
flexcanConfig.disableSelfReception = false;
flexcanConfig.enableListenOnlyMode = false;
flexcanConfig.enableDoze = false;
flexcanConfig.timingConfig = timingConfig;
FLEXCAN_FDInit(CAN0, &flexcanConfig, 80000000UL, kFLEXCAN_16BperMB, true);

Parameters
• base – FlexCAN peripheral base address.

572 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• pConfig – Pointer to the user-defined configuration structure.

• sourceClock_Hz – FlexCAN Protocol Engine clock source frequency in Hz.

• dataSize – FlexCAN Message Buffer payload size. The actual transmitted
or received CAN FD frame data size needs to be less than or equal to this
value.

• brs – True if bit rate switch is enabled in FD mode.

void FLEXCAN_Deinit(CAN_Type *base)
De-initializes a FlexCAN instance.

This function disables the FlexCAN module clock and sets all register values to the reset
value.

Parameters
• base – FlexCAN peripheral base address.

void FLEXCAN_GetDefaultConfig(flexcan_config_t *pConfig)
Gets the default configuration structure.

This function initializes the FlexCAN configuration structure to de-
fault values. The default values are as follows. flexcanConfig->clkSrc
= kFLEXCAN_ClkSrc0; flexcanConfig->bitRate = 1000000U; flexcanConfig-
>bitRateFD = 2000000U; flexcanConfig->maxMbNum = 16; flexcanConfig-
>enableLoopBack = false; flexcanConfig->enableSelfWakeup = false; flexcanConfig-
>enableIndividMask = false; flexcanConfig->disableSelfReception = false; flexcanConfig-
>enableListenOnlyMode = false; flexcanConfig->enableDoze = false; flexcanConfig-
>enablePretendedeNetworking = false; flexcanConfig->enableMemoryErrorControl
= true; flexcanConfig->enableNonCorrectableErrorEnterFreeze = true;
flexcanConfig->enableTransceiverDelayMeasure = true; flexcanConfig-
>enableRemoteRequestFrameStored = true; flexcanConfig->payloadEndianness = kFLEX-
CAN_bigEndian; flexcanConfig.timingConfig = timingConfig;

Parameters
• pConfig – Pointer to the FlexCAN configuration structure.

void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN classical CAN protocol timing characteristic.

This function gives user settings to classical CAN or CAN FD nominal phase timing char-
acteristic. The function is for an experienced user. For less experienced users, call the
FLEXCAN_SetBitRate() instead.

Note: Calling FLEXCAN_SetTimingConfig() overrides the bit rate set in FLEXCAN_Init() or
FLEXCAN_SetBitRate().

Parameters
• base – FlexCAN peripheral base address.

• pConfig – Pointer to the timing configuration structure.

status_t FLEXCAN_SetBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t bitRate_Bps)
Set bit rate of FlexCAN classical CAN frame or CAN FD frame nominal phase.

This function set the bit rate of classical CAN frame or CAN FD frame nominal phase base
on FLEXCAN_CalculateImprovedTimingValues() API calculated timing values.

Note: Calling FLEXCAN_SetBitRate() overrides the bit rate set in FLEXCAN_Init().

2.46. FlexCAN Driver 573



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FlexCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• bitRate_Bps – Bit rate in Bps.

Returns
kStatus_Success - Set CAN baud rate (only Nominal phase) successfully.

void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *pConfig)
Sets the FlexCAN CANFD data phase timing characteristic.

This function gives user settings to CANFD data phase timing characteristic. The function
is for an experienced user. For less experienced users, call the FLEXCAN_SetFDBitRate() to
set both Nominal/Data bit Rate instead.

Note: Calling FLEXCAN_SetFDTimingConfig() overrides the data phase bit rate set in FLEX-
CAN_FDInit()/FLEXCAN_SetFDBitRate().

Parameters
• base – FlexCAN peripheral base address.

• pConfig – Pointer to the timing configuration structure.

status_t FLEXCAN_SetFDBitRate(CAN_Type *base, uint32_t sourceClock_Hz, uint32_t
bitRateN_Bps, uint32_t bitRateD_Bps)

Set bit rate of FlexCAN FD frame.

This function set the baud rate of FLEXCAN FD base on FLEX-
CAN_FDCalculateImprovedTimingValues() API calculated timing values.

Parameters
• base – FlexCAN peripheral base address.

• sourceClock_Hz – Source Clock in Hz.

• bitRateN_Bps – Nominal bit Rate in Bps.

• bitRateD_Bps – Data bit Rate in Bps.

Returns
kStatus_Success - Set CAN FD bit rate (include Nominal and Data phase) suc-
cessfully.

void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive message buffer global mask.

This function sets the global mask for the FlexCAN message buffer in a matching process.
The configuration is only effective when the Rx individual mask is disabled in the FLEX-
CAN_Init().

Parameters
• base – FlexCAN peripheral base address.

• mask – Rx Message Buffer Global Mask value.

void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
Sets the FlexCAN receive FIFO global mask.

This function sets the global mask for FlexCAN FIFO in a matching process.

Parameters

574 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexCAN peripheral base address.

• mask – Rx Fifo Global Mask value.

void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
Sets the FlexCAN receive individual mask.

This function sets the individual mask for the FlexCAN matching process. The configuration
is only effective when the Rx individual mask is enabled in the FLEXCAN_Init(). If the Rx
FIFO is disabled, the individual mask is applied to the corresponding Message Buffer. If the
Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
the Rx Filter with the same index. Note that only the first 32 individual masks can be used
as the Rx FIFO filter mask.

Parameters
• base – FlexCAN peripheral base address.

• maskIdx – The Index of individual Mask.

• mask – Rx Individual Mask value.

void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.

This function aborts the previous transmission, cleans the Message Buffer, and configures
it as a Transmit Message Buffer.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• enable – Enable/disable Tx Message Buffer.

– true: Enable Tx Message Buffer.

– false: Disable Tx Message Buffer.

void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t
*pRxMbConfig, bool enable)

Configures a FlexCAN Receive Message Buffer.

This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Mes-
sage Buffer. User should invoke this API when CTRL2[RRS]=1. When CTRL2[RRS]=1, frame’s
ID is compared to the IDs of the receive mailboxes with the CODE field configured as kFLEX-
CAN_RxMbEmpty, kFLEXCAN_RxMbFull or kFLEXCAN_RxMbOverrun. Message buffer will
store the remote frame in the same fashion of a data frame. No automatic remote response
frame will be generated. User need to setup another message buffer to respond remote
request.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration struc-
ture.

• enable – Enable/disable Rx Message Buffer.

– true: Enable Rx Message Buffer.

– false: Disable Rx Message Buffer.

2.46. FlexCAN Driver 575



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXCAN_SetMbID(CAN_Type *base, uint8_t mbIdx, uint32_t id)
Configures a FlexCAN Message Buffer identifier.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• id – CAN Message Buffer Identifier, should use FLEXCAN_ID_EXT() or FLEX-
CAN_ID_STD() macro.

void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
Configures a FlexCAN transmit message buffer.

This function aborts the previous transmission, cleans the Message Buffer, and configures
it as a Transmit Message Buffer.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• enable – Enable/disable Tx Message Buffer.

– true: Enable Tx Message Buffer.

– false: Disable Tx Message Buffer.

void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const
flexcan_rx_mb_config_t *pRxMbConfig, bool enable)

Configures a FlexCAN Receive Message Buffer.

This function cleans a FlexCAN build-in Message Buffer and configures it as a Receive Mes-
sage Buffer.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• pRxMbConfig – Pointer to the FlexCAN Message Buffer configuration struc-
ture.

• enable – Enable/disable Rx Message Buffer.

– true: Enable Rx Message Buffer.

– false: Disable Rx Message Buffer.

static inline void FLEXCAN_SetFDMbID(CAN_Type *base, uint8_t mbIdx, uint32_t id)
Configures a FlexCAN Message Buffer identifier.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• id – CAN Message Buffer Identifier, should use FLEXCAN_ID_EXT() or FLEX-
CAN_ID_STD() macro.

void FLEXCAN_SetRemoteResponseMbConfig(CAN_Type *base, uint8_t mbIdx, const
flexcan_frame_t *pFrame)

Configures a FlexCAN Remote Response Message Buffer.

User should invoke this API when CTRL2[RRS]=0. When CTRL2[RRS]=0, frame’s ID is
compared to the IDs of the receive mailboxes with the CODE field configured as kFLEX-
CAN_RxMbRanswer. If there is a matching ID, then this mailbox content will be transmitted

576 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

as response. The received remote request frame is not stored in receive buffer. It is only
used to trigger a transmission of a frame in response.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The Message Buffer index.

• pFrame – Pointer to CAN message frame structure for response.

void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *pRxFifoConfig,
bool enable)

Configures the FlexCAN Legacy Rx FIFO.

This function configures the FlexCAN Rx FIFO with given configuration.

Note: Legacy Rx FIFO only can receive classic CAN message.

Parameters
• base – FlexCAN peripheral base address.

• pRxFifoConfig – Pointer to the FlexCAN Legacy Rx FIFO configuration struc-
ture. Can be NULL when enable parameter is false.

• enable – Enable/disable Legacy Rx FIFO.

– true: Enable Legacy Rx FIFO.

– false: Disable Legacy Rx FIFO.

void FLEXCAN_SetPNConfig(CAN_Type *base, const flexcan_pn_config_t *pConfig)
Configures the FlexCAN Pretended Networking mode.

This function configures the FlexCAN Pretended Networking mode with given configura-
tion.

Parameters
• base – FlexCAN peripheral base address.

• pConfig – Pointer to the FlexCAN Rx FIFO configuration structure.

static inline uint64_t FLEXCAN_GetStatusFlags(CAN_Type *base)
Gets the FlexCAN module interrupt flags.

This function gets all FlexCAN status flags. The flags are returned as the logical OR value
of the enumerators _flexcan_flags. To check the specific status, compare the return value
with enumerators in _flexcan_flags.

Parameters
• base – FlexCAN peripheral base address.

Returns
FlexCAN status flags which are ORed by the enumerators in the _flexcan_flags.

static inline void FLEXCAN_ClearStatusFlags(CAN_Type *base, uint64_t mask)
Clears status flags with the provided mask.

This function clears the FlexCAN status flags with a provided mask. An automatically
cleared flag can’t be cleared by this function.

Parameters
• base – FlexCAN peripheral base address.

• mask – The status flags to be cleared, it is logical OR value of _flexcan_flags.

2.46. FlexCAN Driver 577



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXCAN_GetBusErrCount(CAN_Type *base, uint8_t *txErrBuf, uint8_t
*rxErrBuf)

Gets the FlexCAN Bus Error Counter value.

This function gets the FlexCAN Bus Error Counter value for both Tx and Rx direction. These
values may be needed in the upper layer error handling.

Parameters
• base – FlexCAN peripheral base address.

• txErrBuf – Buffer to store Tx Error Counter value.

• rxErrBuf – Buffer to store Rx Error Counter value.

static inline uint64_t FLEXCAN_GetMbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN low 64 Message Buffer interrupt flags.

This function gets the interrupt flags of a given Message Buffers.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

Returns
The status of given Message Buffers.

static inline uint64_t FLEXCAN_GetHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Gets the FlexCAN High 64 Message Buffer interrupt flags.

Valid only if the number of available MBs exceeds 64.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

Returns
The status of given Message Buffers.

static inline void FLEXCAN_ClearMbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN low 64 Message Buffer interrupt flags.

This function clears the interrupt flags of a given Message Buffers.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

static inline void FLEXCAN_ClearHigh64MbStatusFlags(CAN_Type *base, uint64_t mask)
Clears the FlexCAN High 64 Message Buffer interrupt flags.

Valid only if the number of available MBs exceeds 64.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

void FLEXCAN_GetMemoryErrorReportStatus(CAN_Type *base,
flexcan_memory_error_report_status_t
*errorStatus)

Gets the FlexCAN Memory Error Report registers status.

This function gets the FlexCAN Memory Error Report registers status.

578 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FlexCAN peripheral base address.

• errorStatus – Pointer to FlexCAN Memory Error Report registers status
structure.

static inline uint8_t FLEXCAN_GetPNMatchCount(CAN_Type *base)
Gets the FlexCAN Number of Matches when in Pretended Networking.

This function gets the number of times a given message has matched the predefined filter-
ing criteria for ID and/or PL before a wakeup event.

Parameters
• base – FlexCAN peripheral base address.

Returns
The number of received wake up msessages.

static inline void FLEXCAN_EnableInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN interrupts according to the provided mask.

This function enables the FlexCAN interrupts according to the provided mask. The mask is
a logical OR of enumeration members, see _flexcan_interrupt_enable.

Parameters
• base – FlexCAN peripheral base address.

• mask – The interrupts to enable. Logical OR of _flexcan_interrupt_enable.

static inline void FLEXCAN_DisableInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN interrupts according to the provided mask.

This function disables the FlexCAN interrupts according to the provided mask. The mask
is a logical OR of enumeration members, see _flexcan_interrupt_enable.

Parameters
• base – FlexCAN peripheral base address.

• mask – The interrupts to disable. Logical OR of _flexcan_interrupt_enable.

static inline void FLEXCAN_EnableMbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN low 64 Message Buffer interrupts.

This function enables the interrupts of given Message Buffers.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

static inline void FLEXCAN_EnableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Enables FlexCAN high 64 Message Buffer interrupts.

Valid only if the number of available MBs exceeds 64.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

static inline void FLEXCAN_DisableMbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN low 64 Message Buffer interrupts.

This function disables the interrupts of given Message Buffers.

Parameters

2.46. FlexCAN Driver 579



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

static inline void FLEXCAN_DisableHigh64MbInterrupts(CAN_Type *base, uint64_t mask)
Disables FlexCAN high 64 Message Buffer interrupts.

Valid only if the number of available MBs exceeds 64.

Parameters
• base – FlexCAN peripheral base address.

• mask – The ORed FlexCAN Message Buffer mask.

void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
Enables or disables the FlexCAN Rx FIFO DMA request.

This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.

Parameters
• base – FlexCAN peripheral base address.

• enable – true to enable, false to disable.

static inline uintptr_t FLEXCAN_GetRxFifoHeadAddr(CAN_Type *base)
Gets the Rx FIFO Head address.

This function returns the FlexCAN Rx FIFO Head address, which is mainly used for the
DMA/eDMA use case.

Parameters
• base – FlexCAN peripheral base address.

Returns
FlexCAN Rx FIFO Head address.

static inline status_t FLEXCAN_Enable(CAN_Type *base, bool enable)
Enables or disables the FlexCAN module operation.

This function enables or disables the FlexCAN module.

Parameters
• base – FlexCAN base pointer.

• enable – true to enable, false to disable.

Returns
kStatus_Success Enable FlexCAN module successful kStatus_Timeout Timeout
when wait for Low-Power Mode Acknowledge

status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t
*pTxFrame)

Writes a FlexCAN Message to the Transmit Message Buffer.

This function writes a CAN Message to the specified Transmit Message Buffer and changes
the Message Buffer state to start CAN Message transmit. After that the function returns
immediately.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The FlexCAN Message Buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

Return values

580 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Receive Message Buffer.

This function reads a CAN message from a specified Receive Message Buffer. The function
fills a receive CAN message frame structure with just received data and activates the Mes-
sage Buffer again. The function returns immediately.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The FlexCAN Message Buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Rx Message Buffer is full and has been read successfully.

• kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already over-
flowed and has been read successfully.

• kStatus_Fail – - Rx Message Buffer is empty.

status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t
*pTxFrame)

Writes a FlexCAN FD Message to the Transmit Message Buffer.

This function writes a CAN FD Message to the specified Transmit Message Buffer and
changes the Message Buffer state to start CAN FD Message transmit. After that the func-
tion returns immediately.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The FlexCAN FD Message Buffer index.

• pTxFrame – Pointer to CAN FD message frame to be sent.

Return values
• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t
*pRxFrame)

Reads a FlexCAN FD Message from Receive Message Buffer.

This function reads a CAN FD message from a specified Receive Message Buffer. The func-
tion fills a receive CAN FD message frame structure with just received data and activates
the Message Buffer again. The function returns immediately.

Parameters
• base – FlexCAN peripheral base address.

• mbIdx – The FlexCAN FD Message Buffer index.

• pRxFrame – Pointer to CAN FD message frame structure for reception.

Return values
• kStatus_Success – - Rx Message Buffer is full and has been read successfully.

• kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already over-
flowed and has been read successfully.

2.46. FlexCAN Driver 581



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Fail – - Rx Message Buffer is empty.

status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *pRxFrame)
Reads a FlexCAN Message from Legacy Rx FIFO.

This function reads a CAN message from the FlexCAN Legacy Rx FIFO.

Parameters
• base – FlexCAN peripheral base address.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Message from Rx FIFO successfully.

• kStatus_Fail – - Rx FIFO is not enabled.

status_t FLEXCAN_ReadPNWakeUpMB(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t
*pRxFrame)

Reads a FlexCAN Message from Wake Up MB.

This function reads a CAN message from the FlexCAN Wake up Message Buffers. There
are four Wake up Message Buffers (WMBs) used to store incoming messages in Pretended
Networking mode. The WMB index indicates the arrival order. The last message is stored
in WMB3.

Parameters
• base – FlexCAN peripheral base address.

• pRxFrame – Pointer to CAN message frame structure for reception.

• mbIdx – The FlexCAN Wake up Message Buffer index. Range in 0x0 ~ 0x3.

Return values
• kStatus_Success – - Read Message from Wake up Message Buffer success-

fully.

• kStatus_Fail – - Wake up Message Buffer has no valid content.

status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t
*pTxFrame)

Performs a polling send transaction on the CAN bus.

Note: A transfer handle does not need to be created before calling this API.

Parameters
• base – FlexCAN peripheral base pointer.

• mbIdx – The FlexCAN FD Message Buffer index.

• pTxFrame – Pointer to CAN FD message frame to be sent.

Return values
• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

• kStatus_Timeout – - Failed to send frames within specific time.

582 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx,
flexcan_fd_frame_t *pRxFrame)

Performs a polling receive transaction on the CAN bus.

Note: A transfer handle does not need to be created before calling this API.

Parameters
• base – FlexCAN peripheral base pointer.

• mbIdx – The FlexCAN FD Message Buffer index.

• pRxFrame – Pointer to CAN FD message frame structure for reception.

Return values
• kStatus_Success – - Rx Message Buffer is full and has been read successfully.

• kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already over-
flowed and has been read successfully.

• kStatus_Fail – - Rx Message Buffer is empty.

• kStatus_Timeout – - Failed to receive frames within specific time.

status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle,
flexcan_mb_transfer_t *pMbXfer)

Sends a message using IRQ.

This function sends a message using IRQ. This is a non-blocking function, which returns
right away. When messages have been sent out, the send callback function is called.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flex-
can_mb_transfer_t.

Return values
• kStatus_Success – Start Tx Message Buffer sending process successfully.

• kStatus_Fail – Write Tx Message Buffer failed.

• kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.

status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle,
flexcan_mb_transfer_t *pMbXfer)

Receives a message using IRQ.

This function receives a message using IRQ. This is non-blocking function, which returns
right away. When the message has been received, the receive callback function is called.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• pMbXfer – FlexCAN FD Message Buffer transfer structure. See the flex-
can_mb_transfer_t.

Return values
• kStatus_Success – - Start Rx Message Buffer receiving process successfully.

2.46. FlexCAN Driver 583



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.

void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t
mbIdx)

Aborts the interrupt driven message send process.

This function aborts the interrupt driven message send process.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• mbIdx – The FlexCAN FD Message Buffer index.

void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t
mbIdx)

Aborts the interrupt driven message receive process.

This function aborts the interrupt driven message receive process.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• mbIdx – The FlexCAN FD Message Buffer index.

status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t
*pTxFrame)

Performs a polling send transaction on the CAN bus.

Note: A transfer handle does not need to be created before calling this API.

Parameters
• base – FlexCAN peripheral base pointer.

• mbIdx – The FlexCAN Message Buffer index.

• pTxFrame – Pointer to CAN message frame to be sent.

Return values
• kStatus_Success – - Write Tx Message Buffer Successfully.

• kStatus_Fail – - Tx Message Buffer is currently in use.

• kStatus_Timeout – - Failed to send frames within specific time.

status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t
*pRxFrame)

Performs a polling receive transaction on the CAN bus.

Note: A transfer handle does not need to be created before calling this API.

Parameters
• base – FlexCAN peripheral base pointer.

• mbIdx – The FlexCAN Message Buffer index.

• pRxFrame – Pointer to CAN message frame structure for reception.

584 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_Success – - Rx Message Buffer is full and has been read successfully.

• kStatus_FLEXCAN_RxOverflow – - Rx Message Buffer is already over-
flowed and has been read successfully.

• kStatus_Fail – - Rx Message Buffer is empty.

• kStatus_Timeout – - Failed to receive frames within specific time.

status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *pRxFrame)
Performs a polling receive transaction from Legacy Rx FIFO on the CAN bus.

Note: A transfer handle does not need to be created before calling this API.

Parameters
• base – FlexCAN peripheral base pointer.

• pRxFrame – Pointer to CAN message frame structure for reception.

Return values
• kStatus_Success – - Read Message from Rx FIFO successfully.

• kStatus_Fail – - Rx FIFO is not enabled.

• kStatus_Timeout – - Failed to receive frames within specific time.

void FLEXCAN_TransferCreateHandle(CAN_Type *base, flexcan_handle_t *handle,
flexcan_transfer_callback_t callback, void *userData)

Initializes the FlexCAN handle.

This function initializes the FlexCAN handle, which can be used for other FlexCAN transac-
tional APIs. Usually, for a specified FlexCAN instance, call this API once to get the initialized
handle.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• callback – The callback function.

• userData – The parameter of the callback function.

status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle,
flexcan_mb_transfer_t *pMbXfer)

Sends a message using IRQ.

This function sends a message using IRQ. This is a non-blocking function, which returns
right away. When messages have been sent out, the send callback function is called.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• pMbXfer – FlexCAN Message Buffer transfer structure. See the flex-
can_mb_transfer_t.

Return values
• kStatus_Success – Start Tx Message Buffer sending process successfully.

• kStatus_Fail – Write Tx Message Buffer failed.

2.46. FlexCAN Driver 585



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FLEXCAN_TxBusy – Tx Message Buffer is in use.

status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle,
flexcan_mb_transfer_t *pMbXfer)

Receives a message using IRQ.

This function receives a message using IRQ. This is non-blocking function, which returns
right away. When the message has been received, the receive callback function is called.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• pMbXfer – FlexCAN Message Buffer transfer structure. See the flex-
can_mb_transfer_t.

Return values
• kStatus_Success – - Start Rx Message Buffer receiving process successfully.

• kStatus_FLEXCAN_RxBusy – - Rx Message Buffer is in use.

status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle,
flexcan_fifo_transfer_t *pFifoXfer)

Receives a message from Rx FIFO using IRQ.

This function receives a message using IRQ. This is a non-blocking function, which returns
right away. When all messages have been received, the receive callback function is called.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• pFifoXfer – FlexCAN Rx FIFO transfer structure. See the flex-
can_fifo_transfer_t.

Return values
• kStatus_Success – - Start Rx FIFO receiving process successfully.

• kStatus_FLEXCAN_RxFifoBusy – - Rx FIFO is currently in use.

status_t FLEXCAN_TransferGetReceiveFifoCount(CAN_Type *base, flexcan_handle_t *handle,
size_t *count)

Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• count – Number of CAN messages receive so far by the non-blocking trans-
action.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

uint32_t FLEXCAN_GetTimeStamp(flexcan_handle_t *handle, uint8_t mbIdx)
Gets the detail index of Mailbox’s Timestamp by handle.

Then function can only be used when calling non-blocking Data transfer (TX/RX)
API, After TX/RX data transfer done (User can get the status by handler’s callback

586 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

function), we can get the detail index of Mailbox’s timestamp by handle, Detail non-
blocking data transfer API (TX/RX) contain. -FLEXCAN_TransferSendNonBlocking
-FLEXCAN_TransferFDSendNonBlocking -FLEXCAN_TransferReceiveNonBlocking -
FLEXCAN_TransferFDReceiveNonBlocking -FLEXCAN_TransferReceiveFifoNonBlocking

Parameters
• handle – FlexCAN handle pointer.

• mbIdx – The FlexCAN Message Buffer index.

Return values
the – index of mailbox ‘s timestamp stored in the handle.

static inline uint32_t FLEXCAN_GetHighResolutionTimeStamp(CAN_Type *base, uint8_t mbIdx)

void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
Aborts the interrupt driven message send process.

This function aborts the interrupt driven message send process.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• mbIdx – The FlexCAN Message Buffer index.

void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t
mbIdx)

Aborts the interrupt driven message receive process.

This function aborts the interrupt driven message receive process.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• mbIdx – The FlexCAN Message Buffer index.

void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
Aborts the interrupt driven message receive from Rx FIFO process.

This function aborts the interrupt driven message receive from Rx FIFO process.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN IRQ handle function.

This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

void FLEXCAN_MbHandleIRQ(CAN_Type *base, flexcan_handle_t *handle, uint32_t startMbIdx,
uint32_t endMbIdx)

FlexCAN Message Buffer IRQ handle function.

Parameters
• base – FlexCAN peripheral base address.

2.46. FlexCAN Driver 587



MCUXpresso SDK Documentation, Release 25.12.00

• handle – FlexCAN handle pointer.

• startMbIdx – First Message Buffer to handle.

• endMbIdx – Last Message Buffer to handle.

void FLEXCAN_BusoffErrorHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Bus Off, Error and Warning IRQ handle function.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

void FLEXCAN_PNWakeUpHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Pretended Networking Wake-up IRQ handle function.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

void FLEXCAN_MemoryErrorHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
FlexCAN Memory Error IRQ handle function.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

FSL_FLEXCAN_DRIVER_VERSION
FlexCAN driver version.

FlexCAN transfer status.

Values:

enumerator kStatus_FLEXCAN_TxBusy
Tx Message Buffer is Busy.

enumerator kStatus_FLEXCAN_TxIdle
Tx Message Buffer is Idle.

enumerator kStatus_FLEXCAN_TxSwitchToRx
Remote Message is send out and Message buffer changed to Receive one.

enumerator kStatus_FLEXCAN_RxBusy
Rx Message Buffer is Busy.

enumerator kStatus_FLEXCAN_RxIdle
Rx Message Buffer is Idle.

enumerator kStatus_FLEXCAN_RxOverflow
Rx Message Buffer is Overflowed.

enumerator kStatus_FLEXCAN_RxFifoBusy
Rx Message FIFO is Busy.

enumerator kStatus_FLEXCAN_RxFifoIdle
Rx Message FIFO is Idle.

enumerator kStatus_FLEXCAN_RxFifoOverflow
Rx Message FIFO is overflowed.

588 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_FLEXCAN_RxFifoWarning
Rx Message FIFO is almost overflowed.

enumerator kStatus_FLEXCAN_RxFifoDisabled
Rx Message FIFO is disabled during reading.

enumerator kStatus_FLEXCAN_ErrorStatus
FlexCAN Module Error and Status.

enumerator kStatus_FLEXCAN_WakeUp
FlexCAN is waken up from STOP mode.

enumerator kStatus_FLEXCAN_UnHandled
UnHadled Interrupt asserted.

enumerator kStatus_FLEXCAN_RxRemote
Rx Remote Message Received in Mail box.

enumerator kStatus_FLEXCAN_MemoryError
FlexCAN Memory Error.

enum _flexcan_frame_format
FlexCAN frame format.

Values:

enumerator kFLEXCAN_FrameFormatStandard
Standard frame format attribute.

enumerator kFLEXCAN_FrameFormatExtend
Extend frame format attribute.

enum _flexcan_frame_type
FlexCAN frame type.

Values:

enumerator kFLEXCAN_FrameTypeData
Data frame type attribute.

enumerator kFLEXCAN_FrameTypeRemote
Remote frame type attribute.

enum _flexcan_clock_source
FlexCAN clock source.

Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0

Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1

Values:

enumerator kFLEXCAN_ClkSrcOsc
FlexCAN Protocol Engine clock from Oscillator.

enumerator kFLEXCAN_ClkSrcPeri
FlexCAN Protocol Engine clock from Peripheral Clock.

enumerator kFLEXCAN_ClkSrc0
FlexCAN Protocol Engine clock selected by user as SRC == 0.

2.46. FlexCAN Driver 589



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_ClkSrc1
FlexCAN Protocol Engine clock selected by user as SRC == 1.

enum _flexcan_wake_up_source
FlexCAN wake up source.

Values:

enumerator kFLEXCAN_WakeupSrcUnfiltered
FlexCAN uses unfiltered Rx input to detect edge.

enumerator kFLEXCAN_WakeupSrcFiltered
FlexCAN uses filtered Rx input to detect edge.

enum _flexcan_endianness
FlexCAN payload endianness.

Values:

enumerator kFLEXCAN_bigEndian
Transmit frame with MSB first, receive frame with big-endian format.

enumerator kFLEXCAN_littleEndian
Transmit frame with LSB first, receive frame with little-endian format.

enum _flexcan_MB_timestamp_base
FlexCAN timebase used for capturing 16-bit TIME_STAMP field of message buffer.

Values:

enumerator kFLEXCAN_CANTimer
FlexCAN free-running timer.

enumerator kFLEXCAN_Lower16bitsHRTimer
Lower 16 bits of high-resolution on-chip timer.

enumerator kFLEXCAN_Upper16bitsHRTimer
Upper 16 bits of high-resolution on-chip timer.

enum _flexcan_capture_point
FlexCAN capture point of 32-bit high resolution timebase during a CAN frame.

Values:

enumerator kFLEXCAN_CANFrameID2ndBit
Second bit of identifier field of any frame is on the CAN bus. HR_TIME_STAMPn register
will not capture 32-bit counter value.

enumerator kFLEXCAN_CANFrameEnd
End of the CAN frame.

enumerator kFLEXCAN_CANFrameStart
Start of the CAN frame.

enumerator kFLEXCAN_CANFDFrameRes
Start of frame for classical CAN frames; res bit for CAN FD frames.

enum _flexcan_rx_fifo_filter_type
FlexCAN Rx Fifo Filter type.

Values:

enumerator kFLEXCAN_RxFifoFilterTypeA
One full ID (standard and extended) per ID Filter element.

590 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_RxFifoFilterTypeB
Two full standard IDs or two partial 14-bit ID slices per ID Filter Table element.

enumerator kFLEXCAN_RxFifoFilterTypeC
Four partial 8-bit Standard or extended ID slices per ID Filter Table element.

enumerator kFLEXCAN_RxFifoFilterTypeD
All frames rejected.

enum _flexcan_mb_size
FlexCAN Message Buffer Payload size.

Values:

enumerator kFLEXCAN_8BperMB
Selects 8 bytes per Message Buffer.

enumerator kFLEXCAN_16BperMB
Selects 16 bytes per Message Buffer.

enumerator kFLEXCAN_32BperMB
Selects 32 bytes per Message Buffer.

enumerator kFLEXCAN_64BperMB
Selects 64 bytes per Message Buffer.

enum _flexcan_fd_frame_length
FlexCAN CAN FD frame supporting data length (available DLC values).

For Tx, when the Data size corresponding to DLC value stored in the MB selected for trans-
mission is larger than the MB Payload size, FlexCAN adds the necessary number of bytes
with constant 0xCC pattern to complete the expected DLC. For Rx, when the Data size cor-
responding to DLC value received from the CAN bus is larger than the MB Payload size, the
high order bytes that do not fit the Payload size will lose.

Values:

enumerator kFLEXCAN_0BperFrame
Frame contains 0 valid data bytes.

enumerator kFLEXCAN_1BperFrame
Frame contains 1 valid data bytes.

enumerator kFLEXCAN_2BperFrame
Frame contains 2 valid data bytes.

enumerator kFLEXCAN_3BperFrame
Frame contains 3 valid data bytes.

enumerator kFLEXCAN_4BperFrame
Frame contains 4 valid data bytes.

enumerator kFLEXCAN_5BperFrame
Frame contains 5 valid data bytes.

enumerator kFLEXCAN_6BperFrame
Frame contains 6 valid data bytes.

enumerator kFLEXCAN_7BperFrame
Frame contains 7 valid data bytes.

enumerator kFLEXCAN_8BperFrame
Frame contains 8 valid data bytes.

2.46. FlexCAN Driver 591



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_12BperFrame
Frame contains 12 valid data bytes.

enumerator kFLEXCAN_16BperFrame
Frame contains 16 valid data bytes.

enumerator kFLEXCAN_20BperFrame
Frame contains 20 valid data bytes.

enumerator kFLEXCAN_24BperFrame
Frame contains 24 valid data bytes.

enumerator kFLEXCAN_32BperFrame
Frame contains 32 valid data bytes.

enumerator kFLEXCAN_48BperFrame
Frame contains 48 valid data bytes.

enumerator kFLEXCAN_64BperFrame
Frame contains 64 valid data bytes.

enum _flexcan_rx_fifo_priority
FlexCAN Enhanced/Legacy Rx FIFO priority.

The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher
priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process
goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.

Values:

enumerator kFLEXCAN_RxFifoPrioLow
Matching process start from Rx Message Buffer first.

enumerator kFLEXCAN_RxFifoPrioHigh
Matching process start from Enhanced/Legacy Rx FIFO first.

enum _flexcan_interrupt_enable
FlexCAN interrupt enable enumerations.

This provides constants for the FlexCAN interrupt enable enumerations for use in the Flex-
CAN functions.

Note: FlexCAN Message Buffers and Legacy Rx FIFO interrupts not included in.

Values:

enumerator kFLEXCAN_BusOffInterruptEnable
Bus Off interrupt, use bit 15.

enumerator kFLEXCAN_ErrorInterruptEnable
CAN Error interrupt, use bit 14.

enumerator kFLEXCAN_TxWarningInterruptEnable
Tx Warning interrupt, use bit 11.

enumerator kFLEXCAN_RxWarningInterruptEnable
Rx Warning interrupt, use bit 10.

enumerator kFLEXCAN_FDErrorInterruptEnable
CAN FD Error interrupt, use bit 31.

592 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_PNMatchWakeUpInterruptEnable
PN Match Wake Up interrupt, use high word bit 17.

enumerator kFLEXCAN_PNTimeoutWakeUpInterruptEnable
PN Timeout Wake Up interrupt, use high word bit 16.

enumerator kFLEXCAN_HostAccessNCErrorInterruptEnable
Host Access With Non-Correctable Errors interrupt, use high word bit 0.

enumerator kFLEXCAN_FlexCanAccessNCErrorInterruptEnable
FlexCAN Access With Non-Correctable Errors interrupt, use high word bit 2.

enumerator kFLEXCAN_HostOrFlexCanCErrorInterruptEnable
Host or FlexCAN Access With Correctable Errors interrupt, use high word bit 3.

enum _flexcan_flags
FlexCAN status flags.

This provides constants for the FlexCAN status flags for use in the FlexCAN functions.

Note: The CPU read action clears the bits corresponding to the FlEXCAN_ErrorFlag macro,
therefore user need to read status flags and distinguish which error is occur using _flex-
can_error_flags enumerations.

Values:

enumerator kFLEXCAN_ErrorOverrunFlag
Error Overrun Status.

enumerator kFLEXCAN_FDErrorIntFlag
CAN FD Error Interrupt Flag.

enumerator kFLEXCAN_BusoffDoneIntFlag
Bus Off process completed Interrupt Flag.

enumerator kFLEXCAN_SynchFlag
CAN Synchronization Status.

enumerator kFLEXCAN_TxWarningIntFlag
Tx Warning Interrupt Flag.

enumerator kFLEXCAN_RxWarningIntFlag
Rx Warning Interrupt Flag.

enumerator kFLEXCAN_IdleFlag
FlexCAN In IDLE Status.

enumerator kFLEXCAN_FaultConfinementFlag
FlexCAN Fault Confinement State.

enumerator kFLEXCAN_TransmittingFlag
FlexCAN In Transmission Status.

enumerator kFLEXCAN_ReceivingFlag
FlexCAN In Reception Status.

enumerator kFLEXCAN_BusOffIntFlag
Bus Off Interrupt Flag.

enumerator kFLEXCAN_ErrorIntFlag
CAN Error Interrupt Flag.

2.46. FlexCAN Driver 593



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_ErrorFlag

enumerator kFLEXCAN_PNMatchIntFlag
PN Matching Event Interrupt Flag.

enumerator kFLEXCAN_PNTimeoutIntFlag
PN Timeout Event Interrupt Flag.

enumerator kFLEXCAN_HostAccessNonCorrectableErrorIntFlag
Host Access With Non-Correctable Error Interrupt Flag.

enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorIntFlag
FlexCAN Access With Non-Correctable Error Interrupt Flag.

enumerator kFLEXCAN_CorrectableErrorIntFlag
Correctable Error Interrupt Flag.

enumerator kFLEXCAN_HostAccessNonCorrectableErrorOverrunFlag
Host Access With Non-Correctable Error Interrupt Overrun Flag.

enumerator kFLEXCAN_FlexCanAccessNonCorrectableErrorOverrunFlag
FlexCAN Access With Non-Correctable Error Interrupt Overrun Flag.

enumerator kFLEXCAN_CorrectableErrorOverrunFlag
Correctable Error Interrupt Overrun Flag.

enumerator kFLEXCAN_AllMemoryErrorIntFlag
All Memory Error Interrupt Flags.

enumerator kFLEXCAN_AllMemoryErrorFlag
All Memory Error Flags.

enum _flexcan_error_flags
FlexCAN error status flags.

The FlexCAN Error Status enumerations is used to report current error of the FlexCAN bus.
This enumerations should be used with KFLEXCAN_ErrorFlag in _flexcan_flags enumera-
tions to ditermine which error is generated.

Values:

enumerator kFLEXCAN_FDStuffingError
Stuffing Error.

enumerator kFLEXCAN_FDFormError
Form Error.

enumerator kFLEXCAN_FDCrcError
Cyclic Redundancy Check Error.

enumerator kFLEXCAN_FDBit0Error
Unable to send dominant bit.

enumerator kFLEXCAN_FDBit1Error
Unable to send recessive bit.

enumerator kFLEXCAN_TxErrorWarningFlag
Tx Error Warning Status.

enumerator kFLEXCAN_RxErrorWarningFlag
Rx Error Warning Status.

enumerator kFLEXCAN_StuffingError
Stuffing Error.

594 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_FormError
Form Error.

enumerator kFLEXCAN_CrcError
Cyclic Redundancy Check Error.

enumerator kFLEXCAN_AckError
Received no ACK on transmission.

enumerator kFLEXCAN_Bit0Error
Unable to send dominant bit.

enumerator kFLEXCAN_Bit1Error
Unable to send recessive bit.

FlexCAN Legacy Rx FIFO status flags.

The FlexCAN Legacy Rx FIFO Status enumerations are used to determine the status of the
Rx FIFO. Because Rx FIFO occupy the MB0 ~ MB7 (Rx Fifo filter also occupies more Message
Buffer space), Rx FIFO status flags are mapped to the corresponding Message Buffer status
flags.

Values:

enumerator kFLEXCAN_RxFifoOverflowFlag
Rx FIFO overflow flag.

enumerator kFLEXCAN_RxFifoWarningFlag
Rx FIFO almost full flag.

enumerator kFLEXCAN_RxFifoFrameAvlFlag
Frames available in Rx FIFO flag.

enum _flexcan_memory_error_type
FlexCAN Memory Error Type.

Values:

enumerator kFLEXCAN_CorrectableError
The memory error is correctable which means on bit error.

enumerator kFLEXCAN_NonCorrectableError
The memory error is non-correctable which means two bit errors.

enum _flexcan_memory_access_type
FlexCAN Memory Access Type.

Values:

enumerator kFLEXCAN_MoveOutFlexCanAccess
The memory error was detected during move-out FlexCAN access.

enumerator kFLEXCAN_MoveInAccess
The memory error was detected during move-in FlexCAN access.

enumerator kFLEXCAN_TxArbitrationAccess
The memory error was detected during Tx Arbitration FlexCAN access.

enumerator kFLEXCAN_RxMatchingAccess
The memory error was detected during Rx Matching FlexCAN access.

enumerator kFLEXCAN_MoveOutHostAccess
The memory error was detected during Rx Matching Host (CPU) access.

2.46. FlexCAN Driver 595



MCUXpresso SDK Documentation, Release 25.12.00

enum _flexcan_byte_error_syndrome
FlexCAN Memory Error Byte Syndrome.

Values:

enumerator kFLEXCAN_NoError
No bit error in this byte.

enumerator kFLEXCAN_ParityBits0Error
Parity bit 0 error in this byte.

enumerator kFLEXCAN_ParityBits1Error
Parity bit 1 error in this byte.

enumerator kFLEXCAN_ParityBits2Error
Parity bit 2 error in this byte.

enumerator kFLEXCAN_ParityBits3Error
Parity bit 3 error in this byte.

enumerator kFLEXCAN_ParityBits4Error
Parity bit 4 error in this byte.

enumerator kFLEXCAN_DataBits0Error
Data bit 0 error in this byte.

enumerator kFLEXCAN_DataBits1Error
Data bit 1 error in this byte.

enumerator kFLEXCAN_DataBits2Error
Data bit 2 error in this byte.

enumerator kFLEXCAN_DataBits3Error
Data bit 3 error in this byte.

enumerator kFLEXCAN_DataBits4Error
Data bit 4 error in this byte.

enumerator kFLEXCAN_DataBits5Error
Data bit 5 error in this byte.

enumerator kFLEXCAN_DataBits6Error
Data bit 6 error in this byte.

enumerator kFLEXCAN_DataBits7Error
Data bit 7 error in this byte.

enumerator kFLEXCAN_AllZeroError
All-zeros non-correctable error in this byte.

enumerator kFLEXCAN_AllOneError
All-ones non-correctable error in this byte.

enumerator kFLEXCAN_NonCorrectableErrors
Non-correctable error in this byte.

enum _flexcan_pn_match_source
FlexCAN Pretended Networking match source selection.

Values:

enumerator kFLEXCAN_PNMatSrcID
Message match with ID filtering.

596 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXCAN_PNMatSrcIDAndData
Message match with ID filtering and payload filtering.

enum _flexcan_pn_match_mode
FlexCAN Pretended Networking mode match type.

Values:

enumerator kFLEXCAN_PNMatModeEqual
Match upon ID/Payload contents against an exact target value.

enumerator kFLEXCAN_PNMatModeGreater
Match upon an ID/Payload value greater than or equal to a specified target value.

enumerator kFLEXCAN_PNMatModeSmaller
Match upon an ID/Payload value smaller than or equal to a specified target value.

enumerator kFLEXCAN_PNMatModeRange
Match upon an ID/Payload value inside a range, greater than or equal to a specified
lower limit, and smaller than or equal to a specified upper limit

typedef enum _flexcan_frame_format flexcan_frame_format_t
FlexCAN frame format.

typedef enum _flexcan_frame_type flexcan_frame_type_t
FlexCAN frame type.

typedef enum _flexcan_clock_source flexcan_clock_source_t
FlexCAN clock source.

Deprecated:
Do not use the kFLEXCAN_ClkSrcOs. It has been superceded kFLEXCAN_ClkSrc0

Do not use the kFLEXCAN_ClkSrcPeri. It has been superceded kFLEXCAN_ClkSrc1

typedef enum _flexcan_wake_up_source flexcan_wake_up_source_t
FlexCAN wake up source.

typedef enum _flexcan_endianness flexcan_endianness_t
FlexCAN payload endianness.

typedef enum _flexcan_MB_timestamp_base flexcan_MB_timestamp_base_t
FlexCAN timebase used for capturing 16-bit TIME_STAMP field of message buffer.

typedef enum _flexcan_capture_point flexcan_capture_point_t
FlexCAN capture point of 32-bit high resolution timebase during a CAN frame.

typedef enum _flexcan_rx_fifo_filter_type flexcan_rx_fifo_filter_type_t
FlexCAN Rx Fifo Filter type.

typedef enum _flexcan_mb_size flexcan_mb_size_t
FlexCAN Message Buffer Payload size.

typedef enum _flexcan_rx_fifo_priority flexcan_rx_fifo_priority_t
FlexCAN Enhanced/Legacy Rx FIFO priority.

The matching process starts from the Rx MB(or Enhanced/Legacy Rx FIFO) with higher
priority. If no MB(or Enhanced/Legacy Rx FIFO filter) is satisfied, the matching process
goes on with the Enhanced/Legacy Rx FIFO(or Rx MB) with lower priority.

typedef enum _flexcan_memory_error_type flexcan_memory_error_type_t
FlexCAN Memory Error Type.

2.46. FlexCAN Driver 597



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _flexcan_memory_access_type flexcan_memory_access_type_t
FlexCAN Memory Access Type.

typedef enum _flexcan_byte_error_syndrome flexcan_byte_error_syndrome_t
FlexCAN Memory Error Byte Syndrome.

typedef struct _flexcan_memory_error_report_status flexcan_memory_error_report_status_t
FlexCAN memory error register status structure.

This structure contains the memory access properties that caused a memory error access.
It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user
can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error
access.

typedef struct _flexcan_frame flexcan_frame_t
FlexCAN message frame structure.

typedef struct _flexcan_fd_frame flexcan_fd_frame_t
CAN FD message frame structure.

The CAN FD message supporting up to sixty four bytes can be used for a data frame, depend-
ing on the length selected for the message buffers. The length should be a enumeration
member, see _flexcan_fd_frame_length.

typedef struct _flexcan_timing_config flexcan_timing_config_t
FlexCAN protocol timing characteristic configuration structure.

typedef struct _flexcan_config flexcan_config_t
FlexCAN module configuration structure.

Deprecated:
Do not use the baudRate. It has been superceded bitRate

Do not use the baudRateFD. It has been superceded bitRateFD

typedef struct _flexcan_rx_mb_config flexcan_rx_mb_config_t
FlexCAN Receive Message Buffer configuration structure.

This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEX-
CAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The
function abort previous receiving process, clean the Message Buffer and activate the Rx
Message Buffer using given Message Buffer setting.

typedef enum _flexcan_pn_match_source flexcan_pn_match_source_t
FlexCAN Pretended Networking match source selection.

typedef enum _flexcan_pn_match_mode flexcan_pn_match_mode_t
FlexCAN Pretended Networking mode match type.

typedef struct _flexcan_pn_config flexcan_pn_config_t
FlexCAN Pretended Networking configuration structure.

This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEX-
CAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.

typedef struct _flexcan_rx_fifo_config flexcan_rx_fifo_config_t
FlexCAN Legacy Rx FIFO configuration structure.

typedef struct _flexcan_mb_transfer flexcan_mb_transfer_t
FlexCAN Message Buffer transfer.

598 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _flexcan_fifo_transfer flexcan_fifo_transfer_t
FlexCAN Rx FIFO transfer.

typedef struct _flexcan_handle flexcan_handle_t
FlexCAN handle structure definition.

typedef void (*flexcan_transfer_callback_t)(CAN_Type *base, flexcan_handle_t *handle, status_t
status, uint64_t result, void *userData)

FLEXCAN_WAIT_TIMEOUT

FLEXCAN_POLLING_TIMEOUT
Max loops to wait for polling transfer.

FLEXCAN_MODULE_TIMEOUT
Max loops to wait for FlexCAN register access complete.

DLC_LENGTH_DECODE(dlc)
FlexCAN frame length helper macro.

FLEXCAN_ID_STD(id)
FlexCAN Frame ID helper macro.

Standard Frame ID helper macro.

FLEXCAN_ID_EXT(id)
Extend Frame ID helper macro.

FLEXCAN_RX_MB_STD_MASK(id, rtr, ide)
FlexCAN Rx Message Buffer Mask helper macro.

Standard Rx Message Buffer Mask helper macro.

FLEXCAN_RX_MB_EXT_MASK(id, rtr, ide)
Extend Rx Message Buffer Mask helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_A(id, rtr, ide)
FlexCAN Legacy Rx FIFO Mask helper macro.

Standard Rx FIFO Mask helper macro Type A helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B upper part helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Mask helper macro Type B lower part helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_HIGH(id)
Standard Rx FIFO Mask helper macro Type C upper part helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Mask helper macro Type C mid-upper part helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_MID_LOW(id)
Standard Rx FIFO Mask helper macro Type C mid-lower part helper macro.

FLEXCAN_RX_FIFO_STD_MASK_TYPE_C_LOW(id)
Standard Rx FIFO Mask helper macro Type C lower part helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_A(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type A helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B upper part helper macro.

2.46. FlexCAN Driver 599



MCUXpresso SDK Documentation, Release 25.12.00

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Mask helper macro Type B lower part helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_HIGH(id)
Extend Rx FIFO Mask helper macro Type C upper part helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Mask helper macro Type C mid-upper part helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_MID_LOW(id)
Extend Rx FIFO Mask helper macro Type C mid-lower part helper macro.

FLEXCAN_RX_FIFO_EXT_MASK_TYPE_C_LOW(id)
Extend Rx FIFO Mask helper macro Type C lower part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_A(id, rtr, ide)
FlexCAN Rx FIFO Filter helper macro.

Standard Rx FIFO Filter helper macro Type A helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_HIGH(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B upper part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_B_LOW(id, rtr, ide)
Standard Rx FIFO Filter helper macro Type B lower part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_HIGH(id)
Standard Rx FIFO Filter helper macro Type C upper part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_HIGH(id)
Standard Rx FIFO Filter helper macro Type C mid-upper part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_MID_LOW(id)
Standard Rx FIFO Filter helper macro Type C mid-lower part helper macro.

FLEXCAN_RX_FIFO_STD_FILTER_TYPE_C_LOW(id)
Standard Rx FIFO Filter helper macro Type C lower part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_A(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type A helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_HIGH(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B upper part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_B_LOW(id, rtr, ide)
Extend Rx FIFO Filter helper macro Type B lower part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_HIGH(id)
Extend Rx FIFO Filter helper macro Type C upper part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_HIGH(id)
Extend Rx FIFO Filter helper macro Type C mid-upper part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_MID_LOW(id)
Extend Rx FIFO Filter helper macro Type C mid-lower part helper macro.

FLEXCAN_RX_FIFO_EXT_FILTER_TYPE_C_LOW(id)
Extend Rx FIFO Filter helper macro Type C lower part helper macro.

FLEXCAN_PN_STD_MASK(id, rtr)
FlexCAN Pretended Networking ID Mask helper macro.

Standard Rx Message Buffer Mask helper macro.

600 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FLEXCAN_PN_EXT_MASK(id, rtr)
Extend Rx Message Buffer Mask helper macro.

FLEXCAN_PN_INT_MASK(x)
FlexCAN interrupt/status flag helper macro.

FLEXCAN_PN_INT_UNMASK(x)

FLEXCAN_PN_STATUS_MASK(x)

FLEXCAN_PN_STATUS_UNMASK(x)

FLEXCAN_MECR_INT_MASK(x)

FLEXCAN_MECR_INT_UNMASK(x)

FLEXCAN_MECR_STATUS_MASK(x)

FLEXCAN_MECR_STATUS_UNMASK(x)

FLEXCAN_ERROR_AND_STATUS_INT_FLAG

FLEXCAN_PNWAKE_UP_FLAG

FLEXCAN_WAKE_UP_FLAG

FLEXCAN_MEMORY_ERROR_INT_FLAG

FLEXCAN_ENHANCED_RX_FIFO_INT_FLAG
FlexCAN Enhanced Rx FIFO base address helper macro.

FLEXCAN_CALLBACK(x)
FlexCAN transfer callback function.

The FlexCAN transfer callback returns a value from the underlying layer. If the status
equals to kStatus_FLEXCAN_ErrorStatus, the result parameter is the Content of FlexCAN
status register which can be used to get the working status(or error status) of FlexCAN mod-
ule. If the status equals to other FlexCAN Message Buffer transfer status, the result is the
index of Message Buffer that generate transfer event. If the status equals to other FlexCAN
Message Buffer transfer status, the result is meaningless and should be Ignored.

struct _flexcan_memory_error_report_status
#include <fsl_flexcan.h> FlexCAN memory error register status structure.

This structure contains the memory access properties that caused a memory error access.
It is used as the parameter of FLEXCAN_GetMemoryErrorReportStatus() function. And user
can use FLEXCAN_GetMemoryErrorReportStatus to get the status of the last memory error
access.

Public Members

flexcan_memory_error_type_t errorType
The type of memory error that giving rise to the report.

flexcan_memory_access_type_t accessType
The type of memory access that giving rise to the memory error.

uint16_t accessAddress
The address where memory error detected.

uint32_t errorData
The raw data word read from memory with error.

2.46. FlexCAN Driver 601



MCUXpresso SDK Documentation, Release 25.12.00

struct _flexcan_frame
#include <fsl_flexcan.h> FlexCAN message frame structure.

struct _flexcan_fd_frame
#include <fsl_flexcan.h> CAN FD message frame structure.

The CAN FD message supporting up to sixty four bytes can be used for a data frame, depend-
ing on the length selected for the message buffers. The length should be a enumeration
member, see _flexcan_fd_frame_length.

Public Members

uint32_t hrtimestamp

Note: HR timestamp offset is changed dynamically according to data length code
(DLC). External 32-bit on-chip timer high-resolution timestamp.

struct _flexcan_timing_config
#include <fsl_flexcan.h> FlexCAN protocol timing characteristic configuration structure.

Public Members

uint32_t preDivider
Classic CAN or CAN FD nominal phase bit rate prescaler.

uint32_t rJumpwidth
Classic CAN or CAN FD nominal phase Re-sync Jump Width.

uint32_t phaseSeg1
Classic CAN or CAN FD nominal phase Segment 1.

uint32_t phaseSeg2
Classic CAN or CAN FD nominal phase Segment 2.

uint32_t propSeg
Classic CAN or CAN FD nominal phase Propagation Segment.

uint32_t fpreDivider
CAN FD data phase bit rate prescaler.

uint32_t frJumpwidth
CAN FD data phase Re-sync Jump Width.

uint32_t fphaseSeg1
CAN FD data phase Phase Segment 1.

uint32_t fphaseSeg2
CAN FD data phase Phase Segment 2.

uint32_t fpropSeg
CAN FD data phase Propagation Segment.

struct _flexcan_config
#include <fsl_flexcan.h> FlexCAN module configuration structure.

Deprecated:
Do not use the baudRate. It has been superceded bitRate

Do not use the baudRateFD. It has been superceded bitRateFD

602 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

flexcan_clock_source_t clkSrc
Clock source for FlexCAN Protocol Engine.

flexcan_wake_up_source_t wakeupSrc
Wake up source selection.

uint8_t maxMbNum
The maximum number of Message Buffers used by user.

bool enableLoopBack
Enable or Disable Loop Back Self Test Mode.

bool enableTimerSync
Enable or Disable Timer Synchronization.

bool enableIndividMask
Enable or Disable Rx Individual Mask and Queue feature.

bool disableSelfReception
Enable or Disable Self Reflection.

bool enableListenOnlyMode
Enable or Disable Listen Only Mode.

bool enableDoze
Enable or Disable Doze Mode.

bool enablePretendedeNetworking
Enable or Disable the Pretended Networking mode.

bool enableMemoryErrorControl
Enable or Disable the memory errors detection and correction mechanism.

bool enableNonCorrectableErrorEnterFreeze
Enable or Disable Non-Correctable Errors In FlexCAN Access Put Device In Freeze
Mode.

bool enableTransceiverDelayMeasure
Enable or Disable the transceiver delay measurement, when it is enabled, then the
secondary sample point position is determined by the sum of the transceiver delay
measurement plus the enhanced TDC offset.

bool enableRemoteRequestFrameStored
true: Store Remote Request Frame in the same fashion of data frame. false: Generate
an automatic Remote Response Frame.

flexcan_endianness_t payloadEndianness
Selects the byte order for the payload of transmit and receive frames, see flex-
can_endianness_t.

bool enableExternalTimeTick
true: External time tick clocks the free-running timer. false: FlexCAN bit clock clocks
the free-running timer.

flexcan_MB_timestamp_base_t captureTimeBase
Timebase of message buffer 16-bit TIME_STAMP field.

flexcan_capture_point_t capturePoint
Point in time when 32-bit timebase is captured during CAN frame.

2.46. FlexCAN Driver 603



MCUXpresso SDK Documentation, Release 25.12.00

struct _flexcan_rx_mb_config
#include <fsl_flexcan.h> FlexCAN Receive Message Buffer configuration structure.

This structure is used as the parameter of FLEXCAN_SetRxMbConfig() function. The FLEX-
CAN_SetRxMbConfig() function is used to configure FlexCAN Receive Message Buffer. The
function abort previous receiving process, clean the Message Buffer and activate the Rx
Message Buffer using given Message Buffer setting.

Public Members

uint32_t id
CAN Message Buffer Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEX-
CAN_ID_STD() macro.

flexcan_frame_format_t format
CAN Frame Identifier format(Standard of Extend).

flexcan_frame_type_t type
CAN Frame Type(Data or Remote for classical CAN only).

struct _flexcan_pn_config
#include <fsl_flexcan.h> FlexCAN Pretended Networking configuration structure.

This structure is used as the parameter of FLEXCAN_SetPNConfig() function. The FLEX-
CAN_SetPNConfig() function is used to configure FlexCAN Networking work mode.

Public Members

bool enableTimeout
Enable or Disable timeout event trigger wakeup.

uint16_t timeoutValue
The timeout value that generates a wakeup event, the counter timer is incremented
based on 64 times the CAN Bit Time unit.

bool enableMatch
Enable or Disable match event trigger wakeup.

flexcan_pn_match_source_t matchSrc
Selects the match source (ID and/or data match) to trigger wakeup.

uint8_t matchNum
The number of times a given message must match the predefined ID and/or data before
generating a wakeup event, range in 0x1 ~ 0xFF.

flexcan_pn_match_mode_t idMatchMode
The ID match type.

flexcan_pn_match_mode_t dataMatchMode
The data match type.

uint32_t idLower
The ID target values 1 which used either for ID match “equal to”, “smaller than”,
“greater than” comparisons, or as the lower limit value in ID match “range detection”.

uint32_t idUpper

The ID target values 2 which used only as the upper limit value in ID match “range

detection” or used to store the ID mask in “equal to”.

604 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t lengthLower

The lower limit for length of data bytes which used only in data match “range

detection”. Range in 0x0 ~ 0x8.

uint8_t lengthUpper

The upper limit for length of data bytes which used only in data match “range

detection”. Range in 0x0 ~ 0x8.

struct _flexcan_rx_fifo_config
#include <fsl_flexcan.h> FlexCAN Legacy Rx FIFO configuration structure.

Public Members

uint32_t *idFilterTable
Pointer to the FlexCAN Legacy Rx FIFO identifier filter table.

uint8_t idFilterNum
The FlexCAN Legacy Rx FIFO Filter elements quantity.

flexcan_rx_fifo_filter_type_t idFilterType
The FlexCAN Legacy Rx FIFO Filter type.

flexcan_rx_fifo_priority_t priority
The FlexCAN Legacy Rx FIFO receive priority.

struct _flexcan_mb_transfer
#include <fsl_flexcan.h> FlexCAN Message Buffer transfer.

Public Members

flexcan_frame_t *frame
The buffer of CAN Message to be transfer.

uint8_t mbIdx
The index of Message buffer used to transfer Message.

struct _flexcan_fifo_transfer
#include <fsl_flexcan.h> FlexCAN Rx FIFO transfer.

Public Members

flexcan_frame_t *frame
The buffer of CAN Message to be received from Legacy Rx FIFO.

size_t frameNum
Number of CAN Message need to be received from Legacy or Ehanced Rx FIFO.

struct _flexcan_handle
#include <fsl_flexcan.h> FlexCAN handle structure.

Public Members

flexcan_transfer_callback_t callback
Callback function.

2.46. FlexCAN Driver 605



MCUXpresso SDK Documentation, Release 25.12.00

void *userData
FlexCAN callback function parameter.

flexcan_frame_t *volatile mbFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN data from Message Buffers.

flexcan_fd_frame_t *volatile mbFDFrameBuf[CAN_WORD1_COUNT]
The buffer for received CAN FD data from Message Buffers.

flexcan_frame_t *volatile rxFifoFrameBuf
The buffer for received CAN data from Legacy Rx FIFO.

size_t rxFifoFrameNum
The number of CAN messages remaining to be received from Legacy or Ehanced Rx
FIFO.

size_t rxFifoTransferTotalNum
Total CAN Message number need to be received from Legacy or Ehanced Rx FIFO.

volatile uint8_t mbState[CAN_WORD1_COUNT]
Message Buffer transfer state.

volatile uint8_t rxFifoState
Rx FIFO transfer state.

volatile uint32_t timestamp[CAN_WORD1_COUNT]
Mailbox transfer timestamp.

struct byteStatus

Public Members

bool byteIsRead
The byte n (0~3) was read or not. The type of error and which bit in byte (n) is affected
by the error.

struct __unnamed33__

Public Members

uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.

uint32_t length
CAN frame data length in bytes (Range: 0~8).

uint32_t type
CAN Frame Type(DATA or REMOTE).

uint32_t format
CAN Frame Identifier(STD or EXT format).

uint32_t __pad0__
Reserved.

uint32_t idhit
CAN Rx FIFO filter hit id(This value is only used in Rx FIFO receive mode).

struct __unnamed35__

606 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD()
macro.

uint32_t __pad0__
Reserved.

union __unnamed37__

Public Members

struct _flexcan_frame

struct _flexcan_frame

struct __unnamed39__

Public Members

uint32_t dataWord0
CAN Frame payload word0.

uint32_t dataWord1
CAN Frame payload word1.

struct __unnamed41__

Public Members

uint8_t dataByte3
CAN Frame payload byte3.

uint8_t dataByte2
CAN Frame payload byte2.

uint8_t dataByte1
CAN Frame payload byte1.

uint8_t dataByte0
CAN Frame payload byte0.

uint8_t dataByte7
CAN Frame payload byte7.

uint8_t dataByte6
CAN Frame payload byte6.

uint8_t dataByte5
CAN Frame payload byte5.

uint8_t dataByte4
CAN Frame payload byte4.

struct __unnamed43__

2.46. FlexCAN Driver 607



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t timestamp
FlexCAN internal Free-Running Counter Time Stamp.

uint32_t length
CAN FD frame data length code (DLC), range see _flexcan_fd_frame_length, When the
length <= 8, it equal to the data length, otherwise the number of valid frame data is
not equal to the length value. user can use DLC_LENGTH_DECODE(length) macro to
get the number of valid data bytes.

uint32_t type
CAN Frame Type(DATA only).

uint32_t format
CAN Frame Identifier(STD or EXT format).

uint32_t srr
Substitute Remote request.

uint32_t esi
Error State Indicator.

uint32_t brs
Bit Rate Switch.

uint32_t edl
Extended Data Length.

struct __unnamed45__

Public Members

uint32_t id
CAN Frame Identifier, should be set using FLEXCAN_ID_EXT() or FLEXCAN_ID_STD()
macro.

uint32_t __pad0__
Reserved.

union __unnamed47__

Public Members

struct _flexcan_fd_frame

struct _flexcan_fd_frame

struct __unnamed49__

Public Members

uint32_t dataWord[16]
CAN FD Frame payload, 16 double word maximum.

struct __unnamed51__

608 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint8_t dataByte3
CAN Frame payload byte3.

uint8_t dataByte2
CAN Frame payload byte2.

uint8_t dataByte1
CAN Frame payload byte1.

uint8_t dataByte0
CAN Frame payload byte0.

uint8_t dataByte7
CAN Frame payload byte7.

uint8_t dataByte6
CAN Frame payload byte6.

uint8_t dataByte5
CAN Frame payload byte5.

uint8_t dataByte4
CAN Frame payload byte4.

union __unnamed53__

Public Members

struct _flexcan_config

struct _flexcan_config

struct __unnamed55__

Public Members

uint32_t baudRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.

uint32_t baudRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.

struct __unnamed57__

Public Members

uint32_t bitRate
FlexCAN bit rate in bps, for classical CAN or CANFD nominal phase.

uint32_t bitRateFD
FlexCAN FD bit rate in bps, for CANFD data phase.

union __unnamed59__

2.46. FlexCAN Driver 609



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

struct _flexcan_pn_config

< The data target values 1 which used either for data match “equal to”, “smaller than”,
“greater than” comparisons, or as the lower limit value in data match “range

detection”.

struct _flexcan_pn_config

struct __unnamed63__

< The data target values 1 which used either for data match “equal to”, “smaller than”,
“greater than” comparisons, or as the lower limit value in data match “range

detection”.

Public Members

uint32_t lowerWord0
CAN Frame payload word0.

uint32_t lowerWord1
CAN Frame payload word1.

struct __unnamed65__

Public Members

uint8_t lowerByte3
CAN Frame payload byte3.

uint8_t lowerByte2
CAN Frame payload byte2.

uint8_t lowerByte1
CAN Frame payload byte1.

uint8_t lowerByte0
CAN Frame payload byte0.

uint8_t lowerByte7
CAN Frame payload byte7.

uint8_t lowerByte6
CAN Frame payload byte6.

uint8_t lowerByte5
CAN Frame payload byte5.

uint8_t lowerByte4
CAN Frame payload byte4.

union __unnamed61__

610 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

struct _flexcan_pn_config

< The data target values 2 which used only as the upper limit value in data match
“range

detection” or used to store the data mask in “equal to”.

struct _flexcan_pn_config

struct __unnamed67__

< The data target values 2 which used only as the upper limit value in data match “range

detection” or used to store the data mask in “equal to”.

Public Members

uint32_t upperWord0
CAN Frame payload word0.

uint32_t upperWord1
CAN Frame payload word1.

struct __unnamed69__

Public Members

uint8_t upperByte3
CAN Frame payload byte3.

uint8_t upperByte2
CAN Frame payload byte2.

uint8_t upperByte1
CAN Frame payload byte1.

uint8_t upperByte0
CAN Frame payload byte0.

uint8_t upperByte7
CAN Frame payload byte7.

uint8_t upperByte6
CAN Frame payload byte6.

uint8_t upperByte5
CAN Frame payload byte5.

uint8_t upperByte4
CAN Frame payload byte4.

2.47 FlexCAN eDMA Driver

2.47. FlexCAN eDMA Driver 611



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXCAN_TransferCreateHandleEDMA(CAN_Type *base, flexcan_edma_handle_t *handle,
flexcan_edma_transfer_callback_t callback, void
*userData, edma_handle_t *rxFifoEdmaHandle)

Initializes the FlexCAN handle, which is used in transactional functions.

Parameters
• base – FlexCAN peripheral base address.

• handle – Pointer to flexcan_edma_handle_t structure.

• callback – The callback function.

• userData – The parameter of the callback function.

• rxFifoEdmaHandle – User-requested DMA handle for Rx FIFO DMA transfer.

void FLEXCAN_PrepareTransfConfiguration(CAN_Type *base, flexcan_fifo_transfer_t *pFifoXfer,
edma_transfer_config_t *pEdmaConfig)

Prepares the eDMA transfer configuration for FLEXCAN Legacy RX FIFO.

This function prepares the eDMA transfer configuration structure according to FLEXCAN
Legacy RX FIFO.

Parameters
• base – FlexCAN peripheral base address.

• pFifoXfer – FlexCAN Rx FIFO EDMA transfer structure, see flex-
can_fifo_transfer_t.

• pEdmaConfig – The user configuration structure of type edma_transfer_t.

status_t FLEXCAN_StartTransferDatafromRxFIFO(CAN_Type *base, flexcan_edma_handle_t
*handle, edma_transfer_config_t
*pEdmaConfig)

Start Transfer Data from the FLEXCAN Legacy Rx FIFO using eDMA.

This function to Update edma transfer confiugration and Start eDMA transfer

Parameters
• base – FlexCAN peripheral base address.

• handle – Pointer to flexcan_edma_handle_t structure.

• pEdmaConfig – The user configuration structure of type edma_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_FLEXCAN_RxFifoBusy – Previous transfer ongoing.

status_t FLEXCAN_TransferReceiveFifoEDMA(CAN_Type *base, flexcan_edma_handle_t *handle,
flexcan_fifo_transfer_t *pFifoXfer)

Receives the CAN Message from the Legacy Rx FIFO using eDMA.

This function receives the CAN Message using eDMA. This is a non-blocking function, which
returns right away. After the CAN Message is received, the receive callback function is
called.

Parameters
• base – FlexCAN peripheral base address.

• handle – Pointer to flexcan_edma_handle_t structure.

• pFifoXfer – FlexCAN Rx FIFO EDMA transfer structure, see flex-
can_fifo_transfer_t.

612 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_FLEXCAN_RxFifoBusy – Previous transfer ongoing.

status_t FLEXCAN_TransferGetReceiveFifoCountEMDA(CAN_Type *base, flexcan_edma_handle_t
*handle, size_t *count)

Gets the Legacy Rx Fifo transfer status during a interrupt non-blocking receive.

Parameters
• base – FlexCAN peripheral base address.

• handle – FlexCAN handle pointer.

• count – Number of CAN messages receive so far by the non-blocking trans-
action.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void FLEXCAN_TransferAbortReceiveFifoEDMA(CAN_Type *base, flexcan_edma_handle_t
*handle)

Aborts the receive Legacy/Enhanced Rx FIFO process which used eDMA.

This function aborts the receive Legacy/Enhanced Rx FIFO process which used eDMA.

Parameters
• base – FlexCAN peripheral base address.

• handle – Pointer to flexcan_edma_handle_t structure.

FSL_FLEXCAN_EDMA_DRIVER_VERSION
FlexCAN EDMA driver version.

typedef struct _flexcan_edma_handle flexcan_edma_handle_t

typedef void (*flexcan_edma_transfer_callback_t)(CAN_Type *base, flexcan_edma_handle_t
*handle, status_t status, void *userData)

FlexCAN transfer callback function.

struct _flexcan_edma_handle
#include <fsl_flexcan_edma.h> FlexCAN eDMA handle.

Public Members

flexcan_edma_transfer_callback_t callback
Callback function.

void *userData
FlexCAN callback function parameter.

edma_handle_t *rxFifoEdmaHandle
The EDMA handler for Rx FIFO.

volatile uint8_t rxFifoState
Rx FIFO transfer state.

size_t frameNum
The number of messages that need to be received.

2.47. FlexCAN eDMA Driver 613



MCUXpresso SDK Documentation, Release 25.12.00

2.48 FlexIO: FlexIO Driver

2.49 FlexIO Driver

void FLEXIO_GetDefaultConfig(flexio_config_t *userConfig)
Gets the default configuration to configure the FlexIO module. The configuration can used
directly to call the FLEXIO_Configure().

Example:

flexio_config_t config;
FLEXIO_GetDefaultConfig(&config);

Parameters
• userConfig – pointer to flexio_config_t structure

void FLEXIO_Init(FLEXIO_Type *base, const flexio_config_t *userConfig)
Configures the FlexIO with a FlexIO configuration. The configuration structure can be filled
by the user or be set with default values by FLEXIO_GetDefaultConfig().

Example

flexio_config_t config = {
.enableFlexio = true,
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false
};
FLEXIO_Configure(base, &config);

Parameters
• base – FlexIO peripheral base address

• userConfig – pointer to flexio_config_t structure

void FLEXIO_Deinit(FLEXIO_Type *base)
Gates the FlexIO clock. Call this API to stop the FlexIO clock.

Note: After calling this API, call the FLEXO_Init to use the FlexIO module.

Parameters
• base – FlexIO peripheral base address

uint32_t FLEXIO_GetInstance(FLEXIO_Type *base)
Get instance number for FLEXIO module.

Parameters
• base – FLEXIO peripheral base address.

void FLEXIO_Reset(FLEXIO_Type *base)
Resets the FlexIO module.

Parameters
• base – FlexIO peripheral base address

614 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXIO_Enable(FLEXIO_Type *base, bool enable)
Enables the FlexIO module operation.

Parameters
• base – FlexIO peripheral base address

• enable – true to enable, false to disable.

static inline uint32_t FLEXIO_ReadPinInput(FLEXIO_Type *base)
Reads the input data on each of the FlexIO pins.

Parameters
• base – FlexIO peripheral base address

Returns
FlexIO pin input data

static inline uint8_t FLEXIO_GetShifterState(FLEXIO_Type *base)
Gets the current state pointer for state mode use.

Parameters
• base – FlexIO peripheral base address

Returns
current State pointer

void FLEXIO_SetShifterConfig(FLEXIO_Type *base, uint8_t index, const flexio_shifter_config_t
*shifterConfig)

Configures the shifter with the shifter configuration. The configuration structure covers
both the SHIFTCTL and SHIFTCFG registers. To configure the shifter to the proper mode,
select which timer controls the shifter to shift, whether to generate start bit/stop bit, and
the polarity of start bit and stop bit.

Example

flexio_shifter_config_t config = {
.timerSelect = 0,
.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive,
.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection,
.pinPolarity = kFLEXIO_PinActiveLow,
.shifterMode = kFLEXIO_ShifterModeTransmit,
.inputSource = kFLEXIO_ShifterInputFromPin,
.shifterStop = kFLEXIO_ShifterStopBitHigh,
.shifterStart = kFLEXIO_ShifterStartBitLow
};
FLEXIO_SetShifterConfig(base, &config);

Parameters
• base – FlexIO peripheral base address

• index – Shifter index

• shifterConfig – Pointer to flexio_shifter_config_t structure

void FLEXIO_SetTimerConfig(FLEXIO_Type *base, uint8_t index, const flexio_timer_config_t
*timerConfig)

Configures the timer with the timer configuration. The configuration structure covers both
the TIMCTL and TIMCFG registers. To configure the timer to the proper mode, select trigger
source for timer and the timer pin output and the timing for timer.

Example

2.49. FlexIO Driver 615



MCUXpresso SDK Documentation, Release 25.12.00

flexio_timer_config_t config = {
.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(0),
.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow,
.triggerSource = kFLEXIO_TimerTriggerSourceInternal,
.pinConfig = kFLEXIO_PinConfigOpenDrainOrBidirection,
.pinSelect = 0,
.pinPolarity = kFLEXIO_PinActiveHigh,
.timerMode = kFLEXIO_TimerModeDual8BitBaudBit,
.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset,
.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput,
.timerReset = kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput,
.timerDisable = kFLEXIO_TimerDisableOnTimerCompare,
.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh,
.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable,
.timerStart = kFLEXIO_TimerStartBitEnabled
};
FLEXIO_SetTimerConfig(base, &config);

Parameters
• base – FlexIO peripheral base address

• index – Timer index

• timerConfig – Pointer to the flexio_timer_config_t structure

static inline void FLEXIO_SetClockMode(FLEXIO_Type *base, uint8_t index,
flexio_timer_decrement_source_t clocksource)

This function set the value of the prescaler on flexio channels.

Parameters
• base – Pointer to the FlexIO simulated peripheral type.

• index – Timer index

• clocksource – Set clock value

static inline void FLEXIO_EnableShifterStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the shifter status interrupt. The interrupt generates when the corresponding SSF
is set.

Note: For multiple shifter status interrupt enable, for example, two shifter status enable,
can calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter status mask which can be calculated by (1 « shifter in-
dex)

static inline void FLEXIO_DisableShifterStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the shifter status interrupt. The interrupt won’t generate when the corresponding
SSF is set.

Note: For multiple shifter status interrupt enable, for example, two shifter status enable,
can calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters

616 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexIO peripheral base address

• mask – The shifter status mask which can be calculated by (1 « shifter in-
dex)

static inline void FLEXIO_EnableShifterErrorInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the shifter error interrupt. The interrupt generates when the corresponding SEF
is set.

Note: For multiple shifter error interrupt enable, for example, two shifter error enable,
can calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter error mask which can be calculated by (1 « shifter index)

static inline void FLEXIO_DisableShifterErrorInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the shifter error interrupt. The interrupt won’t generate when the corresponding
SEF is set.

Note: For multiple shifter error interrupt enable, for example, two shifter error enable,
can calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter error mask which can be calculated by (1 « shifter index)

static inline void FLEXIO_EnableTimerStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Enables the timer status interrupt. The interrupt generates when the corresponding SSF is
set.

Note: For multiple timer status interrupt enable, for example, two timer status enable,
can calculate the mask by using ((1 « timer index0) | (1 « timer index1))

Parameters
• base – FlexIO peripheral base address

• mask – The timer status mask which can be calculated by (1 « timer index)

static inline void FLEXIO_DisableTimerStatusInterrupts(FLEXIO_Type *base, uint32_t mask)
Disables the timer status interrupt. The interrupt won’t generate when the corresponding
SSF is set.

Note: For multiple timer status interrupt enable, for example, two timer status enable,
can calculate the mask by using ((1 « timer index0) | (1 « timer index1))

Parameters
• base – FlexIO peripheral base address

• mask – The timer status mask which can be calculated by (1 « timer index)

2.49. FlexIO Driver 617



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t FLEXIO_GetShifterStatusFlags(FLEXIO_Type *base)
Gets the shifter status flags.

Parameters
• base – FlexIO peripheral base address

Returns
Shifter status flags

static inline void FLEXIO_ClearShifterStatusFlags(FLEXIO_Type *base, uint32_t mask)
Clears the shifter status flags.

Note: For clearing multiple shifter status flags, for example, two shifter status flags, can
calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter status mask which can be calculated by (1 « shifter in-
dex)

static inline uint32_t FLEXIO_GetShifterErrorFlags(FLEXIO_Type *base)
Gets the shifter error flags.

Parameters
• base – FlexIO peripheral base address

Returns
Shifter error flags

static inline void FLEXIO_ClearShifterErrorFlags(FLEXIO_Type *base, uint32_t mask)
Clears the shifter error flags.

Note: For clearing multiple shifter error flags, for example, two shifter error flags, can
calculate the mask by using ((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter error mask which can be calculated by (1 « shifter index)

static inline uint32_t FLEXIO_GetTimerStatusFlags(FLEXIO_Type *base)
Gets the timer status flags.

Parameters
• base – FlexIO peripheral base address

Returns
Timer status flags

static inline void FLEXIO_ClearTimerStatusFlags(FLEXIO_Type *base, uint32_t mask)
Clears the timer status flags.

Note: For clearing multiple timer status flags, for example, two timer status flags, can
calculate the mask by using ((1 « timer index0) | (1 « timer index1))

618 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FlexIO peripheral base address

• mask – The timer status mask which can be calculated by (1 « timer index)

static inline void FLEXIO_EnableShifterStatusDMA(FLEXIO_Type *base, uint32_t mask, bool
enable)

Enables/disables the shifter status DMA. The DMA request generates when the correspond-
ing SSF is set.

Note: For multiple shifter status DMA enables, for example, calculate the mask by using
((1 « shifter index0) | (1 « shifter index1))

Parameters
• base – FlexIO peripheral base address

• mask – The shifter status mask which can be calculated by (1 « shifter in-
dex)

• enable – True to enable, false to disable.

uint32_t FLEXIO_GetShifterBufferAddress(FLEXIO_Type *base, flexio_shifter_buffer_type_t type,
uint8_t index)

Gets the shifter buffer address for the DMA transfer usage.

Parameters
• base – FlexIO peripheral base address

• type – Shifter type of flexio_shifter_buffer_type_t

• index – Shifter index

Returns
Corresponding shifter buffer index

status_t FLEXIO_RegisterHandleIRQ(void *base, void *handle, flexio_isr_t isr)
Registers the handle and the interrupt handler for the FlexIO-simulated peripheral.

Parameters
• base – Pointer to the FlexIO simulated peripheral type.

• handle – Pointer to the handler for FlexIO simulated peripheral.

• isr – FlexIO simulated peripheral interrupt handler.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.

status_t FLEXIO_UnregisterHandleIRQ(void *base)
Unregisters the handle and the interrupt handler for the FlexIO-simulated peripheral.

Parameters
• base – Pointer to the FlexIO simulated peripheral type.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.

2.49. FlexIO Driver 619



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXIO_ClearPortOutput(FLEXIO_Type *base, uint32_t mask)
Sets the output level of the multiple FLEXIO pins to the logic 0.

Parameters
• base – FlexIO peripheral base address

• mask – FLEXIO pin number mask

static inline void FLEXIO_SetPortOutput(FLEXIO_Type *base, uint32_t mask)
Sets the output level of the multiple FLEXIO pins to the logic 1.

Parameters
• base – FlexIO peripheral base address

• mask – FLEXIO pin number mask

static inline void FLEXIO_TogglePortOutput(FLEXIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple FLEXIO pins.

Parameters
• base – FlexIO peripheral base address

• mask – FLEXIO pin number mask

static inline void FLEXIO_PinWrite(FLEXIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the FLEXIO pins to the logic 1 or 0.

Parameters
• base – FlexIO peripheral base address

• pin – FLEXIO pin number.

• output – FLEXIO pin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline void FLEXIO_EnablePinOutput(FLEXIO_Type *base, uint32_t pin)
Enables the FLEXIO output pin function.

Parameters
• base – FlexIO peripheral base address

• pin – FLEXIO pin number.

static inline uint32_t FLEXIO_PinRead(FLEXIO_Type *base, uint32_t pin)
Reads the current input value of the FLEXIO pin.

Parameters
• base – FlexIO peripheral base address

• pin – FLEXIO pin number.

Return values
FLEXIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

static inline uint32_t FLEXIO_GetPinStatus(FLEXIO_Type *base, uint32_t pin)
Gets the FLEXIO input pin status.

Parameters

620 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexIO peripheral base address

• pin – FLEXIO pin number.

Return values
FLEXIO – port input status

• 0: corresponding pin input capture no status.

• 1: corresponding pin input capture rising or falling edge.

static inline void FLEXIO_SetPinLevel(FLEXIO_Type *base, uint8_t pin, bool level)
Sets the FLEXIO output pin level.

Parameters
• base – FlexIO peripheral base address

• pin – FlexIO pin number.

• level – FlexIO output pin level to set, can be either 0 or 1.

static inline bool FLEXIO_GetPinOverride(const FLEXIO_Type *const base, uint8_t pin)
Gets the enabled status of a FLEXIO output pin.

Parameters
• base – FlexIO peripheral base address

• pin – FlexIO pin number.

Return values
FlexIO – port enabled status

• 0: corresponding output pin is in disabled state.

• 1: corresponding output pin is in enabled state.

static inline void FLEXIO_ConfigPinOverride(FLEXIO_Type *base, uint8_t pin, bool enabled)
Enables or disables a FLEXIO output pin.

Parameters
• base – FlexIO peripheral base address

• pin – Flexio pin number.

• enabled – Enable or disable the FlexIO pin.

static inline void FLEXIO_ClearPortStatus(FLEXIO_Type *base, uint32_t mask)
Clears the multiple FLEXIO input pins status.

Parameters
• base – FlexIO peripheral base address

• mask – FLEXIO pin number mask

FSL_FLEXIO_DRIVER_VERSION
FlexIO driver version.

enum _flexio_timer_trigger_polarity
Define time of timer trigger polarity.

Values:

enumerator kFLEXIO_TimerTriggerPolarityActiveHigh
Active high.

enumerator kFLEXIO_TimerTriggerPolarityActiveLow
Active low.

2.49. FlexIO Driver 621



MCUXpresso SDK Documentation, Release 25.12.00

enum _flexio_timer_trigger_source
Define type of timer trigger source.

Values:

enumerator kFLEXIO_TimerTriggerSourceExternal
External trigger selected.

enumerator kFLEXIO_TimerTriggerSourceInternal
Internal trigger selected.

enum _flexio_pin_config
Define type of timer/shifter pin configuration.

Values:

enumerator kFLEXIO_PinConfigOutputDisabled
Pin output disabled.

enumerator kFLEXIO_PinConfigOpenDrainOrBidirection
Pin open drain or bidirectional output enable.

enumerator kFLEXIO_PinConfigBidirectionOutputData
Pin bidirectional output data.

enumerator kFLEXIO_PinConfigOutput
Pin output.

enum _flexio_pin_polarity
Definition of pin polarity.

Values:

enumerator kFLEXIO_PinActiveHigh
Active high.

enumerator kFLEXIO_PinActiveLow
Active low.

enum _flexio_timer_mode
Define type of timer work mode.

Values:

enumerator kFLEXIO_TimerModeDisabled
Timer Disabled.

enumerator kFLEXIO_TimerModeDual8BitBaudBit
Dual 8-bit counters baud/bit mode.

enumerator kFLEXIO_TimerModeDual8BitPWM
Dual 8-bit counters PWM mode.

enumerator kFLEXIO_TimerModeSingle16Bit
Single 16-bit counter mode.

enumerator kFLEXIO_TimerModeDual8BitPWMLow
Dual 8-bit counters PWM Low mode.

enum _flexio_timer_output
Define type of timer initial output or timer reset condition.

Values:

622 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_TimerOutputOneNotAffectedByReset
Logic one when enabled and is not affected by timer reset.

enumerator kFLEXIO_TimerOutputZeroNotAffectedByReset
Logic zero when enabled and is not affected by timer reset.

enumerator kFLEXIO_TimerOutputOneAffectedByReset
Logic one when enabled and on timer reset.

enumerator kFLEXIO_TimerOutputZeroAffectedByReset
Logic zero when enabled and on timer reset.

enum _flexio_timer_decrement_source
Define type of timer decrement.

Values:

enumerator kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput
Decrement counter on FlexIO clock, Shift clock equals Timer output.

enumerator kFLEXIO_TimerDecSrcOnTriggerInputShiftTimerOutput
Decrement counter on Trigger input (both edges), Shift clock equals Timer output.

enumerator kFLEXIO_TimerDecSrcOnPinInputShiftPinInput
Decrement counter on Pin input (both edges), Shift clock equals Pin input.

enumerator kFLEXIO_TimerDecSrcOnTriggerInputShiftTriggerInput
Decrement counter on Trigger input (both edges), Shift clock equals Trigger input.

enum _flexio_timer_reset_condition
Define type of timer reset condition.

Values:

enumerator kFLEXIO_TimerResetNever
Timer never reset.

enumerator kFLEXIO_TimerResetOnTimerPinEqualToTimerOutput
Timer reset on Timer Pin equal to Timer Output.

enumerator kFLEXIO_TimerResetOnTimerTriggerEqualToTimerOutput
Timer reset on Timer Trigger equal to Timer Output.

enumerator kFLEXIO_TimerResetOnTimerPinRisingEdge
Timer reset on Timer Pin rising edge.

enumerator kFLEXIO_TimerResetOnTimerTriggerRisingEdge
Timer reset on Trigger rising edge.

enumerator kFLEXIO_TimerResetOnTimerTriggerBothEdge
Timer reset on Trigger rising or falling edge.

enum _flexio_timer_disable_condition
Define type of timer disable condition.

Values:

enumerator kFLEXIO_TimerDisableNever
Timer never disabled.

enumerator kFLEXIO_TimerDisableOnPreTimerDisable
Timer disabled on Timer N-1 disable.

2.49. FlexIO Driver 623



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_TimerDisableOnTimerCompare
Timer disabled on Timer compare.

enumerator kFLEXIO_TimerDisableOnTimerCompareTriggerLow
Timer disabled on Timer compare and Trigger Low.

enumerator kFLEXIO_TimerDisableOnPinBothEdge
Timer disabled on Pin rising or falling edge.

enumerator kFLEXIO_TimerDisableOnPinBothEdgeTriggerHigh
Timer disabled on Pin rising or falling edge provided Trigger is high.

enumerator kFLEXIO_TimerDisableOnTriggerFallingEdge
Timer disabled on Trigger falling edge.

enum _flexio_timer_enable_condition
Define type of timer enable condition.

Values:

enumerator kFLEXIO_TimerEnabledAlways
Timer always enabled.

enumerator kFLEXIO_TimerEnableOnPrevTimerEnable
Timer enabled on Timer N-1 enable.

enumerator kFLEXIO_TimerEnableOnTriggerHigh
Timer enabled on Trigger high.

enumerator kFLEXIO_TimerEnableOnTriggerHighPinHigh
Timer enabled on Trigger high and Pin high.

enumerator kFLEXIO_TimerEnableOnPinRisingEdge
Timer enabled on Pin rising edge.

enumerator kFLEXIO_TimerEnableOnPinRisingEdgeTriggerHigh
Timer enabled on Pin rising edge and Trigger high.

enumerator kFLEXIO_TimerEnableOnTriggerRisingEdge
Timer enabled on Trigger rising edge.

enumerator kFLEXIO_TimerEnableOnTriggerBothEdge
Timer enabled on Trigger rising or falling edge.

enum _flexio_timer_stop_bit_condition
Define type of timer stop bit generate condition.

Values:

enumerator kFLEXIO_TimerStopBitDisabled
Stop bit disabled.

enumerator kFLEXIO_TimerStopBitEnableOnTimerCompare
Stop bit is enabled on timer compare.

enumerator kFLEXIO_TimerStopBitEnableOnTimerDisable
Stop bit is enabled on timer disable.

enumerator kFLEXIO_TimerStopBitEnableOnTimerCompareDisable
Stop bit is enabled on timer compare and timer disable.

enum _flexio_timer_start_bit_condition
Define type of timer start bit generate condition.

Values:

624 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_TimerStartBitDisabled
Start bit disabled.

enumerator kFLEXIO_TimerStartBitEnabled
Start bit enabled.

enum _flexio_timer_output_state
FlexIO as PWM channel output state.

Values:

enumerator kFLEXIO_PwmLow
The output state of PWM channel is low

enumerator kFLEXIO_PwmHigh
The output state of PWM channel is high

enum _flexio_shifter_timer_polarity
Define type of timer polarity for shifter control.

Values:

enumerator kFLEXIO_ShifterTimerPolarityOnPositive
Shift on positive edge of shift clock.

enumerator kFLEXIO_ShifterTimerPolarityOnNegitive
Shift on negative edge of shift clock.

enum _flexio_shifter_mode
Define type of shifter working mode.

Values:

enumerator kFLEXIO_ShifterDisabled
Shifter is disabled.

enumerator kFLEXIO_ShifterModeReceive
Receive mode.

enumerator kFLEXIO_ShifterModeTransmit
Transmit mode.

enumerator kFLEXIO_ShifterModeMatchStore
Match store mode.

enumerator kFLEXIO_ShifterModeMatchContinuous
Match continuous mode.

enumerator kFLEXIO_ShifterModeState
SHIFTBUF contents are used for storing programmable state attributes.

enumerator kFLEXIO_ShifterModeLogic
SHIFTBUF contents are used for implementing programmable logic look up table.

enum _flexio_shifter_input_source
Define type of shifter input source.

Values:

enumerator kFLEXIO_ShifterInputFromPin
Shifter input from pin.

enumerator kFLEXIO_ShifterInputFromNextShifterOutput
Shifter input from Shifter N+1.

2.49. FlexIO Driver 625



MCUXpresso SDK Documentation, Release 25.12.00

enum _flexio_shifter_stop_bit
Define of STOP bit configuration.

Values:

enumerator kFLEXIO_ShifterStopBitDisable
Disable shifter stop bit.

enumerator kFLEXIO_ShifterStopBitLow
Set shifter stop bit to logic low level.

enumerator kFLEXIO_ShifterStopBitHigh
Set shifter stop bit to logic high level.

enum _flexio_shifter_start_bit
Define type of START bit configuration.

Values:

enumerator kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable
Disable shifter start bit, transmitter loads data on enable.

enumerator kFLEXIO_ShifterStartBitDisabledLoadDataOnShift
Disable shifter start bit, transmitter loads data on first shift.

enumerator kFLEXIO_ShifterStartBitLow
Set shifter start bit to logic low level.

enumerator kFLEXIO_ShifterStartBitHigh
Set shifter start bit to logic high level.

enum _flexio_shifter_buffer_type
Define FlexIO shifter buffer type.

Values:

enumerator kFLEXIO_ShifterBuffer
Shifter Buffer N Register.

enumerator kFLEXIO_ShifterBufferBitSwapped
Shifter Buffer N Bit Byte Swapped Register.

enumerator kFLEXIO_ShifterBufferByteSwapped
Shifter Buffer N Byte Swapped Register.

enumerator kFLEXIO_ShifterBufferBitByteSwapped
Shifter Buffer N Bit Swapped Register.

enumerator kFLEXIO_ShifterBufferNibbleByteSwapped
Shifter Buffer N Nibble Byte Swapped Register.

enumerator kFLEXIO_ShifterBufferHalfWordSwapped
Shifter Buffer N Half Word Swapped Register.

enumerator kFLEXIO_ShifterBufferNibbleSwapped
Shifter Buffer N Nibble Swapped Register.

enum _flexio_gpio_direction
FLEXIO gpio direction definition.

Values:

enumerator kFLEXIO_DigitalInput
Set current pin as digital input

626 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_DigitalOutput
Set current pin as digital output

enum _flexio_pin_input_config
FLEXIO gpio input config.

Values:

enumerator kFLEXIO_InputInterruptDisabled
Interrupt request is disabled.

enumerator kFLEXIO_InputInterruptEnable
Interrupt request is enable.

enumerator kFLEXIO_FlagRisingEdgeEnable
Input pin flag on rising edge.

enumerator kFLEXIO_FlagFallingEdgeEnable
Input pin flag on falling edge.

typedef enum _flexio_timer_trigger_polarity flexio_timer_trigger_polarity_t
Define time of timer trigger polarity.

typedef enum _flexio_timer_trigger_source flexio_timer_trigger_source_t
Define type of timer trigger source.

typedef enum _flexio_pin_config flexio_pin_config_t
Define type of timer/shifter pin configuration.

typedef enum _flexio_pin_polarity flexio_pin_polarity_t
Definition of pin polarity.

typedef enum _flexio_timer_mode flexio_timer_mode_t
Define type of timer work mode.

typedef enum _flexio_timer_output flexio_timer_output_t
Define type of timer initial output or timer reset condition.

typedef enum _flexio_timer_decrement_source flexio_timer_decrement_source_t
Define type of timer decrement.

typedef enum _flexio_timer_reset_condition flexio_timer_reset_condition_t
Define type of timer reset condition.

typedef enum _flexio_timer_disable_condition flexio_timer_disable_condition_t
Define type of timer disable condition.

typedef enum _flexio_timer_enable_condition flexio_timer_enable_condition_t
Define type of timer enable condition.

typedef enum _flexio_timer_stop_bit_condition flexio_timer_stop_bit_condition_t
Define type of timer stop bit generate condition.

typedef enum _flexio_timer_start_bit_condition flexio_timer_start_bit_condition_t
Define type of timer start bit generate condition.

typedef enum _flexio_timer_output_state flexio_timer_output_state_t
FlexIO as PWM channel output state.

typedef enum _flexio_shifter_timer_polarity flexio_shifter_timer_polarity_t
Define type of timer polarity for shifter control.

2.49. FlexIO Driver 627



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _flexio_shifter_mode flexio_shifter_mode_t
Define type of shifter working mode.

typedef enum _flexio_shifter_input_source flexio_shifter_input_source_t
Define type of shifter input source.

typedef enum _flexio_shifter_stop_bit flexio_shifter_stop_bit_t
Define of STOP bit configuration.

typedef enum _flexio_shifter_start_bit flexio_shifter_start_bit_t
Define type of START bit configuration.

typedef enum _flexio_shifter_buffer_type flexio_shifter_buffer_type_t
Define FlexIO shifter buffer type.

typedef struct _flexio_config_ flexio_config_t
Define FlexIO user configuration structure.

typedef struct _flexio_timer_config flexio_timer_config_t
Define FlexIO timer configuration structure.

typedef struct _flexio_shifter_config flexio_shifter_config_t
Define FlexIO shifter configuration structure.

typedef enum _flexio_gpio_direction flexio_gpio_direction_t
FLEXIO gpio direction definition.

typedef enum _flexio_pin_input_config flexio_pin_input_config_t
FLEXIO gpio input config.

typedef struct _flexio_gpio_config flexio_gpio_config_t
The FLEXIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If con-
figured as an input pin, use inputConfig param. If configured as an output pin, use output-
Logic.

typedef void (*flexio_isr_t)(void *base, void *handle)
typedef for FlexIO simulated driver interrupt handler.

FLEXIO_Type *const s_flexioBases[]
Pointers to flexio bases for each instance.

const clock_ip_name_t s_flexioClocks[]
Pointers to flexio clocks for each instance.

void FLEXIO_SetPinConfig(FLEXIO_Type *base, uint32_t pin, flexio_gpio_config_t *config)
Configure a FLEXIO pin used by the board.

To Config the FLEXIO PIN, define a pin configuration, as either input or output, in the user
file. Then, call the FLEXIO_SetPinConfig() function.

This is an example to define an input pin or an output pin configuration.

Define a digital input pin configuration,
flexio_gpio_config_t config =
{
kFLEXIO_DigitalInput,
0U,
kFLEXIO_FlagRisingEdgeEnable | kFLEXIO_InputInterruptEnable,

}
Define a digital output pin configuration,
flexio_gpio_config_t config =

(continues on next page)

628 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{
kFLEXIO_DigitalOutput,
0U,
0U

}

Parameters
• base – FlexIO peripheral base address

• pin – FLEXIO pin number.

• config – FLEXIO pin configuration pointer.

FLEXIO_TIMER_TRIGGER_SEL_PININPUT(x)
Calculate FlexIO timer trigger.

FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(x)

FLEXIO_TIMER_TRIGGER_SEL_TIMn(x)

struct _flexio_config_
#include <fsl_flexio.h> Define FlexIO user configuration structure.

Public Members

bool enableFlexio
Enable/disable FlexIO module

bool enableInDoze
Enable/disable FlexIO operation in doze mode

bool enableInDebug
Enable/disable FlexIO operation in debug mode

bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to
be at least twice the frequency of the bus clock.

struct _flexio_timer_config
#include <fsl_flexio.h> Define FlexIO timer configuration structure.

Public Members

uint32_t triggerSelect
The internal trigger selection number using MACROs.

flexio_timer_trigger_polarity_t triggerPolarity
Trigger Polarity.

flexio_timer_trigger_source_t triggerSource
Trigger Source, internal (see ‘trgsel’) or external.

flexio_pin_config_t pinConfig
Timer Pin Configuration.

uint32_t pinSelect
Timer Pin number Select.

2.49. FlexIO Driver 629



MCUXpresso SDK Documentation, Release 25.12.00

flexio_pin_polarity_t pinPolarity
Timer Pin Polarity.

flexio_timer_mode_t timerMode
Timer work Mode.

flexio_timer_output_t timerOutput
Configures the initial state of the Timer Output and whether it is affected by the Timer
reset.

flexio_timer_decrement_source_t timerDecrement
Configures the source of the Timer decrement and the source of the Shift clock.

flexio_timer_reset_condition_t timerReset
Configures the condition that causes the timer counter (and optionally the timer out-
put) to be reset.

flexio_timer_disable_condition_t timerDisable
Configures the condition that causes the Timer to be disabled and stop decrementing.

flexio_timer_enable_condition_t timerEnable
Configures the condition that causes the Timer to be enabled and start decrementing.

flexio_timer_stop_bit_condition_t timerStop
Timer STOP Bit generation.

flexio_timer_start_bit_condition_t timerStart
Timer STRAT Bit generation.

uint32_t timerCompare
Value for Timer Compare N Register.

struct _flexio_shifter_config
#include <fsl_flexio.h> Define FlexIO shifter configuration structure.

Public Members

uint32_t timerSelect
Selects which Timer is used for controlling the logic/shift register and generating the
Shift clock.

flexio_shifter_timer_polarity_t timerPolarity
Timer Polarity.

flexio_pin_config_t pinConfig
Shifter Pin Configuration.

uint32_t pinSelect
Shifter Pin number Select.

flexio_pin_polarity_t pinPolarity
Shifter Pin Polarity.

flexio_shifter_mode_t shifterMode
Configures the mode of the Shifter.

uint32_t parallelWidth
Configures the parallel width when using parallel mode.

flexio_shifter_input_source_t inputSource
Selects the input source for the shifter.

630 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

flexio_shifter_stop_bit_t shifterStop
Shifter STOP bit.

flexio_shifter_start_bit_t shifterStart
Shifter START bit.

struct _flexio_gpio_config
#include <fsl_flexio.h> The FLEXIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If con-
figured as an input pin, use inputConfig param. If configured as an output pin, use output-
Logic.

Public Members

flexio_gpio_direction_t pinDirection
FLEXIO pin direction, input or output

uint8_t outputLogic
Set a default output logic, which has no use in input

uint8_t inputConfig
Set an input config

2.50 FlexIO eDMA I2S Driver

void FLEXIO_I2S_TransferTxCreateHandleEDMA(FLEXIO_I2S_Type *base,
flexio_i2s_edma_handle_t *handle,
flexio_i2s_edma_callback_t callback, void
*userData, edma_handle_t *dmaHandle)

Initializes the FlexIO I2S eDMA handle.

This function initializes the FlexIO I2S master DMA handle which can be used for other
FlexIO I2S master transactional APIs. Usually, for a specified FlexIO I2S instance, call this
API once to get the initialized handle.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S eDMA handle pointer.

• callback – FlexIO I2S eDMA callback function called while finished a block.

• userData – User parameter for callback.

• dmaHandle – eDMA handle for FlexIO I2S. This handle is a static value allo-
cated by users.

void FLEXIO_I2S_TransferRxCreateHandleEDMA(FLEXIO_I2S_Type *base,
flexio_i2s_edma_handle_t *handle,
flexio_i2s_edma_callback_t callback, void
*userData, edma_handle_t *dmaHandle)

Initializes the FlexIO I2S Rx eDMA handle.

This function initializes the FlexIO I2S slave DMA handle which can be used for other FlexIO
I2S master transactional APIs. Usually, for a specified FlexIO I2S instance, call this API once
to get the initialized handle.

Parameters

2.50. FlexIO eDMA I2S Driver 631



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S eDMA handle pointer.

• callback – FlexIO I2S eDMA callback function called while finished a block.

• userData – User parameter for callback.

• dmaHandle – eDMA handle for FlexIO I2S. This handle is a static value allo-
cated by users.

void FLEXIO_I2S_TransferSetFormatEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t
*handle, flexio_i2s_format_t *format, uint32_t
srcClock_Hz)

Configures the FlexIO I2S Tx audio format.

Audio format can be changed in run-time of FlexIO I2S. This function configures the sample
rate and audio data format to be transferred. This function also sets the eDMA parameter
according to format.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S eDMA handle pointer

• format – Pointer to FlexIO I2S audio data format structure.

• srcClock_Hz – FlexIO I2S clock source frequency in Hz, it should be 0 while
in slave mode.

status_t FLEXIO_I2S_TransferSendEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t
*handle, flexio_i2s_transfer_t *xfer)

Performs a non-blocking FlexIO I2S transfer using DMA.

Note: This interface returned immediately after transfer initiates. Users should call
FLEXIO_I2S_GetTransferStatus to poll the transfer status and check whether the FlexIO I2S
transfer is finished.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

• xfer – Pointer to DMA transfer structure.

Return values
• kStatus_Success – Start a FlexIO I2S eDMA send successfully.

• kStatus_InvalidArgument – The input arguments is invalid.

• kStatus_TxBusy – FlexIO I2S is busy sending data.

status_t FLEXIO_I2S_TransferReceiveEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t
*handle, flexio_i2s_transfer_t *xfer)

Performs a non-blocking FlexIO I2S receive using eDMA.

Note: This interface returned immediately after transfer initiates. Users should call
FLEXIO_I2S_GetReceiveRemainingBytes to poll the transfer status and check whether the
FlexIO I2S transfer is finished.

Parameters

632 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

• xfer – Pointer to DMA transfer structure.

Return values
• kStatus_Success – Start a FlexIO I2S eDMA receive successfully.

• kStatus_InvalidArgument – The input arguments is invalid.

• kStatus_RxBusy – FlexIO I2S is busy receiving data.

void FLEXIO_I2S_TransferAbortSendEDMA(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t
*handle)

Aborts a FlexIO I2S transfer using eDMA.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

void FLEXIO_I2S_TransferAbortReceiveEDMA(FLEXIO_I2S_Type *base,
flexio_i2s_edma_handle_t *handle)

Aborts a FlexIO I2S receive using eDMA.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

status_t FLEXIO_I2S_TransferGetSendCountEDMA(FLEXIO_I2S_Type *base,
flexio_i2s_edma_handle_t *handle, size_t
*count)

Gets the remaining bytes to be sent.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

• count – Bytes sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t FLEXIO_I2S_TransferGetReceiveCountEDMA(FLEXIO_I2S_Type *base,
flexio_i2s_edma_handle_t *handle, size_t
*count)

Get the remaining bytes to be received.

Parameters
• base – FlexIO I2S peripheral base address.

• handle – FlexIO I2S DMA handle pointer.

• count – Bytes received.

Return values
• kStatus_Success – Succeed get the transfer count.

2.50. FlexIO eDMA I2S Driver 633



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

FSL_FLEXIO_I2S_EDMA_DRIVER_VERSION
FlexIO I2S EDMA driver version 2.1.9.

typedef struct _flexio_i2s_edma_handle flexio_i2s_edma_handle_t

typedef void (*flexio_i2s_edma_callback_t)(FLEXIO_I2S_Type *base, flexio_i2s_edma_handle_t
*handle, status_t status, void *userData)

FlexIO I2S eDMA transfer callback function for finish and error.

struct _flexio_i2s_edma_handle
#include <fsl_flexio_i2s_edma.h> FlexIO I2S DMA transfer handle, users should not touch the
content of the handle.

Public Members

edma_handle_t *dmaHandle
DMA handler for FlexIO I2S send

uint8_t bytesPerFrame
Bytes in a frame

uint8_t nbytes
eDMA minor byte transfer count initially configured.

uint32_t state
Internal state for FlexIO I2S eDMA transfer

flexio_i2s_edma_callback_t callback
Callback for users while transfer finish or error occurred

void *userData
User callback parameter

edma_tcd_t tcd[(4U) + 1U]
TCD pool for eDMA transfer.

flexio_i2s_transfer_t queue[(4U)]
Transfer queue storing queued transfer.

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.51 FlexIO eDMA SPI Driver

status_t FLEXIO_SPI_MasterTransferCreateHandleEDMA(FLEXIO_SPI_Type *base,
flexio_spi_master_edma_handle_t
*handle,
flexio_spi_master_edma_transfer_callback_t
callback, void *userData,
edma_handle_t *txHandle,
edma_handle_t *rxHandle)

634 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Initializes the FlexIO SPI master eDMA handle.

This function initializes the FlexIO SPI master eDMA handle which can be used for other
FlexIO SPI master transactional APIs. For a specified FlexIO SPI instance, call this API once
to get the initialized handle.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – Pointer to flexio_spi_master_edma_handle_t structure to store the
transfer state.

• callback – SPI callback, NULL means no callback.

• userData – callback function parameter.

• txHandle – User requested eDMA handle for FlexIO SPI RX eDMA transfer.

• rxHandle – User requested eDMA handle for FlexIO SPI TX eDMA transfer.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO SPI eDMA type/handle table out of range.

status_t FLEXIO_SPI_MasterTransferEDMA(FLEXIO_SPI_Type *base,
flexio_spi_master_edma_handle_t *handle,
flexio_spi_transfer_t *xfer)

Performs a non-blocking FlexIO SPI transfer using eDMA.

Note: This interface returns immediately after transfer initiates. Call
FLEXIO_SPI_MasterGetTransferCountEDMA to poll the transfer status and check whether
the FlexIO SPI transfer is finished.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – Pointer to flexio_spi_master_edma_handle_t structure to store the
transfer state.

• xfer – Pointer to FlexIO SPI transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_FLEXIO_SPI_Busy – FlexIO SPI is not idle, is running another
transfer.

void FLEXIO_SPI_MasterTransferAbortEDMA(FLEXIO_SPI_Type *base,
flexio_spi_master_edma_handle_t *handle)

Aborts a FlexIO SPI transfer using eDMA.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – FlexIO SPI eDMA handle pointer.

2.51. FlexIO eDMA SPI Driver 635



MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXIO_SPI_MasterTransferGetCountEDMA(FLEXIO_SPI_Type *base,
flexio_spi_master_edma_handle_t *handle,
size_t *count)

Gets the number of bytes transferred so far using FlexIO SPI master eDMA.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – FlexIO SPI eDMA handle pointer.

• count – Number of bytes transferred so far by the non-blocking transaction.

static inline void FLEXIO_SPI_SlaveTransferCreateHandleEDMA(FLEXIO_SPI_Type *base,
flexio_spi_slave_edma_handle_t
*handle,
flexio_spi_slave_edma_transfer_callback_t
callback, void *userData,
edma_handle_t *txHandle,
edma_handle_t *rxHandle)

Initializes the FlexIO SPI slave eDMA handle.

This function initializes the FlexIO SPI slave eDMA handle.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the
transfer state.

• callback – SPI callback, NULL means no callback.

• userData – callback function parameter.

• txHandle – User requested eDMA handle for FlexIO SPI TX eDMA transfer.

• rxHandle – User requested eDMA handle for FlexIO SPI RX eDMA transfer.

status_t FLEXIO_SPI_SlaveTransferEDMA(FLEXIO_SPI_Type *base,
flexio_spi_slave_edma_handle_t *handle,
flexio_spi_transfer_t *xfer)

Performs a non-blocking FlexIO SPI transfer using eDMA.

Note: This interface returns immediately after transfer initiates. Call
FLEXIO_SPI_SlaveGetTransferCountEDMA to poll the transfer status and check whether
the FlexIO SPI transfer is finished.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the
transfer state.

• xfer – Pointer to FlexIO SPI transfer structure.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_FLEXIO_SPI_Busy – FlexIO SPI is not idle, is running another
transfer.

636 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXIO_SPI_SlaveTransferAbortEDMA(FLEXIO_SPI_Type *base,
flexio_spi_slave_edma_handle_t
*handle)

Aborts a FlexIO SPI transfer using eDMA.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – Pointer to flexio_spi_slave_edma_handle_t structure to store the
transfer state.

static inline status_t FLEXIO_SPI_SlaveTransferGetCountEDMA(FLEXIO_SPI_Type *base,
flexio_spi_slave_edma_handle_t
*handle, size_t *count)

Gets the number of bytes transferred so far using FlexIO SPI slave eDMA.

Parameters
• base – Pointer to FLEXIO_SPI_Type structure.

• handle – FlexIO SPI eDMA handle pointer.

• count – Number of bytes transferred so far by the non-blocking transaction.

FSL_FLEXIO_SPI_EDMA_DRIVER_VERSION
FlexIO SPI EDMA driver version.

typedef struct _flexio_spi_master_edma_handle flexio_spi_master_edma_handle_t
typedef for flexio_spi_master_edma_handle_t in advance.

typedef flexio_spi_master_edma_handle_t flexio_spi_slave_edma_handle_t
Slave handle is the same with master handle.

typedef void (*flexio_spi_master_edma_transfer_callback_t)(FLEXIO_SPI_Type *base,
flexio_spi_master_edma_handle_t *handle, status_t status, void *userData)

FlexIO SPI master callback for finished transmit.

typedef void (*flexio_spi_slave_edma_transfer_callback_t)(FLEXIO_SPI_Type *base,
flexio_spi_slave_edma_handle_t *handle, status_t status, void *userData)

FlexIO SPI slave callback for finished transmit.

struct _flexio_spi_master_edma_handle
#include <fsl_flexio_spi_edma.h> FlexIO SPI eDMA transfer handle, users should not touch
the content of the handle.

Public Members

size_t transferSize
Total bytes to be transferred.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

bool txInProgress
Send transfer in progress

bool rxInProgress
Receive transfer in progress

edma_handle_t *txHandle
DMA handler for SPI send

2.51. FlexIO eDMA SPI Driver 637



MCUXpresso SDK Documentation, Release 25.12.00

edma_handle_t *rxHandle
DMA handler for SPI receive

flexio_spi_master_edma_transfer_callback_t callback
Callback for SPI DMA transfer

void *userData
User Data for SPI DMA callback

2.52 FlexIO eDMA UART Driver

status_t FLEXIO_UART_TransferCreateHandleEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle,
flexio_uart_edma_transfer_callback_t
callback, void *userData, edma_handle_t
*txEdmaHandle, edma_handle_t
*rxEdmaHandle)

Initializes the UART handle which is used in transactional functions.

Parameters
• base – Pointer to FLEXIO_UART_Type.

• handle – Pointer to flexio_uart_edma_handle_t structure.

• callback – The callback function.

• userData – The parameter of the callback function.

• rxEdmaHandle – User requested DMA handle for RX DMA transfer.

• txEdmaHandle – User requested DMA handle for TX DMA transfer.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO SPI eDMA type/handle table out of range.

status_t FLEXIO_UART_TransferSendEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle,
flexio_uart_transfer_t *xfer)

Sends data using eDMA.

This function sends data using eDMA. This is a non-blocking function, which returns right
away. When all data is sent out, the send callback function is called.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – UART handle pointer.

• xfer – UART eDMA transfer structure, see flexio_uart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_FLEXIO_UART_TxBusy – Previous transfer on going.

status_t FLEXIO_UART_TransferReceiveEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle,
flexio_uart_transfer_t *xfer)

638 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Receives data using eDMA.

This function receives data using eDMA. This is a non-blocking function, which returns
right away. When all data is received, the receive callback function is called.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – Pointer to flexio_uart_edma_handle_t structure

• xfer – UART eDMA transfer structure, see flexio_uart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_UART_RxBusy – Previous transfer on going.

void FLEXIO_UART_TransferAbortSendEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle)

Aborts the sent data which using eDMA.

This function aborts sent data which using eDMA.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – Pointer to flexio_uart_edma_handle_t structure

void FLEXIO_UART_TransferAbortReceiveEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle)

Aborts the receive data which using eDMA.

This function aborts the receive data which using eDMA.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – Pointer to flexio_uart_edma_handle_t structure

status_t FLEXIO_UART_TransferGetSendCountEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle,
size_t *count)

Gets the number of bytes sent out.

This function gets the number of bytes sent out.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – Pointer to flexio_uart_edma_handle_t structure

• count – Number of bytes sent so far by the non-blocking transaction.

Return values
• kStatus_NoTransferInProgress – transfer has finished or no transfer in

progress.

• kStatus_Success – Successfully return the count.

status_t FLEXIO_UART_TransferGetReceiveCountEDMA(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle,
size_t *count)

2.52. FlexIO eDMA UART Driver 639



MCUXpresso SDK Documentation, Release 25.12.00

Gets the number of bytes received.

This function gets the number of bytes received.

Parameters
• base – Pointer to FLEXIO_UART_Type

• handle – Pointer to flexio_uart_edma_handle_t structure

• count – Number of bytes received so far by the non-blocking transaction.

Return values
• kStatus_NoTransferInProgress – transfer has finished or no transfer in

progress.

• kStatus_Success – Successfully return the count.

FSL_FLEXIO_UART_EDMA_DRIVER_VERSION
FlexIO UART EDMA driver version.

typedef struct _flexio_uart_edma_handle flexio_uart_edma_handle_t

typedef void (*flexio_uart_edma_transfer_callback_t)(FLEXIO_UART_Type *base,
flexio_uart_edma_handle_t *handle, status_t status, void *userData)

UART transfer callback function.

struct _flexio_uart_edma_handle
#include <fsl_flexio_uart_edma.h> UART eDMA handle.

Public Members

flexio_uart_edma_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

size_t txDataSizeAll
Total bytes to be sent.

size_t rxDataSizeAll
Total bytes to be received.

edma_handle_t *txEdmaHandle
The eDMA TX channel used.

edma_handle_t *rxEdmaHandle
The eDMA RX channel used.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

640 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.53 FlexIO I2C Master Driver

status_t FLEXIO_I2C_CheckForBusyBus(FLEXIO_I2C_Type *base)
Make sure the bus isn’t already pulled down.

Check the FLEXIO pin status to see whether either of SDA and SCL pin is pulled down.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure..

Return values
• kStatus_Success –

• kStatus_FLEXIO_I2C_Busy –

status_t FLEXIO_I2C_MasterInit(FLEXIO_I2C_Type *base, flexio_i2c_master_config_t
*masterConfig, uint32_t srcClock_Hz)

Ungates the FlexIO clock, resets the FlexIO module, and configures the FlexIO I2C hardware
configuration.

Example

FLEXIO_I2C_Type base = {
.flexioBase = FLEXIO,
.SDAPinIndex = 0,
.SCLPinIndex = 1,
.shifterIndex = {0,1},
.timerIndex = {0,1}
};
flexio_i2c_master_config_t config = {
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.baudRate_Bps = 100000
};
FLEXIO_I2C_MasterInit(base, &config, srcClock_Hz);

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• masterConfig – Pointer to flexio_i2c_master_config_t structure.

• srcClock_Hz – FlexIO source clock in Hz.

Return values
• kStatus_Success – Initialization successful

• kStatus_InvalidArgument – The source clock exceed upper range limitation

void FLEXIO_I2C_MasterDeinit(FLEXIO_I2C_Type *base)
De-initializes the FlexIO I2C master peripheral. Calling this API Resets the FlexIO I2C master
shifer and timer config, module can’t work unless the FLEXIO_I2C_MasterInit is called.

Parameters
• base – pointer to FLEXIO_I2C_Type structure.

void FLEXIO_I2C_MasterGetDefaultConfig(flexio_i2c_master_config_t *masterConfig)
Gets the default configuration to configure the FlexIO module. The configuration can be
used directly for calling the FLEXIO_I2C_MasterInit().

Example:

2.53. FlexIO I2C Master Driver 641



MCUXpresso SDK Documentation, Release 25.12.00

flexio_i2c_master_config_t config;
FLEXIO_I2C_MasterGetDefaultConfig(&config);

Parameters
• masterConfig – Pointer to flexio_i2c_master_config_t structure.

static inline void FLEXIO_I2C_MasterEnable(FLEXIO_I2C_Type *base, bool enable)
Enables/disables the FlexIO module operation.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• enable – Pass true to enable module, false does not have any effect.

uint32_t FLEXIO_I2C_MasterGetStatusFlags(FLEXIO_I2C_Type *base)
Gets the FlexIO I2C master status flags.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure

Returns
Status flag, use status flag to AND _flexio_i2c_master_status_flags can get the
related status.

void FLEXIO_I2C_MasterClearStatusFlags(FLEXIO_I2C_Type *base, uint32_t mask)
Clears the FlexIO I2C master status flags.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• mask – Status flag. The parameter can be any combination of the following
values:

– kFLEXIO_I2C_RxFullFlag

– kFLEXIO_I2C_ReceiveNakFlag

void FLEXIO_I2C_MasterEnableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
Enables the FlexIO i2c master interrupt requests.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• mask – Interrupt source. Currently only one interrupt request source:

– kFLEXIO_I2C_TransferCompleteInterruptEnable

void FLEXIO_I2C_MasterDisableInterrupts(FLEXIO_I2C_Type *base, uint32_t mask)
Disables the FlexIO I2C master interrupt requests.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• mask – Interrupt source.

void FLEXIO_I2C_MasterSetBaudRate(FLEXIO_I2C_Type *base, uint32_t baudRate_Bps,
uint32_t srcClock_Hz)

Sets the FlexIO I2C master transfer baudrate.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure

• baudRate_Bps – the baud rate value in HZ

642 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• srcClock_Hz – source clock in HZ

void FLEXIO_I2C_MasterStart(FLEXIO_I2C_Type *base, uint8_t address, flexio_i2c_direction_t
direction)

Sends START + 7-bit address to the bus.

Note: This API should be called when the transfer configuration is ready to send a START
signal and 7-bit address to the bus. This is a non-blocking API, which returns directly after
the address is put into the data register but the address transfer is not finished on the bus.
Ensure that the kFLEXIO_I2C_RxFullFlag status is asserted before calling this API.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• address – 7-bit address.

• direction – transfer direction. This parameter is one of the values in
flexio_i2c_direction_t:

– kFLEXIO_I2C_Write: Transmit

– kFLEXIO_I2C_Read: Receive

void FLEXIO_I2C_MasterStop(FLEXIO_I2C_Type *base)
Sends the stop signal on the bus.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

void FLEXIO_I2C_MasterRepeatedStart(FLEXIO_I2C_Type *base)
Sends the repeated start signal on the bus.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

void FLEXIO_I2C_MasterAbortStop(FLEXIO_I2C_Type *base)
Sends the stop signal when transfer is still on-going.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

void FLEXIO_I2C_MasterEnableAck(FLEXIO_I2C_Type *base, bool enable)
Configures the sent ACK/NAK for the following byte.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• enable – True to configure send ACK, false configure to send NAK.

status_t FLEXIO_I2C_MasterSetTransferCount(FLEXIO_I2C_Type *base, uint16_t count)
Sets the number of bytes to be transferred from a start signal to a stop signal.

Note: Call this API before a transfer begins because the timer generates a number of clocks
according to the number of bytes that need to be transferred.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

2.53. FlexIO I2C Master Driver 643



MCUXpresso SDK Documentation, Release 25.12.00

• count – Number of bytes need to be transferred from a start signal to a
re-start/stop signal

Return values
• kStatus_Success – Successfully configured the count.

• kStatus_InvalidArgument – Input argument is invalid.

static inline void FLEXIO_I2C_MasterWriteByte(FLEXIO_I2C_Type *base, uint32_t data)
Writes one byte of data to the I2C bus.

Note: This is a non-blocking API, which returns directly after the data is put into the data
register but the data transfer is not finished on the bus. Ensure that the TxEmptyFlag is
asserted before calling this API.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• data – a byte of data.

static inline uint8_t FLEXIO_I2C_MasterReadByte(FLEXIO_I2C_Type *base)
Reads one byte of data from the I2C bus.

Note: This is a non-blocking API, which returns directly after the data is read from the
data register. Ensure that the data is ready in the register.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

Returns
data byte read.

status_t FLEXIO_I2C_MasterWriteBlocking(FLEXIO_I2C_Type *base, const uint8_t *txBuff,
uint8_t txSize)

Sends a buffer of data in bytes.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• txBuff – The data bytes to send.

• txSize – The number of data bytes to send.

Return values
• kStatus_Success – Successfully write data.

• kStatus_FLEXIO_I2C_Nak – Receive NAK during writing data.

• kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.

status_t FLEXIO_I2C_MasterReadBlocking(FLEXIO_I2C_Type *base, uint8_t *rxBuff, uint8_t
rxSize)

644 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Receives a buffer of bytes.

Note: This function blocks via polling until all bytes have been received.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• rxBuff – The buffer to store the received bytes.

• rxSize – The number of data bytes to be received.

Return values
• kStatus_Success – Successfully read data.

• kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.

status_t FLEXIO_I2C_MasterTransferBlocking(FLEXIO_I2C_Type *base,
flexio_i2c_master_transfer_t *xfer)

Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to receiving NAK.

Parameters
• base – pointer to FLEXIO_I2C_Type structure.

• xfer – pointer to flexio_i2c_master_transfer_t structure.

Returns
status of status_t.

status_t FLEXIO_I2C_MasterTransferCreateHandle(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_callback_t
callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• handle – Pointer to flexio_i2c_master_handle_t structure to store the trans-
fer state.

• callback – Pointer to user callback function.

• userData – User param passed to the callback function.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/isr table out of range.

status_t FLEXIO_I2C_MasterTransferNonBlocking(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle,
flexio_i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note: The API returns immediately after the transfer initiates. Call
FLEXIO_I2C_MasterTransferGetCount to poll the transfer status to check whether the

2.53. FlexIO I2C Master Driver 645



MCUXpresso SDK Documentation, Release 25.12.00

transfer is finished. If the return status is not kStatus_FLEXIO_I2C_Busy, the transfer is
finished.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure

• handle – Pointer to flexio_i2c_master_handle_t structure which stores the
transfer state

• xfer – pointer to flexio_i2c_master_transfer_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_FLEXIO_I2C_Busy – FlexIO I2C is not idle, is running another
transfer.

status_t FLEXIO_I2C_MasterTransferGetCount(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure.

• handle – Pointer to flexio_i2c_master_handle_t structure which stores the
transfer state.

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

• kStatus_Success – Successfully return the count.

void FLEXIO_I2C_MasterTransferAbort(FLEXIO_I2C_Type *base, flexio_i2c_master_handle_t
*handle)

Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
• base – Pointer to FLEXIO_I2C_Type structure

• handle – Pointer to flexio_i2c_master_handle_t structure which stores the
transfer state

void FLEXIO_I2C_MasterTransferHandleIRQ(void *i2cType, void *i2cHandle)
Master interrupt handler.

Parameters
• i2cType – Pointer to FLEXIO_I2C_Type structure

• i2cHandle – Pointer to flexio_i2c_master_transfer_t structure

646 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_FLEXIO_I2C_MASTER_DRIVER_VERSION

FlexIO I2C transfer status.

Values:

enumerator kStatus_FLEXIO_I2C_Busy
I2C is busy doing transfer.

enumerator kStatus_FLEXIO_I2C_Idle
I2C is busy doing transfer.

enumerator kStatus_FLEXIO_I2C_Nak
NAK received during transfer.

enumerator kStatus_FLEXIO_I2C_Timeout
Timeout polling status flags.

enum _flexio_i2c_master_interrupt
Define FlexIO I2C master interrupt mask.

Values:

enumerator kFLEXIO_I2C_TxEmptyInterruptEnable
Tx buffer empty interrupt enable.

enumerator kFLEXIO_I2C_RxFullInterruptEnable
Rx buffer full interrupt enable.

enum _flexio_i2c_master_status_flags
Define FlexIO I2C master status mask.

Values:

enumerator kFLEXIO_I2C_TxEmptyFlag
Tx shifter empty flag.

enumerator kFLEXIO_I2C_RxFullFlag
Rx shifter full/Transfer complete flag.

enumerator kFLEXIO_I2C_ReceiveNakFlag
Receive NAK flag.

enum _flexio_i2c_direction
Direction of master transfer.

Values:

enumerator kFLEXIO_I2C_Write
Master send to slave.

enumerator kFLEXIO_I2C_Read
Master receive from slave.

typedef enum _flexio_i2c_direction flexio_i2c_direction_t
Direction of master transfer.

typedef struct _flexio_i2c_type FLEXIO_I2C_Type
Define FlexIO I2C master access structure typedef.

typedef struct _flexio_i2c_master_config flexio_i2c_master_config_t
Define FlexIO I2C master user configuration structure.

2.53. FlexIO I2C Master Driver 647



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _flexio_i2c_master_transfer flexio_i2c_master_transfer_t
Define FlexIO I2C master transfer structure.

typedef struct _flexio_i2c_master_handle flexio_i2c_master_handle_t
FlexIO I2C master handle typedef.

typedef void (*flexio_i2c_master_transfer_callback_t)(FLEXIO_I2C_Type *base,
flexio_i2c_master_handle_t *handle, status_t status, void *userData)

FlexIO I2C master transfer callback typedef.

I2C_RETRY_TIMES
Retry times for waiting flag.

struct _flexio_i2c_type
#include <fsl_flexio_i2c_master.h> Define FlexIO I2C master access structure typedef.

Public Members

FLEXIO_Type *flexioBase
FlexIO base pointer.

uint8_t SDAPinIndex
Pin select for I2C SDA.

uint8_t SCLPinIndex
Pin select for I2C SCL.

uint8_t shifterIndex[2]
Shifter index used in FlexIO I2C.

uint8_t timerIndex[3]
Timer index used in FlexIO I2C.

uint32_t baudrate
Master transfer baudrate, used to calculate delay time.

struct _flexio_i2c_master_config
#include <fsl_flexio_i2c_master.h> Define FlexIO I2C master user configuration structure.

Public Members

bool enableMaster
Enables the FlexIO I2C peripheral at initialization time.

bool enableInDoze
Enable/disable FlexIO operation in doze mode.

bool enableInDebug
Enable/disable FlexIO operation in debug mode.

bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to
be at least twice the frequency of the bus clock.

uint32_t baudRate_Bps
Baud rate in Bps.

struct _flexio_i2c_master_transfer
#include <fsl_flexio_i2c_master.h> Define FlexIO I2C master transfer structure.

648 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t flags
Transfer flag which controls the transfer, reserved for FlexIO I2C.

uint8_t slaveAddress
7-bit slave address.

flexio_i2c_direction_t direction
Transfer direction, read or write.

uint32_t subaddress
Sub address. Transferred MSB first.

uint8_t subaddressSize
Size of sub address.

uint8_t volatile *data
Transfer buffer.

volatile size_t dataSize
Transfer size.

struct _flexio_i2c_master_handle
#include <fsl_flexio_i2c_master.h> Define FlexIO I2C master handle structure.

Public Members

flexio_i2c_master_transfer_t transfer
FlexIO I2C master transfer copy.

size_t transferSize
Total bytes to be transferred.

uint8_t state
Transfer state maintained during transfer.

flexio_i2c_master_transfer_callback_t completionCallback
Callback function called at transfer event. Callback function called at transfer event.

void *userData
Callback parameter passed to callback function.

bool needRestart
Whether master needs to send re-start signal.

2.54 FlexIO I2S Driver

void FLEXIO_I2S_Init(FLEXIO_I2S_Type *base, const flexio_i2s_config_t *config)
Initializes the FlexIO I2S.

This API configures FlexIO pins and shifter to I2S and configures the FlexIO I2S with a con-
figuration structure. The configuration structure can be filled by the user, or be set with
default values by FLEXIO_I2S_GetDefaultConfig().

Note: This API should be called at the beginning of the application to use the FlexIO I2S
driver. Otherwise, any access to the FlexIO I2S module can cause hard fault because the
clock is not enabled.

2.54. FlexIO I2S Driver 649



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FlexIO I2S base pointer

• config – FlexIO I2S configure structure.

void FLEXIO_I2S_GetDefaultConfig(flexio_i2s_config_t *config)
Sets the FlexIO I2S configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
FLEXIO_I2S_Init(). Users may use the initialized structure unchanged in FLEXIO_I2S_Init()
or modify some fields of the structure before calling FLEXIO_I2S_Init().

Parameters
• config – pointer to master configuration structure

void FLEXIO_I2S_Deinit(FLEXIO_I2S_Type *base)
De-initializes the FlexIO I2S.

Calling this API resets the FlexIO I2S shifter and timer config. After calling this API, call the
FLEXO_I2S_Init to use the FlexIO I2S module.

Parameters
• base – FlexIO I2S base pointer

static inline void FLEXIO_I2S_Enable(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S module operation.

Parameters
• base – Pointer to FLEXIO_I2S_Type

• enable – True to enable, false dose not have any effect.

uint32_t FLEXIO_I2S_GetStatusFlags(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S status flags.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

Returns
Status flag, which are ORed by the enumerators in the _flexio_i2s_status_flags.

void FLEXIO_I2S_EnableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask)
Enables the FlexIO I2S interrupt.

This function enables the FlexIO UART interrupt.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

• mask – interrupt source

void FLEXIO_I2S_DisableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask)
Disables the FlexIO I2S interrupt.

This function enables the FlexIO UART interrupt.

Parameters
• base – pointer to FLEXIO_I2S_Type structure

• mask – interrupt source

650 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXIO_I2S_TxEnableDMA(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S Tx DMA requests.

Parameters
• base – FlexIO I2S base pointer

• enable – True means enable DMA, false means disable DMA.

static inline void FLEXIO_I2S_RxEnableDMA(FLEXIO_I2S_Type *base, bool enable)
Enables/disables the FlexIO I2S Rx DMA requests.

Parameters
• base – FlexIO I2S base pointer

• enable – True means enable DMA, false means disable DMA.

static inline uint32_t FLEXIO_I2S_TxGetDataRegisterAddress(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S send data register address.

This function returns the I2S data register address, mainly used by DMA/eDMA.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

Returns
FlexIO i2s send data register address.

static inline uint32_t FLEXIO_I2S_RxGetDataRegisterAddress(FLEXIO_I2S_Type *base)
Gets the FlexIO I2S receive data register address.

This function returns the I2S data register address, mainly used by DMA/eDMA.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

Returns
FlexIO i2s receive data register address.

void FLEXIO_I2S_MasterSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format,
uint32_t srcClock_Hz)

Configures the FlexIO I2S audio format in master mode.

Audio format can be changed in run-time of FlexIO I2S. This function configures the sample
rate and audio data format to be transferred.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

• format – Pointer to FlexIO I2S audio data format structure.

• srcClock_Hz – I2S master clock source frequency in Hz.

void FLEXIO_I2S_SlaveSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format)
Configures the FlexIO I2S audio format in slave mode.

Audio format can be changed in run-time of FlexIO I2S. This function configures the sample
rate and audio data format to be transferred.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

• format – Pointer to FlexIO I2S audio data format structure.

2.54. FlexIO I2S Driver 651



MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXIO_I2S_WriteBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData,
size_t size)

Sends data using a blocking method.

Note: This function blocks via polling until data is ready to be sent.

Parameters
• base – FlexIO I2S base pointer.

• bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.

• txData – Pointer to the data to be written.

• size – Bytes to be written.

Return values
• kStatus_Success – Successfully write data.

• kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.

static inline void FLEXIO_I2S_WriteData(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint32_t
data)

Writes data into a data register.

Parameters
• base – FlexIO I2S base pointer.

• bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.

• data – Data to be written.

status_t FLEXIO_I2S_ReadBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData,
size_t size)

Receives a piece of data using a blocking method.

Note: This function blocks via polling until data is ready to be sent.

Parameters
• base – FlexIO I2S base pointer

• bitWidth – How many bits in a audio word, usually 8/16/24/32 bits.

• rxData – Pointer to the data to be read.

• size – Bytes to be read.

Return values
• kStatus_Success – Successfully read data.

• kStatus_FLEXIO_I2C_Timeout – Timeout polling status flags.

static inline uint32_t FLEXIO_I2S_ReadData(FLEXIO_I2S_Type *base)
Reads a data from the data register.

Parameters
• base – FlexIO I2S base pointer

Returns
Data read from data register.

652 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXIO_I2S_TransferTxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle,
flexio_i2s_callback_t callback, void *userData)

Initializes the FlexIO I2S handle.

This function initializes the FlexIO I2S handle which can be used for other FlexIO I2S trans-
actional APIs. Call this API once to get the initialized handle.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure

• handle – Pointer to flexio_i2s_handle_t structure to store the transfer state.

• callback – FlexIO I2S callback function, which is called while finished a
block.

• userData – User parameter for the FlexIO I2S callback.

void FLEXIO_I2S_TransferSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle,
flexio_i2s_format_t *format, uint32_t srcClock_Hz)

Configures the FlexIO I2S audio format.

Audio format can be changed at run-time of FlexIO I2S. This function configures the sample
rate and audio data format to be transferred.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – FlexIO I2S handle pointer.

• format – Pointer to audio data format structure.

• srcClock_Hz – FlexIO I2S bit clock source frequency in Hz. This parameter
should be 0 while in slave mode.

void FLEXIO_I2S_TransferRxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle,
flexio_i2s_callback_t callback, void *userData)

Initializes the FlexIO I2S receive handle.

This function initializes the FlexIO I2S handle which can be used for other FlexIO I2S trans-
actional APIs. Call this API once to get the initialized handle.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – Pointer to flexio_i2s_handle_t structure to store the transfer state.

• callback – FlexIO I2S callback function, which is called while finished a
block.

• userData – User parameter for the FlexIO I2S callback.

status_t FLEXIO_I2S_TransferSendNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t
*handle, flexio_i2s_transfer_t *xfer)

Performs an interrupt non-blocking send transfer on FlexIO I2S.

Note: The API returns immediately after transfer initiates. Call
FLEXIO_I2S_GetRemainingBytes to poll the transfer status and check whether the transfer
is finished. If the return status is 0, the transfer is finished.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

2.54. FlexIO I2S Driver 653



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

• xfer – Pointer to flexio_i2s_transfer_t structure

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_FLEXIO_I2S_TxBusy – Previous transmission still not finished,
data not all written to TX register yet.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t FLEXIO_I2S_TransferReceiveNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t
*handle, flexio_i2s_transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on FlexIO I2S.

Note: The API returns immediately after transfer initiates. Call
FLEXIO_I2S_GetRemainingBytes to poll the transfer status to check whether the transfer is
finished. If the return status is 0, the transfer is finished.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

• xfer – Pointer to flexio_i2s_transfer_t structure

Return values
• kStatus_Success – Successfully start the data receive.

• kStatus_FLEXIO_I2S_RxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

void FLEXIO_I2S_TransferAbortSend(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle)
Aborts the current send.

Note: This API can be called at any time when interrupt non-blocking transfer initiates to
abort the transfer in a early time.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

void FLEXIO_I2S_TransferAbortReceive(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle)
Aborts the current receive.

Note: This API can be called at any time when interrupt non-blocking transfer initiates to
abort the transfer in a early time.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

654 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

status_t FLEXIO_I2S_TransferGetSendCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t
*handle, size_t *count)

Gets the remaining bytes to be sent.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

• count – Bytes sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t FLEXIO_I2S_TransferGetReceiveCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t
*handle, size_t *count)

Gets the remaining bytes to be received.

Parameters
• base – Pointer to FLEXIO_I2S_Type structure.

• handle – Pointer to flexio_i2s_handle_t structure which stores the transfer
state

• count – Bytes recieved.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

Returns
count Bytes received.

void FLEXIO_I2S_TransferTxHandleIRQ(void *i2sBase, void *i2sHandle)
Tx interrupt handler.

Parameters
• i2sBase – Pointer to FLEXIO_I2S_Type structure.

• i2sHandle – Pointer to flexio_i2s_handle_t structure

void FLEXIO_I2S_TransferRxHandleIRQ(void *i2sBase, void *i2sHandle)
Rx interrupt handler.

Parameters
• i2sBase – Pointer to FLEXIO_I2S_Type structure.

• i2sHandle – Pointer to flexio_i2s_handle_t structure.

FSL_FLEXIO_I2S_DRIVER_VERSION
FlexIO I2S driver version 2.2.2.

2.54. FlexIO I2S Driver 655



MCUXpresso SDK Documentation, Release 25.12.00

FlexIO I2S transfer status.

Values:

enumerator kStatus_FLEXIO_I2S_Idle
FlexIO I2S is in idle state

enumerator kStatus_FLEXIO_I2S_TxBusy
FlexIO I2S Tx is busy

enumerator kStatus_FLEXIO_I2S_RxBusy
FlexIO I2S Tx is busy

enumerator kStatus_FLEXIO_I2S_Error
FlexIO I2S error occurred

enumerator kStatus_FLEXIO_I2S_QueueFull
FlexIO I2S transfer queue is full.

enumerator kStatus_FLEXIO_I2S_Timeout
FlexIO I2S timeout polling status flags.

enum _flexio_i2s_master_slave
Master or slave mode.

Values:

enumerator kFLEXIO_I2S_Master
Master mode

enumerator kFLEXIO_I2S_Slave
Slave mode

_flexio_i2s_interrupt_enable Define FlexIO FlexIO I2S interrupt mask.

Values:

enumerator kFLEXIO_I2S_TxDataRegEmptyInterruptEnable
Transmit buffer empty interrupt enable.

enumerator kFLEXIO_I2S_RxDataRegFullInterruptEnable
Receive buffer full interrupt enable.

_flexio_i2s_status_flags Define FlexIO FlexIO I2S status mask.

Values:

enumerator kFLEXIO_I2S_TxDataRegEmptyFlag
Transmit buffer empty flag.

enumerator kFLEXIO_I2S_RxDataRegFullFlag
Receive buffer full flag.

enum _flexio_i2s_sample_rate
Audio sample rate.

Values:

enumerator kFLEXIO_I2S_SampleRate8KHz
Sample rate 8000Hz

656 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_I2S_SampleRate11025Hz
Sample rate 11025Hz

enumerator kFLEXIO_I2S_SampleRate12KHz
Sample rate 12000Hz

enumerator kFLEXIO_I2S_SampleRate16KHz
Sample rate 16000Hz

enumerator kFLEXIO_I2S_SampleRate22050Hz
Sample rate 22050Hz

enumerator kFLEXIO_I2S_SampleRate24KHz
Sample rate 24000Hz

enumerator kFLEXIO_I2S_SampleRate32KHz
Sample rate 32000Hz

enumerator kFLEXIO_I2S_SampleRate44100Hz
Sample rate 44100Hz

enumerator kFLEXIO_I2S_SampleRate48KHz
Sample rate 48000Hz

enumerator kFLEXIO_I2S_SampleRate96KHz
Sample rate 96000Hz

enum _flexio_i2s_word_width
Audio word width.

Values:

enumerator kFLEXIO_I2S_WordWidth8bits
Audio data width 8 bits

enumerator kFLEXIO_I2S_WordWidth16bits
Audio data width 16 bits

enumerator kFLEXIO_I2S_WordWidth24bits
Audio data width 24 bits

enumerator kFLEXIO_I2S_WordWidth32bits
Audio data width 32 bits

typedef struct _flexio_i2s_type FLEXIO_I2S_Type
Define FlexIO I2S access structure typedef.

typedef enum _flexio_i2s_master_slave flexio_i2s_master_slave_t
Master or slave mode.

typedef struct _flexio_i2s_config flexio_i2s_config_t
FlexIO I2S configure structure.

typedef struct _flexio_i2s_format flexio_i2s_format_t
FlexIO I2S audio format, FlexIO I2S only support the same format in Tx and Rx.

typedef enum _flexio_i2s_sample_rate flexio_i2s_sample_rate_t
Audio sample rate.

typedef enum _flexio_i2s_word_width flexio_i2s_word_width_t
Audio word width.

2.54. FlexIO I2S Driver 657



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _flexio_i2s_transfer flexio_i2s_transfer_t
Define FlexIO I2S transfer structure.

typedef struct _flexio_i2s_handle flexio_i2s_handle_t

typedef void (*flexio_i2s_callback_t)(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle,
status_t status, void *userData)

FlexIO I2S xfer callback prototype.

I2S_RETRY_TIMES
Retry times for waiting flag.

FLEXIO_I2S_XFER_QUEUE_SIZE
FlexIO I2S transfer queue size, user can refine it according to use case.

struct _flexio_i2s_type
#include <fsl_flexio_i2s.h> Define FlexIO I2S access structure typedef.

Public Members

FLEXIO_Type *flexioBase
FlexIO base pointer

uint8_t txPinIndex
Tx data pin index in FlexIO pins

uint8_t rxPinIndex
Rx data pin index

uint8_t bclkPinIndex
Bit clock pin index

uint8_t fsPinIndex
Frame sync pin index

uint8_t txShifterIndex
Tx data shifter index

uint8_t rxShifterIndex
Rx data shifter index

uint8_t bclkTimerIndex
Bit clock timer index

uint8_t fsTimerIndex
Frame sync timer index

struct _flexio_i2s_config
#include <fsl_flexio_i2s.h> FlexIO I2S configure structure.

Public Members

bool enableI2S
Enable FlexIO I2S

flexio_i2s_master_slave_t masterSlave
Master or slave

flexio_pin_polarity_t txPinPolarity
Tx data pin polarity, active high or low

658 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

flexio_pin_polarity_t rxPinPolarity
Rx data pin polarity

flexio_pin_polarity_t bclkPinPolarity
Bit clock pin polarity

flexio_pin_polarity_t fsPinPolarity
Frame sync pin polarity

flexio_shifter_timer_polarity_t txTimerPolarity
Tx data valid on bclk rising or falling edge

flexio_shifter_timer_polarity_t rxTimerPolarity
Rx data valid on bclk rising or falling edge

struct _flexio_i2s_format
#include <fsl_flexio_i2s.h> FlexIO I2S audio format, FlexIO I2S only support the same format
in Tx and Rx.

Public Members

uint8_t bitWidth
Bit width of audio data, always 8/16/24/32 bits

uint32_t sampleRate_Hz
Sample rate of the audio data

struct _flexio_i2s_transfer
#include <fsl_flexio_i2s.h> Define FlexIO I2S transfer structure.

Public Members

uint8_t *data
Data buffer start pointer

size_t dataSize
Bytes to be transferred.

struct _flexio_i2s_handle
#include <fsl_flexio_i2s.h> Define FlexIO I2S handle structure.

Public Members

uint32_t state
Internal state

flexio_i2s_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

uint8_t bitWidth
Bit width for transfer, 8/16/24/32bits

flexio_i2s_transfer_t queue[(4U)]
Transfer queue storing queued transfer

2.54. FlexIO I2S Driver 659



MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.55 FlexIO SPI Driver

void FLEXIO_SPI_MasterInit(FLEXIO_SPI_Type *base, flexio_spi_master_config_t
*masterConfig, uint32_t srcClock_Hz)

Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI master
hardware, and configures the FlexIO SPI with FlexIO SPI master configuration. The
configuration structure can be filled by the user, or be set with default values by the
FLEXIO_SPI_MasterGetDefaultConfig().

Example

FLEXIO_SPI_Type spiDev = {
.flexioBase = FLEXIO,
.SDOPinIndex = 0,
.SDIPinIndex = 1,
.SCKPinIndex = 2,
.CSnPinIndex = 3,
.shifterIndex = {0,1},
.timerIndex = {0,1}
};
flexio_spi_master_config_t config = {
.enableMaster = true,
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.baudRate_Bps = 500000,
.phase = kFLEXIO_SPI_ClockPhaseFirstEdge,
.direction = kFLEXIO_SPI_MsbFirst,
.dataMode = kFLEXIO_SPI_8BitMode
};
FLEXIO_SPI_MasterInit(&spiDev, &config, srcClock_Hz);

Note: 1.FlexIO SPI master only support CPOL = 0, which means clock inactive low. 2.For
FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time is 2.5
clock cycles. So if FlexIO SPI master communicates with other spi IPs, the maximum baud
rate is FlexIO clock frequency divided by 2*2=4. If FlexIO SPI master communicates with
FlexIO SPI slave, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• masterConfig – Pointer to the flexio_spi_master_config_t structure.

• srcClock_Hz – FlexIO source clock in Hz.

660 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXIO_SPI_MasterDeinit(FLEXIO_SPI_Type *base)
Resets the FlexIO SPI timer and shifter config.

Parameters
• base – Pointer to the FLEXIO_SPI_Type.

void FLEXIO_SPI_MasterGetDefaultConfig(flexio_spi_master_config_t *masterConfig)
Gets the default configuration to configure the FlexIO SPI master. The configuration can be
used directly by calling the FLEXIO_SPI_MasterConfigure(). Example:

flexio_spi_master_config_t masterConfig;
FLEXIO_SPI_MasterGetDefaultConfig(&masterConfig);

Parameters
• masterConfig – Pointer to the flexio_spi_master_config_t structure.

void FLEXIO_SPI_SlaveInit(FLEXIO_SPI_Type *base, flexio_spi_slave_config_t *slaveConfig)
Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI slave hard-
ware configuration, and configures the FlexIO SPI with FlexIO SPI slave configuration.
The configuration structure can be filled by the user, or be set with default values by the
FLEXIO_SPI_SlaveGetDefaultConfig().

Note: 1.Only one timer is needed in the FlexIO SPI slave. As a result, the second timer index
is ignored. 2.FlexIO SPI slave only support CPOL = 0, which means clock inactive low. 3.For
FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time is 2.5
clock cycles. So if FlexIO SPI slave communicates with other spi IPs, the maximum baud rate
is FlexIO clock frequency divided by 3*2=6. If FlexIO SPI slave communicates with FlexIO
SPI master, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8.
Example

FLEXIO_SPI_Type spiDev = {
.flexioBase = FLEXIO,
.SDOPinIndex = 0,
.SDIPinIndex = 1,
.SCKPinIndex = 2,
.CSnPinIndex = 3,
.shifterIndex = {0,1},
.timerIndex = {0}
};
flexio_spi_slave_config_t config = {
.enableSlave = true,
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.phase = kFLEXIO_SPI_ClockPhaseFirstEdge,
.direction = kFLEXIO_SPI_MsbFirst,
.dataMode = kFLEXIO_SPI_8BitMode
};
FLEXIO_SPI_SlaveInit(&spiDev, &config);

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• slaveConfig – Pointer to the flexio_spi_slave_config_t structure.

2.55. FlexIO SPI Driver 661



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXIO_SPI_SlaveDeinit(FLEXIO_SPI_Type *base)
Gates the FlexIO clock.

Parameters
• base – Pointer to the FLEXIO_SPI_Type.

void FLEXIO_SPI_SlaveGetDefaultConfig(flexio_spi_slave_config_t *slaveConfig)
Gets the default configuration to configure the FlexIO SPI slave. The configuration can be
used directly for calling the FLEXIO_SPI_SlaveConfigure(). Example:

flexio_spi_slave_config_t slaveConfig;
FLEXIO_SPI_SlaveGetDefaultConfig(&slaveConfig);

Parameters
• slaveConfig – Pointer to the flexio_spi_slave_config_t structure.

uint32_t FLEXIO_SPI_GetStatusFlags(FLEXIO_SPI_Type *base)
Gets FlexIO SPI status flags.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

Returns
status flag; Use the status flag to AND the following flag mask and get the sta-
tus.

• kFLEXIO_SPI_TxEmptyFlag

• kFLEXIO_SPI_RxEmptyFlag

void FLEXIO_SPI_ClearStatusFlags(FLEXIO_SPI_Type *base, uint32_t mask)
Clears FlexIO SPI status flags.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• mask – status flag The parameter can be any combination of the following
values:

– kFLEXIO_SPI_TxEmptyFlag

– kFLEXIO_SPI_RxEmptyFlag

void FLEXIO_SPI_EnableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
Enables the FlexIO SPI interrupt.

This function enables the FlexIO SPI interrupt.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• mask – interrupt source. The parameter can be any combination of the
following values:

– kFLEXIO_SPI_RxFullInterruptEnable

– kFLEXIO_SPI_TxEmptyInterruptEnable

void FLEXIO_SPI_DisableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
Disables the FlexIO SPI interrupt.

This function disables the FlexIO SPI interrupt.

662 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• mask – interrupt source The parameter can be any combination of the fol-
lowing values:

– kFLEXIO_SPI_RxFullInterruptEnable

– kFLEXIO_SPI_TxEmptyInterruptEnable

void FLEXIO_SPI_EnableDMA(FLEXIO_SPI_Type *base, uint32_t mask, bool enable)
Enables/disables the FlexIO SPI transmit DMA. This function enables/disables the FlexIO SPI
Tx DMA, which means that asserting the kFLEXIO_SPI_TxEmptyFlag does/doesn’t trigger
the DMA request.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• mask – SPI DMA source.

• enable – True means enable DMA, false means disable DMA.

static inline uint32_t FLEXIO_SPI_GetTxDataRegisterAddress(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t
direction)

Gets the FlexIO SPI transmit data register address for MSB first transfer.

This function returns the SPI data register address, which is mainly used by DMA/eDMA.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

Returns
FlexIO SPI transmit data register address.

static inline uint32_t FLEXIO_SPI_GetRxDataRegisterAddress(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t
direction)

Gets the FlexIO SPI receive data register address for the MSB first transfer.

This function returns the SPI data register address, which is mainly used by DMA/eDMA.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

Returns
FlexIO SPI receive data register address.

static inline void FLEXIO_SPI_Enable(FLEXIO_SPI_Type *base, bool enable)
Enables/disables the FlexIO SPI module operation.

Parameters
• base – Pointer to the FLEXIO_SPI_Type.

• enable – True to enable, false does not have any effect.

void FLEXIO_SPI_MasterSetBaudRate(FLEXIO_SPI_Type *base, uint32_t baudRate_Bps,
uint32_t srcClockHz)

Sets baud rate for the FlexIO SPI transfer, which is only used for the master.

Parameters

2.55. FlexIO SPI Driver 663



MCUXpresso SDK Documentation, Release 25.12.00

• base – Pointer to the FLEXIO_SPI_Type structure.

• baudRate_Bps – Baud Rate needed in Hz.

• srcClockHz – SPI source clock frequency in Hz.

static inline void FLEXIO_SPI_WriteData(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t
direction, uint32_t data)

Writes one byte of data, which is sent using the MSB method.

Note: This is a non-blocking API, which returns directly after the data is put into the data
register but the data transfer is not finished on the bus. Ensure that the TxEmptyFlag is
asserted before calling this API.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

• data – 8/16/32 bit data.

static inline uint32_t FLEXIO_SPI_ReadData(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t direction)

Reads 8 bit/16 bit data.

Note: This is a non-blocking API, which returns directly after the data is read from the
data register. Ensure that the RxFullFlag is asserted before calling this API.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

Returns
8 bit/16 bit data received.

status_t FLEXIO_SPI_WriteBlocking(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t
direction, const uint8_t *buffer, size_t size)

Sends a buffer of data bytes.

Note: This function blocks using the polling method until all bytes have been sent.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

• buffer – The data bytes to send.

• size – The number of data bytes to send.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.

664 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXIO_SPI_ReadBlocking(FLEXIO_SPI_Type *base, flexio_spi_shift_direction_t
direction, uint8_t *buffer, size_t size)

Receives a buffer of bytes.

Note: This function blocks using the polling method until all bytes have been received.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• direction – Shift direction of MSB first or LSB first.

• buffer – The buffer to store the received bytes.

• size – The number of data bytes to be received.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.

status_t FLEXIO_SPI_MasterTransferBlocking(FLEXIO_SPI_Type *base, flexio_spi_transfer_t
*xfer)

Receives a buffer of bytes.

Note: This function blocks via polling until all bytes have been received.

Parameters
• base – pointer to FLEXIO_SPI_Type structure

• xfer – FlexIO SPI transfer structure, see flexio_spi_transfer_t.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_FLEXIO_SPI_Timeout – The transfer timed out and was aborted.

void FLEXIO_SPI_FlushShifters(FLEXIO_SPI_Type *base)
Flush tx/rx shifters.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

status_t FLEXIO_SPI_MasterTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_master_transfer_callback_t
callback, void *userData)

Initializes the FlexIO SPI Master handle, which is used in transactional functions.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_master_handle_t structure to store the
transfer state.

• callback – The callback function.

• userData – The parameter of the callback function.

Return values

2.55. FlexIO SPI Driver 665



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.

status_t FLEXIO_SPI_MasterTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_transfer_t *xfer)

Master transfer data using IRQ.

This function sends data using IRQ. This is a non-blocking function, which returns right
away. When all data is sent out/received, the callback function is called.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_master_handle_t structure to store the
transfer state.

• xfer – FlexIO SPI transfer structure. See flexio_spi_transfer_t.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_FLEXIO_SPI_Busy – SPI is not idle, is running another transfer.

void FLEXIO_SPI_MasterTransferAbort(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t
*handle)

Aborts the master data transfer, which used IRQ.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_master_handle_t structure to store the
transfer state.

status_t FLEXIO_SPI_MasterTransferGetCount(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle, size_t
*count)

Gets the data transfer status which used IRQ.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_master_handle_t structure to store the
transfer state.

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void FLEXIO_SPI_MasterTransferHandleIRQ(void *spiType, void *spiHandle)
FlexIO SPI master IRQ handler function.

Parameters
• spiType – Pointer to the FLEXIO_SPI_Type structure.

• spiHandle – Pointer to the flexio_spi_master_handle_t structure to store the
transfer state.

666 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXIO_SPI_SlaveTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_slave_transfer_callback_t callback,
void *userData)

Initializes the FlexIO SPI Slave handle, which is used in transactional functions.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_slave_handle_t structure to store the
transfer state.

• callback – The callback function.

• userData – The parameter of the callback function.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.

status_t FLEXIO_SPI_SlaveTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_transfer_t *xfer)

Slave transfer data using IRQ.

This function sends data using IRQ. This is a non-blocking function, which returns right
away. When all data is sent out/received, the callback function is called.

Parameters
• handle – Pointer to the flexio_spi_slave_handle_t structure to store the

transfer state.

• base – Pointer to the FLEXIO_SPI_Type structure.

• xfer – FlexIO SPI transfer structure. See flexio_spi_transfer_t.

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_FLEXIO_SPI_Busy – SPI is not idle; it is running another transfer.

static inline void FLEXIO_SPI_SlaveTransferAbort(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle)

Aborts the slave data transfer which used IRQ, share same API with master.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_slave_handle_t structure to store the
transfer state.

static inline status_t FLEXIO_SPI_SlaveTransferGetCount(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
size_t *count)

Gets the data transfer status which used IRQ, share same API with master.

Parameters
• base – Pointer to the FLEXIO_SPI_Type structure.

• handle – Pointer to the flexio_spi_slave_handle_t structure to store the
transfer state.

2.55. FlexIO SPI Driver 667



MCUXpresso SDK Documentation, Release 25.12.00

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void FLEXIO_SPI_SlaveTransferHandleIRQ(void *spiType, void *spiHandle)
FlexIO SPI slave IRQ handler function.

Parameters
• spiType – Pointer to the FLEXIO_SPI_Type structure.

• spiHandle – Pointer to the flexio_spi_slave_handle_t structure to store the
transfer state.

FSL_FLEXIO_SPI_DRIVER_VERSION
FlexIO SPI driver version.

Error codes for the FlexIO SPI driver.

Values:

enumerator kStatus_FLEXIO_SPI_Busy
FlexIO SPI is busy.

enumerator kStatus_FLEXIO_SPI_Idle
SPI is idle

enumerator kStatus_FLEXIO_SPI_Error
FlexIO SPI error.

enumerator kStatus_FLEXIO_SPI_Timeout
FlexIO SPI timeout polling status flags.

enum _flexio_spi_clock_phase
FlexIO SPI clock phase configuration.

Values:

enumerator kFLEXIO_SPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kFLEXIO_SPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.

enum _flexio_spi_shift_direction
FlexIO SPI data shifter direction options.

Values:

enumerator kFLEXIO_SPI_MsbFirst
Data transfers start with most significant bit.

enumerator kFLEXIO_SPI_LsbFirst
Data transfers start with least significant bit.

enum _flexio_spi_data_bitcount_mode
FlexIO SPI data length mode options.

Values:

enumerator kFLEXIO_SPI_8BitMode
8-bit data transmission mode.

668 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_SPI_16BitMode
16-bit data transmission mode.

enumerator kFLEXIO_SPI_32BitMode
32-bit data transmission mode.

enum _flexio_spi_interrupt_enable
Define FlexIO SPI interrupt mask.

Values:

enumerator kFLEXIO_SPI_TxEmptyInterruptEnable
Transmit buffer empty interrupt enable.

enumerator kFLEXIO_SPI_RxFullInterruptEnable
Receive buffer full interrupt enable.

enum _flexio_spi_status_flags
Define FlexIO SPI status mask.

Values:

enumerator kFLEXIO_SPI_TxBufferEmptyFlag
Transmit buffer empty flag.

enumerator kFLEXIO_SPI_RxBufferFullFlag
Receive buffer full flag.

enum _flexio_spi_dma_enable
Define FlexIO SPI DMA mask.

Values:

enumerator kFLEXIO_SPI_TxDmaEnable
Tx DMA request source

enumerator kFLEXIO_SPI_RxDmaEnable
Rx DMA request source

enumerator kFLEXIO_SPI_DmaAllEnable
All DMA request source

enum _flexio_spi_transfer_flags
Define FlexIO SPI transfer flags.

Note: Use kFLEXIO_SPI_csContinuous and one of the other flags to OR together to form the
transfer flag.

Values:

enumerator kFLEXIO_SPI_8bitMsb
FlexIO SPI 8-bit MSB first

enumerator kFLEXIO_SPI_8bitLsb
FlexIO SPI 8-bit LSB first

enumerator kFLEXIO_SPI_16bitMsb
FlexIO SPI 16-bit MSB first

enumerator kFLEXIO_SPI_16bitLsb
FlexIO SPI 16-bit LSB first

2.55. FlexIO SPI Driver 669



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_SPI_32bitMsb
FlexIO SPI 32-bit MSB first

enumerator kFLEXIO_SPI_32bitLsb
FlexIO SPI 32-bit LSB first

enumerator kFLEXIO_SPI_csContinuous
Enable the CS signal continuous mode

typedef enum _flexio_spi_clock_phase flexio_spi_clock_phase_t
FlexIO SPI clock phase configuration.

typedef enum _flexio_spi_shift_direction flexio_spi_shift_direction_t
FlexIO SPI data shifter direction options.

typedef enum _flexio_spi_data_bitcount_mode flexio_spi_data_bitcount_mode_t
FlexIO SPI data length mode options.

typedef struct _flexio_spi_type FLEXIO_SPI_Type
Define FlexIO SPI access structure typedef.

typedef struct _flexio_spi_master_config flexio_spi_master_config_t
Define FlexIO SPI master configuration structure.

typedef struct _flexio_spi_slave_config flexio_spi_slave_config_t
Define FlexIO SPI slave configuration structure.

typedef struct _flexio_spi_transfer flexio_spi_transfer_t
Define FlexIO SPI transfer structure.

typedef struct _flexio_spi_master_handle flexio_spi_master_handle_t
typedef for flexio_spi_master_handle_t in advance.

typedef flexio_spi_master_handle_t flexio_spi_slave_handle_t
Slave handle is the same with master handle.

typedef void (*flexio_spi_master_transfer_callback_t)(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle, status_t status, void *userData)

FlexIO SPI master callback for finished transmit.

typedef void (*flexio_spi_slave_transfer_callback_t)(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle, status_t status, void *userData)

FlexIO SPI slave callback for finished transmit.

FLEXIO_SPI_DUMMYDATA
FlexIO SPI dummy transfer data, the data is sent while txData is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

FLEXIO_SPI_XFER_DATA_FORMAT(flag)
Get the transfer data format of width and bit order.

struct _flexio_spi_type
#include <fsl_flexio_spi.h> Define FlexIO SPI access structure typedef.

Public Members

FLEXIO_Type *flexioBase
FlexIO base pointer.

670 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t SDOPinIndex
Pin select for data output. To set SDO pin in Hi-Z state, user needs to mux the pin as
GPIO input and disable all pull up/down in application.

uint8_t SDIPinIndex
Pin select for data input.

uint8_t SCKPinIndex
Pin select for clock.

uint8_t CSnPinIndex
Pin select for enable.

uint8_t shifterIndex[2]
Shifter index used in FlexIO SPI.

uint8_t timerIndex[2]
Timer index used in FlexIO SPI.

struct _flexio_spi_master_config
#include <fsl_flexio_spi.h> Define FlexIO SPI master configuration structure.

Public Members

bool enableMaster
Enable/disable FlexIO SPI master after configuration.

bool enableInDoze
Enable/disable FlexIO operation in doze mode.

bool enableInDebug
Enable/disable FlexIO operation in debug mode.

bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to
be at least twice the frequency of the bus clock.

uint32_t baudRate_Bps
Baud rate in Bps.

flexio_spi_clock_phase_t phase
Clock phase.

flexio_spi_data_bitcount_mode_t dataMode
8bit or 16bit mode.

struct _flexio_spi_slave_config
#include <fsl_flexio_spi.h> Define FlexIO SPI slave configuration structure.

Public Members

bool enableSlave
Enable/disable FlexIO SPI slave after configuration.

bool enableInDoze
Enable/disable FlexIO operation in doze mode.

bool enableInDebug
Enable/disable FlexIO operation in debug mode.

2.55. FlexIO SPI Driver 671



MCUXpresso SDK Documentation, Release 25.12.00

bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to
be at least twice the frequency of the bus clock.

flexio_spi_clock_phase_t phase
Clock phase.

flexio_spi_data_bitcount_mode_t dataMode
8bit or 16bit mode.

struct _flexio_spi_transfer
#include <fsl_flexio_spi.h> Define FlexIO SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer.

uint8_t *rxData
Receive buffer.

size_t dataSize
Transfer bytes.

uint8_t flags
FlexIO SPI control flag, MSB first or LSB first.

struct _flexio_spi_master_handle
#include <fsl_flexio_spi.h> Define FlexIO SPI handle structure.

Public Members

const uint8_t *txData
Transfer buffer.

uint8_t *rxData
Receive buffer.

size_t transferSize
Total bytes to be transferred.

volatile size_t txRemainingBytes
Send data remaining in bytes.

volatile size_t rxRemainingBytes
Receive data remaining in bytes.

volatile uint32_t state
FlexIO SPI internal state.

uint8_t bytePerFrame
SPI mode, 2bytes or 1byte in a frame

flexio_spi_shift_direction_t direction
Shift direction.

flexio_spi_master_transfer_callback_t callback
FlexIO SPI callback.

672 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void *userData
Callback parameter.

bool isCsContinuous
Is current transfer using CS continuous mode.

uint32_t timer1Cfg
TIMER1 TIMCFG regiser value backup.

2.56 FlexIO UART Driver

status_t FLEXIO_UART_Init(FLEXIO_UART_Type *base, const flexio_uart_config_t *userConfig,
uint32_t srcClock_Hz)

Ungates the FlexIO clock, resets the FlexIO module, configures FlexIO UART hardware, and
configures the FlexIO UART with FlexIO UART configuration. The configuration structure
can be filled by the user or be set with default values by FLEXIO_UART_GetDefaultConfig().

Example

FLEXIO_UART_Type base = {
.flexioBase = FLEXIO,
.TxPinIndex = 0,
.RxPinIndex = 1,
.shifterIndex = {0,1},
.timerIndex = {0,1}
};
flexio_uart_config_t config = {
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.baudRate_Bps = 115200U,
.bitCountPerChar = 8
};
FLEXIO_UART_Init(base, &config, srcClock_Hz);

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• userConfig – Pointer to the flexio_uart_config_t structure.

• srcClock_Hz – FlexIO source clock in Hz.

Return values
• kStatus_Success – Configuration success.

• kStatus_FLEXIO_UART_BaudrateNotSupport – Baudrate is not supported
for current clock source frequency.

void FLEXIO_UART_Deinit(FLEXIO_UART_Type *base)
Resets the FlexIO UART shifter and timer config.

Note: After calling this API, call the FLEXO_UART_Init to use the FlexIO UART module.

Parameters
• base – Pointer to FLEXIO_UART_Type structure

2.56. FlexIO UART Driver 673



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXIO_UART_GetDefaultConfig(flexio_uart_config_t *userConfig)
Gets the default configuration to configure the FlexIO UART. The configuration can be used
directly for calling the FLEXIO_UART_Init(). Example:

flexio_uart_config_t config;
FLEXIO_UART_GetDefaultConfig(&userConfig);

Parameters
• userConfig – Pointer to the flexio_uart_config_t structure.

uint32_t FLEXIO_UART_GetStatusFlags(FLEXIO_UART_Type *base)
Gets the FlexIO UART status flags.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

Returns
FlexIO UART status flags.

void FLEXIO_UART_ClearStatusFlags(FLEXIO_UART_Type *base, uint32_t mask)
Gets the FlexIO UART status flags.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• mask – Status flag. The parameter can be any combination of the following
values:

– kFLEXIO_UART_TxDataRegEmptyFlag

– kFLEXIO_UART_RxEmptyFlag

– kFLEXIO_UART_RxOverRunFlag

void FLEXIO_UART_EnableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
Enables the FlexIO UART interrupt.

This function enables the FlexIO UART interrupt.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• mask – Interrupt source.

void FLEXIO_UART_DisableInterrupts(FLEXIO_UART_Type *base, uint32_t mask)
Disables the FlexIO UART interrupt.

This function disables the FlexIO UART interrupt.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• mask – Interrupt source.

static inline uint32_t FLEXIO_UART_GetTxDataRegisterAddress(FLEXIO_UART_Type *base)
Gets the FlexIO UARt transmit data register address.

This function returns the UART data register address, which is mainly used by DMA/eDMA.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

674 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
FlexIO UART transmit data register address.

static inline uint32_t FLEXIO_UART_GetRxDataRegisterAddress(FLEXIO_UART_Type *base)
Gets the FlexIO UART receive data register address.

This function returns the UART data register address, which is mainly used by DMA/eDMA.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

Returns
FlexIO UART receive data register address.

static inline void FLEXIO_UART_EnableTxDMA(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART transmit DMA. This function enables/disables the
FlexIO UART Tx DMA, which means asserting the kFLEXIO_UART_TxDataRegEmptyFlag
does/doesn’t trigger the DMA request.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• enable – True to enable, false to disable.

static inline void FLEXIO_UART_EnableRxDMA(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART receive DMA. This function enables/disables the FlexIO
UART Rx DMA, which means asserting kFLEXIO_UART_RxDataRegFullFlag does/doesn’t
trigger the DMA request.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• enable – True to enable, false to disable.

static inline void FLEXIO_UART_Enable(FLEXIO_UART_Type *base, bool enable)
Enables/disables the FlexIO UART module operation.

Parameters
• base – Pointer to the FLEXIO_UART_Type.

• enable – True to enable, false does not have any effect.

static inline void FLEXIO_UART_WriteByte(FLEXIO_UART_Type *base, const uint8_t *buffer)
Writes one byte of data.

Note: This is a non-blocking API, which returns directly after the data is put into the data
register. Ensure that the TxEmptyFlag is asserted before calling this API.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• buffer – The data bytes to send.

static inline void FLEXIO_UART_ReadByte(FLEXIO_UART_Type *base, uint8_t *buffer)
Reads one byte of data.

Note: This is a non-blocking API, which returns directly after the data is read from the
data register. Ensure that the RxFullFlag is asserted before calling this API.

2.56. FlexIO UART Driver 675



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• buffer – The buffer to store the received bytes.

status_t FLEXIO_UART_WriteBlocking(FLEXIO_UART_Type *base, const uint8_t *txData, size_t
txSize)

Sends a buffer of data bytes.

Note: This function blocks using the polling method until all bytes have been sent.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• txData – The data bytes to send.

• txSize – The number of data bytes to send.

Return values
• kStatus_FLEXIO_UART_Timeout – Transmission timed out and was

aborted.

• kStatus_Success – Successfully wrote all data.

status_t FLEXIO_UART_ReadBlocking(FLEXIO_UART_Type *base, uint8_t *rxData, size_t
rxSize)

Receives a buffer of bytes.

Note: This function blocks using the polling method until all bytes have been received.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• rxData – The buffer to store the received bytes.

• rxSize – The number of data bytes to be received.

Return values
• kStatus_FLEXIO_UART_Timeout – Transmission timed out and was

aborted.

• kStatus_Success – Successfully received all data.

status_t FLEXIO_UART_TransferCreateHandle(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle, flexio_uart_transfer_callback_t callback,
void *userData)

Initializes the UART handle.

This function initializes the FlexIO UART handle, which can be used for other FlexIO UART
transactional APIs. Call this API once to get the initialized handle.

The UART driver supports the “background” receiving, which means that users can set up
a RX ring buffer optionally. Data received is stored into the ring buffer even when the user
doesn’t call the FLEXIO_UART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, users can get the received data from the ring buffer directly.
The ring buffer is disabled if passing NULL as ringBuffer.

Parameters
• base – to FLEXIO_UART_Type structure.

676 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• callback – The callback function.

• userData – The parameter of the callback function.

Return values
• kStatus_Success – Successfully create the handle.

• kStatus_OutOfRange – The FlexIO type/handle/ISR table out of range.

void FLEXIO_UART_TransferStartRingBuffer(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle, uint8_t *ringBuffer, size_t
ringBufferSize)

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received is stored into the ring buffer even when the
user doesn’t call the UART_ReceiveNonBlocking() API. If there is already data received in
the ring buffer, users can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, only 31 bytes are used for saving data.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• ringBuffer – Start address of ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – Size of the ring buffer.

void FLEXIO_UART_TransferStopRingBuffer(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle)

Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

status_t FLEXIO_UART_TransferSendNonBlocking(FLEXIO_UART_Type *base,
flexio_uart_handle_t *handle,
flexio_uart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in ISR, the FlexIO UART driver calls the callback function and
passes the kStatus_FLEXIO_UART_TxIdle as status parameter.

Note: The kStatus_FLEXIO_UART_TxIdle is passed to the upper layer when all data is writ-
ten to the TX register. However, it does not ensure that all data is sent out.

2.56. FlexIO UART Driver 677



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• xfer – FlexIO UART transfer structure. See flexio_uart_transfer_t.

Return values
• kStatus_Success – Successfully starts the data transmission.

• kStatus_UART_TxBusy – Previous transmission still not finished, data not
written to the TX register.

void FLEXIO_UART_TransferAbortSend(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt-driven data sending. Get the remainBytes to find out how
many bytes are still not sent out.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

status_t FLEXIO_UART_TransferGetSendCount(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle, size_t *count)

Gets the number of bytes sent.

This function gets the number of bytes sent driven by interrupt.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• count – Number of bytes sent so far by the non-blocking transaction.

Return values
• kStatus_NoTransferInProgress – transfer has finished or no transfer in

progress.

• kStatus_Success – Successfully return the count.

status_t FLEXIO_UART_TransferReceiveNonBlocking(FLEXIO_UART_Type *base,
flexio_uart_handle_t *handle,
flexio_uart_transfer_t *xfer, size_t
*receivedBytes)

Receives a buffer of data using the interrupt method.

This function receives data using the interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used
and not empty, the data in ring buffer is copied and the parameter receivedBytes shows
how many bytes are copied from the ring buffer. After copying, if the data in ring buffer
is not enough to read, the receive request is saved by the UART driver. When new data
arrives, the receive request is serviced first. When all data is received, the UART driver
notifies the upper layer through a callback function and passes the status parameter kSta-
tus_UART_RxIdle. For example, if the upper layer needs 10 bytes but there are only 5 bytes
in the ring buffer, the 5 bytes are copied to xfer->data. This function returns with the pa-
rameter receivedBytes set to 5. For the last 5 bytes, newly arrived data is saved from the

678 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

xfer->data[5]. When 5 bytes are received, the UART driver notifies upper layer. If the RX
ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to
xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• xfer – UART transfer structure. See flexio_uart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into the transmit queue.

• kStatus_FLEXIO_UART_RxBusy – Previous receive request is not fin-
ished.

void FLEXIO_UART_TransferAbortReceive(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle)

Aborts the receive data which was using IRQ.

This function aborts the receive data which was using IRQ.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

status_t FLEXIO_UART_TransferGetReceiveCount(FLEXIO_UART_Type *base,
flexio_uart_handle_t *handle, size_t *count)

Gets the number of bytes received.

This function gets the number of bytes received driven by interrupt.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

• handle – Pointer to the flexio_uart_handle_t structure to store the transfer
state.

• count – Number of bytes received so far by the non-blocking transaction.

Return values
• kStatus_NoTransferInProgress – transfer has finished or no transfer in

progress.

• kStatus_Success – Successfully return the count.

void FLEXIO_UART_TransferHandleIRQ(void *uartType, void *uartHandle)
FlexIO UART IRQ handler function.

This function processes the FlexIO UART transmit and receives the IRQ request.

Parameters
• uartType – Pointer to the FLEXIO_UART_Type structure.

• uartHandle – Pointer to the flexio_uart_handle_t structure to store the
transfer state.

2.56. FlexIO UART Driver 679



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXIO_UART_FlushShifters(FLEXIO_UART_Type *base)
Flush tx/rx shifters.

Parameters
• base – Pointer to the FLEXIO_UART_Type structure.

FSL_FLEXIO_UART_DRIVER_VERSION
FlexIO UART driver version.

Error codes for the UART driver.

Values:

enumerator kStatus_FLEXIO_UART_TxBusy
Transmitter is busy.

enumerator kStatus_FLEXIO_UART_RxBusy
Receiver is busy.

enumerator kStatus_FLEXIO_UART_TxIdle
UART transmitter is idle.

enumerator kStatus_FLEXIO_UART_RxIdle
UART receiver is idle.

enumerator kStatus_FLEXIO_UART_ERROR
ERROR happens on UART.

enumerator kStatus_FLEXIO_UART_RxRingBufferOverrun
UART RX software ring buffer overrun.

enumerator kStatus_FLEXIO_UART_RxHardwareOverrun
UART RX receiver overrun.

enumerator kStatus_FLEXIO_UART_Timeout
UART times out.

enumerator kStatus_FLEXIO_UART_BaudrateNotSupport
Baudrate is not supported in current clock source

enum _flexio_uart_bit_count_per_char
FlexIO UART bit count per char.

Values:

enumerator kFLEXIO_UART_7BitsPerChar
7-bit data characters

enumerator kFLEXIO_UART_8BitsPerChar
8-bit data characters

enumerator kFLEXIO_UART_9BitsPerChar
9-bit data characters

enum _flexio_uart_interrupt_enable
Define FlexIO UART interrupt mask.

Values:

enumerator kFLEXIO_UART_TxDataRegEmptyInterruptEnable
Transmit buffer empty interrupt enable.

680 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXIO_UART_RxDataRegFullInterruptEnable
Receive buffer full interrupt enable.

enum _flexio_uart_status_flags
Define FlexIO UART status mask.

Values:

enumerator kFLEXIO_UART_TxDataRegEmptyFlag
Transmit buffer empty flag.

enumerator kFLEXIO_UART_RxDataRegFullFlag
Receive buffer full flag.

enumerator kFLEXIO_UART_RxOverRunFlag
Receive buffer over run flag.

typedef enum _flexio_uart_bit_count_per_char flexio_uart_bit_count_per_char_t
FlexIO UART bit count per char.

typedef struct _flexio_uart_type FLEXIO_UART_Type
Define FlexIO UART access structure typedef.

typedef struct _flexio_uart_config flexio_uart_config_t
Define FlexIO UART user configuration structure.

typedef struct _flexio_uart_transfer flexio_uart_transfer_t
Define FlexIO UART transfer structure.

typedef struct _flexio_uart_handle flexio_uart_handle_t

typedef void (*flexio_uart_transfer_callback_t)(FLEXIO_UART_Type *base, flexio_uart_handle_t
*handle, status_t status, void *userData)

FlexIO UART transfer callback function.

UART_RETRY_TIMES
Retry times for waiting flag.

struct _flexio_uart_type
#include <fsl_flexio_uart.h> Define FlexIO UART access structure typedef.

Public Members

FLEXIO_Type *flexioBase
FlexIO base pointer.

uint8_t TxPinIndex
Pin select for UART_Tx.

uint8_t RxPinIndex
Pin select for UART_Rx.

uint8_t shifterIndex[2]
Shifter index used in FlexIO UART.

uint8_t timerIndex[2]
Timer index used in FlexIO UART.

struct _flexio_uart_config
#include <fsl_flexio_uart.h> Define FlexIO UART user configuration structure.

2.56. FlexIO UART Driver 681



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableUart
Enable/disable FlexIO UART TX & RX.

bool enableInDoze
Enable/disable FlexIO operation in doze mode

bool enableInDebug
Enable/disable FlexIO operation in debug mode

bool enableFastAccess
Enable/disable fast access to FlexIO registers, fast access requires the FlexIO clock to
be at least twice the frequency of the bus clock.

uint32_t baudRate_Bps
Baud rate in Bps.

flexio_uart_bit_count_per_char_t bitCountPerChar
number of bits, 7/8/9 -bit

struct _flexio_uart_transfer
#include <fsl_flexio_uart.h> Define FlexIO UART transfer structure.

Public Members

size_t dataSize
Transfer size

struct _flexio_uart_handle
#include <fsl_flexio_uart.h> Define FLEXIO UART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

volatile size_t txDataSize
Size of the remaining data to send.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t txDataSizeAll
Total bytes to be sent.

size_t rxDataSizeAll
Total bytes to be received.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

682 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

flexio_uart_transfer_callback_t callback
Callback function.

void *userData
UART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

union __unnamed150__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.57 FLEXRAM: on-chip RAM manager

FLEXRAM bank type.

Values:

enumerator kFLEXRAM_BankNotUsed
bank is not used

enumerator kFLEXRAM_BankOCRAM
bank is OCRAM

enumerator kFLEXRAM_BankDTCM
bank is DTCM

enumerator kFLEXRAM_BankITCM
bank is ITCM

enum _flexram_bank_allocate_src
FLEXRAM bank allocate source.

Values:

enumerator kFLEXRAM_BankAllocateThroughHardwareFuse
allocate ram through hardware fuse value

enumerator kFLEXRAM_BankAllocateThroughBankCfg
allocate ram through FLEXRAM_BANK_CFG

2.57. FLEXRAM: on-chip RAM manager 683



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _flexram_bank_allocate_src flexram_bank_allocate_src_t
FLEXRAM bank allocate source.

typedef struct _flexram_allocate_ram flexram_allocate_ram_t
FLEXRAM allocates OCRAM, ITCM, DTCM size.

status_t FLEXRAM_AllocateRam(flexram_allocate_ram_t *config)
FLEXRAM allocates an on-chip ram for OCRAM, ITCM and DTCM. This function is indepen-
dent from FLEXRAM_Init, and can be called directly if ram re-allocate is needed.

Parameters
• config – Allocate configuration.

Return values
• kStatus_InvalidArgument – When the argument is invalid.

• kStatus_Success – Upon allocate success.

static inline void FLEXRAM_SetAllocateRamSrc(flexram_bank_allocate_src_t src)
FLEXRAM set allocate on-chip ram source.

Parameters
• src – Bank config source select value.

FSL_SOC_FLEXRAM_ALLOCATE_DRIVER_VERSION
SOC_FLEXRAM_ALLOCATE driver version 2.0.2.

void FLEXRAM_Init(FLEXRAM_Type *base)
FLEXRAM module initialization function.

Parameters
• base – FLEXRAM base address.

void FLEXRAM_Deinit(FLEXRAM_Type *base)
De-initializes the FLEXRAM.

static inline uint32_t FLEXRAM_GetInterruptStatus(FLEXRAM_Type *base)
FLEXRAM module gets interrupt status.

Parameters
• base – FLEXRAM base address.

static inline void FLEXRAM_ClearInterruptStatus(FLEXRAM_Type *base, uint32_t status)
FLEXRAM module clears interrupt status.

Parameters
• base – FLEXRAM base address.

• status – Status to be cleared.

static inline void FLEXRAM_EnableInterruptStatus(FLEXRAM_Type *base, uint32_t status)
FLEXRAM module enables interrupt status.

Parameters
• base – FLEXRAM base address.

• status – Status to be enabled.

static inline void FLEXRAM_DisableInterruptStatus(FLEXRAM_Type *base, uint32_t status)
FLEXRAM module disable interrupt status.

Parameters

684 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FLEXRAM base address.

• status – Status to be disabled.

static inline void FLEXRAM_EnableInterruptSignal(FLEXRAM_Type *base, uint32_t status)
FLEXRAM module enables interrupt.

Parameters
• base – FLEXRAM base address.

• status – Status interrupt to be enabled.

static inline void FLEXRAM_DisableInterruptSignal(FLEXRAM_Type *base, uint32_t status)
FLEXRAM module disables interrupt.

Parameters
• base – FLEXRAM base address.

• status – Status interrupt to be disabled.

FSL_FLEXRAM_DRIVER_VERSION
Driver version.

Flexram write/read selection.

Values:

enumerator kFLEXRAM_Read
read

enumerator kFLEXRAM_Write
write

Interrupt status flag mask.

Values:

enumerator kFLEXRAM_OCRAMAccessError
OCRAM accesses unallocated address

enumerator kFLEXRAM_DTCMAccessError
DTCM accesses unallocated address

enumerator kFLEXRAM_ITCMAccessError
ITCM accesses unallocated address

enumerator kFLEXRAM_OCRAMMagicAddrMatch
OCRAM magic address match

enumerator kFLEXRAM_DTCMMagicAddrMatch
DTCM magic address match

enumerator kFLEXRAM_ITCMMagicAddrMatch
ITCM magic address match

enumerator kFLEXRAM_OCRAMECCMultiError

enumerator kFLEXRAM_OCRAMECCSingleError

enumerator kFLEXRAM_ITCMECCMultiError

enumerator kFLEXRAM_ITCMECCSingleError

2.57. FLEXRAM: on-chip RAM manager 685



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXRAM_D0TCMECCMultiError

enumerator kFLEXRAM_D0TCMECCSingleError

enumerator kFLEXRAM_D1TCMECCMultiError

enumerator kFLEXRAM_D1TCMECCSingleError

enumerator kFLEXRAM_InterruptStatusAll

enum _flexram_tcm_access_mode
FLEXRAM TCM access mode. Fast access mode expected to be finished in 1-cycle; Wait ac-
cess mode expected to be finished in 2-cycle. Wait access mode is a feature of the flexram
and it should be used when the CPU clock is too fast to finish TCM access in 1-cycle. Nor-
mally, fast mode is the default mode, the efficiency of the TCM access will better.

Values:

enumerator kFLEXRAM_TCMAccessFastMode
fast access mode

enumerator kFLEXRAM_TCMAccessWaitMode
wait access mode

FLEXRAM TCM support size.

Values:

enumerator kFLEXRAM_TCMSize32KB
TCM total size be 32KB

enumerator kFLEXRAM_TCMSize64KB
TCM total size be 64KB

enumerator kFLEXRAM_TCMSize128KB
TCM total size be 128KB

enumerator kFLEXRAM_TCMSize256KB
TCM total size be 256KB

enumerator kFLEXRAM_TCMSize512KB
TCM total size be 512KB

enum _flexram_memory_type
FLEXRAM memory type, such as OCRAM/ITCM/D0TCM/D1TCM.

Values:

enumerator kFLEXRAM_OCRAM
Memory type OCRAM

enumerator kFLEXRAM_ITCM
Memory type ITCM

enumerator kFLEXRAM_D0TCM
Memory type D0TCM

enumerator kFLEXRAM_D1TCM
Memory type D1TCM

686 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _flexram_tcm_access_mode flexram_tcm_access_mode_t
FLEXRAM TCM access mode. Fast access mode expected to be finished in 1-cycle; Wait ac-
cess mode expected to be finished in 2-cycle. Wait access mode is a feature of the flexram
and it should be used when the CPU clock is too fast to finish TCM access in 1-cycle. Nor-
mally, fast mode is the default mode, the efficiency of the TCM access will better.

typedef enum _flexram_memory_type flexram_memory_type_t
FLEXRAM memory type, such as OCRAM/ITCM/D0TCM/D1TCM.

typedef struct _flexram_ecc_error_type flexram_ecc_error_type_t
FLEXRAM error type, such as single bit error position, multi-bit error position.

typedef struct _flexram_ocram_ecc_single_error_info flexram_ocram_ecc_single_error_info_t
FLEXRAM ocram ecc single error information, including single error information, error
address, error data.

typedef struct _flexram_ocram_ecc_multi_error_info flexram_ocram_ecc_multi_error_info_t
FLEXRAM ocram ecc multiple error information, including multiple error information, er-
ror address, error data.

typedef struct _flexram_itcm_ecc_single_error_info flexram_itcm_ecc_single_error_info_t
FLEXRAM itcm ecc single error information, including single error information, error ad-
dress, error data.

typedef struct _flexram_itcm_ecc_multi_error_info flexram_itcm_ecc_multi_error_info_t
FLEXRAM itcm ecc multiple error information, including multiple error information, error
address, error data.

typedef struct _flexram_dtcm_ecc_single_error_info flexram_dtcm_ecc_single_error_info_t
FLEXRAM dtcm ecc single error information, including single error information, error ad-
dress, error data.

typedef struct _flexram_dtcm_ecc_multi_error_info flexram_dtcm_ecc_multi_error_info_t
FLEXRAM dtcm ecc multiple error information, including multiple error information, error
address, error data.

const uint8_t ocramBankNum
OCRAM banknumber which the SOC support.

const uint8_t dtcmBankNum
DTCM bank number to allocate, the number should be power of 2.

const uint8_t itcmBankNum
ITCM bank number to allocate, the number should be power of 2.

static inline void FLEXRAM_SetTCMReadAccessMode(FLEXRAM_Type *base,
flexram_tcm_access_mode_t mode)

FLEXRAM module sets TCM read access mode.

Parameters
• base – FLEXRAM base address.

• mode – Access mode.

static inline void FLEXRAM_SetTCMWriteAccessMode(FLEXRAM_Type *base,
flexram_tcm_access_mode_t mode)

FLEXRAM module set TCM write access mode.

Parameters
• base – FLEXRAM base address.

• mode – Access mode.

2.57. FLEXRAM: on-chip RAM manager 687



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXRAM_EnableForceRamClockOn(FLEXRAM_Type *base, bool enable)
FLEXRAM module force ram clock on.

Parameters
• base – FLEXRAM base address.

• enable – Enable or disable clock force on.

static inline void FLEXRAM_SetOCRAMMagicAddr(FLEXRAM_Type *base, uint16_t magicAddr,
uint32_t rwSel)

FLEXRAM OCRAM magic addr configuration. When read/write access hit magic address, it
will generate interrupt.

Parameters
• base – FLEXRAM base address.

• magicAddr – Magic address, the actual address bits [18:3] is corresponding
to the register field [16:1].

• rwSel – Read/write selection. 0 for read access while 1 for write access.

static inline void FLEXRAM_SetDTCMMagicAddr(FLEXRAM_Type *base, uint16_t magicAddr,
uint32_t rwSel)

FLEXRAM DTCM magic addr configuration. When read/write access hits magic address, it
will generate interrupt.

Parameters
• base – FLEXRAM base address.

• magicAddr – Magic address, the actual address bits [18:3] is corresponding
to the register field [16:1].

• rwSel – Read/write selection. 0 for read access while 1 write access.

static inline void FLEXRAM_SetITCMMagicAddr(FLEXRAM_Type *base, uint16_t magicAddr,
uint32_t rwSel)

FLEXRAM ITCM magic addr configuration. When read/write access hits magic address, it
will generate interrupt.

Parameters
• base – FLEXRAM base address.

• magicAddr – Magic address, the actual address bits [18:3] is corresponding
to the register field [16:1].

• rwSel – Read/write selection. 0 for read access while 1 for write access.

void FLEXRAM_EnableECC(FLEXRAM_Type *base, bool OcramECCEnable, bool
TcmECCEnable)

FLEXRAM get ocram ecc single error information.

Parameters
• base – FLEXRAM base address.

• OcramECCEnable – ocram ecc enablement.

• TcmECCEnable – tcm(itcm/d0tcm/d1tcm) ecc enablement.

void FLEXRAM_ErrorInjection(FLEXRAM_Type *base, flexram_memory_type_t memory,
flexram_ecc_error_type_t *error)

FLEXRAM ECC error injection.

Parameters

688 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – FLEXRAM base address.

• memory – memory type, such as OCRAM/ITCM/DTCM.

• error – ECC error type.

void FLEXRAM_GetOcramSingleErroInfo(FLEXRAM_Type *base,
flexram_ocram_ecc_single_error_info_t *info)

FLEXRAM get ocram ecc single error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

void FLEXRAM_GetOcramMultiErroInfo(FLEXRAM_Type *base,
flexram_ocram_ecc_multi_error_info_t *info)

FLEXRAM get ocram ecc multiple error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

void FLEXRAM_GetItcmSingleErroInfo(FLEXRAM_Type *base,
flexram_itcm_ecc_single_error_info_t *info)

FLEXRAM get itcm ecc single error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

void FLEXRAM_GetItcmMultiErroInfo(FLEXRAM_Type *base,
flexram_itcm_ecc_multi_error_info_t *info)

FLEXRAM get itcm ecc multiple error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

void FLEXRAM_GetDtcmSingleErroInfo(FLEXRAM_Type *base,
flexram_dtcm_ecc_single_error_info_t *info, uint8_t
bank)

FLEXRAM get d0tcm ecc single error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

• bank – DTCM bank, 0 is D0TCM, 1 is D1TCM.

void FLEXRAM_GetDtcmMultiErroInfo(FLEXRAM_Type *base,
flexram_dtcm_ecc_multi_error_info_t *info, uint8_t
bank)

FLEXRAM get d0tcm ecc multiple error information.

Parameters
• base – FLEXRAM base address.

• info – ecc error information.

2.57. FLEXRAM: on-chip RAM manager 689



MCUXpresso SDK Documentation, Release 25.12.00

• bank – DTCM bank, 0 is D0TCM, 1 is D1TCM.

FLEXRAM_ECC_ERROR_DETAILED_INFO
Get ECC error detailed information.

struct _flexram_allocate_ram
#include <fsl_flexram_allocate.h> FLEXRAM allocates OCRAM, ITCM, DTCM size.

struct _flexram_ecc_error_type
#include <fsl_flexram.h> FLEXRAM error type, such as single bit error position, multi-bit
error position.

Public Members

uint8_t SingleBitPos
Bit position of the bit to inject ECC Error.

uint8_t SecondBitPos
Bit position of the second bit to inject multi-bit ECC Error

bool Fource1BitDataInversion
Force One 1-Bit Data Inversion (single-bit ECC error) on memory write access

bool FourceOneNCDataInversion
Force One Non-correctable Data Inversion(multi-bit ECC error) on memory write ac-
cess

bool FourceConti1BitDataInversion
Force Continuous 1-Bit Data Inversions (single-bit ECC error) on memory write access

bool FourceContiNCDataInversion
Force Continuous Non-correctable Data Inversions (multi-bit ECC error) on memory
write access

struct _flexram_ocram_ecc_single_error_info
#include <fsl_flexram.h> FLEXRAM ocram ecc single error information, including single er-
ror information, error address, error data.

Public Members

uint32_t OcramSingleErrorInfo
Ocram single error information, user should parse it by themself.

uint32_t OcramSingleErrorAddr
Ocram single error address

uint32_t OcramSingleErrorDataLSB
Ocram single error data LSB

uint32_t OcramSingleErrorDataMSB
Ocram single error data MSB

struct _flexram_ocram_ecc_multi_error_info
#include <fsl_flexram.h> FLEXRAM ocram ecc multiple error information, including multi-
ple error information, error address, error data.

690 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t OcramMultiErrorInfo
Ocram single error information, user should parse it by themself.

uint32_t OcramMultiErrorAddr
Ocram multiple error address

uint32_t OcramMultiErrorDataLSB
Ocram multiple error data LSB

uint32_t OcramMultiErrorDataMSB
Ocram multiple error data MSB

struct _flexram_itcm_ecc_single_error_info
#include <fsl_flexram.h> FLEXRAM itcm ecc single error information, including single error
information, error address, error data.

Public Members

uint32_t ItcmSingleErrorInfo
itcm single error information, user should parse it by themself.

uint32_t ItcmSingleErrorAddr
itcm single error address

uint32_t ItcmSingleErrorDataLSB
itcm single error data LSB

uint32_t ItcmSingleErrorDataMSB
itcm single error data MSB

struct _flexram_itcm_ecc_multi_error_info
#include <fsl_flexram.h> FLEXRAM itcm ecc multiple error information, including multiple
error information, error address, error data.

Public Members

uint32_t ItcmMultiErrorInfo
itcm multiple error information, user should parse it by themself.

uint32_t ItcmMultiErrorAddr
itcm multiple error address

uint32_t ItcmMultiErrorDataLSB
itcm multiple error data LSB

uint32_t ItcmMultiErrorDataMSB
itcm multiple error data MSB

struct _flexram_dtcm_ecc_single_error_info
#include <fsl_flexram.h> FLEXRAM dtcm ecc single error information, including single error
information, error address, error data.

Public Members

uint32_t DtcmSingleErrorInfo
dtcm single error information, user should parse it by themself.

2.57. FLEXRAM: on-chip RAM manager 691



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t DtcmSingleErrorAddr
dtcm single error address

uint32_t DtcmSingleErrorData
dtcm single error data

struct _flexram_dtcm_ecc_multi_error_info
#include <fsl_flexram.h> FLEXRAM dtcm ecc multiple error information, including multiple
error information, error address, error data.

Public Members

uint32_t DtcmMultiErrorInfo
dtcm multiple error information, user should parse it by themself.

uint32_t DtcmMultiErrorAddr
dtcm multiple error address

uint32_t DtcmMultiErrorData
dtcm multiple error data

2.58 FLEXSPI: Flexible Serial Peripheral Interface Driver

uint32_t FLEXSPI_GetInstance(FLEXSPI_Type *base)
Get the instance number for FLEXSPI.

Parameters
• base – FLEXSPI base pointer.

status_t FLEXSPI_CheckAndClearError(FLEXSPI_Type *base, uint32_t status)
Check and clear IP command execution errors.

Parameters
• base – FLEXSPI base pointer.

• status – interrupt status.

void FLEXSPI_Init(FLEXSPI_Type *base, const flexspi_config_t *config)
Initializes the FLEXSPI module and internal state.

This function enables the clock for FLEXSPI and also configures the FLEXSPI with the input
configure parameters. Users should call this function before any FLEXSPI operations.

Parameters
• base – FLEXSPI peripheral base address.

• config – FLEXSPI configure structure.

void FLEXSPI_GetDefaultConfig(flexspi_config_t *config)
Gets default settings for FLEXSPI.

Parameters
• config – FLEXSPI configuration structure.

void FLEXSPI_Deinit(FLEXSPI_Type *base)
Deinitializes the FLEXSPI module.

Clears the FLEXSPI state and FLEXSPI module registers.

692 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FLEXSPI peripheral base address.

void FLEXSPI_UpdateDllValue(FLEXSPI_Type *base, flexspi_device_config_t *config,
flexspi_port_t port)

Update FLEXSPI DLL value depending on currently flexspi root clock.

Parameters
• base – FLEXSPI peripheral base address.

• config – Flash configuration parameters.

• port – FLEXSPI Operation port.

void FLEXSPI_SetFlashConfig(FLEXSPI_Type *base, flexspi_device_config_t *config,
flexspi_port_t port)

Configures the connected device parameter.

This function configures the connected device relevant parameters, such as the size, com-
mand, and so on. The flash configuration value cannot have a default value. The user needs
to configure it according to the connected device.

Parameters
• base – FLEXSPI peripheral base address.

• config – Flash configuration parameters.

• port – FLEXSPI Operation port.

void FLEXSPI_SoftwareReset(FLEXSPI_Type *base)
Software reset for the FLEXSPI logic.

This function sets the software reset flags for both AHB and buffer domain and resets both
AHB buffer and also IP FIFOs.

Parameters
• base – FLEXSPI peripheral base address.

static inline void FLEXSPI_Enable(FLEXSPI_Type *base, bool enable)
Enables or disables the FLEXSPI module.

Parameters
• base – FLEXSPI peripheral base address.

• enable – True means enable FLEXSPI, false means disable.

void FLEXSPI_UpdateAhbBuffersSettings(FLEXSPI_Type *base, flexspi_ahbBuffers_ctrl_t
*ptrAhbBufferCtrl)

Update all AHB buffers’ settings, including buffer size, master ID.

Parameters
• base – FLEXSPI peripheral base address.

• ptrAhbBufferCtrl – Pointer to structure flexspi_ahbBuffers_ctrl_t which
store all AHB buffers’ settings.

static inline void FLEXSPI_EnableInterrupts(FLEXSPI_Type *base, uint32_t mask)
Enables the FLEXSPI interrupts.

Parameters
• base – FLEXSPI peripheral base address.

• mask – FLEXSPI interrupt source.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 693



MCUXpresso SDK Documentation, Release 25.12.00

static inline void FLEXSPI_DisableInterrupts(FLEXSPI_Type *base, uint32_t mask)
Disable the FLEXSPI interrupts.

Parameters
• base – FLEXSPI peripheral base address.

• mask – FLEXSPI interrupt source.

static inline void FLEXSPI_EnableTxDMA(FLEXSPI_Type *base, bool enable)
Enables or disables FLEXSPI IP Tx FIFO DMA requests.

Parameters
• base – FLEXSPI peripheral base address.

• enable – Enable flag for transmit DMA request. Pass true for enable, false
for disable.

static inline void FLEXSPI_EnableRxDMA(FLEXSPI_Type *base, bool enable)
Enables or disables FLEXSPI IP Rx FIFO DMA requests.

Parameters
• base – FLEXSPI peripheral base address.

• enable – Enable flag for receive DMA request. Pass true for enable, false
for disable.

static inline uint32_t FLEXSPI_GetTxFifoAddress(FLEXSPI_Type *base)
Gets FLEXSPI IP tx fifo address for DMA transfer.

Parameters
• base – FLEXSPI peripheral base address.

Return values
The – tx fifo address.

static inline uint32_t FLEXSPI_GetRxFifoAddress(FLEXSPI_Type *base)
Gets FLEXSPI IP rx fifo address for DMA transfer.

Parameters
• base – FLEXSPI peripheral base address.

Return values
The – rx fifo address.

static inline void FLEXSPI_ResetFifos(FLEXSPI_Type *base, bool txFifo, bool rxFifo)
Clears the FLEXSPI IP FIFO logic.

Parameters
• base – FLEXSPI peripheral base address.

• txFifo – Pass true to reset TX FIFO.

• rxFifo – Pass true to reset RX FIFO.

static inline void FLEXSPI_GetFifoCounts(FLEXSPI_Type *base, size_t *txCount, size_t
*rxCount)

Gets the valid data entries in the FLEXSPI FIFOs.

Parameters
• base – FLEXSPI peripheral base address.

• txCount – [out] Pointer through which the current number of bytes in the
transmit FIFO is returned. Pass NULL if this value is not required.

694 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• rxCount – [out] Pointer through which the current number of bytes in the
receive FIFO is returned. Pass NULL if this value is not required.

static inline uint32_t FLEXSPI_GetInterruptStatusFlags(FLEXSPI_Type *base)
Get the FLEXSPI interrupt status flags.

Parameters
• base – FLEXSPI peripheral base address.

Return values
interrupt – status flag, use status flag to AND flexspi_flags_t could get the related
status.

static inline void FLEXSPI_ClearInterruptStatusFlags(FLEXSPI_Type *base, uint32_t mask)
Get the FLEXSPI interrupt status flags.

Parameters
• base – FLEXSPI peripheral base address.

• mask – FLEXSPI interrupt source.

static inline flexspi_arb_command_source_t FLEXSPI_GetArbitratorCommandSource(FLEXSPI_Type
*base)

Gets the trigger source of current command sequence granted by arbitrator.

Parameters
• base – FLEXSPI peripheral base address.

Return values
trigger – source of current command sequence.

static inline flexspi_ip_error_code_t FLEXSPI_GetIPCommandErrorCode(FLEXSPI_Type *base,
uint8_t *index)

Gets the error code when IP command error detected.

Parameters
• base – FLEXSPI peripheral base address.

• index – Pointer to a uint8_t type variable to receive the sequence index
when error detected.

Return values
error – code when IP command error detected.

static inline flexspi_ahb_error_code_t FLEXSPI_GetAHBCommandErrorCode(FLEXSPI_Type
*base, uint8_t
*index)

Gets the error code when AHB command error detected.

Parameters
• base – FLEXSPI peripheral base address.

• index – Pointer to a uint8_t type variable to receive the sequence index
when error detected.

Return values
error – code when AHB command error detected.

static inline bool FLEXSPI_GetBusIdleStatus(FLEXSPI_Type *base)
Returns whether the bus is idle.

Parameters
• base – FLEXSPI peripheral base address.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 695



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• true – Bus is idle.

• false – Bus is busy.

void FLEXSPI_UpdateRxSampleClock(FLEXSPI_Type *base, flexspi_read_sample_clock_t
clockSource)

Update read sample clock source.

Parameters
• base – FLEXSPI peripheral base address.

• clockSource – clockSource of type flexspi_read_sample_clock_t

void FLEXSPI_UpdateLUT(FLEXSPI_Type *base, uint32_t index, const uint32_t *cmd, uint32_t
count)

Updates the LUT table.

Parameters
• base – FLEXSPI peripheral base address.

• index – From which index start to update. It could be any index of the LUT
table, which also allows user to update command content inside a com-
mand. Each command consists of up to 8 instructions and occupy 4*32-bit
memory.

• cmd – Command sequence array.

• count – Number of sequences.

static inline void FLEXSPI_WriteData(FLEXSPI_Type *base, uint32_t data, uint8_t fifoIndex)
Writes data into FIFO.

Parameters
• base – FLEXSPI peripheral base address

• data – The data bytes to send

• fifoIndex – Destination fifo index.

static inline uint32_t FLEXSPI_ReadData(FLEXSPI_Type *base, uint8_t fifoIndex)
Receives data from data FIFO.

Parameters
• base – FLEXSPI peripheral base address

• fifoIndex – Source fifo index.

Returns
The data in the FIFO.

status_t FLEXSPI_WriteBlocking(FLEXSPI_Type *base, uint8_t *buffer, size_t size)
Sends a buffer of data bytes using blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – FLEXSPI peripheral base address

• buffer – The data bytes to send

• size – The number of data bytes to send

696 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_Success – write success without error

• kStatus_FLEXSPI_SequenceExecutionTimeout – sequence execution time-
out

• kStatus_FLEXSPI_IpCommandSequenceError – IP command sequence er-
ror detected

• kStatus_FLEXSPI_IpCommandGrantTimeout – IP command grant timeout
detected

status_t FLEXSPI_ReadBlocking(FLEXSPI_Type *base, uint8_t *buffer, size_t size)
Receives a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – FLEXSPI peripheral base address

• buffer – The data bytes to send

• size – The number of data bytes to receive

Return values
• kStatus_Success – read success without error

• kStatus_FLEXSPI_SequenceExecutionTimeout – sequence execution time-
out

• kStatus_FLEXSPI_IpCommandSequenceError – IP command sequencen er-
ror detected

• kStatus_FLEXSPI_IpCommandGrantTimeout – IP command grant timeout
detected

status_t FLEXSPI_TransferBlocking(FLEXSPI_Type *base, flexspi_transfer_t *xfer)
Execute command to transfer a buffer data bytes using a blocking method.

Parameters
• base – FLEXSPI peripheral base address

• xfer – pointer to the transfer structure.

Return values
• kStatus_Success – command transfer success without error

• kStatus_FLEXSPI_SequenceExecutionTimeout – sequence execution time-
out

• kStatus_FLEXSPI_IpCommandSequenceError – IP command sequence er-
ror detected

• kStatus_FLEXSPI_IpCommandGrantTimeout – IP command grant timeout
detected

void FLEXSPI_TransferCreateHandle(FLEXSPI_Type *base, flexspi_handle_t *handle,
flexspi_transfer_callback_t callback, void *userData)

Initializes the FLEXSPI handle which is used in transactional functions.

Parameters
• base – FLEXSPI peripheral base address.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 697



MCUXpresso SDK Documentation, Release 25.12.00

• handle – pointer to flexspi_handle_t structure to store the transfer state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t FLEXSPI_TransferNonBlocking(FLEXSPI_Type *base, flexspi_handle_t *handle,
flexspi_transfer_t *xfer)

Performs a interrupt non-blocking transfer on the FLEXSPI bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to
call FLEXSPI_GetTransferCount to poll the transfer status to check whether the transfer
is finished. If the return status is not kStatus_FLEXSPI_Busy, the transfer is finished. For
FLEXSPI_Read, the dataSize should be multiple of rx watermark level, or FLEXSPI could
not read data properly.

Parameters
• base – FLEXSPI peripheral base address.

• handle – pointer to flexspi_handle_t structure which stores the transfer
state.

• xfer – pointer to flexspi_transfer_t structure.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_FLEXSPI_Busy – Previous transmission still not finished.

status_t FLEXSPI_TransferGetCount(FLEXSPI_Type *base, flexspi_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters
• base – FLEXSPI peripheral base address.

• handle – pointer to flexspi_handle_t structure which stores the transfer
state.

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void FLEXSPI_TransferAbort(FLEXSPI_Type *base, flexspi_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
• base – FLEXSPI peripheral base address.

• handle – pointer to flexspi_handle_t structure which stores the transfer
state

698 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXSPI_TransferHandleIRQ(FLEXSPI_Type *base, flexspi_handle_t *handle)
Master interrupt handler.

Parameters
• base – FLEXSPI peripheral base address.

• handle – pointer to flexspi_handle_t structure.

FSL_FLEXSPI_DRIVER_VERSION
FLEXSPI driver version.

Status structure of FLEXSPI.

Values:

enumerator kStatus_FLEXSPI_Busy
FLEXSPI is busy

enumerator kStatus_FLEXSPI_SequenceExecutionTimeout
Sequence execution timeout error occurred during FLEXSPI transfer.

enumerator kStatus_FLEXSPI_IpCommandSequenceError
IP command Sequence execution timeout error occurred during FLEXSPI transfer.

enumerator kStatus_FLEXSPI_IpCommandGrantTimeout
IP command grant timeout error occurred during FLEXSPI transfer.

CMD definition of FLEXSPI, use to form LUT instruction, _flexspi_command.

Values:

enumerator kFLEXSPI_Command_STOP
Stop execution, deassert CS.

enumerator kFLEXSPI_Command_SDR
Transmit Command code to Flash, using SDR mode.

enumerator kFLEXSPI_Command_RADDR_SDR
Transmit Row Address to Flash, using SDR mode.

enumerator kFLEXSPI_Command_CADDR_SDR
Transmit Column Address to Flash, using SDR mode.

enumerator kFLEXSPI_Command_MODE1_SDR
Transmit 1-bit Mode bits to Flash, using SDR mode.

enumerator kFLEXSPI_Command_MODE2_SDR
Transmit 2-bit Mode bits to Flash, using SDR mode.

enumerator kFLEXSPI_Command_MODE4_SDR
Transmit 4-bit Mode bits to Flash, using SDR mode.

enumerator kFLEXSPI_Command_MODE8_SDR
Transmit 8-bit Mode bits to Flash, using SDR mode.

enumerator kFLEXSPI_Command_WRITE_SDR
Transmit Programming Data to Flash, using SDR mode.

enumerator kFLEXSPI_Command_READ_SDR
Receive Read Data from Flash, using SDR mode.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 699



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPI_Command_LEARN_SDR
Receive Read Data or Preamble bit from Flash, SDR mode.

enumerator kFLEXSPI_Command_DATSZ_SDR
Transmit Read/Program Data size (byte) to Flash, SDR mode.

enumerator kFLEXSPI_Command_DUMMY_SDR
Leave data lines undriven by FlexSPI controller.

enumerator kFLEXSPI_Command_DUMMY_RWDS_SDR
Leave data lines undriven by FlexSPI controller, dummy cycles decided by RWDS.

enumerator kFLEXSPI_Command_DDR
Transmit Command code to Flash, using DDR mode.

enumerator kFLEXSPI_Command_RADDR_DDR
Transmit Row Address to Flash, using DDR mode.

enumerator kFLEXSPI_Command_CADDR_DDR
Transmit Column Address to Flash, using DDR mode.

enumerator kFLEXSPI_Command_MODE1_DDR
Transmit 1-bit Mode bits to Flash, using DDR mode.

enumerator kFLEXSPI_Command_MODE2_DDR
Transmit 2-bit Mode bits to Flash, using DDR mode.

enumerator kFLEXSPI_Command_MODE4_DDR
Transmit 4-bit Mode bits to Flash, using DDR mode.

enumerator kFLEXSPI_Command_MODE8_DDR
Transmit 8-bit Mode bits to Flash, using DDR mode.

enumerator kFLEXSPI_Command_WRITE_DDR
Transmit Programming Data to Flash, using DDR mode.

enumerator kFLEXSPI_Command_READ_DDR
Receive Read Data from Flash, using DDR mode.

enumerator kFLEXSPI_Command_LEARN_DDR
Receive Read Data or Preamble bit from Flash, DDR mode.

enumerator kFLEXSPI_Command_DATSZ_DDR
Transmit Read/Program Data size (byte) to Flash, DDR mode.

enumerator kFLEXSPI_Command_DUMMY_DDR
Leave data lines undriven by FlexSPI controller.

enumerator kFLEXSPI_Command_DUMMY_RWDS_DDR
Leave data lines undriven by FlexSPI controller, dummy cycles decided by RWDS.

enumerator kFLEXSPI_Command_JUMP_ON_CS
Stop execution, deassert CS and save operand[7:0] as the instruction start pointer for
next sequence

enum _flexspi_pad
pad definition of FLEXSPI, use to form LUT instruction.

Values:

enumerator kFLEXSPI_1PAD
Transmit command/address and transmit/receive data only through DATA0/DATA1.

700 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPI_2PAD
Transmit command/address and transmit/receive data only through DATA[1:0].

enumerator kFLEXSPI_4PAD
Transmit command/address and transmit/receive data only through DATA[3:0].

enumerator kFLEXSPI_8PAD
Transmit command/address and transmit/receive data only through DATA[7:0].

enum _flexspi_flags
FLEXSPI interrupt status flags.

Values:

enumerator kFLEXSPI_SequenceExecutionTimeoutFlag
Sequence execution timeout.

enumerator kFLEXSPI_AhbBusErrorFlag
AHB Bus error flag.

enumerator kFLEXSPI_SckStoppedBecauseTxEmptyFlag
SCK is stopped during command sequence because Async TX FIFO empty.

enumerator kFLEXSPI_SckStoppedBecauseRxFullFlag
SCK is stopped during command sequence because Async RX FIFO full.

enumerator kFLEXSPI_IpTxFifoWatermarkEmptyFlag
IP TX FIFO WaterMark empty.

enumerator kFLEXSPI_IpRxFifoWatermarkAvailableFlag
IP RX FIFO WaterMark available.

enumerator kFLEXSPI_AhbCommandSequenceErrorFlag
AHB triggered Command Sequences Error.

enumerator kFLEXSPI_IpCommandSequenceErrorFlag
IP triggered Command Sequences Error.

enumerator kFLEXSPI_AhbCommandGrantTimeoutFlag
AHB triggered Command Sequences Grant Timeout.

enumerator kFLEXSPI_IpCommandGrantTimeoutFlag
IP triggered Command Sequences Grant Timeout.

enumerator kFLEXSPI_IpCommandExecutionDoneFlag
IP triggered Command Sequences Execution finished.

enumerator kFLEXSPI_AllInterruptFlags
All flags.

enum _flexspi_read_sample_clock
FLEXSPI sample clock source selection for Flash Reading.

Values:

enumerator kFLEXSPI_ReadSampleClkLoopbackInternally
Dummy Read strobe generated by FlexSPI Controller and loopback internally.

enumerator kFLEXSPI_ReadSampleClkLoopbackFromDqsPad
Dummy Read strobe generated by FlexSPI Controller and loopback from DQS pad.

enumerator kFLEXSPI_ReadSampleClkLoopbackFromSckPad
SCK output clock and loopback from SCK pad.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 701



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPI_ReadSampleClkExternalInputFromDqsPad
Flash provided Read strobe and input from DQS pad.

enum _flexspi_cs_interval_cycle_unit
FLEXSPI interval unit for flash device select.

Values:

enumerator kFLEXSPI_CsIntervalUnit1SckCycle
Chip selection interval: CSINTERVAL * 1 serial clock cycle.

enumerator kFLEXSPI_CsIntervalUnit256SckCycle
Chip selection interval: CSINTERVAL * 256 serial clock cycle.

enum _flexspi_ahb_write_wait_unit
FLEXSPI AHB wait interval unit for writing.

Values:

enumerator kFLEXSPI_AhbWriteWaitUnit2AhbCycle
AWRWAIT unit is 2 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit8AhbCycle
AWRWAIT unit is 8 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit32AhbCycle
AWRWAIT unit is 32 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit128AhbCycle
AWRWAIT unit is 128 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit512AhbCycle
AWRWAIT unit is 512 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit2048AhbCycle
AWRWAIT unit is 2048 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit8192AhbCycle
AWRWAIT unit is 8192 ahb clock cycle.

enumerator kFLEXSPI_AhbWriteWaitUnit32768AhbCycle
AWRWAIT unit is 32768 ahb clock cycle.

enum _flexspi_ip_error_code
Error Code when IP command Error detected.

Values:

enumerator kFLEXSPI_IpCmdErrorNoError
No error.

enumerator kFLEXSPI_IpCmdErrorJumpOnCsInIpCmd
IP command with JMP_ON_CS instruction used.

enumerator kFLEXSPI_IpCmdErrorUnknownOpCode
Unknown instruction opcode in the sequence.

enumerator kFLEXSPI_IpCmdErrorSdrDummyInDdrSequence
Instruction DUMMY_SDR/DUMMY_RWDS_SDR used in DDR sequence.

enumerator kFLEXSPI_IpCmdErrorDdrDummyInSdrSequence
Instruction DUMMY_DDR/DUMMY_RWDS_DDR used in SDR sequence.

702 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPI_IpCmdErrorInvalidAddress
Flash access start address exceed the whole flash address range (A1/A2/B1/B2).

enumerator kFLEXSPI_IpCmdErrorSequenceExecutionTimeout
Sequence execution timeout.

enumerator kFLEXSPI_IpCmdErrorFlashBoundaryAcrosss
Flash boundary crossed.

enum _flexspi_ahb_error_code
Error Code when AHB command Error detected.

Values:

enumerator kFLEXSPI_AhbCmdErrorNoError
No error.

enumerator kFLEXSPI_AhbCmdErrorJumpOnCsInWriteCmd
AHB Write command with JMP_ON_CS instruction used in the sequence.

enumerator kFLEXSPI_AhbCmdErrorUnknownOpCode
Unknown instruction opcode in the sequence.

enumerator kFLEXSPI_AhbCmdErrorSdrDummyInDdrSequence
Instruction DUMMY_SDR/DUMMY_RWDS_SDR used in DDR sequence.

enumerator kFLEXSPI_AhbCmdErrorDdrDummyInSdrSequence
Instruction DUMMY_DDR/DUMMY_RWDS_DDR used in SDR sequence.

enumerator kFLEXSPI_AhbCmdSequenceExecutionTimeout
Sequence execution timeout.

enum _flexspi_port
FLEXSPI operation port select.

Values:

enumerator kFLEXSPI_PortA1
Access flash on A1 port.

enumerator kFLEXSPI_PortA2
Access flash on A2 port.

enumerator kFLEXSPI_PortCount

enum _flexspi_arb_command_source
Trigger source of current command sequence granted by arbitrator.

Values:

enumerator kFLEXSPI_AhbReadCommand

enumerator kFLEXSPI_AhbWriteCommand

enumerator kFLEXSPI_IpCommand

enumerator kFLEXSPI_SuspendedCommand

enum _flexspi_command_type
Command type.

Values:

enumerator kFLEXSPI_Command
FlexSPI operation: Only command, both TX and Rx buffer are ignored.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 703



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPI_Config
FlexSPI operation: Configure device mode, the TX fifo size is fixed in LUT.

enumerator kFLEXSPI_Read

enumerator kFLEXSPI_Write

typedef enum _flexspi_pad flexspi_pad_t
pad definition of FLEXSPI, use to form LUT instruction.

typedef enum _flexspi_flags flexspi_flags_t
FLEXSPI interrupt status flags.

typedef enum _flexspi_read_sample_clock flexspi_read_sample_clock_t
FLEXSPI sample clock source selection for Flash Reading.

typedef enum _flexspi_cs_interval_cycle_unit flexspi_cs_interval_cycle_unit_t
FLEXSPI interval unit for flash device select.

typedef enum _flexspi_ahb_write_wait_unit flexspi_ahb_write_wait_unit_t
FLEXSPI AHB wait interval unit for writing.

typedef enum _flexspi_ip_error_code flexspi_ip_error_code_t
Error Code when IP command Error detected.

typedef enum _flexspi_ahb_error_code flexspi_ahb_error_code_t
Error Code when AHB command Error detected.

typedef enum _flexspi_port flexspi_port_t
FLEXSPI operation port select.

typedef enum _flexspi_arb_command_source flexspi_arb_command_source_t
Trigger source of current command sequence granted by arbitrator.

typedef enum _flexspi_command_type flexspi_command_type_t
Command type.

typedef struct _flexspi_ahbBuffer_config flexspi_ahbBuffer_config_t

typedef struct _flexspi_ahbBuffers_ctrl flexspi_ahbBuffers_ctrl_t
Structure to control all AHB buffers.

typedef struct _flexspi_config flexspi_config_t
FLEXSPI configuration structure.

typedef struct _flexspi_device_config flexspi_device_config_t
External device configuration items.

typedef struct _flexspi_transfer flexspi_transfer_t
Transfer structure for FLEXSPI.

typedef struct _flexspi_handle flexspi_handle_t

typedef void (*flexspi_transfer_callback_t)(FLEXSPI_Type *base, flexspi_handle_t *handle,
status_t status, void *userData)

FLEXSPI transfer callback function.

typedef struct _flexspi_addr_map_config flexspi_addr_map_config_t
Address mapping configuration structure.

FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNT

704 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FLEXSPI_LUT_SEQ(cmd0, pad0, op0, cmd1, pad1, op1)
Formula to form FLEXSPI instructions in LUT table.

struct _flexspi_ahbBuffer_config
#include <fsl_flexspi.h>

Public Members

uint8_t priority
This priority for AHB Master Read which this AHB RX Buffer is assigned.

uint8_t masterIndex
AHB Master ID the AHB RX Buffer is assigned.

uint16_t bufferSize
AHB buffer size in byte.

bool enablePrefetch
AHB Read Prefetch Enable for current AHB RX Buffer corresponding Master, allows
prefetch disable/enable separately for each master.

struct _flexspi_ahbBuffers_ctrl
#include <fsl_flexspi.h> Structure to control all AHB buffers.

Public Members

flexspi_ahbBuffer_config_t buffer[FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNTn(0)]
Configurations of all AHB buffers.

struct _flexspi_config
#include <fsl_flexspi.h> FLEXSPI configuration structure.

Public Members

flexspi_read_sample_clock_t rxSampleClock
Sample Clock source selection for Flash Reading.

bool enableSckFreeRunning
Enable/disable SCK output free-running.

bool enableDoze
Enable/disable doze mode support.

bool enableHalfSpeedAccess
Enable/disable divide by 2 of the clock for half speed commands.

flexspi_read_sample_clock_t rxSampleClockPortB
Sample Clock source_b selection for Flash Reading.

bool rxSampleClockDiff
Sample Clock source or source_b selection for Flash Reading.

bool enableSameConfigForAll
Enable/disable same configuration for all connected devices when enabled, same con-
figuration in FLASHA1CRx is applied to all.

uint16_t seqTimeoutCycle
Timeout wait cycle for command sequence execution, timeout after ahbGrantTimeout-
Cyle*1024 serial root clock cycles.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 705



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t ipGrantTimeoutCycle
Timeout wait cycle for IP command grant, timeout after ipGrantTimeoutCycle*1024
AHB clock cycles.

uint8_t txWatermark
FLEXSPI IP transmit watermark value.

uint8_t rxWatermark
FLEXSPI receive watermark value.

struct _flexspi_device_config
#include <fsl_flexspi.h> External device configuration items.

Public Members

uint32_t flexspiRootClk
FLEXSPI serial root clock.

bool isSck2Enabled
FLEXSPI use SCK2.

uint32_t flashSize
Flash size in KByte.

bool addressShift
Address shift.

flexspi_cs_interval_cycle_unit_t CSIntervalUnit
CS interval unit, 1 or 256 cycle.

uint16_t CSInterval
CS line assert interval, multiply CS interval unit to get the CS line assert interval cycles.

uint8_t CSHoldTime
CS line hold time.

uint8_t CSSetupTime
CS line setup time.

uint8_t dataValidTime
Data valid time for external device.

uint8_t columnspace
Column space size.

bool enableWordAddress
If enable word address.

uint8_t AWRSeqIndex
Sequence ID for AHB write command.

uint8_t AWRSeqNumber
Sequence number for AHB write command.

uint8_t ARDSeqIndex
Sequence ID for AHB read command.

uint8_t ARDSeqNumber
Sequence number for AHB read command.

flexspi_ahb_write_wait_unit_t AHBWriteWaitUnit
AHB write wait unit.

706 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t AHBWriteWaitInterval
AHB write wait interval, multiply AHB write interval unit to get the AHB write wait
cycles.

bool enableWriteMask
Enable/Disable FLEXSPI drive DQS pin as write mask when writing to external device.

bool isFroClockSource
Is FRO clock source or not.

struct _flexspi_transfer
#include <fsl_flexspi.h> Transfer structure for FLEXSPI.

Public Members

uint32_t deviceAddress
Operation device address.

flexspi_port_t port
Operation port.

flexspi_command_type_t cmdType
Execution command type.

uint8_t seqIndex
Sequence ID for command.

uint8_t SeqNumber
Sequence number for command.

uint32_t *data
Data buffer.

size_t dataSize
Data size in bytes.

struct _flexspi_handle
#include <fsl_flexspi.h> Transfer handle structure for FLEXSPI.

Public Members

uint32_t state
Internal state for FLEXSPI transfer

uint8_t *data
Data buffer.

size_t dataSize
Remaining Data size in bytes.

size_t transferTotalSize
Total Data size in bytes.

flexspi_transfer_callback_t completionCallback
Callback for users while transfer finish or error occurred

void *userData
FLEXSPI callback function parameter.

struct _flexspi_addr_map_config
#include <fsl_flexspi.h> Address mapping configuration structure.

2.58. FLEXSPI: Flexible Serial Peripheral Interface Driver 707



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t addrStart
Remapping start address.

uint32_t addrEnd
Remapping end address.

uint32_t addrOffset
Address offset.

bool remapEnable
Enable address remapping.

struct ahbConfig

Public Members

uint8_t ahbGrantTimeoutCycle
Timeout wait cycle for AHB command grant, timeout after ahbGrantTimeoutCyle*1024
AHB clock cycles.

uint16_t ahbBusTimeoutCycle
Timeout wait cycle for AHB read/write access, timeout after ahbBusTimeoutCy-
cle*1024 AHB clock cycles.

uint8_t resumeWaitCycle
Wait cycle for idle state before suspended command sequence resume, timeout after
ahbBusTimeoutCycle AHB clock cycles.

bool disableAhbReadResume
True: Suspended AHB read prefetch does not resume once aborted; False: Suspended
AHB read prefetch resumes when AHB is IDLE.

flexspi_ahbBuffer_config_t buffer[FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNTn(0)]
AHB buffer size.

bool enableClearAHBBufferOpt
Enable/disable automatically clean AHB RX Buffer and TX Buffer when FLEXSPI re-
turns STOP mode ACK.

bool enableReadAddressOpt
Enable/disable remove AHB read burst start address alignment limitation. when en-
able, there is no AHB read burst start address alignment limitation.

bool enableAHBPrefetch
Enable/disable AHB read prefetch feature, when enabled, FLEXSPI will fetch more data
than current AHB burst.

bool enableAHBBufferable
Enable/disable AHB bufferable write access support, when enabled, FLEXSPI return
before waiting for command execution finished.

bool enableAHBCachable
Enable AHB bus cachable read access support.

2.59 FLEXSPI eDMA Driver

708 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void FLEXSPI_TransferCreateHandleEDMA(FLEXSPI_Type *base, flexspi_edma_handle_t
*handle, flexspi_edma_callback_t callback, void
*userData, edma_handle_t *txDmaHandle,
edma_handle_t *rxDmaHandle)

Initializes the FLEXSPI handle for transfer which is used in transactional functions and set
the callback.

Parameters
• base – FLEXSPI peripheral base address

• handle – Pointer to flexspi_edma_handle_t structure

• callback – FLEXSPI callback, NULL means no callback.

• userData – User callback function data.

• txDmaHandle – User requested DMA handle for TX DMA transfer.

• rxDmaHandle – User requested DMA handle for RX DMA transfer.

void FLEXSPI_TransferUpdateSizeEDMA(FLEXSPI_Type *base, flexspi_edma_handle_t *handle,
flexspi_edma_transfer_nsize_t nsize)

Update FLEXSPI EDMA transfer source data transfer size(SSIZE) and destination data trans-
fer size(DSIZE).

See also:
flexspi_edma_transfer_nsize_t .

Parameters
• base – FLEXSPI peripheral base address

• handle – Pointer to flexspi_edma_handle_t structure

• nsize – FLEXSPI DMA transfer data transfer size(SSIZE/DSIZE), by default
the size is kFLEXPSI_EDMAnSize1Bytes(one byte).

status_t FLEXSPI_TransferEDMA(FLEXSPI_Type *base, flexspi_edma_handle_t *handle,
flexspi_transfer_t *xfer)

Transfers FLEXSPI data using an eDMA non-blocking method.

This function writes/receives data to/from the FLEXSPI transmit/receive FIFO. This function
is non-blocking.

Parameters
• base – FLEXSPI peripheral base address.

• handle – Pointer to flexspi_edma_handle_t structure

• xfer – FLEXSPI transfer structure.

Return values
• kStatus_FLEXSPI_Busy – FLEXSPI is busy transfer.

• kStatus_InvalidArgument – The watermark configuration is invalid, the wa-
termark should be power of 2 to do successfully EDMA transfer.

• kStatus_Success – FLEXSPI successfully start edma transfer.

void FLEXSPI_TransferAbortEDMA(FLEXSPI_Type *base, flexspi_edma_handle_t *handle)
Aborts the transfer data using eDMA.

This function aborts the transfer data using eDMA.

2.59. FLEXSPI eDMA Driver 709



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – FLEXSPI peripheral base address.

• handle – Pointer to flexspi_edma_handle_t structure

status_t FLEXSPI_TransferGetTransferCountEDMA(FLEXSPI_Type *base, flexspi_edma_handle_t
*handle, size_t *count)

Gets the transferred counts of transfer.

Parameters
• base – FLEXSPI peripheral base address.

• handle – Pointer to flexspi_edma_handle_t structure.

• count – Bytes transfer.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

FSL_FLEXSPI_EDMA_DRIVER_VERSION
FLEXSPI EDMA driver version.

enum _flexspi_edma_ntransfer_size
eDMA transfer configuration

Values:

enumerator kFLEXPSI_EDMAnSize1Bytes
Source/Destination data transfer size is 1 byte every time

enumerator kFLEXPSI_EDMAnSize2Bytes
Source/Destination data transfer size is 2 bytes every time

enumerator kFLEXPSI_EDMAnSize4Bytes
Source/Destination data transfer size is 4 bytes every time

enumerator kFLEXPSI_EDMAnSize8Bytes
Source/Destination data transfer size is 8 bytes every time

enumerator kFLEXPSI_EDMAnSize32Bytes
Source/Destination data transfer size is 32 bytes every time

typedef struct _flexspi_edma_handle flexspi_edma_handle_t

typedef void (*flexspi_edma_callback_t)(FLEXSPI_Type *base, flexspi_edma_handle_t *handle,
status_t status, void *userData)

FLEXSPI eDMA transfer callback function for finish and error.

typedef enum _flexspi_edma_ntransfer_size flexspi_edma_transfer_nsize_t
eDMA transfer configuration

struct _flexspi_edma_handle
#include <fsl_flexspi_edma.h> FLEXSPI DMA transfer handle, users should not touch the con-
tent of the handle.

Public Members

edma_handle_t *txDmaHandle
eDMA handler for FLEXSPI Tx.

710 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

edma_handle_t *rxDmaHandle
eDMA handler for FLEXSPI Rx.

size_t transferSize
Bytes need to transfer.

flexspi_edma_transfer_nsize_t nsize
eDMA SSIZE/DSIZE in each transfer.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

uint8_t count
The transfer data count in a DMA request.

uint32_t state
Internal state for FLEXSPI eDMA transfer.

flexspi_edma_callback_t completionCallback
A callback function called after the eDMA transfer is finished.

void *userData
User callback parameter

2.60 Gpc

static inline void GPC_CM_EnableCpuSleepHold(GPC_CPU_MODE_CTRL_Type *base, bool
enable)

static inline void GPC_CM_SetNextCpuMode(GPC_CPU_MODE_CTRL_Type *base,
gpc_cpu_mode_t mode)

Set the CPU mode on the next sleep event.

This function configures the CPU mode that the CPU core will transmit to on next sleep
event.

Note: This API must be called each time before entering sleep.

Parameters
• base – GPC CPU module base address.

• mode – The CPU mode that the core will transmit to, refer to
“gpc_cpu_mode_t”.

static inline gpc_cpu_mode_t GPC_CM_GetCurrentCpuMode(GPC_CPU_MODE_CTRL_Type
*base)

Get current CPU mode.

Parameters
• base – GPC CPU module base address.

Returns
The current CPU mode, in type of gpc_cpu_mode_t.

2.60. Gpc 711



MCUXpresso SDK Documentation, Release 25.12.00

static inline gpc_cpu_mode_t GPC_CM_GetPreviousCpuMode(GPC_CPU_MODE_CTRL_Type
*base)

Get previous CPU mode.

Parameters
• base – GPC CPU module base address.

Returns
The previous CPU mode, in type of gpc_cpu_mode_t.

void GPC_CM_EnableIrqWakeup(GPC_CPU_MODE_CTRL_Type *base, uint32_t irqId, bool
enable)

Enable IRQ wakeup request.

This function enables the IRQ request which can wakeup the CPU platform.

Parameters
• base – GPC CPU module base address.

• irqId – ID of the IRQ, accessible range is 0-255.

• enable – Enable the IRQ request or not.

static inline void GPC_CM_EnableNonIrqWakeup(GPC_CPU_MODE_CTRL_Type *base, uint32_t
mask, bool enable)

Enable Non-IRQ wakeup request.

This function enables the non-IRQ request which can wakeup the CPU platform.

Parameters
• base – GPC CPU module base address.

• mask – Non-IRQ type, refer to “_gpc_cm_non_irq_wakeup_request”.

• enable – Enable the Non-IRQ request or not.

bool GPC_CM_GetIrqWakeupStatus(GPC_CPU_MODE_CTRL_Type *base, uint32_t irqId)
Get the status of the IRQ wakeup request.

Parameters
• base – GPC CPU module base address.

• irqId – ID of the IRQ, accessible range is 0-255.

Returns
Indicate the IRQ request is asserted or not.

static inline bool GPC_CM_GetNonIrqWakeupStatus(GPC_CPU_MODE_CTRL_Type *base,
uint32_t mask)

Get the status of the Non-IRQ wakeup request.

Parameters
• base – GPC CPU module base address.

• mask – Non-IRQ type, refer to “_gpc_cm_non_irq_wakeup_request”.

Returns
Indicate the Non-IRQ request is asserted or not.

void GPC_CM_ConfigCpuModeTransitionStep(GPC_CPU_MODE_CTRL_Type *base,
gpc_cm_tran_step_t step, const
gpc_tran_step_config_t *config)

Config the cpu mode transition step.

712 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Deprecated:
Please use GPC_CM_EnableCpuModeTransitionStep() and
GPC_CM_DisableCpuModeTransitionStep() as instead.

Note: This function can not config the setpoint sleep/wakeup operation for those operation
is controlled by setpoint control. This funcion can not config the standby sleep/wakeup too,
because those operation is controlled by standby controlled.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

• config – transition step configuration, refer to “gpc_tran_step_config_t”.

void GPC_CM_EnableCpuModeTransitionStep(GPC_CPU_MODE_CTRL_Type *base,
gpc_cm_tran_step_t step)

Enable the specific cpu mode transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

void GPC_CM_DisableCpuModeTransitionStep(GPC_CPU_MODE_CTRL_Type *base,
gpc_cm_tran_step_t step)

Disable the specific cpu mode transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

void GPC_CM_RequestSleepModeSetPointTransition(GPC_CPU_MODE_CTRL_Type *base, uint8_t
setPointSleep, uint8_t setPointWakeup,
gpc_cm_wakeup_sp_sel_t wakeupSel)

Request a set point transition before the CPU transfers into a sleep mode.

This function triggers the set point transition during a CPU Sleep/wakeup event and selects
which one the CMC want to transfer to.

Parameters
• base – GPC CPU module base address.

• setPointSleep – The set point CPU want the system to transit to on next CPU
platform sleep sequence.

• setPointWakeup – The set point CPU want the system to transit to on next
CPU platform wakeup sequence.

• wakeupSel – Select the set point transition on the next CPU platform wakeup
sequence.

void GPC_CM_RequestRunModeSetPointTransition(GPC_CPU_MODE_CTRL_Type *base, uint8_t
setPointRun)

Request a set point transition during run mode.

This function triggers the set point transition and selects which one the CMC want to trans-
fer to.

Parameters

2.60. Gpc 713



MCUXpresso SDK Documentation, Release 25.12.00

• base – GPC CPU module base address.

• setPointRun – The set point CPU want the system to transit in the run mode.

static inline void GPC_CM_SetSetPointMapping(GPC_CPU_MODE_CTRL_Type *base, uint32_t
setPoint, uint32_t setpoint_map)

Set the set point mapping value for each set point.

This function configures which set point is allowed after current set point. If there are
multiple setpoints, use:

setpoint_map = kGPC_SetPoint0 | kGPC_SetPoint1 | ... | kGPC_SetPoint15;

Parameters
• base – GPC CPU module base address.

• setPoint – Set point index, available range is 0-15.

• setpoint_map – Map value of the set point. Refer to “_gpc_setpoint_map”.

void GPC_CM_SetCpuModeSetPointMapping(GPC_CPU_MODE_CTRL_Type *base,
gpc_cpu_mode_t mode, uint32_t setpoint_map)

Set the set point mapping value for each cpu mode.

This function configures which set point is allowed when CPU enters
RUN/WAIT/STOP/SUSPEND. If there are multiple setpoints, use:

setpoint_map = kGPC_SetPoint0 | kGPC_SetPoint1 | ... | kGPC_SetPoint15;

Parameters
• base – GPC CPU module base address.

• mode – CPU mode. Refer to “gpc_cpu_mode_t”.

• setpoint_map – Map value of the set point. Refer to “_gpc_setpoint_map”.

void GPC_CM_RequestStandbyMode(GPC_CPU_MODE_CTRL_Type *base, const gpc_cpu_mode_t
mode)

Request the chip into standby mode.

Parameters
• base – GPC CPU module base address.

• mode – CPU mode. Refer to “gpc_cpu_mode_t”.

void GPC_CM_ClearStandbyModeRequest(GPC_CPU_MODE_CTRL_Type *base, const
gpc_cpu_mode_t mode)

Clear the standby mode request.

Parameters
• base – GPC CPU module base address.

• mode – CPU mode. Refer to “gpc_cpu_mode_t”.

static inline bool GPC_CM_GetStandbyModeStatus(GPC_CPU_MODE_CTRL_Type *base, uint32_t
mask)

Get the status of the CPU standby mode transition.

Parameters
• base – GPC CPU module base address.

• mask – Standby mode transition status mask, refer to
“gpc_cm_standby_mode_status_t”.

714 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Indicate the CPU’s standby transition status.

static inline uint32_t GPC_CM_GetInterruptStatusFlags(GPC_CPU_MODE_CTRL_Type *base)
Get the status flags of the GPC CPU module.

Parameters
• base – GPC CPU module base address.

Returns
The OR’ed value of status flags.

void GPC_CM_ClearInterruptStatusFlags(GPC_CPU_MODE_CTRL_Type *base, uint32_t mask)
Clears CPU module interrut status flags.

Parameters
• base – GPC CPU module base address.

• mask – The interrupt status flags to be cleared. Should be the OR’ed value
of _gpc_cm_interrupt_status_flag.

static inline void GPC_SP_SetSetpointPriority(GPC_SET_POINT_CTRL_Type *base, uint32_t
setPoint, uint32_t priority)

Set the priority of set point.

This function will configure the priority of the set point. If the result of API
GPC_SP_GetAllowedSetPointMap() has more than one valid bit, high priority set point will
be taken.

Parameters
• base – GPC Setpoint controller base address.

• setPoint – Set point index, available range is 0-15.

• priority – Priority level, available range is 0-15.

void GPC_SP_ConfigSetPointTransitionStep(GPC_SET_POINT_CTRL_Type *base,
gpc_sp_tran_step_t step, const
gpc_tran_step_config_t *config)

Config the set point transition step.

Deprecated:
Please use GPC_SP_EnableSetPointTransitionStep() and
GPC_SP_DisableSetPointTransitionStep() as instead.

Parameters
• base – GPC Setpoint controller base address.

• step – step type, refer to “gpc_sp_tran_step_t”.

• config – transition step configuration, refer to “gpc_tran_step_config_t”.

void GPC_SP_EnableSetPointTransitionStep(GPC_SET_POINT_CTRL_Type *base,
gpc_sp_tran_step_t step)

Enable the specific setpoint transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

2.60. Gpc 715



MCUXpresso SDK Documentation, Release 25.12.00

void GPC_SP_DisableSetPointTransitionStep(GPC_SET_POINT_CTRL_Type *base,
gpc_sp_tran_step_t step)

Disable the specific setpoint transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

static inline uint8_t GPC_SP_GetCurrentSetPoint(GPC_SET_POINT_CTRL_Type *base)
Get system current setpoint, only valid when setpoint trans not busy.

Parameters
• base – GPC Setpoint controller base address.

Returns
The current setpoint number, range from 0 to 15.

static inline uint8_t GPC_SP_GetPreviousSetPoint(GPC_SET_POINT_CTRL_Type *base)
Get system previous setpoint, only valid when setpoint trans not busy.

Parameters
• base – GPC Setpoint controller base address.

Returns
The previous setpoint number, range from 0 to 15.

static inline uint8_t GPC_SP_GetTargetSetPoint(GPC_SET_POINT_CTRL_Type *base)
Get target setpoint.

Parameters
• base – GPC Setpoint controller base address.

Returns
The target setpoint number, range from 0 to 15.

void GPC_STBY_ConfigStandbyTransitionStep(GPC_STBY_CTRL_Type *base,
gpc_stby_tran_step_t step, const
gpc_tran_step_config_t *config)

Config the standby transition step.

Deprecated:
Please use GPC_STBY_EnableStandbyTransitionStep() and
GPC_STBY_DisableStandbyTransitionStep() as instead.

Parameters
• base – GPC standby controller base address.

• step – step type, refer to “gpc_stby_tran_step_t”.

• config – transition step configuration, refer to “gpc_tran_step_config_t”.

void GPC_STBY_EnableStandbyTransitionStep(GPC_STBY_CTRL_Type *base,
gpc_stby_tran_step_t step)

Enable the specific standby transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

716 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void GPC_STBY_DisableStandbyTransitionStep(GPC_STBY_CTRL_Type *base,
gpc_stby_tran_step_t step)

Disable the specific standby transition step.

Parameters
• base – GPC CPU module base address.

• step – step type, refer to “gpc_cm_tran_step_t”.

void GPC_STBY_SetPmicOutStepCountMode(GPC_STBY_CTRL_Type *base,
gpc_tran_step_counter_mode_t cntMode, uint32_t
stepCount)

Set count mode for PMIC_OUT Step.

Parameters
• base – GPC CPU module base address.

• cntMode – Step counter working mode.

• stepCount – Step count, which is depended on the value of cntMode

static inline void GPC_STBY_ForceCoreRequestStandbyMode(GPC_STBY_CTRL_Type *base,
gpc_cpu_domain_name_t
cpuName)

Force selected CPU requesting standby mode.

Parameters
• base – GPC standby controller base address.

• cpuName – The CPU name, refer to gpc_cpu_domain_name_t.

FSL_GPC_RIVER_VERSION
GPC driver version 2.5.0.

_gpc_cm_non_irq_wakeup_request GPC Non-IRQ wakeup request.

Values:

enumerator kGPC_CM_EventWakeupRequest
Event wakeup request.

enumerator kGPC_CM_DebugWakeupRequest
Debug wakeup request.

Values:

enumerator kGPC_SetPoint0
GPC set point 0.

enumerator kGPC_SetPoint1
GPC set point 1.

enumerator kGPC_SetPoint2
GPC set point 2.

enumerator kGPC_SetPoint3
GPC set point 3.

enumerator kGPC_SetPoint4
GPC set point 4.

2.60. Gpc 717



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPC_SetPoint5
GPC set point 5.

enumerator kGPC_SetPoint6
GPC set point 6.

enumerator kGPC_SetPoint7
GPC set point 7.

enumerator kGPC_SetPoint8
GPC set point 8.

enumerator kGPC_SetPoint9
GPC set point 9.

enumerator kGPC_SetPoint10
GPC set point 10.

enumerator kGPC_SetPoint11
GPC set point 11.

enumerator kGPC_SetPoint12
GPC set point 12.

enumerator kGPC_SetPoint13
GPC set point 13.

enumerator kGPC_SetPoint14
GPC set point 14.

enumerator kGPC_SetPoint15
GPC set point 15.

_gpc_cm_interrupt_status_flag

Values:

enumerator kGPC_CM_SoftSPNotAllowedStatusFlag

enumerator kGPC_CM_WaitSPNotAllowedStatusFlag

enumerator kGPC_CM_SleepSPNotAllowedStatusFlag

enum _gpc_cm_standby_mode_status
CPU standby mode status.

Values:

enumerator kGPC_CM_SleepBusy
Indicate the CPU is busy entering standby mode.

enumerator kGPC_CM_WakeupBusy
Indicate the CPU is busy exiting standby mode.

enum _gpc_cm_tran_step
CPU mode transition step in sleep/wakeup sequence.

Values:

enumerator kGPC_CM_SleepSsar
SSAR (State Save And Restore) sleep step.

718 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPC_CM_SleepLpcg
LPCG (Low Power Clock Gating) sleep step.

enumerator kGPC_CM_SleepPll
PLL sleep step.

enumerator kGPC_CM_SleepIso
ISO (Isolation) sleep step.

enumerator kGPC_CM_SleepReset
Reset sleep step.

enumerator kGPC_CM_SleepPower
Power sleep step.

enumerator kGPC_CM_SleepSP
Setpoint sleep step. Note that this step is controlled by setpoint controller.

enumerator kGPC_CM_SleepSTBY
Standby sleep step. Note that this step is controlled by standby controller.

enumerator kGPC_CM_WakeupSTBY
Standby wakeup step. Note that this step is controlled by standby controller.

enumerator kGPC_CM_WakeupSP
Setpoint wakeup step. Note that this step is controlled by setpoint countroller.

enumerator kGPC_CM_WakeupPower
Power wakeup step.

enumerator kGPC_CM_WakeupReset
Reset wakeup step.

enumerator kGPC_CM_WakeupIso
ISO wakeup step.

enumerator kGPC_CM_WakeupPll
PLL wakeup step.

enumerator kGPC_CM_WakeupLpcg
LPCG wakeup step.

enumerator kGPC_CM_WakeupSsar
SSAR wakeup step.

enum _gpc_sp_tran_step
GPC set point transition steps.

Values:

enumerator kGPC_SP_SsarSave
SSAR save step.

enumerator kGPC_SP_LpcgOff
LPCG off step.

enumerator kGPC_SP_GroupDown
Group down step.

enumerator kGPC_SP_RootDown
Root down step.

2.60. Gpc 719



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPC_SP_PllOff
PLL off step.

enumerator kGPC_SP_IsoOn
ISO on.

enumerator kGPC_SP_ResetEarly
Reset early step.

enumerator kGPC_SP_PowerOff
Power off step.

enumerator kGPC_SP_BiasOff
Bias off step.

enumerator kGPC_SP_BandgapPllLdoOff
Bandgap and PLL_LDO off step.

enumerator kGPC_SP_LdoPre
LDO (Low-Dropout) pre step.

enumerator kGPC_SP_DcdcDown
DCDC down step.

enumerator kGPC_SP_DcdcUp
DCDC up step.

enumerator kGPC_SP_LdoPost
LDO post step.

enumerator kGPC_SP_BandgapPllLdoOn
Bandgap and PLL_LDO on step.

enumerator kGPC_SP_BiasOn
Bias on step.

enumerator kGPC_SP_PowerOn
Power on step.

enumerator kGPC_SP_ResetLate
Reset late step.

enumerator kGPC_SP_IsoOff
ISO off step.

enumerator kGPC_SP_PllOn
PLL on step

enumerator kGPC_SP_RootUp
Root up step.

enumerator kGPC_SP_GroupUp
Group up step.

enumerator kGPC_SP_LpcgOn
LPCG on step.

enumerator kGPC_SP_SsarRestore
SSAR restore step.

enum _gpc_cpu_mode
CPU mode.

Values:

720 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPC_RunMode
Stay in RUN mode.

enumerator kGPC_WaitMode
Transit to WAIT mode.

enumerator kGPC_StopMode
Transit to STOP mode.

enumerator kGPC_SuspendMode
Transit to SUSPEND mode.

enum _gpc_cm_wakeup_sp_sel
CPU wakeup sequence setpoint options.

Values:

enumerator kGPC_CM_WakeupSetpoint
Request SP transition to CPU_SP_WAKEUP (param “setPointWakeup” in
gpc_cm_sleep_sp_tran_config_t).

enumerator kGPC_CM_RequestPreviousSetpoint
Request SP transition to the set point when the sleep event happens.

enum _gpc_stby_tran_step
GPC standby mode transition steps.

Values:

enumerator kGPC_STBY_LpcgIn
LPCG in step.

enumerator kGPC_STBY_PllIn
PLL in step.

enumerator kGPC_STBY_BiasIn
Bias in step.

enumerator kGPC_STBY_PldoIn
PLDO in step.

enumerator kGPC_STBY_BandgapIn
Bandgap in step.

enumerator kGPC_STBY_LdoIn
LDO in step.

enumerator kGPC_STBY_DcdcIn
DCDC in step.

enumerator kGPC_STBY_PmicIn
PMIC in step.

enumerator kGPC_STBY_PmicOut
PMIC out step.

enumerator kGPC_STBY_DcdcOut
DCDC out step.

enumerator kGPC_STBY_LdoOut
LDO out step.

enumerator kGPC_STBY_BandgapOut
Bandgap out step.

2.60. Gpc 721



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPC_STBY_PldoOut
PLDO out step.

enumerator kGPC_STBY_BiasOut
Bias out step.

enumerator kGPC_STBY_PllOut
PLL out step.

enumerator kGPC_STBY_LpcgOut
LPCG out step.

enum _gpc_cpu_domain_name
GPC CPU domain name, used to select the CPU domain.

Values:

enumerator kGPC_CM7Core
CM7 core.

enumerator kGPC_CM4Core
CM4 core.

enum _gpc_tran_step_counter_mode
Step counter work mode.

Values:

enumerator kGPC_StepCounterDisableMode
Counter disable mode: not use step counter, step completes once receiving step_done.

enumerator kGPC_StepCounterDelayMode
Counter delay mode: delay after receiving step_done, delay cycle number is STEP_CNT

enumerator kGPC_StepCounterIgnoreResponseMode
Ignore step_done response, the counter starts to count once step begins, when counter
reaches STEP_CNT value, the step completes.

enumerator kGPC_StepCounterTimeOutMode
Time out mode, the counter starts to count once step begins, the step completes when
either step_done received or counting to STEP_CNT value.

typedef enum _gpc_cm_standby_mode_status gpc_cm_standby_mode_status_t
CPU standby mode status.

typedef enum _gpc_cm_tran_step gpc_cm_tran_step_t
CPU mode transition step in sleep/wakeup sequence.

typedef enum _gpc_sp_tran_step gpc_sp_tran_step_t
GPC set point transition steps.

typedef enum _gpc_cpu_mode gpc_cpu_mode_t
CPU mode.

typedef struct _gpc_tran_step_config gpc_tran_step_config_t
Configuration for GPC transition step.

Deprecated:
Related functions are deprecated.

typedef enum _gpc_cm_wakeup_sp_sel gpc_cm_wakeup_sp_sel_t
CPU wakeup sequence setpoint options.

722 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _gpc_stby_tran_step gpc_stby_tran_step_t
GPC standby mode transition steps.

typedef enum _gpc_cpu_domain_name gpc_cpu_domain_name_t
GPC CPU domain name, used to select the CPU domain.

typedef enum _gpc_tran_step_counter_mode gpc_tran_step_counter_mode_t
Step counter work mode.

GPC_RESERVED_USE_MACRO

GPC_CM_SLEEP_SSAR_CTRL_OFFSET

GPC_CM_SLEEP_LPCG_CTRL_OFFSET

GPC_CM_SLEEP_PLL_CTRL_OFFSET

GPC_CM_SLEEP_ISO_CTRL_OFFSET

GPC_CM_SLEEP_RESET_CTRL_OFFSET

GPC_CM_SLEEP_POWER_CTRL_OFFSET

GPC_CM_WAKEUP_POWER_CTRL_OFFSET

GPC_CM_WAKEUP_RESET_CTRL_OFFSET

GPC_CM_WAKEUP_ISO_CTRL_OFFSET

GPC_CM_WAKEUP_PLL_CTRL_OFFSET

GPC_CM_WAKEUP_LPCG_CTRL_OFFSET

GPC_CM_WAKEUP_SSAR_CTRL_OFFSET

GPC_SP_SSAR_SAVE_CTRL_OFFSET

GPC_SP_LPCG_OFF_CTRL_OFFSET

GPC_SP_GROUP_DOWN_CTRL_OFFSET

GPC_SP_ROOT_DOWN_CTRL_OFFSET

GPC_SP_PLL_OFF_CTRL_OFFSET

GPC_SP_ISO_ON_CTRL_OFFSET

GPC_SP_RESET_EARLY_CTRL_OFFSET

GPC_SP_POWER_OFF_CTRL_OFFSET

GPC_SP_BIAS_OFF_CTRL_OFFSET

GPC_SP_BG_PLDO_OFF_CTRL_OFFSET

GPC_SP_LDO_PRE_CTRL_OFFSET

GPC_SP_DCDC_DOWN_CTRL_OFFSET

GPC_SP_DCDC_UP_CTRL_OFFSET

GPC_SP_LDO_POST_CTRL_OFFSET

GPC_SP_BG_PLDO_ON_CTRL_OFFSET

2.60. Gpc 723



MCUXpresso SDK Documentation, Release 25.12.00

GPC_SP_BIAS_ON_CTRL_OFFSET

GPC_SP_POWER_ON_CTRL_OFFSET

GPC_SP_RESET_LATE_CTRL_OFFSET

GPC_SP_ISO_OFF_CTRL_OFFSET

GPC_SP_PLL_ON_CTRL_OFFSET

GPC_SP_ROOT_UP_CTRL_OFFSET

GPC_SP_GROUP_UP_CTRL_OFFSET

GPC_SP_LPCG_ON_CTRL_OFFSET

GPC_SP_SSAR_RESTORE_CTRL_OFFSET

GPC_STBY_LPCG_IN_CTRL_OFFSET

GPC_STBY_PLL_IN_CTRL_OFFSET

GPC_STBY_BIAS_IN_CTRL_OFFSET

GPC_STBY_PLDO_IN_CTRL_OFFSET

GPC_STBY_BANDGAP_IN_CTRL_OFFSET

GPC_STBY_LDO_IN_CTRL_OFFSET

GPC_STBY_DCDC_IN_CTRL_OFFSET

GPC_STBY_PMIC_IN_CTRL_OFFSET

GPC_STBY_PMIC_OUT_CTRL_OFFSET

GPC_STBY_DCDC_OUT_CTRL_OFFSET

GPC_STBY_LDO_OUT_CTRL_OFFSET

GPC_STBY_BANDGAP_OUT_CTRL_OFFSET

GPC_STBY_PLDO_OUT_CTRL_OFFSET

GPC_STBY_BIAS_OUT_CTRL_OFFSET

GPC_STBY_PLL_OUT_CTRL_OFFSET

GPC_STBY_LPCG_OUT_CTRL_OFFSET

GPC_CM_STEP_REG_OFFSET

GPC_SP_STEP_REG_OFFSET

GPC_STBY_STEP_REG_OFFSET

GPC_STAT(mask, shift)

GPC_CM_ALL_INTERRUPT_STATUS

struct _gpc_tran_step_config
#include <fsl_gpc.h> Configuration for GPC transition step.

Deprecated:
Related functions are deprecated.

724 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableStep
Enable the step.

2.61 GPIO: General-Purpose Input/Output Driver

void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *Config)
Initializes the GPIO peripheral according to the specified parameters in the initConfig.

Parameters
• base – GPIO base pointer.

• pin – Specifies the pin number

• Config – pointer to a gpio_pin_config_t structure that contains the configu-
ration information.

void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

• output – GPIOpin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline void GPIO_WritePinOutput(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the individual GPIO pin to logic 1 or 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinWrite.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

static inline void GPIO_SetPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortSet.

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

2.61. GPIO: General-Purpose Input/Output Driver 725



MCUXpresso SDK Documentation, Release 25.12.00

static inline void GPIO_ClearPinsOutput(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortClear.

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer (GPIO1, GPIO2, GPIO3, and so on.)

• mask – GPIO pin number macro

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

Return values
GPIO – port input value.

static inline uint32_t GPIO_ReadPinInput(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinRead.

static inline uint8_t GPIO_PinReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

Return values
GPIO – pin pad status value.

static inline uint8_t GPIO_ReadPadStatus(GPIO_Type *base, uint32_t pin)
Reads the current GPIO pin pad status.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinReadPadStatus.

void GPIO_PinSetInterruptConfig(GPIO_Type *base, uint32_t pin, gpio_interrupt_mode_t
pinInterruptMode)

Sets the current pin interrupt mode.

Parameters
• base – GPIO base pointer.

• pin – GPIO port pin number.

• pinInterruptMode – pointer to a gpio_interrupt_mode_t structure that con-
tains the interrupt mode information.

726 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void GPIO_SetPinInterruptConfig(GPIO_Type *base, uint32_t pin,
gpio_interrupt_mode_t pinInterruptMode)

Sets the current pin interrupt mode.

Deprecated:
Do not use this function. It has been superceded by GPIO_PinSetInterruptConfig.

static inline void GPIO_PortEnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_EnableInterrupts(GPIO_Type *base, uint32_t mask)
Enables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_PortDisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_DisableInterrupts(GPIO_Type *base, uint32_t mask)
Disables the specific pin interrupt.

Deprecated:
Do not use this function. It has been superceded by GPIO_PortDisableInterrupts.

static inline uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
• base – GPIO base pointer.

Return values
current – pin interrupt status flag.

static inline uint32_t GPIO_GetPinsInterruptFlags(GPIO_Type *base)
Reads individual pin interrupt status.

Parameters
• base – GPIO base pointer.

Return values
current – pin interrupt status flag.

static inline void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters

2.61. GPIO: General-Purpose Input/Output Driver 727



MCUXpresso SDK Documentation, Release 25.12.00

• base – GPIO base pointer.

• mask – GPIO pin number macro.

static inline void GPIO_ClearPinsInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears pin interrupt flag. Status flags are cleared by writing a 1 to the corresponding bit
position.

Parameters
• base – GPIO base pointer.

• mask – GPIO pin number macro.

FSL_GPIO_DRIVER_VERSION
GPIO driver version.

enum _gpio_pin_direction
GPIO direction definition.

Values:

enumerator kGPIO_DigitalInput
Set current pin as digital input.

enumerator kGPIO_DigitalOutput
Set current pin as digital output.

enum _gpio_interrupt_mode
GPIO interrupt mode definition.

Values:

enumerator kGPIO_NoIntmode
Set current pin general IO functionality.

enumerator kGPIO_IntLowLevel
Set current pin interrupt is low-level sensitive.

enumerator kGPIO_IntHighLevel
Set current pin interrupt is high-level sensitive.

enumerator kGPIO_IntRisingEdge
Set current pin interrupt is rising-edge sensitive.

enumerator kGPIO_IntFallingEdge
Set current pin interrupt is falling-edge sensitive.

enumerator kGPIO_IntRisingOrFallingEdge
Enable the edge select bit to override the ICR register’s configuration.

typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.

typedef enum _gpio_interrupt_mode gpio_interrupt_mode_t
GPIO interrupt mode definition.

typedef struct _gpio_pin_config gpio_pin_config_t
GPIO Init structure definition.

struct _gpio_pin_config
#include <fsl_gpio.h> GPIO Init structure definition.

728 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

gpio_pin_direction_t direction
Specifies the pin direction.

uint8_t outputLogic
Set a default output logic, which has no use in input

gpio_interrupt_mode_t interruptMode
Specifies the pin interrupt mode, a value of gpio_interrupt_mode_t.

2.62 GPT: General Purpose Timer

void GPT_Init(GPT_Type *base, const gpt_config_t *initConfig)
Initialize GPT to reset state and initialize running mode.

Parameters
• base – GPT peripheral base address.

• initConfig – GPT mode setting configuration.

void GPT_Deinit(GPT_Type *base)
Disables the module and gates the GPT clock.

Parameters
• base – GPT peripheral base address.

void GPT_GetDefaultConfig(gpt_config_t *config)
Fills in the GPT configuration structure with default settings.

The default values are:

config->clockSource = kGPT_ClockSource_Periph;
config->divider = 1U;
config->enableRunInStop = true;
config->enableRunInWait = true;
config->enableRunInDoze = false;
config->enableRunInDbg = false;
config->enableFreeRun = false;
config->enableMode = true;

Parameters
• config – Pointer to the user configuration structure.

static inline void GPT_SoftwareReset(GPT_Type *base)
Software reset of GPT module.

Parameters
• base – GPT peripheral base address.

static inline void GPT_SetClockSource(GPT_Type *base, gpt_clock_source_t gptClkSource)
Set clock source of GPT.

Parameters
• base – GPT peripheral base address.

• gptClkSource – Clock source (see gpt_clock_source_t typedef enumeration).

2.62. GPT: General Purpose Timer 729



MCUXpresso SDK Documentation, Release 25.12.00

static inline gpt_clock_source_t GPT_GetClockSource(GPT_Type *base)
Get clock source of GPT.

Parameters
• base – GPT peripheral base address.

Returns
clock source (see gpt_clock_source_t typedef enumeration).

static inline void GPT_SetClockDivider(GPT_Type *base, uint32_t divider)
Set pre scaler of GPT.

Parameters
• base – GPT peripheral base address.

• divider – Divider of GPT (1-4096).

static inline uint32_t GPT_GetClockDivider(GPT_Type *base)
Get clock divider in GPT module.

Parameters
• base – GPT peripheral base address.

Returns
clock divider in GPT module (1-4096).

static inline void GPT_SetOscClockDivider(GPT_Type *base, uint32_t divider)
OSC 24M pre-scaler before selected by clock source.

Parameters
• base – GPT peripheral base address.

• divider – OSC Divider(1-16).

static inline uint32_t GPT_GetOscClockDivider(GPT_Type *base)
Get OSC 24M clock divider in GPT module.

Parameters
• base – GPT peripheral base address.

Returns
OSC clock divider in GPT module (1-16).

static inline void GPT_StartTimer(GPT_Type *base)
Start GPT timer.

Parameters
• base – GPT peripheral base address.

static inline void GPT_StopTimer(GPT_Type *base)
Stop GPT timer.

Parameters
• base – GPT peripheral base address.

static inline uint32_t GPT_GetCurrentTimerCount(GPT_Type *base)
Reads the current GPT counting value.

Parameters
• base – GPT peripheral base address.

Returns
Current GPT counter value.

730 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void GPT_SetInputOperationMode(GPT_Type *base, gpt_input_capture_channel_t
channel, gpt_input_operation_mode_t mode)

Set GPT operation mode of input capture channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

• mode – GPT input capture operation mode (see
gpt_input_operation_mode_t typedef enumeration).

static inline gpt_input_operation_mode_t GPT_GetInputOperationMode(GPT_Type *base,
gpt_input_capture_channel_t
channel)

Get GPT operation mode of input capture channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

Returns
GPT input capture operation mode (see gpt_input_operation_mode_t typedef
enumeration).

static inline uint32_t GPT_GetInputCaptureValue(GPT_Type *base, gpt_input_capture_channel_t
channel)

Get GPT input capture value of certain channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT capture channel (see gpt_input_capture_channel_t typedef
enumeration).

Returns
GPT input capture value.

static inline void GPT_SetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t channel,
gpt_output_operation_mode_t mode)

Set GPT operation mode of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

• mode – GPT output operation mode (see gpt_output_operation_mode_t
typedef enumeration).

static inline gpt_output_operation_mode_t GPT_GetOutputOperationMode(GPT_Type *base,
gpt_output_compare_channel_t
channel)

Get GPT operation mode of output compare channel.

Parameters
• base – GPT peripheral base address.

2.62. GPT: General Purpose Timer 731



MCUXpresso SDK Documentation, Release 25.12.00

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

Returns
GPT output operation mode (see gpt_output_operation_mode_t typedef enu-
meration).

static inline void GPT_SetOutputCompareValue(GPT_Type *base, gpt_output_compare_channel_t
channel, uint32_t value)

Set GPT output compare value of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

• value – GPT output compare value.

static inline uint32_t GPT_GetOutputCompareValue(GPT_Type *base,
gpt_output_compare_channel_t channel)

Get GPT output compare value of output compare channel.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

Returns
GPT output compare value.

static inline void GPT_ForceOutput(GPT_Type *base, gpt_output_compare_channel_t channel)
Force GPT output action on output compare channel, ignoring comparator.

Parameters
• base – GPT peripheral base address.

• channel – GPT output compare channel (see
gpt_output_compare_channel_t typedef enumeration).

static inline void GPT_EnableInterrupts(GPT_Type *base, uint32_t mask)
Enables the selected GPT interrupts.

Parameters
• base – GPT peripheral base address.

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline void GPT_DisableInterrupts(GPT_Type *base, uint32_t mask)
Disables the selected GPT interrupts.

Parameters
• base – GPT peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration gpt_interrupt_enable_t

static inline uint32_t GPT_GetEnabledInterrupts(GPT_Type *base)
Gets the enabled GPT interrupts.

Parameters
• base – GPT peripheral base address

732 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
gpt_interrupt_enable_t

static inline uint32_t GPT_GetStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Get GPT status flags.

Parameters
• base – GPT peripheral base address.

• flags – GPT status flag mask (see gpt_status_flag_t for bit definition).

Returns
GPT status, each bit represents one status flag.

static inline void GPT_ClearStatusFlags(GPT_Type *base, gpt_status_flag_t flags)
Clears the GPT status flags.

Parameters
• base – GPT peripheral base address.

• flags – GPT status flag mask (see gpt_status_flag_t for bit definition).

FSL_GPT_DRIVER_VERSION

enum _gpt_clock_source
List of clock sources.

Note: Actual number of clock sources is SoC dependent

Values:

enumerator kGPT_ClockSource_Off
GPT Clock Source Off.

enumerator kGPT_ClockSource_Periph
GPT Clock Source from Peripheral Clock.

enumerator kGPT_ClockSource_HighFreq
GPT Clock Source from High Frequency Reference Clock.

enumerator kGPT_ClockSource_Ext
GPT Clock Source from external pin.

enumerator kGPT_ClockSource_LowFreq
GPT Clock Source from Low Frequency Reference Clock.

enumerator kGPT_ClockSource_Osc
GPT Clock Source from Crystal oscillator.

enum _gpt_input_capture_channel
List of input capture channel number.

Values:

enumerator kGPT_InputCapture_Channel1
GPT Input Capture Channel1.

enumerator kGPT_InputCapture_Channel2
GPT Input Capture Channel2.

2.62. GPT: General Purpose Timer 733



MCUXpresso SDK Documentation, Release 25.12.00

enum _gpt_input_operation_mode
List of input capture operation mode.

Values:

enumerator kGPT_InputOperation_Disabled
Don’t capture.

enumerator kGPT_InputOperation_RiseEdge
Capture on rising edge of input pin.

enumerator kGPT_InputOperation_FallEdge
Capture on falling edge of input pin.

enumerator kGPT_InputOperation_BothEdge
Capture on both edges of input pin.

enum _gpt_output_compare_channel
List of output compare channel number.

Values:

enumerator kGPT_OutputCompare_Channel1
Output Compare Channel1.

enumerator kGPT_OutputCompare_Channel2
Output Compare Channel2.

enumerator kGPT_OutputCompare_Channel3
Output Compare Channel3.

enum _gpt_output_operation_mode
List of output compare operation mode.

Values:

enumerator kGPT_OutputOperation_Disconnected
Don’t change output pin.

enumerator kGPT_OutputOperation_Toggle
Toggle output pin.

enumerator kGPT_OutputOperation_Clear
Set output pin low.

enumerator kGPT_OutputOperation_Set
Set output pin high.

enumerator kGPT_OutputOperation_Activelow
Generate a active low pulse on output pin.

enum _gpt_interrupt_enable
List of GPT interrupts.

Values:

enumerator kGPT_OutputCompare1InterruptEnable
Output Compare Channel1 interrupt enable

enumerator kGPT_OutputCompare2InterruptEnable
Output Compare Channel2 interrupt enable

enumerator kGPT_OutputCompare3InterruptEnable
Output Compare Channel3 interrupt enable

734 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPT_InputCapture1InterruptEnable
Input Capture Channel1 interrupt enable

enumerator kGPT_InputCapture2InterruptEnable
Input Capture Channel1 interrupt enable

enumerator kGPT_RollOverFlagInterruptEnable
Counter rolled over interrupt enable

enum _gpt_status_flag
Status flag.

Values:

enumerator kGPT_OutputCompare1Flag
Output compare channel 1 event.

enumerator kGPT_OutputCompare2Flag
Output compare channel 2 event.

enumerator kGPT_OutputCompare3Flag
Output compare channel 3 event.

enumerator kGPT_InputCapture1Flag
Input Capture channel 1 event.

enumerator kGPT_InputCapture2Flag
Input Capture channel 2 event.

enumerator kGPT_RollOverFlag
Counter reaches maximum value and rolled over to 0 event.

typedef enum _gpt_clock_source gpt_clock_source_t
List of clock sources.

Note: Actual number of clock sources is SoC dependent

typedef enum _gpt_input_capture_channel gpt_input_capture_channel_t
List of input capture channel number.

typedef enum _gpt_input_operation_mode gpt_input_operation_mode_t
List of input capture operation mode.

typedef enum _gpt_output_compare_channel gpt_output_compare_channel_t
List of output compare channel number.

typedef enum _gpt_output_operation_mode gpt_output_operation_mode_t
List of output compare operation mode.

typedef enum _gpt_interrupt_enable gpt_interrupt_enable_t
List of GPT interrupts.

typedef enum _gpt_status_flag gpt_status_flag_t
Status flag.

typedef struct _gpt_init_config gpt_config_t
Structure to configure the running mode.

struct _gpt_init_config
#include <fsl_gpt.h> Structure to configure the running mode.

2.62. GPT: General Purpose Timer 735



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

gpt_clock_source_t clockSource
clock source for GPT module.

uint32_t divider
clock divider (prescaler+1) from clock source to counter.

bool enableFreeRun
true: FreeRun mode, false: Restart mode.

bool enableRunInWait
GPT enabled in wait mode.

bool enableRunInStop
GPT enabled in stop mode.

bool enableRunInDoze
GPT enabled in doze mode.

bool enableRunInDbg
GPT enabled in debug mode.

bool enableMode
true: counter reset to 0 when enabled; false: counter retain its value when enabled.

2.63 IEE: Inline Encryption Engine

FSL_IEE_DRIVER_VERSION
IEE driver version. Version 2.1.1.

Current version: 2.1.1

Change log:

• Version 2.0.0

– Initial version

• Version 2.1.0

– Add region lock function IEE_LockRegionConfig() and driver clock control

• Version 2.1.1

– Fixed MISRA issues.

• Version 2.2.0

– Add ELE (EdgeLock Enclave) key provisioning feature.

enum _iee_region
IEE region.

Values:

enumerator kIEE_Region0
IEE region 0

enumerator kIEE_Region1
IEE region 1

enumerator kIEE_Region2
IEE region 2

736 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kIEE_Region3
IEE region 3

enumerator kIEE_Region4
IEE region 4

enumerator kIEE_Region5
IEE region 5

enumerator kIEE_Region6
IEE region 6

enumerator kIEE_Region7
IEE region 7

enum _iee_aes_bypass
IEE AES enablement/bypass.

Values:

enumerator kIEE_AesUseMdField
AES encryption/decryption enabled

enumerator kIEE_AesBypass
AES encryption/decryption bypass

enum _iee_aes_mode
IEE AES mode.

Values:

enumerator kIEE_ModeNone
AES NONE mode

enumerator kIEE_ModeAesXTS
AES XTS mode

enumerator kIEE_ModeAesCTRWAddress
AES CTR w address binding mode

enumerator kIEE_ModeAesCTRWOAddress
AES CTR w/o address binding mode

enumerator kIEE_ModeAesCTRkeystream
AES CTR keystream only

enum _iee_aes_key_size
IEE AES key size.

Values:

enumerator kIEE_AesCTR128XTS256
AES 128 bits (CTR), 256 bits (XTS)

enumerator kIEE_AesCTR256XTS512
AES 256 bits (CTR), 512 bits (XTS)

enum _iee_aes_key_num
IEE AES key number.

Values:

enumerator kIEE_AesKey1
AES Key 1

2.63. IEE: Inline Encryption Engine 737



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kIEE_AesKey2
AES Key 2

typedef enum _iee_region iee_region_t
IEE region.

typedef enum _iee_aes_bypass iee_aes_bypass_t
IEE AES enablement/bypass.

typedef enum _iee_aes_mode iee_aes_mode_t
IEE AES mode.

typedef enum _iee_aes_key_size iee_aes_key_size_t
IEE AES key size.

typedef enum _iee_aes_key_num iee_aes_key_num_t
IEE AES key number.

typedef struct _iee_config iee_config_t
IEE configuration structure.

void IEE_Init(IEE_Type *base)
Resets IEE module to factory default values.

This function performs hardware reset of IEE module. Attributes and keys of all regions
are cleared.

Parameters
• base – IEER peripheral address.

void IEE_GetDefaultConfig(iee_config_t *config)
Loads default values to the IEE configuration structure.

Loads default values to the IEE region configuration structure. The default values are as
follows.

config->bypass = kIEE_AesUseMdField;
config->mode = kIEE_ModeNone;
config->keySize = kIEE_AesCTR128XTS256;
config->pageOffset = 0U;

Parameters
• config – Configuration for the selected IEE region.

void IEE_SetRegionConfig(IEE_Type *base, iee_region_t region, iee_config_t *config)
Sets the IEE module according to the configuration structure.

This function configures IEE region according to configuration structure.

Parameters
• base – IEE peripheral address.

• region – Selection of the IEE region to be configured.

• config – Configuration for the selected IEE region.

status_t IEE_SetRegionKey(IEE_Type *base, iee_region_t region, iee_aes_key_num_t keyNum,
const uint8_t *key, size_t keySize)

Sets the IEE module key.

This function sets specified AES key for the given region.

Parameters

738 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – IEE peripheral address.

• region – Selection of the IEE region to be configured.

• keyNum – Selection of AES KEY1 or KEY2.

• key – AES key.

• keySize – Size of AES key.

static inline uint32_t IEE_GetOffset(uint32_t addressIee, uint32_t addressMemory)
Computes IEE offset to be set for specifed memory location.

This function calculates offset that must be set for IEE region to access physical memory
location.

Parameters
• addressIee – Address of IEE peripheral.

• addressMemory – Address of physical memory location.

void IEE_LockRegionConfig(IEE_Type *base, iee_region_t region)
Lock the IEE region configuration.

This function locks IEE region registers for Key, Offset and Attribute. Only system reset can
clear the Lock bit.

Parameters
• base – IEE peripheral address.

• region – Selection of the IEE region to be locked.

struct _iee_config
#include <fsl_iee.h> IEE configuration structure.

Public Members

iee_aes_bypass_t bypass
AES encryption/decryption bypass

iee_aes_mode_t mode
AES mode

iee_aes_key_size_t keySize
size of AES key

uint32_t pageOffset
Offset to physical memory location from IEE start address

2.64 Ieer

FSL_IEE_APC_DRIVER_VERSION
IEE_APC driver version. Version 2.0.2.

Current version: 2.0.2

Change log:

• Version 2.0.0

– Initial version

• Version 2.0.1

2.64. Ieer 739



MCUXpresso SDK Documentation, Release 25.12.00

– Fixed MISRA issues.

• Version 2.0.2

– Update to newer version of implementation in HW.

enum _iee_apc_region
APC IEE regions.

Values:

enumerator kIEE_APC_Region0
APC IEE region 0

enumerator kIEE_APC_Region1
APC IEE region 1

enumerator kIEE_APC_Region2
APC IEE region 2

enumerator kIEE_APC_Region3
APC IEE region 3

enumerator kIEE_APC_Region4
APC IEE region 4

enumerator kIEE_APC_Region5
APC IEE region 5

enumerator kIEE_APC_Region6
APC IEE region 6

enumerator kIEE_APC_Region7
APC IEE region 7

enum _apc_iee_domain
APC IEE domains.

Values:

enumerator kIEE_APC_Domain0
APC IEE region 0

enumerator kIEE_APC_Domain1
APC IEE region 1

typedef enum _iee_apc_region iee_apc_region_t
APC IEE regions.

typedef enum _apc_iee_domain iee_apc_domain_t
APC IEE domains.

void IEE_APC_GlobalEnable(IEE_APC_Type *base)
Enable the APC IEE Region setting.

This function enables IOMUXC LPSR GPR and APC IEE for setting the region.

Parameters
• base – APC IEE peripheral address.

void IEE_APC_GlobalDisable(IEE_APC_Type *base)
Disables the APC IEE Region setting.

This function disables IOMUXC LPSR GPR and APC IEE for setting the region.

Parameters

740 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – APC IEE peripheral address.

status_t IEE_APC_SetRegionConfig(IEE_APC_Type *base, iee_apc_region_t region, uint32_t
startAddr, uint32_t endAddr)

Sets the APC IEE Memory Region Descriptors.

This function configures APC IEE Memory Region Descriptor according to region configu-
ration structure.

Parameters
• base – APC IEE peripheral address.

• region – Selection of the APC IEE region to be configured.

• startAddr – Start encryption adress for the selected APC IEE region.

• endAddr – End encryption adress for the selected APC IEE region.

status_t IEE_APC_LockRegionConfig(IEE_APC_Type *base, iee_apc_region_t region,
iee_apc_domain_t domain)

Lock the LPSR GPR and APC IEE configuration.

This function locks writting to IOMUXC LPSR GPR and APC IEE encryption region setting
registers. Only system reset can clear the LPSR GPR and APC IEE-RDC_D0/1 Lock bit

Parameters
• base – APC IEE peripheral address.

• region – Selection of the APC IEE region to be locked.

• domain – Core domain ID

void IEE_APC_RegionEnable(IEE_APC_Type *base, iee_apc_region_t region)
Enable the IEE encryption/decryption and can lock this setting.

This function enables encryption/decryption by writting to IOMUXC LPSR GPR.

Parameters
• base – APC IEE peripheral address.

• region – Selection of the APC IEE region to be enabled.

2.65 IOMUXC: IOMUX Controller

enum _iomuxc_gpr_saimclk
Values:

enumerator kIOMUXC_GPR_SAI1MClk1Sel

enumerator kIOMUXC_GPR_SAI1MClk2Sel

enumerator kIOMUXC_GPR_SAI1MClk3Sel

enumerator kIOMUXC_GPR_SAI2MClk3Sel

enumerator kIOMUXC_GPR_SAI3MClk3Sel

enum _iomuxc_mqs_pwm_oversample_rate
Values:

enumerator kIOMUXC_MqsPwmOverSampleRate32

2.65. IOMUXC: IOMUX Controller 741



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kIOMUXC_MqsPwmOverSampleRate64

typedef enum _iomuxc_gpr_saimclk iomuxc_gpr_saimclk_t

typedef enum _iomuxc_mqs_pwm_oversample_rate iomuxc_mqs_pwm_oversample_rate_t

IOMUXC_GPIO_LPSR_00_FLEXCAN3_TX

IOMUXC_GPIO_LPSR_00_MIC_CLK

IOMUXC_GPIO_LPSR_00_MQS_RIGHT

IOMUXC_GPIO_LPSR_00_ARM_CM4_EVENTO

IOMUXC_GPIO_LPSR_00_GPIO_MUX6_IO00

IOMUXC_GPIO_LPSR_00_LPUART12_TXD

IOMUXC_GPIO_LPSR_00_SAI4_MCLK

IOMUXC_GPIO_LPSR_00_GPIO12_IO00

IOMUXC_GPIO_LPSR_01_FLEXCAN3_RX

IOMUXC_GPIO_LPSR_01_MIC_BITSTREAM0

IOMUXC_GPIO_LPSR_01_MQS_LEFT

IOMUXC_GPIO_LPSR_01_ARM_CM4_EVENTI

IOMUXC_GPIO_LPSR_01_GPIO_MUX6_IO01

IOMUXC_GPIO_LPSR_01_LPUART12_RXD

IOMUXC_GPIO_LPSR_01_GPIO12_IO01

IOMUXC_GPIO_LPSR_02_GPIO12_IO02

IOMUXC_GPIO_LPSR_02_SRC_BOOT_MODE00

IOMUXC_GPIO_LPSR_02_LPSPI5_SCK

IOMUXC_GPIO_LPSR_02_SAI4_TX_DATA

IOMUXC_GPIO_LPSR_02_MQS_RIGHT

IOMUXC_GPIO_LPSR_02_GPIO_MUX6_IO02

IOMUXC_GPIO_LPSR_03_SRC_BOOT_MODE01

IOMUXC_GPIO_LPSR_03_LPSPI5_PCS0

IOMUXC_GPIO_LPSR_03_SAI4_TX_SYNC

IOMUXC_GPIO_LPSR_03_MQS_LEFT

IOMUXC_GPIO_LPSR_03_GPIO_MUX6_IO03

IOMUXC_GPIO_LPSR_03_GPIO12_IO03

IOMUXC_GPIO_LPSR_04_LPI2C5_SDA

IOMUXC_GPIO_LPSR_04_LPSPI5_SOUT

IOMUXC_GPIO_LPSR_04_SAI4_TX_BCLK

742 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_LPSR_04_LPUART12_RTS_B

IOMUXC_GPIO_LPSR_04_GPIO_MUX6_IO04

IOMUXC_GPIO_LPSR_04_LPUART11_TXD

IOMUXC_GPIO_LPSR_04_GPIO12_IO04

IOMUXC_GPIO_LPSR_05_GPIO12_IO05

IOMUXC_GPIO_LPSR_05_LPI2C5_SCL

IOMUXC_GPIO_LPSR_05_LPSPI5_SIN

IOMUXC_GPIO_LPSR_05_SAI4_MCLK

IOMUXC_GPIO_LPSR_05_LPUART12_CTS_B

IOMUXC_GPIO_LPSR_05_GPIO_MUX6_IO05

IOMUXC_GPIO_LPSR_05_LPUART11_RXD

IOMUXC_GPIO_LPSR_05_NMI_GLUE_NMI

IOMUXC_GPIO_LPSR_06_LPI2C6_SDA

IOMUXC_GPIO_LPSR_06_SAI4_RX_DATA

IOMUXC_GPIO_LPSR_06_LPUART12_TXD

IOMUXC_GPIO_LPSR_06_LPSPI6_PCS3

IOMUXC_GPIO_LPSR_06_GPIO_MUX6_IO06

IOMUXC_GPIO_LPSR_06_FLEXCAN3_TX

IOMUXC_GPIO_LPSR_06_PIT2_TRIGGER3

IOMUXC_GPIO_LPSR_06_LPSPI5_PCS1

IOMUXC_GPIO_LPSR_06_GPIO12_IO06

IOMUXC_GPIO_LPSR_07_LPI2C6_SCL

IOMUXC_GPIO_LPSR_07_SAI4_RX_BCLK

IOMUXC_GPIO_LPSR_07_LPUART12_RXD

IOMUXC_GPIO_LPSR_07_LPSPI6_PCS2

IOMUXC_GPIO_LPSR_07_GPIO_MUX6_IO07

IOMUXC_GPIO_LPSR_07_FLEXCAN3_RX

IOMUXC_GPIO_LPSR_07_PIT2_TRIGGER2

IOMUXC_GPIO_LPSR_07_LPSPI5_PCS2

IOMUXC_GPIO_LPSR_07_GPIO12_IO07

IOMUXC_GPIO_LPSR_08_GPIO12_IO08

IOMUXC_GPIO_LPSR_08_LPUART11_TXD

IOMUXC_GPIO_LPSR_08_FLEXCAN3_TX

2.65. IOMUXC: IOMUX Controller 743



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_LPSR_08_SAI4_RX_SYNC

IOMUXC_GPIO_LPSR_08_MIC_CLK

IOMUXC_GPIO_LPSR_08_LPSPI6_PCS1

IOMUXC_GPIO_LPSR_08_GPIO_MUX6_IO08

IOMUXC_GPIO_LPSR_08_LPI2C5_SDA

IOMUXC_GPIO_LPSR_08_PIT2_TRIGGER1

IOMUXC_GPIO_LPSR_08_LPSPI5_PCS3

IOMUXC_GPIO_LPSR_09_GPIO12_IO09

IOMUXC_GPIO_LPSR_09_LPUART11_RXD

IOMUXC_GPIO_LPSR_09_FLEXCAN3_RX

IOMUXC_GPIO_LPSR_09_PIT2_TRIGGER0

IOMUXC_GPIO_LPSR_09_MIC_BITSTREAM0

IOMUXC_GPIO_LPSR_09_LPSPI6_PCS0

IOMUXC_GPIO_LPSR_09_GPIO_MUX6_IO09

IOMUXC_GPIO_LPSR_09_LPI2C5_SCL

IOMUXC_GPIO_LPSR_09_SAI4_TX_DATA

IOMUXC_GPIO_LPSR_10_GPIO12_IO10

IOMUXC_GPIO_LPSR_10_JTAG_MUX_TRSTB

IOMUXC_GPIO_LPSR_10_LPUART11_CTS_B

IOMUXC_GPIO_LPSR_10_LPI2C6_SDA

IOMUXC_GPIO_LPSR_10_MIC_BITSTREAM1

IOMUXC_GPIO_LPSR_10_LPSPI6_SCK

IOMUXC_GPIO_LPSR_10_GPIO_MUX6_IO10

IOMUXC_GPIO_LPSR_10_LPI2C5_SCLS

IOMUXC_GPIO_LPSR_10_SAI4_TX_SYNC

IOMUXC_GPIO_LPSR_10_LPUART12_TXD

IOMUXC_GPIO_LPSR_11_JTAG_MUX_TDO

IOMUXC_GPIO_LPSR_11_LPUART11_RTS_B

IOMUXC_GPIO_LPSR_11_LPI2C6_SCL

IOMUXC_GPIO_LPSR_11_MIC_BITSTREAM2

IOMUXC_GPIO_LPSR_11_LPSPI6_SOUT

IOMUXC_GPIO_LPSR_11_GPIO_MUX6_IO11

IOMUXC_GPIO_LPSR_11_LPI2C5_SDAS

744 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_LPSR_11_ARM_TRACE_SWO

IOMUXC_GPIO_LPSR_11_LPUART12_RXD

IOMUXC_GPIO_LPSR_11_GPIO12_IO11

IOMUXC_GPIO_LPSR_12_GPIO12_IO12

IOMUXC_GPIO_LPSR_12_JTAG_MUX_TDI

IOMUXC_GPIO_LPSR_12_PIT2_TRIGGER0

IOMUXC_GPIO_LPSR_12_MIC_BITSTREAM3

IOMUXC_GPIO_LPSR_12_LPSPI6_SIN

IOMUXC_GPIO_LPSR_12_GPIO_MUX6_IO12

IOMUXC_GPIO_LPSR_12_LPI2C5_HREQ

IOMUXC_GPIO_LPSR_12_SAI4_TX_BCLK

IOMUXC_GPIO_LPSR_12_LPSPI5_SCK

IOMUXC_GPIO_LPSR_13_GPIO12_IO13

IOMUXC_GPIO_LPSR_13_JTAG_MUX_MOD

IOMUXC_GPIO_LPSR_13_MIC_BITSTREAM1

IOMUXC_GPIO_LPSR_13_PIT2_TRIGGER1

IOMUXC_GPIO_LPSR_13_GPIO_MUX6_IO13

IOMUXC_GPIO_LPSR_13_SAI4_RX_DATA

IOMUXC_GPIO_LPSR_13_LPSPI5_PCS0

IOMUXC_GPIO_LPSR_14_JTAG_MUX_TCK

IOMUXC_GPIO_LPSR_14_MIC_BITSTREAM2

IOMUXC_GPIO_LPSR_14_PIT2_TRIGGER2

IOMUXC_GPIO_LPSR_14_GPIO_MUX6_IO14

IOMUXC_GPIO_LPSR_14_SAI4_RX_BCLK

IOMUXC_GPIO_LPSR_14_LPSPI5_SOUT

IOMUXC_GPIO_LPSR_14_GPIO12_IO14

IOMUXC_GPIO_LPSR_15_GPIO12_IO15

IOMUXC_GPIO_LPSR_15_JTAG_MUX_TMS

IOMUXC_GPIO_LPSR_15_MIC_BITSTREAM3

IOMUXC_GPIO_LPSR_15_PIT2_TRIGGER3

IOMUXC_GPIO_LPSR_15_GPIO_MUX6_IO15

IOMUXC_GPIO_LPSR_15_SAI4_RX_SYNC

IOMUXC_GPIO_LPSR_15_LPSPI5_SIN

2.65. IOMUXC: IOMUX Controller 745



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_WAKEUP_DIG_GPIO13_IO00

IOMUXC_WAKEUP_DIG_NMI_GLUE_NMI

IOMUXC_PMIC_ON_REQ_DIG_SNVS_LP_PMIC_ON_REQ

IOMUXC_PMIC_ON_REQ_DIG_GPIO13_IO01

IOMUXC_PMIC_STBY_REQ_DIG_CCM_PMIC_VSTBY_REQ

IOMUXC_PMIC_STBY_REQ_DIG_GPIO13_IO02

IOMUXC_GPIO_SNVS_00_DIG_SNVS_TAMPER0

IOMUXC_GPIO_SNVS_00_DIG_GPIO13_IO03

IOMUXC_GPIO_SNVS_01_DIG_SNVS_TAMPER1

IOMUXC_GPIO_SNVS_01_DIG_GPIO13_IO04

IOMUXC_GPIO_SNVS_02_DIG_SNVS_TAMPER2

IOMUXC_GPIO_SNVS_02_DIG_GPIO13_IO05

IOMUXC_GPIO_SNVS_03_DIG_SNVS_TAMPER3

IOMUXC_GPIO_SNVS_03_DIG_GPIO13_IO06

IOMUXC_GPIO_SNVS_04_DIG_SNVS_TAMPER4

IOMUXC_GPIO_SNVS_04_DIG_GPIO13_IO07

IOMUXC_GPIO_SNVS_05_DIG_SNVS_TAMPER5

IOMUXC_GPIO_SNVS_05_DIG_GPIO13_IO08

IOMUXC_GPIO_SNVS_06_DIG_SNVS_TAMPER6

IOMUXC_GPIO_SNVS_06_DIG_GPIO13_IO09

IOMUXC_GPIO_SNVS_07_DIG_SNVS_TAMPER7

IOMUXC_GPIO_SNVS_07_DIG_GPIO13_IO10

IOMUXC_GPIO_SNVS_08_DIG_SNVS_TAMPER8

IOMUXC_GPIO_SNVS_08_DIG_GPIO13_IO11

IOMUXC_GPIO_SNVS_09_DIG_SNVS_TAMPER9

IOMUXC_GPIO_SNVS_09_DIG_GPIO13_IO12

IOMUXC_TEST_MODE_DIG

IOMUXC_POR_B_DIG

IOMUXC_ONOFF_DIG

IOMUXC_GPIO_EMC_B1_00_SEMC_DATA00

IOMUXC_GPIO_EMC_B1_00_FLEXPWM4_PWM0_A

IOMUXC_GPIO_EMC_B1_00_GPIO_MUX1_IO00

IOMUXC_GPIO_EMC_B1_00_FLEXIO1_D00

746 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_00_GPIO7_IO00

IOMUXC_GPIO_EMC_B1_01_GPIO7_IO01

IOMUXC_GPIO_EMC_B1_01_SEMC_DATA01

IOMUXC_GPIO_EMC_B1_01_FLEXPWM4_PWM0_B

IOMUXC_GPIO_EMC_B1_01_GPIO_MUX1_IO01

IOMUXC_GPIO_EMC_B1_01_FLEXIO1_D01

IOMUXC_GPIO_EMC_B1_02_SEMC_DATA02

IOMUXC_GPIO_EMC_B1_02_FLEXPWM4_PWM1_A

IOMUXC_GPIO_EMC_B1_02_GPIO_MUX1_IO02

IOMUXC_GPIO_EMC_B1_02_FLEXIO1_D02

IOMUXC_GPIO_EMC_B1_02_GPIO7_IO02

IOMUXC_GPIO_EMC_B1_03_SEMC_DATA03

IOMUXC_GPIO_EMC_B1_03_FLEXPWM4_PWM1_B

IOMUXC_GPIO_EMC_B1_03_GPIO_MUX1_IO03

IOMUXC_GPIO_EMC_B1_03_FLEXIO1_D03

IOMUXC_GPIO_EMC_B1_03_GPIO7_IO03

IOMUXC_GPIO_EMC_B1_04_GPIO7_IO04

IOMUXC_GPIO_EMC_B1_04_SEMC_DATA04

IOMUXC_GPIO_EMC_B1_04_FLEXPWM4_PWM2_A

IOMUXC_GPIO_EMC_B1_04_GPIO_MUX1_IO04

IOMUXC_GPIO_EMC_B1_04_FLEXIO1_D04

IOMUXC_GPIO_EMC_B1_05_SEMC_DATA05

IOMUXC_GPIO_EMC_B1_05_FLEXPWM4_PWM2_B

IOMUXC_GPIO_EMC_B1_05_GPIO_MUX1_IO05

IOMUXC_GPIO_EMC_B1_05_FLEXIO1_D05

IOMUXC_GPIO_EMC_B1_05_GPIO7_IO05

IOMUXC_GPIO_EMC_B1_06_SEMC_DATA06

IOMUXC_GPIO_EMC_B1_06_FLEXPWM2_PWM0_A

IOMUXC_GPIO_EMC_B1_06_GPIO_MUX1_IO06

IOMUXC_GPIO_EMC_B1_06_FLEXIO1_D06

IOMUXC_GPIO_EMC_B1_06_GPIO7_IO06

IOMUXC_GPIO_EMC_B1_07_GPIO7_IO07

IOMUXC_GPIO_EMC_B1_07_SEMC_DATA07

2.65. IOMUXC: IOMUX Controller 747



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_07_FLEXPWM2_PWM0_B

IOMUXC_GPIO_EMC_B1_07_GPIO_MUX1_IO07

IOMUXC_GPIO_EMC_B1_07_FLEXIO1_D07

IOMUXC_GPIO_EMC_B1_08_SEMC_DM00

IOMUXC_GPIO_EMC_B1_08_FLEXPWM2_PWM1_A

IOMUXC_GPIO_EMC_B1_08_GPIO_MUX1_IO08

IOMUXC_GPIO_EMC_B1_08_FLEXIO1_D08

IOMUXC_GPIO_EMC_B1_08_GPIO7_IO08

IOMUXC_GPIO_EMC_B1_09_SEMC_ADDR00

IOMUXC_GPIO_EMC_B1_09_FLEXPWM2_PWM1_B

IOMUXC_GPIO_EMC_B1_09_GPT5_CAPTURE1

IOMUXC_GPIO_EMC_B1_09_GPIO_MUX1_IO09

IOMUXC_GPIO_EMC_B1_09_FLEXIO1_D09

IOMUXC_GPIO_EMC_B1_09_GPIO7_IO09

IOMUXC_GPIO_EMC_B1_10_SEMC_ADDR01

IOMUXC_GPIO_EMC_B1_10_FLEXPWM2_PWM2_A

IOMUXC_GPIO_EMC_B1_10_GPT5_CAPTURE2

IOMUXC_GPIO_EMC_B1_10_GPIO_MUX1_IO10

IOMUXC_GPIO_EMC_B1_10_FLEXIO1_D10

IOMUXC_GPIO_EMC_B1_10_GPIO7_IO10

IOMUXC_GPIO_EMC_B1_11_GPIO7_IO11

IOMUXC_GPIO_EMC_B1_11_SEMC_ADDR02

IOMUXC_GPIO_EMC_B1_11_FLEXPWM2_PWM2_B

IOMUXC_GPIO_EMC_B1_11_GPT5_COMPARE1

IOMUXC_GPIO_EMC_B1_11_GPIO_MUX1_IO11

IOMUXC_GPIO_EMC_B1_11_FLEXIO1_D11

IOMUXC_GPIO_EMC_B1_12_SEMC_ADDR03

IOMUXC_GPIO_EMC_B1_12_XBAR1_INOUT04

IOMUXC_GPIO_EMC_B1_12_GPT5_COMPARE2

IOMUXC_GPIO_EMC_B1_12_GPIO_MUX1_IO12

IOMUXC_GPIO_EMC_B1_12_FLEXIO1_D12

IOMUXC_GPIO_EMC_B1_12_GPIO7_IO12

IOMUXC_GPIO_EMC_B1_13_SEMC_ADDR04

748 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_13_XBAR1_INOUT05

IOMUXC_GPIO_EMC_B1_13_GPT5_COMPARE3

IOMUXC_GPIO_EMC_B1_13_GPIO_MUX1_IO13

IOMUXC_GPIO_EMC_B1_13_FLEXIO1_D13

IOMUXC_GPIO_EMC_B1_13_GPIO7_IO13

IOMUXC_GPIO_EMC_B1_14_GPIO7_IO14

IOMUXC_GPIO_EMC_B1_14_SEMC_ADDR05

IOMUXC_GPIO_EMC_B1_14_XBAR1_INOUT06

IOMUXC_GPIO_EMC_B1_14_GPT5_CLK

IOMUXC_GPIO_EMC_B1_14_GPIO_MUX1_IO14

IOMUXC_GPIO_EMC_B1_14_FLEXIO1_D14

IOMUXC_GPIO_EMC_B1_15_SEMC_ADDR06

IOMUXC_GPIO_EMC_B1_15_XBAR1_INOUT07

IOMUXC_GPIO_EMC_B1_15_GPIO_MUX1_IO15

IOMUXC_GPIO_EMC_B1_15_FLEXIO1_D15

IOMUXC_GPIO_EMC_B1_15_GPIO7_IO15

IOMUXC_GPIO_EMC_B1_16_SEMC_ADDR07

IOMUXC_GPIO_EMC_B1_16_XBAR1_INOUT08

IOMUXC_GPIO_EMC_B1_16_GPIO_MUX1_IO16

IOMUXC_GPIO_EMC_B1_16_FLEXIO1_D16

IOMUXC_GPIO_EMC_B1_16_GPIO7_IO16

IOMUXC_GPIO_EMC_B1_17_GPIO7_IO17

IOMUXC_GPIO_EMC_B1_17_SEMC_ADDR08

IOMUXC_GPIO_EMC_B1_17_FLEXPWM4_PWM3_A

IOMUXC_GPIO_EMC_B1_17_TMR1_TIMER0

IOMUXC_GPIO_EMC_B1_17_GPIO_MUX1_IO17

IOMUXC_GPIO_EMC_B1_17_FLEXIO1_D17

IOMUXC_GPIO_EMC_B1_18_SEMC_ADDR09

IOMUXC_GPIO_EMC_B1_18_FLEXPWM4_PWM3_B

IOMUXC_GPIO_EMC_B1_18_TMR2_TIMER0

IOMUXC_GPIO_EMC_B1_18_GPIO_MUX1_IO18

IOMUXC_GPIO_EMC_B1_18_FLEXIO1_D18

IOMUXC_GPIO_EMC_B1_18_GPIO7_IO18

2.65. IOMUXC: IOMUX Controller 749



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_19_SEMC_ADDR11

IOMUXC_GPIO_EMC_B1_19_FLEXPWM2_PWM3_A

IOMUXC_GPIO_EMC_B1_19_TMR3_TIMER0

IOMUXC_GPIO_EMC_B1_19_GPIO_MUX1_IO19

IOMUXC_GPIO_EMC_B1_19_FLEXIO1_D19

IOMUXC_GPIO_EMC_B1_19_GPIO7_IO19

IOMUXC_GPIO_EMC_B1_20_SEMC_ADDR12

IOMUXC_GPIO_EMC_B1_20_FLEXPWM2_PWM3_B

IOMUXC_GPIO_EMC_B1_20_TMR4_TIMER0

IOMUXC_GPIO_EMC_B1_20_GPIO_MUX1_IO20

IOMUXC_GPIO_EMC_B1_20_FLEXIO1_D20

IOMUXC_GPIO_EMC_B1_20_GPIO7_IO20

IOMUXC_GPIO_EMC_B1_21_GPIO7_IO21

IOMUXC_GPIO_EMC_B1_21_SEMC_BA0

IOMUXC_GPIO_EMC_B1_21_FLEXPWM3_PWM3_A

IOMUXC_GPIO_EMC_B1_21_GPIO_MUX1_IO21

IOMUXC_GPIO_EMC_B1_21_FLEXIO1_D21

IOMUXC_GPIO_EMC_B1_22_GPIO7_IO22

IOMUXC_GPIO_EMC_B1_22_SEMC_BA1

IOMUXC_GPIO_EMC_B1_22_FLEXPWM3_PWM3_B

IOMUXC_GPIO_EMC_B1_22_GPIO_MUX1_IO22

IOMUXC_GPIO_EMC_B1_22_FLEXIO1_D22

IOMUXC_GPIO_EMC_B1_23_SEMC_ADDR10

IOMUXC_GPIO_EMC_B1_23_FLEXPWM1_PWM0_A

IOMUXC_GPIO_EMC_B1_23_GPIO_MUX1_IO23

IOMUXC_GPIO_EMC_B1_23_FLEXIO1_D23

IOMUXC_GPIO_EMC_B1_23_GPIO7_IO23

IOMUXC_GPIO_EMC_B1_24_GPIO7_IO24

IOMUXC_GPIO_EMC_B1_24_SEMC_CAS

IOMUXC_GPIO_EMC_B1_24_FLEXPWM1_PWM0_B

IOMUXC_GPIO_EMC_B1_24_GPIO_MUX1_IO24

IOMUXC_GPIO_EMC_B1_24_FLEXIO1_D24

IOMUXC_GPIO_EMC_B1_25_GPIO7_IO25

750 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_25_SEMC_RAS

IOMUXC_GPIO_EMC_B1_25_FLEXPWM1_PWM1_A

IOMUXC_GPIO_EMC_B1_25_GPIO_MUX1_IO25

IOMUXC_GPIO_EMC_B1_25_FLEXIO1_D25

IOMUXC_GPIO_EMC_B1_26_SEMC_CLK

IOMUXC_GPIO_EMC_B1_26_FLEXPWM1_PWM1_B

IOMUXC_GPIO_EMC_B1_26_GPIO_MUX1_IO26

IOMUXC_GPIO_EMC_B1_26_FLEXIO1_D26

IOMUXC_GPIO_EMC_B1_26_GPIO7_IO26

IOMUXC_GPIO_EMC_B1_27_GPIO7_IO27

IOMUXC_GPIO_EMC_B1_27_SEMC_CKE

IOMUXC_GPIO_EMC_B1_27_FLEXPWM1_PWM2_A

IOMUXC_GPIO_EMC_B1_27_GPIO_MUX1_IO27

IOMUXC_GPIO_EMC_B1_27_FLEXIO1_D27

IOMUXC_GPIO_EMC_B1_28_GPIO7_IO28

IOMUXC_GPIO_EMC_B1_28_SEMC_WE

IOMUXC_GPIO_EMC_B1_28_FLEXPWM1_PWM2_B

IOMUXC_GPIO_EMC_B1_28_GPIO_MUX1_IO28

IOMUXC_GPIO_EMC_B1_28_FLEXIO1_D28

IOMUXC_GPIO_EMC_B1_29_SEMC_CS0

IOMUXC_GPIO_EMC_B1_29_FLEXPWM3_PWM0_A

IOMUXC_GPIO_EMC_B1_29_GPIO_MUX1_IO29

IOMUXC_GPIO_EMC_B1_29_FLEXIO1_D29

IOMUXC_GPIO_EMC_B1_29_GPIO7_IO29

IOMUXC_GPIO_EMC_B1_30_SEMC_DATA08

IOMUXC_GPIO_EMC_B1_30_FLEXPWM3_PWM0_B

IOMUXC_GPIO_EMC_B1_30_GPIO_MUX1_IO30

IOMUXC_GPIO_EMC_B1_30_FLEXIO1_D30

IOMUXC_GPIO_EMC_B1_30_GPIO7_IO30

IOMUXC_GPIO_EMC_B1_31_GPIO7_IO31

IOMUXC_GPIO_EMC_B1_31_SEMC_DATA09

IOMUXC_GPIO_EMC_B1_31_FLEXPWM3_PWM1_A

IOMUXC_GPIO_EMC_B1_31_GPIO_MUX1_IO31

2.65. IOMUXC: IOMUX Controller 751



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_31_FLEXIO1_D31

IOMUXC_GPIO_EMC_B1_32_GPIO8_IO00

IOMUXC_GPIO_EMC_B1_32_SEMC_DATA10

IOMUXC_GPIO_EMC_B1_32_FLEXPWM3_PWM1_B

IOMUXC_GPIO_EMC_B1_32_GPIO_MUX2_IO00

IOMUXC_GPIO_EMC_B1_33_SEMC_DATA11

IOMUXC_GPIO_EMC_B1_33_FLEXPWM3_PWM2_A

IOMUXC_GPIO_EMC_B1_33_GPIO_MUX2_IO01

IOMUXC_GPIO_EMC_B1_33_GPIO8_IO01

IOMUXC_GPIO_EMC_B1_34_GPIO8_IO02

IOMUXC_GPIO_EMC_B1_34_SEMC_DATA12

IOMUXC_GPIO_EMC_B1_34_FLEXPWM3_PWM2_B

IOMUXC_GPIO_EMC_B1_34_GPIO_MUX2_IO02

IOMUXC_GPIO_EMC_B1_35_GPIO8_IO03

IOMUXC_GPIO_EMC_B1_35_SEMC_DATA13

IOMUXC_GPIO_EMC_B1_35_XBAR1_INOUT09

IOMUXC_GPIO_EMC_B1_35_GPIO_MUX2_IO03

IOMUXC_GPIO_EMC_B1_36_SEMC_DATA14

IOMUXC_GPIO_EMC_B1_36_XBAR1_INOUT10

IOMUXC_GPIO_EMC_B1_36_GPIO_MUX2_IO04

IOMUXC_GPIO_EMC_B1_36_GPIO8_IO04

IOMUXC_GPIO_EMC_B1_37_GPIO8_IO05

IOMUXC_GPIO_EMC_B1_37_SEMC_DATA15

IOMUXC_GPIO_EMC_B1_37_XBAR1_INOUT11

IOMUXC_GPIO_EMC_B1_37_GPIO_MUX2_IO05

IOMUXC_GPIO_EMC_B1_38_GPIO8_IO06

IOMUXC_GPIO_EMC_B1_38_SEMC_DM01

IOMUXC_GPIO_EMC_B1_38_FLEXPWM1_PWM3_A

IOMUXC_GPIO_EMC_B1_38_TMR1_TIMER1

IOMUXC_GPIO_EMC_B1_38_GPIO_MUX2_IO06

IOMUXC_GPIO_EMC_B1_39_SEMC_DQS

IOMUXC_GPIO_EMC_B1_39_FLEXPWM1_PWM3_B

IOMUXC_GPIO_EMC_B1_39_TMR2_TIMER1

752 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B1_39_GPIO_MUX2_IO07

IOMUXC_GPIO_EMC_B1_39_GPIO8_IO07

IOMUXC_GPIO_EMC_B1_40_SEMC_RDY

IOMUXC_GPIO_EMC_B1_40_XBAR1_INOUT12

IOMUXC_GPIO_EMC_B1_40_MQS_RIGHT

IOMUXC_GPIO_EMC_B1_40_LPUART6_TXD

IOMUXC_GPIO_EMC_B1_40_GPIO_MUX2_IO08

IOMUXC_GPIO_EMC_B1_40_ENET_1G_MDC

IOMUXC_GPIO_EMC_B1_40_CCM_CLKO1

IOMUXC_GPIO_EMC_B1_40_GPIO8_IO08

IOMUXC_GPIO_EMC_B1_41_GPIO8_IO09

IOMUXC_GPIO_EMC_B1_41_SEMC_CSX00

IOMUXC_GPIO_EMC_B1_41_XBAR1_INOUT13

IOMUXC_GPIO_EMC_B1_41_MQS_LEFT

IOMUXC_GPIO_EMC_B1_41_LPUART6_RXD

IOMUXC_GPIO_EMC_B1_41_FLEXSPI2_B_DATA07

IOMUXC_GPIO_EMC_B1_41_GPIO_MUX2_IO09

IOMUXC_GPIO_EMC_B1_41_ENET_1G_MDIO

IOMUXC_GPIO_EMC_B1_41_CCM_CLKO2

IOMUXC_GPIO_EMC_B2_00_SEMC_DATA16

IOMUXC_GPIO_EMC_B2_00_CCM_ENET_REF_CLK_25M

IOMUXC_GPIO_EMC_B2_00_TMR3_TIMER1

IOMUXC_GPIO_EMC_B2_00_LPUART6_CTS_B

IOMUXC_GPIO_EMC_B2_00_FLEXSPI2_B_DATA06

IOMUXC_GPIO_EMC_B2_00_GPIO_MUX2_IO10

IOMUXC_GPIO_EMC_B2_00_XBAR1_INOUT20

IOMUXC_GPIO_EMC_B2_00_ENET_QOS_1588_EVENT1_OUT

IOMUXC_GPIO_EMC_B2_00_LPSPI1_SCK

IOMUXC_GPIO_EMC_B2_00_LPI2C2_SCL

IOMUXC_GPIO_EMC_B2_00_GPIO8_IO10

IOMUXC_GPIO_EMC_B2_00_FLEXPWM3_PWM0_A

IOMUXC_GPIO_EMC_B2_01_SEMC_DATA17

IOMUXC_GPIO_EMC_B2_01_USDHC2_CD_B

2.65. IOMUXC: IOMUX Controller 753



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_01_TMR4_TIMER1

IOMUXC_GPIO_EMC_B2_01_LPUART6_RTS_B

IOMUXC_GPIO_EMC_B2_01_FLEXSPI2_B_DATA05

IOMUXC_GPIO_EMC_B2_01_GPIO_MUX2_IO11

IOMUXC_GPIO_EMC_B2_01_XBAR1_INOUT21

IOMUXC_GPIO_EMC_B2_01_ENET_QOS_1588_EVENT1_IN

IOMUXC_GPIO_EMC_B2_01_LPSPI1_PCS0

IOMUXC_GPIO_EMC_B2_01_LPI2C2_SDA

IOMUXC_GPIO_EMC_B2_01_GPIO8_IO11

IOMUXC_GPIO_EMC_B2_01_FLEXPWM3_PWM0_B

IOMUXC_GPIO_EMC_B2_02_SEMC_DATA18

IOMUXC_GPIO_EMC_B2_02_USDHC2_WP

IOMUXC_GPIO_EMC_B2_02_VIDEO_MUX_CSI_DATA23

IOMUXC_GPIO_EMC_B2_02_FLEXSPI2_B_DATA04

IOMUXC_GPIO_EMC_B2_02_GPIO_MUX2_IO12

IOMUXC_GPIO_EMC_B2_02_XBAR1_INOUT22

IOMUXC_GPIO_EMC_B2_02_ENET_QOS_1588_EVENT1_AUX_IN

IOMUXC_GPIO_EMC_B2_02_LPSPI1_SOUT

IOMUXC_GPIO_EMC_B2_02_GPIO8_IO12

IOMUXC_GPIO_EMC_B2_02_FLEXPWM3_PWM1_A

IOMUXC_GPIO_EMC_B2_03_SEMC_DATA19

IOMUXC_GPIO_EMC_B2_03_USDHC2_VSELECT

IOMUXC_GPIO_EMC_B2_03_VIDEO_MUX_CSI_DATA22

IOMUXC_GPIO_EMC_B2_03_FLEXSPI2_B_DATA03

IOMUXC_GPIO_EMC_B2_03_GPIO_MUX2_IO13

IOMUXC_GPIO_EMC_B2_03_XBAR1_INOUT23

IOMUXC_GPIO_EMC_B2_03_ENET_1G_TX_DATA03

IOMUXC_GPIO_EMC_B2_03_LPSPI1_SIN

IOMUXC_GPIO_EMC_B2_03_GPIO8_IO13

IOMUXC_GPIO_EMC_B2_03_FLEXPWM3_PWM1_B

IOMUXC_GPIO_EMC_B2_04_SEMC_DATA20

IOMUXC_GPIO_EMC_B2_04_USDHC2_RESET_B

IOMUXC_GPIO_EMC_B2_04_SAI2_MCLK

754 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_04_VIDEO_MUX_CSI_DATA21

IOMUXC_GPIO_EMC_B2_04_FLEXSPI2_B_DATA02

IOMUXC_GPIO_EMC_B2_04_GPIO_MUX2_IO14

IOMUXC_GPIO_EMC_B2_04_XBAR1_INOUT24

IOMUXC_GPIO_EMC_B2_04_ENET_1G_TX_DATA02

IOMUXC_GPIO_EMC_B2_04_LPSPI3_SCK

IOMUXC_GPIO_EMC_B2_04_GPIO8_IO14

IOMUXC_GPIO_EMC_B2_04_FLEXPWM3_PWM2_A

IOMUXC_GPIO_EMC_B2_05_SEMC_DATA21

IOMUXC_GPIO_EMC_B2_05_GPT3_CLK

IOMUXC_GPIO_EMC_B2_05_SAI2_RX_SYNC

IOMUXC_GPIO_EMC_B2_05_VIDEO_MUX_CSI_DATA20

IOMUXC_GPIO_EMC_B2_05_FLEXSPI2_B_DATA01

IOMUXC_GPIO_EMC_B2_05_GPIO_MUX2_IO15

IOMUXC_GPIO_EMC_B2_05_XBAR1_INOUT25

IOMUXC_GPIO_EMC_B2_05_ENET_1G_RX_CLK

IOMUXC_GPIO_EMC_B2_05_LPSPI3_PCS0

IOMUXC_GPIO_EMC_B2_05_PIT1_TRIGGER0

IOMUXC_GPIO_EMC_B2_05_GPIO8_IO15

IOMUXC_GPIO_EMC_B2_05_FLEXPWM3_PWM2_B

IOMUXC_GPIO_EMC_B2_06_SEMC_DATA22

IOMUXC_GPIO_EMC_B2_06_GPT3_CAPTURE1

IOMUXC_GPIO_EMC_B2_06_GPIO8_IO16

IOMUXC_GPIO_EMC_B2_06_SAI2_RX_BCLK

IOMUXC_GPIO_EMC_B2_06_FLEXPWM3_PWM3_A

IOMUXC_GPIO_EMC_B2_06_VIDEO_MUX_CSI_DATA19

IOMUXC_GPIO_EMC_B2_06_FLEXSPI2_B_DATA00

IOMUXC_GPIO_EMC_B2_06_GPIO_MUX2_IO16

IOMUXC_GPIO_EMC_B2_06_XBAR1_INOUT26

IOMUXC_GPIO_EMC_B2_06_ENET_1G_TX_ER

IOMUXC_GPIO_EMC_B2_06_LPSPI3_SOUT

IOMUXC_GPIO_EMC_B2_06_PIT1_TRIGGER1

IOMUXC_GPIO_EMC_B2_07_SEMC_DATA23

2.65. IOMUXC: IOMUX Controller 755



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_07_GPT3_CAPTURE2

IOMUXC_GPIO_EMC_B2_07_SAI2_RX_DATA

IOMUXC_GPIO_EMC_B2_07_VIDEO_MUX_CSI_DATA18

IOMUXC_GPIO_EMC_B2_07_FLEXSPI2_B_DQS

IOMUXC_GPIO_EMC_B2_07_GPIO_MUX2_IO17

IOMUXC_GPIO_EMC_B2_07_XBAR1_INOUT27

IOMUXC_GPIO_EMC_B2_07_ENET_1G_RX_DATA03

IOMUXC_GPIO_EMC_B2_07_LPSPI3_SIN

IOMUXC_GPIO_EMC_B2_07_PIT1_TRIGGER2

IOMUXC_GPIO_EMC_B2_07_GPIO8_IO17

IOMUXC_GPIO_EMC_B2_07_FLEXPWM3_PWM3_B

IOMUXC_GPIO_EMC_B2_08_SEMC_DM02

IOMUXC_GPIO_EMC_B2_08_GPT3_COMPARE1

IOMUXC_GPIO_EMC_B2_08_SAI2_TX_DATA

IOMUXC_GPIO_EMC_B2_08_VIDEO_MUX_CSI_DATA17

IOMUXC_GPIO_EMC_B2_08_FLEXSPI2_B_SS0_B

IOMUXC_GPIO_EMC_B2_08_GPIO_MUX2_IO18

IOMUXC_GPIO_EMC_B2_08_XBAR1_INOUT28

IOMUXC_GPIO_EMC_B2_08_ENET_1G_RX_DATA02

IOMUXC_GPIO_EMC_B2_08_LPSPI3_PCS1

IOMUXC_GPIO_EMC_B2_08_PIT1_TRIGGER3

IOMUXC_GPIO_EMC_B2_08_GPIO8_IO18

IOMUXC_GPIO_EMC_B2_09_GPIO8_IO19

IOMUXC_GPIO_EMC_B2_09_SEMC_DATA24

IOMUXC_GPIO_EMC_B2_09_GPT3_COMPARE2

IOMUXC_GPIO_EMC_B2_09_SAI2_TX_BCLK

IOMUXC_GPIO_EMC_B2_09_VIDEO_MUX_CSI_DATA16

IOMUXC_GPIO_EMC_B2_09_FLEXSPI2_B_SCLK

IOMUXC_GPIO_EMC_B2_09_GPIO_MUX2_IO19

IOMUXC_GPIO_EMC_B2_09_XBAR1_INOUT29

IOMUXC_GPIO_EMC_B2_09_ENET_1G_CRS

IOMUXC_GPIO_EMC_B2_09_LPSPI3_PCS2

IOMUXC_GPIO_EMC_B2_09_TMR1_TIMER0

756 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_10_GPIO8_IO20

IOMUXC_GPIO_EMC_B2_10_SEMC_DATA25

IOMUXC_GPIO_EMC_B2_10_GPT3_COMPARE3

IOMUXC_GPIO_EMC_B2_10_SAI2_TX_SYNC

IOMUXC_GPIO_EMC_B2_10_VIDEO_MUX_CSI_FIELD

IOMUXC_GPIO_EMC_B2_10_FLEXSPI2_A_SCLK

IOMUXC_GPIO_EMC_B2_10_GPIO_MUX2_IO20

IOMUXC_GPIO_EMC_B2_10_XBAR1_INOUT30

IOMUXC_GPIO_EMC_B2_10_ENET_1G_COL

IOMUXC_GPIO_EMC_B2_10_LPSPI3_PCS3

IOMUXC_GPIO_EMC_B2_10_TMR1_TIMER1

IOMUXC_GPIO_EMC_B2_11_SEMC_DATA26

IOMUXC_GPIO_EMC_B2_11_SPDIF_IN

IOMUXC_GPIO_EMC_B2_11_ENET_1G_TX_DATA00

IOMUXC_GPIO_EMC_B2_11_SAI3_RX_SYNC

IOMUXC_GPIO_EMC_B2_11_FLEXSPI2_A_SS0_B

IOMUXC_GPIO_EMC_B2_11_GPIO_MUX2_IO21

IOMUXC_GPIO_EMC_B2_11_XBAR1_INOUT31

IOMUXC_GPIO_EMC_B2_11_EMVSIM1_IO

IOMUXC_GPIO_EMC_B2_11_TMR1_TIMER2

IOMUXC_GPIO_EMC_B2_11_GPIO8_IO21

IOMUXC_GPIO_EMC_B2_12_SEMC_DATA27

IOMUXC_GPIO_EMC_B2_12_SPDIF_OUT

IOMUXC_GPIO_EMC_B2_12_ENET_1G_TX_DATA01

IOMUXC_GPIO_EMC_B2_12_SAI3_RX_BCLK

IOMUXC_GPIO_EMC_B2_12_FLEXSPI2_A_DQS

IOMUXC_GPIO_EMC_B2_12_GPIO_MUX2_IO22

IOMUXC_GPIO_EMC_B2_12_XBAR1_INOUT32

IOMUXC_GPIO_EMC_B2_12_EMVSIM1_CLK

IOMUXC_GPIO_EMC_B2_12_TMR1_TIMER3

IOMUXC_GPIO_EMC_B2_12_GPIO8_IO22

IOMUXC_GPIO_EMC_B2_13_GPIO8_IO23

IOMUXC_GPIO_EMC_B2_13_SEMC_DATA28

2.65. IOMUXC: IOMUX Controller 757



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_13_ENET_1G_TX_EN

IOMUXC_GPIO_EMC_B2_13_SAI3_RX_DATA

IOMUXC_GPIO_EMC_B2_13_FLEXSPI2_A_DATA00

IOMUXC_GPIO_EMC_B2_13_GPIO_MUX2_IO23

IOMUXC_GPIO_EMC_B2_13_XBAR1_INOUT33

IOMUXC_GPIO_EMC_B2_13_EMVSIM1_RST

IOMUXC_GPIO_EMC_B2_13_TMR2_TIMER0

IOMUXC_GPIO_EMC_B2_14_SEMC_DATA29

IOMUXC_GPIO_EMC_B2_14_ENET_1G_TX_CLK_IO

IOMUXC_GPIO_EMC_B2_14_SAI3_TX_DATA

IOMUXC_GPIO_EMC_B2_14_FLEXSPI2_A_DATA01

IOMUXC_GPIO_EMC_B2_14_GPIO_MUX2_IO24

IOMUXC_GPIO_EMC_B2_14_XBAR1_INOUT34

IOMUXC_GPIO_EMC_B2_14_SFA_ipp_do_atx_clk_under_test

IOMUXC_GPIO_EMC_B2_14_EMVSIM1_SVEN

IOMUXC_GPIO_EMC_B2_14_TMR2_TIMER1

IOMUXC_GPIO_EMC_B2_14_GPIO8_IO24

IOMUXC_GPIO_EMC_B2_15_SEMC_DATA30

IOMUXC_GPIO_EMC_B2_15_ENET_1G_RX_DATA00

IOMUXC_GPIO_EMC_B2_15_SAI3_TX_BCLK

IOMUXC_GPIO_EMC_B2_15_FLEXSPI2_A_DATA02

IOMUXC_GPIO_EMC_B2_15_GPIO_MUX2_IO25

IOMUXC_GPIO_EMC_B2_15_XBAR1_INOUT35

IOMUXC_GPIO_EMC_B2_15_EMVSIM1_PD

IOMUXC_GPIO_EMC_B2_15_TMR2_TIMER2

IOMUXC_GPIO_EMC_B2_15_GPIO8_IO25

IOMUXC_GPIO_EMC_B2_16_GPIO8_IO26

IOMUXC_GPIO_EMC_B2_16_SEMC_DATA31

IOMUXC_GPIO_EMC_B2_16_XBAR1_INOUT14

IOMUXC_GPIO_EMC_B2_16_ENET_1G_RX_DATA01

IOMUXC_GPIO_EMC_B2_16_SAI3_TX_SYNC

IOMUXC_GPIO_EMC_B2_16_FLEXSPI2_A_DATA03

IOMUXC_GPIO_EMC_B2_16_GPIO_MUX2_IO26

758 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_16_EMVSIM1_POWER_FAIL

IOMUXC_GPIO_EMC_B2_16_TMR2_TIMER3

IOMUXC_GPIO_EMC_B2_17_SEMC_DM03

IOMUXC_GPIO_EMC_B2_17_XBAR1_INOUT15

IOMUXC_GPIO_EMC_B2_17_ENET_1G_RX_EN

IOMUXC_GPIO_EMC_B2_17_SAI3_MCLK

IOMUXC_GPIO_EMC_B2_17_FLEXSPI2_A_DATA04

IOMUXC_GPIO_EMC_B2_17_GPIO_MUX2_IO27

IOMUXC_GPIO_EMC_B2_17_WDOG1_ANY

IOMUXC_GPIO_EMC_B2_17_TMR3_TIMER0

IOMUXC_GPIO_EMC_B2_17_GPIO8_IO27

IOMUXC_GPIO_EMC_B2_18_SEMC_DQS4

IOMUXC_GPIO_EMC_B2_18_XBAR1_INOUT16

IOMUXC_GPIO_EMC_B2_18_ENET_1G_RX_ER

IOMUXC_GPIO_EMC_B2_18_EWM_OUT_B

IOMUXC_GPIO_EMC_B2_18_FLEXSPI2_A_DATA05

IOMUXC_GPIO_EMC_B2_18_GPIO_MUX2_IO28

IOMUXC_GPIO_EMC_B2_18_FLEXSPI1_A_DQS

IOMUXC_GPIO_EMC_B2_18_WDOG1_B

IOMUXC_GPIO_EMC_B2_18_TMR3_TIMER1

IOMUXC_GPIO_EMC_B2_18_GPIO8_IO28

IOMUXC_GPIO_EMC_B2_19_GPIO8_IO29

IOMUXC_GPIO_EMC_B2_19_SEMC_CLKX00

IOMUXC_GPIO_EMC_B2_19_ENET_MDC

IOMUXC_GPIO_EMC_B2_19_ENET_1G_MDC

IOMUXC_GPIO_EMC_B2_19_ENET_1G_REF_CLK

IOMUXC_GPIO_EMC_B2_19_FLEXSPI2_A_DATA06

IOMUXC_GPIO_EMC_B2_19_GPIO_MUX2_IO29

IOMUXC_GPIO_EMC_B2_19_ENET_QOS_MDC

IOMUXC_GPIO_EMC_B2_19_TMR3_TIMER2

IOMUXC_GPIO_EMC_B2_20_GPIO8_IO30

IOMUXC_GPIO_EMC_B2_20_SEMC_CLKX01

IOMUXC_GPIO_EMC_B2_20_ENET_MDIO

2.65. IOMUXC: IOMUX Controller 759



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_EMC_B2_20_ENET_1G_MDIO

IOMUXC_GPIO_EMC_B2_20_ENET_QOS_REF_CLK

IOMUXC_GPIO_EMC_B2_20_FLEXSPI2_A_DATA07

IOMUXC_GPIO_EMC_B2_20_GPIO_MUX2_IO30

IOMUXC_GPIO_EMC_B2_20_ENET_QOS_MDIO

IOMUXC_GPIO_EMC_B2_20_TMR3_TIMER3

IOMUXC_GPIO_AD_00_GPIO8_IO31

IOMUXC_GPIO_AD_00_EMVSIM1_IO

IOMUXC_GPIO_AD_00_FLEXCAN2_TX

IOMUXC_GPIO_AD_00_ENET_1G_1588_EVENT1_IN

IOMUXC_GPIO_AD_00_GPT2_CAPTURE1

IOMUXC_GPIO_AD_00_FLEXPWM1_PWM0_A

IOMUXC_GPIO_AD_00_GPIO_MUX2_IO31

IOMUXC_GPIO_AD_00_LPUART7_TXD

IOMUXC_GPIO_AD_00_FLEXIO2_D00

IOMUXC_GPIO_AD_00_FLEXSPI2_B_SS1_B

IOMUXC_GPIO_AD_01_GPIO9_IO00

IOMUXC_GPIO_AD_01_EMVSIM1_CLK

IOMUXC_GPIO_AD_01_FLEXCAN2_RX

IOMUXC_GPIO_AD_01_ENET_1G_1588_EVENT1_OUT

IOMUXC_GPIO_AD_01_GPT2_CAPTURE2

IOMUXC_GPIO_AD_01_FLEXPWM1_PWM0_B

IOMUXC_GPIO_AD_01_GPIO_MUX3_IO00

IOMUXC_GPIO_AD_01_LPUART7_RXD

IOMUXC_GPIO_AD_01_FLEXIO2_D01

IOMUXC_GPIO_AD_01_FLEXSPI2_A_SS1_B

IOMUXC_GPIO_AD_02_GPIO9_IO01

IOMUXC_GPIO_AD_02_EMVSIM1_RST

IOMUXC_GPIO_AD_02_LPUART7_CTS_B

IOMUXC_GPIO_AD_02_ENET_1G_1588_EVENT2_IN

IOMUXC_GPIO_AD_02_GPT2_COMPARE1

IOMUXC_GPIO_AD_02_FLEXPWM1_PWM1_A

IOMUXC_GPIO_AD_02_GPIO_MUX3_IO01

760 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_02_LPUART8_TXD

IOMUXC_GPIO_AD_02_FLEXIO2_D02

IOMUXC_GPIO_AD_02_VIDEO_MUX_EXT_DCIC1

IOMUXC_GPIO_AD_03_GPIO9_IO02

IOMUXC_GPIO_AD_03_EMVSIM1_SVEN

IOMUXC_GPIO_AD_03_LPUART7_RTS_B

IOMUXC_GPIO_AD_03_ENET_1G_1588_EVENT2_OUT

IOMUXC_GPIO_AD_03_GPT2_COMPARE2

IOMUXC_GPIO_AD_03_FLEXPWM1_PWM1_B

IOMUXC_GPIO_AD_03_GPIO_MUX3_IO02

IOMUXC_GPIO_AD_03_LPUART8_RXD

IOMUXC_GPIO_AD_03_FLEXIO2_D03

IOMUXC_GPIO_AD_03_VIDEO_MUX_EXT_DCIC2

IOMUXC_GPIO_AD_04_EMVSIM1_PD

IOMUXC_GPIO_AD_04_LPUART8_CTS_B

IOMUXC_GPIO_AD_04_ENET_1G_1588_EVENT3_IN

IOMUXC_GPIO_AD_04_GPT2_COMPARE3

IOMUXC_GPIO_AD_04_FLEXPWM1_PWM2_A

IOMUXC_GPIO_AD_04_GPIO_MUX3_IO03

IOMUXC_GPIO_AD_04_WDOG1_B

IOMUXC_GPIO_AD_04_FLEXIO2_D04

IOMUXC_GPIO_AD_04_TMR4_TIMER0

IOMUXC_GPIO_AD_04_GPIO9_IO03

IOMUXC_GPIO_AD_05_EMVSIM1_POWER_FAIL

IOMUXC_GPIO_AD_05_LPUART8_RTS_B

IOMUXC_GPIO_AD_05_ENET_1G_1588_EVENT3_OUT

IOMUXC_GPIO_AD_05_GPT2_CLK

IOMUXC_GPIO_AD_05_FLEXPWM1_PWM2_B

IOMUXC_GPIO_AD_05_GPIO_MUX3_IO04

IOMUXC_GPIO_AD_05_WDOG2_B

IOMUXC_GPIO_AD_05_FLEXIO2_D05

IOMUXC_GPIO_AD_05_TMR4_TIMER1

IOMUXC_GPIO_AD_05_GPIO9_IO04

2.65. IOMUXC: IOMUX Controller 761



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_06_USB_OTG2_OC

IOMUXC_GPIO_AD_06_FLEXCAN1_TX

IOMUXC_GPIO_AD_06_EMVSIM2_IO

IOMUXC_GPIO_AD_06_GPT3_CAPTURE1

IOMUXC_GPIO_AD_06_VIDEO_MUX_CSI_DATA15

IOMUXC_GPIO_AD_06_GPIO_MUX3_IO05

IOMUXC_GPIO_AD_06_ENET_1588_EVENT1_IN

IOMUXC_GPIO_AD_06_FLEXIO2_D06

IOMUXC_GPIO_AD_06_TMR4_TIMER2

IOMUXC_GPIO_AD_06_GPIO9_IO05

IOMUXC_GPIO_AD_06_FLEXPWM1_PWM0_X

IOMUXC_GPIO_AD_07_USB_OTG2_PWR

IOMUXC_GPIO_AD_07_FLEXCAN1_RX

IOMUXC_GPIO_AD_07_EMVSIM2_CLK

IOMUXC_GPIO_AD_07_GPT3_CAPTURE2

IOMUXC_GPIO_AD_07_VIDEO_MUX_CSI_DATA14

IOMUXC_GPIO_AD_07_GPIO_MUX3_IO06

IOMUXC_GPIO_AD_07_ENET_1588_EVENT1_OUT

IOMUXC_GPIO_AD_07_FLEXIO2_D07

IOMUXC_GPIO_AD_07_TMR4_TIMER3

IOMUXC_GPIO_AD_07_GPIO9_IO06

IOMUXC_GPIO_AD_07_FLEXPWM1_PWM1_X

IOMUXC_GPIO_AD_08_USBPHY2_OTG_ID

IOMUXC_GPIO_AD_08_LPI2C1_SCL

IOMUXC_GPIO_AD_08_EMVSIM2_RST

IOMUXC_GPIO_AD_08_GPT3_COMPARE1

IOMUXC_GPIO_AD_08_VIDEO_MUX_CSI_DATA13

IOMUXC_GPIO_AD_08_GPIO_MUX3_IO07

IOMUXC_GPIO_AD_08_ENET_1588_EVENT2_IN

IOMUXC_GPIO_AD_08_FLEXIO2_D08

IOMUXC_GPIO_AD_08_GPIO9_IO07

IOMUXC_GPIO_AD_08_FLEXPWM1_PWM2_X

IOMUXC_GPIO_AD_09_USBPHY1_OTG_ID

762 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_09_LPI2C1_SDA

IOMUXC_GPIO_AD_09_EMVSIM2_SVEN

IOMUXC_GPIO_AD_09_GPT3_COMPARE2

IOMUXC_GPIO_AD_09_VIDEO_MUX_CSI_DATA12

IOMUXC_GPIO_AD_09_GPIO_MUX3_IO08

IOMUXC_GPIO_AD_09_ENET_1588_EVENT2_OUT

IOMUXC_GPIO_AD_09_FLEXIO2_D09

IOMUXC_GPIO_AD_09_GPIO9_IO08

IOMUXC_GPIO_AD_09_FLEXPWM1_PWM3_X

IOMUXC_GPIO_AD_10_USB_OTG1_PWR

IOMUXC_GPIO_AD_10_LPI2C1_SCLS

IOMUXC_GPIO_AD_10_EMVSIM2_PD

IOMUXC_GPIO_AD_10_GPT3_COMPARE3

IOMUXC_GPIO_AD_10_VIDEO_MUX_CSI_DATA11

IOMUXC_GPIO_AD_10_GPIO_MUX3_IO09

IOMUXC_GPIO_AD_10_ENET_1588_EVENT3_IN

IOMUXC_GPIO_AD_10_FLEXIO2_D10

IOMUXC_GPIO_AD_10_GPIO9_IO09

IOMUXC_GPIO_AD_10_FLEXPWM2_PWM0_X

IOMUXC_GPIO_AD_11_USB_OTG1_OC

IOMUXC_GPIO_AD_11_LPI2C1_SDAS

IOMUXC_GPIO_AD_11_EMVSIM2_POWER_FAIL

IOMUXC_GPIO_AD_11_GPT3_CLK

IOMUXC_GPIO_AD_11_VIDEO_MUX_CSI_DATA10

IOMUXC_GPIO_AD_11_GPIO_MUX3_IO10

IOMUXC_GPIO_AD_11_ENET_1588_EVENT3_OUT

IOMUXC_GPIO_AD_11_FLEXIO2_D11

IOMUXC_GPIO_AD_11_GPIO9_IO10

IOMUXC_GPIO_AD_11_FLEXPWM2_PWM1_X

IOMUXC_GPIO_AD_12_SPDIF_LOCK

IOMUXC_GPIO_AD_12_LPI2C1_HREQ

IOMUXC_GPIO_AD_12_GPT1_CAPTURE1

IOMUXC_GPIO_AD_12_FLEXSPI1_B_DATA03

2.65. IOMUXC: IOMUX Controller 763



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_12_VIDEO_MUX_CSI_PIXCLK

IOMUXC_GPIO_AD_12_GPIO_MUX3_IO11

IOMUXC_GPIO_AD_12_ENET_TX_DATA03

IOMUXC_GPIO_AD_12_FLEXIO2_D12

IOMUXC_GPIO_AD_12_EWM_OUT_B

IOMUXC_GPIO_AD_12_GPIO9_IO11

IOMUXC_GPIO_AD_12_FLEXPWM2_PWM2_X

IOMUXC_GPIO_AD_13_SPDIF_SR_CLK

IOMUXC_GPIO_AD_13_PIT1_TRIGGER0

IOMUXC_GPIO_AD_13_GPT1_CAPTURE2

IOMUXC_GPIO_AD_13_FLEXSPI1_B_DATA02

IOMUXC_GPIO_AD_13_VIDEO_MUX_CSI_MCLK

IOMUXC_GPIO_AD_13_GPIO_MUX3_IO12

IOMUXC_GPIO_AD_13_ENET_TX_DATA02

IOMUXC_GPIO_AD_13_FLEXIO2_D13

IOMUXC_GPIO_AD_13_REF_CLK_32K

IOMUXC_GPIO_AD_13_GPIO9_IO12

IOMUXC_GPIO_AD_13_FLEXPWM2_PWM3_X

IOMUXC_GPIO_AD_14_SPDIF_EXT_CLK

IOMUXC_GPIO_AD_14_REF_CLK_24M

IOMUXC_GPIO_AD_14_GPT1_COMPARE1

IOMUXC_GPIO_AD_14_FLEXSPI1_B_DATA01

IOMUXC_GPIO_AD_14_VIDEO_MUX_CSI_VSYNC

IOMUXC_GPIO_AD_14_GPIO_MUX3_IO13

IOMUXC_GPIO_AD_14_ENET_RX_CLK

IOMUXC_GPIO_AD_14_FLEXIO2_D14

IOMUXC_GPIO_AD_14_CCM_ENET_REF_CLK_25M

IOMUXC_GPIO_AD_14_GPIO9_IO13

IOMUXC_GPIO_AD_14_FLEXPWM3_PWM0_X

IOMUXC_GPIO_AD_15_GPIO9_IO14

IOMUXC_GPIO_AD_15_FLEXPWM3_PWM1_X

IOMUXC_GPIO_AD_15_SPDIF_IN

IOMUXC_GPIO_AD_15_LPUART10_TXD

764 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_15_GPT1_COMPARE2

IOMUXC_GPIO_AD_15_FLEXSPI1_B_DATA00

IOMUXC_GPIO_AD_15_VIDEO_MUX_CSI_HSYNC

IOMUXC_GPIO_AD_15_GPIO_MUX3_IO14

IOMUXC_GPIO_AD_15_ENET_TX_ER

IOMUXC_GPIO_AD_15_FLEXIO2_D15

IOMUXC_GPIO_AD_16_SPDIF_OUT

IOMUXC_GPIO_AD_16_LPUART10_RXD

IOMUXC_GPIO_AD_16_GPT1_COMPARE3

IOMUXC_GPIO_AD_16_FLEXSPI1_B_SCLK

IOMUXC_GPIO_AD_16_VIDEO_MUX_CSI_DATA09

IOMUXC_GPIO_AD_16_GPIO_MUX3_IO15

IOMUXC_GPIO_AD_16_ENET_RX_DATA03

IOMUXC_GPIO_AD_16_FLEXIO2_D16

IOMUXC_GPIO_AD_16_ENET_1G_MDC

IOMUXC_GPIO_AD_16_GPIO9_IO15

IOMUXC_GPIO_AD_16_FLEXPWM3_PWM2_X

IOMUXC_GPIO_AD_17_SAI1_MCLK

IOMUXC_GPIO_AD_17_ACMP1_OUT

IOMUXC_GPIO_AD_17_GPT1_CLK

IOMUXC_GPIO_AD_17_FLEXSPI1_A_DQS

IOMUXC_GPIO_AD_17_VIDEO_MUX_CSI_DATA08

IOMUXC_GPIO_AD_17_GPIO_MUX3_IO16

IOMUXC_GPIO_AD_17_ENET_RX_DATA02

IOMUXC_GPIO_AD_17_FLEXIO2_D17

IOMUXC_GPIO_AD_17_ENET_1G_MDIO

IOMUXC_GPIO_AD_17_GPIO9_IO16

IOMUXC_GPIO_AD_17_FLEXPWM3_PWM3_X

IOMUXC_GPIO_AD_18_GPIO9_IO17

IOMUXC_GPIO_AD_18_FLEXPWM4_PWM0_X

IOMUXC_GPIO_AD_18_SAI1_RX_SYNC

IOMUXC_GPIO_AD_18_ACMP2_OUT

IOMUXC_GPIO_AD_18_LPSPI1_PCS1

2.65. IOMUXC: IOMUX Controller 765



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_18_FLEXSPI1_A_SS0_B

IOMUXC_GPIO_AD_18_VIDEO_MUX_CSI_DATA07

IOMUXC_GPIO_AD_18_GPIO_MUX3_IO17

IOMUXC_GPIO_AD_18_ENET_CRS

IOMUXC_GPIO_AD_18_FLEXIO2_D18

IOMUXC_GPIO_AD_18_LPI2C2_SCL

IOMUXC_GPIO_AD_19_SAI1_RX_BCLK

IOMUXC_GPIO_AD_19_ACMP3_OUT

IOMUXC_GPIO_AD_19_LPSPI1_PCS2

IOMUXC_GPIO_AD_19_FLEXSPI1_A_SCLK

IOMUXC_GPIO_AD_19_VIDEO_MUX_CSI_DATA06

IOMUXC_GPIO_AD_19_GPIO_MUX3_IO18

IOMUXC_GPIO_AD_19_ENET_COL

IOMUXC_GPIO_AD_19_FLEXIO2_D19

IOMUXC_GPIO_AD_19_LPI2C2_SDA

IOMUXC_GPIO_AD_19_GPIO9_IO18

IOMUXC_GPIO_AD_19_FLEXPWM4_PWM1_X

IOMUXC_GPIO_AD_20_SAI1_RX_DATA00

IOMUXC_GPIO_AD_20_ACMP4_OUT

IOMUXC_GPIO_AD_20_LPSPI1_PCS3

IOMUXC_GPIO_AD_20_FLEXSPI1_A_DATA00

IOMUXC_GPIO_AD_20_VIDEO_MUX_CSI_DATA05

IOMUXC_GPIO_AD_20_GPIO_MUX3_IO19

IOMUXC_GPIO_AD_20_KPP_ROW07

IOMUXC_GPIO_AD_20_FLEXIO2_D20

IOMUXC_GPIO_AD_20_ENET_QOS_1588_EVENT2_OUT

IOMUXC_GPIO_AD_20_GPIO9_IO19

IOMUXC_GPIO_AD_20_FLEXPWM4_PWM2_X

IOMUXC_GPIO_AD_21_SAI1_TX_DATA00

IOMUXC_GPIO_AD_21_LPSPI2_PCS1

IOMUXC_GPIO_AD_21_FLEXSPI1_A_DATA01

IOMUXC_GPIO_AD_21_VIDEO_MUX_CSI_DATA04

IOMUXC_GPIO_AD_21_GPIO_MUX3_IO20

766 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_21_KPP_COL07

IOMUXC_GPIO_AD_21_FLEXIO2_D21

IOMUXC_GPIO_AD_21_ENET_QOS_1588_EVENT2_IN

IOMUXC_GPIO_AD_21_GPIO9_IO20

IOMUXC_GPIO_AD_21_FLEXPWM4_PWM3_X

IOMUXC_GPIO_AD_22_GPIO9_IO21

IOMUXC_GPIO_AD_22_SAI1_TX_BCLK

IOMUXC_GPIO_AD_22_LPSPI2_PCS2

IOMUXC_GPIO_AD_22_FLEXSPI1_A_DATA02

IOMUXC_GPIO_AD_22_VIDEO_MUX_CSI_DATA03

IOMUXC_GPIO_AD_22_GPIO_MUX3_IO21

IOMUXC_GPIO_AD_22_KPP_ROW06

IOMUXC_GPIO_AD_22_FLEXIO2_D22

IOMUXC_GPIO_AD_22_ENET_QOS_1588_EVENT3_OUT

IOMUXC_GPIO_AD_23_SAI1_TX_SYNC

IOMUXC_GPIO_AD_23_LPSPI2_PCS3

IOMUXC_GPIO_AD_23_FLEXSPI1_A_DATA03

IOMUXC_GPIO_AD_23_VIDEO_MUX_CSI_DATA02

IOMUXC_GPIO_AD_23_GPIO_MUX3_IO22

IOMUXC_GPIO_AD_23_KPP_COL06

IOMUXC_GPIO_AD_23_FLEXIO2_D23

IOMUXC_GPIO_AD_23_ENET_QOS_1588_EVENT3_IN

IOMUXC_GPIO_AD_23_GPIO9_IO22

IOMUXC_GPIO_AD_24_LPUART1_TXD

IOMUXC_GPIO_AD_24_LPSPI2_SCK

IOMUXC_GPIO_AD_24_VIDEO_MUX_CSI_DATA00

IOMUXC_GPIO_AD_24_ENET_RX_EN

IOMUXC_GPIO_AD_24_FLEXPWM2_PWM0_A

IOMUXC_GPIO_AD_24_GPIO_MUX3_IO23

IOMUXC_GPIO_AD_24_KPP_ROW05

IOMUXC_GPIO_AD_24_FLEXIO2_D24

IOMUXC_GPIO_AD_24_LPI2C4_SCL

IOMUXC_GPIO_AD_24_GPIO9_IO23

2.65. IOMUXC: IOMUX Controller 767



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_25_GPIO9_IO24

IOMUXC_GPIO_AD_25_LPUART1_RXD

IOMUXC_GPIO_AD_25_LPSPI2_PCS0

IOMUXC_GPIO_AD_25_VIDEO_MUX_CSI_DATA01

IOMUXC_GPIO_AD_25_ENET_RX_ER

IOMUXC_GPIO_AD_25_FLEXPWM2_PWM0_B

IOMUXC_GPIO_AD_25_GPIO_MUX3_IO24

IOMUXC_GPIO_AD_25_KPP_COL05

IOMUXC_GPIO_AD_25_FLEXIO2_D25

IOMUXC_GPIO_AD_25_LPI2C4_SDA

IOMUXC_GPIO_AD_26_LPUART1_CTS_B

IOMUXC_GPIO_AD_26_LPSPI2_SOUT

IOMUXC_GPIO_AD_26_SEMC_CSX01

IOMUXC_GPIO_AD_26_ENET_RX_DATA00

IOMUXC_GPIO_AD_26_FLEXPWM2_PWM1_A

IOMUXC_GPIO_AD_26_GPIO_MUX3_IO25

IOMUXC_GPIO_AD_26_KPP_ROW04

IOMUXC_GPIO_AD_26_FLEXIO2_D26

IOMUXC_GPIO_AD_26_ENET_QOS_MDC

IOMUXC_GPIO_AD_26_GPIO9_IO25

IOMUXC_GPIO_AD_26_USDHC2_CD_B

IOMUXC_GPIO_AD_27_LPUART1_RTS_B

IOMUXC_GPIO_AD_27_LPSPI2_SIN

IOMUXC_GPIO_AD_27_SEMC_CSX02

IOMUXC_GPIO_AD_27_ENET_RX_DATA01

IOMUXC_GPIO_AD_27_FLEXPWM2_PWM1_B

IOMUXC_GPIO_AD_27_GPIO_MUX3_IO26

IOMUXC_GPIO_AD_27_KPP_COL04

IOMUXC_GPIO_AD_27_FLEXIO2_D27

IOMUXC_GPIO_AD_27_ENET_QOS_MDIO

IOMUXC_GPIO_AD_27_GPIO9_IO26

IOMUXC_GPIO_AD_27_USDHC2_WP

IOMUXC_GPIO_AD_28_GPIO9_IO27

768 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_28_USDHC2_VSELECT

IOMUXC_GPIO_AD_28_LPSPI1_SCK

IOMUXC_GPIO_AD_28_LPUART5_TXD

IOMUXC_GPIO_AD_28_SEMC_CSX03

IOMUXC_GPIO_AD_28_ENET_TX_EN

IOMUXC_GPIO_AD_28_FLEXPWM2_PWM2_A

IOMUXC_GPIO_AD_28_GPIO_MUX3_IO27

IOMUXC_GPIO_AD_28_KPP_ROW03

IOMUXC_GPIO_AD_28_FLEXIO2_D28

IOMUXC_GPIO_AD_28_VIDEO_MUX_EXT_DCIC1

IOMUXC_GPIO_AD_29_LPSPI1_PCS0

IOMUXC_GPIO_AD_29_LPUART5_RXD

IOMUXC_GPIO_AD_29_ENET_REF_CLK

IOMUXC_GPIO_AD_29_ENET_TX_CLK

IOMUXC_GPIO_AD_29_FLEXPWM2_PWM2_B

IOMUXC_GPIO_AD_29_GPIO_MUX3_IO28

IOMUXC_GPIO_AD_29_KPP_COL03

IOMUXC_GPIO_AD_29_FLEXIO2_D29

IOMUXC_GPIO_AD_29_VIDEO_MUX_EXT_DCIC2

IOMUXC_GPIO_AD_29_GPIO9_IO28

IOMUXC_GPIO_AD_29_USDHC2_RESET_B

IOMUXC_GPIO_AD_30_LPSPI1_SOUT

IOMUXC_GPIO_AD_30_USB_OTG2_OC

IOMUXC_GPIO_AD_30_FLEXCAN2_TX

IOMUXC_GPIO_AD_30_ENET_TX_DATA00

IOMUXC_GPIO_AD_30_LPUART3_TXD

IOMUXC_GPIO_AD_30_GPIO_MUX3_IO29

IOMUXC_GPIO_AD_30_KPP_ROW02

IOMUXC_GPIO_AD_30_FLEXIO2_D30

IOMUXC_GPIO_AD_30_WDOG2_RESET_B_DEB

IOMUXC_GPIO_AD_30_GPIO9_IO29

IOMUXC_GPIO_AD_31_LPSPI1_SIN

IOMUXC_GPIO_AD_31_USB_OTG2_PWR

2.65. IOMUXC: IOMUX Controller 769



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_31_FLEXCAN2_RX

IOMUXC_GPIO_AD_31_ENET_TX_DATA01

IOMUXC_GPIO_AD_31_LPUART3_RXD

IOMUXC_GPIO_AD_31_GPIO_MUX3_IO30

IOMUXC_GPIO_AD_31_KPP_COL02

IOMUXC_GPIO_AD_31_FLEXIO2_D31

IOMUXC_GPIO_AD_31_WDOG1_RESET_B_DEB

IOMUXC_GPIO_AD_31_GPIO9_IO30

IOMUXC_GPIO_AD_32_GPIO9_IO31

IOMUXC_GPIO_AD_32_LPI2C1_SCL

IOMUXC_GPIO_AD_32_USBPHY2_OTG_ID

IOMUXC_GPIO_AD_32_PGMC_PMIC_RDY

IOMUXC_GPIO_AD_32_ENET_MDC

IOMUXC_GPIO_AD_32_USDHC1_CD_B

IOMUXC_GPIO_AD_32_GPIO_MUX3_IO31

IOMUXC_GPIO_AD_32_KPP_ROW01

IOMUXC_GPIO_AD_32_LPUART10_TXD

IOMUXC_GPIO_AD_32_ENET_1G_MDC

IOMUXC_GPIO_AD_33_LPI2C1_SDA

IOMUXC_GPIO_AD_33_USBPHY1_OTG_ID

IOMUXC_GPIO_AD_33_XBAR1_INOUT17

IOMUXC_GPIO_AD_33_ENET_MDIO

IOMUXC_GPIO_AD_33_USDHC1_WP

IOMUXC_GPIO_AD_33_GPIO_MUX4_IO00

IOMUXC_GPIO_AD_33_KPP_COL01

IOMUXC_GPIO_AD_33_LPUART10_RXD

IOMUXC_GPIO_AD_33_ENET_1G_MDIO

IOMUXC_GPIO_AD_33_GPIO10_IO00

IOMUXC_GPIO_AD_34_ENET_1G_1588_EVENT0_IN

IOMUXC_GPIO_AD_34_USB_OTG1_PWR

IOMUXC_GPIO_AD_34_XBAR1_INOUT18

IOMUXC_GPIO_AD_34_ENET_1588_EVENT0_IN

IOMUXC_GPIO_AD_34_USDHC1_VSELECT

770 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_AD_34_GPIO_MUX4_IO01

IOMUXC_GPIO_AD_34_KPP_ROW00

IOMUXC_GPIO_AD_34_LPUART10_CTS_B

IOMUXC_GPIO_AD_34_WDOG1_ANY

IOMUXC_GPIO_AD_34_GPIO10_IO01

IOMUXC_GPIO_AD_35_GPIO10_IO02

IOMUXC_GPIO_AD_35_ENET_1G_1588_EVENT0_OUT

IOMUXC_GPIO_AD_35_USB_OTG1_OC

IOMUXC_GPIO_AD_35_XBAR1_INOUT19

IOMUXC_GPIO_AD_35_ENET_1588_EVENT0_OUT

IOMUXC_GPIO_AD_35_USDHC1_RESET_B

IOMUXC_GPIO_AD_35_GPIO_MUX4_IO02

IOMUXC_GPIO_AD_35_KPP_COL00

IOMUXC_GPIO_AD_35_LPUART10_RTS_B

IOMUXC_GPIO_AD_35_FLEXSPI1_B_SS1_B

IOMUXC_GPIO_SD_B1_00_USDHC1_CMD

IOMUXC_GPIO_SD_B1_00_XBAR1_INOUT20

IOMUXC_GPIO_SD_B1_00_GPT4_CAPTURE1

IOMUXC_GPIO_SD_B1_00_GPIO_MUX4_IO03

IOMUXC_GPIO_SD_B1_00_FLEXSPI2_A_SS0_B

IOMUXC_GPIO_SD_B1_00_KPP_ROW07

IOMUXC_GPIO_SD_B1_00_GPIO10_IO03

IOMUXC_GPIO_SD_B1_01_USDHC1_CLK

IOMUXC_GPIO_SD_B1_01_XBAR1_INOUT21

IOMUXC_GPIO_SD_B1_01_GPT4_CAPTURE2

IOMUXC_GPIO_SD_B1_01_GPIO_MUX4_IO04

IOMUXC_GPIO_SD_B1_01_FLEXSPI2_A_SCLK

IOMUXC_GPIO_SD_B1_01_KPP_COL07

IOMUXC_GPIO_SD_B1_01_GPIO10_IO04

IOMUXC_GPIO_SD_B1_02_GPIO10_IO05

IOMUXC_GPIO_SD_B1_02_USDHC1_DATA0

IOMUXC_GPIO_SD_B1_02_XBAR1_INOUT22

IOMUXC_GPIO_SD_B1_02_GPT4_COMPARE1

2.65. IOMUXC: IOMUX Controller 771



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_SD_B1_02_GPIO_MUX4_IO05

IOMUXC_GPIO_SD_B1_02_FLEXSPI2_A_DATA00

IOMUXC_GPIO_SD_B1_02_KPP_ROW06

IOMUXC_GPIO_SD_B1_02_FLEXSPI1_A_SS1_B

IOMUXC_GPIO_SD_B1_03_USDHC1_DATA1

IOMUXC_GPIO_SD_B1_03_XBAR1_INOUT23

IOMUXC_GPIO_SD_B1_03_GPT4_COMPARE2

IOMUXC_GPIO_SD_B1_03_GPIO_MUX4_IO06

IOMUXC_GPIO_SD_B1_03_FLEXSPI2_A_DATA01

IOMUXC_GPIO_SD_B1_03_KPP_COL06

IOMUXC_GPIO_SD_B1_03_FLEXSPI1_B_SS1_B

IOMUXC_GPIO_SD_B1_03_GPIO10_IO06

IOMUXC_GPIO_SD_B1_04_USDHC1_DATA2

IOMUXC_GPIO_SD_B1_04_XBAR1_INOUT24

IOMUXC_GPIO_SD_B1_04_GPT4_COMPARE3

IOMUXC_GPIO_SD_B1_04_GPIO_MUX4_IO07

IOMUXC_GPIO_SD_B1_04_FLEXSPI2_A_DATA02

IOMUXC_GPIO_SD_B1_04_FLEXSPI1_B_SS0_B

IOMUXC_GPIO_SD_B1_04_ENET_QOS_1588_EVENT2_AUX_IN

IOMUXC_GPIO_SD_B1_04_GPIO10_IO07

IOMUXC_GPIO_SD_B1_05_GPIO10_IO08

IOMUXC_GPIO_SD_B1_05_USDHC1_DATA3

IOMUXC_GPIO_SD_B1_05_XBAR1_INOUT25

IOMUXC_GPIO_SD_B1_05_GPT4_CLK

IOMUXC_GPIO_SD_B1_05_GPIO_MUX4_IO08

IOMUXC_GPIO_SD_B1_05_FLEXSPI2_A_DATA03

IOMUXC_GPIO_SD_B1_05_FLEXSPI1_B_DQS

IOMUXC_GPIO_SD_B1_05_ENET_QOS_1588_EVENT3_AUX_IN

IOMUXC_GPIO_SD_B2_00_GPIO10_IO09

IOMUXC_GPIO_SD_B2_00_USDHC2_DATA3

IOMUXC_GPIO_SD_B2_00_FLEXSPI1_B_DATA03

IOMUXC_GPIO_SD_B2_00_ENET_1G_RX_EN

IOMUXC_GPIO_SD_B2_00_LPUART9_TXD

772 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_SD_B2_00_LPSPI4_SCK

IOMUXC_GPIO_SD_B2_00_GPIO_MUX4_IO09

IOMUXC_GPIO_SD_B2_01_USDHC2_DATA2

IOMUXC_GPIO_SD_B2_01_FLEXSPI1_B_DATA02

IOMUXC_GPIO_SD_B2_01_ENET_1G_RX_CLK

IOMUXC_GPIO_SD_B2_01_LPUART9_RXD

IOMUXC_GPIO_SD_B2_01_LPSPI4_PCS0

IOMUXC_GPIO_SD_B2_01_GPIO_MUX4_IO10

IOMUXC_GPIO_SD_B2_01_GPIO10_IO10

IOMUXC_GPIO_SD_B2_02_GPIO10_IO11

IOMUXC_GPIO_SD_B2_02_USDHC2_DATA1

IOMUXC_GPIO_SD_B2_02_FLEXSPI1_B_DATA01

IOMUXC_GPIO_SD_B2_02_ENET_1G_RX_DATA00

IOMUXC_GPIO_SD_B2_02_LPUART9_CTS_B

IOMUXC_GPIO_SD_B2_02_LPSPI4_SOUT

IOMUXC_GPIO_SD_B2_02_GPIO_MUX4_IO11

IOMUXC_GPIO_SD_B2_03_GPIO10_IO12

IOMUXC_GPIO_SD_B2_03_USDHC2_DATA0

IOMUXC_GPIO_SD_B2_03_FLEXSPI1_B_DATA00

IOMUXC_GPIO_SD_B2_03_ENET_1G_RX_DATA01

IOMUXC_GPIO_SD_B2_03_LPUART9_RTS_B

IOMUXC_GPIO_SD_B2_03_LPSPI4_SIN

IOMUXC_GPIO_SD_B2_03_GPIO_MUX4_IO12

IOMUXC_GPIO_SD_B2_04_USDHC2_CLK

IOMUXC_GPIO_SD_B2_04_FLEXSPI1_B_SCLK

IOMUXC_GPIO_SD_B2_04_ENET_1G_RX_DATA02

IOMUXC_GPIO_SD_B2_04_FLEXSPI1_A_SS1_B

IOMUXC_GPIO_SD_B2_04_LPSPI4_PCS1

IOMUXC_GPIO_SD_B2_04_GPIO_MUX4_IO13

IOMUXC_GPIO_SD_B2_04_GPIO10_IO13

IOMUXC_GPIO_SD_B2_05_GPIO10_IO14

IOMUXC_GPIO_SD_B2_05_USDHC2_CMD

IOMUXC_GPIO_SD_B2_05_FLEXSPI1_A_DQS

2.65. IOMUXC: IOMUX Controller 773



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_SD_B2_05_ENET_1G_RX_DATA03

IOMUXC_GPIO_SD_B2_05_FLEXSPI1_B_SS0_B

IOMUXC_GPIO_SD_B2_05_LPSPI4_PCS2

IOMUXC_GPIO_SD_B2_05_GPIO_MUX4_IO14

IOMUXC_GPIO_SD_B2_06_GPIO10_IO15

IOMUXC_GPIO_SD_B2_06_USDHC2_RESET_B

IOMUXC_GPIO_SD_B2_06_FLEXSPI1_A_SS0_B

IOMUXC_GPIO_SD_B2_06_ENET_1G_TX_DATA03

IOMUXC_GPIO_SD_B2_06_LPSPI4_PCS3

IOMUXC_GPIO_SD_B2_06_GPT6_CAPTURE1

IOMUXC_GPIO_SD_B2_06_GPIO_MUX4_IO15

IOMUXC_GPIO_SD_B2_07_USDHC2_STROBE

IOMUXC_GPIO_SD_B2_07_FLEXSPI1_A_SCLK

IOMUXC_GPIO_SD_B2_07_ENET_1G_TX_DATA02

IOMUXC_GPIO_SD_B2_07_LPUART3_CTS_B

IOMUXC_GPIO_SD_B2_07_GPT6_CAPTURE2

IOMUXC_GPIO_SD_B2_07_GPIO_MUX4_IO16

IOMUXC_GPIO_SD_B2_07_LPSPI2_SCK

IOMUXC_GPIO_SD_B2_07_ENET_TX_ER

IOMUXC_GPIO_SD_B2_07_ENET_QOS_REF_CLK

IOMUXC_GPIO_SD_B2_07_GPIO10_IO16

IOMUXC_GPIO_SD_B2_08_GPIO10_IO17

IOMUXC_GPIO_SD_B2_08_USDHC2_DATA4

IOMUXC_GPIO_SD_B2_08_FLEXSPI1_A_DATA00

IOMUXC_GPIO_SD_B2_08_ENET_1G_TX_DATA01

IOMUXC_GPIO_SD_B2_08_LPUART3_RTS_B

IOMUXC_GPIO_SD_B2_08_GPT6_COMPARE1

IOMUXC_GPIO_SD_B2_08_GPIO_MUX4_IO17

IOMUXC_GPIO_SD_B2_08_LPSPI2_PCS0

IOMUXC_GPIO_SD_B2_09_GPIO10_IO18

IOMUXC_GPIO_SD_B2_09_USDHC2_DATA5

IOMUXC_GPIO_SD_B2_09_FLEXSPI1_A_DATA01

IOMUXC_GPIO_SD_B2_09_ENET_1G_TX_DATA00

774 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_SD_B2_09_LPUART5_CTS_B

IOMUXC_GPIO_SD_B2_09_GPT6_COMPARE2

IOMUXC_GPIO_SD_B2_09_GPIO_MUX4_IO18

IOMUXC_GPIO_SD_B2_09_LPSPI2_SOUT

IOMUXC_GPIO_SD_B2_10_GPIO10_IO19

IOMUXC_GPIO_SD_B2_10_USDHC2_DATA6

IOMUXC_GPIO_SD_B2_10_FLEXSPI1_A_DATA02

IOMUXC_GPIO_SD_B2_10_ENET_1G_TX_EN

IOMUXC_GPIO_SD_B2_10_LPUART5_RTS_B

IOMUXC_GPIO_SD_B2_10_GPT6_COMPARE3

IOMUXC_GPIO_SD_B2_10_GPIO_MUX4_IO19

IOMUXC_GPIO_SD_B2_10_LPSPI2_SIN

IOMUXC_GPIO_SD_B2_11_USDHC2_DATA7

IOMUXC_GPIO_SD_B2_11_FLEXSPI1_A_DATA03

IOMUXC_GPIO_SD_B2_11_ENET_1G_TX_CLK_IO

IOMUXC_GPIO_SD_B2_11_ENET_1G_REF_CLK

IOMUXC_GPIO_SD_B2_11_GPT6_CLK

IOMUXC_GPIO_SD_B2_11_GPIO_MUX4_IO20

IOMUXC_GPIO_SD_B2_11_LPSPI2_PCS1

IOMUXC_GPIO_SD_B2_11_GPIO10_IO20

IOMUXC_GPIO_DISP_B1_00_VIDEO_MUX_LCDIF_CLK

IOMUXC_GPIO_DISP_B1_00_ENET_1G_RX_EN

IOMUXC_GPIO_DISP_B1_00_TMR1_TIMER0

IOMUXC_GPIO_DISP_B1_00_XBAR1_INOUT26

IOMUXC_GPIO_DISP_B1_00_GPIO_MUX4_IO21

IOMUXC_GPIO_DISP_B1_00_ENET_QOS_RX_EN

IOMUXC_GPIO_DISP_B1_00_GPIO10_IO21

IOMUXC_GPIO_DISP_B1_01_VIDEO_MUX_LCDIF_ENABLE

IOMUXC_GPIO_DISP_B1_01_ENET_1G_RX_CLK

IOMUXC_GPIO_DISP_B1_01_ENET_1G_RX_ER

IOMUXC_GPIO_DISP_B1_01_TMR1_TIMER1

IOMUXC_GPIO_DISP_B1_01_XBAR1_INOUT27

IOMUXC_GPIO_DISP_B1_01_GPIO_MUX4_IO22

2.65. IOMUXC: IOMUX Controller 775



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B1_01_ENET_QOS_RX_CLK

IOMUXC_GPIO_DISP_B1_01_ENET_QOS_RX_ER

IOMUXC_GPIO_DISP_B1_01_GPIO10_IO22

IOMUXC_GPIO_DISP_B1_02_GPIO10_IO23

IOMUXC_GPIO_DISP_B1_02_VIDEO_MUX_LCDIF_HSYNC

IOMUXC_GPIO_DISP_B1_02_ENET_1G_RX_DATA00

IOMUXC_GPIO_DISP_B1_02_LPI2C3_SCL

IOMUXC_GPIO_DISP_B1_02_TMR1_TIMER2

IOMUXC_GPIO_DISP_B1_02_XBAR1_INOUT28

IOMUXC_GPIO_DISP_B1_02_GPIO_MUX4_IO23

IOMUXC_GPIO_DISP_B1_02_ENET_QOS_RX_DATA00

IOMUXC_GPIO_DISP_B1_02_LPUART1_TXD

IOMUXC_GPIO_DISP_B1_03_VIDEO_MUX_LCDIF_VSYNC

IOMUXC_GPIO_DISP_B1_03_ENET_1G_RX_DATA01

IOMUXC_GPIO_DISP_B1_03_LPI2C3_SDA

IOMUXC_GPIO_DISP_B1_03_TMR2_TIMER0

IOMUXC_GPIO_DISP_B1_03_XBAR1_INOUT29

IOMUXC_GPIO_DISP_B1_03_GPIO_MUX4_IO24

IOMUXC_GPIO_DISP_B1_03_ENET_QOS_RX_DATA01

IOMUXC_GPIO_DISP_B1_03_LPUART1_RXD

IOMUXC_GPIO_DISP_B1_03_GPIO10_IO24

IOMUXC_GPIO_DISP_B1_04_VIDEO_MUX_LCDIF_DATA00

IOMUXC_GPIO_DISP_B1_04_ENET_1G_RX_DATA02

IOMUXC_GPIO_DISP_B1_04_LPUART4_RXD

IOMUXC_GPIO_DISP_B1_04_TMR2_TIMER1

IOMUXC_GPIO_DISP_B1_04_XBAR1_INOUT30

IOMUXC_GPIO_DISP_B1_04_GPIO_MUX4_IO25

IOMUXC_GPIO_DISP_B1_04_ENET_QOS_RX_DATA02

IOMUXC_GPIO_DISP_B1_04_LPSPI3_SCK

IOMUXC_GPIO_DISP_B1_04_GPIO10_IO25

IOMUXC_GPIO_DISP_B1_05_GPIO10_IO26

IOMUXC_GPIO_DISP_B1_05_VIDEO_MUX_LCDIF_DATA01

IOMUXC_GPIO_DISP_B1_05_ENET_1G_RX_DATA03

776 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B1_05_LPUART4_CTS_B

IOMUXC_GPIO_DISP_B1_05_TMR2_TIMER2

IOMUXC_GPIO_DISP_B1_05_XBAR1_INOUT31

IOMUXC_GPIO_DISP_B1_05_GPIO_MUX4_IO26

IOMUXC_GPIO_DISP_B1_05_ENET_QOS_RX_DATA03

IOMUXC_GPIO_DISP_B1_05_LPSPI3_SIN

IOMUXC_GPIO_DISP_B1_06_VIDEO_MUX_LCDIF_DATA02

IOMUXC_GPIO_DISP_B1_06_ENET_1G_TX_DATA03

IOMUXC_GPIO_DISP_B1_06_LPUART4_TXD

IOMUXC_GPIO_DISP_B1_06_TMR3_TIMER0

IOMUXC_GPIO_DISP_B1_06_XBAR1_INOUT32

IOMUXC_GPIO_DISP_B1_06_GPIO_MUX4_IO27

IOMUXC_GPIO_DISP_B1_06_SRC_BT_CFG00

IOMUXC_GPIO_DISP_B1_06_ENET_QOS_TX_DATA03

IOMUXC_GPIO_DISP_B1_06_LPSPI3_SOUT

IOMUXC_GPIO_DISP_B1_06_GPIO10_IO27

IOMUXC_GPIO_DISP_B1_07_VIDEO_MUX_LCDIF_DATA03

IOMUXC_GPIO_DISP_B1_07_ENET_1G_TX_DATA02

IOMUXC_GPIO_DISP_B1_07_LPUART4_RTS_B

IOMUXC_GPIO_DISP_B1_07_TMR3_TIMER1

IOMUXC_GPIO_DISP_B1_07_XBAR1_INOUT33

IOMUXC_GPIO_DISP_B1_07_GPIO_MUX4_IO28

IOMUXC_GPIO_DISP_B1_07_SRC_BT_CFG01

IOMUXC_GPIO_DISP_B1_07_ENET_QOS_TX_DATA02

IOMUXC_GPIO_DISP_B1_07_LPSPI3_PCS0

IOMUXC_GPIO_DISP_B1_07_GPIO10_IO28

IOMUXC_GPIO_DISP_B1_08_GPIO10_IO29

IOMUXC_GPIO_DISP_B1_08_VIDEO_MUX_LCDIF_DATA04

IOMUXC_GPIO_DISP_B1_08_ENET_1G_TX_DATA01

IOMUXC_GPIO_DISP_B1_08_USDHC1_CD_B

IOMUXC_GPIO_DISP_B1_08_TMR3_TIMER2

IOMUXC_GPIO_DISP_B1_08_XBAR1_INOUT34

IOMUXC_GPIO_DISP_B1_08_GPIO_MUX4_IO29

2.65. IOMUXC: IOMUX Controller 777



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B1_08_SRC_BT_CFG02

IOMUXC_GPIO_DISP_B1_08_ENET_QOS_TX_DATA01

IOMUXC_GPIO_DISP_B1_08_LPSPI3_PCS1

IOMUXC_GPIO_DISP_B1_09_VIDEO_MUX_LCDIF_DATA05

IOMUXC_GPIO_DISP_B1_09_ENET_1G_TX_DATA00

IOMUXC_GPIO_DISP_B1_09_USDHC1_WP

IOMUXC_GPIO_DISP_B1_09_TMR4_TIMER0

IOMUXC_GPIO_DISP_B1_09_XBAR1_INOUT35

IOMUXC_GPIO_DISP_B1_09_GPIO_MUX4_IO30

IOMUXC_GPIO_DISP_B1_09_SRC_BT_CFG03

IOMUXC_GPIO_DISP_B1_09_ENET_QOS_TX_DATA00

IOMUXC_GPIO_DISP_B1_09_LPSPI3_PCS2

IOMUXC_GPIO_DISP_B1_09_GPIO10_IO30

IOMUXC_GPIO_DISP_B1_10_VIDEO_MUX_LCDIF_DATA06

IOMUXC_GPIO_DISP_B1_10_ENET_1G_TX_EN

IOMUXC_GPIO_DISP_B1_10_USDHC1_RESET_B

IOMUXC_GPIO_DISP_B1_10_TMR4_TIMER1

IOMUXC_GPIO_DISP_B1_10_XBAR1_INOUT36

IOMUXC_GPIO_DISP_B1_10_GPIO_MUX4_IO31

IOMUXC_GPIO_DISP_B1_10_SRC_BT_CFG04

IOMUXC_GPIO_DISP_B1_10_ENET_QOS_TX_EN

IOMUXC_GPIO_DISP_B1_10_LPSPI3_PCS3

IOMUXC_GPIO_DISP_B1_10_GPIO10_IO31

IOMUXC_GPIO_DISP_B1_11_VIDEO_MUX_LCDIF_DATA07

IOMUXC_GPIO_DISP_B1_11_ENET_1G_TX_CLK_IO

IOMUXC_GPIO_DISP_B1_11_ENET_1G_REF_CLK

IOMUXC_GPIO_DISP_B1_11_TMR4_TIMER2

IOMUXC_GPIO_DISP_B1_11_XBAR1_INOUT37

IOMUXC_GPIO_DISP_B1_11_GPIO_MUX5_IO00

IOMUXC_GPIO_DISP_B1_11_SRC_BT_CFG05

IOMUXC_GPIO_DISP_B1_11_ENET_QOS_TX_CLK

IOMUXC_GPIO_DISP_B1_11_ENET_QOS_REF_CLK

IOMUXC_GPIO_DISP_B1_11_GPIO11_IO00

778 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B2_00_GPIO11_IO01

IOMUXC_GPIO_DISP_B2_00_VIDEO_MUX_LCDIF_DATA08

IOMUXC_GPIO_DISP_B2_00_WDOG1_B

IOMUXC_GPIO_DISP_B2_00_MQS_RIGHT

IOMUXC_GPIO_DISP_B2_00_ENET_1G_TX_ER

IOMUXC_GPIO_DISP_B2_00_SAI1_TX_DATA03

IOMUXC_GPIO_DISP_B2_00_GPIO_MUX5_IO01

IOMUXC_GPIO_DISP_B2_00_SRC_BT_CFG06

IOMUXC_GPIO_DISP_B2_00_ENET_QOS_TX_ER

IOMUXC_GPIO_DISP_B2_01_VIDEO_MUX_LCDIF_DATA09

IOMUXC_GPIO_DISP_B2_01_USDHC1_VSELECT

IOMUXC_GPIO_DISP_B2_01_MQS_LEFT

IOMUXC_GPIO_DISP_B2_01_WDOG2_B

IOMUXC_GPIO_DISP_B2_01_SAI1_TX_DATA02

IOMUXC_GPIO_DISP_B2_01_GPIO_MUX5_IO02

IOMUXC_GPIO_DISP_B2_01_SRC_BT_CFG07

IOMUXC_GPIO_DISP_B2_01_EWM_OUT_B

IOMUXC_GPIO_DISP_B2_01_CCM_ENET_REF_CLK_25M

IOMUXC_GPIO_DISP_B2_01_GPIO11_IO02

IOMUXC_GPIO_DISP_B2_02_GPIO11_IO03

IOMUXC_GPIO_DISP_B2_02_VIDEO_MUX_LCDIF_DATA10

IOMUXC_GPIO_DISP_B2_02_ENET_TX_DATA00

IOMUXC_GPIO_DISP_B2_02_PIT1_TRIGGER3

IOMUXC_GPIO_DISP_B2_02_ARM_TRACE00

IOMUXC_GPIO_DISP_B2_02_SAI1_TX_DATA01

IOMUXC_GPIO_DISP_B2_02_GPIO_MUX5_IO03

IOMUXC_GPIO_DISP_B2_02_SRC_BT_CFG08

IOMUXC_GPIO_DISP_B2_02_ENET_QOS_TX_DATA00

IOMUXC_GPIO_DISP_B2_03_GPIO11_IO04

IOMUXC_GPIO_DISP_B2_03_VIDEO_MUX_LCDIF_DATA11

IOMUXC_GPIO_DISP_B2_03_ENET_TX_DATA01

IOMUXC_GPIO_DISP_B2_03_PIT1_TRIGGER2

IOMUXC_GPIO_DISP_B2_03_ARM_TRACE01

2.65. IOMUXC: IOMUX Controller 779



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B2_03_SAI1_MCLK

IOMUXC_GPIO_DISP_B2_03_GPIO_MUX5_IO04

IOMUXC_GPIO_DISP_B2_03_SRC_BT_CFG09

IOMUXC_GPIO_DISP_B2_03_ENET_QOS_TX_DATA01

IOMUXC_GPIO_DISP_B2_04_VIDEO_MUX_LCDIF_DATA12

IOMUXC_GPIO_DISP_B2_04_ENET_TX_EN

IOMUXC_GPIO_DISP_B2_04_PIT1_TRIGGER1

IOMUXC_GPIO_DISP_B2_04_ARM_TRACE02

IOMUXC_GPIO_DISP_B2_04_SAI1_RX_SYNC

IOMUXC_GPIO_DISP_B2_04_GPIO_MUX5_IO05

IOMUXC_GPIO_DISP_B2_04_SRC_BT_CFG10

IOMUXC_GPIO_DISP_B2_04_ENET_QOS_TX_EN

IOMUXC_GPIO_DISP_B2_04_GPIO11_IO05

IOMUXC_GPIO_DISP_B2_05_GPIO11_IO06

IOMUXC_GPIO_DISP_B2_05_VIDEO_MUX_LCDIF_DATA13

IOMUXC_GPIO_DISP_B2_05_ENET_TX_CLK

IOMUXC_GPIO_DISP_B2_05_ENET_REF_CLK

IOMUXC_GPIO_DISP_B2_05_ARM_TRACE03

IOMUXC_GPIO_DISP_B2_05_SAI1_RX_BCLK

IOMUXC_GPIO_DISP_B2_05_GPIO_MUX5_IO06

IOMUXC_GPIO_DISP_B2_05_SRC_BT_CFG11

IOMUXC_GPIO_DISP_B2_05_ENET_QOS_TX_CLK

IOMUXC_GPIO_DISP_B2_06_GPIO11_IO07

IOMUXC_GPIO_DISP_B2_06_VIDEO_MUX_LCDIF_DATA14

IOMUXC_GPIO_DISP_B2_06_ENET_RX_DATA00

IOMUXC_GPIO_DISP_B2_06_LPUART7_TXD

IOMUXC_GPIO_DISP_B2_06_ARM_TRACE_CLK

IOMUXC_GPIO_DISP_B2_06_SAI1_RX_DATA00

IOMUXC_GPIO_DISP_B2_06_GPIO_MUX5_IO07

IOMUXC_GPIO_DISP_B2_06_ENET_QOS_RX_DATA00

IOMUXC_GPIO_DISP_B2_07_VIDEO_MUX_LCDIF_DATA15

IOMUXC_GPIO_DISP_B2_07_ENET_RX_DATA01

IOMUXC_GPIO_DISP_B2_07_LPUART7_RXD

780 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B2_07_ARM_TRACE_SWO

IOMUXC_GPIO_DISP_B2_07_SAI1_TX_DATA00

IOMUXC_GPIO_DISP_B2_07_GPIO_MUX5_IO08

IOMUXC_GPIO_DISP_B2_07_ENET_QOS_RX_DATA01

IOMUXC_GPIO_DISP_B2_07_GPIO11_IO08

IOMUXC_GPIO_DISP_B2_08_GPIO11_IO09

IOMUXC_GPIO_DISP_B2_08_VIDEO_MUX_LCDIF_DATA16

IOMUXC_GPIO_DISP_B2_08_ENET_RX_EN

IOMUXC_GPIO_DISP_B2_08_LPUART8_TXD

IOMUXC_GPIO_DISP_B2_08_ARM_CM7_EVENTO

IOMUXC_GPIO_DISP_B2_08_SAI1_TX_BCLK

IOMUXC_GPIO_DISP_B2_08_GPIO_MUX5_IO09

IOMUXC_GPIO_DISP_B2_08_ENET_QOS_RX_EN

IOMUXC_GPIO_DISP_B2_08_LPUART1_TXD

IOMUXC_GPIO_DISP_B2_09_GPIO11_IO10

IOMUXC_GPIO_DISP_B2_09_VIDEO_MUX_LCDIF_DATA17

IOMUXC_GPIO_DISP_B2_09_ENET_RX_ER

IOMUXC_GPIO_DISP_B2_09_LPUART8_RXD

IOMUXC_GPIO_DISP_B2_09_ARM_CM7_EVENTI

IOMUXC_GPIO_DISP_B2_09_SAI1_TX_SYNC

IOMUXC_GPIO_DISP_B2_09_GPIO_MUX5_IO10

IOMUXC_GPIO_DISP_B2_09_ENET_QOS_RX_ER

IOMUXC_GPIO_DISP_B2_09_LPUART1_RXD

IOMUXC_GPIO_DISP_B2_10_GPIO11_IO11

IOMUXC_GPIO_DISP_B2_10_VIDEO_MUX_LCDIF_DATA18

IOMUXC_GPIO_DISP_B2_10_EMVSIM2_IO

IOMUXC_GPIO_DISP_B2_10_LPUART2_TXD

IOMUXC_GPIO_DISP_B2_10_WDOG2_RESET_B_DEB

IOMUXC_GPIO_DISP_B2_10_XBAR1_INOUT38

IOMUXC_GPIO_DISP_B2_10_GPIO_MUX5_IO11

IOMUXC_GPIO_DISP_B2_10_LPI2C3_SCL

IOMUXC_GPIO_DISP_B2_10_ENET_QOS_RX_ER

IOMUXC_GPIO_DISP_B2_10_SPDIF_IN

2.65. IOMUXC: IOMUX Controller 781



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B2_11_VIDEO_MUX_LCDIF_DATA19

IOMUXC_GPIO_DISP_B2_11_EMVSIM2_CLK

IOMUXC_GPIO_DISP_B2_11_LPUART2_RXD

IOMUXC_GPIO_DISP_B2_11_WDOG1_RESET_B_DEB

IOMUXC_GPIO_DISP_B2_11_XBAR1_INOUT39

IOMUXC_GPIO_DISP_B2_11_GPIO_MUX5_IO12

IOMUXC_GPIO_DISP_B2_11_LPI2C3_SDA

IOMUXC_GPIO_DISP_B2_11_ENET_QOS_CRS

IOMUXC_GPIO_DISP_B2_11_SPDIF_OUT

IOMUXC_GPIO_DISP_B2_11_GPIO11_IO12

IOMUXC_GPIO_DISP_B2_12_GPIO11_IO13

IOMUXC_GPIO_DISP_B2_12_VIDEO_MUX_LCDIF_DATA20

IOMUXC_GPIO_DISP_B2_12_EMVSIM2_RST

IOMUXC_GPIO_DISP_B2_12_FLEXCAN1_TX

IOMUXC_GPIO_DISP_B2_12_LPUART2_CTS_B

IOMUXC_GPIO_DISP_B2_12_XBAR1_INOUT40

IOMUXC_GPIO_DISP_B2_12_GPIO_MUX5_IO13

IOMUXC_GPIO_DISP_B2_12_LPI2C4_SCL

IOMUXC_GPIO_DISP_B2_12_ENET_QOS_COL

IOMUXC_GPIO_DISP_B2_12_LPSPI4_SCK

IOMUXC_GPIO_DISP_B2_13_GPIO11_IO14

IOMUXC_GPIO_DISP_B2_13_VIDEO_MUX_LCDIF_DATA21

IOMUXC_GPIO_DISP_B2_13_EMVSIM2_SVEN

IOMUXC_GPIO_DISP_B2_13_FLEXCAN1_RX

IOMUXC_GPIO_DISP_B2_13_LPUART2_RTS_B

IOMUXC_GPIO_DISP_B2_13_ENET_REF_CLK

IOMUXC_GPIO_DISP_B2_13_GPIO_MUX5_IO14

IOMUXC_GPIO_DISP_B2_13_LPI2C4_SDA

IOMUXC_GPIO_DISP_B2_13_ENET_QOS_1588_EVENT0_OUT

IOMUXC_GPIO_DISP_B2_13_LPSPI4_SIN

IOMUXC_GPIO_DISP_B2_14_GPIO_MUX5_IO15

IOMUXC_GPIO_DISP_B2_14_FLEXCAN1_TX

IOMUXC_GPIO_DISP_B2_14_ENET_QOS_1588_EVENT0_IN

782 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

IOMUXC_GPIO_DISP_B2_14_LPSPI4_SOUT

IOMUXC_GPIO_DISP_B2_14_GPIO11_IO15

IOMUXC_GPIO_DISP_B2_14_VIDEO_MUX_LCDIF_DATA22

IOMUXC_GPIO_DISP_B2_14_EMVSIM2_PD

IOMUXC_GPIO_DISP_B2_14_WDOG2_B

IOMUXC_GPIO_DISP_B2_14_VIDEO_MUX_EXT_DCIC1

IOMUXC_GPIO_DISP_B2_14_ENET_1G_REF_CLK

IOMUXC_GPIO_DISP_B2_15_VIDEO_MUX_LCDIF_DATA23

IOMUXC_GPIO_DISP_B2_15_EMVSIM2_POWER_FAIL

IOMUXC_GPIO_DISP_B2_15_WDOG1_B

IOMUXC_GPIO_DISP_B2_15_VIDEO_MUX_EXT_DCIC2

IOMUXC_GPIO_DISP_B2_15_PIT1_TRIGGER0

IOMUXC_GPIO_DISP_B2_15_GPIO_MUX5_IO16

IOMUXC_GPIO_DISP_B2_15_FLEXCAN1_RX

IOMUXC_GPIO_DISP_B2_15_ENET_QOS_1588_EVENT0_AUX_IN

IOMUXC_GPIO_DISP_B2_15_LPSPI4_PCS0

IOMUXC_GPIO_DISP_B2_15_GPIO11_IO16

IOMUXC_GPR_SAIMCLK_LOWBITMASK

IOMUXC_GPR_SAIMCLK_HIGHBITMASK

static inline void IOMUXC_SetPinMux(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister, uint32_t inputOnfield)

Sets the IOMUXC pin mux mode.

This is an example to set the PTA6 as the lpuart0_tx:

IOMUXC_SetPinMux(IOMUXC_PTA6_LPUART0_TX, 0);

This is an example to set the PTA0 as GPIOA0:

IOMUXC_SetPinMux(IOMUXC_PTA0_GPIOA0, 0);

Note: The first five parameters can be filled with the pin function ID macros.

Parameters
• muxRegister – The pin mux register.

• muxMode – The pin mux mode.

• inputRegister – The select input register.

• inputDaisy – The input daisy.

2.65. IOMUXC: IOMUX Controller 783



MCUXpresso SDK Documentation, Release 25.12.00

• configRegister – The config register.

• inputOnfield – Software input on field.

static inline void IOMUXC_SetPinConfig(uint32_t muxRegister, uint32_t muxMode, uint32_t
inputRegister, uint32_t inputDaisy, uint32_t
configRegister, uint32_t configValue)

Sets the IOMUXC pin configuration.

This is an example to set pin configuration for IOMUXC_PTA3_LPI2C0_SCLS:

IOMUXC_SetPinConfig(IOMUXC_PTA3_LPI2C0_SCLS,IOMUXC_SW_PAD_CTL_PAD_PUS_
↪→MASK|IOMUXC_SW_PAD_CTL_PAD_PUS(2U))

Note: The previous five parameters can be filled with the pin function ID macros.

Parameters
• muxRegister – The pin mux register.

• muxMode – The pin mux mode.

• inputRegister – The select input register.

• inputDaisy – The input daisy.

• configRegister – The config register.

• configValue – The pin config value.

static inline void IOMUXC_SetSaiMClkClockSource(IOMUXC_GPR_Type *base,
iomuxc_gpr_saimclk_t mclk, uint8_t clkSrc)

Sets IOMUXC general configuration for SAI MCLK selection.

Parameters
• base – The IOMUXC GPR base address.

• mclk – The SAI MCLK.

• clkSrc – The clock source. Take refer to register setting details for the clock
source in RM.

static inline void IOMUXC_MQSEnterSoftwareReset(IOMUXC_GPR_Type *base, bool enable)
Enters or exit MQS software reset.

Parameters
• base – The IOMUXC GPR base address.

• enable – Enter or exit MQS software reset.

static inline void IOMUXC_MQSEnable(IOMUXC_GPR_Type *base, bool enable)
Enables or disables MQS.

Parameters
• base – The IOMUXC GPR base address.

• enable – Enable or disable the MQS.

static inline void IOMUXC_MQSConfig(IOMUXC_GPR_Type *base,
iomuxc_mqs_pwm_oversample_rate_t rate, uint8_t
divider)

784 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Configure MQS PWM oversampling rate compared with mclk and divider ratio control for
mclk from hmclk.

Parameters
• base – The IOMUXC GPR base address.

• rate – The MQS PWM oversampling rate, refer to
“iomuxc_mqs_pwm_oversample_rate_t”.

• divider – The divider ratio control for mclk from hmclk. mclk freq = 1 /(di-
vider + 1) * hmclk freq.

FSL_IOMUXC_DRIVER_VERSION
IOMUXC driver version 2.0.2.

FSL_COMPONENT_ID

2.66 Key_manager

FSL_KEYMGR_DRIVER_VERSION
Key Manager driver version. Version 2.0.2.

Current version: 2.0.2

Change log:

• Version 2.0.2

– Fix MISRA-2012 issues

• Version 2.0.1

– Fix MISRA-2012 issues

• Version 2.0.0

– Initial version

enum _keymgr_lock
Values:

enumerator kKEYMGR_Unlock

enumerator kKEYMGR_Lock

enum _keymgr_allow
Values:

enumerator kKEYMGR_Disallow

enumerator kKEYMGR_Allow

enum _keymgr_slot
Values:

enumerator kKEYMGR_Slot0

enumerator kKEYMGR_Slot1

enumerator kKEYMGR_Slot2

2.66. Key_manager 785



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kKEYMGR_Slot3

enumerator kKEYMGR_Slot4

typedef enum _keymgr_lock keymgr_lock_t

typedef enum _keymgr_allow keymgr_allow_t

typedef enum _keymgr_slot keymgr_slot_t

typedef struct _domain_slot_config domain_slot_config_t
Key Manager slot configuration structure.

status_t KEYMGR_MasterKeyControll(KEY_MANAGER_Type *base, uint8_t select, keymgr_lock_t
lock)

Configures Master key settings.

This function configures Key Manager’s setting for Master key.

Parameters
• base – Key Manager peripheral address.

• select – select source for Master key.

• lock – setting for lock Master key.

Returns
status of Master key control operation

status_t KEYMGR_OTFAD1KeyControll(KEY_MANAGER_Type *base, uint8_t select,
keymgr_lock_t lock)

Configures OTFAD1 key settings.

This function configures Key Manager’s setting for OTFAD1 key.

Parameters
• base – Key Manager peripheral address.

• select – select source for OTFAD1 key.

• lock – setting for lock OTFAD1 key.

Returns
status of OTFAD1 key control operation

status_t KEYMGR_OTFAD2KeyControll(KEY_MANAGER_Type *base, uint8_t select,
keymgr_lock_t lock)

Configures OTFAD2 key settings.

This function configures Key Manager’s setting for OTFAD2 key.

Parameters
• base – Key Manager peripheral address.

• select – select source for OTFAD2 key.

• lock – setting for lock OTFAD2 key.

Returns
status of OTFAD2 key control operation

void KEYMGR_IEEKeyReload(KEY_MANAGER_Type *base)
Restart load key signal for IEE.

This function genrates Key Manager’s restart signal for IEE key.

Parameters

786 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – Key Manager peripheral address.

void KEYMGR_PUFKeyLock(KEY_MANAGER_Type *base, keymgr_lock_t lock)
Lock the key select from PUF.

This function locks selection of key for PUF.

Parameters
• base – Key Manager peripheral address.

• lock – Setting for selection of key for PUF.

status_t KEYMGR_SlotControl(KEY_MANAGER_Type *base, domain_slot_config_t *config,
keymgr_slot_t slot)

Configures Slot Domain control.

This function configures domain slot control which locks and allows writes.

Parameters
• base – Key Manager peripheral address.

• config – Pointer to slot configuration structure.

• slot – Select slot to be configured.

Returns
status of slot control operation

void KEYMGR_Init(KEY_MANAGER_Type *base)
Resets Key Manager module to factory default values.

This function performs hardware reset of Key Manager module.

Parameters
• base – Key Manager peripheral address.

status_t KEYMGR_GetDefaultConfig(domain_slot_config_t *config)
Sets the default configuration of Key manager slot.

This function initialize Key Manager slot config structure to default values.

Parameters
• config – Pointer to slot configuration structure.

KEYMGR_IEE_RELOAD

KEYMGR_SEL_OCOTP

KEYMGR_SEL_UDF

KEYMGR_SEL_PUF

keymgr_select_t

struct _domain_slot_config
#include <fsl_key_manager.h> Key Manager slot configuration structure.

Public Members

keymgr_lock_t lockControl
Lock control register of slot.

keymgr_allow_t allowUser
Allow user write access to domain control register or domain register.

2.66. Key_manager 787



MCUXpresso SDK Documentation, Release 25.12.00

keymgr_allow_t allowNonSecure
Allow non-secure write access to domain control register or domain register.

keymgr_lock_t lockList
Lock whitelist. SLOTx_CTRL[WHITE_LIST] cannot be changed.

uint8_t whiteList
Domains that on the Whitelist can change given slot. Each field represents one domain.
Bit0~Bit3 represent DOMAIN0~DOMAIN3 respectively.

2.67 KPP: KeyPad Port Driver

void KPP_Init(KPP_Type *base, kpp_config_t *configure)
KPP initialize. This function ungates the KPP clock and initializes KPP. This function must
be called before calling any other KPP driver functions.

Parameters
• base – KPP peripheral base address.

• configure – The KPP configuration structure pointer.

void KPP_Deinit(KPP_Type *base)
Deinitializes the KPP module and gates the clock. This function gates the KPP clock. As a
result, the KPP module doesn’t work after calling this function.

Parameters
• base – KPP peripheral base address.

static inline void KPP_EnableInterrupts(KPP_Type *base, uint16_t mask)
Enable the interrupt.

Parameters
• base – KPP peripheral base address.

• mask – KPP interrupts to enable. This is a logical OR of the enumeration ::
kpp_interrupt_enable_t.

static inline void KPP_DisableInterrupts(KPP_Type *base, uint16_t mask)
Disable the interrupt.

Parameters
• base – KPP peripheral base address.

• mask – KPP interrupts to disable. This is a logical OR of the enumeration ::
kpp_interrupt_enable_t.

static inline uint16_t KPP_GetStatusFlag(KPP_Type *base)
Gets the KPP interrupt event status.

Parameters
• base – KPP peripheral base address.

Returns
The status of the KPP. Application can use the enum type in the
“kpp_interrupt_enable_t” to get the right status of the related event.

788 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void KPP_ClearStatusFlag(KPP_Type *base, uint16_t mask)
Clears KPP status flag.

Parameters
• base – KPP peripheral base address.

• mask – KPP mask to be cleared. This is a logical OR of the enumeration ::
kpp_interrupt_enable_t.

static inline void KPP_SetSynchronizeChain(KPP_Type *base, uint16_t mask)
Set KPP synchronization chain.

Parameters
• base – KPP peripheral base address.

• mask – KPP mask to be cleared. This is a logical OR of the enumeration ::
kpp_sync_operation_t.

status_t KPP_keyPressScanning(KPP_Type *base, uint8_t *data, uint32_t clockSrc_Hz)
Keypad press scanning.

This function will scanning all columns and rows. so all scanning data will be stored in the
data pointer.

Parameters
• base – KPP peripheral base address.

• data – KPP key press scanning data. The data buffer should be pre-
pared with length at least equal to KPP_KEYPAD_COLUMNNUM_MAX *
KPP_KEYPAD_ROWNUM_MAX. the data pointer is recommended to be a
array like uint8_t data[KPP_KEYPAD_COLUMNNUM_MAX]. for example
the data[2] = 4, that means in column 1 row 2 has a key press event.

• clockSrc_Hz – Source clock.

Return values
kStatus_Success – kpp press scan succeed.

FSL_KPP_DRIVER_VERSION
KPP driver version.

enum _kpp_interrupt_enable
List of interrupts supported by the peripheral. This enumeration uses one-bot encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

Values:

enumerator kKPP_keyDepressInterrupt
Keypad depress interrupt source

enumerator kKPP_keyReleaseInterrupt
Keypad release interrupt source

enum _kpp_sync_operation
Lists of KPP synchronize chain operation.

Values:

enumerator kKPP_ClearKeyDepressSyncChain
Keypad depress interrupt status.

enumerator kKPP_SetKeyReleasesSyncChain
Keypad release interrupt status.

2.67. KPP: KeyPad Port Driver 789



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _kpp_interrupt_enable kpp_interrupt_enable_t
List of interrupts supported by the peripheral. This enumeration uses one-bot encoding to
allow a logical OR of multiple members. Members usually map to interrupt enable bits in
one or more peripheral registers.

typedef enum _kpp_sync_operation kpp_sync_operation_t
Lists of KPP synchronize chain operation.

typedef struct _kpp_config kpp_config_t
Lists of KPP status.

KPP_KEYPAD_COLUMNNUM_MAX

KPP_KEYPAD_ROWNUM_MAX

struct _kpp_config
#include <fsl_kpp.h> Lists of KPP status.

Public Members

uint8_t activeRow
The row number: bit 7 ~ 0 represents the row 7 ~ 0.

uint8_t activeColumn
The column number: bit 7 ~ 0 represents the column 7 ~ 0.

uint16_t interrupt
KPP interrupt source. A logical OR of “kpp_interrupt_enable_t”.

2.68 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

790 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_ALIGN(var, alignbytes)
Macro to define a variable with alignbytes alignment

2.68. Common Driver 791



MCUXpresso SDK Documentation, Release 25.12.00

SDK_L1DCACHE_ALIGN(var)
Macro to define a variable with L1 d-cache line size alignment

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value (rounded up)

SDK_SIZEALIGN_UP(var, alignbytes)
Macro to change a value to a given size aligned value (rounded up), the wrapper of
SDK_SIZEALIGN

SDK_SIZEALIGN_DOWN(var, alignbytes)
Macro to change a value to a given size aligned value (rounded down)

SDK_IS_ALIGNED(var, alignbytes)
Macro to check if a value is aligned to a given size

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

MCUX_CS

AT_CACHE_LINE_SECTION(var)
Define a variable var, which is cache line size aligned and be placed in CacheLineData sec-
tion.

AT_CACHE_LINE_SECTION_INIT(var)
Define a variable var with initial value, which is cache line size aligned and be placed in
CacheLineData.init section.

CACHE_LINE_DATA

AT_QUICKACCESS_SECTION_CODE(func)
Place function in a section which can be accessed quickly by core.

AT_QUICKACCESS_SECTION_DATA(var)
Place data in a section which can be accessed quickly by core.

AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes)
Place data in a section which can be accessed quickly by core, and the variable address is
set to align with alignbytes.

MCUX_RAMFUNC
Function attribute to place function in RAM. For example, to place function my_func in ram,
use like:

MCUX_RAMFUNC my_func

RAMFUNCTION_SECTION_CODE(func)
Place function in ram.

792 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

2.68. Common Driver 793



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

794 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

2.68. Common Driver 795



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

796 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

2.68. Common Driver 797



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

798 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

enumerator kStatusGroup_LPC_QSPI
Group number for LPC QSPI status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

2.68. Common Driver 799



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

800 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

2.68. Common Driver 801



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is

supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

802 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_HAS_DWT_CYCCNT
The chip supports DWT CYCCNT or not.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.69 LCDIFv2: LCD Interface v2

void LCDIFV2_Init(LCDIFV2_Type *base)
Initializes the LCDIF v2.

This function ungates the LCDIF v2 clock and release the peripheral reset.

Parameters
• base – LCDIF v2 peripheral base address.

void LCDIFV2_Deinit(LCDIFV2_Type *base)
Deinitializes the LCDIF peripheral.

Parameters
• base – LCDIF peripheral base address.

void LCDIFV2_Reset(LCDIFV2_Type *base)
Reset the LCDIF v2.

Parameters
• base – LCDIF peripheral base address.

void LCDIFV2_DisplayGetDefaultConfig(lcdifv2_display_config_t *config)
Gets the LCDIF display default configuration structure.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config->panelWidth = 0U;
config->panelHeight = 0U;
config->hsw = 3U;
config->hfp = 3U;
config->hbp = 3U;
config->vsw = 3U;
config->vfp = 3U;
config->vbp = 3U;
config->polarityFlags = kLCDIFV2_VsyncActiveHigh | kLCDIFV2_HsyncActiveHigh | kLCDIFV2_
↪→DataEnableActiveHigh |

kLCDIFV2_DriveDataOnRisingClkEdge | kLCDIFV2_DataActiveHigh;
config->lineOrder = kLCDIFV2_LineOrderRGB;

Parameters
• config – Pointer to the LCDIF configuration structure.

void LCDIFV2_SetDisplayConfig(LCDIFV2_Type *base, const lcdifv2_display_config_t *config)
Set the LCDIF v2 display configurations.

Parameters
• base – LCDIF peripheral base address.

2.69. LCDIFv2: LCD Interface v2 803



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the LCDIF configuration structure.

static inline void LCDIFV2_EnableDisplay(LCDIFV2_Type *base, bool enable)
Enable or disable the display.

Parameters
• base – LCDIF peripheral base address.

• enable – Enable or disable.

static inline void LCDIFV2_EnableInterrupts(LCDIFV2_Type *base, uint8_t domain, uint32_t
mask)

Enables LCDIF interrupt requests.

Parameters
• base – LCDIF peripheral base address.

• domain – CPU domain the interrupt signal routed to.

• mask – interrupt source, OR’ed value of _lcdifv2_interrupt.

static inline void LCDIFV2_DisableInterrupts(LCDIFV2_Type *base, uint8_t domain, uint32_t
mask)

Disables LCDIF interrupt requests.

Parameters
• base – LCDIF peripheral base address.

• domain – CPU domain the interrupt signal routed to.

• mask – interrupt source, OR’ed value of _lcdifv2_interrupt.

static inline uint32_t LCDIFV2_GetInterruptStatus(LCDIFV2_Type *base, uint8_t domain)
Get LCDIF interrupt peding status.

Parameters
• base – LCDIF peripheral base address.

• domain – CPU domain the interrupt signal routed to.

Returns
Interrupt pending status, OR’ed value of _lcdifv2_interrupt.

static inline void LCDIFV2_ClearInterruptStatus(LCDIFV2_Type *base, uint8_t domain, uint32_t
mask)

Clear LCDIF interrupt peding status.

Parameters
• base – LCDIF peripheral base address.

• domain – CPU domain the interrupt signal routed to.

• mask – of the flags to clear, OR’ed value of _lcdifv2_interrupt.

status_t LCDIFV2_SetLut(LCDIFV2_Type *base, uint8_t layerIndex, const uint32_t *lutData,
uint16_t count, bool useShadowLoad)

Set the LUT data.

This function sets the specific layer LUT data, if useShadowLoad is true, call LCD-
IFV2_TriggerLayerShadowLoad after this function, the LUT will be loaded to the hardware
during next vertical blanking period. If useShadowLoad is false, the LUT data is loaded to
hardware directly.

Parameters

804 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – LCDIF v2 peripheral base address.

• layerIndex – Which layer to set.

• lutData – The LUT data to load.

• count – Count of lutData.

• useShadowLoad – Use shadow load.

Return values
• kStatus_Success – Set success.

• kStatus_Fail – Previous LUT data is not loaded to hardware yet.

static inline void LCDIFV2_SetLayerSize(LCDIFV2_Type *base, uint8_t layerIndex, uint16_t
width, uint16_t height)

Set the layer dimension.

Note: The layer width must be in multiples of the number of pixels that can be stored in
32 bits

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Layer layerIndex.

• width – Layer width in pixel.

• height – Layer height.

static inline void LCDIFV2_SetLayerOffset(LCDIFV2_Type *base, uint8_t layerIndex, uint16_t
offsetX, uint16_t offsetY)

Set the layer position in output frame.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Layer layerIndex.

• offsetX – Horizontal offset, start from 0.

• offsetY – Vertical offset, start from 0.

void LCDIFV2_SetLayerBufferConfig(LCDIFV2_Type *base, uint8_t layerIndex, const
lcdifv2_buffer_config_t *config)

Set the layer source buffer configuration.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Layer layerIndex.

• config – Pointer to the configuration.

static inline void LCDIFV2_SetLayerBufferAddr(LCDIFV2_Type *base, uint8_t layerIndex,
uint32_t addr)

Set the layer source buffer address.

This function is used for fast runtime source buffer change.

Parameters
• base – LCDIFv2 peripheral base address.

2.69. LCDIFv2: LCD Interface v2 805



MCUXpresso SDK Documentation, Release 25.12.00

• layerIndex – Layer layerIndex.

• addr – The new source buffer address passed to the layer, should be 64-bit
aligned.

static inline void LCDIFV2_EnableLayer(LCDIFV2_Type *base, uint8_t layerIndex, bool enable)
Enable or disable the layer.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Layer layerIndex.

• enable – Pass in true to enable, false to disable.

static inline void LCDIFV2_TriggerLayerShadowLoad(LCDIFV2_Type *base, uint8_t layerIndex)
Trigger the layer configuration shadow load.

The new layer configurations are written to the shadow registers first, When all configu-
rations written finished, call this function, then shadowed control registers are updated to
the active control registers on VSYNC of next frame.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Layer layerIndex.

static inline void LCDIFV2_SetLayerBackGroundColor(LCDIFV2_Type *base, uint8_t layerIndex,
uint32_t backGroundColor)

Set the layer back ground color.

The back ground color is used when layer not actived.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Index of the layer.

• backGroundColor – Background color to use when this layer is not active.

void LCDIFV2_SetLayerBlendConfig(LCDIFV2_Type *base, uint8_t layerIndex, const
lcdifv2_blend_config_t *config)

Set the layer alpha blend mode.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Index of the CSC unit.

• config – Pointer to the blend configuration.

void LCDIFV2_SetCscMode(LCDIFV2_Type *base, uint8_t layerIndex, lcdifv2_csc_mode_t mode)
Set the color space conversion mode.

Supports YUV2RGB and YCbCr2RGB.

Parameters
• base – LCDIFv2 peripheral base address.

• layerIndex – Index of the layer.

• mode – The conversion mode.

806 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t LCDIFV2_GetPorterDuffConfig(lcdifv2_pd_blend_mode_t mode, lcdifv2_pd_layer_t layer,
lcdifv2_blend_config_t *config)

Get the blend configuration for Porter Duff blend.

This function gets the blend configuration for Porter Duff blend, config->pdFactorMode is
set according to layer and mode, other blend configurations are set to:

config->pdAlphaMode = kLCDIFV2_PD_AlphaStraight;
config->pdColorMode = kLCDIFV2_PD_ColorStraight;
config->pdGlobalAlphaMode = kLCDIFV2_PD_LocalAlpha;
config->alphaMode = kLCDIFV2_AlphaPoterDuff;

This is the basic Porter Duff blend configuration, user still could modify the configurations
after this function.

Parameters
• mode – Porter Duff blend mode.

• layer – The configuration for source layer or destination layer.

• config – Pointer to the configuration.

Return values
• kStatus_Success – Get the configuration successfully.

• kStatus_InvalidArgument – The argument is invalid.

status_t LCDIFV2_GetMultiLayerGlobalAlpha(const uint8_t blendedAlpha[], uint8_t
globalAlpha[], uint8_t layerCount)

Get the global alpha values for multiple layer blend.

This function calculates the global alpha value for each layer based on the desired blended
alpha.

When all layers use the global alpha, the relationship of blended alpha and global alpha of
each layer is:

Layer 7: ba7 = ga7 Layer 6: ba6 = ga6 * (1-ga7) Layer 5: ba5 = ga5 * (1-ga6) * (1-ga7) Layer 4:
ba4 = ga4 * (1-ga5) * (1-ga6) * (1-ga7) Layer 3: ba3 = ga3 * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)
Layer 2: ba2 = ga2 * (1-ga3) * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7) Layer 1: ba1 = ga1 * (1-ga2)
* (1-ga3) * (1-ga4) * (1-ga5) * (1-ga6) * (1-ga7) Layer 0: ba0 = 1 * (1-ga1) * (1-ga2) * (1-ga3) *
(1-ga4) * (1-ga5) * (1-ga6) * (1-ga7)

Here baN is the blended alpha of layer N, gaN is the global alpha configured to layer N.

This function calculates the global alpha based on the blended alpha. The blendedAlpha
and globalAlpha are all arrays of size layerCount. The first layer is a background layer, so
blendedAlpha[0] is useless, globalAlpha[0] is always 255.

Parameters
• blendedAlpha – [in] The desired blended alpha value, alpha range 0~255.

• globalAlpha – [out] Calculated global alpha set to each layer register.

• layerCount – [in] Total layer count.

Return values
• kStatus_Success – Get successfully.

• kStatus_InvalidArgument – The argument is invalid.

FSL_LCDIFV2_DRIVER_VERSION
LCDIF v2 driver version.

2.69. LCDIFv2: LCD Interface v2 807



MCUXpresso SDK Documentation, Release 25.12.00

enum _lcdifv2_polarity_flags
LCDIF v2 signal polarity flags.

Values:

enumerator kLCDIFV2_VsyncActiveHigh
VSYNC active high.

enumerator kLCDIFV2_HsyncActiveHigh
HSYNC active high.

enumerator kLCDIFV2_DataEnableActiveHigh
Data enable line active high.

enumerator kLCDIFV2_DriveDataOnRisingClkEdge
Output data on rising clock edge, capture data on falling clock edge.

enumerator kLCDIFV2_DataActiveHigh
Data active high.

enumerator kLCDIFV2_VsyncActiveLow
VSYNC active low.

enumerator kLCDIFV2_HsyncActiveLow
HSYNC active low.

enumerator kLCDIFV2_DataEnableActiveLow
Data enable line active low.

enumerator kLCDIFV2_DriveDataOnFallingClkEdge
Output data on falling clock edge, capture data on rising clock edge.

enumerator kLCDIFV2_DataActiveLow
Data active high.

enum _lcdifv2_interrupt
The LCDIF v2 interrupts.

Values:

enumerator kLCDIFV2_Layer0FifoEmptyInterrupt
Layer 0 FIFO empty.

enumerator kLCDIFV2_Layer1FifoEmptyInterrupt
Layer 1 FIFO empty.

enumerator kLCDIFV2_Layer2FifoEmptyInterrupt
Layer 2 FIFO empty.

enumerator kLCDIFV2_Layer3FifoEmptyInterrupt
Layer 3 FIFO empty.

enumerator kLCDIFV2_Layer4FifoEmptyInterrupt
Layer 4 FIFO empty.

enumerator kLCDIFV2_Layer5FifoEmptyInterrupt
Layer 5 FIFO empty.

enumerator kLCDIFV2_Layer6FifoEmptyInterrupt
Layer 6 FIFO empty.

enumerator kLCDIFV2_Layer7FifoEmptyInterrupt
Layer 7 FIFO empty.

808 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLCDIFV2_Layer0DmaDoneInterrupt
Layer 0 DMA done.

enumerator kLCDIFV2_Layer1DmaDoneInterrupt
Layer 1 DMA done.

enumerator kLCDIFV2_Layer2DmaDoneInterrupt
Layer 2 DMA done.

enumerator kLCDIFV2_Layer3DmaDoneInterrupt
Layer 3 DMA done.

enumerator kLCDIFV2_Layer4DmaDoneInterrupt
Layer 4 DMA done.

enumerator kLCDIFV2_Layer5DmaDoneInterrupt
Layer 5 DMA done.

enumerator kLCDIFV2_Layer6DmaDoneInterrupt
Layer 6 DMA done.

enumerator kLCDIFV2_Layer7DmaDoneInterrupt
Layer 7 DMA done.

enumerator kLCDIFV2_Layer0DmaErrorInterrupt
Layer 0 DMA error.

enumerator kLCDIFV2_Layer1DmaErrorInterrupt
Layer 1 DMA error.

enumerator kLCDIFV2_Layer2DmaErrorInterrupt
Layer 2 DMA error.

enumerator kLCDIFV2_Layer3DmaErrorInterrupt
Layer 3 DMA error.

enumerator kLCDIFV2_Layer4DmaErrorInterrupt
Layer 4 DMA error.

enumerator kLCDIFV2_Layer5DmaErrorInterrupt
Layer 5 DMA error.

enumerator kLCDIFV2_Layer6DmaErrorInterrupt
Layer 6 DMA error.

enumerator kLCDIFV2_Layer7DmaErrorInterrupt
Layer 7 DMA error.

enumerator kLCDIFV2_VerticalBlankingInterrupt
Start of vertical blanking period.

enumerator kLCDIFV2_OutputUnderrunInterrupt
Output buffer underrun.

enumerator kLCDIFV2_VsyncEdgeInterrupt
Interrupt at VSYNC edge.

enum _lcdifv2_line_order
The LCDIF v2 output line order.

Values:

2.69. LCDIFv2: LCD Interface v2 809



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLCDIFV2_LineOrderRGB
RGB

enumerator kLCDIFV2_LineOrderRBG
RBG

enumerator kLCDIFV2_LineOrderGBR
GBR

enumerator kLCDIFV2_LineOrderGRB
GRB

enumerator kLCDIFV2_LineOrderBRG
BRG

enumerator kLCDIFV2_LineOrderBGR
BGR

enum _lcdifv2_csc_mode
LCDIF v2 color space conversion mode.

Values:

enumerator kLCDIFV2_CscDisable
Disable the CSC.

enumerator kLCDIFV2_CscYUV2RGB
YUV to RGB.

enumerator kLCDIFV2_CscYCbCr2RGB
YCbCr to RGB.

enum _lcdifv2_pixel_format
LCDIF v2 pixel format.

Values:

enumerator kLCDIFV2_PixelFormatIndex1BPP
LUT index 1 bit.

enumerator kLCDIFV2_PixelFormatIndex2BPP
LUT index 2 bit.

enumerator kLCDIFV2_PixelFormatIndex4BPP
LUT index 4 bit.

enumerator kLCDIFV2_PixelFormatIndex8BPP
LUT index 8 bit.

enumerator kLCDIFV2_PixelFormatRGB565
RGB565, two pixels use 32 bits.

enumerator kLCDIFV2_PixelFormatARGB1555
ARGB1555, two pixels use 32 bits.

enumerator kLCDIFV2_PixelFormatARGB4444
ARGB4444, two pixels use 32 bits.

enumerator kLCDIFV2_PixelFormatUYVY
UYVY, only layer 0 and layer 1 support this.

enumerator kLCDIFV2_PixelFormatVYUY
VYUY, only layer 0 and layer 1 support this.

810 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLCDIFV2_PixelFormatYUYV
YUYV, only layer 0 and layer 1 support this.

enumerator kLCDIFV2_PixelFormatYVYU
YVYU, only layer 0 and layer 1 support this.

enumerator kLCDIFV2_PixelFormatRGB888
RGB888 packed, one pixel uses 24 bits.

enumerator kLCDIFV2_PixelFormatARGB8888
ARGB8888 unpacked, one pixel uses 32 bits.

enumerator kLCDIFV2_PixelFormatABGR8888
ABGR8888 unpacked, one pixel uses 32 bits.

enum _lcdifv2_alpha_mode
LCDIF v2 layer alpha blending mode.

Values:

enumerator kLCDIFV2_AlphaDisable
Disable alpha blend.

enumerator kLCDIFV2_AlphaOverride
Use the gobal alpha value, pixel defined alpha value is overridden.

enumerator kLCDIFV2_AlphaEmbedded
Use the pixel defined alpha value.

enumerator kLCDIFV2_AlphaPoterDuff
Use the PoterDuff alpha blending.

enum _lcdifv2_pd_alpha_mode
LCDIF v2 PoterDuff alpha mode.

Values:

enumerator kLCDIFV2_PD_AlphaStraight
Straight mode.

enumerator kLCDIFV2_PD_AlphaInversed
Inversed mode.

enum _lcdifv2_pd_color_mode
LCDIF v2 PoterDuff color mode.

Values:

enumerator kLCDIFV2_PD_ColorNoAlpha
Output color directly.

enumerator kLCDIFV2_PD_ColorWithAlpha
Output color multiples alpha.

enum _lcdifv2_pd_global_alpha_mode
LCDIF v2 PoterDuff global alpha mode.

Values:

enumerator kLCDIFV2_PD_GlobalAlpha
Use global alpha.

enumerator kLCDIFV2_PD_LocalAlpha
Use local alpha.

2.69. LCDIFv2: LCD Interface v2 811



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLCDIFV2_PD_ScaledAlpha
Use scaled alpha.

enum _lcdifv2_pd_factor_mode
LCDIF v2 PoterDuff factor mode.

Values:

enumerator kLCDIFV2_PD_FactorOne
Use 1.

enumerator kLCDIFV2_PD_FactorZero
Use 0.

enumerator kLCDIFV2_PD_FactorStraightAlpha
Use straight alpha.

enumerator kLCDIFV2_PD_FactorInversedAlpha
Use inversed alpha.

enum _lcdifv2_pd_blend_mode
LCDIFv2 Porter Duff blend mode. Note: Don’t change the enum item value.

Values:

enumerator kLCDIFV2_PD_Src
Source Only

enumerator kLCDIFV2_PD_Atop
Source Atop

enumerator kLCDIFV2_PD_Over
Source Over

enumerator kLCDIFV2_PD_In
Source In.

enumerator kLCDIFV2_PD_Out
Source Out.

enumerator kLCDIFV2_PD_Dst
Destination Only.

enumerator kLCDIFV2_PD_DstAtop
Destination Atop.

enumerator kLCDIFV2_PD_DstOver
Destination Over.

enumerator kLCDIFV2_PD_DstIn
Destination In.

enumerator kLCDIFV2_PD_DstOut
Destination Out.

enumerator kLCDIFV2_PD_Xor
XOR.

enumerator kLCDIFV2_PD_Clear
Clear.

enumerator kLCDIFV2_PD_Max
Used for boarder detection.

812 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _lcdifv2_pd_layer
LCDIFv2 Porter Duff layer. Note: Don’t change the enum item value.

Values:

enumerator kLCDIFV2_PD_SrcLayer
Source layer.

enumerator kLCDIFV2_PD_DestLayer
Destination layer.

enumerator kLCDIFV2_PD_LayerMax
Used for boarder detection.

typedef enum _lcdifv2_line_order lcdifv2_line_order_t
The LCDIF v2 output line order.

typedef struct _lcdifv2_display_config lcdifv2_display_config_t
LCDIF v2 display configure structure.

typedef enum _lcdifv2_csc_mode lcdifv2_csc_mode_t
LCDIF v2 color space conversion mode.

typedef enum _lcdifv2_pixel_format lcdifv2_pixel_format_t
LCDIF v2 pixel format.

typedef struct _lcdifv2_buffer_config lcdifv2_buffer_config_t
LCDIF v2 source buffer configuration.

typedef enum _lcdifv2_alpha_mode lcdifv2_alpha_mode_t
LCDIF v2 layer alpha blending mode.

typedef enum _lcdifv2_pd_alpha_mode lcdifv2_pd_alpha_mode_t
LCDIF v2 PoterDuff alpha mode.

typedef enum _lcdifv2_pd_color_mode lcdifv2_pd_color_mode_t
LCDIF v2 PoterDuff color mode.

typedef enum _lcdifv2_pd_global_alpha_mode lcdifv2_pd_global_alpha_mode_t
LCDIF v2 PoterDuff global alpha mode.

typedef enum _lcdifv2_pd_factor_mode lcdifv2_pd_factor_mode_t
LCDIF v2 PoterDuff factor mode.

typedef struct _lcdifv2_blend_config lcdifv2_blend_config_t
LCDIF v2 layer alpha blending configuration.

typedef enum _lcdifv2_pd_blend_mode lcdifv2_pd_blend_mode_t
LCDIFv2 Porter Duff blend mode. Note: Don’t change the enum item value.

typedef enum _lcdifv2_pd_layer lcdifv2_pd_layer_t
LCDIFv2 Porter Duff layer. Note: Don’t change the enum item value.

LCDIFV2_LAYER_COUNT

LCDIFV2_LAYER_CSC_COUNT

LCDIFV2_ADDR_CPU_2_IP(addr)

LCDIFV2_MAKE_FIFO_EMPTY_INTERRUPT(layer)
LCDIF v2 FIFO empty interrupt.

LCDIFV2_MAKE_DMA_DONE_INTERRUPT(layer)
LCDIF v2 DMA done interrupt.

2.69. LCDIFv2: LCD Interface v2 813



MCUXpresso SDK Documentation, Release 25.12.00

LCDIFV2_MAKE_DMA_ERROR_INTERRUPT(layer)
LCDIF v2 DMA error interrupt.

LCDIFV2_LUT_ENTRY_NUM

struct _lcdifv2_display_config
#include <fsl_lcdifv2.h> LCDIF v2 display configure structure.

Public Members

uint16_t panelWidth
Display panel width, pixels per line.

uint16_t panelHeight
Display panel height, how many lines per panel.

uint8_t hsw
HSYNC pulse width.

uint8_t hfp
Horizontal front porch.

uint8_t hbp
Horizontal back porch.

uint8_t vsw
VSYNC pulse width.

uint8_t vfp
Vrtical front porch.

uint8_t vbp
Vertical back porch.

uint32_t polarityFlags
OR’ed value of _lcdifv2_polarity_flags, used to contol the signal polarity.

lcdifv2_line_order_t lineOrder
Line order.

struct _lcdifv2_buffer_config
#include <fsl_lcdifv2.h> LCDIF v2 source buffer configuration.

Public Members

uint16_t strideBytes
Number of bytes between two vertically adjacent pixels, suggest 64-bit aligned.

lcdifv2_pixel_format_t pixelFormat
Source buffer pixel format.

struct _lcdifv2_blend_config
#include <fsl_lcdifv2.h> LCDIF v2 layer alpha blending configuration.

Public Members

uint8_t globalAlpha
Global alpha value, only used when alphaMode is kLCDIFV2_AlphaOverride or kLCD-
IFV2_AlphaPoterDuff

814 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

lcdifv2_alpha_mode_t alphaMode
Alpha mode.

lcdifv2_pd_alpha_mode_t pdAlphaMode
PoterDuff alpha mode, only used when alphaMode is kLCDIFV2_AlphaPoterDuff

lcdifv2_pd_color_mode_t pdColorMode
PoterDuff color mode, only used when alphaMode is kLCDIFV2_AlphaPoterDuff

lcdifv2_pd_global_alpha_mode_t pdGlobalAlphaMode
PoterDuff global alpha mode, only used when alphaMode is kLCDIFV2_AlphaPoterDuff

lcdifv2_pd_factor_mode_t pdFactorMode
PoterDuff factor mode, only used when alphaMode is kLCDIFV2_AlphaPoterDuff

2.70 LPADC: 12-bit SAR Analog-to-Digital Converter Driver

enum _lpadc_status_flags
Define hardware flags of the module.

Values:

enumerator kLPADC_ResultFIFO0OverflowFlag
Indicates that more data has been written to the Result FIFO 0 than it can hold.

enumerator kLPADC_ResultFIFO0ReadyFlag
Indicates when the number of valid datawords in the result FIFO 0 is greater than the
setting watermark level.

enumerator kLPADC_TriggerExceptionFlag
Indicates that a trigger exception event has occurred.

enumerator kLPADC_TriggerCompletionFlag
Indicates that a trigger completion event has occurred.

enumerator kLPADC_CalibrationReadyFlag
Indicates that the calibration process is done.

enumerator kLPADC_ActiveFlag
Indicates that the ADC is in active state.

enumerator kLPADC_ResultFIFOOverflowFlag
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0OverflowFlag as instead.

enumerator kLPADC_ResultFIFOReadyFlag
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0ReadyFlag as instead.

enum _lpadc_interrupt_enable
Define interrupt switchers of the module.

Note: LPADC of different chips supports different number of trigger sources, please check
the Reference Manual for details.

Values:

enumerator kLPADC_ResultFIFO0OverflowInterruptEnable
Configures ADC to generate overflow interrupt requests when FOF0 flag is asserted.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 815



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPADC_FIFO0WatermarkInterruptEnable
Configures ADC to generate watermark interrupt requests when RDY0 flag is asserted.

enumerator kLPADC_ResultFIFOOverflowInterruptEnable
To compilitable with old version, do not recommend using this, please use kL-
PADC_ResultFIFO0OverflowInterruptEnable as instead.

enumerator kLPADC_FIFOWatermarkInterruptEnable
To compilitable with old version, do not recommend using this, please use kL-
PADC_FIFO0WatermarkInterruptEnable as instead.

enumerator kLPADC_TriggerExceptionInterruptEnable
Configures ADC to generate trigger exception interrupt.

enumerator kLPADC_Trigger0CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 0 completion.

enumerator kLPADC_Trigger1CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 1 completion.

enumerator kLPADC_Trigger2CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 2 completion.

enumerator kLPADC_Trigger3CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 3 completion.

enumerator kLPADC_Trigger4CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 4 completion.

enumerator kLPADC_Trigger5CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 5 completion.

enumerator kLPADC_Trigger6CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 6 completion.

enumerator kLPADC_Trigger7CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 7 completion.

enumerator kLPADC_Trigger8CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 8 completion.

enumerator kLPADC_Trigger9CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 9 completion.

enumerator kLPADC_Trigger10CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 10 completion.

enumerator kLPADC_Trigger11CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 11 completion.

enumerator kLPADC_Trigger12CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 12 completion.

enumerator kLPADC_Trigger13CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 13 completion.

enumerator kLPADC_Trigger14CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 14 completion.

enumerator kLPADC_Trigger15CompletionInterruptEnable
Configures ADC to generate interrupt when trigger 15 completion.

816 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpadc_trigger_status_flags
The enumerator of lpadc trigger status flags, including interrupted flags and completed
flags.

Note: LPADC of different chips supports different number of trigger sources, please check
the Reference Manual for details.

Values:

enumerator kLPADC_Trigger0InterruptedFlag
Trigger 0 is interrupted by a high priority exception.

enumerator kLPADC_Trigger1InterruptedFlag
Trigger 1 is interrupted by a high priority exception.

enumerator kLPADC_Trigger2InterruptedFlag
Trigger 2 is interrupted by a high priority exception.

enumerator kLPADC_Trigger3InterruptedFlag
Trigger 3 is interrupted by a high priority exception.

enumerator kLPADC_Trigger4InterruptedFlag
Trigger 4 is interrupted by a high priority exception.

enumerator kLPADC_Trigger5InterruptedFlag
Trigger 5 is interrupted by a high priority exception.

enumerator kLPADC_Trigger6InterruptedFlag
Trigger 6 is interrupted by a high priority exception.

enumerator kLPADC_Trigger7InterruptedFlag
Trigger 7 is interrupted by a high priority exception.

enumerator kLPADC_Trigger8InterruptedFlag
Trigger 8 is interrupted by a high priority exception.

enumerator kLPADC_Trigger9InterruptedFlag
Trigger 9 is interrupted by a high priority exception.

enumerator kLPADC_Trigger10InterruptedFlag
Trigger 10 is interrupted by a high priority exception.

enumerator kLPADC_Trigger11InterruptedFlag
Trigger 11 is interrupted by a high priority exception.

enumerator kLPADC_Trigger12InterruptedFlag
Trigger 12 is interrupted by a high priority exception.

enumerator kLPADC_Trigger13InterruptedFlag
Trigger 13 is interrupted by a high priority exception.

enumerator kLPADC_Trigger14InterruptedFlag
Trigger 14 is interrupted by a high priority exception.

enumerator kLPADC_Trigger15InterruptedFlag
Trigger 15 is interrupted by a high priority exception.

enumerator kLPADC_Trigger0CompletedFlag
Trigger 0 is completed and trigger 0 has enabled completion interrupts.

enumerator kLPADC_Trigger1CompletedFlag
Trigger 1 is completed and trigger 1 has enabled completion interrupts.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 817



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPADC_Trigger2CompletedFlag
Trigger 2 is completed and trigger 2 has enabled completion interrupts.

enumerator kLPADC_Trigger3CompletedFlag
Trigger 3 is completed and trigger 3 has enabled completion interrupts.

enumerator kLPADC_Trigger4CompletedFlag
Trigger 4 is completed and trigger 4 has enabled completion interrupts.

enumerator kLPADC_Trigger5CompletedFlag
Trigger 5 is completed and trigger 5 has enabled completion interrupts.

enumerator kLPADC_Trigger6CompletedFlag
Trigger 6 is completed and trigger 6 has enabled completion interrupts.

enumerator kLPADC_Trigger7CompletedFlag
Trigger 7 is completed and trigger 7 has enabled completion interrupts.

enumerator kLPADC_Trigger8CompletedFlag
Trigger 8 is completed and trigger 8 has enabled completion interrupts.

enumerator kLPADC_Trigger9CompletedFlag
Trigger 9 is completed and trigger 9 has enabled completion interrupts.

enumerator kLPADC_Trigger10CompletedFlag
Trigger 10 is completed and trigger 10 has enabled completion interrupts.

enumerator kLPADC_Trigger11CompletedFlag
Trigger 11 is completed and trigger 11 has enabled completion interrupts.

enumerator kLPADC_Trigger12CompletedFlag
Trigger 12 is completed and trigger 12 has enabled completion interrupts.

enumerator kLPADC_Trigger13CompletedFlag
Trigger 13 is completed and trigger 13 has enabled completion interrupts.

enumerator kLPADC_Trigger14CompletedFlag
Trigger 14 is completed and trigger 14 has enabled completion interrupts.

enumerator kLPADC_Trigger15CompletedFlag
Trigger 15 is completed and trigger 15 has enabled completion interrupts.

enum _lpadc_sample_scale_mode
Define enumeration of sample scale mode.

The sample scale mode is used to reduce the selected ADC analog channel input voltage level
by a factor. The maximum possible voltage on the ADC channel input should be considered
when selecting a scale mode to ensure that the reducing factor always results voltage level
at or below the VREFH reference. This reducing capability allows conversion of analog
inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale
mode.

Values:

enumerator kLPADC_SamplePartScale
Use divided input voltage signal. (For scale select,please refer to the reference manual).

enumerator kLPADC_SampleFullScale
Full scale (Factor of 1).

818 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpadc_sample_channel_mode
Define enumeration of channel sample mode.

The channel sample mode configures the channel with single-end/differential/dual-single-
end, side A/B.

Values:

enumerator kLPADC_SampleChannelSingleEndSideA
Single-end mode, only A-side channel is converted.

enumerator kLPADC_SampleChannelSingleEndSideB
Single-end mode, only B-side channel is converted.

enumerator kLPADC_SampleChannelDiffBothSideAB
Differential mode, the ADC result is (CHnA-CHnB).

enumerator kLPADC_SampleChannelDiffBothSideBA
Differential mode, the ADC result is (CHnB-CHnA).

enumerator kLPADC_SampleChannelDiffBothSide
Differential mode, the ADC result is (CHnA-CHnB).

enumerator kLPADC_SampleChannelDualSingleEndBothSide
Dual-Single-Ended Mode. Both A side and B side channels are converted indepen-
dently.

enum _lpadc_hardware_average_mode
Define enumeration of hardware average selection.

It Selects how many ADC conversions are averaged to create the ADC result. An internal
storage buffer is used to capture temporary results while the averaging iterations are exe-
cuted.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of AVGS field in CMDH register.

Values:

enumerator kLPADC_HardwareAverageCount1
Single conversion.

enumerator kLPADC_HardwareAverageCount2
2 conversions averaged.

enumerator kLPADC_HardwareAverageCount4
4 conversions averaged.

enumerator kLPADC_HardwareAverageCount8
8 conversions averaged.

enumerator kLPADC_HardwareAverageCount16
16 conversions averaged.

enumerator kLPADC_HardwareAverageCount32
32 conversions averaged.

enumerator kLPADC_HardwareAverageCount64
64 conversions averaged.

enumerator kLPADC_HardwareAverageCount128
128 conversions averaged.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 819



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpadc_sample_time_mode
Define enumeration of sample time selection.

The shortest sample time maximizes conversion speed for lower impedance inputs. Extend-
ing sample time allows higher impedance inputs to be accurately sampled. Longer sample
times can also be used to lower overall power consumption when command looping and
sequencing is configured and high conversion rates are not required.

Values:

enumerator kLPADC_SampleTimeADCK3
3 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK5
5 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK7
7 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK11
11 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK19
19 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK35
35 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK67
69 ADCK cycles total sample time.

enumerator kLPADC_SampleTimeADCK131
131 ADCK cycles total sample time.

enum _lpadc_hardware_compare_mode
Define enumeration of hardware compare mode.

After an ADC channel input is sampled and converted and any averaging iterations are per-
formed, this mode setting guides operation of the automatic compare function to optionally
only store when the compare operation is true. When compare is enabled, the conversion
result is compared to the compare values.

Values:

enumerator kLPADC_HardwareCompareDisabled
Compare disabled.

enumerator kLPADC_HardwareCompareStoreOnTrue
Compare enabled. Store on true.

enumerator kLPADC_HardwareCompareRepeatUntilTrue
Compare enabled. Repeat channel acquisition until true.

enum _lpadc_conversion_resolution_mode
Define enumeration of conversion resolution mode.

Configure the resolution bit in specific conversion type. For detailed resolution accuracy,
see to lpadc_sample_channel_mode_t

Values:

enumerator kLPADC_ConversionResolutionStandard
Standard resolution. Single-ended 12-bit conversion, Differential 13-bit conversion
with 2’s complement output.

820 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPADC_ConversionResolutionHigh
High resolution. Single-ended 16-bit conversion; Differential 16-bit conversion with
2’s complement output.

enum _lpadc_conversion_average_mode
Define enumeration of conversion averages mode.

Configure the converion average number for auto-calibration.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of CAL_AVGS field in CTRL register.

Values:

enumerator kLPADC_ConversionAverage1
Single conversion.

enumerator kLPADC_ConversionAverage2
2 conversions averaged.

enumerator kLPADC_ConversionAverage4
4 conversions averaged.

enumerator kLPADC_ConversionAverage8
8 conversions averaged.

enumerator kLPADC_ConversionAverage16
16 conversions averaged.

enumerator kLPADC_ConversionAverage32
32 conversions averaged.

enumerator kLPADC_ConversionAverage64
64 conversions averaged.

enumerator kLPADC_ConversionAverage128
128 conversions averaged.

enumerator kLPADC_ConversionAverageMax

enum _lpadc_reference_voltage_mode
Define enumeration of reference voltage source.

For detail information, need to check the SoC’s specification.

Values:

enumerator kLPADC_ReferenceVoltageAlt1
Option 1 setting.

enumerator kLPADC_ReferenceVoltageAlt2
Option 2 setting.

enumerator kLPADC_ReferenceVoltageAlt3
Option 3 setting.

enum _lpadc_power_level_mode
Define enumeration of power configuration.

Configures the ADC for power and performance. In the highest power setting the highest
conversion rates will be possible. Refer to the device data sheet for power and performance
capabilities for each setting.

Values:

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 821



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPADC_PowerLevelAlt1
Lowest power setting.

enumerator kLPADC_PowerLevelAlt2
Next lowest power setting.

enumerator kLPADC_PowerLevelAlt3
…

enumerator kLPADC_PowerLevelAlt4
Highest power setting.

enum _lpadc_offset_calibration_mode
Define enumeration of offset calibration mode.

Values:

enumerator kLPADC_OffsetCalibration12bitMode
12 bit offset calibration mode.

enumerator kLPADC_OffsetCalibration16bitMode
16 bit offset calibration mode.

enum _lpadc_trigger_priority_policy
Define enumeration of trigger priority policy.

This selection controls how higher priority triggers are handled.

Note: kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices,
mainly depends on the size of TPRICTRL field in CFG register.

Values:

enumerator kLPADC_ConvPreemptImmediatelyNotAutoResumed
If a higher priority trigger is detected during command processing, the current conver-
sion is aborted and the new command specified by the trigger is started, when higher
priority conversion finishes, the preempted conversion is not automatically resumed
or restarted.

enumerator kLPADC_ConvPreemptSoftlyNotAutoResumed
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion is not resumed
or restarted.

enumerator kLPADC_ConvPreemptImmediatelyAutoRestarted
If a higher priority trigger is detected during command processing, the current con-
version is aborted and the new command specified by the trigger is started, when
higher priority conversion finishes, the preempted conversion will automatically be
restarted.

enumerator kLPADC_ConvPreemptSoftlyAutoRestarted
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion will automati-
cally be restarted.

822 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPADC_ConvPreemptImmediatelyAutoResumed
If a higher priority trigger is detected during command processing, the current conver-
sion is aborted and the new command specified by the trigger is started, when higher
priority conversion finishes, the preempted conversion will automatically be resumed.

enumerator kLPADC_ConvPreemptSoftlyAutoResumed
If a higher priority trigger is received during command processing, the current con-
version is completed (including averaging iterations and compare function if enabled)
and stored to the result FIFO before the higher priority trigger/command is initiated,
when higher priority conversion finishes, the preempted conversion will be automat-
ically be resumed.

enumerator kLPADC_TriggerPriorityPreemptImmediately
Legacy support is not recommended as it only ensures compatibility with older ver-
sions.

enumerator kLPADC_TriggerPriorityPreemptSoftly
Legacy support is not recommended as it only ensures compatibility with older ver-
sions.

enumerator kLPADC_TriggerPriorityExceptionDisabled
High priority trigger exception disabled.

enum _lpadc_tune_value
Define enumeration of tune value.

Values:

enumerator kLPADC_TuneValue0
Tune value 0.

enumerator kLPADC_TuneValue1
Tune value 1.

enumerator kLPADC_TuneValue2
Tune value 2.

enumerator kLPADC_TuneValue3
Tune value 3.

typedef enum _lpadc_sample_scale_mode lpadc_sample_scale_mode_t
Define enumeration of sample scale mode.

The sample scale mode is used to reduce the selected ADC analog channel input voltage level
by a factor. The maximum possible voltage on the ADC channel input should be considered
when selecting a scale mode to ensure that the reducing factor always results voltage level
at or below the VREFH reference. This reducing capability allows conversion of analog
inputs higher than VREFH. A-side and B-side channel inputs are both scaled using the scale
mode.

typedef enum _lpadc_sample_channel_mode lpadc_sample_channel_mode_t
Define enumeration of channel sample mode.

The channel sample mode configures the channel with single-end/differential/dual-single-
end, side A/B.

typedef enum _lpadc_hardware_average_mode lpadc_hardware_average_mode_t
Define enumeration of hardware average selection.

It Selects how many ADC conversions are averaged to create the ADC result. An internal
storage buffer is used to capture temporary results while the averaging iterations are exe-
cuted.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 823



MCUXpresso SDK Documentation, Release 25.12.00

Note: Some enumerator values are not available on some devices, mainly depends on the
size of AVGS field in CMDH register.

typedef enum _lpadc_sample_time_mode lpadc_sample_time_mode_t
Define enumeration of sample time selection.

The shortest sample time maximizes conversion speed for lower impedance inputs. Extend-
ing sample time allows higher impedance inputs to be accurately sampled. Longer sample
times can also be used to lower overall power consumption when command looping and
sequencing is configured and high conversion rates are not required.

typedef enum _lpadc_hardware_compare_mode lpadc_hardware_compare_mode_t
Define enumeration of hardware compare mode.

After an ADC channel input is sampled and converted and any averaging iterations are per-
formed, this mode setting guides operation of the automatic compare function to optionally
only store when the compare operation is true. When compare is enabled, the conversion
result is compared to the compare values.

typedef enum _lpadc_conversion_resolution_mode lpadc_conversion_resolution_mode_t
Define enumeration of conversion resolution mode.

Configure the resolution bit in specific conversion type. For detailed resolution accuracy,
see to lpadc_sample_channel_mode_t

typedef enum _lpadc_conversion_average_mode lpadc_conversion_average_mode_t
Define enumeration of conversion averages mode.

Configure the converion average number for auto-calibration.

Note: Some enumerator values are not available on some devices, mainly depends on the
size of CAL_AVGS field in CTRL register.

typedef enum _lpadc_reference_voltage_mode lpadc_reference_voltage_source_t
Define enumeration of reference voltage source.

For detail information, need to check the SoC’s specification.

typedef enum _lpadc_power_level_mode lpadc_power_level_mode_t
Define enumeration of power configuration.

Configures the ADC for power and performance. In the highest power setting the highest
conversion rates will be possible. Refer to the device data sheet for power and performance
capabilities for each setting.

typedef enum _lpadc_offset_calibration_mode lpadc_offset_calibration_mode_t
Define enumeration of offset calibration mode.

typedef enum _lpadc_trigger_priority_policy lpadc_trigger_priority_policy_t
Define enumeration of trigger priority policy.

This selection controls how higher priority triggers are handled.

Note: kLPADC_TriggerPriorityPreemptSubsequently is not available on some devices,
mainly depends on the size of TPRICTRL field in CFG register.

typedef enum _lpadc_tune_value lpadc_tune_value_t
Define enumeration of tune value.

824 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _lpadc_calibration_value lpadc_calibration_value_t
A structure of calibration value.

LPADC_CONVERSION_COMPLETE_TIMEOUT
Max loops to wait for LPADC conversion complete.

When doing calibration, driver will wait for the completion of conversion. This parameter
defines how many loops to check completion before return timeout. If defined as 0, driver
will wait forever until completion.

LPADC_CALIBRATION_READY_TIMEOUT
Max loops to wait for LPADC calibration ready.

Before doing calibration, driver will wait for the calibration ready. This parameter defines
how many loops to check the calibration ready. If defined as 0, driver will wait forever until
ready.

LPADC_GAIN_CAL_READY_TIMEOUT
Max loops to wait for LPADC gain calibration GAIN_CAL ready.

Before doing calibration, driver will wait for the gain calibration GAIN_CAL ready. This pa-
rameter defines how many loops to check the gain calibration GAIN_CAL ready. If defined
as 0, driver will wait forever until ready.

ADC_OFSTRIM_OFSTRIM_MAX

ADC_OFSTRIM_OFSTRIM_SIGN

LPADC_GET_ACTIVE_COMMAND_STATUS(statusVal)
Define the MACRO function to get command status from status value.

The statusVal is the return value from LPADC_GetStatusFlags().

LPADC_GET_ACTIVE_TRIGGER_STATUE(statusVal)
Define the MACRO function to get trigger status from status value.

The statusVal is the return value from LPADC_GetStatusFlags().

void LPADC_Init(ADC_Type *base, const lpadc_config_t *config)
Initializes the LPADC module.

Parameters
• base – LPADC peripheral base address.

• config – Pointer to configuration structure. See “lpadc_config_t”.

void LPADC_GetDefaultConfig(lpadc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the converter configuration structure with an available settings.
The default values are:

config->enableInDozeMode = true;
config->enableAnalogPreliminary = false;
config->powerUpDelay = 0x80;
config->referenceVoltageSource = kLPADC_ReferenceVoltageAlt1;
config->powerLevelMode = kLPADC_PowerLevelAlt1;
config->triggerPriorityPolicy = kLPADC_TriggerPriorityPreemptImmediately;
config->enableConvPause = false;
config->convPauseDelay = 0U;
config->FIFOWatermark = 0U;

Parameters
• config – Pointer to configuration structure.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 825



MCUXpresso SDK Documentation, Release 25.12.00

void LPADC_Deinit(ADC_Type *base)
De-initializes the LPADC module.

Parameters
• base – LPADC peripheral base address.

static inline void LPADC_Enable(ADC_Type *base, bool enable)
Switch on/off the LPADC module.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the module.

static inline void LPADC_DoResetFIFO(ADC_Type *base)
Do reset the conversion FIFO.

Parameters
• base – LPADC peripheral base address.

static inline void LPADC_DoResetConfig(ADC_Type *base)
Do reset the module’s configuration.

Reset all ADC internal logic and registers, except the Control Register (ADCx_CTRL).

Parameters
• base – LPADC peripheral base address.

static inline uint32_t LPADC_GetStatusFlags(ADC_Type *base)
Get status flags.

Parameters
• base – LPADC peripheral base address.

Returns
status flags’ mask. See to _lpadc_status_flags.

static inline void LPADC_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags.

Only the flags can be cleared by writing ADCx_STATUS register would be cleared by this
API.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for flags to be cleared. See to _lpadc_status_flags.

static inline uint32_t LPADC_GetTriggerStatusFlags(ADC_Type *base)
Get trigger status flags to indicate which trigger sequences have been completed or inter-
rupted by a high priority trigger exception.

Parameters
• base – LPADC peripheral base address.

Returns
The OR’ed value of _lpadc_trigger_status_flags.

static inline void LPADC_ClearTriggerStatusFlags(ADC_Type *base, uint32_t mask)
Clear trigger status flags.

Parameters
• base – LPADC peripheral base address.

826 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• mask – The mask of trigger status flags to be cleared, should be the OR’ed
value of _lpadc_trigger_status_flags.

static inline void LPADC_EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.

static inline void LPADC_DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – LPADC peripheral base address.

• mask – Mask value for interrupt events. See to _lpadc_interrupt_enable.

static inline void LPADC_EnableFIFOWatermarkDMA(ADC_Type *base, bool enable)
Switch on/off the DMA trigger for FIFO watermark event.

Parameters
• base – LPADC peripheral base address.

• enable – Switcher to the event.

static inline uint32_t LPADC_GetConvResultCount(ADC_Type *base)
Get the count of result kept in conversion FIFO.

Parameters
• base – LPADC peripheral base address.

Returns
The count of result kept in conversion FIFO.

bool LPADC_GetConvResult(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO.

Parameters
• base – LPADC peripheral base address.

• result – Pointer to structure variable that keeps the conversion result in
conversion FIFO.

Returns
Status whether FIFO entry is valid.

void LPADC_GetConvResultBlocking(ADC_Type *base, lpadc_conv_result_t *result)
Get the result in conversion FIFO using blocking method.

Parameters
• base – LPADC peripheral base address.

• result – Pointer to structure variable that keeps the conversion result in
conversion FIFO.

void LPADC_SetConvTriggerConfig(ADC_Type *base, uint32_t triggerId, const
lpadc_conv_trigger_config_t *config)

Configure the conversion trigger source.

Each programmable trigger can launch the conversion command in command buffer.

Parameters

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 827



MCUXpresso SDK Documentation, Release 25.12.00

• base – LPADC peripheral base address.

• triggerId – ID for each trigger. Typically, the available value range is from
0.

• config – Pointer to configuration structure. See to
lpadc_conv_trigger_config_t.

void LPADC_GetDefaultConvTriggerConfig(lpadc_conv_trigger_config_t *config)
Gets an available pre-defined settings for trigger’s configuration.

This function initializes the trigger’s configuration structure with an available settings. The
default values are:

config->targetCommandId = 0U;
config->delayPower = 0U;
config->priority = 0U;
config->channelAFIFOSelect = 0U;
config->channelBFIFOSelect = 0U;
config->enableHardwareTrigger = false;

Parameters
• config – Pointer to configuration structure.

static inline void LPADC_DoSoftwareTrigger(ADC_Type *base, uint32_t triggerIdMask)
Do software trigger to conversion command.

Parameters
• base – LPADC peripheral base address.

• triggerIdMask – Mask value for software trigger indexes, which count from
zero.

static inline void LPADC_EnableHardwareTriggerCommandSelection(ADC_Type *base, uint32_t
triggerId, bool enable)

Enable hardware trigger command selection.

This function will use the hardware trigger command from ADC_ETC.The trigger com-
mand is then defined by ADC hardware trigger command selection field in ADC_ETC-
>TRIGx_CHAINy_z_n[CSEL].

Parameters
• base – LPADC peripheral base address.

• triggerId – ID for each trigger. Typically, the available value range is from
0.

• enable – True to enable or flase to disable.

void LPADC_SetConvCommandConfig(ADC_Type *base, uint32_t commandId, const
lpadc_conv_command_config_t *config)

Configure conversion command.

Note: The number of compare value register on different chips is different, that is mean
in some chips, some command buffers do not have the compare functionality.

Parameters
• base – LPADC peripheral base address.

• commandId – ID for command in command buffer. Typically, the available
value range is 1 - 15.

828 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to configuration structure. See to
lpadc_conv_command_config_t.

void LPADC_GetDefaultConvCommandConfig(lpadc_conv_command_config_t *config)
Gets an available pre-defined settings for conversion command’s configuration.

This function initializes the conversion command’s configuration structure with an avail-
able settings. The default values are:

config->sampleScaleMode = kLPADC_SampleFullScale;
config->channelBScaleMode = kLPADC_SampleFullScale;
config->sampleChannelMode = kLPADC_SampleChannelSingleEndSideA;
config->channelNumber = 0U;
config->channelBNumber = 0U;
config->chainedNextCommandNumber = 0U;
config->enableAutoChannelIncrement = false;
config->loopCount = 0U;
config->hardwareAverageMode = kLPADC_HardwareAverageCount1;
config->sampleTimeMode = kLPADC_SampleTimeADCK3;
config->hardwareCompareMode = kLPADC_HardwareCompareDisabled;
config->hardwareCompareValueHigh = 0U;
config->hardwareCompareValueLow = 0U;
config->conversionResolutionMode = kLPADC_ConversionResolutionStandard;
config->enableWaitTrigger = false;
config->enableChannelB = false;

Parameters
• config – Pointer to configuration structure.

void LPADC_EnableCalibration(ADC_Type *base, bool enable)
Enable the calibration function.

When CALOFS is set, the ADC is configured to perform a calibration function anytime the
ADC executes a conversion. Any channel selected is ignored and the value returned in the
RESFIFO is a signed value between -31 and 31. -32 is not a valid and is never a returned
value. Software should copy the lower 6- bits of the conversion result stored in the RESFIFO
after a completed calibration conversion to the OFSTRIM field. The OFSTRIM field is used
in normal operation for offset correction.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the calibration function.

static inline void LPADC_SetOffsetValue(ADC_Type *base, uint32_t value)
Set proper offset value to trim ADC.

To minimize the offset during normal operation, software should read the conversion result
from the RESFIFO calibration operation and write the lower 6 bits to the OFSTRIM register.

Parameters
• base – LPADC peripheral base address.

• value – Setting offset value.

status_t LPADC_DoAutoCalibration(ADC_Type *base)
Do auto calibration.

Calibration function should be executed before using converter in application. It used the
software trigger and a dummy conversion, get the offset and write them into the OFSTRIM
register. It called some of functional API including:

• LPADC_EnableCalibration(…)

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 829



MCUXpresso SDK Documentation, Release 25.12.00

• LPADC_SetOffsetValue(…)

• LPADC_SetConvCommandConfig(…)

• LPADC_SetConvTriggerConfig(…)

Parameters
• base – LPADC peripheral base address.

• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

static inline void LPADC_SetOffsetValue(ADC_Type *base, int16_t value)
Set trim value for offset.

Note: For 16-bit conversions, each increment is 1/2 LSB resulting in a programmable offset
range of -256 LSB to 255.5 LSB; For 12-bit conversions, each increment is 1/32 LSB resulting
in a programmable offset range of -16 LSB to 15.96875 LSB.

Parameters
• base – LPADC peripheral base address.

• value – Offset trim value, is a 10-bit signed value between -512 and 511.

static inline void LPADC_GetOffsetValue(ADC_Type *base, int16_t *pValue)
Get trim value of offset.

Parameters
• base – LPADC peripheral base address.

• pValue – Pointer to the variable in type of int16_t to store offset value.

static inline void LPADC_EnableOffsetCalibration(ADC_Type *base, bool enable)
Enable the offset calibration function.

Parameters
• base – LPADC peripheral base address.

• enable – switcher to the calibration function.

static inline void LPADC_SetOffsetCalibrationMode(ADC_Type *base,
lpadc_offset_calibration_mode_t mode)

Set offset calibration mode.

Parameters
• base – LPADC peripheral base address.

• mode – set offset calibration mode.see to lpadc_offset_calibration_mode_t .

status_t LPADC_DoOffsetCalibration(ADC_Type *base)
Do offset calibration.

Parameters
• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

830 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Timeout – Timeout occurs while waiting completion.

void LPADC_PrepareAutoCalibration(ADC_Type *base)
Prepare auto calibration, LPADC_FinishAutoCalibration has to be called before using the
LPADC. LPADC_DoAutoCalibration has been split in two API to avoid to be stuck too long in
the function.

Parameters
• base – LPADC peripheral base address.

status_t LPADC_FinishAutoCalibration(ADC_Type *base)
Finish auto calibration start with LPADC_PrepareAutoCalibration.

Note: This feature is used for LPADC with CTRL[CALOFSMODE].

Parameters
• base – LPADC peripheral base address.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

void LPADC_GetCalibrationValue(ADC_Type *base, lpadc_calibration_value_t
*ptrCalibrationValue)

Get calibration value into the memory which is defined by invoker.

Note: Please note the ADC will be disabled temporary.

Note: This function should be used after finish calibration.

Parameters
• base – LPADC peripheral base address.

• ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure, this
memory block should be always powered on even in low power modes.

status_t LPADC_SetCalibrationValue(ADC_Type *base, const lpadc_calibration_value_t
*ptrCalibrationValue)

Set calibration value into ADC calibration registers.

Note: Please note the ADC will be disabled temporary.

Parameters
• base – LPADC peripheral base address.

• ptrCalibrationValue – Pointer to lpadc_calibration_value_t structure which
contains ADC’s calibration value.

Return values
• kStatus_Success – Successfully configured.

• kStatus_Timeout – Timeout occurs while waiting completion.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 831



MCUXpresso SDK Documentation, Release 25.12.00

static inline void LPADC_RequestHighSpeedModeTrim(ADC_Type *base)
Request high speed mode trim calculation.

Parameters
• base – LPADC peripheral base address.

static inline int8_t LPADC_GetHighSpeedTrimValue(ADC_Type *base)
Get high speed mode trim value, the result is a 5-bit signed value between -16 and 15.

Note: The high speed mode trim value is used to minimize offset for high speed conversion.

Parameters
• base – LPADC peripheral base address.

Returns
The calculated high speed mode trim value.

static inline void LPADC_SetHighSpeedTrimValue(ADC_Type *base, int8_t trimValue)
Set high speed mode trim value.

Note: If is possible to set the trim value manually, but it is recommended to use the
LPADC_RequestHighSpeedModeTrim.

Parameters
• base – LPADC peripheral base address.

• trimValue – The trim value to be set.

static inline void LPADC_EnableHighSpeedConversionMode(ADC_Type *base, bool enable)
Enable/disable high speed conversion mode, if enabled conversions complete 2 or 3 ADCK
cycles sooner compared to conversion cycle counts when high speed mode is disabled.

Parameters
• base – LPADC peripheral base address.

• enable – Used to enable/disable high speed conversion mode:

– true Enable high speed conversion mode;

– false Disable high speed conversion mode.

static inline void LPADC_EnableExtraCycle(ADC_Type *base, bool enable)
Enable/disable an additional ADCK cycle to conversion.

Parameters
• base – LPADC peripheral base address.

• enable – Used to enable/disable an additional ADCK cycle to conversion:

– true Enable an additional ADCK cycle to conversion;

– false Disable an additional ADCK cycle to conversion.

static inline void LPADC_SetTuneValue(ADC_Type *base, lpadc_tune_value_t tuneValue)
Set tune value which provides some variability in how many cycles are needed to complete
a conversion.

Parameters
• base – LPADC peripheral base address.

832 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• tuneValue – The tune value to be set, please refer to lpadc_tune_value_t.

static inline lpadc_tune_value_t LPADC_GetTuneValue(ADC_Type *base)
Get tune value which provides some variability in how many cycles are needed to complete
a conversion.

Parameters
• base – LPADC peripheral base address.

Returns
The tune value, please refer to lpadc_tune_value_t.

FSL_LPADC_DRIVER_VERSION
LPADC driver version 2.9.5.

struct lpadc_config_t
#include <fsl_lpadc.h> LPADC global configuration.

This structure would used to keep the settings for initialization.

Public Members

bool enableInternalClock
Enables the internally generated clock source. The clock source is used in clock selec-
tion logic at the chip level and is optionally used for the ADC clock source.

bool enableVref1LowVoltage
If voltage reference option1 input is below 1.8V, it should be “true”. If voltage reference
option1 input is above 1.8V, it should be “false”.

bool enableInDozeMode
Control system transition to Stop and Wait power modes while ADC is converting.
When enabled in Doze mode, immediate entries to Wait or Stop are allowed. When
disabled, the ADC will wait for the current averaging iteration/FIFO storage to com-
plete before acknowledging stop or wait mode entry.

lpadc_conversion_average_mode_t conversionAverageMode
Auto-Calibration Averages.

bool enableAnalogPreliminary
ADC analog circuits are pre-enabled and ready to execute conversions without startup
delays(at the cost of higher DC current consumption).

uint32_t powerUpDelay
When the analog circuits are not pre-enabled, the ADC analog circuits are only pow-
ered while the ADC is active and there is a counted delay defined by this field after an
initial trigger transitions the ADC from its Idle state to allow time for the analog circuits
to stabilize. The startup delay count of (powerUpDelay * 4) ADCK cycles must result in
a longer delay than the analog startup time.

lpadc_reference_voltage_source_t referenceVoltageSource
Selects the voltage reference high used for conversions.

lpadc_power_level_mode_t powerLevelMode
Power Configuration Selection.

lpadc_trigger_priority_policy_t triggerPriorityPolicy
Control how higher priority triggers are handled, see to
lpadc_trigger_priority_policy_t.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 833



MCUXpresso SDK Documentation, Release 25.12.00

bool enableConvPause
Enables the ADC pausing function. When enabled, a programmable delay is inserted
during command execution sequencing between LOOP iterations, between commands
in a sequence, and between conversions when command is executing in “Compare
Until True” configuration.

uint32_t convPauseDelay
Controls the duration of pausing during command execution sequencing. The pause
delay is a count of (convPauseDelay*4) ADCK cycles. Only available when ADC pausing
function is enabled. The available value range is in 9-bit.

uint32_t FIFOWatermark
FIFOWatermark is a programmable threshold setting. When the number of datawords
stored in the ADC Result FIFO is greater than the value in this field, the ready flag would
be asserted to indicate stored data has reached the programmable threshold.

struct lpadc_conv_command_config_t
#include <fsl_lpadc.h> Define structure to keep the configuration for conversion command.

Public Members

lpadc_sample_scale_mode_t sampleScaleMode
Sample scale mode.

lpadc_sample_scale_mode_t channelBScaleMode
Alternate channe B Scale mode.

lpadc_sample_channel_mode_t sampleChannelMode
Channel sample mode.

uint32_t channelNumber
Channel number, select the channel or channel pair.

uint32_t channelBNumber
Alternate Channel B number, select the channel.

uint32_t chainedNextCommandNumber
Selects the next command to be executed after this command completes. 1-15 is avail-
able, 0 is to terminate the chain after this command.

bool enableAutoChannelIncrement
Loop with increment: when disabled, the “loopCount” field selects the number of times
the selected channel is converted consecutively; when enabled, the “loopCount” field
defines how many consecutive channels are converted as part of the command execu-
tion.

uint32_t loopCount
Selects how many times this command executes before finish and transition to the next
command or Idle state. Command executes LOOP+1 times. 0-15 is available.

lpadc_hardware_average_mode_t hardwareAverageMode
Hardware average selection.

lpadc_sample_time_mode_t sampleTimeMode
Sample time selection.

lpadc_hardware_compare_mode_t hardwareCompareMode
Hardware compare selection.

834 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t hardwareCompareValueHigh
Compare Value High. The available value range is in 16-bit.

uint32_t hardwareCompareValueLow
Compare Value Low. The available value range is in 16-bit.

lpadc_conversion_resolution_mode_t conversionResolutionMode
Conversion resolution mode.

bool enableWaitTrigger
Wait for trigger assertion before execution: when disabled, this command will be au-
tomatically executed; when enabled, the active trigger must be asserted again before
executing this command.

struct lpadc_conv_trigger_config_t
#include <fsl_lpadc.h> Define structure to keep the configuration for conversion trigger.

Public Members

uint32_t targetCommandId
Select the command from command buffer to execute upon detect of the associated
trigger event.

uint32_t delayPower
Select the trigger delay duration to wait at the start of servicing a trigger event. When
this field is clear, then no delay is incurred. When this field is set to a non-zero value,
the duration for the delay is 2^delayPower ADCK cycles. The available value range is
4-bit.

uint32_t priority
Sets the priority of the associated trigger source. If two or more triggers have the same
priority level setting, the lower order trigger event has the higher priority. The lower
value for this field is for the higher priority, the available value range is 1-bit.

bool enableHardwareTrigger
Enable hardware trigger source to initiate conversion on the rising edge of the input
trigger source or not. THe software trigger is always available.

struct lpadc_conv_result_t
#include <fsl_lpadc.h> Define the structure to keep the conversion result.

Public Members

uint32_t commandIdSource
Indicate the command buffer being executed that generated this result.

uint32_t loopCountIndex
Indicate the loop count value during command execution that generated this result.

uint32_t triggerIdSource
Indicate the trigger source that initiated a conversion and generated this result.

uint16_t convValue
Data result.

struct _lpadc_calibration_value
#include <fsl_lpadc.h> A structure of calibration value.

2.70. LPADC: 12-bit SAR Analog-to-Digital Converter Driver 835



MCUXpresso SDK Documentation, Release 25.12.00

2.71 LPI2C: Low Power Inter-Integrated Circuit Driver

void LPI2C_DriverIRQHandler(uint32_t instance)
LPI2C driver IRQ handler common entry.

This function provides the common IRQ request entry for LPI2C.

Parameters
• instance – LPI2C instance.

FSL_LPI2C_DRIVER_VERSION
LPI2C driver version.

LPI2C status return codes.

Values:

enumerator kStatus_LPI2C_Busy
The master is already performing a transfer.

enumerator kStatus_LPI2C_Idle
The slave driver is idle.

enumerator kStatus_LPI2C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_LPI2C_FifoError
FIFO under run or overrun.

enumerator kStatus_LPI2C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_LPI2C_ArbitrationLost
Arbitration lost error.

enumerator kStatus_LPI2C_PinLowTimeout
SCL or SDA were held low longer than the timeout.

enumerator kStatus_LPI2C_NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

enumerator kStatus_LPI2C_DmaRequestFail
DMA request failed.

enumerator kStatus_LPI2C_Timeout
Timeout polling status flags.

IRQn_Type const kLpi2cMasterIrqs[]
Array to map LPI2C instance number to IRQ number, used internally for LPI2C master in-
terrupt and EDMA transactional APIs.

IRQn_Type const kLpi2cSlaveIrqs[]

lpi2c_master_isr_t s_lpi2cMasterIsr
Pointer to master IRQ handler for each instance, used internally for LPI2C master interrupt
and EDMA transactional APIs.

void *s_lpi2cMasterHandle[]
Pointers to master handles for each instance, used internally for LPI2C master interrupt
and EDMA transactional APIs.

836 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t LPI2C_GetInstance(LPI2C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
• base – The LPI2C peripheral base address.

Returns
LPI2C instance number starting from 0.

I2C_RETRY_TIMES
Retry times for waiting flag.

2.72 LPI2C Master Driver

void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
Provides a default configuration for the LPI2C master peripheral.

This function provides the following default configuration for the LPI2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->debugEnable = false;
masterConfig->ignoreAck = false;
masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
masterConfig->baudRate_Hz = 100000U;
masterConfig->busIdleTimeout_ns = 0;
masterConfig->pinLowTimeout_ns = 0;
masterConfig->sdaGlitchFilterWidth_ns = 0;
masterConfig->sclGlitchFilterWidth_ns = 0;
masterConfig->hostRequest.enable = false;
masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with LPI2C_MasterInit().

Parameters
• masterConfig – [out] User provided configuration structure for default val-

ues. Refer to lpi2c_master_config_t.

void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t
sourceClock_Hz)

Initializes the LPI2C master peripheral.

This function enables the peripheral clock and initializes the LPI2C master peripheral as
described by the user provided configuration. A software reset is performed prior to con-
figuration.

Parameters
• base – The LPI2C peripheral base address.

• masterConfig – User provided peripheral configuration. Use
LPI2C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

• sourceClock_Hz – Frequency in Hertz of the LPI2C functional clock. Used
to calculate the baud rate divisors, filter widths, and timeout periods.

2.72. LPI2C Master Driver 837



MCUXpresso SDK Documentation, Release 25.12.00

void LPI2C_MasterDeinit(LPI2C_Type *base)
Deinitializes the LPI2C master peripheral.

This function disables the LPI2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The LPI2C peripheral base address.

void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t
*matchConfig)

Configures LPI2C master data match feature.

Parameters
• base – The LPI2C peripheral base address.

• matchConfig – Settings for the data match feature.

status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
Convert provided flags to status code, and clear any errors if present.

Parameters
• base – The LPI2C peripheral base address.

• status – Current status flags value that will be checked.

Return values
• kStatus_Success –

• kStatus_LPI2C_PinLowTimeout –

• kStatus_LPI2C_ArbitrationLost –

• kStatus_LPI2C_Nak –

• kStatus_LPI2C_FifoError –

status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
Make sure the bus isn’t already busy.

A busy bus is allowed if we are the one driving it.

Parameters
• base – The LPI2C peripheral base address.

Return values
• kStatus_Success –

• kStatus_LPI2C_Busy –

static inline void LPI2C_MasterReset(LPI2C_Type *base)
Performs a software reset.

Restores the LPI2C master peripheral to reset conditions.

Parameters
• base – The LPI2C peripheral base address.

static inline void LPI2C_MasterEnable(LPI2C_Type *base, bool enable)
Enables or disables the LPI2C module as master.

Parameters
• base – The LPI2C peripheral base address.

• enable – Pass true to enable or false to disable the specified LPI2C as master.

838 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t LPI2C_MasterGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C master status flags.

A bit mask with the state of all LPI2C master status flags is returned. For each flag, the
corresponding bit in the return value is set if the flag is asserted.

See also:
_lpi2c_master_flags

Parameters
• base – The LPI2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void LPI2C_MasterClearStatusFlags(LPI2C_Type *base, uint32_t statusMask)
Clears the LPI2C master status flag state.

The following status register flags can be cleared:

• kLPI2C_MasterEndOfPacketFlag

• kLPI2C_MasterStopDetectFlag

• kLPI2C_MasterNackDetectFlag

• kLPI2C_MasterArbitrationLostFlag

• kLPI2C_MasterFifoErrFlag

• kLPI2C_MasterPinLowTimeoutFlag

• kLPI2C_MasterDataMatchFlag

Attempts to clear other flags has no effect.

See also:
_lpi2c_master_flags.

Parameters
• base – The LPI2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask
is composed of _lpi2c_master_flags enumerators OR’d together. You may
pass the result of a previous call to LPI2C_MasterGetStatusFlags().

static inline void LPI2C_MasterEnableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Enables the LPI2C master interrupt requests.

All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters
• base – The LPI2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _lpi2c_master_flags
for the set of constants that should be OR’d together to form the bit mask.

2.72. LPI2C Master Driver 839



MCUXpresso SDK Documentation, Release 25.12.00

static inline void LPI2C_MasterDisableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Disables the LPI2C master interrupt requests.

All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Parameters
• base – The LPI2C peripheral base address.

• interruptMask – Bit mask of interrupts to disable. See _lpi2c_master_flags
for the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t LPI2C_MasterGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C master interrupt requests.

Parameters
• base – The LPI2C peripheral base address.

Returns
A bitmask composed of _lpi2c_master_flags enumerators OR’d together to in-
dicate the set of enabled interrupts.

static inline void LPI2C_MasterEnableDMA(LPI2C_Type *base, bool enableTx, bool enableRx)
Enables or disables LPI2C master DMA requests.

Parameters
• base – The LPI2C peripheral base address.

• enableTx – Enable flag for transmit DMA request. Pass true for enable, false
for disable.

• enableRx – Enable flag for receive DMA request. Pass true for enable, false
for disable.

static inline uint32_t LPI2C_MasterGetTxFifoAddress(LPI2C_Type *base)
Gets LPI2C master transmit data register address for DMA transfer.

Parameters
• base – The LPI2C peripheral base address.

Returns
The LPI2C Master Transmit Data Register address.

static inline uint32_t LPI2C_MasterGetRxFifoAddress(LPI2C_Type *base)
Gets LPI2C master receive data register address for DMA transfer.

Parameters
• base – The LPI2C peripheral base address.

Returns
The LPI2C Master Receive Data Register address.

static inline void LPI2C_MasterSetWatermarks(LPI2C_Type *base, size_t txWords, size_t
rxWords)

Sets the watermarks for LPI2C master FIFOs.

Parameters
• base – The LPI2C peripheral base address.

• txWords – Transmit FIFO watermark value in words. The
kLPI2C_MasterTxReadyFlag flag is set whenever the number of words in
the transmit FIFO is equal or less than txWords. Writing a value equal or
greater than the FIFO size is truncated.

840 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• rxWords – Receive FIFO watermark value in words. The
kLPI2C_MasterRxReadyFlag flag is set whenever the number of words in
the receive FIFO is greater than rxWords. Writing a value equal or greater
than the FIFO size is truncated.

static inline void LPI2C_MasterGetFifoCounts(LPI2C_Type *base, size_t *rxCount, size_t
*txCount)

Gets the current number of words in the LPI2C master FIFOs.

Parameters
• base – The LPI2C peripheral base address.

• txCount – [out] Pointer through which the current number of words in the
transmit FIFO is returned. Pass NULL if this value is not required.

• rxCount – [out] Pointer through which the current number of words in the
receive FIFO is returned. Pass NULL if this value is not required.

void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t
baudRate_Hz)

Sets the I2C bus frequency for master transactions.

The LPI2C master is automatically disabled and re-enabled as necessary to configure the
baud rate. Do not call this function during a transfer, or the transfer is aborted.

Note: Please note that the second parameter is the clock frequency of LPI2C module, the
third parameter means user configured bus baudrate, this implementation is different from
other I2C drivers which use baudrate configuration as second parameter and source clock
frequency as third parameter.

Parameters
• base – The LPI2C peripheral base address.

• sourceClock_Hz – LPI2C functional clock frequency in Hertz.

• baudRate_Hz – Requested bus frequency in Hertz.

static inline bool LPI2C_MasterGetBusIdleState(LPI2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.

Parameters
• base – The LPI2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
Sends a START signal and slave address on the I2C bus.

This function is used to initiate a new master mode transfer. First, the bus state is checked
to ensure that another master is not occupying the bus. Then a START signal is transmitted,
followed by the 7-bit address specified in the address parameter. Note that this function
does not actually wait until the START and address are successfully sent on the bus before
returning.

Parameters
• base – The LPI2C peripheral base address.

2.72. LPI2C Master Driver 841



MCUXpresso SDK Documentation, Release 25.12.00

• address – 7-bit slave device address, in bits [6:0].

• dir – Master transfer direction, either kLPI2C_Read or kLPI2C_Write. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values
• kStatus_Success – START signal and address were successfully enqueued in

the transmit FIFO.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

static inline status_t LPI2C_MasterRepeatedStart(LPI2C_Type *base, uint8_t address,
lpi2c_direction_t dir)

Sends a repeated START signal and slave address on the I2C bus.

This function is used to send a Repeated START signal when a transfer is already in progress.
Like LPI2C_MasterStart(), it also sends the specified 7-bit address.

Note: This function exists primarily to maintain compatible APIs between LPI2C and I2C
drivers, as well as to better document the intent of code that uses these APIs.

Parameters
• base – The LPI2C peripheral base address.

• address – 7-bit slave device address, in bits [6:0].

• dir – Master transfer direction, either kLPI2C_Read or kLPI2C_Write. This
parameter is used to set the R/w bit (bit 0) in the transmitted slave address.

Return values
• kStatus_Success – Repeated START signal and address were successfully en-

queued in the transmit FIFO.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

status_t LPI2C_MasterSend(LPI2C_Type *base, void *txBuff, size_t txSize)
Performs a polling send transfer on the I2C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_LPI2C_Nak.

Parameters
• base – The LPI2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Return values
• kStatus_Success – Data was sent successfully.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

• kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_LPI2C_FifoError – FIFO under run or over run.

• kStatus_LPI2C_ArbitrationLost – Arbitration lost error.

• kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than
the timeout.

842 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The LPI2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

Return values
• kStatus_Success – Data was received successfully.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

• kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_LPI2C_FifoError – FIFO under run or overrun.

• kStatus_LPI2C_ArbitrationLost – Arbitration lost error.

• kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than
the timeout.

status_t LPI2C_MasterStop(LPI2C_Type *base)
Sends a STOP signal on the I2C bus.

This function does not return until the STOP signal is seen on the bus, or an error occurs.

Parameters
• base – The LPI2C peripheral base address.

Return values
• kStatus_Success – The STOP signal was successfully sent on the bus and the

transaction terminated.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

• kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.

• kStatus_LPI2C_FifoError – FIFO under run or overrun.

• kStatus_LPI2C_ArbitrationLost – Arbitration lost error.

• kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than
the timeout.

status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to error happens
during transfer.

Parameters
• base – The LPI2C peripheral base address.

• transfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Data was received successfully.

• kStatus_LPI2C_Busy – Another master is currently utilizing the bus.

• kStatus_LPI2C_Nak – The slave device sent a NAK in response to a byte.

2.72. LPI2C Master Driver 843



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_LPI2C_FifoError – FIFO under run or overrun.

• kStatus_LPI2C_ArbitrationLost – Arbitration lost error.

• kStatus_LPI2C_PinLowTimeout – SCL or SDA were held low longer than
the timeout.

void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base, lpi2c_master_handle_t *handle,
lpi2c_master_transfer_callback_t callback, void
*userData)

Creates a new handle for the LPI2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the
associated INTMUX IRQ in application.

Parameters
• base – The LPI2C peripheral base address.

• handle – [out] Pointer to the LPI2C master driver handle.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base, lpi2c_master_handle_t *handle,
lpi2c_master_transfer_t *transfer)

Performs a non-blocking transaction on the I2C bus.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

• transfer – The pointer to the transfer descriptor.

Return values
• kStatus_Success – The transaction was started successfully.

• kStatus_LPI2C_Busy – Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle,
size_t *count)

Returns number of bytes transferred so far.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

• count – [out] Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

844 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
Terminates a non-blocking LPI2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the LPI2C peripheral’s IRQ priority.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, void *lpi2cMasterHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The LPI2C peripheral base address.

• lpi2cMasterHandle – Pointer to the LPI2C master driver handle.

enum _lpi2c_master_flags
LPI2C master peripheral flags.

The following status register flags can be cleared:

• kLPI2C_MasterEndOfPacketFlag

• kLPI2C_MasterStopDetectFlag

• kLPI2C_MasterNackDetectFlag

• kLPI2C_MasterArbitrationLostFlag

• kLPI2C_MasterFifoErrFlag

• kLPI2C_MasterPinLowTimeoutFlag

• kLPI2C_MasterDataMatchFlag

All flags except kLPI2C_MasterBusyFlag and kLPI2C_MasterBusBusyFlag can be enabled as
interrupts.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_MasterTxReadyFlag
Transmit data flag

enumerator kLPI2C_MasterRxReadyFlag
Receive data flag

enumerator kLPI2C_MasterEndOfPacketFlag
End Packet flag

enumerator kLPI2C_MasterStopDetectFlag
Stop detect flag

2.72. LPI2C Master Driver 845



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPI2C_MasterNackDetectFlag
NACK detect flag

enumerator kLPI2C_MasterArbitrationLostFlag
Arbitration lost flag

enumerator kLPI2C_MasterFifoErrFlag
FIFO error flag

enumerator kLPI2C_MasterPinLowTimeoutFlag
Pin low timeout flag

enumerator kLPI2C_MasterDataMatchFlag
Data match flag

enumerator kLPI2C_MasterBusyFlag
Master busy flag

enumerator kLPI2C_MasterBusBusyFlag
Bus busy flag

enumerator kLPI2C_MasterClearFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kLPI2C_MasterIrqFlags
IRQ sources enabled by the non-blocking transactional API.

enumerator kLPI2C_MasterErrorFlags
Errors to check for.

enum _lpi2c_direction
Direction of master and slave transfers.

Values:

enumerator kLPI2C_Write
Master transmit.

enumerator kLPI2C_Read
Master receive.

enum _lpi2c_master_pin_config
LPI2C pin configuration.

Values:

enumerator kLPI2C_2PinOpenDrain
LPI2C Configured for 2-pin open drain mode

enumerator kLPI2C_2PinOutputOnly
LPI2C Configured for 2-pin output only mode (ultra-fast mode)

enumerator kLPI2C_2PinPushPull
LPI2C Configured for 2-pin push-pull mode

enumerator kLPI2C_4PinPushPull
LPI2C Configured for 4-pin push-pull mode

enumerator kLPI2C_2PinOpenDrainWithSeparateSlave
LPI2C Configured for 2-pin open drain mode with separate LPI2C slave

enumerator kLPI2C_2PinOutputOnlyWithSeparateSlave
LPI2C Configured for 2-pin output only mode(ultra-fast mode) with separate LPI2C
slave

846 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPI2C_2PinPushPullWithSeparateSlave
LPI2C Configured for 2-pin push-pull mode with separate LPI2C slave

enumerator kLPI2C_4PinPushPullWithInvertedOutput
LPI2C Configured for 4-pin push-pull mode(inverted outputs)

enum _lpi2c_host_request_source
LPI2C master host request selection.

Values:

enumerator kLPI2C_HostRequestExternalPin
Select the LPI2C_HREQ pin as the host request input

enumerator kLPI2C_HostRequestInputTrigger
Select the input trigger as the host request input

enum _lpi2c_host_request_polarity
LPI2C master host request pin polarity configuration.

Values:

enumerator kLPI2C_HostRequestPinActiveLow
Configure the LPI2C_HREQ pin active low

enumerator kLPI2C_HostRequestPinActiveHigh
Configure the LPI2C_HREQ pin active high

enum _lpi2c_data_match_config_mode
LPI2C master data match configuration modes.

Values:

enumerator kLPI2C_MatchDisabled
LPI2C Match Disabled

enumerator kLPI2C_1stWordEqualsM0OrM1
LPI2C Match Enabled and 1st data word equals MATCH0 OR MATCH1

enumerator kLPI2C_AnyWordEqualsM0OrM1
LPI2C Match Enabled and any data word equals MATCH0 OR MATCH1

enumerator kLPI2C_1stWordEqualsM0And2ndWordEqualsM1
LPI2C Match Enabled and 1st data word equals MATCH0, 2nd data equals MATCH1

enumerator kLPI2C_AnyWordEqualsM0AndNextWordEqualsM1
LPI2C Match Enabled and any data word equals MATCH0, next data equals MATCH1

enumerator kLPI2C_1stWordAndM1EqualsM0AndM1
LPI2C Match Enabled and 1st data word and MATCH0 equals MATCH0 and MATCH1

enumerator kLPI2C_AnyWordAndM1EqualsM0AndM1
LPI2C Match Enabled and any data word and MATCH0 equals MATCH0 and MATCH1

enum _lpi2c_master_transfer_flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _lpi2c_master_transfer::flags field.

Values:

2.72. LPI2C Master Driver 847



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPI2C_TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kLPI2C_TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kLPI2C_TransferRepeatedStartFlag
Send a repeated start condition

enumerator kLPI2C_TransferNoStopFlag
Don’t send a stop condition.

typedef enum _lpi2c_direction lpi2c_direction_t
Direction of master and slave transfers.

typedef enum _lpi2c_master_pin_config lpi2c_master_pin_config_t
LPI2C pin configuration.

typedef enum _lpi2c_host_request_source lpi2c_host_request_source_t
LPI2C master host request selection.

typedef enum _lpi2c_host_request_polarity lpi2c_host_request_polarity_t
LPI2C master host request pin polarity configuration.

typedef struct _lpi2c_master_config lpi2c_master_config_t
Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _lpi2c_data_match_config_mode lpi2c_data_match_config_mode_t
LPI2C master data match configuration modes.

typedef struct _lpi2c_match_config lpi2c_data_match_config_t
LPI2C master data match configuration structure.

typedef struct _lpi2c_master_transfer lpi2c_master_transfer_t
LPI2C master descriptor of the transfer.

typedef struct _lpi2c_master_handle lpi2c_master_handle_t
LPI2C master handle of the transfer.

typedef void (*lpi2c_master_transfer_callback_t)(LPI2C_Type *base, lpi2c_master_handle_t
*handle, status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterTransferCreateHandle().

Param base
The LPI2C peripheral base address.

Param handle
Pointer to the LPI2C master driver handle.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

848 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, void *handle)
Typedef for master interrupt handler, used internally for LPI2C master interrupt and EDMA
transactional APIs.

struct _lpi2c_master_config
#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C master module.

This structure holds configuration settings for the LPI2C peripheral. To initialize this struc-
ture to reasonable defaults, call the LPI2C_MasterGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableMaster
Whether to enable master mode.

bool enableDoze
Whether master is enabled in doze mode.

bool debugEnable
Enable transfers to continue when halted in debug mode.

bool ignoreAck
Whether to ignore ACK/NACK.

lpi2c_master_pin_config_t pinConfig
The pin configuration option.

uint32_t baudRate_Hz
Desired baud rate in Hertz.

uint32_t busIdleTimeout_ns
Bus idle timeout in nanoseconds. Set to 0 to disable.

uint32_t pinLowTimeout_ns
Pin low timeout in nanoseconds. Set to 0 to disable.

uint8_t sdaGlitchFilterWidth_ns
Width in nanoseconds of glitch filter on SDA pin. Set to 0 to disable.

uint8_t sclGlitchFilterWidth_ns
Width in nanoseconds of glitch filter on SCL pin. Set to 0 to disable.

struct _lpi2c_master_config hostRequest
Host request options.

struct _lpi2c_match_config
#include <fsl_lpi2c.h> LPI2C master data match configuration structure.

Public Members

lpi2c_data_match_config_mode_t matchMode
Data match configuration setting.

bool rxDataMatchOnly
When set to true, received data is ignored until a successful match.

uint32_t match0
Match value 0.

2.72. LPI2C Master Driver 849



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t match1
Match value 1.

struct _lpi2c_master_transfer
#include <fsl_lpi2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
LPI2C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _lpi2c_master_transfer_flags for
available options. Set to 0 or kLPI2C_TransferDefaultFlag for normal transfers.

uint16_t slaveAddress
The 7-bit slave address.

lpi2c_direction_t direction
Either kLPI2C_Read or kLPI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct _lpi2c_master_handle
#include <fsl_lpi2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint16_t remainingBytes
Remaining byte count in current state.

uint8_t *buf
Buffer pointer for current state.

uint16_t commandBuffer[6]
LPI2C command sequence. When all 6 command words are used: Start&addr&write[1
word] + subaddr[4 words] + restart&addr&read[1 word]

lpi2c_master_transfer_t transfer
Copy of the current transfer info.

lpi2c_master_transfer_callback_t completionCallback
Callback function pointer.

850 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void *userData
Application data passed to callback.

struct hostRequest

Public Members

bool enable
Enable host request.

lpi2c_host_request_source_t source
Host request source.

lpi2c_host_request_polarity_t polarity
Host request pin polarity.

2.73 LPI2C Master DMA Driver

void LPI2C_MasterCreateEDMAHandle(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle,
edma_handle_t *rxDmaHandle, edma_handle_t
*txDmaHandle, lpi2c_master_edma_transfer_callback_t
callback, void *userData)

Create a new handle for the LPI2C master DMA APIs.

The creation of a handle is for use with the DMA APIs. Once a handle is created, there
is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_MasterTransferAbortEDMA() API shall be called.

For devices where the LPI2C send and receive DMA requests are OR’d together, the txDma-
Handle parameter is ignored and may be set to NULL.

Parameters
• base – The LPI2C peripheral base address.

• handle – [out] Pointer to the LPI2C master driver handle.

• rxDmaHandle – Handle for the eDMA receive channel. Created by the user
prior to calling this function.

• txDmaHandle – Handle for the eDMA transmit channel. Created by the user
prior to calling this function.

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t LPI2C_MasterTransferEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle,
lpi2c_master_transfer_t *transfer)

Performs a non-blocking DMA-based transaction on the I2C bus.

The callback specified when the handle was created is invoked when the transaction has
completed.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

• transfer – The pointer to the transfer descriptor.

Return values

2.73. LPI2C Master DMA Driver 851



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Success – The transaction was started successfully.

• kStatus_LPI2C_Busy – Either another master is currently utilizing the bus,
or another DMA transaction is already in progress.

status_t LPI2C_MasterTransferGetCountEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t
*handle, size_t *count)

Returns number of bytes transferred so far.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

• count – [out] Number of bytes transferred so far by the non-blocking trans-
action.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress – There is not a DMA transaction currently in
progress.

status_t LPI2C_MasterTransferAbortEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t
*handle)

Terminates a non-blocking LPI2C master transmission early.

Note: It is not safe to call this function from an IRQ handler that has a higher priority than
the eDMA peripheral’s IRQ priority.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to the LPI2C master driver handle.

Return values
• kStatus_Success – A transaction was successfully aborted.

• kStatus_LPI2C_Idle – There is not a DMA transaction currently in
progress.

typedef struct _lpi2c_master_edma_handle lpi2c_master_edma_handle_t
LPI2C master EDMA handle of the transfer.

typedef void (*lpi2c_master_edma_transfer_callback_t)(LPI2C_Type *base,
lpi2c_master_edma_handle_t *handle, status_t completionStatus, void *userData)

Master DMA completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to LPI2C_MasterCreateEDMAHandle().

Param base
The LPI2C peripheral base address.

Param handle
Handle associated with the completed transfer.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

852 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Param userData
Arbitrary pointer-sized value passed from the application.

struct _lpi2c_master_edma_handle
#include <fsl_lpi2c_edma.h> Driver handle for master DMA APIs.

Note: The contents of this structure are private and subject to change.

Public Members

LPI2C_Type *base
LPI2C base pointer.

bool isBusy
Transfer state machine current state.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

uint16_t commandBuffer[20]
LPI2C command sequence. When all 10 command words are used:
Start&addr&write[1 word] + subaddr[4 words] + restart&addr&read[1 word] +
receive&Size[4 words]

lpi2c_master_transfer_t transfer
Copy of the current transfer info.

lpi2c_master_edma_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

edma_handle_t *rx
Handle for receive DMA channel.

edma_handle_t *tx
Handle for transmit DMA channel.

edma_tcd_t tcds[3]
Software TCD. Three are allocated to provide enough room to align to 32-bytes.

2.74 LPI2C Slave Driver

void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
Provides a default configuration for the LPI2C slave peripheral.

This function provides the following default configuration for the LPI2C slave peripheral:

slaveConfig->enableSlave = true;
slaveConfig->address0 = 0U;
slaveConfig->address1 = 0U;
slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
slaveConfig->filterDozeEnable = true;
slaveConfig->filterEnable = true;
slaveConfig->enableGeneralCall = false;
slaveConfig->sclStall.enableAck = false;

(continues on next page)

2.74. LPI2C Slave Driver 853



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
slaveConfig->sclStall.enableTx = true;
slaveConfig->sclStall.enableRx = true;
slaveConfig->sclStall.enableAddress = true;
slaveConfig->ignoreAck = false;
slaveConfig->enableReceivedAddressRead = false;
slaveConfig->sdaGlitchFilterWidth_ns = 0;
slaveConfig->sclGlitchFilterWidth_ns = 0;
slaveConfig->dataValidDelay_ns = 0;
slaveConfig->clockHoldTime_ns = 0;

After calling this function, override any settings to customize the configuration, prior to ini-
tializing the master driver with LPI2C_SlaveInit(). Be sure to override at least the address0
member of the configuration structure with the desired slave address.

Parameters
• slaveConfig – [out] User provided configuration structure that is set to de-

fault values. Refer to lpi2c_slave_config_t.

void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t
sourceClock_Hz)

Initializes the LPI2C slave peripheral.

This function enables the peripheral clock and initializes the LPI2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
• base – The LPI2C peripheral base address.

• slaveConfig – User provided peripheral configuration. Use
LPI2C_SlaveGetDefaultConfig() to get a set of defaults that you can
override.

• sourceClock_Hz – Frequency in Hertz of the LPI2C functional clock. Used
to calculate the filter widths, data valid delay, and clock hold time.

void LPI2C_SlaveDeinit(LPI2C_Type *base)
Deinitializes the LPI2C slave peripheral.

This function disables the LPI2C slave peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
• base – The LPI2C peripheral base address.

static inline void LPI2C_SlaveReset(LPI2C_Type *base)
Performs a software reset of the LPI2C slave peripheral.

Parameters
• base – The LPI2C peripheral base address.

static inline void LPI2C_SlaveEnable(LPI2C_Type *base, bool enable)
Enables or disables the LPI2C module as slave.

Parameters
• base – The LPI2C peripheral base address.

• enable – Pass true to enable or false to disable the specified LPI2C as slave.

854 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t LPI2C_SlaveGetStatusFlags(LPI2C_Type *base)
Gets the LPI2C slave status flags.

A bit mask with the state of all LPI2C slave status flags is returned. For each flag, the corre-
sponding bit in the return value is set if the flag is asserted.

See also:
_lpi2c_slave_flags

Parameters
• base – The LPI2C peripheral base address.

Returns
State of the status flags:

• 1: related status flag is set.

• 0: related status flag is not set.

static inline void LPI2C_SlaveClearStatusFlags(LPI2C_Type *base, uint32_t statusMask)
Clears the LPI2C status flag state.

The following status register flags can be cleared:

• kLPI2C_SlaveRepeatedStartDetectFlag

• kLPI2C_SlaveStopDetectFlag

• kLPI2C_SlaveBitErrFlag

• kLPI2C_SlaveFifoErrFlag

Attempts to clear other flags has no effect.

See also:
_lpi2c_slave_flags.

Parameters
• base – The LPI2C peripheral base address.

• statusMask – A bitmask of status flags that are to be cleared. The mask is
composed of _lpi2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to LPI2C_SlaveGetStatusFlags().

static inline void LPI2C_SlaveEnableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Enables the LPI2C slave interrupt requests.

All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Parameters
• base – The LPI2C peripheral base address.

• interruptMask – Bit mask of interrupts to enable. See _lpi2c_slave_flags for
the set of constants that should be OR’d together to form the bit mask.

static inline void LPI2C_SlaveDisableInterrupts(LPI2C_Type *base, uint32_t interruptMask)
Disables the LPI2C slave interrupt requests.

All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

2.74. LPI2C Slave Driver 855



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – The LPI2C peripheral base address.

• interruptMask – Bit mask of interrupts to disable. See _lpi2c_slave_flags for
the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t LPI2C_SlaveGetEnabledInterrupts(LPI2C_Type *base)
Returns the set of currently enabled LPI2C slave interrupt requests.

Parameters
• base – The LPI2C peripheral base address.

Returns
A bitmask composed of _lpi2c_slave_flags enumerators OR’d together to indi-
cate the set of enabled interrupts.

static inline void LPI2C_SlaveEnableDMA(LPI2C_Type *base, bool enableAddressValid, bool
enableRx, bool enableTx)

Enables or disables the LPI2C slave peripheral DMA requests.

Parameters
• base – The LPI2C peripheral base address.

• enableAddressValid – Enable flag for the address valid DMA request. Pass
true for enable, false for disable. The address valid DMA request is shared
with the receive data DMA request.

• enableRx – Enable flag for the receive data DMA request. Pass true for en-
able, false for disable.

• enableTx – Enable flag for the transmit data DMA request. Pass true for
enable, false for disable.

static inline bool LPI2C_SlaveGetBusIdleState(LPI2C_Type *base)
Returns whether the bus is idle.

Requires the slave mode to be enabled.

Parameters
• base – The LPI2C peripheral base address.

Return values
• true – Bus is busy.

• false – Bus is idle.

static inline void LPI2C_SlaveTransmitAck(LPI2C_Type *base, bool ackOrNack)
Transmits either an ACK or NAK on the I2C bus in response to a byte from the master.

Use this function to send an ACK or NAK when the kLPI2C_SlaveTransmitAckFlag
is asserted. This only happens if you enable the sclStall.enableAck field of the
lpi2c_slave_config_t configuration structure used to initialize the slave peripheral.

Parameters
• base – The LPI2C peripheral base address.

• ackOrNack – Pass true for an ACK or false for a NAK.

static inline void LPI2C_SlaveEnableAckStall(LPI2C_Type *base, bool enable)
Enables or disables ACKSTALL.

When enables ACKSTALL, software can transmit either an ACK or NAK on the I2C bus in
response to a byte from the master.

856 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – The LPI2C peripheral base address.

• enable – True will enable ACKSTALL,false will disable ACKSTALL.

static inline uint32_t LPI2C_SlaveGetReceivedAddress(LPI2C_Type *base)
Returns the slave address sent by the I2C master.

This function should only be called if the kLPI2C_SlaveAddressValidFlag is asserted.

Parameters
• base – The LPI2C peripheral base address.

Returns
The 8-bit address matched by the LPI2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

status_t LPI2C_SlaveSend(LPI2C_Type *base, void *txBuff, size_t txSize, size_t *actualTxSize)
Performs a polling send transfer on the I2C bus.

Parameters
• base – The LPI2C peripheral base address.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• actualTxSize – [out]
Returns

Error or success status returned by API.

status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
Performs a polling receive transfer on the I2C bus.

Parameters
• base – The LPI2C peripheral base address.

• rxBuff – The pointer to the data to be transferred.

• rxSize – The length in bytes of the data to be transferred.

• actualRxSize – [out]
Returns

Error or success status returned by API.

void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base, lpi2c_slave_handle_t *handle,
lpi2c_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the LPI2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
LPI2C_SlaveTransferAbort() API shall be called.

Note: The function also enables the NVIC IRQ for the input LPI2C. Need to notice that on
some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to enable the
associated INTMUX IRQ in application.

Parameters
• base – The LPI2C peripheral base address.

• handle – [out] Pointer to the LPI2C slave driver handle.

2.74. LPI2C Slave Driver 857



MCUXpresso SDK Documentation, Release 25.12.00

• callback – User provided pointer to the asynchronous callback function.

• userData – User provided pointer to the application callback data.

status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle,
uint32_t eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_SlaveInit() and LPI2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to LPI2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the
eventMask parameter to the OR’d combination of lpi2c_slave_transfer_event_t enu-
merators for the events you wish to receive. The kLPI2C_SlaveTransmitEvent and
kLPI2C_SlaveReceiveEvent events are always enabled and do not need to be included in
the mask. Alternatively, you can pass 0 to get a default set of only the transmit and re-
ceive events that are always enabled. In addition, the kLPI2C_SlaveAllEvents constant is
provided as a convenient way to enable all events.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer
state.

• eventMask – Bit mask formed by OR’ing together
lpi2c_slave_transfer_event_t enumerators to specify which events to
send to the callback. Other accepted values are 0 to get a default set
of only the transmit and receive events, and kLPI2C_SlaveAllEvents to
enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_LPI2C_Busy – Slave transfers have already been started on this
handle.

status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t
*count)

Gets the slave transfer status during a non-blocking transfer.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure.

• count – [out] Pointer to a value to hold the number of bytes transferred.
May be NULL if the count is not required.

Return values
• kStatus_Success –

• kStatus_NoTransferInProgress –

void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters

858 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – The LPI2C peripheral base address.

• handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer
state.

void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking API’s interrupt handler routines to add special functionality.

Parameters
• base – The LPI2C peripheral base address.

• handle – Pointer to lpi2c_slave_handle_t structure which stores the transfer
state.

enum _lpi2c_slave_flags
LPI2C slave peripheral flags.

The following status register flags can be cleared:

• kLPI2C_SlaveRepeatedStartDetectFlag

• kLPI2C_SlaveStopDetectFlag

• kLPI2C_SlaveBitErrFlag

• kLPI2C_SlaveFifoErrFlag

All flags except kLPI2C_SlaveBusyFlag and kLPI2C_SlaveBusBusyFlag can be enabled as in-
terrupts.

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kLPI2C_SlaveTxReadyFlag
Transmit data flag

enumerator kLPI2C_SlaveRxReadyFlag
Receive data flag

enumerator kLPI2C_SlaveAddressValidFlag
Address valid flag

enumerator kLPI2C_SlaveTransmitAckFlag
Transmit ACK flag

enumerator kLPI2C_SlaveRepeatedStartDetectFlag
Repeated start detect flag

enumerator kLPI2C_SlaveStopDetectFlag
Stop detect flag

enumerator kLPI2C_SlaveBitErrFlag
Bit error flag

enumerator kLPI2C_SlaveFifoErrFlag
FIFO error flag

2.74. LPI2C Slave Driver 859



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPI2C_SlaveAddressMatch0Flag
Address match 0 flag

enumerator kLPI2C_SlaveAddressMatch1Flag
Address match 1 flag

enumerator kLPI2C_SlaveGeneralCallFlag
General call flag

enumerator kLPI2C_SlaveBusyFlag
Master busy flag

enumerator kLPI2C_SlaveBusBusyFlag
Bus busy flag

enumerator kLPI2C_SlaveClearFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kLPI2C_SlaveIrqFlags
IRQ sources enabled by the non-blocking transactional API.

enumerator kLPI2C_SlaveErrorFlags
Errors to check for.

enum _lpi2c_slave_address_match
LPI2C slave address match options.

Values:

enumerator kLPI2C_MatchAddress0
Match only address 0.

enumerator kLPI2C_MatchAddress0OrAddress1
Match either address 0 or address 1.

enumerator kLPI2C_MatchAddress0ThroughAddress1
Match a range of slave addresses from address 0 through address 1.

enum _lpi2c_slave_transfer_event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kLPI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kLPI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kLPI2C_SlaveReceiveEvent
Callback is requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kLPI2C_SlaveTransmitAckEvent
Callback needs to either transmit an ACK or NACK.

860 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPI2C_SlaveRepeatedStartEvent
A repeated start was detected.

enumerator kLPI2C_SlaveCompletionEvent
A stop was detected, completing the transfer.

enumerator kLPI2C_SlaveAllEvents
Bit mask of all available events.

typedef enum _lpi2c_slave_address_match lpi2c_slave_address_match_t
LPI2C slave address match options.

typedef struct _lpi2c_slave_config lpi2c_slave_config_t
Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _lpi2c_slave_transfer_event lpi2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to LPI2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _lpi2c_slave_transfer lpi2c_slave_transfer_t
LPI2C slave transfer structure.

typedef struct _lpi2c_slave_handle lpi2c_slave_handle_t
LPI2C slave handle structure.

typedef void (*lpi2c_slave_transfer_callback_t)(LPI2C_Type *base, lpi2c_slave_transfer_t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the LPI2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the LPI2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _lpi2c_slave_config
#include <fsl_lpi2c.h> Structure with settings to initialize the LPI2C slave module.

This structure holds configuration settings for the LPI2C slave peripheral. To initialize this
structure to reasonable defaults, call the LPI2C_SlaveGetDefaultConfig() function and pass
a pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

2.74. LPI2C Slave Driver 861



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableSlave
Enable slave mode.

uint8_t address0
Slave’s 7-bit address.

uint8_t address1
Alternate slave 7-bit address.

lpi2c_slave_address_match_t addressMatchMode
Address matching options.

bool filterDozeEnable
Enable digital glitch filter in doze mode.

bool filterEnable
Enable digital glitch filter.

bool enableGeneralCall
Enable general call address matching.

struct _lpi2c_slave_config sclStall
SCL stall enable options.

bool ignoreAck
Continue transfers after a NACK is detected.

bool enableReceivedAddressRead
Enable reading the address received address as the first byte of data.

uint32_t sdaGlitchFilterWidth_ns
Width in nanoseconds of the digital filter on the SDA signal. Set to 0 to disable.

uint32_t sclGlitchFilterWidth_ns
Width in nanoseconds of the digital filter on the SCL signal. Set to 0 to disable.

uint32_t dataValidDelay_ns
Width in nanoseconds of the data valid delay.

uint32_t clockHoldTime_ns
Width in nanoseconds of the clock hold time.

struct _lpi2c_slave_transfer
#include <fsl_lpi2c.h> LPI2C slave transfer structure.

Public Members

lpi2c_slave_transfer_event_t event
Reason the callback is being invoked.

uint8_t receivedAddress
Matching address send by master.

uint8_t *data
Transfer buffer

size_t dataSize
Transfer size

862 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kLPI2C_SlaveCompletionEvent.

size_t transferredCount
Number of bytes actually transferred since start or last repeated start.

struct _lpi2c_slave_handle
#include <fsl_lpi2c.h> LPI2C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members

lpi2c_slave_transfer_t transfer
LPI2C slave transfer copy.

bool isBusy
Whether transfer is busy.

bool wasTransmit
Whether the last transfer was a transmit.

uint32_t eventMask
Mask of enabled events.

uint32_t transferredCount
Count of bytes transferred.

lpi2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

struct sclStall

Public Members

bool enableAck
Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver
address and data byte(s) to allow software to write the Transmit ACK Register before
the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th
bit. When enableAckSCLStall is enabled, there is no need to set either enableRxDataS-
CLStall or enableAddressSCLStall.

bool enableTx
Enables SCL clock stretching when the transmit data flag is set during a slave-transmit
transfer.

bool enableRx
Enables SCL clock stretching when receive data flag is set during a slave-receive trans-
fer.

bool enableAddress
Enables SCL clock stretching when the address valid flag is asserted.

2.74. LPI2C Slave Driver 863



MCUXpresso SDK Documentation, Release 25.12.00

2.75 LPSPI: Low Power Serial Peripheral Interface

2.76 LPSPI Peripheral driver

void LPSPI_MasterInit(LPSPI_Type *base, const lpspi_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the LPSPI master.

Parameters
• base – LPSPI peripheral address.

• masterConfig – Pointer to structure lpspi_master_config_t.

• srcClock_Hz – Module source input clock in Hertz

void LPSPI_MasterGetDefaultConfig(lpspi_master_config_t *masterConfig)
Sets the lpspi_master_config_t structure to default values.

This API initializes the configuration structure for LPSPI_MasterInit(). The initialized struc-
ture can remain unchanged in LPSPI_MasterInit(), or can be modified before calling the
LPSPI_MasterInit(). Example:

lpspi_master_config_t masterConfig;
LPSPI_MasterGetDefaultConfig(&masterConfig);

Parameters
• masterConfig – pointer to lpspi_master_config_t structure

void LPSPI_SlaveInit(LPSPI_Type *base, const lpspi_slave_config_t *slaveConfig)
LPSPI slave configuration.

Parameters
• base – LPSPI peripheral address.

• slaveConfig – Pointer to a structure lpspi_slave_config_t.

void LPSPI_SlaveGetDefaultConfig(lpspi_slave_config_t *slaveConfig)
Sets the lpspi_slave_config_t structure to default values.

This API initializes the configuration structure for LPSPI_SlaveInit(). The initialized struc-
ture can remain unchanged in LPSPI_SlaveInit() or can be modified before calling the LP-
SPI_SlaveInit(). Example:

lpspi_slave_config_t slaveConfig;
LPSPI_SlaveGetDefaultConfig(&slaveConfig);

Parameters
• slaveConfig – pointer to lpspi_slave_config_t structure.

void LPSPI_Deinit(LPSPI_Type *base)
De-initializes the LPSPI peripheral. Call this API to disable the LPSPI clock.

Parameters
• base – LPSPI peripheral address.

void LPSPI_Reset(LPSPI_Type *base)
Restores the LPSPI peripheral to reset state. Note that this function sets all registers to reset
state. As a result, the LPSPI module can’t work after calling this API.

864 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – LPSPI peripheral address.

uint32_t LPSPI_GetInstance(LPSPI_Type *base)
Get the LPSPI instance from peripheral base address.

Parameters
• base – LPSPI peripheral base address.

Returns
LPSPI instance.

static inline void LPSPI_Enable(LPSPI_Type *base, bool enable)
Enables the LPSPI peripheral and sets the MCR MDIS to 0.

Parameters
• base – LPSPI peripheral address.

• enable – Pass true to enable module, false to disable module.

static inline uint32_t LPSPI_GetStatusFlags(LPSPI_Type *base)
Gets the LPSPI status flag state.

Parameters
• base – LPSPI peripheral address.

Returns
The LPSPI status(in SR register).

static inline uint8_t LPSPI_GetTxFifoSize(LPSPI_Type *base)
Gets the LPSPI Tx FIFO size.

Parameters
• base – LPSPI peripheral address.

Returns
The LPSPI Tx FIFO size.

static inline uint8_t LPSPI_GetRxFifoSize(LPSPI_Type *base)
Gets the LPSPI Rx FIFO size.

Parameters
• base – LPSPI peripheral address.

Returns
The LPSPI Rx FIFO size.

static inline uint32_t LPSPI_GetTxFifoCount(LPSPI_Type *base)
Gets the LPSPI Tx FIFO count.

Parameters
• base – LPSPI peripheral address.

Returns
The number of words in the transmit FIFO.

static inline uint32_t LPSPI_GetRxFifoCount(LPSPI_Type *base)
Gets the LPSPI Rx FIFO count.

Parameters
• base – LPSPI peripheral address.

2.76. LPSPI Peripheral driver 865



MCUXpresso SDK Documentation, Release 25.12.00

Returns
The number of words in the receive FIFO.

static inline void LPSPI_ClearStatusFlags(LPSPI_Type *base, uint32_t statusFlags)
Clears the LPSPI status flag.

This function clears the desired status bit by using a write-1-to-clear. The user passes in
the base and the desired status flag bit to clear. The list of status flags is defined in the
_lpspi_flags. Example usage:

LPSPI_ClearStatusFlags(base, kLPSPI_TxDataRequestFlag|kLPSPI_RxDataReadyFlag);

Parameters
• base – LPSPI peripheral address.

• statusFlags – The status flag used from type _lpspi_flags.

static inline uint32_t LPSPI_GetTcr(LPSPI_Type *base)

static inline void LPSPI_EnableInterrupts(LPSPI_Type *base, uint32_t mask)
Enables the LPSPI interrupts.

This function configures the various interrupt masks of the LPSPI. The parameters are base
and an interrupt mask. Note that, for Tx fill and Rx FIFO drain requests, enabling the in-
terrupt request disables the DMA request.

LPSPI_EnableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable );

Parameters
• base – LPSPI peripheral address.

• mask – The interrupt mask; Use the enum _lpspi_interrupt_enable.

static inline void LPSPI_DisableInterrupts(LPSPI_Type *base, uint32_t mask)
Disables the LPSPI interrupts.

LPSPI_DisableInterrupts(base, kLPSPI_TxInterruptEnable | kLPSPI_RxInterruptEnable );

Parameters
• base – LPSPI peripheral address.

• mask – The interrupt mask; Use the enum _lpspi_interrupt_enable.

static inline void LPSPI_EnableDMA(LPSPI_Type *base, uint32_t mask)
Enables the LPSPI DMA request.

This function configures the Rx and Tx DMA mask of the LPSPI. The parameters are base
and a DMA mask.

LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);

Parameters
• base – LPSPI peripheral address.

• mask – The interrupt mask; Use the enum _lpspi_dma_enable.

static inline void LPSPI_DisableDMA(LPSPI_Type *base, uint32_t mask)
Disables the LPSPI DMA request.

This function configures the Rx and Tx DMA mask of the LPSPI. The parameters are base
and a DMA mask.

866 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

SPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);

Parameters
• base – LPSPI peripheral address.

• mask – The interrupt mask; Use the enum _lpspi_dma_enable.

static inline uint32_t LPSPI_GetTxRegisterAddress(LPSPI_Type *base)
Gets the LPSPI Transmit Data Register address for a DMA operation.

This function gets the LPSPI Transmit Data Register address because this value is needed
for the DMA operation. This function can be used for either master or slave mode.

Parameters
• base – LPSPI peripheral address.

Returns
The LPSPI Transmit Data Register address.

static inline uint32_t LPSPI_GetRxRegisterAddress(LPSPI_Type *base)
Gets the LPSPI Receive Data Register address for a DMA operation.

This function gets the LPSPI Receive Data Register address because this value is needed for
the DMA operation. This function can be used for either master or slave mode.

Parameters
• base – LPSPI peripheral address.

Returns
The LPSPI Receive Data Register address.

bool LPSPI_CheckTransferArgument(LPSPI_Type *base, lpspi_transfer_t *transfer, bool isEdma)
Check the argument for transfer .

Parameters
• base – LPSPI peripheral address.

• transfer – the transfer struct to be used.

• isEdma – True to check for EDMA transfer, false to check interrupt non-
blocking transfer

Returns
Return true for right and false for wrong.

static inline void LPSPI_SetMasterSlaveMode(LPSPI_Type *base, lpspi_master_slave_mode_t
mode)

Configures the LPSPI for either master or slave.

Note that the CFGR1 should only be written when the LPSPI is disabled (LPSPIx_CR_MEN =
0).

Parameters
• base – LPSPI peripheral address.

• mode – Mode setting (master or slave) of type lpspi_master_slave_mode_t.

static inline void LPSPI_SelectTransferPCS(LPSPI_Type *base, lpspi_which_pcs_t select)
Configures the peripheral chip select used for the transfer.

Parameters
• base – LPSPI peripheral address.

2.76. LPSPI Peripheral driver 867



MCUXpresso SDK Documentation, Release 25.12.00

• select – LPSPI Peripheral Chip Select (PCS) configuration.

static inline void LPSPI_SetPCSContinous(LPSPI_Type *base, bool IsContinous)
Set the PCS signal to continuous or uncontinuous mode.

Note: In master mode, continuous transfer will keep the PCS asserted at the end of the
frame size, until a command word is received that starts a new frame. So PCS must be set
back to uncontinuous when transfer finishes. In slave mode, when continuous transfer
is enabled, the LPSPI will only transmit the first frame size bits, after that the LPSPI will
transmit received data back (assuming a 32-bit shift register).

Parameters
• base – LPSPI peripheral address.

• IsContinous – True to set the transfer PCS to continuous mode, false to set
to uncontinuous mode.

static inline bool LPSPI_IsMaster(LPSPI_Type *base)
Returns whether the LPSPI module is in master mode.

Parameters
• base – LPSPI peripheral address.

Returns
Returns true if the module is in master mode or false if the module is in slave
mode.

static inline void LPSPI_FlushFifo(LPSPI_Type *base, bool flushTxFifo, bool flushRxFifo)
Flushes the LPSPI FIFOs.

Parameters
• base – LPSPI peripheral address.

• flushTxFifo – Flushes (true) the Tx FIFO, else do not flush (false) the Tx FIFO.

• flushRxFifo – Flushes (true) the Rx FIFO, else do not flush (false) the Rx FIFO.

static inline void LPSPI_SetFifoWatermarks(LPSPI_Type *base, uint32_t txWater, uint32_t
rxWater)

Sets the transmit and receive FIFO watermark values.

This function allows the user to set the receive and transmit FIFO watermarks. The function
does not compare the watermark settings to the FIFO size. The FIFO watermark should not
be equal to or greater than the FIFO size. It is up to the higher level driver to make this
check.

Parameters
• base – LPSPI peripheral address.

• txWater – The TX FIFO watermark value. Writing a value equal or greater
than the FIFO size is truncated.

• rxWater – The RX FIFO watermark value. Writing a value equal or greater
than the FIFO size is truncated.

static inline void LPSPI_SetAllPcsPolarity(LPSPI_Type *base, uint32_t mask)
Configures all LPSPI peripheral chip select polarities simultaneously.

Note that the CFGR1 should only be written when the LPSPI is disabled (LPSPIx_CR_MEN =
0).

868 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

This is an example: PCS0 and PCS1 set to active low and other PCSs set to active high. Note
that the number of PCS is device-specific.

LPSPI_SetAllPcsPolarity(base, kLPSPI_Pcs0ActiveLow | kLPSPI_Pcs1ActiveLow);

Parameters
• base – LPSPI peripheral address.

• mask – The PCS polarity mask; Use the enum _lpspi_pcs_polarity.

static inline void LPSPI_SetFrameSize(LPSPI_Type *base, uint32_t frameSize)
Configures the frame size.

The minimum frame size is 8-bits and the maximum frame size is 4096-bits. If the frame
size is less than or equal to 32-bits, the word size and frame size are identical. If the frame
size is greater than 32-bits, the word size is 32-bits for each word except the last (the last
word contains the remainder bits if the frame size is not divisible by 32). The minimum
word size is 2-bits. A frame size of 33-bits (or similar) is not supported.

Note 1: The transmit command register should be initialized before enabling the LPSPI in
slave mode, although the command register does not update until after the LPSPI is enabled.
After it is enabled, the transmit command register should only be changed if the LPSPI is
idle.

Note 2: The transmit and command FIFO is a combined FIFO that includes both transmit
data and command words. That means the TCR register should be written to when the Tx
FIFO is not full.

Parameters
• base – LPSPI peripheral address.

• frameSize – The frame size in number of bits.

uint32_t LPSPI_MasterSetBaudRate(LPSPI_Type *base, uint32_t baudRate_Bps, uint32_t
srcClock_Hz, uint32_t *tcrPrescaleValue)

Sets the LPSPI baud rate in bits per second.

This function takes in the desired bitsPerSec (baud rate) and calculates the nearest possible
baud rate without exceeding the desired baud rate and returns the calculated baud rate
in bits-per-second. It requires the caller to provide the frequency of the module source
clock (in Hertz). Note that the baud rate does not go into effect until the Transmit Control
Register (TCR) is programmed with the prescale value. Hence, this function returns the
prescale tcrPrescaleValue parameter for later programming in the TCR. The higher level
peripheral driver should alert the user of an out of range baud rate input.

Note that the LPSPI module must first be disabled before configuring this. Note that the
LPSPI module must be configured for master mode before configuring this.

Parameters
• base – LPSPI peripheral address.

• baudRate_Bps – The desired baud rate in bits per second.

• srcClock_Hz – Module source input clock in Hertz.

• tcrPrescaleValue – The TCR prescale value needed to program the TCR.

Returns
The actual calculated baud rate. This function may also return a “0” if the
LPSPI is not configured for master mode or if the LPSPI module is not disabled.

2.76. LPSPI Peripheral driver 869



MCUXpresso SDK Documentation, Release 25.12.00

void LPSPI_MasterSetDelayScaler(LPSPI_Type *base, uint32_t scaler, lpspi_delay_type_t
whichDelay)

Manually configures a specific LPSPI delay parameter (module must be disabled to change
the delay values).

This function configures the following: SCK to PCS delay, or PCS to SCK delay, or The con-
figurations must occur between the transfer delay.

The delay names are available in type lpspi_delay_type_t.

The user passes the desired delay along with the delay value. This allows the user to directly
set the delay values if they have pre-calculated them or if they simply wish to manually
increment the value.

Note that the LPSPI module must first be disabled before configuring this. Note that the
LPSPI module must be configured for master mode before configuring this.

Parameters
• base – LPSPI peripheral address.

• scaler – The 8-bit delay value 0x00 to 0xFF (255).

• whichDelay – The desired delay to configure, must be of type lp-
spi_delay_type_t.

uint32_t LPSPI_MasterSetDelayTimes(LPSPI_Type *base, uint32_t delayTimeInNanoSec,
lpspi_delay_type_t whichDelay, uint32_t srcClock_Hz)

Calculates the delay based on the desired delay input in nanoseconds (module must be
disabled to change the delay values).

This function calculates the values for the following: SCK to PCS delay, or PCS to SCK delay,
or The configurations must occur between the transfer delay.

The delay names are available in type lpspi_delay_type_t.

The user passes the desired delay and the desired delay value in nano-seconds. The func-
tion calculates the value needed for the desired delay parameter and returns the actual
calculated delay because an exact delay match may not be possible. In this case, the closest
match is calculated without going below the desired delay value input. It is possible to input
a very large delay value that exceeds the capability of the part, in which case the maximum
supported delay is returned. It is up to the higher level peripheral driver to alert the user
of an out of range delay input.

Note that the LPSPI module must be configured for master mode before configuring this.
And note that the delayTime = LPSPI_clockSource / (PRESCALE * Delay_scaler).

Parameters
• base – LPSPI peripheral address.

• delayTimeInNanoSec – The desired delay value in nano-seconds.

• whichDelay – The desired delay to configuration, which must be of type
lpspi_delay_type_t.

• srcClock_Hz – Module source input clock in Hertz.

Returns
actual Calculated delay value in nano-seconds.

static inline void LPSPI_WriteData(LPSPI_Type *base, uint32_t data)
Writes data into the transmit data buffer.

This function writes data passed in by the user to the Transmit Data Register (TDR). The
user can pass up to 32-bits of data to load into the TDR. If the frame size exceeds 32-bits, the
user has to manage sending the data one 32-bit word at a time. Any writes to the TDR result

870 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

in an immediate push to the transmit FIFO. This function can be used for either master or
slave modes.

Parameters
• base – LPSPI peripheral address.

• data – The data word to be sent.

static inline uint32_t LPSPI_ReadData(LPSPI_Type *base)
Reads data from the data buffer.

This function reads the data from the Receive Data Register (RDR). This function can be
used for either master or slave mode.

Parameters
• base – LPSPI peripheral address.

Returns
The data read from the data buffer.

void LPSPI_SetDummyData(LPSPI_Type *base, uint8_t dummyData)
Set up the dummy data.

Parameters
• base – LPSPI peripheral address.

• dummyData – Data to be transferred when tx buffer is NULL. Note: This
API has no effect when LPSPI in slave interrupt mode, because driver will
set the TXMSK bit to 1 if txData is NULL, no data is loaded from transmit
FIFO and output pin is tristated.

void LPSPI_MasterTransferCreateHandle(LPSPI_Type *base, lpspi_master_handle_t *handle,
lpspi_master_transfer_callback_t callback, void
*userData)

Initializes the LPSPI master handle.

This function initializes the LPSPI handle, which can be used for other LPSPI transactional
APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.

Parameters
• base – LPSPI peripheral address.

• handle – LPSPI handle pointer to lpspi_master_handle_t.

• callback – DSPI callback.

• userData – callback function parameter.

status_t LPSPI_MasterTransferBlocking(LPSPI_Type *base, lpspi_transfer_t *transfer)
LPSPI master transfer data using a polling method.

This function transfers data using a polling method. This is a blocking function, which does
not return until all transfers have been completed.

Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame
is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should
be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4. Otherwise,
the transfer data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral address.

• transfer – pointer to lpspi_transfer_t structure.

2.76. LPSPI Peripheral driver 871



MCUXpresso SDK Documentation, Release 25.12.00

Returns
status of status_t.

status_t LPSPI_MasterTransferNonBlocking(LPSPI_Type *base, lpspi_master_handle_t *handle,
lpspi_transfer_t *transfer)

LPSPI master transfer data using an interrupt method.

This function transfers data using an interrupt method. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame
is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should
be equal to bytesPerFrame if the bytesPerFrame is not integer multiples of 4. Otherwise,
the transfer data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_master_handle_t structure which stores the trans-
fer state.

• transfer – pointer to lpspi_transfer_t structure.

Returns
status of status_t.

status_t LPSPI_MasterTransferGetCount(LPSPI_Type *base, lpspi_master_handle_t *handle,
size_t *count)

Gets the master transfer remaining bytes.

This function gets the master transfer remaining bytes.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_master_handle_t structure which stores the trans-
fer state.

• count – Number of bytes transferred so far by the non-blocking transaction.

Returns
status of status_t.

void LPSPI_MasterTransferAbort(LPSPI_Type *base, lpspi_master_handle_t *handle)
LPSPI master abort transfer which uses an interrupt method.

This function aborts a transfer which uses an interrupt method.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_master_handle_t structure which stores the trans-
fer state.

void LPSPI_MasterTransferHandleIRQ(LPSPI_Type *base, lpspi_master_handle_t *handle)
LPSPI Master IRQ handler function.

This function processes the LPSPI transmit and receive IRQ.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_master_handle_t structure which stores the trans-
fer state.

872 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void LPSPI_SlaveTransferCreateHandle(LPSPI_Type *base, lpspi_slave_handle_t *handle,
lpspi_slave_transfer_callback_t callback, void *userData)

Initializes the LPSPI slave handle.

This function initializes the LPSPI handle, which can be used for other LPSPI transactional
APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized handle.

Parameters
• base – LPSPI peripheral address.

• handle – LPSPI handle pointer to lpspi_slave_handle_t.

• callback – DSPI callback.

• userData – callback function parameter.

status_t LPSPI_SlaveTransferNonBlocking(LPSPI_Type *base, lpspi_slave_handle_t *handle,
lpspi_transfer_t *transfer)

LPSPI slave transfer data using an interrupt method.

This function transfer data using an interrupt method. This is a non-blocking function,
which returns right away. When all data is transferred, the callback function is called.

Note: The transfer data size should be integer multiples of bytesPerFrame if bytesPerFrame
is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size should
be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise,
the transfer data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_slave_handle_t structure which stores the transfer
state.

• transfer – pointer to lpspi_transfer_t structure.

Returns
status of status_t.

status_t LPSPI_SlaveTransferGetCount(LPSPI_Type *base, lpspi_slave_handle_t *handle, size_t
*count)

Gets the slave transfer remaining bytes.

This function gets the slave transfer remaining bytes.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_slave_handle_t structure which stores the transfer
state.

• count – Number of bytes transferred so far by the non-blocking transaction.

Returns
status of status_t.

void LPSPI_SlaveTransferAbort(LPSPI_Type *base, lpspi_slave_handle_t *handle)
LPSPI slave aborts a transfer which uses an interrupt method.

This function aborts a transfer which uses an interrupt method.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_slave_handle_t structure which stores the transfer
state.

2.76. LPSPI Peripheral driver 873



MCUXpresso SDK Documentation, Release 25.12.00

void LPSPI_SlaveTransferHandleIRQ(LPSPI_Type *base, lpspi_slave_handle_t *handle)
LPSPI Slave IRQ handler function.

This function processes the LPSPI transmit and receives an IRQ.

Parameters
• base – LPSPI peripheral address.

• handle – pointer to lpspi_slave_handle_t structure which stores the transfer
state.

bool LPSPI_WaitTxFifoEmpty(LPSPI_Type *base)
Wait for tx FIFO to be empty.

This function wait the tx fifo empty

Parameters
• base – LPSPI peripheral address.

Returns
true for the tx FIFO is ready, false is not.

void LPSPI_DriverIRQHandler(uint32_t instance)
LPSPI driver IRQ handler common entry.

This function provides the common IRQ request entry for LPSPI.

Parameters
• instance – LPSPI instance.

FSL_LPSPI_DRIVER_VERSION
LPSPI driver version.

Status for the LPSPI driver.

Values:

enumerator kStatus_LPSPI_Busy
LPSPI transfer is busy.

enumerator kStatus_LPSPI_Error
LPSPI driver error.

enumerator kStatus_LPSPI_Idle
LPSPI is idle.

enumerator kStatus_LPSPI_OutOfRange
LPSPI transfer out Of range.

enumerator kStatus_LPSPI_Timeout
LPSPI timeout polling status flags.

enum _lpspi_flags
LPSPI status flags in SPIx_SR register.

Values:

enumerator kLPSPI_TxDataRequestFlag
Transmit data flag

enumerator kLPSPI_RxDataReadyFlag
Receive data flag

874 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPSPI_WordCompleteFlag
Word Complete flag

enumerator kLPSPI_FrameCompleteFlag
Frame Complete flag

enumerator kLPSPI_TransferCompleteFlag
Transfer Complete flag

enumerator kLPSPI_TransmitErrorFlag
Transmit Error flag (FIFO underrun)

enumerator kLPSPI_ReceiveErrorFlag
Receive Error flag (FIFO overrun)

enumerator kLPSPI_DataMatchFlag
Data Match flag

enumerator kLPSPI_ModuleBusyFlag
Module Busy flag

enumerator kLPSPI_AllStatusFlag
Used for clearing all w1c status flags

enum _lpspi_interrupt_enable
LPSPI interrupt source.

Values:

enumerator kLPSPI_TxInterruptEnable
Transmit data interrupt enable

enumerator kLPSPI_RxInterruptEnable
Receive data interrupt enable

enumerator kLPSPI_WordCompleteInterruptEnable
Word complete interrupt enable

enumerator kLPSPI_FrameCompleteInterruptEnable
Frame complete interrupt enable

enumerator kLPSPI_TransferCompleteInterruptEnable
Transfer complete interrupt enable

enumerator kLPSPI_TransmitErrorInterruptEnable
Transmit error interrupt enable(FIFO underrun)

enumerator kLPSPI_ReceiveErrorInterruptEnable
Receive Error interrupt enable (FIFO overrun)

enumerator kLPSPI_DataMatchInterruptEnable
Data Match interrupt enable

enumerator kLPSPI_AllInterruptEnable
All above interrupts enable.

enum _lpspi_dma_enable
LPSPI DMA source.

Values:

enumerator kLPSPI_TxDmaEnable
Transmit data DMA enable

2.76. LPSPI Peripheral driver 875



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPSPI_RxDmaEnable
Receive data DMA enable

enum _lpspi_master_slave_mode
LPSPI master or slave mode configuration.

Values:

enumerator kLPSPI_Master
LPSPI peripheral operates in master mode.

enumerator kLPSPI_Slave
LPSPI peripheral operates in slave mode.

enum _lpspi_which_pcs_config
LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure).

Values:

enumerator kLPSPI_Pcs0
PCS[0]

enumerator kLPSPI_Pcs1
PCS[1]

enumerator kLPSPI_Pcs2
PCS[2]

enumerator kLPSPI_Pcs3
PCS[3]

enum _lpspi_pcs_polarity_config
LPSPI Peripheral Chip Select (PCS) Polarity configuration.

Values:

enumerator kLPSPI_PcsActiveHigh
PCS Active High (idles low)

enumerator kLPSPI_PcsActiveLow
PCS Active Low (idles high)

enum _lpspi_pcs_polarity
LPSPI Peripheral Chip Select (PCS) Polarity.

Values:

enumerator kLPSPI_Pcs0ActiveLow
Pcs0 Active Low (idles high).

enumerator kLPSPI_Pcs1ActiveLow
Pcs1 Active Low (idles high).

enumerator kLPSPI_Pcs2ActiveLow
Pcs2 Active Low (idles high).

enumerator kLPSPI_Pcs3ActiveLow
Pcs3 Active Low (idles high).

enumerator kLPSPI_PcsAllActiveLow
Pcs0 to Pcs5 Active Low (idles high).

876 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpspi_clock_polarity
LPSPI clock polarity configuration.

Values:

enumerator kLPSPI_ClockPolarityActiveHigh
CPOL=0. Active-high LPSPI clock (idles low)

enumerator kLPSPI_ClockPolarityActiveLow
CPOL=1. Active-low LPSPI clock (idles high)

enum _lpspi_clock_phase
LPSPI clock phase configuration.

Values:

enumerator kLPSPI_ClockPhaseFirstEdge
CPHA=0. Data is captured on the leading edge of the SCK and changed on the following
edge.

enumerator kLPSPI_ClockPhaseSecondEdge
CPHA=1. Data is changed on the leading edge of the SCK and captured on the following
edge.

enum _lpspi_shift_direction
LPSPI data shifter direction options.

Values:

enumerator kLPSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kLPSPI_LsbFirst
Data transfers start with least significant bit.

enum _lpspi_host_request_select
LPSPI Host Request select configuration.

Values:

enumerator kLPSPI_HostReqExtPin
Host Request is an ext pin.

enumerator kLPSPI_HostReqInternalTrigger
Host Request is an internal trigger.

enum _lpspi_match_config
LPSPI Match configuration options.

Values:

enumerator kLPSI_MatchDisabled
LPSPI Match Disabled.

enumerator kLPSI_1stWordEqualsM0orM1
LPSPI Match Enabled.

enumerator kLPSI_AnyWordEqualsM0orM1
LPSPI Match Enabled.

enumerator kLPSI_1stWordEqualsM0and2ndWordEqualsM1
LPSPI Match Enabled.

enumerator kLPSI_AnyWordEqualsM0andNxtWordEqualsM1
LPSPI Match Enabled.

2.76. LPSPI Peripheral driver 877



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPSI_1stWordAndM1EqualsM0andM1
LPSPI Match Enabled.

enumerator kLPSI_AnyWordAndM1EqualsM0andM1
LPSPI Match Enabled.

enum _lpspi_pin_config
LPSPI pin (SDO and SDI) configuration.

Values:

enumerator kLPSPI_SdiInSdoOut
LPSPI SDI input, SDO output.

enumerator kLPSPI_SdiInSdiOut
LPSPI SDI input, SDI output.

enumerator kLPSPI_SdoInSdoOut
LPSPI SDO input, SDO output.

enumerator kLPSPI_SdoInSdiOut
LPSPI SDO input, SDI output.

enum _lpspi_data_out_config
LPSPI data output configuration.

Values:

enumerator kLpspiDataOutRetained
Data out retains last value when chip select is de-asserted

enumerator kLpspiDataOutTristate
Data out is tristated when chip select is de-asserted

enum _lpspi_transfer_width
LPSPI transfer width configuration.

Values:

enumerator kLPSPI_SingleBitXfer
1-bit shift at a time, data out on SDO, in on SDI (normal mode)

enumerator kLPSPI_TwoBitXfer
2-bits shift out on SDO/SDI and in on SDO/SDI

enumerator kLPSPI_FourBitXfer
4-bits shift out on SDO/SDI/PCS[3:2] and in on SDO/SDI/PCS[3:2]

enum _lpspi_delay_type
LPSPI delay type selection.

Values:

enumerator kLPSPI_PcsToSck
PCS-to-SCK delay.

enumerator kLPSPI_LastSckToPcs
Last SCK edge to PCS delay.

enumerator kLPSPI_BetweenTransfer
Delay between transfers.

878 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpspi_transfer_config_flag_for_master
Use this enumeration for LPSPI master transfer configFlags.

Values:

enumerator kLPSPI_MasterPcs0
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS0 signal

enumerator kLPSPI_MasterPcs1
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS1 signal

enumerator kLPSPI_MasterPcs2
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS2 signal

enumerator kLPSPI_MasterPcs3
LPSPI master PCS shift macro , internal used. LPSPI master transfer use PCS3 signal

enumerator kLPSPI_MasterPcsContinuous
Is PCS signal continuous

enumerator kLPSPI_MasterByteSwap
Is master swap the byte. For example, when want to send data 1 2 3 4 5 6 7 8 (suppose
you set lpspi_shift_direction_t to MSB).

i. If you set bitPerFrame = 8 , no matter the kLPSPI_MasterByteSwapyou flag is used
or not, the waveform is 1 2 3 4 5 6 7 8.

ii. If you set bitPerFrame = 16 : (1) the waveform is 2 1 4 3 6 5 8 7 if you do not use
the kLPSPI_MasterByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the
kLPSPI_MasterByteSwap flag.

iii. If you set bitPerFrame = 32 : (1) the waveform is 4 3 2 1 8 7 6 5 if you do not use
the kLPSPI_MasterByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the
kLPSPI_MasterByteSwap flag.

enum _lpspi_transfer_config_flag_for_slave
Use this enumeration for LPSPI slave transfer configFlags.

Values:

enumerator kLPSPI_SlavePcs0
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS0 signal

enumerator kLPSPI_SlavePcs1
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS1 signal

enumerator kLPSPI_SlavePcs2
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS2 signal

enumerator kLPSPI_SlavePcs3
LPSPI slave PCS shift macro , internal used. LPSPI slave transfer use PCS3 signal

enumerator kLPSPI_SlaveByteSwap
Is slave swap the byte. For example, when want to send data 1 2 3 4 5 6 7 8 (suppose
you set lpspi_shift_direction_t to MSB).

i. If you set bitPerFrame = 8 , no matter the kLPSPI_SlaveByteSwap flag is used or
not, the waveform is 1 2 3 4 5 6 7 8.

ii. If you set bitPerFrame = 16 : (1) the waveform is 2 1 4 3 6 5 8 7 if you do not use
the kLPSPI_SlaveByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the
kLPSPI_SlaveByteSwap flag.

iii. If you set bitPerFrame = 32 : (1) the waveform is 4 3 2 1 8 7 6 5 if you do not use
the kLPSPI_SlaveByteSwap flag. (2) the waveform is 1 2 3 4 5 6 7 8 if you use the
kLPSPI_SlaveByteSwap flag.

2.76. LPSPI Peripheral driver 879



MCUXpresso SDK Documentation, Release 25.12.00

enum _lpspi_transfer_state
LPSPI transfer state, which is used for LPSPI transactional API state machine.

Values:

enumerator kLPSPI_Idle
Nothing in the transmitter/receiver.

enumerator kLPSPI_Busy
Transfer queue is not finished.

enumerator kLPSPI_Error
Transfer error.

typedef enum _lpspi_master_slave_mode lpspi_master_slave_mode_t
LPSPI master or slave mode configuration.

typedef enum _lpspi_which_pcs_config lpspi_which_pcs_t
LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure).

typedef enum _lpspi_pcs_polarity_config lpspi_pcs_polarity_config_t
LPSPI Peripheral Chip Select (PCS) Polarity configuration.

typedef enum _lpspi_clock_polarity lpspi_clock_polarity_t
LPSPI clock polarity configuration.

typedef enum _lpspi_clock_phase lpspi_clock_phase_t
LPSPI clock phase configuration.

typedef enum _lpspi_shift_direction lpspi_shift_direction_t
LPSPI data shifter direction options.

typedef enum _lpspi_host_request_select lpspi_host_request_select_t
LPSPI Host Request select configuration.

typedef enum _lpspi_match_config lpspi_match_config_t
LPSPI Match configuration options.

typedef enum _lpspi_pin_config lpspi_pin_config_t
LPSPI pin (SDO and SDI) configuration.

typedef enum _lpspi_data_out_config lpspi_data_out_config_t
LPSPI data output configuration.

typedef enum _lpspi_transfer_width lpspi_transfer_width_t
LPSPI transfer width configuration.

typedef enum _lpspi_delay_type lpspi_delay_type_t
LPSPI delay type selection.

typedef struct _lpspi_master_config lpspi_master_config_t
LPSPI master configuration structure.

typedef struct _lpspi_slave_config lpspi_slave_config_t
LPSPI slave configuration structure.

typedef struct _lpspi_master_handle lpspi_master_handle_t
Forward declaration of the _lpspi_master_handle typedefs.

typedef struct _lpspi_slave_handle lpspi_slave_handle_t
Forward declaration of the _lpspi_slave_handle typedefs.

880 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef void (*lpspi_master_transfer_callback_t)(LPSPI_Type *base, lpspi_master_handle_t
*handle, status_t status, void *userData)

Master completion callback function pointer type.

Param base
LPSPI peripheral address.

Param handle
Pointer to the handle for the LPSPI master.

Param status
Success or error code describing whether the transfer is completed.

Param userData
Arbitrary pointer-dataSized value passed from the application.

typedef void (*lpspi_slave_transfer_callback_t)(LPSPI_Type *base, lpspi_slave_handle_t *handle,
status_t status, void *userData)

Slave completion callback function pointer type.

Param base
LPSPI peripheral address.

Param handle
Pointer to the handle for the LPSPI slave.

Param status
Success or error code describing whether the transfer is completed.

Param userData
Arbitrary pointer-dataSized value passed from the application.

typedef struct _lpspi_transfer lpspi_transfer_t
LPSPI master/slave transfer structure.

volatile uint8_t g_lpspiDummyData[]
Global variable for dummy data value setting.

LPSPI_DUMMY_DATA
LPSPI dummy data if no Tx data.

Dummy data used for tx if there is not txData.

SPI_RETRY_TIMES
Retry times for waiting flag.

LPSPI_MASTER_PCS_SHIFT
LPSPI master PCS shift macro , internal used.

LPSPI_MASTER_PCS_MASK
LPSPI master PCS shift macro , internal used.

LPSPI_SLAVE_PCS_SHIFT
LPSPI slave PCS shift macro , internal used.

LPSPI_SLAVE_PCS_MASK
LPSPI slave PCS shift macro , internal used.

struct _lpspi_master_config
#include <fsl_lpspi.h> LPSPI master configuration structure.

2.76. LPSPI Peripheral driver 881



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t baudRate
Baud Rate for LPSPI.

uint32_t bitsPerFrame
Bits per frame, minimum 8, maximum 4096.

lpspi_clock_polarity_t cpol
Clock polarity.

lpspi_clock_phase_t cpha
Clock phase.

lpspi_shift_direction_t direction
MSB or LSB data shift direction.

uint32_t pcsToSckDelayInNanoSec
PCS to SCK delay time in nanoseconds, setting to 0 sets the minimum delay. It sets the
boundary value if out of range.

uint32_t lastSckToPcsDelayInNanoSec
Last SCK to PCS delay time in nanoseconds, setting to 0 sets the minimum delay. It sets
the boundary value if out of range.

uint32_t betweenTransferDelayInNanoSec
After the SCK delay time with nanoseconds, setting to 0 sets the minimum delay. It sets
the boundary value if out of range.

lpspi_which_pcs_t whichPcs
Desired Peripheral Chip Select (PCS).

lpspi_pcs_polarity_config_t pcsActiveHighOrLow
Desired PCS active high or low

lpspi_pin_config_t pinCfg
Configures which pins are used for input and output data during single bit transfers.

lpspi_data_out_config_t dataOutConfig
Configures if the output data is tristated between accesses (LPSPI_PCS is negated).

bool enableInputDelay
Enable master to sample the input data on a delayed SCK. This can help improve slave
setup time. Refer to device data sheet for specific time length.

struct _lpspi_slave_config
#include <fsl_lpspi.h> LPSPI slave configuration structure.

Public Members

uint32_t bitsPerFrame
Bits per frame, minimum 8, maximum 4096.

lpspi_clock_polarity_t cpol
Clock polarity.

lpspi_clock_phase_t cpha
Clock phase.

lpspi_shift_direction_t direction
MSB or LSB data shift direction.

882 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

lpspi_which_pcs_t whichPcs
Desired Peripheral Chip Select (pcs)

lpspi_pcs_polarity_config_t pcsActiveHighOrLow
Desired PCS active high or low

lpspi_pin_config_t pinCfg
Configures which pins are used for input and output data during single bit transfers.

lpspi_data_out_config_t dataOutConfig
Configures if the output data is tristated between accesses (LPSPI_PCS is negated).

struct _lpspi_transfer
#include <fsl_lpspi.h> LPSPI master/slave transfer structure.

Public Members

const uint8_t *txData
Send buffer.

uint8_t *rxData
Receive buffer.

volatile size_t dataSize
Transfer bytes.

uint32_t configFlags
Transfer transfer configuration flags. Set from _lpspi_transfer_config_flag_for_master
if the transfer is used for master or _lpspi_transfer_config_flag_for_slave enumeration
if the transfer is used for slave.

struct _lpspi_master_handle
#include <fsl_lpspi.h> LPSPI master transfer handle structure used for transactional API.

Public Members

volatile bool isPcsContinuous
Is PCS continuous in transfer.

volatile bool writeTcrInIsr
A flag that whether should write TCR in ISR.

volatile bool isByteSwap
A flag that whether should byte swap.

volatile bool isTxMask
A flag that whether TCR[TXMSK] is set.

volatile uint16_t bytesPerFrame
Number of bytes in each frame

volatile uint16_t frameSize
Backup of TCR[FRAMESZ]

volatile uint8_t fifoSize
FIFO dataSize.

volatile uint8_t rxWatermark
Rx watermark.

2.76. LPSPI Peripheral driver 883



MCUXpresso SDK Documentation, Release 25.12.00

volatile uint8_t bytesEachWrite
Bytes for each write TDR.

volatile uint8_t bytesEachRead
Bytes for each read RDR.

const uint8_t *volatile txData
Send buffer.

uint8_t *volatile rxData
Receive buffer.

volatile size_t txRemainingByteCount
Number of bytes remaining to send.

volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.

volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.

volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.

uint32_t totalByteCount
Number of transfer bytes

uint32_t txBuffIfNull
Used if the txData is NULL.

volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.

lpspi_master_transfer_callback_t callback
Completion callback.

void *userData
Callback user data.

struct _lpspi_slave_handle
#include <fsl_lpspi.h> LPSPI slave transfer handle structure used for transactional API.

Public Members

volatile bool isByteSwap
A flag that whether should byte swap.

volatile uint8_t fifoSize
FIFO dataSize.

volatile uint8_t rxWatermark
Rx watermark.

volatile uint8_t bytesEachWrite
Bytes for each write TDR.

volatile uint8_t bytesEachRead
Bytes for each read RDR.

const uint8_t *volatile txData
Send buffer.

884 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t *volatile rxData
Receive buffer.

volatile size_t txRemainingByteCount
Number of bytes remaining to send.

volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.

volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.

volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.

uint32_t totalByteCount
Number of transfer bytes

volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.

volatile uint32_t errorCount
Error count for slave transfer.

lpspi_slave_transfer_callback_t callback
Completion callback.

void *userData
Callback user data.

2.77 LPSPI eDMA Driver

FSL_LPSPI_EDMA_DRIVER_VERSION
LPSPI EDMA driver version.

DMA_MAX_TRANSFER_COUNT
DMA max transfer size.

typedef struct _lpspi_master_edma_handle lpspi_master_edma_handle_t
Forward declaration of the _lpspi_master_edma_handle typedefs.

typedef struct _lpspi_slave_edma_handle lpspi_slave_edma_handle_t
Forward declaration of the _lpspi_slave_edma_handle typedefs.

typedef void (*lpspi_master_edma_transfer_callback_t)(LPSPI_Type *base,
lpspi_master_edma_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base
LPSPI peripheral base address.

Param handle
Pointer to the handle for the LPSPI master.

Param status
Success or error code describing whether the transfer completed.

Param userData
Arbitrary pointer-dataSized value passed from the application.

2.77. LPSPI eDMA Driver 885



MCUXpresso SDK Documentation, Release 25.12.00

typedef void (*lpspi_slave_edma_transfer_callback_t)(LPSPI_Type *base,
lpspi_slave_edma_handle_t *handle, status_t status, void *userData)

Completion callback function pointer type.

Param base
LPSPI peripheral base address.

Param handle
Pointer to the handle for the LPSPI slave.

Param status
Success or error code describing whether the transfer completed.

Param userData
Arbitrary pointer-dataSized value passed from the application.

void LPSPI_MasterTransferCreateHandleEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t
*handle, lpspi_master_edma_transfer_callback_t
callback, void *userData, edma_handle_t
*edmaRxRegToRxDataHandle, edma_handle_t
*edmaTxDataToTxRegHandle)

Initializes the LPSPI master eDMA handle.

This function initializes the LPSPI eDMA handle which can be used for other LPSPI trans-
actional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized
handle.

Note that the LPSPI eDMA has a separated (Rx and Tx as two sources) or shared (Rx and Tx
are the same source) DMA request source. (1) For a separated DMA request source, enable
and set the Rx DMAMUX source for edmaRxRegToRxDataHandle and Tx DMAMUX source
for edmaTxDataToTxRegHandle. (2) For a shared DMA request source, enable and set the
Rx/Tx DMAMUX source for edmaRxRegToRxDataHandle.

Parameters
• base – LPSPI peripheral base address.

• handle – LPSPI handle pointer to lpspi_master_edma_handle_t.

• callback – LPSPI callback.

• userData – callback function parameter.

• edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to
edma_handle_t.

• edmaTxDataToTxRegHandle – edmaTxDataToTxRegHandle pointer to
edma_handle_t.

status_t LPSPI_MasterTransferEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t *handle,
lpspi_transfer_t *transfer)

LPSPI master transfer data using eDMA.

This function transfers data using eDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: The transfer data size should be an integer multiple of bytesPerFrame if bytesPer-
Frame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size
should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Oth-
erwise, the transfer data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_master_edma_handle_t structure which stores the
transfer state.

886 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• transfer – pointer to lpspi_transfer_t structure.

Returns
status of status_t.

status_t LPSPI_MasterTransferPrepareEDMALite(LPSPI_Type *base, lpspi_master_edma_handle_t
*handle, uint32_t configFlags)

LPSPI master config transfer parameter while using eDMA.

This function is preparing to transfer data using eDMA, work with LP-
SPI_MasterTransferEDMALite.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_master_edma_handle_t structure which stores the
transfer state.

• configFlags – transfer configuration flags. _lp-
spi_transfer_config_flag_for_master.

Return values
• kStatus_Success – Execution successfully.

• kStatus_LPSPI_Busy – The LPSPI device is busy.

Returns
Indicates whether LPSPI master transfer was successful or not.

status_t LPSPI_MasterTransferEDMALite(LPSPI_Type *base, lpspi_master_edma_handle_t
*handle, lpspi_transfer_t *transfer)

LPSPI master transfer data using eDMA without configs.

This function transfers data using eDMA. This is a non-blocking function, which returns
right away. When all data is transferred, the callback function is called.

Note: This API is only for transfer through DMA without configuration. Before calling this
API, you must call LPSPI_MasterTransferPrepareEDMALite to configure it once. The trans-
fer data size should be an integer multiple of bytesPerFrame if bytesPerFrame is less than
or equal to 4. For bytesPerFrame greater than 4: The transfer data size should be equal to
bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Otherwise, the transfer
data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_master_edma_handle_t structure which stores the
transfer state.

• transfer – pointer to lpspi_transfer_t structure, config field is not uesed.

Return values
• kStatus_Success – Execution successfully.

• kStatus_LPSPI_Busy – The LPSPI device is busy.

• kStatus_InvalidArgument – The transfer structure is invalid.

Returns
Indicates whether LPSPI master transfer was successful or not.

void LPSPI_MasterTransferAbortEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t
*handle)

LPSPI master aborts a transfer which is using eDMA.

This function aborts a transfer which is using eDMA.

2.77. LPSPI eDMA Driver 887



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_master_edma_handle_t structure which stores the
transfer state.

status_t LPSPI_MasterTransferGetCountEDMA(LPSPI_Type *base, lpspi_master_edma_handle_t
*handle, size_t *count)

Gets the master eDMA transfer remaining bytes.

This function gets the master eDMA transfer remaining bytes.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_master_edma_handle_t structure which stores the
transfer state.

• count – Number of bytes transferred so far by the EDMA transaction.

Returns
status of status_t.

void LPSPI_SlaveTransferCreateHandleEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t
*handle, lpspi_slave_edma_transfer_callback_t
callback, void *userData, edma_handle_t
*edmaRxRegToRxDataHandle, edma_handle_t
*edmaTxDataToTxRegHandle)

Initializes the LPSPI slave eDMA handle.

This function initializes the LPSPI eDMA handle which can be used for other LPSPI trans-
actional APIs. Usually, for a specified LPSPI instance, call this API once to get the initialized
handle.

Note that LPSPI eDMA has a separated (Rx and Tx as two sources) or shared (Rx and Tx as
the same source) DMA request source.

(1) For a separated DMA request source, enable and set the Rx DMAMUX source for ed-
maRxRegToRxDataHandle and Tx DMAMUX source for edmaTxDataToTxRegHandle. (2)
For a shared DMA request source, enable and set the Rx/Rx DMAMUX source for ed-
maRxRegToRxDataHandle .

Parameters
• base – LPSPI peripheral base address.

• handle – LPSPI handle pointer to lpspi_slave_edma_handle_t.

• callback – LPSPI callback.

• userData – callback function parameter.

• edmaRxRegToRxDataHandle – edmaRxRegToRxDataHandle pointer to
edma_handle_t.

• edmaTxDataToTxRegHandle – edmaTxDataToTxRegHandle pointer to
edma_handle_t.

status_t LPSPI_SlaveTransferEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle,
lpspi_transfer_t *transfer)

LPSPI slave transfers data using eDMA.

This function transfers data using eDMA. This is a non-blocking function, which return right
away. When all data is transferred, the callback function is called.

Note: The transfer data size should be an integer multiple of bytesPerFrame if bytesPer-
Frame is less than or equal to 4. For bytesPerFrame greater than 4: The transfer data size

888 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

should be equal to bytesPerFrame if the bytesPerFrame is not an integer multiple of 4. Oth-
erwise, the transfer data size can be an integer multiple of bytesPerFrame.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_slave_edma_handle_t structure which stores the
transfer state.

• transfer – pointer to lpspi_transfer_t structure.

Returns
status of status_t.

void LPSPI_SlaveTransferAbortEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t *handle)
LPSPI slave aborts a transfer which is using eDMA.

This function aborts a transfer which is using eDMA.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_slave_edma_handle_t structure which stores the
transfer state.

status_t LPSPI_SlaveTransferGetCountEDMA(LPSPI_Type *base, lpspi_slave_edma_handle_t
*handle, size_t *count)

Gets the slave eDMA transfer remaining bytes.

This function gets the slave eDMA transfer remaining bytes.

Parameters
• base – LPSPI peripheral base address.

• handle – pointer to lpspi_slave_edma_handle_t structure which stores the
transfer state.

• count – Number of bytes transferred so far by the eDMA transaction.

Returns
status of status_t.

struct _lpspi_master_edma_handle
#include <fsl_lpspi_edma.h> LPSPI master eDMA transfer handle structure used for trans-
actional API.

Public Members

volatile bool isPcsContinuous
Is PCS continuous in transfer.

volatile bool isByteSwap
A flag that whether should byte swap.

volatile uint8_t fifoSize
FIFO dataSize.

volatile uint8_t rxWatermark
Rx watermark.

volatile uint8_t bytesEachWrite
Bytes for each write TDR.

2.77. LPSPI eDMA Driver 889



MCUXpresso SDK Documentation, Release 25.12.00

volatile uint8_t bytesEachRead
Bytes for each read RDR.

volatile uint8_t bytesLastRead
Bytes for last read RDR.

volatile bool isThereExtraRxBytes
Is there extra RX byte.

const uint8_t *volatile txData
Send buffer.

uint8_t *volatile rxData
Receive buffer.

volatile size_t txRemainingByteCount
Number of bytes remaining to send.

volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.

volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.

volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.

uint32_t totalByteCount
Number of transfer bytes

edma_tcd_t *lastTimeTCD
Pointer to the lastTime TCD

bool isMultiDMATransmit
Is there multi DMA transmit

volatile uint8_t dmaTransmitTime
DMA Transfer times.

uint32_t lastTimeDataBytes
DMA transmit last Time data Bytes

uint32_t dataBytesEveryTime
Bytes in a time for DMA transfer, default is DMA_MAX_TRANSFER_COUNT

edma_transfer_config_t transferConfigRx
Config of DMA rx channel.

edma_transfer_config_t transferConfigTx
Config of DMA tx channel.

uint32_t txBuffIfNull
Used if there is not txData for DMA purpose.

uint32_t rxBuffIfNull
Used if there is not rxData for DMA purpose.

uint32_t transmitCommand
Used to write TCR for DMA purpose.

volatile uint8_t state
LPSPI transfer state , _lpspi_transfer_state.

890 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t nbytes
eDMA minor byte transfer count initially configured.

lpspi_master_edma_transfer_callback_t callback
Completion callback.

void *userData
Callback user data.

edma_handle_t *edmaRxRegToRxDataHandle
edma_handle_t handle point used for RxReg to RxData buff

edma_handle_t *edmaTxDataToTxRegHandle
edma_handle_t handle point used for TxData to TxReg buff

edma_tcd_t lpspiSoftwareTCD[3]
SoftwareTCD, internal used

struct _lpspi_slave_edma_handle
#include <fsl_lpspi_edma.h> LPSPI slave eDMA transfer handle structure used for transac-
tional API.

Public Members

volatile bool isByteSwap
A flag that whether should byte swap.

volatile uint8_t fifoSize
FIFO dataSize.

volatile uint8_t rxWatermark
Rx watermark.

volatile uint8_t bytesEachWrite
Bytes for each write TDR.

volatile uint8_t bytesEachRead
Bytes for each read RDR.

volatile uint8_t bytesLastRead
Bytes for last read RDR.

volatile bool isThereExtraRxBytes
Is there extra RX byte.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

const uint8_t *volatile txData
Send buffer.

uint8_t *volatile rxData
Receive buffer.

volatile size_t txRemainingByteCount
Number of bytes remaining to send.

volatile size_t rxRemainingByteCount
Number of bytes remaining to receive.

2.77. LPSPI eDMA Driver 891



MCUXpresso SDK Documentation, Release 25.12.00

volatile uint32_t writeRegRemainingTimes
Write TDR register remaining times.

volatile uint32_t readRegRemainingTimes
Read RDR register remaining times.

uint32_t totalByteCount
Number of transfer bytes

uint32_t txBuffIfNull
Used if there is not txData for DMA purpose.

uint32_t rxBuffIfNull
Used if there is not rxData for DMA purpose.

volatile uint8_t state
LPSPI transfer state.

uint32_t errorCount
Error count for slave transfer.

lpspi_slave_edma_transfer_callback_t callback
Completion callback.

void *userData
Callback user data.

edma_handle_t *edmaRxRegToRxDataHandle
edma_handle_t handle point used for RxReg to RxData buff

edma_handle_t *edmaTxDataToTxRegHandle
edma_handle_t handle point used for TxData to TxReg

edma_tcd_t lpspiSoftwareTCD[2]
SoftwareTCD, internal used

2.78 LPUART: Low Power Universal Asynchronous Re-
ceiver/Transmitter Driver

2.79 LPUART Driver

static inline void LPUART_SoftwareReset(LPUART_Type *base)
Resets the LPUART using software.

This function resets all internal logic and registers except the Global Register. Remains set
until cleared by software.

Parameters
• base – LPUART peripheral base address.

status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
Initializes an LPUART instance with the user configuration structure and the peripheral
clock.

This function configures the LPUART module with user-defined settings. Call the
LPUART_GetDefaultConfig() function to configure the configuration structure and get the
default configuration. The example below shows how to use this API to configure the
LPUART.

892 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

lpuart_config_t lpuartConfig;
lpuartConfig.baudRate_Bps = 115200U;
lpuartConfig.parityMode = kLPUART_ParityDisabled;
lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
lpuartConfig.isMsb = false;
lpuartConfig.stopBitCount = kLPUART_OneStopBit;
lpuartConfig.txFifoWatermark = 0;
lpuartConfig.rxFifoWatermark = 1;
LPUART_Init(LPUART1, &lpuartConfig, 20000000U);

Parameters
• base – LPUART peripheral base address.

• config – Pointer to a user-defined configuration structure.

• srcClock_Hz – LPUART clock source frequency in HZ.

Return values
• kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in cur-

rent clock source.

• kStatus_Success – LPUART initialize succeed

status_t LPUART_Deinit(LPUART_Type *base)
Deinitializes a LPUART instance.

This function waits for transmit to complete, disables TX and RX, and disables the LPUART
clock.

Parameters
• base – LPUART peripheral base address.

Return values
• kStatus_Success – Deinit is success.

• kStatus_LPUART_Timeout – Timeout during deinit.

void LPUART_GetDefaultConfig(lpuart_config_t *config)
Gets the default configuration structure.

This function initializes the LPUART configuration structure to a default value. The
default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode
= kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits;
lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit;
lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1;
lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig =
kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;

Parameters
• config – Pointer to a configuration structure.

status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t
srcClock_Hz)

Sets the LPUART instance baudrate.

This function configures the LPUART module baudrate. This function is used to update the
LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.

LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);

Parameters

2.79. LPUART Driver 893



MCUXpresso SDK Documentation, Release 25.12.00

• base – LPUART peripheral base address.

• baudRate_Bps – LPUART baudrate to be set.

• srcClock_Hz – LPUART clock source frequency in HZ.

Return values
• kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the

current clock source.

• kStatus_Success – Set baudrate succeeded.

void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)
Enable 9-bit data mode for LPUART.

This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – LPUART peripheral base address.

• enable – true to enable, flase to disable.

static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t
address2)

Set the LPUART address.

This function configures the address for LPUART module that works as slave in 9-bit data
mode. One or two address fields can be configured. When the address field’s match enable
bit is set, the frame it receices with MSB being 1 is considered as an address frame, oth-
erwise it is considered as data frame. Once the address frame matches one of slave’s own
addresses, this slave is addressed. This address frame and its following data frames are
stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave,
just send an address frame with unmatched address.

Note: Any LPUART instance joined in the multi-slave system can work as slave. The posi-
tion of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9
bit data formats.

Parameters
• base – LPUART peripheral base address.

• address1 – LPUART slave address1.

• address2 – LPUART slave address2.

static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool
match2)

Enable the LPUART match address feature.

Parameters
• base – LPUART peripheral base address.

• match1 – true to enable match address1, false to disable.

• match2 – true to enable match address2, false to disable.

static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – LPUART peripheral base address.

894 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• water – Rx FIFO watermark.

static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – LPUART peripheral base address.

• water – Tx FIFO watermark.

static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)
Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.

This function Enable 16bit Data transmit in lpuart_handle_t.

Parameters
• handle – LPUART handle pointer.

• enable – true to enable, false to disable.

uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
Gets LPUART status flags.

This function gets all LPUART status flags. The flags are returned as the logical OR value
of the enumerators _lpuart_flags. To check for a specific status, compare the return value
with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:

if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
{

...
}

Parameters
• base – LPUART peripheral base address.

Returns
LPUART status flags which are ORed by the enumerators in the _lpuart_flags.

status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
Clears status flags with a provided mask.

This function clears LPUART status flags with a provided mask. Automatically cleared
flags can’t be cleared by this function. Flags that can only cleared or set by hard-
ware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag,
kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag,
kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note:
This API should be called when the Tx/Rx is idle, otherwise it takes no effects.

Parameters
• base – LPUART peripheral base address.

• mask – the status flags to be cleared. The user can use the enumerators in
the _lpuart_status_flag_t to do the OR operation and get the mask.

Return values
• kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by

this function but it is cleared automatically by hardware.

• kStatus_Success – Status in the mask are cleared.

Returns
0 succeed, others failed.

2.79. LPUART Driver 895



MCUXpresso SDK Documentation, Release 25.12.00

void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
Enables LPUART interrupts according to a provided mask.

This function enables the LPUART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples
shows how to enable TX empty interrupt and RX full interrupt:

LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – LPUART peripheral base address.

• mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.

void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
Disables LPUART interrupts according to a provided mask.

This function disables the LPUART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows
how to disable the TX empty interrupt and RX full interrupt:

LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – LPUART peripheral base address.

• mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.

uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
Gets enabled LPUART interrupts.

This function gets the enabled LPUART interrupts. The enabled interrupts are re-
turned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check
a specific interrupt enable status, compare the return value with enumerators in
_lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is en-
abled:

uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);

if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{

...
}

Parameters
• base – LPUART peripheral base address.

Returns
LPUART interrupt flags which are logical OR of the enumerators in
_lpuart_interrupt_enable.

static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)
Gets the LPUART data register address.

This function returns the LPUART data register address, which is mainly used by the
DMA/eDMA.

Parameters
• base – LPUART peripheral base address.

896 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
LPUART data register addresses which are used both by the transmitter and
receiver.

static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter DMA request.

This function enables or disables the transmit data register empty flag, STAT[TDRE], to gen-
erate DMA requests.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver DMA.

This function enables or disables the receiver data register full flag, STAT[RDRF], to generate
DMA requests.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

uint32_t LPUART_GetInstance(LPUART_Type *base)
Get the LPUART instance from peripheral base address.

Parameters
• base – LPUART peripheral base address.

Returns
LPUART instance.

static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter.

This function enables or disables the LPUART transmitter.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver.

This function enables or disables the LPUART receiver.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)
Writes to the transmitter register.

This function writes data to the transmitter register directly. The upper layer must ensure
that the TX register is empty or that the TX FIFO has room before calling this function.

Parameters
• base – LPUART peripheral base address.

• data – Data write to the TX register.

2.79. LPUART Driver 897



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint8_t LPUART_ReadByte(LPUART_Type *base)
Reads the receiver register.

This function reads data from the receiver register directly. The upper layer must ensure
that the receiver register is full or that the RX FIFO has data before calling this function.

Parameters
• base – LPUART peripheral base address.

Returns
Data read from data register.

static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – LPUART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – LPUART peripheral base address.

Returns
tx FIFO data count.

void LPUART_SendAddress(LPUART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – LPUART peripheral base address.

• address – LPUART slave address.

status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
Writes to the transmitter register using a blocking method.

This function polls the transmitter register, first waits for the register to be empty or TX
FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be
sent out to the bus.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)
Writes to the transmitter register using a blocking method in 9bit or 10bit mode.

Note: This function only support 9bit or 10bit transfer. Please make sure only 10bit of data
is valid and other bits are 0.

898 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – LPUART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
Reads the receiver data register using a blocking method.

This function polls the receiver register, waits for the receiver register full or receiver FIFO
has data, and reads data from the TX register.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values
• kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened

while receiving data.

• kStatus_LPUART_NoiseError – Noise error happened while receiving data.

• kStatus_LPUART_FramingError – Framing error happened while receiv-
ing data.

• kStatus_LPUART_ParityError – Parity error happened while receiving
data.

• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)
Reads the receiver data register in 9bit or 10bit mode.

Note: This function only support 9bit or 10bit transfer.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the buffer to store the received data by 16bit, only
10bit is valid.

• length – Size of the buffer.

Return values
• kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened

while receiving data.

• kStatus_LPUART_NoiseError – Noise error happened while receiving data.

• kStatus_LPUART_FramingError – Framing error happened while receiv-
ing data.

2.79. LPUART Driver 899



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_LPUART_ParityError – Parity error happened while receiving
data.

• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_callback_t callback, void *userData)

Initializes the LPUART handle.

This function initializes the LPUART handle, which can be used for other LPUART transac-
tional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized
handle.

The LPUART driver supports the “background” receiving, which means that user can set
up an RX ring buffer optionally. Data received is stored into the ring buffer even when the
user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.
The ring buffer is disabled if passing NULL as ringBuffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• callback – Callback function.

• userData – User data.

status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function send data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data written to the transmitter register. When all
data is written to the TX register in the ISR, the LPUART driver calls the callback function
and passes the kStatus_LPUART_TxIdle as status parameter.

Note: The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to
the TX register. However, there is no check to ensure that all the data sent out. Before dis-
abling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit
is finished.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• xfer – LPUART transfer structure, see lpuart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_LPUART_TxBusy – Previous transmission still not finished, data
not all written to the TX register.

• kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

900 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received is stored into the ring buffer even when
the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• ringBuffer – Start address of ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

Returns
Length of received data in RX ring buffer.

void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are not sent out.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t
*count)

Gets the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by an interrupt
method.

Parameters
• base – LPUART peripheral base address.

2.79. LPUART Driver 901



MCUXpresso SDK Documentation, Release 25.12.00

• handle – LPUART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using the interrupt method.

This function receives data using an interrupt method. This is a non-blocking function
which returns without waiting to ensure that all data are received. If the RX ring buffer is
used and not empty, the data in the ring buffer is copied and the parameter receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring
buffer is not enough for read, the receive request is saved by the LPUART driver. When the
new data arrives, the receive request is serviced first. When all data is received, the LPUART
driver notifies the upper layer through a callback function and passes a status parameter
kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameter
receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer-
>data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX
ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to
xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• xfer – LPUART transfer structure, see uart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into the transmit queue.

• kStatus_LPUART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle,
uint32_t *count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – LPUART peripheral base address.

902 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• handle – LPUART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)
LPUART IRQ handle function.

This function handles the LPUART transmit and receive IRQ request.

Parameters
• base – LPUART peripheral base address.

• irqHandle – LPUART handle pointer.

void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)
LPUART Error IRQ handle function.

This function handles the LPUART error IRQ request.

Parameters
• base – LPUART peripheral base address.

• irqHandle – LPUART handle pointer.

void LPUART_DriverIRQHandler(uint32_t instance)
LPUART driver IRQ handler common entry.

This function provides the common IRQ request entry for LPUART.

Parameters
• instance – LPUART instance.

FSL_LPUART_DRIVER_VERSION
LPUART driver version.

Error codes for the LPUART driver.

Values:

enumerator kStatus_LPUART_TxBusy
TX busy

enumerator kStatus_LPUART_RxBusy
RX busy

enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large

2.79. LPUART Driver 903



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear

enumerator kStatus_LPUART_Error
Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError
LPUART noise error.

enumerator kStatus_LPUART_FramingError
LPUART framing error.

enumerator kStatus_LPUART_ParityError
LPUART parity error.

enumerator kStatus_LPUART_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_LPUART_IdleLineDetected
IDLE flag.

enumerator kStatus_LPUART_Timeout
LPUART times out.

enum _lpuart_parity_mode
LPUART parity mode.

Values:

enumerator kLPUART_ParityDisabled
Parity disabled

enumerator kLPUART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kLPUART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _lpuart_data_bits
LPUART data bits count.

Values:

enumerator kLPUART_EightDataBits
Eight data bit

enumerator kLPUART_SevenDataBits
Seven data bit

enum _lpuart_stop_bit_count
LPUART stop bit count.

Values:

enumerator kLPUART_OneStopBit
One stop bit

904 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_TwoStopBit
Two stop bits

enum _lpuart_transmit_cts_source
LPUART transmit CTS source.

Values:

enumerator kLPUART_CtsSourcePin
CTS resource is the LPUART_CTS pin.

enumerator kLPUART_CtsSourceMatchResult
CTS resource is the match result.

enum _lpuart_transmit_cts_config
LPUART transmit CTS configure.

Values:

enumerator kLPUART_CtsSampleAtStart
CTS input is sampled at the start of each character.

enumerator kLPUART_CtsSampleAtIdle
CTS input is sampled when the transmitter is idle

enum _lpuart_idle_type_select
LPUART idle flag type defines when the receiver starts counting.

Values:

enumerator kLPUART_IdleTypeStartBit
Start counting after a valid start bit.

enumerator kLPUART_IdleTypeStopBit
Start counting after a stop bit.

enum _lpuart_idle_config
LPUART idle detected configuration. This structure defines the number of idle characters
that must be received before the IDLE flag is set.

Values:

enumerator kLPUART_IdleCharacter1
the number of idle characters.

enumerator kLPUART_IdleCharacter2
the number of idle characters.

enumerator kLPUART_IdleCharacter4
the number of idle characters.

enumerator kLPUART_IdleCharacter8
the number of idle characters.

enumerator kLPUART_IdleCharacter16
the number of idle characters.

enumerator kLPUART_IdleCharacter32
the number of idle characters.

enumerator kLPUART_IdleCharacter64
the number of idle characters.

2.79. LPUART Driver 905



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_IdleCharacter128
the number of idle characters.

enum _lpuart_interrupt_enable
LPUART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all LPUART interrupt configurations.

Values:

enumerator kLPUART_LinBreakInterruptEnable
LIN break detect. bit 7

enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge. bit 6

enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty. bit 23

enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete. bit 22

enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full. bit 21

enumerator kLPUART_IdleLineInterruptEnable
Idle line. bit 20

enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun. bit 27

enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag. bit 26

enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag. bit 25

enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag. bit 24

enumerator kLPUART_Match1InterruptEnable
Parity error flag. bit 15

enumerator kLPUART_Match2InterruptEnable
Parity error flag. bit 14

enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow. bit 9

enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow. bit 8

enumerator kLPUART_AllInterruptEnable

enum _lpuart_flags
LPUART status flags.

This provides constants for the LPUART status flags for use in the LPUART functions.

Values:

enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty. bit 23

906 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete. bit 22

enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full. bit 21

enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected. bit 20

enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive reg-
ister. bit 19

enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag
sets. bit 18

enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17

enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection. bit 16

enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit
enabled. bit 31

enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected. bit 30

enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start. bit 24

enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1. bit 15

enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2. bit 14

enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty. bit 7

enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty. bit 6

enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred. bit 1

enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred. bit 0

enumerator kLPUART_AllClearFlags

enumerator kLPUART_AllFlags

typedef enum _lpuart_parity_mode lpuart_parity_mode_t
LPUART parity mode.

typedef enum _lpuart_data_bits lpuart_data_bits_t
LPUART data bits count.

typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t
LPUART stop bit count.

2.79. LPUART Driver 907



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t
LPUART transmit CTS source.

typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t
LPUART transmit CTS configure.

typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t
LPUART idle flag type defines when the receiver starts counting.

typedef enum _lpuart_idle_config lpuart_idle_config_t
LPUART idle detected configuration. This structure defines the number of idle characters
that must be received before the IDLE flag is set.

typedef struct _lpuart_config lpuart_config_t
LPUART configuration structure.

typedef struct _lpuart_transfer lpuart_transfer_t
LPUART transfer structure.

typedef struct _lpuart_handle lpuart_handle_t

typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle,
status_t status, void *userData)

LPUART transfer callback function.

typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)

void *s_lpuartHandle[]

const IRQn_Type s_lpuartTxIRQ[]

lpuart_isr_t s_lpuartIsr[]

UART_RETRY_TIMES
Retry times for waiting flag.

struct _lpuart_config
#include <fsl_lpuart.h> LPUART configuration structure.

Public Members

uint32_t baudRate_Bps
LPUART baud rate

lpuart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

lpuart_data_bits_t dataBitsCount
Data bits count, eight (default), seven

bool isMsb
Data bits order, LSB (default), MSB

lpuart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark
TX FIFO watermark

uint8_t rxFifoWatermark
RX FIFO watermark

908 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

bool enableRxRTS
RX RTS enable

bool enableTxCTS
TX CTS enable

lpuart_transmit_cts_source_t txCtsSource
TX CTS source

lpuart_transmit_cts_config_t txCtsConfig
TX CTS configure

uint8_t rtsWatermark
RTS watermark

lpuart_idle_type_select_t rxIdleType
RX IDLE type.

lpuart_idle_config_t rxIdleConfig
RX IDLE configuration.

bool enableTx
Enable TX

bool enableRx
Enable RX

bool swapTxdRxd
Swap TXD and RXD pins

struct _lpuart_transfer
#include <fsl_lpuart.h> LPUART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _lpuart_handle
#include <fsl_lpuart.h> LPUART handle structure.

Public Members

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

2.79. LPUART Driver 909



MCUXpresso SDK Documentation, Release 25.12.00

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

lpuart_transfer_callback_t callback
Callback function.

void *userData
LPUART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state.

bool isSevenDataBits
Seven data bits flag.

bool is16bitData
16bit data bits flag, only used for 9bit or 10bit data

union __unnamed82__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

uint16_t *rxData16
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

const uint16_t *txData16
The buffer of data to be sent.

union __unnamed84__

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

const uint16_t *volatile txData16
Address of remaining data to send.

union __unnamed86__

Public Members

uint8_t *volatile rxData
Address of remaining data to receive.

uint16_t *volatile rxData16
Address of remaining data to receive.

union __unnamed88__

910 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

uint16_t *rxRingBuffer16
Start address of the receiver ring buffer.

2.80 LPUART eDMA Driver

void LPUART_TransferCreateHandleEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle,
lpuart_edma_transfer_callback_t callback, void
*userData, edma_handle_t *txEdmaHandle,
edma_handle_t *rxEdmaHandle)

Initializes the LPUART handle which is used in transactional functions.

Note: This function disables all LPUART interrupts.

Parameters
• base – LPUART peripheral base address.

• handle – Pointer to lpuart_edma_handle_t structure.

• callback – Callback function.

• userData – User data.

• txEdmaHandle – User requested DMA handle for TX DMA transfer.

• rxEdmaHandle – User requested DMA handle for RX DMA transfer.

status_t LPUART_SendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle,
lpuart_transfer_t *xfer)

Sends data using eDMA.

This function sends data using eDMA. This is a non-blocking function, which returns right
away. When all data is sent, the send callback function is called.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• xfer – LPUART eDMA transfer structure. See lpuart_transfer_t.

Return values
• kStatus_Success – if succeed, others failed.

• kStatus_LPUART_TxBusy – Previous transfer on going.

• kStatus_InvalidArgument – Invalid argument.

status_t LPUART_ReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle,
lpuart_transfer_t *xfer)

Receives data using eDMA.

This function receives data using eDMA. This is non-blocking function, which returns right
away. When all data is received, the receive callback function is called.

Parameters

2.80. LPUART eDMA Driver 911



MCUXpresso SDK Documentation, Release 25.12.00

• base – LPUART peripheral base address.

• handle – Pointer to lpuart_edma_handle_t structure.

• xfer – LPUART eDMA transfer structure, see lpuart_transfer_t.

Return values
• kStatus_Success – if succeed, others fail.

• kStatus_LPUART_RxBusy – Previous transfer ongoing.

• kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortSendEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)
Aborts the sent data using eDMA.

This function aborts the sent data using eDMA.

Parameters
• base – LPUART peripheral base address.

• handle – Pointer to lpuart_edma_handle_t structure.

void LPUART_TransferAbortReceiveEDMA(LPUART_Type *base, lpuart_edma_handle_t *handle)
Aborts the received data using eDMA.

This function aborts the received data using eDMA.

Parameters
• base – LPUART peripheral base address.

• handle – Pointer to lpuart_edma_handle_t structure.

status_t LPUART_TransferGetSendCountEDMA(LPUART_Type *base, lpuart_edma_handle_t
*handle, uint32_t *count)

Gets the number of bytes written to the LPUART TX register.

This function gets the number of bytes written to the LPUART TX register by DMA.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferGetReceiveCountEDMA(LPUART_Type *base, lpuart_edma_handle_t
*handle, uint32_t *count)

Gets the number of received bytes.

This function gets the number of received bytes.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• count – Receive bytes count.

Return values

912 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferEdmaHandleIRQ(LPUART_Type *base, void *lpuartEdmaHandle)
LPUART eDMA IRQ handle function.

This function handles the LPUART tx complete IRQ request and invoke user callback. It is
not set to static so that it can be used in user application.

Note: This function is used as default IRQ handler by double weak mechanism. If user’s
specific IRQ handler is implemented, make sure this function is invoked in the handler.

Parameters
• base – LPUART peripheral base address.

• lpuartEdmaHandle – LPUART handle pointer.

FSL_LPUART_EDMA_DRIVER_VERSION
LPUART EDMA driver version.

typedef struct _lpuart_edma_handle lpuart_edma_handle_t

typedef void (*lpuart_edma_transfer_callback_t)(LPUART_Type *base, lpuart_edma_handle_t
*handle, status_t status, void *userData)

LPUART transfer callback function.

struct _lpuart_edma_handle
#include <fsl_lpuart_edma.h> LPUART eDMA handle.

Public Members

lpuart_edma_transfer_callback_t callback
Callback function.

void *userData
LPUART callback function parameter.

size_t rxDataSizeAll
Size of the data to receive.

size_t txDataSizeAll
Size of the data to send out.

edma_handle_t *txEdmaHandle
The eDMA TX channel used.

edma_handle_t *rxEdmaHandle
The eDMA RX channel used.

uint8_t nbytes
eDMA minor byte transfer count initially configured.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

2.80. LPUART eDMA Driver 913



MCUXpresso SDK Documentation, Release 25.12.00

2.81 MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION
MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer
Cache Write Buffer Error Enable.

enumerator kMCM_ParityError
Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation
FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow
FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact
FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt
FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t
The union of buffer fault attribute.

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t
The union of LMEM fault attribute.

static inline void MCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable crossbar round robin.

– true Enable crossbar round robin.

– false disable crossbar round robin.

static inline void MCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

914 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_t MCM_GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline void MCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.

Parameters
• base – MCM peripheral base address.

static inline void MCM_GetBufferFaultAttribute(MCM_Type *base, mcm_buffer_fault_attribute_t
*bufferfault)

Gets buffer fault attributes.

Parameters
• base – MCM peripheral base address.

• bufferfault – Structure to store the result.

static inline uint32_t MCM_GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.

Parameters
• base – MCM peripheral base address.

static inline void MCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable limit code cache peripheral write buffering.

– true Enable limit code cache peripheral write buffering.

– false disable limit code cache peripheral write buffering.

static inline void MCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable bypass fixed code cache map.

– true Enable bypass fixed code cache map.

– false disable bypass fixed code cache map.

2.81. MCM: Miscellaneous Control Module 915



MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.

Parameters
• base – MCM peripheral base address.

• enable – Used to disable/enable code bus cache.

– true Enable code bus cache.

– false disable code bus cache.

static inline void MCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.

Parameters
• base – MCM peripheral base address.

• enable – Used to force code cache to allocation or no allocation.

– true Force code cache to no allocation.

– false Force code cache to allocation.

static inline void MCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable code cache write buffer.

– true Enable code cache write buffer.

– false Disable code cache write buffer.

static inline void MCM_ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.

Parameters
• base – MCM peripheral base address.

static inline void MCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity Fault Report.

– true Enable PC Parity Fault Report.

– false disable PC Parity Fault Report.

static inline void MCM_EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity.

– true Enable PC Parity.

– false disable PC Parity.

916 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_LockConfigState(MCM_Type *base)
Lock the configuration state.

Parameters
• base – MCM peripheral base address.

static inline void MCM_EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable cache parity reporting.

– true Enable cache parity reporting.

– false disable cache parity reporting.

static inline uint32_t MCM_GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.

Parameters
• base – MCM peripheral base address.

static inline void MCM_GetLmemFaultAttribute(MCM_Type *base, mcm_lmem_fault_attribute_t
*lmemFault)

Get LMEM fault attributes.

Parameters
• base – MCM peripheral base address.

• lmemFault – Structure to store the result.

static inline uint64_t MCM_GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.

Parameters
• base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK

MCM_LMFATR_MODE_MASK

MCM_LMFATR_BUFF_MASK

MCM_LMFATR_CACH_MASK

MCM_ISCR_STAT_MASK

FSL_COMPONENT_ID

union _mcm_buffer_fault_attribute
#include <fsl_mcm.h> The union of buffer fault attribute.

Public Members

uint32_t attribute
Indicates the faulting attributes, when a properly-enabled cache write buffer error
interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory

2.81. MCM: Miscellaneous Control Module 917



MCUXpresso SDK Documentation, Release 25.12.00

struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize
Indicates the size of the cache write buffer access.

uint32_t busErrorAccess
Indicates the type of system bus access.

uint32_t busErrorMasterID
Indicates the crossbar switch bus master number of the captured cache write
buffer bus error.

uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h> The union of LMEM fault attribute.

Public Members

uint32_t attribute
Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory

struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize
Indicates the parity fault master size.

uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.

uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.

uint32_t overrun
Indicates the number of faultss.

918 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.82 MECC: internal error correction code

void MECC_Init(MECC_Type *base, mecc_config_t *config)
MECC module initialization function.

Parameters
• base – MECC base address.

• config – pointer to the MECC configuration structure.

void MECC_Deinit(MECC_Type *base)
Deinitializes the MECC.

Parameters
• base – MECC base address.

void MECC_GetDefaultConfig(mecc_config_t *config)
Sets the MECC configuration structure to default values.

Parameters
• config – pointer to the MECC configuration structure.

static inline uint32_t MECC_GetStatusFlags(MECC_Type *base)
Gets MECC status flags.

Parameters
• base – MECC peripheral base address.

Returns
MECC status flags.

static inline void MECC_ClearStatusFlags(MECC_Type *base, uint32_t mask)
MECC module clear interrupt status.

Parameters
• base – MECC base address.

• mask – status to clear.

static inline void MECC_EnableInterruptStatus(MECC_Type *base, uint32_t mask)
MECC module enable interrupt status.

Parameters
• base – MECC base address.

• mask – status to enable.

static inline void MECC_DisableInterruptStatus(MECC_Type *base, uint32_t mask)
MECC module disable interrupt status.

Parameters
• base – MECC base address.

• mask – status to disable.

static inline void MECC_EnableInterrupts(MECC_Type *base, uint32_t mask)
MECC module enable interrupt.

Parameters
• base – MECC base address.

• mask – The interrupts to enable.

2.82. MECC: internal error correction code 919



MCUXpresso SDK Documentation, Release 25.12.00

static inline void MECC_DisableInterrupts(MECC_Type *base, uint32_t mask)
MECC module disable interrupt.

Parameters
• base – MECC base address.

• mask – The interrupts to disable.

status_tMECC_ErrorInjection(MECC_Type *base, uint32_t lowerrordata, uint32_t
higherrordata, uint8_t eccdata, uint8_t banknumber)

MECC module error injection.

Bank0: ocram_base_address+0x20*i Bank1: ocram_base_address+0x20*i+0x8 Bank2:
ocram_base_address+0x20*i+0x10 Bank3: ocram_base_address+0x20*i+0x18 i =
0,1,2,3,4…..

Parameters
• base – MECC base address.

• lowerrordata – low 32 bits data.

• higherrordata – high 32 bits data.

• eccdata – ecc code.

• banknumber – ocram bank number.

Return values
kStatus_Success. –

status_tMECC_GetSingleErrorInfo(MECC_Type *base, mecc_single_error_info_t *info, uint8_t
banknumber)

MECC module get single error information.

Bank0: ocram_base_address+0x20*i Bank1: ocram_base_address+0x20*i+0x8 Bank2:
ocram_base_address+0x20*i+0x10 Bank3: ocram_base_address+0x20*i+0x18 i =
0,1,2,3,4…..

Parameters
• base – MECC base address.

• info – single error information.

• banknumber – ocram bank number.

Return values
• kStatus_Success. –

• kStatus_MECC_BankMiss. –

status_tMECC_GetMultiErrorInfo(MECC_Type *base, mecc_multi_error_info_t *info, uint8_t
banknumber)

MECC module get multiple error information.

Bank0: ocram_base_address+0x20*i Bank1: ocram_base_address+0x20*i+0x8 Bank2:
ocram_base_address+0x20*i+0x10 Bank3: ocram_base_address+0x20*i+0x18 i =
0,1,2,3,4…..

Parameters
• base – MECC base address.

920 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• info – multiple error information.

• banknumber – ocram bank number.

Return values
• kStatus_Success. –

• kStatus_MECC_BankMiss. –

static inline uint32_t MECC_GetPendingFlags(MECC_Type *base)
Get pending flags for OCRAM wait and pipeline enable.

Parameters
• base – MECC base address.

Returns
Pending flags, should be the OR’ed value of mecc_pending_flag_t.

FSL_MECC_DRIVER_VERSION
Driver version 2.1.0.

Error codes for the MECC driver.

Values:

enumerator kStatus_MECC_BankMiss
Ocram bank miss

MECC interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the MECC interrupt configurations.

Values:

enumerator kMECC_SingleError0InterruptEnable
Single Bit Error On Ocram Bank0 interrupt enable.

enumerator kMECC_SingleError1InterruptEnable
Single Bit Error On Ocram Bank1 interrupt enable

enumerator kMECC_SingleError2InterruptEnable
Single Bit Error On Ocram Bank2 interrupt enable

enumerator kMECC_SingleError3InterruptEnable
Single Bit Error On Ocram Bank3 interrupt enable

enumerator kMECC_MultiError0InterruptEnable
Multiple Bits Error On Ocram Bank0 interrupt enable

enumerator kMECC_MultiError1InterruptEnable
Multiple Bits Error On Ocram Bank1 interrupt enable

enumerator kMECC_MultiError2InterruptEnable
Multiple Bits Error On Ocram Bank2 interrupt enable

enumerator kMECC_MultiError3InterruptEnable
Multiple Bits Error On Ocram Bank3 interrupt enable

enumerator kMECC_StrobeError0InterruptEnable
AXI Strobe Error On Ocram Bank0 interrupt enable

enumerator kMECC_StrobeError1InterruptEnable
AXI Strobe Error On Ocram Bank1 interrupt enable

2.82. MECC: internal error correction code 921



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMECC_StrobeError2InterruptEnable
AXI Strobe Error On Ocram Bank2 interrupt enable

enumerator kMECC_StrobeError3InterruptEnable
AXI Strobe Error On Ocram Bank3 interrupt enable

enumerator kMECC_AccessError0InterruptEnable
Ocram Access Error On Bank0 interrupt enable

enumerator kMECC_AccessError1InterruptEnable
Ocram Access Error On Bank1 interrupt enable

enumerator kMECC_AccessError2InterruptEnable
Ocram Access Error On Bank2 interrupt enable

enumerator kMECC_AccessError3InterruptEnable
Ocram Access Error On Bank3 interrupt enable

enumerator kMECC_AllInterruptsEnable
all interrupts enable

MECC interrupt status configuration structure, default settings all disabled.

This structure contains the settings for all of the MECC interrupt status configurations.

Values:

enumerator kMECC_SingleError0InterruptStatusEnable
Single Bit Error On Ocram Bank0 interrupt status enable.

enumerator kMECC_SingleError1InterruptStatusEnable
Single Bit Error On Ocram Bank1 interrupt status enable

enumerator kMECC_SingleError2InterruptStatusEnable
Single Bit Error On Ocram Bank2 interrupt status enable

enumerator kMECC_SingleError3InterruptStatusEnable
Single Bit Error On Ocram Bank3 interrupt status enable

enumerator kMECC_MultiError0InterruptStatusEnable
Multiple Bits Error On Ocram Bank0 interrupt status enable

enumerator kMECC_MultiError1InterruptStatusEnable
Multiple Bits Error On Ocram Bank1 interrupt status enable

enumerator kMECC_MultiError2InterruptStatusEnable
Multiple Bits Error On Ocram Bank2 interrupt status enable

enumerator kMECC_MultiError3InterruptStatusEnable
Multiple Bits Error On Ocram Bank3 interrupt status enable

enumerator kMECC_StrobeError0InterruptStatusEnable
AXI Strobe Error On Ocram Bank0 interrupt status enable

enumerator kMECC_StrobeError1InterruptStatusEnable
AXI Strobe Error On Ocram Bank1 interrupt status enable

enumerator kMECC_StrobeError2InterruptStatusEnable
AXI Strobe Error On Ocram Bank2 interrupt status enable

enumerator kMECC_StrobeError3InterruptStatusEnable
AXI Strobe Error On Ocram Bank3 interrupt status enable

922 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMECC_AccessError0InterruptStatusEnable
Ocram Access Error On Bank0 interrupt status enable

enumerator kMECC_AccessError1InterruptStatusEnable
Ocram Access Error On Bank1 interrupt status enable

enumerator kMECC_AccessError2InterruptStatusEnable
Ocram Access Error On Bank2 interrupt status enable

enumerator kMECC_AccessError3InterruptStatusEnable
Ocram Access Error On Bank3 interrupt status enable

enumerator kMECC_AllInterruptsStatusEnable
all interrupts enable

MECC status flags.

This provides constants for the MECC status flags for use in the MECC functions.

Values:

enumerator kMECC_SingleError0InterruptFlag
Single Bit Error On Ocram Bank0 interrupt flag

enumerator kMECC_SingleError1InterruptFlag
Single Bit Error On Ocram Bank1 interrupt flag

enumerator kMECC_SingleError2InterruptFlag
Single Bit Error On Ocram Bank2 interrupt flag

enumerator kMECC_SingleError3InterruptFlag
Single Bit Error On Ocram Bank3 interrupt flag

enumerator kMECC_MultiError0InterruptFlag
Multiple Bits Error On Ocram Bank0 interrupt flag

enumerator kMECC_MultiError1InterruptFlag
Multiple Bits Error On Ocram Bank1 interrupt flag

enumerator kMECC_MultiError2InterruptFlag
Multiple Bits Error On Ocram Bank2 interrupt flag

enumerator kMECC_MultiError3InterruptFlag
Multiple Bits Error On Ocram Bank3 interrupt flag

enumerator kMECC_StrobeError0InterruptFlag
AXI Strobe Error On Ocram Bank0 interrupt flag

enumerator kMECC_StrobeError1InterruptFlag
AXI Strobe Error On Ocram Bank1 interrupt flag

enumerator kMECC_StrobeError2InterruptFlag
AXI Strobe Error On Ocram Bank2 interrupt flag

enumerator kMECC_StrobeError3InterruptFlag
AXI Strobe Error On Ocram Bank3 interrupt flag

enumerator kMECC_AccessError0InterruptFlag
Ocram Access Error On Bank0 interrupt flag

enumerator kMECC_AccessError1InterruptFlag
Ocram Access Error On Bank1 interrupt flag

2.82. MECC: internal error correction code 923



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMECC_AccessError2InterruptFlag
Ocram Access Error On Bank2 interrupt flag

enumerator kMECC_AccessError3InterruptFlag
Ocram Access Error On Bank3 interrupt flag

enumerator kMECC_AllInterruptsFlag
all interrupts interrupt flag

MECC ocram bank number.

Values:

enumerator kMECC_OcramBank0
ocram bank number 0: ocram_base_address+0x20*i

enumerator kMECC_OcramBank1
ocram bank number 1: ocram_base_address+0x20*i+0x8

enumerator kMECC_OcramBank2
ocram bank number 2: ocram_base_address+0x20*i+0x10

enumerator kMECC_OcramBank3
ocram bank number 3: ocram_base_address+0x20*i+0x18

enum _mecc_pending_flag
Pending flags for OCRAM wait and pipeline enable. .

Values:

enumerator kMECC_ReadDataWaitPendingFlag
Indicate an update pending status for read data wait.

enumerator kMECC_ReadAddrPipelinePendingFlag
Indicate an update pending status for read address pipeline.

enumerator kMECC_WriteDataPipelinePendingFlag
Indicate an update pending status for write data pipeline.

enumerator kMECC_WriteAddrPipelinePendingFlag
Indicate an update pending status for write address pipeline.

enumerator kMECC_AllPendingFlags
Indicate all pending status flags.

typedef struct _mecc_config mecc_config_t
MECC user configuration.

Note: Ocram1StartAddress, Ocram1EndAddress, Ocram2StartAddress,
Ocram2EndAddress are removed since 2.1.0 version; This changes will cause compile
error for applications which use MECC driver before 2.1.0 version; To resolve compile
error please use startAddress and endAddress as instead.

typedef struct _mecc_single_error_info mecc_single_error_info_t
MECC ocram single error information, including single error address, ECC code, error data
and error bit position.

typedef struct _mecc_multi_error_info mecc_multi_error_info_t
MECC ocram multiple error information, including multiple error address, ECC code, error
data.

924 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _mecc_config
#include <fsl_mecc.h> MECC user configuration.

Note: Ocram1StartAddress, Ocram1EndAddress, Ocram2StartAddress,
Ocram2EndAddress are removed since 2.1.0 version; This changes will cause compile
error for applications which use MECC driver before 2.1.0 version; To resolve compile
error please use startAddress and endAddress as instead.

Public Members

bool enableMecc
Enable the MECC function.

uint32_t startAddress
Start address of corresponding OCRAM memory region to enable ECC.

uint32_t endAddress
end address of corresponding OCRAM memory region to enable ECC.

bool enableReadDataWait
uint32_t Ocram1StartAddress; Ocram 1 start address, deprecated since 2.1.0

uint32_t Ocram1EndAddress; Ocram 1 end address, deprecated since 2.1.0

uint32_t Ocram2StartAddress; Ocram 2 start address, deprecated since 2.1.0.

uint32_t Ocram2EndAddress; Ocram 2 end address, deprecated since 2.1.0 If enabled,
1-cycle wait state will be inserted into each read access:

• true Enable read data wait;

• false Disable read data wait.

bool enableReadAddrPipeline
If enabled, the read address will be registered before can be applied to memory cell:

• true Enable Read address pipeline;

• false Disable Read address pipeline.

bool enableWriteDataPipeline
If enabled, the write data will be registered before can be applied to memory cell:

• true Enable write data pipeline;

• false Disable write data pipeline.

bool enableWriteAddrPipeline
If enabled, write address will be registered before can be applied to memory cell:

• true Enable write address pipeline;

• false Disable write address pipeline.

struct _mecc_single_error_info
#include <fsl_mecc.h>MECC ocram single error information, including single error address,
ECC code, error data and error bit position.

Public Members

uint32_t singleErrorAddress
Single error address on Ocram bank n

2.82. MECC: internal error correction code 925



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t singleErrorDataLow
Single error low 32 bits uncorrected read data on Ocram bank n

uint32_t singleErrorDataHigh
Single error high 32 bits uncorrected read data on Ocram bank n

uint32_t singleErrorPosLow
Single error bit postion of low 32 bits read data on Ocram bank n

uint32_t singleErrorPosHigh
Single error bit postion of high 32 bits read data on Ocram bank n

uint8_t singleErrorEccCode
Single error ECC code on Ocram bank n

struct _mecc_multi_error_info
#include <fsl_mecc.h> MECC ocram multiple error information, including multiple error
address, ECC code, error data.

Public Members

uint32_t multiErrorAddress
Multiple error address on Ocram bank n

uint32_t multiErrorDataLow
Multiple error low 32 bits read data on Ocram bank n

uint32_t multiErrorDataHigh
Multiple error high 32 bits read data on Ocram bank n

uint8_t multiErrorEccCode
Multiple error ECC code on Ocram bank n

2.83 MIPI DSI Driver

void DSI_Init(const MIPI_DSI_Type *base, const dsi_config_t *config)
Initializes an MIPI DSI host with the user configuration.

This function initializes the MIPI DSI host with the configuration, it should be called first
before other MIPI DSI driver functions.

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to a user-defined configuration structure.

void DSI_Deinit(const MIPI_DSI_Type *base)
Deinitializes an MIPI DSI host.

This function should be called after all bother MIPI DSI driver functions.

Parameters
• base – MIPI DSI host peripheral base address.

void DSI_GetDefaultConfig(dsi_config_t *config)
Get the default configuration to initialize the MIPI DSI host.

The default value is:

926 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

config->numLanes = 4;
config->enableNonContinuousHsClk = false;
config->enableTxUlps = false;
config->autoInsertEoTp = true;
config->numExtraEoTp = 0;
config->htxTo_ByteClk = 0;
config->lrxHostTo_ByteClk = 0;
config->btaTo_ByteClk = 0;

Parameters
• config – Pointer to a user-defined configuration structure.

void DSI_SetDpiConfig(const MIPI_DSI_Type *base, const dsi_dpi_config_t *config, uint8_t
numLanes, uint32_t dpiPixelClkFreq_Hz, uint32_t dsiHsBitClkFreq_Hz)

Configure the DPI interface core.

This function sets the DPI interface configuration, it should be used in video mode.

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to the DPI interface configuration.

• numLanes – Lane number, should be same with the setting in
dsi_dpi_config_t.

• dpiPixelClkFreq_Hz – The DPI pixel clock frequency in Hz.

• dsiHsBitClkFreq_Hz – The DSI high speed bit clock frequency in Hz. It is
the same with DPHY PLL output.

uint32_t DSI_InitDphy(const MIPI_DSI_Type *base, const dsi_dphy_config_t *config, uint32_t
refClkFreq_Hz)

Initializes the D-PHY.

This function configures the D-PHY timing and setups the D-PHY PLL based on user configu-
ration. The configuration structure could be got by the function DSI_GetDphyDefaultConfig.

For some platforms there is not dedicated D-PHY PLL, indicated by the macro
FSL_FEATURE_MIPI_DSI_NO_DPHY_PLL. For these platforms, the refClkFreq_Hz is useless.

Parameters
• base – MIPI DSI host peripheral base address.

• config – Pointer to the D-PHY configuration.

• refClkFreq_Hz – The REFCLK frequency in Hz.

Returns
The actual D-PHY PLL output frequency. If could not configure the PLL to the
target frequency, the return value is 0.

void DSI_DeinitDphy(const MIPI_DSI_Type *base)
Deinitializes the D-PHY.

Power down the D-PHY PLL and shut down D-PHY.

Parameters
• base – MIPI DSI host peripheral base address.

void DSI_GetDphyDefaultConfig(dsi_dphy_config_t *config, uint32_t txHsBitClk_Hz, uint32_t
txEscClk_Hz)

2.83. MIPI DSI Driver 927



MCUXpresso SDK Documentation, Release 25.12.00

Get the default D-PHY configuration.

Gets the default D-PHY configuration, the timing parameters are set according to D-PHY
specification. User could use the configuration directly, or change some parameters ac-
cording to the special device.

Parameters
• config – Pointer to the D-PHY configuration.

• txHsBitClk_Hz – High speed bit clock in Hz.

• txEscClk_Hz – Esc clock in Hz.

static inline void DSI_EnableInterrupts(const MIPI_DSI_Type *base, uint32_t intGroup1, uint32_t
intGroup2)

Enable the interrupts.

The interrupts to enable are passed in as OR’ed mask value of _dsi_interrupt.

Parameters
• base – MIPI DSI host peripheral base address.

• intGroup1 – Interrupts to enable in group 1.

• intGroup2 – Interrupts to enable in group 2.

static inline void DSI_DisableInterrupts(const MIPI_DSI_Type *base, uint32_t intGroup1, uint32_t
intGroup2)

Disable the interrupts.

The interrupts to disable are passed in as OR’ed mask value of _dsi_interrupt.

Parameters
• base – MIPI DSI host peripheral base address.

• intGroup1 – Interrupts to disable in group 1.

• intGroup2 – Interrupts to disable in group 2.

static inline void DSI_GetAndClearInterruptStatus(const MIPI_DSI_Type *base, uint32_t
*intGroup1, uint32_t *intGroup2)

Get and clear the interrupt status.

Parameters
• base – MIPI DSI host peripheral base address.

• intGroup1 – Group 1 interrupt status.

• intGroup2 – Group 2 interrupt status.

void DSI_SetApbPacketControl(const MIPI_DSI_Type *base, uint16_t wordCount, uint8_t
virtualChannel, dsi_tx_data_type_t dataType, uint8_t flags)

Configure the APB packet to send.

This function configures the next APB packet transfer. After configuration, the packet trans-
fer could be started with function DSI_SendApbPacket. If the packet is long packet, Use
DSI_WriteApbTxPayload to fill the payload before start transfer.

Parameters
• base – MIPI DSI host peripheral base address.

• wordCount – For long packet, this is the byte count of the payload. For short
packet, this is (data1 « 8) | data0.

• virtualChannel – Virtual channel.

928 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• dataType – The packet data type, (DI).

• flags – The transfer control flags, see _dsi_transfer_flags.

void DSI_WriteApbTxPayload(const MIPI_DSI_Type *base, const uint8_t *payload, uint16_t
payloadSize)

Fill the long APB packet payload.

Write the long packet payload to TX FIFO.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

void DSI_WriteApbTxPayloadExt(const MIPI_DSI_Type *base, const uint8_t *payload, uint16_t
payloadSize, bool sendDcsCmd, uint8_t dcsCmd)

Extended function to fill the payload to TX FIFO.

Write the long packet payload to TX FIFO. This function could be used in two ways

a. Include the DCS command in parameter payload. In this case, the DCS command is the
first byte of payload. The parameter sendDcsCmd is set to false, the dcsCmd is not used.
This function is the same as DSI_WriteApbTxPayload when used in this way.

b. The DCS command in not in parameter payload, but specified by parameter dcsCmd. In
this case, the parameter sendDcsCmd is set to true, the dcsCmd is the DCS command to
send. The payload is sent after dcsCmd.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

• sendDcsCmd – If set to true, the DCS command is specified by dcsCmd, oth-
erwise the DCS command is included in the payload.

• dcsCmd – The DCS command to send, only used when sendDcsCmd is true.

void DSI_ReadApbRxPayload(const MIPI_DSI_Type *base, uint8_t *payload, uint16_t
payloadSize)

Read the long APB packet payload.

Read the long packet payload from RX FIFO. This function reads directly but does not check
the RX FIFO status. Upper layer should make sure there are available data.

Parameters
• base – MIPI DSI host peripheral base address.

• payload – Pointer to the payload.

• payloadSize – Payload size in byte.

static inline void DSI_SendApbPacket(const MIPI_DSI_Type *base)
Trigger the controller to send out APB packet.

Send the packet set by DSI_SetApbPacketControl.

Parameters
• base – MIPI DSI host peripheral base address.

2.83. MIPI DSI Driver 929



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t DSI_GetApbStatus(const MIPI_DSI_Type *base)
Get the APB status.

The return value is OR’ed value of _dsi_apb_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The APB status.

static inline uint32_t DSI_GetRxErrorStatus(const MIPI_DSI_Type *base)
Get the error status during data transfer.

The return value is OR’ed value of _dsi_rx_error_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The error status.

static inline uint8_t DSI_GetEccRxErrorPosition(uint32_t rxErrorStatus)
Get the one-bit RX ECC error position.

When one-bit ECC RX error detected using DSI_GetRxErrorStatus, this function could be
used to get the error bit position.

uint8_t eccErrorPos;
uint32_t rxErrorStatus = DSI_GetRxErrorStatus(MIPI_DSI);
if (kDSI_RxErrorEccOneBit & rxErrorStatus)
{

eccErrorPos = DSI_GetEccRxErrorPosition(rxErrorStatus);
}

Parameters
• rxErrorStatus – The error status returned by DSI_GetRxErrorStatus.

Returns
The 1-bit ECC error position.

static inline uint32_t DSI_GetAndClearHostStatus(const MIPI_DSI_Type *base)
Get and clear the DSI host status.

The host status are returned as mask value of _dsi_host_status.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The DSI host status.

static inline uint32_t DSI_GetRxPacketHeader(const MIPI_DSI_Type *base)
Get the RX packet header.

Parameters
• base – MIPI DSI host peripheral base address.

Returns
The RX packet header.

930 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline dsi_rx_data_type_t DSI_GetRxPacketType(uint32_t rxPktHeader)
Extract the RX packet type from the packet header.

Extract the RX packet type from the packet header get by DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
The RX packet type.

static inline uint16_t DSI_GetRxPacketWordCount(uint32_t rxPktHeader)
Extract the RX packet word count from the packet header.

Extract the RX packet word count from the packet header get by DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
For long packet, return the payload word count (byte). For short packet, return
the (data0 « 8) | data1.

static inline uint8_t DSI_GetRxPacketVirtualChannel(uint32_t rxPktHeader)
Extract the RX packet virtual channel from the packet header.

Extract the RX packet virtual channel from the packet header get by
DSI_GetRxPacketHeader.

Parameters
• rxPktHeader – The RX packet header get by DSI_GetRxPacketHeader.

Returns
The virtual channel.

status_t DSI_TransferBlocking(const MIPI_DSI_Type *base, dsi_transfer_t *xfer)
APB data transfer using blocking method.

Perform APB data transfer using blocking method. This function waits until all data send
or received, or timeout happens.

When using this API to read data, the actually read data count could be got from xfer-
>rxDataSize.

Parameters
• base – MIPI DSI host peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Data transfer finished with no error.

• kStatus_Timeout – Transfer failed because of timeout.

• kStatus_DSI_RxDataError – RX data error, user could use
DSI_GetRxErrorStatus to check the error details.

• kStatus_DSI_ErrorReportReceived – Error Report packet received, user
could use DSI_GetAndClearHostStatus to check the error report status.

• kStatus_DSI_NotSupported – Transfer format not supported.

• kStatus_DSI_Fail – Transfer failed for other reasons.

2.83. MIPI DSI Driver 931



MCUXpresso SDK Documentation, Release 25.12.00

status_t DSI_TransferCreateHandle(const MIPI_DSI_Type *base, dsi_handle_t *handle,
dsi_callback_t callback, void *userData)

Create the MIPI DSI handle.

This function initializes the MIPI DSI handle which can be used for other transactional APIs.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – Handle pointer.

• callback – Callback function.

• userData – User data.

status_t DSI_TransferNonBlocking(const MIPI_DSI_Type *base, dsi_handle_t *handle,
dsi_transfer_t *xfer)

APB data transfer using interrupt method.

Perform APB data transfer using interrupt method, when transfer finished, upper layer
could be informed through callback function.

When using this API to read data, the actually read data count could be got from handle-
>xfer->rxDataSize after read finished.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Data transfer started successfully.

• kStatus_DSI_Busy – Failed to start transfer because DSI is busy with per-
vious transfer.

• kStatus_DSI_NotSupported – Transfer format not supported.

void DSI_TransferAbort(const MIPI_DSI_Type *base, dsi_handle_t *handle)
Abort current APB data transfer.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

void DSI_TransferHandleIRQ(const MIPI_DSI_Type *base, dsi_handle_t *handle)
Interrupt handler for the DSI.

Parameters
• base – MIPI DSI host peripheral base address.

• handle – pointer to dsi_handle_t structure which stores the transfer state.

FSL_MIPI_DSI_DRIVER_VERSION

Error codes for the MIPI DSI driver.

Values:

enumerator kStatus_DSI_Busy
DSI is busy.

932 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_DSI_RxDataError
Read data error.

enumerator kStatus_DSI_ErrorReportReceived
Error report package received.

enumerator kStatus_DSI_NotSupported
The transfer type not supported.

enum _dsi_dpi_color_coding
MIPI DPI interface color coding.

Values:

enumerator kDSI_Dpi16BitConfig1
16-bit configuration 1. RGB565: XXXXXXXX_RRRRRGGG_GGGBBBBB.

enumerator kDSI_Dpi16BitConfig2
16-bit configuration 2. RGB565: XXXRRRRR_XXGGGGGG_XXXBBBBB.

enumerator kDSI_Dpi16BitConfig3
16-bit configuration 3. RGB565: XXRRRRRX_XXGGGGGG_XXBBBBBX.

enumerator kDSI_Dpi18BitConfig1
18-bit configuration 1. RGB666: XXXXXXRR_RRRRGGGG_GGBBBBBB.

enumerator kDSI_Dpi18BitConfig2
18-bit configuration 2. RGB666: XXRRRRRR_XXGGGGGG_XXBBBBBB.

enumerator kDSI_Dpi24Bit
24-bit.

enum _dsi_dpi_pixel_packet
MIPI DSI pixel packet type send through DPI interface.

Values:

enumerator kDSI_PixelPacket16Bit
16 bit RGB565.

enumerator kDSI_PixelPacket18Bit
18 bit RGB666 packed.

enumerator kDSI_PixelPacket18BitLoosely
18 bit RGB666 loosely packed into three bytes.

enumerator kDSI_PixelPacket24Bit
24 bit RGB888, each pixel uses three bytes.

_dsi_dpi_polarity_flag DPI signal polarity.

Values:

enumerator kDSI_DpiVsyncActiveLow
VSYNC active low.

enumerator kDSI_DpiHsyncActiveLow
HSYNC active low.

enumerator kDSI_DpiVsyncActiveHigh
VSYNC active high.

2.83. MIPI DSI Driver 933



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_DpiHsyncActiveHigh
HSYNC active high.

enum _dsi_dpi_video_mode
DPI video mode.

Values:

enumerator kDSI_DpiNonBurstWithSyncPulse
Non-Burst mode with Sync Pulses.

enumerator kDSI_DpiNonBurstWithSyncEvent
Non-Burst mode with Sync Events.

enumerator kDSI_DpiBurst
Burst mode.

enum _dsi_dpi_bllp_mode
Behavior in BLLP (Blanking or Low-Power Interval).

Values:

enumerator kDSI_DpiBllpLowPower
LP mode used in BLLP periods.

enumerator kDSI_DpiBllpBlanking
Blanking packets used in BLLP periods.

enumerator kDSI_DpiBllpNull
Null packets used in BLLP periods.

_dsi_apb_status Status of APB to packet interface.

Values:

enumerator kDSI_ApbNotIdle
State machine not idle

enumerator kDSI_ApbTxDone
Tx packet done

enumerator kDSI_ApbRxControl
DPHY direction 0 - tx had control, 1 - rx has control

enumerator kDSI_ApbTxOverflow
TX fifo overflow

enumerator kDSI_ApbTxUnderflow
TX fifo underflow

enumerator kDSI_ApbRxOverflow
RX fifo overflow

enumerator kDSI_ApbRxUnderflow
RX fifo underflow

enumerator kDSI_ApbRxHeaderReceived
RX packet header has been received

enumerator kDSI_ApbRxPacketReceived
All RX packet payload data has been received

934 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

_dsi_rx_error_status Host receive error status.

Values:

enumerator kDSI_RxErrorEccOneBit
ECC single bit error detected.

enumerator kDSI_RxErrorEccMultiBit
ECC multi bit error detected.

enumerator kDSI_RxErrorCrc
CRC error detected.

enumerator kDSI_RxErrorHtxTo
High Speed forward TX timeout detected.

enumerator kDSI_RxErrorLrxTo
Reverse Low power data receive timeout detected.

enumerator kDSI_RxErrorBtaTo
BTA timeout detected.

enum _dsi_host_status
DSI host controller status (status_out)

Values:

enumerator kDSI_HostSoTError
SoT error from peripheral error report.

enumerator kDSI_HostSoTSyncError
SoT Sync error from peripheral error report.

enumerator kDSI_HostEoTSyncError
EoT Sync error from peripheral error report.

enumerator kDSI_HostEscEntryCmdError
Escape Mode Entry Command Error from peripheral error report.

enumerator kDSI_HostLpTxSyncError
Low-power transmit Sync Error from peripheral error report.

enumerator kDSI_HostPeriphToError
Peripheral timeout error from peripheral error report.

enumerator kDSI_HostFalseControlError
False control error from peripheral error report.

enumerator kDSI_HostContentionDetected
Contention detected from peripheral error report.

enumerator kDSI_HostEccErrorOneBit
Single bit ECC error (corrected) from peripheral error report.

enumerator kDSI_HostEccErrorMultiBit
Multi bit ECC error (not corrected) from peripheral error report.

enumerator kDSI_HostChecksumError
Checksum error from peripheral error report.

enumerator kDSI_HostInvalidDataType
DSI data type not recognized.

2.83. MIPI DSI Driver 935



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_HostInvalidVcId
DSI VC ID invalid.

enumerator kDSI_HostInvalidTxLength
Invalid transmission length.

enumerator kDSI_HostProtocalViolation
DSI protocal violation.

enumerator kDSI_HostResetTriggerReceived
Reset trigger received.

enumerator kDSI_HostTearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_HostAckTriggerReceived
Acknowledge trigger message received.

_dsi_interrupt DSI interrupt.

Values:

enumerator kDSI_InterruptGroup1ApbNotIdle
State machine not idle

enumerator kDSI_InterruptGroup1ApbTxDone
Tx packet done

enumerator kDSI_InterruptGroup1ApbRxControl
DPHY direction 0 - tx control, 1 - rx control

enumerator kDSI_InterruptGroup1ApbTxOverflow
TX fifo overflow

enumerator kDSI_InterruptGroup1ApbTxUnderflow
TX fifo underflow

enumerator kDSI_InterruptGroup1ApbRxOverflow
RX fifo overflow

enumerator kDSI_InterruptGroup1ApbRxUnderflow
RX fifo underflow

enumerator kDSI_InterruptGroup1ApbRxHeaderReceived
RX packet header has been received

enumerator kDSI_InterruptGroup1ApbRxPacketReceived
All RX packet payload data has been received

enumerator kDSI_InterruptGroup1SoTError
SoT error from peripheral error report.

enumerator kDSI_InterruptGroup1SoTSyncError
SoT Sync error from peripheral error report.

enumerator kDSI_InterruptGroup1EoTSyncError
EoT Sync error from peripheral error report.

enumerator kDSI_InterruptGroup1EscEntryCmdError
Escape Mode Entry Command Error from peripheral error report.

936 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_InterruptGroup1LpTxSyncError
Low-power transmit Sync Error from peripheral error report.

enumerator kDSI_InterruptGroup1PeriphToError
Peripheral timeout error from peripheral error report.

enumerator kDSI_InterruptGroup1FalseControlError
False control error from peripheral error report.

enumerator kDSI_InterruptGroup1ContentionDetected
Contention detected from peripheral error report.

enumerator kDSI_InterruptGroup1EccErrorOneBit
Single bit ECC error (corrected) from peripheral error report.

enumerator kDSI_InterruptGroup1EccErrorMultiBit
Multi bit ECC error (not corrected) from peripheral error report.

enumerator kDSI_InterruptGroup1ChecksumError
Checksum error from peripheral error report.

enumerator kDSI_InterruptGroup1InvalidDataType
DSI data type not recognized.

enumerator kDSI_InterruptGroup1InvalidVcId
DSI VC ID invalid.

enumerator kDSI_InterruptGroup1InvalidTxLength
Invalid transmission length.

enumerator kDSI_InterruptGroup1ProtocalViolation
DSI protocal violation.

enumerator kDSI_InterruptGroup1ResetTriggerReceived
Reset trigger received.

enumerator kDSI_InterruptGroup1TearTriggerReceived
Tear effect trigger receive.

enumerator kDSI_InterruptGroup1AckTriggerReceived
Acknowledge trigger message received.

enumerator kDSI_InterruptGroup1HtxTo
High speed TX timeout.

enumerator kDSI_InterruptGroup1LrxTo
Low power RX timeout.

enumerator kDSI_InterruptGroup1BtaTo
Host BTA timeout.

enumerator kDSI_InterruptGroup2EccOneBit
Sinle bit ECC error.

enumerator kDSI_InterruptGroup2EccMultiBit
Multi bit ECC error.

enumerator kDSI_InterruptGroup2CrcError
CRC error.

enum _dsi_tx_data_type
DSI TX data type.

Values:

2.83. MIPI DSI Driver 937



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_TxDataVsyncStart
V Sync start.

enumerator kDSI_TxDataVsyncEnd
V Sync end.

enumerator kDSI_TxDataHsyncStart
H Sync start.

enumerator kDSI_TxDataHsyncEnd
H Sync end.

enumerator kDSI_TxDataEoTp
End of transmission packet.

enumerator kDSI_TxDataCmOff
Color mode off.

enumerator kDSI_TxDataCmOn
Color mode on.

enumerator kDSI_TxDataShutDownPeriph
Shut down peripheral.

enumerator kDSI_TxDataTurnOnPeriph
Turn on peripheral.

enumerator kDSI_TxDataGenShortWrNoParam
Generic Short WRITE, no parameters.

enumerator kDSI_TxDataGenShortWrOneParam
Generic Short WRITE, one parameter.

enumerator kDSI_TxDataGenShortWrTwoParam
Generic Short WRITE, two parameter.

enumerator kDSI_TxDataGenShortRdNoParam
Generic Short READ, no parameters.

enumerator kDSI_TxDataGenShortRdOneParam
Generic Short READ, one parameter.

enumerator kDSI_TxDataGenShortRdTwoParam
Generic Short READ, two parameter.

enumerator kDSI_TxDataDcsShortWrNoParam
DCS Short WRITE, no parameters.

enumerator kDSI_TxDataDcsShortWrOneParam
DCS Short WRITE, one parameter.

enumerator kDSI_TxDataDcsShortRdNoParam
DCS Short READ, no parameters.

enumerator kDSI_TxDataSetMaxReturnPktSize
Set the Maximum Return Packet Size.

enumerator kDSI_TxDataNull
Null Packet, no data.

enumerator kDSI_TxDataBlanking
Blanking Packet, no data.

938 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_TxDataGenLongWr
Generic long write.

enumerator kDSI_TxDataDcsLongWr
DCS Long Write/write_LUT Command Packet.

enumerator kDSI_TxDataLooselyPackedPixel20BitYCbCr
Loosely Packed Pixel Stream, 20-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel24BitYCbCr
Packed Pixel Stream, 24-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel16BitYCbCr
Packed Pixel Stream, 16-bit YCbCr, 4:2:2 Format.

enumerator kDSI_TxDataPackedPixel30BitRGB
Packed Pixel Stream, 30-bit RGB, 10-10-10 Format.

enumerator kDSI_TxDataPackedPixel36BitRGB
Packed Pixel Stream, 36-bit RGB, 12-12-12 Format.

enumerator kDSI_TxDataPackedPixel12BitYCrCb
Packed Pixel Stream, 12-bit YCbCr, 4:2:0 Format.

enumerator kDSI_TxDataPackedPixel16BitRGB
Packed Pixel Stream, 16-bit RGB, 5-6-5 Format.

enumerator kDSI_TxDataPackedPixel18BitRGB
Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI_TxDataLooselyPackedPixel18BitRGB
Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format.

enumerator kDSI_TxDataPackedPixel24BitRGB
Packed Pixel Stream, 24-bit RGB, 8-8-8 Format.

enum _dsi_rx_data_type
DSI RX data type.

Values:

enumerator kDSI_RxDataAckAndErrorReport
Acknowledge and Error Report

enumerator kDSI_RxDataEoTp
End of Transmission packet.

enumerator kDSI_RxDataGenShortRdResponseOneByte
Generic Short READ Response, 1 byte returned.

enumerator kDSI_RxDataGenShortRdResponseTwoByte
Generic Short READ Response, 2 byte returned.

enumerator kDSI_RxDataGenLongRdResponse
Generic Long READ Response.

enumerator kDSI_RxDataDcsLongRdResponse
DCS Long READ Response.

enumerator kDSI_RxDataDcsShortRdResponseOneByte
DCS Short READ Response, 1 byte returned.

2.83. MIPI DSI Driver 939



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDSI_RxDataDcsShortRdResponseTwoByte
DCS Short READ Response, 2 byte returned.

_dsi_transfer_flags DSI transfer control flags.

Values:

enumerator kDSI_TransferUseHighSpeed
Use high speed mode or not.

enumerator kDSI_TransferPerformBTA
Perform BTA or not.

typedef struct _dsi_config dsi_config_t
MIPI DSI controller configuration.

typedef enum _dsi_dpi_color_coding dsi_dpi_color_coding_t
MIPI DPI interface color coding.

typedef enum _dsi_dpi_pixel_packet dsi_dpi_pixel_packet_t
MIPI DSI pixel packet type send through DPI interface.

typedef enum _dsi_dpi_video_mode dsi_dpi_video_mode_t
DPI video mode.

typedef enum _dsi_dpi_bllp_mode dsi_dpi_bllp_mode_t
Behavior in BLLP (Blanking or Low-Power Interval).

typedef struct _dsi_dpi_config dsi_dpi_config_t
MIPI DSI controller DPI interface configuration.

typedef struct _dsi_dphy_config dsi_dphy_config_t
MIPI DSI D-PHY configuration.

typedef enum _dsi_tx_data_type dsi_tx_data_type_t
DSI TX data type.

typedef enum _dsi_rx_data_type dsi_rx_data_type_t
DSI RX data type.

typedef struct _dsi_transfer dsi_transfer_t
Structure for the data transfer.

typedef struct _dsi_handle dsi_handle_t
MIPI DSI transfer handle.

typedef void (*dsi_callback_t)(const MIPI_DSI_Type *base, dsi_handle_t *handle, status_t status,
void *userData)

MIPI DSI callback for finished transfer.

When transfer finished, one of these status values will be passed to the user:

• kStatus_Success Data transfer finished with no error.

• kStatus_Timeout Transfer failed because of timeout.

• kStatus_DSI_RxDataError RX data error, user could use DSI_GetRxErrorStatus to check
the error details.

• kStatus_DSI_ErrorReportReceived Error Report packet received, user could use
DSI_GetAndClearHostStatus to check the error report status.

• kStatus_Fail Transfer failed for other reasons.

940 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_DSI_TX_MAX_PAYLOAD_BYTE

FSL_DSI_RX_MAX_PAYLOAD_BYTE

struct MIPI_DSI_Type
#include <fsl_mipi_dsi.h> MIPI DSI structure definition.

Public Members

DSI_HOST_Type *host
Pointer to HOST registers.

DSI_HOST_APB_PKT_IF_Type *apb
Pointer to APB registers.

DSI_HOST_DPI_INTFC_Type *dpi
Pointer to DPI registers.

DSI_HOST_NXP_FDSOI28_DPHY_INTFC_Type *dphy
Pointer to DPHY registers.

struct _dsi_config
#include <fsl_mipi_dsi.h> MIPI DSI controller configuration.

Public Members

uint8_t numLanes
Number of lanes.

bool enableNonContinuousHsClk
In enabled, the high speed clock will enter low power mode between transmissions.

bool enableTxUlps
Enable the TX ULPS.

bool autoInsertEoTp
Insert an EoTp short package when switching from HS to LP.

uint8_t numExtraEoTp
How many extra EoTp to send after the end of a packet.

uint32_t htxTo_ByteClk
HS TX timeout count (HTX_TO) in byte clock.

uint32_t lrxHostTo_ByteClk
LP RX host timeout count (LRX-H_TO) in byte clock.

uint32_t btaTo_ByteClk
Bus turn around timeout count (TA_TO) in byte clock.

struct _dsi_dpi_config
#include <fsl_mipi_dsi.h> MIPI DSI controller DPI interface configuration.

Public Members

uint16_t pixelPayloadSize
Maximum number of pixels that should be sent as one DSI packet. Recommended that
the line size (in pixels) is evenly divisible by this parameter.

2.83. MIPI DSI Driver 941



MCUXpresso SDK Documentation, Release 25.12.00

dsi_dpi_color_coding_t dpiColorCoding
DPI color coding.

dsi_dpi_pixel_packet_t pixelPacket
Pixel packet format.

dsi_dpi_video_mode_t videoMode
Video mode.

dsi_dpi_bllp_mode_t bllpMode
Behavior in BLLP.

uint8_t polarityFlags
OR’ed value of _dsi_dpi_polarity_flag controls signal polarity.

uint16_t hfp
Horizontal front porch, in dpi pixel clock.

uint16_t hbp
Horizontal back porch, in dpi pixel clock.

uint16_t hsw
Horizontal sync width, in dpi pixel clock.

uint8_t vfp
Number of lines in vertical front porch.

uint8_t vbp
Number of lines in vertical back porch.

uint16_t panelHeight
Line number in vertical active area.

uint8_t virtualChannel
Virtual channel.

struct _dsi_dphy_config
#include <fsl_mipi_dsi.h> MIPI DSI D-PHY configuration.

Public Members

uint32_t txHsBitClk_Hz
The generated HS TX bit clock in Hz.

uint8_t tClkPre_ByteClk
TLPX + TCLK-PREPARE + TCLK-ZERO + TCLK-PRE in byte clock. Set how long the con-
troller will wait after enabling clock lane for HS before enabling data lanes for HS.

uint8_t tClkPost_ByteClk
TCLK-POST + T_CLK-TRAIL in byte clock. Set how long the controller will wait before
putting clock lane into LP mode after data lanes detected in stop state.

uint8_t tHsExit_ByteClk
THS-EXIT in byte clock. Set how long the controller will wait after the clock lane has
been put into LP mode before enabling clock lane for HS again.

uint32_t tWakeup_EscClk
Number of clk_esc clock periods to keep a clock or data lane in Mark-1 state after exit-
ing ULPS.

942 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t tHsPrepare_HalfEscClk
THS-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3, 4, 5.

uint8_t tClkPrepare_HalfEscClk
TCLK-PREPARE in clk_esc/2. Set how long to drive the LP-00 state before HS transmis-
sions, available values are 2, 3.

uint8_t tHsZero_ByteClk
THS-ZERO in clk_byte. Set how long that controller drives data lane HS-0 state before
transmit the Sync sequence. Available values are 6, 7, …, 37.

uint8_t tClkZero_ByteClk
TCLK-ZERO in clk_byte. Set how long that controller drives clock lane HS-0 state before
transmit the Sync sequence. Available values are 3, 4, …, 66.

uint8_t tHsTrail_ByteClk
THS-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data bit of HS transmission burst. Available values are 0, 1, …, 15.

uint8_t tClkTrail_ByteClk
TCLK-TRAIL + 4*UI in clk_byte. Set the time of the flipped differential state after last
payload data bit of HS transmission burst. Available values are 0, 1, …, 15.

struct _dsi_transfer
#include <fsl_mipi_dsi.h> Structure for the data transfer.

Public Members

uint8_t virtualChannel
Virtual channel.

dsi_tx_data_type_t txDataType
TX data type.

uint8_t flags
Flags to control the transfer, see _dsi_transfer_flags.

const uint8_t *txData
The TX data buffer.

uint8_t *rxData
The TX data buffer.

uint16_t txDataSize
Size of the TX data.

uint16_t rxDataSize
Size of the RX data.

bool sendDcsCmd
If set to true, the DCS command is specified by dcsCmd, otherwise the DCS command
is included in the txData.

uint8_t dcsCmd
The DCS command to send, only valid when sendDcsCmd is true.

struct _dsi_handle
#include <fsl_mipi_dsi.h> MIPI DSI transfer handle structure.

2.83. MIPI DSI Driver 943



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

volatile bool isBusy
MIPI DSI is busy with APB data transfer.

dsi_transfer_t xfer
Transfer information.

dsi_callback_t callback
DSI callback

void *userData
Callback parameter

const MIPI_DSI_Type *dsi
Pointer to MIPI DSI peripheral.

2.84 MIPI_DSI: MIPI DSI Host Controller

2.85 MU: Messaging Unit

void MU_Init(MU_Type *base)
Initializes the MU module.

This function enables the MU clock only.

Parameters
• base – MU peripheral base address.

void MU_Deinit(MU_Type *base)
De-initializes the MU module.

This function disables the MU clock only.

Parameters
• base – MU peripheral base address.

static inline void MU_SendMsgNonBlocking(MU_Type *base, uint32_t regIndex, uint32_t msg)
Writes a message to the TX register.

This function writes a message to the specific TX register. It does not check whether the TX
register is empty or not. The upper layer should make sure the TX register is empty before
calling this function. This function can be used in ISR for better performance.

while (!(kMU_Tx0EmptyFlag & MU_GetStatusFlags(base))) { } Wait for TX0 register empty.
MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG_VAL); Write message to the TX0 register.

Parameters
• base – MU peripheral base address.

• regIndex – TX register index, see mu_msg_reg_index_t.

• msg – Message to send.

status_tMU_SendMsg(MU_Type *base, uint32_t regIndex, uint32_t msg)
Blocks to send a message.

This function waits until the TX register is empty and sends the message. If
MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and returns kStatus_Timeout.

944 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – MU peripheral base address.

• regIndex – MU message register, see mu_msg_reg_index_t.

• msg – Message to send.

Return values
• kStatus_Success – Message sent successfully.

• kStatus_Timeout – Timeout occurred while waiting for TX register to be
empty.

Returns
status_t

static inline uint32_t MU_ReceiveMsgNonBlocking(MU_Type *base, uint32_t regIndex)
Reads a message from the RX register.

This function reads a message from the specific RX register. It does not check whether the
RX register is full or not. The upper layer should make sure the RX register is full before
calling this function. This function can be used in ISR for better performance.

uint32_t msg;
while (!(kMU_Rx0FullFlag & MU_GetStatusFlags(base)))
{
} Wait for the RX0 register full.

msg = MU_ReceiveMsgNonBlocking(base, kMU_MsgReg0); Read message from RX0 register.

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

Returns
The received message.

status_tMU_ReceiveMsgTimeout(MU_Type *base, uint32_t regIndex, uint32_t *readValue)
Blocks to receive a message with timeout protection.

This function waits until the RX register is full and receives the message. If
MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the speci-
fied number of polling iterations and return kStatus_Timeout.

This function provides the same blocking behavior as MU_ReceiveMsg() but with additional
timeout protection to prevent system hangs if the other core becomes unresponsive or if
hardware issues occur.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is that this function includes timeout protection while MU_ReceiveMsg() waits
indefinitely.

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

• readValue – Pointer to store the received message.

Return values

2.85. MU: Messaging Unit 945



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Success – Message received successfully.

• kStatus_InvalidArgument – Invalid readValue pointer.

• kStatus_Timeout – Timeout occurred while waiting for RX register to be
full.

Returns
status_t

uint32_t MU_ReceiveMsg(MU_Type *base, uint32_t regIndex)
Blocks to receive a message (infinite wait, no timeout protection).

This function waits until the RX register is full and receives the message. This function will
wait indefinitely until a message is received.

Note: Both MU_ReceiveMsg() and MU_ReceiveMsgTimeout() are blocking functions. The
difference is that MU_ReceiveMsgTimeout() includes timeout protection while this function
waits indefinitely.

Warning: This function does not include timeout protection and may cause system
hangs if the other core becomes unresponsive. For applications requiring timeout pro-
tection, use MU_ReceiveMsgTimeout() instead.

Parameters
• base – MU peripheral base address.

• regIndex – RX register index, see mu_msg_reg_index_t.

Returns
The received message.

static inline void MU_SetFlagsNonBlocking(MU_Type *base, uint32_t flags)
Sets the 3-bit MU flags reflect on the other MU side.

This function sets the 3-bit MU flags directly. Every time the 3-bit MU flags are changed,
the status flag kMU_FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed.
The upper layer should make sure the status flag kMU_FlagsUpdatingFlag is cleared before
calling this function.

while (kMU_FlagsUpdatingFlag & MU_GetStatusFlags(base))
{
} Wait for previous MU flags updating.

MU_SetFlagsNonBlocking(base, 0U); Set the mU flags.

Parameters
• base – MU peripheral base address.

• flags – The 3-bit MU flags to set.

status_tMU_SetFlags(MU_Type *base, uint32_t flags)
Blocks setting the 3-bit MU flags reflect on the other MU side.

This function blocks setting the 3-bit MU flags. Every time the 3-bit MU flags are changed,
the status flag kMU_FlagsUpdatingFlag asserts indicating the 3-bit MU flags are updating to
the other side. After the 3-bit MU flags are updated, the status flag kMU_FlagsUpdatingFlag
is cleared by hardware. During the flags updating period, the flags cannot be changed. This

946 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

function waits for the MU status flag kMU_FlagsUpdatingFlag cleared and sets the 3-bit MU
flags.

If MU_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the spec-
ified number of polling iterations and return kStatus_Timeout.

Parameters
• base – MU peripheral base address.

• flags – The 3-bit MU flags to set.

Return values
• kStatus_Success – Flags were set successfully.

• kStatus_Timeout – Timeout occurred while waiting for flags to update.

Returns
status_t

static inline uint32_t MU_GetFlags(MU_Type *base)
Gets the current value of the 3-bit MU flags set by the other side.

This function gets the current 3-bit MU flags on the current side.

Parameters
• base – MU peripheral base address.

Returns
flags Current value of the 3-bit flags.

static inline uint32_t MU_GetStatusFlags(MU_Type *base)
Gets the MU status flags.

This function returns the bit mask of the MU status flags. See _mu_status_flags.

uint32_t flags;
flags = MU_GetStatusFlags(base); Get all status flags.
if (kMU_Tx0EmptyFlag & flags)
{

The TX0 register is empty. Message can be sent.
MU_SendMsgNonBlocking(base, kMU_MsgReg0, MSG0_VAL);

}
if (kMU_Tx1EmptyFlag & flags)
{

The TX1 register is empty. Message can be sent.
MU_SendMsgNonBlocking(base, kMU_MsgReg1, MSG1_VAL);

}

Parameters
• base – MU peripheral base address.

Returns
Bit mask of the MU status flags, see _mu_status_flags.

static inline uint32_t MU_GetRxStatusFlags(MU_Type *base)
Return the RX status flags.

This function return the RX status flags. Note: RFn bits of SR[27-24](mu status register) are
mapped in reverse numerical order: RF0 -> SR[27] RF1 -> SR[26] RF2 -> SR[25] RF3 -> SR[24]

status_reg = MU_GetRxStatusFlags(base);

Parameters

2.85. MU: Messaging Unit 947



MCUXpresso SDK Documentation, Release 25.12.00

• base – MU peripheral base address.

Returns
MU RX status

static inline uint32_t MU_GetInterruptsPending(MU_Type *base)
Gets the MU IRQ pending status of enabled interrupts.

This function returns the bit mask of the pending MU IRQs of enabled inter-
rupts. Only these flags are checked. kMU_Tx0EmptyFlag kMU_Tx1EmptyFlag
kMU_Tx2EmptyFlag kMU_Tx3EmptyFlag kMU_Rx0FullFlag kMU_Rx1FullFlag
kMU_Rx2FullFlag kMU_Rx3FullFlag kMU_GenInt0Flag kMU_GenInt1Flag
kMU_GenInt2Flag kMU_GenInt3Flag

Parameters
• base – MU peripheral base address.

Returns
Bit mask of the MU IRQs pending.

static inline void MU_ClearStatusFlags(MU_Type *base, uint32_t mask)
Clears the specific MU status flags.

This function clears the specific MU status flags. The flags to clear should be passed in as
bit mask. See _mu_status_flags.

Clear general interrupt 0 and general interrupt 1 pending flags.
MU_ClearStatusFlags(base, kMU_GenInt0Flag | kMU_GenInt1Flag);

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the MU status flags. See _mu_status_flags. The following
flags are cleared by hardware, this function could not clear them.

– kMU_Tx0EmptyFlag

– kMU_Tx1EmptyFlag

– kMU_Tx2EmptyFlag

– kMU_Tx3EmptyFlag

– kMU_Rx0FullFlag

– kMU_Rx1FullFlag

– kMU_Rx2FullFlag

– kMU_Rx3FullFlag

– kMU_EventPendingFlag

– kMU_FlagsUpdatingFlag

– kMU_OtherSideInResetFlag

static inline void MU_EnableInterrupts(MU_Type *base, uint32_t mask)
Enables the specific MU interrupts.

This function enables the specific MU interrupts. The interrupts to enable should be passed
in as bit mask. See _mu_interrupt_enable.

Enable general interrupt 0 and TX0 empty interrupt.
MU_EnableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);

Parameters

948 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – MU peripheral base address.

• mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.

static inline void MU_DisableInterrupts(MU_Type *base, uint32_t mask)
Disables the specific MU interrupts.

This function disables the specific MU interrupts. The interrupts to disable should be passed
in as bit mask. See _mu_interrupt_enable.

Disable general interrupt 0 and TX0 empty interrupt.
MU_DisableInterrupts(base, kMU_GenInt0InterruptEnable | kMU_Tx0EmptyInterruptEnable);

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the MU interrupts. See _mu_interrupt_enable.

status_tMU_TriggerInterrupts(MU_Type *base, uint32_t mask)
Triggers interrupts to the other core.

This function triggers the specific interrupts to the other core. The interrupts to trigger are
passed in as bit mask. See _mu_interrupt_trigger. The MU should not trigger an interrupt to
the other core when the previous interrupt has not been processed by the other core. This
function checks whether the previous interrupts have been processed. If not, it returns an
error.

if (kStatus_Success != MU_TriggerInterrupts(base, kMU_GenInt0InterruptTrigger | kMU_
↪→GenInt2InterruptTrigger))
{

Previous general purpose interrupt 0 or general purpose interrupt 2
has not been processed by the other core.

}

Parameters
• base – MU peripheral base address.

• mask – Bit mask of the interrupts to trigger. See _mu_interrupt_trigger.

Return values
• kStatus_Success – Interrupts have been triggered successfully.

• kStatus_Fail – Previous interrupts have not been accepted.

static inline void MU_MaskHardwareReset(MU_Type *base, bool mask)
Mask hardware reset by the other core.

The other core could call MU_HardwareResetOtherCore() to reset current core. To mask
the reset, call this function and pass in true.

Parameters
• base – MU peripheral base address.

• mask – Pass true to mask the hardware reset, pass false to unmask it.

FSL_MU_DRIVER_VERSION
MU driver version.

enum _mu_status_flags
MU status flags.

Values:

2.85. MU: Messaging Unit 949



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMU_Tx0EmptyFlag
TX0 empty.

enumerator kMU_Tx1EmptyFlag
TX1 empty.

enumerator kMU_Tx2EmptyFlag
TX2 empty.

enumerator kMU_Tx3EmptyFlag
TX3 empty.

enumerator kMU_Rx0FullFlag
RX0 full.

enumerator kMU_Rx1FullFlag
RX1 full.

enumerator kMU_Rx2FullFlag
RX2 full.

enumerator kMU_Rx3FullFlag
RX3 full.

enumerator kMU_GenInt0Flag
General purpose interrupt 0 pending.

enumerator kMU_GenInt1Flag
General purpose interrupt 1 pending.

enumerator kMU_GenInt2Flag
General purpose interrupt 2 pending.

enumerator kMU_GenInt3Flag
General purpose interrupt 3 pending.

enumerator kMU_EventPendingFlag
MU event pending.

enumerator kMU_FlagsUpdatingFlag
MU flags update is on-going.

enumerator kMU_ResetAssertInterruptFlag
The other core reset assert interrupt pending.

enumerator kMU_ResetDeassertInterruptFlag
The other core reset de-assert interrupt pending.

enumerator kMU_OtherSideInResetFlag
The other side is in reset.

enumerator kMU_MuResetInterruptFlag
The other side initializes MU reset.

enumerator kMU_HardwareResetInterruptFlag
Current side has been hardware reset by the other side.

enum _mu_interrupt_enable
MU interrupt source to enable.

Values:

950 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMU_Tx0EmptyInterruptEnable
TX0 empty.

enumerator kMU_Tx1EmptyInterruptEnable
TX1 empty.

enumerator kMU_Tx2EmptyInterruptEnable
TX2 empty.

enumerator kMU_Tx3EmptyInterruptEnable
TX3 empty.

enumerator kMU_Rx0FullInterruptEnable
RX0 full.

enumerator kMU_Rx1FullInterruptEnable
RX1 full.

enumerator kMU_Rx2FullInterruptEnable
RX2 full.

enumerator kMU_Rx3FullInterruptEnable
RX3 full.

enumerator kMU_GenInt0InterruptEnable
General purpose interrupt 0.

enumerator kMU_GenInt1InterruptEnable
General purpose interrupt 1.

enumerator kMU_GenInt2InterruptEnable
General purpose interrupt 2.

enumerator kMU_GenInt3InterruptEnable
General purpose interrupt 3.

enumerator kMU_ResetAssertInterruptEnable
The other core reset assert interrupt.

enumerator kMU_ResetDeassertInterruptEnable
The other core reset de-assert interrupt.

enumerator kMU_MuResetInterruptEnable
The other side initializes MU reset. The interrupt is ORed with the general purpose
interrupt 3. The general purpose interrupt 3 is issued when the other side set the MU
reset and this interrupt is enabled.

enumerator kMU_HardwareResetInterruptEnable
Current side has been hardware reset by the other side.

enum _mu_interrupt_trigger
MU interrupt that could be triggered to the other core.

Values:

enumerator kMU_GenInt0InterruptTrigger
General purpose interrupt 0.

enumerator kMU_GenInt1InterruptTrigger
General purpose interrupt 1.

enumerator kMU_GenInt2InterruptTrigger
General purpose interrupt 2.

2.85. MU: Messaging Unit 951



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMU_GenInt3InterruptTrigger
General purpose interrupt 3.

enum _mu_msg_reg_index
MU message register.

Values:

enumerator kMU_MsgReg0

enumerator kMU_MsgReg1

enumerator kMU_MsgReg2

enumerator kMU_MsgReg3

typedef enum _mu_msg_reg_index mu_msg_reg_index_t
MU message register.

MU_CR_NMI_MASK

MU_BUSY_POLL_COUNT
Maximum polling iterations for MU waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the MU
code before timing out and returning an error.

It applies to all waiting loops in MU driver, such as waiting for TX register to be empty or
waiting for RX register to be full.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if a core becomes unresponsive.

MU_GET_CORE_FLAG(flags)

MU_GET_STAT_FLAG(flags)

MU_GET_TX_FLAG(flags)

MU_GET_RX_FLAG(flags)

MU_GET_GI_FLAG(flags)

2.86 Nic301

enum _nic_reg
Values:

enumerator kNIC_REG_READ_QOS_GC355

enumerator kNIC_REG_READ_QOS_PXP

enumerator kNIC_REG_READ_QOS_LCDIF

enumerator kNIC_REG_READ_QOS_LCDIFV2

enumerator kNIC_REG_READ_QOS_CSI

enumerator kNIC_REG_READ_QOS_CAAM

enumerator kNIC_REG_READ_QOS_ENET1G_RX

952 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kNIC_REG_READ_QOS_ENET1G_TX

enumerator kNIC_REG_READ_QOS_ENET

enumerator kNIC_REG_READ_QOS_USBO2

enumerator kNIC_REG_READ_QOS_USDHC1

enumerator kNIC_REG_READ_QOS_USDHC2

enumerator kNIC_REG_READ_QOS_ENET_QOS

enumerator kNIC_REG_READ_QOS_CM7

enumerator kNIC_REG_READ_QOS_DMA

enumerator kNIC_REG_READ_QOS_IEE

enumerator kNIC_REG_WRITE_QOS_GC355

enumerator kNIC_REG_WRITE_QOS_PXP

enumerator kNIC_REG_WRITE_QOS_LCDIF

enumerator kNIC_REG_WRITE_QOS_LCDIFV2

enumerator kNIC_REG_WRITE_QOS_CSI

enumerator kNIC_REG_WRITE_QOS_CAAM

enumerator kNIC_REG_WRITE_QOS_ENET1G_RX

enumerator kNIC_REG_WRITE_QOS_ENET1G_TX

enumerator kNIC_REG_WRITE_QOS_ENET

enumerator kNIC_REG_WRITE_QOS_USBO2

enumerator kNIC_REG_WRITE_QOS_USDHC1

enumerator kNIC_REG_WRITE_QOS_USDHC2

enumerator kNIC_REG_WRITE_QOS_ENET_QOS

enumerator kNIC_REG_WRITE_QOS_CM7

enumerator kNIC_REG_WRITE_QOS_DMA

enumerator kNIC_REG_WRITE_QOS_IEE

enumerator kNIC_REG_FN_MOD_GC355

enumerator kNIC_REG_FN_MOD_PXP

enumerator kNIC_REG_FN_MOD_LCDIF

enumerator kNIC_REG_FN_MOD_LCDIFV2

enumerator kNIC_REG_FN_MOD_CSI

enumerator kNIC_REG_FN_MOD_CAAM

enumerator kNIC_REG_FN_MOD_ENET1G_RX

enumerator kNIC_REG_FN_MOD_ENET1G_TX

2.86. Nic301 953



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kNIC_REG_FN_MOD_ENET

enumerator kNIC_REG_FN_MOD_USBO2

enumerator kNIC_REG_FN_MOD_USDHC1

enumerator kNIC_REG_FN_MOD_USDHC2

enumerator kNIC_REG_FN_MOD_ENET_QOS

enumerator kNIC_REG_FN_MOD_CM7

enumerator kNIC_REG_FN_MOD_DMA

enumerator kNIC_REG_FN_MOD_IEE

enumerator kNIC_REG_FN_MOD_AHB_ENET

enumerator kNIC_REG_FN_MOD_AHB_DMA

enumerator kNIC_REG_WR_TIDEMARK_LPSRMIX_M

enum _nic_fn_mod_ahb
Values:

enumerator kNIC_FN_MOD_AHB_RD_INCR_OVERRIDE

enumerator kNIC_FN_MOD_AHB_WR_INCR_OVERRIDE

enumerator kNIC_FN_MOD_AHB_LOCK_OVERRIDE

enum _nic_fn_mod
Values:

enumerator kNIC_FN_MOD_ReadIssue

enumerator kNIC_FN_MOD_WriteIssue

enum _nic_qos
Values:

enumerator kNIC_QOS_0

enumerator kNIC_QOS_1

enumerator kNIC_QOS_2

enumerator kNIC_QOS_3

enumerator kNIC_QOS_4

enumerator kNIC_QOS_5

enumerator kNIC_QOS_6

enumerator kNIC_QOS_7

enumerator kNIC_QOS_8

enumerator kNIC_QOS_9

enumerator kNIC_QOS_10

enumerator kNIC_QOS_11

954 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kNIC_QOS_12

enumerator kNIC_QOS_13

enumerator kNIC_QOS_14

enumerator kNIC_QOS_15

typedef enum _nic_reg nic_reg_t

typedef enum _nic_fn_mod_ahb nic_fn_mod_ahb_t

typedef enum _nic_fn_mod nic_fn_mod_t

typedef enum _nic_qos nic_qos_t

static inline void NIC_SetReadQos(nic_reg_t base, nic_qos_t value)
Set read_qos Value.

Parameters
• base – Base address of GPV address

• value – Target value (0 - 15)

static inline nic_qos_t NIC_GetReadQos(nic_reg_t base)
Get read_qos Value.

Parameters
• base – Base address of GPV address

Returns
Current value configured

static inline void NIC_SetWriteQos(nic_reg_t base, nic_qos_t value)
Set write_qos Value.

Parameters
• base – Base address of GPV address

• value – Target value (0 - 15)

static inline nic_qos_t NIC_GetWriteQos(nic_reg_t base)
Get write_qos Value.

Parameters
• base – Base address of GPV address

Returns
Current value configured

static inline void NIC_SetFnModAhb(nic_reg_t base, nic_fn_mod_ahb_t value)
Set fn_mod_ahb Value.

Parameters
• base – Base address of GPV address

• value – Target value

static inline nic_fn_mod_ahb_t NIC_GetFnModAhb(nic_reg_t base)
Get fn_mod_ahb Value.

Parameters
• base – Base address of GPV address

2.86. Nic301 955



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Current value configured

static inline void NIC_SetWrTideMark(nic_reg_t base, uint8_t value)
Set wr_tidemark Value.

Parameters
• base – Base address of GPV address

• value – Target value (0 - 15)

static inline uint8_t NIC_GetWrTideMark(nic_reg_t base)
Get wr_tidemark Value.

Parameters
• base – Base address of GPV address

Returns
Current value configured

static inline void NIC_SetFnMod(nic_reg_t base, nic_fn_mod_t value)
Set fn_mod Value.

Parameters
• base – Base address of GPV address

• value – Target value

static inline nic_fn_mod_t NIC_GetFnMod(nic_reg_t base)
Get fn_mod Value.

Parameters
• base – Base address of GPV address

Returns
Current value configured

FSL_NIC301_DRIVER_VERSION
NIC301 driver version 2.0.1.

GPV0_BASE

GPV1_BASE

GPV4_BASE

NIC_FN_MOD_AHB_OFFSET

NIC_WR_TIDEMARK_OFFSET

NIC_READ_QOS_OFFSET

NIC_WRITE_QOS_OFFSET

NIC_FN_MOD_OFFSET

NIC_GC355_BASE

NIC_PXP_BASE

NIC_LCDIF_BASE

NIC_LCDIFV2_BASE

956 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

NIC_CSI_BASE

NIC_CAAM_BASE

NIC_ENET1G_RX_BASE

NIC_ENET1G_TX_BASE

NIC_ENET_BASE

NIC_USBO2_BASE

NIC_USDHC1_BASE

NIC_USDHC2_BASE

NIC_ENET_QOS_BASE

NIC_CM7_BASE

NIC_LPSRMIX_M_BASE

NIC_DMA_BASE

NIC_IEE_BASE

NIC_QOS_MASK

NIC_WR_TIDEMARK_MASK

NIC_FN_MOD_AHB_MASK

NIC_FN_MOD_MASK

FSL_COMPONENT_ID

2.87 OCOTP: On Chip One-Time Programmable controller.

FSL_OCOTP_DRIVER_VERSION
OCOTP driver version.

_ocotp_status Error codes for the OCOTP driver.

Values:

enumerator kStatus_OCOTP_AccessError
eFuse and shadow register access error.

enumerator kStatus_OCOTP_CrcFail
CRC check failed.

enumerator kStatus_OCOTP_ReloadError
Error happens during reload shadow register.

enumerator kStatus_OCOTP_ProgramFail
Fuse programming failed.

enumerator kStatus_OCOTP_Locked
Fuse is locked and cannot be programmed.

2.87. OCOTP: On Chip One-Time Programmable controller. 957



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _ocotp_timing ocotp_timing_t
OCOTP timing structure. Note that, these value are used for calcalating the read/write tim-
ings. And the values should statisfy below rules:

Tsp_rd=(WAIT+1)/ipg_clk_freq should be >= 150ns; Tsp_pgm=(RELAX+1)/ipg_clk_freq
should be >= 100ns; Trd = ((STROBE_READ+1)- 2*(RELAX_READ+1)) /ipg_clk_freq, The Trd
is required to be larger than 40 ns. Tpgm = ((STROBE_PROG+1)- 2*(RELAX_PROG+1))
/ipg_clk_freq; The Tpgm should be configured within the range of 9000 ns < Tpgm < 11000
ns;

void OCOTP_Init(OCOTP_Type *base, uint32_t srcClock_Hz)
Initializes OCOTP controller.

Parameters
• base – OCOTP peripheral base address.

• srcClock_Hz – source clock frequency in unit of Hz. When the macro
FSL_FEATURE_OCOTP_HAS_TIMING_CTRL is defined as 0, this parameter
is not used, application could pass in 0 in this case.

void OCOTP_Deinit(OCOTP_Type *base)
De-initializes OCOTP controller.

Return values
kStatus_Success – upon successful execution, error status otherwise.

static inline bool OCOTP_CheckBusyStatus(OCOTP_Type *base)
Checking the BUSY bit in CTRL register. Checking this BUSY bit will help confirm if the
OCOTP controller is ready for access.

Parameters
• base – OCOTP peripheral base address.

Return values
true – for bit set and false for cleared.

static inline bool OCOTP_CheckErrorStatus(OCOTP_Type *base)
Checking the ERROR bit in CTRL register.

Parameters
• base – OCOTP peripheral base address.

Return values
true – for bit set and false for cleared.

static inline void OCOTP_ClearErrorStatus(OCOTP_Type *base)
Clear the error bit if this bit is set.

Parameters
• base – OCOTP peripheral base address.

status_t OCOTP_ReloadShadowRegister(OCOTP_Type *base)
Reload the shadow register. This function will help reload the shadow register without
reseting the OCOTP module. Please make sure the OCOTP has been initialized before calling
this API.

Parameters
• base – OCOTP peripheral base addess.

Return values
• kStatus_Success – Reload success.

958 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_OCOTP_ReloadError – Reload failed.

uint32_t OCOTP_ReadFuseShadowRegister(OCOTP_Type *base, uint32_t address)
Read the fuse shadow register with the fuse addess.

Deprecated:
Use OCOTP_ReadFuseShadowRegisterExt instead of this function.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be read from.

Returns
The read out data.

status_t OCOTP_ReadFuseShadowRegisterExt(OCOTP_Type *base, uint32_t address, uint32_t
*data, uint8_t fuseWords)

Read the fuse shadow register from the fuse addess.

This function reads fuse from address, how many words to read is specified by the parameter
fuseWords. This function could read at most OCOTP_READ_FUSE_DATA_COUNT fuse word
one time.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be read from.

• data – Data array to save the readout fuse value.

• fuseWords – How many words to read.

Return values
• kStatus_Success – Read success.

• kStatus_Fail – Error occurs during read.

status_t OCOTP_WriteFuseShadowRegister(OCOTP_Type *base, uint32_t address, uint32_t data)
Write the fuse shadow register with the fuse addess and data. Please make sure the wrtie
address is not locked while calling this API.

Parameters
• base – OCOTP peripheral base address.

• address – the fuse address to be written.

• data – the value will be writen to fuse address.

Return values
write – status, kStatus_Success for success and kStatus_Fail for failed.

status_t OCOTP_WriteFuseShadowRegisterWithLock(OCOTP_Type *base, uint32_t address,
uint32_t data, bool lock)

Write the fuse shadow register and lock it.

Please make sure the wrtie address is not locked while calling this API.

Some OCOTP controller supports ECC mode and redundancy mode (see reference manan-
ual for more details). OCOTP controller will auto select ECC or redundancy mode to pro-
gram the fuse word according to fuse map definition. In ECC mode, the 32 fuse bits in one
word can only be written once. In redundancy mode, the word can be written more than
once as long as they are different fuse bits. Set parameter lock as true to force use ECC mode.

2.87. OCOTP: On Chip One-Time Programmable controller. 959



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – OCOTP peripheral base address.

• address – The fuse address to be written.

• data – The value will be writen to fuse address.

• lock – Lock or unlock write fuse shadow register operation.

Return values
• kStatus_Success – Program and reload success.

• kStatus_OCOTP_Locked – The eFuse word is locked and cannot be pro-
grammed.

• kStatus_OCOTP_ProgramFail – eFuse word programming failed.

• kStatus_OCOTP_ReloadError – eFuse word programming success, but er-
ror happens during reload the values.

• kStatus_OCOTP_AccessError – Cannot access eFuse word.

static inline uint32_t OCOTP_GetVersion(OCOTP_Type *base)
Get the OCOTP controller version from the register.

Parameters
• base – OCOTP peripheral base address.

Return values
return – the version value.

OCOTP_READ_FUSE_DATA_COUNT

struct _ocotp_timing
#include <fsl_ocotp.h> OCOTP timing structure. Note that, these value are used for calcalat-
ing the read/write timings. And the values should statisfy below rules:

Tsp_rd=(WAIT+1)/ipg_clk_freq should be >= 150ns; Tsp_pgm=(RELAX+1)/ipg_clk_freq
should be >= 100ns; Trd = ((STROBE_READ+1)- 2*(RELAX_READ+1)) /ipg_clk_freq, The Trd
is required to be larger than 40 ns. Tpgm = ((STROBE_PROG+1)- 2*(RELAX_PROG+1))
/ipg_clk_freq; The Tpgm should be configured within the range of 9000 ns < Tpgm < 11000
ns;

Public Members

uint32_t wait
Wait time value to fill in the TIMING register.

uint32_t relax
Relax time value to fill in the TIMING register.

uint32_t strobe_prog
Storbe program time value to fill in the TIMING register.

uint32_t strobe_read
Storbe read time value to fill in the TIMING register.

2.88 OTFAD: On The Fly AES-128 Decryption Driver

960 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void OTFAD_GetDefaultConfig(otfad_config_t *config)
OTFAD module initialization function.

Parameters
• config – OTFAD configuration.

void OTFAD_Init(OTFAD_Type *base, const otfad_config_t *config)
OTFAD module initialization function.

Parameters
• base – OTFAD base address.

• config – OTFAD configuration.

void OTFAD_Deinit(OTFAD_Type *base)
Deinitializes the OTFAD.

static inline uint32_t OTFAD_GetOperateMode(OTFAD_Type *base)
OTFAD module get operate mode.

Parameters
• base – OTFAD base address.

static inline uint32_t OTFAD_GetStatus(OTFAD_Type *base)
OTFAD module get status.

Parameters
• base – OTFAD base address.

status_t OTFAD_SetEncryptionConfig(OTFAD_Type *base, const otfad_encryption_config_t
*config)

OTFAD module set encryption configuration.

Note: if enable keyblob process, the first 256 bytes external memory is use for keyblob data,
so this region shouldn’t be in OTFAD region.

Parameters
• base – OTFAD base address.

• config – encryption configuration.

status_t OTFAD_GetEncryptionConfig(OTFAD_Type *base, otfad_encryption_config_t *config)
OTFAD module get encryption configuration.

Note: if enable keyblob process, the first 256 bytes external memory is use for keyblob data,
so this region shouldn’t be in OTFAD region.

Parameters
• base – OTFAD base address.

• config – encryption configuration.

status_t OTFAD_HitDetermination(OTFAD_Type *base, uint32_t address, uint8_t *contextIndex)
OTFAD module do hit determination.

Parameters
• base – OTFAD base address.

• address – the physical address space assigned to the QuadSPI(FlexSPI) mod-
ule.

2.88. OTFAD: On The Fly AES-128 Decryption Driver 961



MCUXpresso SDK Documentation, Release 25.12.00

• contextIndex – hitted context region index.

Returns
status, such as kStatus_Success or kStatus_OTFAD_ResRegAccessMode.

FSL_OTFAD_DRIVER_VERSION
Driver version.

Status codes for the OTFAD driver.

Values:

enumerator kStatus_OTFAD_ResRegAccessMode
Restricted register mode

enumerator kStatus_OTFAD_AddressError
End address less than start address

enumerator kStatus_OTFAD_RegionOverlap
the OTFAD does not support any form of memory region overlap, for system accesses
that hit in multiple contexts or no contexts, the fetched data is simply bypassed

enumerator kStatus_OTFAD_RegionMiss
For accesses that hit in a single context, but not the selected one

OTFAD context type.

Values:

enumerator kOTFAD_Context_0
context 0

enumerator kOTFAD_Context_1
context 1

enumerator kOTFAD_Context_2
context 2

enumerator kOTFAD_Context_3
context 3

OTFAD operate mode.

Values:

enumerator kOTFAD_NRM
Normal Mode

enumerator kOTFAD_SVM
Security Violation Mode

enumerator kOTFAD_LDM
Logically Disabled Mode

typedef struct _otfad_encryption_config otfad_encryption_config_t
OTFAD encryption configuration structure.

typedef struct _otfad_config otfad_config_t
OTFAD configuration structure.

struct _otfad_encryption_config
#include <fsl_otfad.h> OTFAD encryption configuration structure.

962 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool valid
The context is valid or not

bool AESdecryption
AES decryption enable

uint8_t readOnly
read write attribute for the entire set of context registers

uint8_t contextIndex
OTFAD context index

uint32_t startAddr
Start address

uint32_t endAddr
End address

uint32_t key[4]
Encryption key

uint32_t counter[2]
Encryption counter

struct _otfad_config
#include <fsl_otfad.h> OTFAD configuration structure.

Public Members

bool enableIntRequest
Interrupt request enable

bool forceError
Forces the OTFAD’s key blob error flag (SR[KBERR]) to be asserted

bool forceSVM
Force entry into SVM after a write

bool forceLDM
Force entry into LDM after a write

bool keyBlobScramble
Key blob KEK scrambling

bool keyBlobProcess
Key blob processing

bool startKeyBlobProcessing
key blob processing is initiated

bool restrictedRegAccess
Restricted register access enable

bool enableOTFAD
OTFAD has decryption enabled

2.88. OTFAD: On The Fly AES-128 Decryption Driver 963



MCUXpresso SDK Documentation, Release 25.12.00

2.89 PDM: Microphone Interface

2.90 PDM Driver

void PDM_Init(PDM_Type *base, const pdm_config_t *config)
Initializes the PDM peripheral.

Ungates the PDM clock, resets the module, and configures PDM with a configuration
structure. The configuration structure can be custom filled or set with default values by
PDM_GetDefaultConfig().

Note: This API should be called at the beginning of the application to use the PDM driver.
Otherwise, accessing the PDM module can cause a hard fault because the clock is not en-
abled.

Parameters
• base – PDM base pointer

• config – PDM configuration structure.

void PDM_Deinit(PDM_Type *base)
De-initializes the PDM peripheral.

This API gates the PDM clock. The PDM module can’t operate unless PDM_Init is called to
enable the clock.

Parameters
• base – PDM base pointer

static inline void PDM_Reset(PDM_Type *base)
Resets the PDM module.

Parameters
• base – PDM base pointer

static inline void PDM_Enable(PDM_Type *base, bool enable)
Enables/disables PDM interface.

Parameters
• base – PDM base pointer

• enable – True means PDM interface is enabled, false means PDM interface
is disabled.

static inline void PDM_EnableDebugMode(PDM_Type *base, bool enable)
Enables/disables debug mode for PDM. The PDM interface cannot enter debug mode once
in Disable/Low Leakage or Low Power mode.

Parameters
• base – PDM base pointer

• enable – True means PDM interface enter debug mode, false means PDM
interface in normal mode.

static inline void PDM_EnableInDebugMode(PDM_Type *base, bool enable)
Enables/disables PDM interface in debug mode.

Parameters

964 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – PDM base pointer

• enable – True means PDM interface is enabled debug mode, false means
PDM interface is disabled after after completing the current frame in de-
bug mode.

static inline void PDM_EnterLowLeakageMode(PDM_Type *base, bool enable)
Enables/disables PDM interface disable/Low Leakage mode.

Parameters
• base – PDM base pointer

• enable – True means PDM interface is in disable/low leakage mode, False
means PDM interface is in normal mode.

static inline void PDM_EnableChannel(PDM_Type *base, uint8_t channel, bool enable)
Enables/disables the PDM channel.

Parameters
• base – PDM base pointer

• channel – PDM channel number need to enable or disable.

• enable – True means enable PDM channel, false means disable.

void PDM_SetChannelConfig(PDM_Type *base, uint32_t channel, const pdm_channel_config_t
*config)

PDM one channel configurations.

Parameters
• base – PDM base pointer

• config – PDM channel configurations.

• channel – channel number. after completing the current frame in debug
mode.

status_t PDM_SetSampleRateConfig(PDM_Type *base, uint32_t sourceClock_HZ, uint32_t
sampleRate_HZ)

PDM set sample rate.

Note: This function is depend on the configuration of the PDM and PDM channel, so the
correct call sequence is

PDM_Init(base, pdmConfig)
PDM_SetChannelConfig(base, channel, &channelConfig)
PDM_SetSampleRateConfig(base, source, sampleRate)

Parameters
• base – PDM base pointer

• sourceClock_HZ – PDM source clock frequency.

• sampleRate_HZ – PDM sample rate.

status_t PDM_SetSampleRate(PDM_Type *base, uint32_t enableChannelMask,
pdm_df_quality_mode_t qualityMode, uint8_t osr, uint32_t clkDiv)

PDM set sample rate.

2.90. PDM Driver 965



MCUXpresso SDK Documentation, Release 25.12.00

Deprecated:
Do not use this function. It has been superceded by PDM_SetSampleRateConfig

Parameters
• base – PDM base pointer

• enableChannelMask – PDM channel enable mask.

• qualityMode – quality mode.

• osr – cic oversample rate

• clkDiv – clock divider

uint32_t PDM_GetInstance(PDM_Type *base)
Get the instance number for PDM.

Parameters
• base – PDM base pointer.

static inline uint32_t PDM_GetStatus(PDM_Type *base)
Gets the PDM internal status flag. Use the Status Mask in _pdm_internal_status to get the
status value needed.

Parameters
• base – PDM base pointer

Returns
PDM status flag value.

static inline uint32_t PDM_GetFifoStatus(PDM_Type *base)
Gets the PDM FIFO status flag. Use the Status Mask in _pdm_fifo_status to get the status
value needed.

Parameters
• base – PDM base pointer

Returns
FIFO status.

static inline uint32_t PDM_GetRangeStatus(PDM_Type *base)
Gets the PDM Range status flag. Use the Status Mask in _pdm_range_status to get the status
value needed.

Parameters
• base – PDM base pointer

Returns
output status.

static inline void PDM_ClearStatus(PDM_Type *base, uint32_t mask)
Clears the PDM Tx status.

Parameters
• base – PDM base pointer

• mask – State mask. It can be a combination of the status between
kPDM_StatusFrequencyLow and kPDM_StatusCh7FifoDataAvaliable.

static inline void PDM_ClearFIFOStatus(PDM_Type *base, uint32_t mask)
Clears the PDM Tx status.

Parameters

966 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – PDM base pointer

• mask – State mask.It can be a combination of the status in _pdm_fifo_status.

static inline void PDM_ClearRangeStatus(PDM_Type *base, uint32_t mask)
Clears the PDM range status.

Parameters
• base – PDM base pointer

• mask – State mask. It can be a combination of the status in
_pdm_range_status.

void PDM_EnableInterrupts(PDM_Type *base, uint32_t mask)
Enables the PDM interrupt requests.

Parameters
• base – PDM base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kPDM_ErrorInterruptEnable

– kPDM_FIFOInterruptEnable

static inline void PDM_DisableInterrupts(PDM_Type *base, uint32_t mask)
Disables the PDM interrupt requests.

Parameters
• base – PDM base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kPDM_ErrorInterruptEnable

– kPDM_FIFOInterruptEnable

static inline void PDM_EnableDMA(PDM_Type *base, bool enable)
Enables/disables the PDM DMA requests.

Parameters
• base – PDM base pointer

• enable – True means enable DMA, false means disable DMA.

static inline uint32_t PDM_GetDataRegisterAddress(PDM_Type *base, uint32_t channel)
Gets the PDM data register address.

This API is used to provide a transfer address for the PDM DMA transfer configuration.

Parameters
• base – PDM base pointer.

• channel – Which data channel used.

Returns
data register address.

void PDM_ReadFifo(PDM_Type *base, uint32_t startChannel, uint32_t channelNums, void
*buffer, size_t size, uint32_t dataWidth)

PDM read fifo.

2.90. PDM Driver 967



MCUXpresso SDK Documentation, Release 25.12.00

Note: : This function support 16 bit only for IP version that only supports 16bit.

Parameters
• base – PDM base pointer.

• startChannel – start channel number.

• channelNums – total enabled channelnums.

• buffer – received buffer address.

• size – number of samples to read.

• dataWidth – sample width.

void PDM_SetChannelGain(PDM_Type *base, uint32_t channel, pdm_df_output_gain_t gain)
Set the PDM channel gain.

Please note for different quality mode, the valid gain value is different, reference RM for
detail.

Parameters
• base – PDM base pointer.

• channel – PDM channel index.

• gain – channel gain, the register gain value range is 0 - 15.

void PDM_TransferCreateHandle(PDM_Type *base, pdm_handle_t *handle,
pdm_transfer_callback_t callback, void *userData)

Initializes the PDM handle.

This function initializes the handle for the PDM transactional APIs. Call this function once
to get the handle initialized.

Parameters
• base – PDM base pointer.

• handle – PDM handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function.

status_t PDM_TransferSetChannelConfig(PDM_Type *base, pdm_handle_t *handle, uint32_t
channel, const pdm_channel_config_t *config, uint32_t
format)

PDM set channel transfer config.

Parameters
• base – PDM base pointer.

• handle – PDM handle pointer.

• channel – PDM channel.

• config – channel config.

• format – data format, support data width configurations,_pdm_data_width.

Return values
kStatus_PDM_ChannelConfig_Failed – or kStatus_Success.

968 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t PDM_TransferReceiveNonBlocking(PDM_Type *base, pdm_handle_t *handle,
pdm_transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on PDM.

Note: This API returns immediately after the transfer initiates. Call the
PDM_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer is
finished. If the return status is not kStatus_PDM_Busy, the transfer is finished.

Parameters
• base – PDM base pointer

• handle – Pointer to the pdm_handle_t structure which stores the transfer
state.

• xfer – Pointer to the pdm_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_PDM_Busy – Previous receive still not finished.

void PDM_TransferAbortReceive(PDM_Type *base, pdm_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
• base – PDM base pointer

• handle – Pointer to the pdm_handle_t structure which stores the transfer
state.

void PDM_TransferHandleIRQ(PDM_Type *base, pdm_handle_t *handle)
Tx interrupt handler.

Parameters
• base – PDM base pointer.

• handle – Pointer to the pdm_handle_t structure.

FSL_PDM_DRIVER_VERSION
Version 2.9.3

PDM return status.

Values:

enumerator kStatus_PDM_Busy
PDM is busy.

enumerator kStatus_PDM_CLK_LOW
PDM clock frequency low

enumerator kStatus_PDM_FIFO_ERROR
PDM FIFO underrun or overflow

2.90. PDM Driver 969



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_PDM_QueueFull
PDM FIFO underrun or overflow

enumerator kStatus_PDM_Idle
PDM is idle

enumerator kStatus_PDM_Output_ERROR
PDM is output error

enumerator kStatus_PDM_ChannelConfig_Failed
PDM channel config failed

enum _pdm_interrupt_enable
The PDM interrupt enable flag.

Values:

enumerator kPDM_ErrorInterruptEnable
PDM channel error interrupt enable.

enumerator kPDM_FIFOInterruptEnable
PDM channel FIFO interrupt

enum _pdm_internal_status
The PDM status.

Values:

enumerator kPDM_StatusDfBusyFlag
Decimation filter is busy processing data

enumerator kPDM_StatusFrequencyLow
Mic app clock frequency not high enough

enumerator kPDM_StatusCh0FifoDataAvaliable
channel 0 fifo data reached watermark level

enumerator kPDM_StatusCh1FifoDataAvaliable
channel 1 fifo data reached watermark level

enumerator kPDM_StatusCh2FifoDataAvaliable
channel 2 fifo data reached watermark level

enumerator kPDM_StatusCh3FifoDataAvaliable
channel 3 fifo data reached watermark level

enum _pdm_channel_enable_mask
PDM channel enable mask.

Values:

enumerator kPDM_EnableChannel0
channgel 0 enable mask

enumerator kPDM_EnableChannel1
channgel 1 enable mask

enumerator kPDM_EnableChannel2
channgel 2 enable mask

enumerator kPDM_EnableChannel3
channgel 3 enable mask

enumerator kPDM_EnableChannelAll

970 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _pdm_fifo_status
The PDM fifo status.

Values:

enumerator kPDM_FifoStatusUnderflowCh0
channel0 fifo status underflow

enumerator kPDM_FifoStatusUnderflowCh1
channel1 fifo status underflow

enumerator kPDM_FifoStatusUnderflowCh2
channel2 fifo status underflow

enumerator kPDM_FifoStatusUnderflowCh3
channel3 fifo status underflow

enumerator kPDM_FifoStatusOverflowCh0
channel0 fifo status overflow

enumerator kPDM_FifoStatusOverflowCh1
channel1 fifo status overflow

enumerator kPDM_FifoStatusOverflowCh2
channel2 fifo status overflow

enumerator kPDM_FifoStatusOverflowCh3
channel3 fifo status overflow

enum _pdm_range_status
The PDM output status.

Values:

enumerator kPDM_RangeStatusUnderFlowCh0
channel0 range status underflow

enumerator kPDM_RangeStatusUnderFlowCh1
channel1 range status underflow

enumerator kPDM_RangeStatusUnderFlowCh2
channel2 range status underflow

enumerator kPDM_RangeStatusUnderFlowCh3
channel3 range status underflow

enumerator kPDM_RangeStatusOverFlowCh0
channel0 range status overflow

enumerator kPDM_RangeStatusOverFlowCh1
channel1 range status overflow

enumerator kPDM_RangeStatusOverFlowCh2
channel2 range status overflow

enumerator kPDM_RangeStatusOverFlowCh3
channel3 range status overflow

enum _pdm_dc_remover
PDM DC remover configurations.

Values:

2.90. PDM Driver 971



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPDM_DcRemoverCutOff20Hz
DC remover cut off 20HZ

enumerator kPDM_DcRemoverCutOff13Hz
DC remover cut off 13.3HZ

enumerator kPDM_DcRemoverCutOff40Hz
DC remover cut off 40HZ

enumerator kPDM_DcRemoverBypass
DC remover bypass

enum _pdm_df_quality_mode
PDM decimation filter quality mode.

Values:

enumerator kPDM_QualityModeMedium
quality mode memdium

enumerator kPDM_QualityModeHigh
quality mode high

enumerator kPDM_QualityModeLow
quality mode low

enumerator kPDM_QualityModeVeryLow0
quality mode very low0

enumerator kPDM_QualityModeVeryLow1
quality mode very low1

enumerator kPDM_QualityModeVeryLow2
quality mode very low2

enum _pdm_qulaity_mode_k_factor
PDM quality mode K factor.

Values:

enumerator kPDM_QualityModeHighKFactor
high quality mode K factor = 1 / 2

enumerator kPDM_QualityModeMediumKFactor
medium/very low0 quality mode K factor = 2 / 2

enumerator kPDM_QualityModeLowKFactor
low/very low1 quality mode K factor = 4 / 2

enumerator kPDM_QualityModeVeryLow2KFactor
very low2 quality mode K factor = 8 / 2

enum _pdm_df_output_gain
PDM decimation filter output gain.

Values:

enumerator kPDM_DfOutputGain0
Decimation filter output gain 0

enumerator kPDM_DfOutputGain1
Decimation filter output gain 1

972 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPDM_DfOutputGain2
Decimation filter output gain 2

enumerator kPDM_DfOutputGain3
Decimation filter output gain 3

enumerator kPDM_DfOutputGain4
Decimation filter output gain 4

enumerator kPDM_DfOutputGain5
Decimation filter output gain 5

enumerator kPDM_DfOutputGain6
Decimation filter output gain 6

enumerator kPDM_DfOutputGain7
Decimation filter output gain 7

enumerator kPDM_DfOutputGain8
Decimation filter output gain 8

enumerator kPDM_DfOutputGain9
Decimation filter output gain 9

enumerator kPDM_DfOutputGain10
Decimation filter output gain 10

enumerator kPDM_DfOutputGain11
Decimation filter output gain 11

enumerator kPDM_DfOutputGain12
Decimation filter output gain 12

enumerator kPDM_DfOutputGain13
Decimation filter output gain 13

enumerator kPDM_DfOutputGain14
Decimation filter output gain 14

enumerator kPDM_DfOutputGain15
Decimation filter output gain 15

enum _pdm_data_width
PDM data width.

Values:

enumerator kPDM_DataWwidth24
PDM data width 24bit

enumerator kPDM_DataWwidth32
PDM data width 32bit

typedef enum _pdm_dc_remover pdm_dc_remover_t
PDM DC remover configurations.

typedef enum _pdm_df_quality_mode pdm_df_quality_mode_t
PDM decimation filter quality mode.

typedef enum _pdm_df_output_gain pdm_df_output_gain_t
PDM decimation filter output gain.

2.90. PDM Driver 973



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _pdm_channel_config pdm_channel_config_t
PDM channel configurations.

typedef struct _pdm_config pdm_config_t
PDM user configuration structure.

typedef struct _pdm_transfer pdm_transfer_t
PDM SDMA transfer structure.

typedef struct _pdm_handle pdm_handle_t
PDM handle.

typedef void (*pdm_transfer_callback_t)(PDM_Type *base, pdm_handle_t *handle, status_t
status, void *userData)

PDM transfer callback prototype.

PDM_XFER_QUEUE_SIZE
PDM XFER QUEUE SIZE.

struct _pdm_channel_config
#include <fsl_pdm.h> PDM channel configurations.

Public Members

pdm_dc_remover_t outputCutOffFreq
PDM output DC remover cut off frequency

pdm_df_output_gain_t gain
Decimation Filter Output Gain

struct _pdm_config
#include <fsl_pdm.h> PDM user configuration structure.

Public Members

bool enableDoze
This module will enter disable/low leakage mode if DOZEN is active with ipg_doze is
asserted

bool enableFilterBypass
Switchable bypass path for the decimation filter

uint8_t fifoWatermark
Watermark value for FIFO

pdm_df_quality_mode_t qualityMode
Quality mode

uint8_t cicOverSampleRate
CIC filter over sampling rate

struct _pdm_transfer
#include <fsl_pdm.h> PDM SDMA transfer structure.

Public Members

volatile uint8_t *data
Data start address to transfer.

974 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

volatile size_t dataSize
Total Transfer bytes size.

struct _pdm_handle
#include <fsl_pdm.h> PDM handle structure.

Public Members

uint32_t state
Transfer status

pdm_transfer_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

pdm_transfer_t pdmQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint32_t format
data format

uint8_t watermark
Watermark value

uint8_t startChannel
end channel

uint8_t channelNums
Enabled channel number

2.91 PDM EDMA Driver

void PDM_TransferInstallEDMATCDMemory(pdm_edma_handle_t *handle, void *tcdAddr, size_t
tcdNum)

Install EDMA descriptor memory.

Parameters
• handle – Pointer to EDMA channel transfer handle.

• tcdAddr – EDMA head descriptor address.

• tcdNum – EDMA link descriptor address.

void PDM_TransferCreateHandleEDMA(PDM_Type *base, pdm_edma_handle_t *handle,
pdm_edma_callback_t callback, void *userData,
edma_handle_t *dmaHandle)

2.91. PDM EDMA Driver 975



MCUXpresso SDK Documentation, Release 25.12.00

Initializes the PDM Rx eDMA handle.

This function initializes the PDM slave DMA handle, which can be used for other PDM mas-
ter transactional APIs. Usually, for a specified PDM instance, call this API once to get the
initialized handle.

Parameters
• base – PDM base pointer.

• handle – PDM eDMA handle pointer.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• dmaHandle – eDMA handle pointer, this handle shall be static allocated by
users.

void PDM_TransferSetMultiChannelInterleaveType(pdm_edma_handle_t *handle,
pdm_edma_multi_channel_interleave_t
multiChannelInterleaveType)

Initializes the multi PDM channel interleave type.

This function initializes the PDM DMA handle member interleaveType,
it shall be called only when application would like to use type
kPDM_EDMAMultiChannelInterleavePerChannelBlock, since the default interleaveType is
kPDM_EDMAMultiChannelInterleavePerChannelSample always

Parameters
• handle – PDM eDMA handle pointer.

• multiChannelInterleaveType – Multi channel interleave type.

void PDM_TransferSetChannelConfigEDMA(PDM_Type *base, pdm_edma_handle_t *handle,
uint32_t channel, const pdm_channel_config_t
*config)

Configures the PDM channel.

Parameters
• base – PDM base pointer.

• handle – PDM eDMA handle pointer.

• channel – channel index.

• config – pdm channel configurations.

status_t PDM_TransferReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle,
pdm_edma_transfer_t *xfer)

Performs a non-blocking PDM receive using eDMA.

Mcaro MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL can control whether PDM is en-
abled internally or externally.

a. Scatter gather case: This functio support dynamic scatter gather and staic scat-
ter gather, a. for the dynamic scatter gather case: Application should call
PDM_TransferReceiveEDMA function continuously to make sure new receive request
is submit before the previous one finish. b. for the static scatter gather case: Applica-
tion should use the link transfer feature and make sure a loop link transfer is provided,
such as:

976 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

pdm_edma_transfer_t pdmXfer[2] =
{

{
.data = s_buffer,
.dataSize = BUFFER_SIZE,
.linkTransfer = &pdmXfer[1],
},

{
.data = &s_buffer[BUFFER_SIZE],
.dataSize = BUFFER_SIZE,
.linkTransfer = &pdmXfer[0]
},

};

b. Multi channel case: This function support receive multi pdm channel data, for exam-
ple, if two channel is requested,

PDM_TransferSetChannelConfigEDMA(DEMO_PDM, &s_pdmRxHandle_0, DEMO_PDM_
↪→ENABLE_CHANNEL_0, &channelConfig);
PDM_TransferSetChannelConfigEDMA(DEMO_PDM, &s_pdmRxHandle_0, DEMO_PDM_
↪→ENABLE_CHANNEL_1, &channelConfig);
PDM_TransferReceiveEDMA(DEMO_PDM, &s_pdmRxHandle_0, pdmXfer);

The output data will be formatted as below if handle->interleaveType =

Note: This interface returns immediately after the transfer initiates. Call the
PDM_GetReceiveRemainingBytes to poll the transfer status and check whether the PDM
transfer is finished.

void PDM_TransferTerminateReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle)
Terminate all PDM receive.

This function will clear all transfer slots buffered in the pdm queue. If users only want to
abort the current transfer slot, please call PDM_TransferAbortReceiveEDMA.

Parameters
• base – PDM base pointer.

• handle – PDM eDMA handle pointer.

void PDM_TransferAbortReceiveEDMA(PDM_Type *base, pdm_edma_handle_t *handle)
Aborts a PDM receive using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
PDM_TransferTerminateReceiveEDMA.

Parameters
• base – PDM base pointer

• handle – PDM eDMA handle pointer.

status_t PDM_TransferGetReceiveCountEDMA(PDM_Type *base, pdm_edma_handle_t *handle,
size_t *count)

Gets byte count received by PDM.

Parameters
• base – PDM base pointer

• handle – PDM eDMA handle pointer.

2.91. PDM EDMA Driver 977



MCUXpresso SDK Documentation, Release 25.12.00

• count – Bytes count received by PDM.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is no non-blocking transaction in
progress.

FSL_PDM_EDMA_DRIVER_VERSION
Version 2.6.5

enum _pdm_edma_multi_channel_interleave
pdm multi channel interleave type

Values:

enumerator kPDM_EDMAMultiChannelInterleavePerChannelSample

enumerator kPDM_EDMAMultiChannelInterleavePerChannelBlock

typedef struct _pdm_edma_handle pdm_edma_handle_t
PDM edma handler.

typedef enum _pdm_edma_multi_channel_interleave pdm_edma_multi_channel_interleave_t
pdm multi channel interleave type

typedef struct _pdm_edma_transfer pdm_edma_transfer_t
PDM edma transfer.

typedef void (*pdm_edma_callback_t)(PDM_Type *base, pdm_edma_handle_t *handle, status_t
status, void *userData)

PDM eDMA transfer callback function for finish and error.

MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL
the PDM enable position When calling PDM_TransferReceiveEDMA

struct _pdm_edma_transfer
#include <fsl_pdm_edma.h> PDM edma transfer.

Public Members

volatile uint8_t *data
Data start address to transfer.

volatile size_t dataSize
Total Transfer bytes size.

struct _pdm_edma_transfer *linkTransfer
linked transfer configurations

struct _pdm_edma_handle
#include <fsl_pdm_edma.h> PDM DMA transfer handle, users should not touch the content
of the handle.

Public Members

edma_handle_t *dmaHandle
DMA handler for PDM send

uint8_t count
The transfer data count in a DMA request

978 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t receivedBytes
total transfer count

uint32_t state
Internal state for PDM eDMA transfer

pdm_edma_callback_t callback
Callback for users while transfer finish or error occurs

bool isLoopTransfer
loop transfer

void *userData
User callback parameter

edma_tcd_t *tcd
TCD pool for eDMA transfer.

uint32_t tcdNum
TCD number

uint32_t tcdUser
Index for user to queue transfer.

uint32_t tcdDriver
Index for driver to get the transfer data and size

volatile uint32_t tcdUsedNum
Index for user to queue transfer.

pdm_edma_multi_channel_interleave_t interleaveType
multi channel transfer interleave type

uint8_t endChannel
The last enabled channel

uint8_t channelNums
total channel numbers

2.92 PGMC

The enumeration of setpoint. .

Values:

enumerator kPGMC_SetPoint0
The mask of set point0.

enumerator kPGMC_SetPoint1
The mask of set point1.

enumerator kPGMC_SetPoint2
The mask of set point2.

enumerator kPGMC_SetPoint3
The mask of set point3.

enumerator kPGMC_SetPoint4
The mask of set point4.

2.92. PGMC 979



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPGMC_SetPoint5
The mask of set point5.

enumerator kPGMC_SetPoint6
The mask of set point6.

enumerator kPGMC_SetPoint7
The mask of set point7.

enumerator kPGMC_SetPoint8
The mask of set point8.

enumerator kPGMC_SetPoint9
The mask of set point9.

enumerator kPGMC_SetPoint10
The mask of set point10.

enumerator kPGMC_SetPoint11
The mask of set point11.

enumerator kPGMC_SetPoint12
The mask of set point12.

enumerator kPGMC_SetPoint13
The mask of set point13.

enumerator kPGMC_SetPoint14
The mask of set point14.

enumerator kPGMC_SetPoint15
The mask of set point15.

enum _pgmc_mif_signal_behaviour
The enumeration of MIF signal behaviour(Such as Sleep Signal, Standby Signal, and so on).

Values:

enumerator kPGMC_AssertSleepSignal
Assert Sleep signal.

enumerator kPGMC_AssertInputGateSignal
Assert InputGate signal.

enumerator kPGMC_AssetLowSpeedSignal
Assert LowSpeed signal.

enumerator kPGMC_AssertHighSpeedSignal
Assert HighSpeed signal.

enumerator kPGMC_AssertStandbySignal
Assert Standby signal.

enumerator kPGMC_AssertArrayPowerDownSignal
Assert ArrayPowerDown signal.

enumerator kPGMC_AssertPeripheralPowerDownSignal
Assert PeripheralPowerDown signal.

enumerator kPGMC_AssertInitnSignal
Assert Initn signal.

980 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPGMC_AssertSwitch1OffSignal
Assert Switch1Off signal.

enumerator kPGMC_AssertSwitch2OffSignal
Assert Switch2Off signal.

enumerator kPGMC_AssertIsoSignal
Assert Iso_en signal.

enum _pgmc_bpc_assign_domain
PGMC BPC assign domain enumeration.

Values:

enumerator kPGMC_CM7Core
CM7 Core domain.

enumerator kPGMC_CM4Core
CM4 Core domain.

enum _pgmc_cpu_mode
CPU mode.

Values:

enumerator kPGMC_RunMode
RUN mode.

enumerator kPGMC_WaitMode
WAIT mode.

enumerator kPGMC_StopMode
STOP mode.

enumerator kPGMC_SuspendMode
SUSPEND mode.

enum _pgmc_control_mode
PGMC control modes.

Values:

enumerator kPGMC_DisableLowPowerControl

enumerator kPGMC_ControlledByCpuPowerMode

enumerator kPGMC_ControlledBySetPoint

enum _pgmc_memory_low_power_level
The enumeration of memory low power level.

Values:

enumerator kPGMC_MLPLHighSpeed
Memory low power level: High speed.

enumerator kPGMC_MLPLNormal
Memory low power level: Normal.

enumerator kPGMC_MLPLLowSpeed
Memory low power level: Low Speed.

enumerator kPGMC_MLPLInputGating
Memory low power level: Input Gating.

2.92. PGMC 981



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPGMC_MLPLStandby
Memory low power level: Standby.

enumerator kPGMC_MLPLSleep
Memory low power level: Sleep.

enumerator kPGMC_MLPLArrOnPerOff
Memory low power level: Arr on per off.

enumerator kPGMC_MLPLArrOffPerOn
Memory low power level: Arr off per on.

enumerator kPGMC_MLPLArrOffPerOff
Memory low power level: Arr off per off.

enumerator kPGMC_MLPLSw2
Memory low power level: SW2.

enumerator kPGMC_MLPLSw2PerOff
Memory low power level: SW2 Per off.

enumerator kPGMC_MLPLSw1PerOff
Memory low power level: SW1 Per off.

enum _pgmc_mif_signal
The enumeration of MIF signal.

Values:

enumerator kPGMC_SleepSignal
MIF Sleep signal.

enumerator kPGMC_InputGateSignal
MIF InputGate signal.

enumerator kPGMC_LowSpeedSignal
MIF LowSpeed signal.

enumerator kPGMC_HighSpeedSignal
MIF HighSpeed signal.

enumerator kPGMC_StandbySignal
MIF Standby signal.

enumerator kPGMC_ArrayPowerDownSignal
MIF ArrayPowerDown signal.

enumerator kPGMC_PeripheralPowerDownSignal
MIF PeripheralPowerDown signal.

enumerator kPGMC_InitnSignal
MIF Initn signal.

enumerator kPGMC_Switch1OffSignal
MIF Switch1Off signal.

enumerator kPGMC_Switch2OffSignal
MIF Switch2Off signal.

enumerator kPGMC_IsoSignal
MIF Iso_en signal.

982 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pgmc_bpc_assign_domain pgmc_bpc_assign_domain_t
PGMC BPC assign domain enumeration.

typedef enum _pgmc_cpu_mode pgmc_cpu_mode_t
CPU mode.

typedef enum _pgmc_control_mode pgmc_control_mode_t
PGMC control modes.

typedef enum _pgmc_memory_low_power_level pgmc_memory_low_power_level_t
The enumeration of memory low power level.

typedef enum _pgmc_mif_signal pgmc_mif_signal_t
The enumeration of MIF signal.

typedef struct _pgmc_bpc_cpu_power_mode_option pgmc_bpc_cpu_power_mode_option_t
The control option of the power domain controlled by CPU power mode.

typedef struct _pgmc_bpc_setpoint_mode_option pgmc_bpc_setpoint_mode_option_t
The control option of the power domain controlled by setpoint mode.

FSL_PGMC_RIVER_VERSION
PGMC driver version 2.1.2.

void PGMC_BPC_ControlPowerDomainByCpuPowerMode(PGMC_BPC_Type *base,
pgmc_cpu_mode_t mode, const
pgmc_bpc_cpu_power_mode_option_t
*option)

Makes the BPC module controlled by the target CPU power mode, such as Wait mode.

This function makes the module controlled by four typical CPU power modes, It also configs
the resource domain and set memory low power level.

Parameters
• base – PGMC basic power controller base address.

• mode – Target CPU power mode.

• option – The pointer of pgmc_bpc_cpu_power_mode_option_t structure.

void PGMC_BPC_ControlPowerDomainBySetPointMode(PGMC_BPC_Type *base, uint32_t
setPointMap, const
pgmc_bpc_setpoint_mode_option_t
*option)

Makes the BPC module controlled by the target set points.

This function makes the module controlled by specific set point, It also supports set memory
lowe power level.

Note: When setting more than one set point, use “|” between the map values in
_pgmc_setpoint_map.

Parameters
• base – PGMC basic power controller base address.

• setPointMap – Should be the OR’ed value of _pgmc_setpoint_map.

• option – The pointer of pgmc_bpc_setpoint_mode_option_t structure.

2.92. PGMC 983



MCUXpresso SDK Documentation, Release 25.12.00

void PGMC_BPC_ControlPowerDomainBySoftwareMode(PGMC_BPC_Type *base, bool powerOff)
Controls the selected power domain by software mode.

Note: The function is used to control power domain when the CPU is in RUN mode.

Parameters
• base – PGMC basic power controller base address.

• powerOff – Power On/Off power domain in software mode.

– true Power off the power domain in software mode.

– false Power on the power domain in software mode.

static inline void PGMC_BPC_DisableLowPower(PGMC_BPC_Type *base)
Disables low power mode control.

Parameters
• base – PGMC basic power controller base address.

static inline void PGMC_BPC_RequestStateRestoreAtRunMode(PGMC_BPC_Type *base)
Requests power domain state restore at run mode.

Parameters
• base – PGMC basic power controller base address.

static inline void PGMC_BPC_RequestStateRestoreAtSetPoint(PGMC_BPC_Type *base, uint32_t
setPointMap)

Requests power domain state restore when enters the selected set points.

Note: When setting more than one set point, use “|” between the map values in
_pgmc_setpoint_map.

Parameters
• base – PGMC basic power controller base address.

• setPointMap – Should be the OR’ed value of _pgmc_setpoint_map.

static inline void PGMC_BPC_AllowUserModeAccess(PGMC_BPC_Type *base, bool enable)
Allows user mode access or not for the BPC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – PGMC basic power controller base address.

• enable – Used to control whether allow user mode access.

– true Allow both privilege and user mode to access CPU mode control
registers.

– false Allow only privilege mode to access CPU mode control registers.

984 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void PGMC_BPC_AllowNonSecureModeAccess(PGMC_BPC_Type *base, bool enable)
Allows non-secure mode access or not for the BPC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – PGMC basic power controller base address.

• enable – Used to control whether allow non-secure mode to access CPU
mode control registers.

– true Allow both secure and non-secure mode to access CPU mode con-
trol registers.

– false Allow only secure mode to access CPU mode control registers.

static inline void PGMC_BPC_LockAccessSetting(PGMC_BPC_Type *base)
Locks access related settings for the BPC module, including Secure access setting and user
access setting.

Note: This function used to lock access related settings. After locked the related bit field
can not be written unless POR.

Parameters
• base – PGMC basic power controller base address.

static inline void PGMC_BPC_SetDomainIdWhiteList(PGMC_BPC_Type *base, uint8_t
domainId)

Sets the corrsponding domain ID that can access CPU mode control registers for the BPC
module.

Note: If locked the domain ID white list, the setting via this function is useless.

Parameters
• base – PGMC basic power controller base address.

• domainId – Should be the OR’ed value of pgmc_bpc_assign_domain_t.

static inline void PGMC_BPC_LockDomainIDWhiteList(PGMC_BPC_Type *base)
Locks the value of Domain ID white list for the BPC module.

Note: After locked the domain ID white list can not be written again unless POR.

Parameters
• base – PGMC basic power controller base address.

static inline void PGMC_BPC_LockLowPowerConfigurationFields(PGMC_BPC_Type *base)
Locks low power configuration fields for the BPC module.

Note: After locked the low power configurations fields can not be updated unless POR.

2.92. PGMC 985



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – PGMC basic power controller base address.

void PGMC_CPC_CORE_PowerOffByCpuPowerMode(PGMC_CPC_Type *base, pgmc_cpu_mode_t
mode)

Powers off the CPC core module by the target CPU power mode, such as Wait mode.

Parameters
• base – CPC CORE module base address.

• mode – Target CPU power mode.

static inline void PGMC_CPC_CORE_PowerOffBySoftwareMode(PGMC_CPC_Type *base, bool
powerOff)

Powers off/on the CPC core module by the software.

Parameters
• base – CPC CORE module base address.

• powerOff – Used to power off/on the CPC core module.

– true Power off the CPC core module.

– false Power on the CPC core module.

static inline void PGMC_CPC_CORE_DisableLowPower(PGMC_CPC_Type *base)
Disables low power mode control, the CPU core will not be affected by any low power
modes.

Parameters
• base – CPC CORE module base address.

void PGMC_CPC_CACHE_ControlByCpuPowerMode(PGMC_CPC_Type *base, pgmc_cpu_mode_t
mode, pgmc_memory_low_power_level_t
memoryLowPowerLevel)

Makes the CPC CACHE module controlled by the target CPU power mode, such as Wait mode.

This function makes the module controlled by four typical CPU power modes, it also can set
memory low power level.

Parameters
• base – CPC CACHE module base address.

• mode – Target CPU power mode.

• memoryLowPowerLevel – Memory low power level.

void PGMC_CPC_CACHE_ControlBySetPointMode(PGMC_CPC_Type *base, uint32_t
setPointMap,
pgmc_memory_low_power_level_t
memoryLowPowerLevel)

Makes the CPC CACHE module controlled by the target set points.

This function makes the module controlled by specific set point, It also supports set memory
lowe power level.

Note: When setting more than one set point, use “|” between the map values in
_pgmc_setpoint_map.

Parameters
• base – CPC CACHE module base address.

986 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• setPointMap – Should be the OR’ed value of _pgmc_setpoint_map.

• memoryLowPowerLevel – Memory low power level.

static inline void PGMC_CPC_CACHE_DisableLowPower(PGMC_CPC_Type *base)
Disables low power mode control, so the cache will not be affected by any low power modes.

Parameters
• base – CPC CACHE module base address.

void PGMC_CPC_CACHE_TriggerMLPLSoftwareChange(PGMC_CPC_Type *base)
Requests CPC cache module’s memory low power level change by software mode.

Note: If request memory low power level change, must wait the MLPL transition complete.

Parameters
• base – CPC LMEM module base address.

void PGMC_CPC_LMEM_ControlByCpuPowerMode(PGMC_CPC_Type *base, pgmc_cpu_mode_t
mode, pgmc_memory_low_power_level_t
memoryLowPowerLevel)

Makes the CPC LMEM module controlled by the target CPU power mode, such as Wait mode.

This function makes the module controlled by four typical CPU power modes, it also can set
memory low power level.

Parameters
• base – CPC LMEM module base address.

• mode – Target CPU power mode.

• memoryLowPowerLevel – Memory low power level.

void PGMC_CPC_LMEM_ControlBySetPointMode(PGMC_CPC_Type *base, uint32_t
setPointMap,
pgmc_memory_low_power_level_t
memoryLowPowerLevel)

Makes the CPC LMEM module controlled by the target set points.

This function makes the module controlled by specific set point, It also supports set memory
lowe power level.

Note: When setting more than one set point, use “|” between the map values in
_pgmc_setpoint_map.

Parameters
• base – CPC LMEM module base address.

• setPointMap – Should be the OR’ed value of _pgmc_setpoint_map.

• memoryLowPowerLevel – Memory low power level.

static inline void PGMC_CPC_LMEM_DisableLowPower(PGMC_CPC_Type *base)
Disables low power mode control, so that the CPC LMEM will not be affected by any low
power modes.

Parameters
• base – CPC LMEM module base address.

2.92. PGMC 987



MCUXpresso SDK Documentation, Release 25.12.00

void PGMC_CPC_LMEM_TriggerMLPLSoftwareChange(PGMC_CPC_Type *base)
Requests CPC LMEM module’s memory low power level change in software mode.

Note: If request memory low power level change, must wait the MLPL transition complete.

Parameters
• base – CPC LMEM module base address.

static inline void PGMC_CPC_AllowUserModeAccess(PGMC_CPC_Type *base, bool enable)
Allows user mode access or not for the CPC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – CPC LMEM module base address.

• enable – Used to control whether allow user mode access.

– true Allow both privilege and user mode to access CPU mode control
registers.

– false Allow only privilege mode to access CPU mode control registers.

static inline void PGMC_CPC_AllowNonSecureModeAccess(PGMC_CPC_Type *base, bool enable)
Allows non-secure mode access or not for the CPC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – CPC LMEM module base address.

• enable – Used to control whether allow non-secure mode to access CPU
mode control registers.

– true Allow both secure and non-secure mode to access CPU mode con-
trol registers.

– false Allow only secure mode to access CPU mode control registers.

static inline void PGMC_CPC_LockAccessSetting(PGMC_CPC_Type *base)
Locks access related settings, including secure access setting and user access setting, for the
CPC module.

Note: This function used to lock access related settings. After locked the related bit field
can not be written unless POR.

Parameters
• base – CPC LMEM module base address.

static inline void PGMC_CPC_SetDomainIdWhiteList(PGMC_CPC_Type *base, uint8_t
domainId)

Sets the corrsponding domain ID that can access CPU mode control registers for the CPC
module.

988 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Note: If the domain ID whitelist is locked, the setting via this function is useless.

Parameters
• base – CPC LMEM module base address.

• domainId – Should be the OR’ed value of pgmc_bpc_assign_domain_t.

static inline void PGMC_CPC_LockDomainIDWhiteList(PGMC_CPC_Type *base)
Locks the value of Domain ID white list for CPC module.

Note: After locked the domain ID white list can not be written again unless POR.

Parameters
• base – CPC LMEM module base address.

static inline void PGMC_CPC_LockLowPowerConfigurationFields(PGMC_CPC_Type *base)
Locks CPC realted low power configuration fields for CPC module.

Note: After locked the low power configurations fields can not be updated unless POR.

Parameters
• base – CPC LMEM module base address.

void PGMC_MIF_SetSignalBehaviour(PGMC_MIF_Type *base, pgmc_memory_low_power_level_t
memoryLevel, uint32_t mask)

Sets the behaviour of each signal in MIF, such as Sleep signal.

Note: To control the memory low power operation, this function must be invoked after
selecting the memory low power level. Use case:

PGMC_BPC_ControlPowerDomainByCpuPowerMode(PGMC_BPC0_BASE, kPGMC_WaitMode,␣
↪→kPGMC_CM7Core,

kPGMC_MLPLSleep, false);
PGMC_MIF_SetSignalBehaviour(PGMC_BPC0_MIF_BASE, kPGMC_MLPLSleep, kPGMC_
↪→AssertSleepSignal);

Parameters
• base – PGMC MIF peripheral base address.

• memoryLevel – The selected memory low power level. For details please
refer to pgmc_memory_low_power_level_t.

• mask – The mask of MIF signal behaviour. Should be the OR’ed value of
_pgmc_mif_signal_behaviour

static inline void PGMC_MIF_LockLowPowerConfigurationFields(PGMC_MIF_Type *base)
Locks MIF realted low power configuration fields for MIF module.

Note: After locked the low power configurations fields can not be updated unless POR.

Parameters

2.92. PGMC 989



MCUXpresso SDK Documentation, Release 25.12.00

• base – PGMC MIF peripheral base address.

static inline void PGMC_PPC_TriggerPMICStandbySoftMode(PGMC_PPC_Type *base, bool
enable)

Trigger PMIC standby ON/OFF.

Parameters
• base – PMIC module base address.

• enable – Trigger on/off PMIC standby.

– true Trigger PMIC standby ON.

– false Trigger PMIC standby OFF.

void PGMC_PPC_ControlByCpuPowerMode(PGMC_PPC_Type *base, pgmc_cpu_mode_t mode)
Makes the PMIC module controlled by the target CPU power mode, such as Wait mode.

Parameters
• base – PMIC module base address.

• mode – Target CPU power mode.

void PGMC_PPC_ControlBySetPointMode(PGMC_PPC_Type *base, uint32_t setPointMap, bool
enableStandby)

Makes the PMIC module controlled by the target set points.

This function makes the module controlled by specific set point, It also supports PMIC
standby on.

Note: When setting more than one set point, use “|” between the map values in
_pgmc_setpoint_map.

Parameters
• base – PMIC module base address.

• setPointMap – Should be the OR’ed value of _pgmc_setpoint_map.

• enableStandby – true: PMIC standby on when system enters set point num-
ber and system is in standby mode. false: PMIC standby on when system
enters set point number

static inline void PGMC_PPC_DisableLowPower(PGMC_PPC_Type *base)
Disables low power mode control.

Parameters
• base – PMIC module bsase address.

static inline void PGMC_PPC_AllowUserModeAccess(PGMC_PPC_Type *base, bool enable)
Allows user mode access or not for PMIC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – PMIC module base address.

• enable – Used to control whether allow user mode access.

– true Allow both privilege and user mode to access CPU mode control
registers.

990 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

– false Allow only privilege mode to access CPU mode control registers.

static inline void PGMC_PPC_AllowNonSecureModeAccess(PGMC_PPC_Type *base, bool enable)
Allows non-secure mode access or not for the PMIC module.

Note: If locked access related settings, the setting via this function is useless.

Parameters
• base – PMIC module base address.

• enable – Used to control whether allow non-secure mode to access CPU
mode control registers.

– true Allow both secure and non-secure mode to access CPU mode con-
trol registers.

– false Allow only secure mode to access CPU mode control registers.

static inline void PGMC_PPC_LockAccessSetting(PGMC_PPC_Type *base)
Locks access related settings, including secure access setting and user access setting, for the
PMIC module.

Note: This function used to lock access related settings. After locked the related bit field
can not be written unless POR.

Parameters
• base – PMIC module base address.

static inline void PGMC_PPC_SetDomainIdWhiteList(PGMC_PPC_Type *base, uint8_t domainId)
Sets the corrsponding domain ID that can access CPU mode control registers for the PMIC
module.

Note: If the domain ID whitelist is locked, the setting via this function is useless.

Parameters
• base – PMIC module base address.

• domainId – Should be the OR’ed value of pgmc_bpc_assign_domain_t.

static inline void PGMC_PPC_LockDomainIDWhiteList(PGMC_PPC_Type *base)
Locks the value of Domain ID white list for the PMIC module.

Note: After locked the domain ID white list can not be written again unless POR.

Parameters
• base – PMIC module base address.

static inline void PGMC_PPC_LockLowPowerConfigurationFields(PGMC_PPC_Type *base)
Locks low power configuration fields for the PMIC module.

Note: After locked the low power configurations fields can not be updated unless POR.

2.92. PGMC 991



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – PMIC module base address.

struct _pgmc_bpc_cpu_power_mode_option
#include <fsl_pgmc.h> The control option of the power domain controlled by CPU power
mode.

Public Members

pgmc_bpc_assign_domain_t assignDomain
Domain assignment of the BPC. The power mode of the selected core domain will con-
trol the selected power domain.

bool stateSave
Request save the state of power domain before entering target power mode.

• true Save data when domain enter the selected mode.

• false Do not save data when domain enter the selected mode.

bool powerOff
Request power off the power domain.

• true Power off the power domain when enter the selected mode.

• false Do not power off the power domain when enter the selected mode.

struct _pgmc_bpc_setpoint_mode_option
#include <fsl_pgmc.h> The control option of the power domain controlled by setpoint mode.

Public Members

bool stateSave
Request save the state of power domain before entering target setpoint.

• true Save data when domain enter the selected setpoint.

• false Do not save data when domain enter the selected setpoint.

bool powerOff
Request power off the power domain.

• true Power off the power domain when enter the selected setpoint.

• false Do not power off the power domain when enter the selected setpoint.

2.93 PIT: Periodic Interrupt Timer

void PIT_Init(PIT_Type *base, const pit_config_t *config)
Ungates the PIT clock, enables the PIT module, and configures the peripheral for basic op-
erations.

Note: This API should be called at the beginning of the application using the PIT driver.

Parameters
• base – PIT peripheral base address

992 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the user’s PIT config structure

void PIT_Deinit(PIT_Type *base)
Gates the PIT clock and disables the PIT module.

Parameters
• base – PIT peripheral base address

static inline void PIT_GetDefaultConfig(pit_config_t *config)
Fills in the PIT configuration structure with the default settings.

The default values are as follows.

config->enableRunInDebug = false;

Parameters
• config – Pointer to the configuration structure.

static inline void PIT_SetTimerChainMode(PIT_Type *base, pit_chnl_t channel, bool enable)
Enables or disables chaining a timer with the previous timer.

When a timer has a chain mode enabled, it only counts after the previous timer has expired.
If the timer n-1 has counted down to 0, counter n decrements the value by one. Each timer
is 32-bits, which allows the developers to chain timers together and form a longer timer
(64-bits and larger). The first timer (timer 0) can’t be chained to any other timer.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number which is chained with the previous timer

• enable – Enable or disable chain. true: Current timer is chained with the
previous timer. false: Timer doesn’t chain with other timers.

static inline void PIT_EnableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Enables the selected PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration pit_interrupt_enable_t

static inline void PIT_DisableInterrupts(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Disables the selected PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration pit_interrupt_enable_t

static inline uint32_t PIT_GetEnabledInterrupts(PIT_Type *base, pit_chnl_t channel)
Gets the enabled PIT interrupts.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

2.93. PIT: Periodic Interrupt Timer 993



MCUXpresso SDK Documentation, Release 25.12.00

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
pit_interrupt_enable_t

static inline uint32_t PIT_GetStatusFlags(PIT_Type *base, pit_chnl_t channel)
Gets the PIT status flags.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
pit_status_flags_t

static inline void PIT_ClearStatusFlags(PIT_Type *base, pit_chnl_t channel, uint32_t mask)
Clears the PIT status flags.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration pit_status_flags_t

static inline void PIT_SetTimerPeriod(PIT_Type *base, pit_chnl_t channel, uint32_t count)
Sets the timer period in units of count.

Timers begin counting from the value set by this function until it reaches 0, then it generates
an interrupt and load this register value again. Writing a new value to this register does
not restart the timer. Instead, the value is loaded after the timer expires.

Note: Users can call the utility macros provided in fsl_common.h to convert to ticks.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

• count – Timer period in units of ticks

static inline uint32_t PIT_GetCurrentTimerCount(PIT_Type *base, pit_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: Users can call the utility macros provided in fsl_common.h to convert ticks to usec
or msec.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number

Returns
Current timer counting value in ticks

994 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void PIT_StartTimer(PIT_Type *base, pit_chnl_t channel)
Starts the timer counting.

After calling this function, timers load period value, count down to 0 and then load the
respective start value again. Each time a timer reaches 0, it generates a trigger pulse and
sets the timeout interrupt flag.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number.

static inline void PIT_StopTimer(PIT_Type *base, pit_chnl_t channel)
Stops the timer counting.

This function stops every timer counting. Timers reload their periods respectively after the
next time they call the PIT_DRV_StartTimer.

Parameters
• base – PIT peripheral base address

• channel – Timer channel number.

FSL_PIT_DRIVER_VERSION
PIT Driver Version 2.2.0.

enum _pit_chnl
List of PIT channels.

Note: Actual number of available channels is SoC dependent

Values:

enumerator kPIT_Chnl_0
PIT channel number 0

enumerator kPIT_Chnl_1
PIT channel number 1

enumerator kPIT_Chnl_2
PIT channel number 2

enumerator kPIT_Chnl_3
PIT channel number 3

enum _pit_interrupt_enable
List of PIT interrupts.

Values:

enumerator kPIT_TimerInterruptEnable
Timer interrupt enable

enum _pit_status_flags
List of PIT status flags.

Values:

enumerator kPIT_TimerFlag
Timer flag

2.93. PIT: Periodic Interrupt Timer 995



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pit_chnl pit_chnl_t
List of PIT channels.

Note: Actual number of available channels is SoC dependent

typedef enum _pit_interrupt_enable pit_interrupt_enable_t
List of PIT interrupts.

typedef enum _pit_status_flags pit_status_flags_t
List of PIT status flags.

typedef struct _pit_config pit_config_t
PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

uint64_t PIT_GetLifetimeTimerCount(PIT_Type *base)
Reads the current lifetime counter value.

The lifetime timer is a 64-bit timer which chains timer 0 and timer 1 together. Timer 0 and
1 are chained by calling the PIT_SetTimerChainMode before using this timer. The period of
lifetime timer is equal to the “period of timer 0 * period of timer 1”. For the 64-bit value,
the higher 32-bit has the value of timer 1, and the lower 32-bit has the value of timer 0.

Parameters
• base – PIT peripheral base address

Returns
Current lifetime timer value

struct _pit_config
#include <fsl_pit.h> PIT configuration structure.

This structure holds the configuration settings for the PIT peripheral. To initialize this struc-
ture to reasonable defaults, call the PIT_GetDefaultConfig() function and pass a pointer to
your config structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members

bool enableRunInDebug
true: Timers run in debug mode; false: Timers stop in debug mode

2.94 Pmu

void PMU_SetPllLdoControlMode(ANADIG_PMU_Type *base, pmu_control_mode_t mode)
Selects the control mode of the PLL LDO.

Parameters
• base – PMU peripheral base address.

• mode – The control mode of the PLL LDO. Please refer to
pmu_control_mode_t.

996 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void PMU_SwitchPllLdoToGPCMode(ANADIG_PMU_Type *base)
Switches the PLL LDO from Static/Software Mode to GPC/Hardware Mode.

Parameters
• base – PMU peripheral base address.

void PMU_StaticEnablePllLdo(ANADIG_PMU_Type *base)
Enables PLL LDO via AI interface in Static/Software mode.

Parameters
• base – PMU peripheral base address.

void PMU_StaticDisablePllLdo(void)
Disables PLL LDO via AI interface in Static/Software mode.

void PMU_SetLpsrAnaLdoControlMode(ANADIG_LDO_SNVS_Type *base, pmu_control_mode_t
mode)

Selects the control mode of the LPSR ANA LDO.

Parameters
• base – PMU peripheral base address.

• mode – The control mode of the LPSR ANA LDO. Please refer to
pmu_control_mode_t.

void PMU_StaticEnableLpsrAnaLdoBypassMode(ANADIG_LDO_SNVS_Type *base, bool enable)
Sets the Bypass mode of the LPSR ANA LDO.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

• enable – Enable/Disable bypass mode.

– true Enable LPSR ANA Bypass mode.

– false Disable LPSR ANA Bypass mode.

static inline bool PMU_StaticCheckLpsrAnaLdoBypassMode(ANADIG_LDO_SNVS_Type *base)
Checks whether the LPSR ANA LDO is in bypass mode.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

Returns
The result used to indicates whether the LPSR ANA LDO is in bypass mode.

• true The LPSR ANA LDO is in bypass mode.

• false The LPSR ANA LDO not in bypass mode.

void PMU_StaticGetLpsrAnaLdoDefaultConfig(pmu_static_lpsr_ana_ldo_config_t *config)
Fill the LPSR ANA LDO configuration structure with default settings.

The default values are:

config->mode = kPMU_HighPowerMode;
config->enable2mALoad = true;
config->enable20uALoad = false;
config->enable4mALoad = true;
config->enableStandbyMode = false;
config->driverStrength = kPMU_LpsrAnaLdoDriverStrength0;
config->brownOutDetectorConfig = kPMU_LpsrAnaLdoBrownOutDetectorDisable;
config->chargePumpCurrent = kPMU_LpsrAnaChargePump300nA;
config->outputRange = kPMU_LpsrAnaLdoOutputFrom1P77To1P83;

2.94. Pmu 997



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• config – Pointer to the structure pmu_static_lpsr_ana_ldo_config_t.

void PMU_StaticLpsrAnaLdoInit(ANADIG_LDO_SNVS_Type *base, const
pmu_static_lpsr_ana_ldo_config_t *config)

Initialize the LPSR ANA LDO in Static/Sofware Mode.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

• config – Pointer to the structure pmu_static_lpsr_ana_ldo_config_t.

void PMU_StaticLpsrAnaLdoDeinit(ANADIG_LDO_SNVS_Type *base)
Disable the output of LPSR ANA LDO.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

void PMU_SetLpsrDigLdoControlMode(ANADIG_LDO_SNVS_Type *base, pmu_control_mode_t
mode)

Selects the control mode of the LPSR DIG LDO.

Parameters
• base – PMU peripheral base address.

• mode – The control mode of the LPSR DIG LDO. Please refer to
pmu_control_mode_t.

void PMU_StaticEnableLpsrDigLdoBypassMode(ANADIG_LDO_SNVS_Type *base, bool enable)
Turn on/off Bypass mode of the LPSR DIG LDO in Static/Software mode.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

• enable –

– true Turns on Bypass mode of the LPSR DIG LDO.

– false Turns off Bypass mode of the LPSR DIG LDO.

static inline bool PMU_StaticCheckLpsrDigLdoBypassMode(ANADIG_LDO_SNVS_Type *base)
Checks whether the LPSR DIG LDO is in bypass mode.

Parameters
• base – PMU peripheral base address.

Returns
The result used to indicates whether the LPSR DIG LDO is in bypass mode.

• true The LPSR DIG LDO is in bypass mode.

• false The LPSR DIG LDO not in bypass mode.

void PMU_StaticGetLpsrDigLdoDefaultConfig(pmu_static_lpsr_dig_config_t *config)
Gets the default configuration of LPSR DIG LDO.

The default values are:

config->enableStableDetect = false;
config->voltageStepTime = kPMU_LpsrDigVoltageStepInc50us;
config->brownOutConfig = kPMU_LpsrDigBrownOutDisable;
config->targetVoltage = kPMU_LpsrDigTargetStableVoltage1P0V;
config->mode = kPMU_HighPowerMode;

998 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• config – Pointer to the structure pmu_static_lpsr_dig_config_t.

void PMU_StaticLpsrDigLdoInit(ANADIG_LDO_SNVS_Type *base, const
pmu_static_lpsr_dig_config_t *config)

Initialize the LPSR DIG LDO in static mode.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

• config – Pointer to the structure pmu_static_lpsr_dig_config_t.

void PMU_StaticLpsrDigLdoDeinit(ANADIG_LDO_SNVS_Type *base)
Disable the LPSR DIG LDO.

Parameters
• base – ANADIG_LDO_SNVS peripheral base address.

void PMU_GPCSetLpsrDigLdoTargetVoltage(uint32_t setpointMap,
pmu_lpsr_dig_target_output_voltage_t voltageValue)

Sets the voltage step of LPSR DIG LDO in certain setpoint during GPC mode.

Note: The function provides the feature to set the voltage step to different setpoints.

Parameters
• setpointMap – The map of setpoints should be the OR’ed Value of

_pmu_setpoint_map.

• voltageValue – The voltage step to be set. See enumeration
pmu_lpsr_dig_target_output_voltage_t.

void PMU_GetSnvsDigLdoDefaultConfig(pmu_snvs_dig_config_t *config)
Gets the default config of the SNVS DIG LDO.

The default values are:

config->mode = kPMU_LowPowerMode;
config->chargePumpCurrent = kPMU_SnvsDigChargePump12P5nA;
config->dischargeResistorValue = kPMU_SnvsDigDischargeResistor15K;
config->trimValue = 0U;
config->enablePullDown = true;
config->enableLdoStable = false;

Parameters
• config – Pointer to pmu_snvs_dig_config_t.

void PMU_SnvsDigLdoInit(ANADIG_LDO_SNVS_DIG_Type *base, pmu_ldo_operate_mode_t
mode)

Initialize the SNVS DIG LDO.

Parameters
• base – LDO SNVS DIG peripheral base address.

• mode – Used to control LDO power mode, please refer to
pmu_ldo_operate_mode_t.

static inline void PMU_SnvsDigLdoDeinit(ANADIG_LDO_SNVS_DIG_Type *base)
Disable SNVS DIG LDO.

2.94. Pmu 999



MCUXpresso SDK Documentation, Release 25.12.00

void PMU_GPCEnableLdo(pmu_ldo_name_t name, uint32_t setpointMap)
Controls the ON/OFF of the selected LDO in certain setpoints with GPC mode.

Parameters
• name – The name of the selected ldo. Please see enumeration

pmu_ldo_name_t for details.

• setpointMap – The map of setpoints should be the OR’ed Value of
_pmu_setpoint_map, 1b’1 means enable specific ldo in that setpoint. For
example, the code PMU_GPCEnableLdo(kPMU_PllLdo, 0x1U) means to en-
able PLL LDO in setpoint 0 and disable PLL LDO in other setpoint.

void PMU_GPCSetLdoOperateMode(pmu_ldo_name_t name, uint32_t setpointMap,
pmu_ldo_operate_mode_t mode)

Sets the operating mode of the selected LDO in certain setpoints with GPC mode.

Parameters
• name – The name of the selected ldo. Please see enumeration

pmu_ldo_name_t for details.

• setpointMap – The map of setpoints should be the OR’ed Value of
_pmu_setpoint_map.

• mode – The operating mode of the selected ldo. Please refer to enumeration
pmu_ldo_operate_mode_t for details.

void PMU_GPCEnableLdoTrackingMode(pmu_ldo_name_t name, uint32_t setpointMap)
Controls the ON/OFF of the selected LDOs’ Tracking mode in certain setpoints with GPC
mode.

Parameters
• name – The name of the selected ldo. Please see enumeration

pmu_ldo_name_t for details.

• setpointMap – The map of setpoints that the LDO tracking mode will
be enabled in those setpoints, this value should be the OR’ed Value of
_pmu_setpoint_map.

void PMU_GPCEnableLdoBypassMode(pmu_ldo_name_t name, uint32_t setpointMap)
Controls the ON/OFF of the selected LDOs’ Bypass mode in certain setpoints with GPC mode.

Parameters
• name – The name of the selected ldo. Please see enumeration

pmu_ldo_name_t for details.

• setpointMap – The map of setpoints that the LDO bypass mode will be
enabled in those setpoints, this value should be the OR’ed Value of
_pmu_setpoint_map.

void PMU_GPCEnableLdoStandbyMode(pmu_ldo_name_t name, uint32_t setpointMap)
When STBY assert, enable/disable the selected LDO enter it’s Low power mode.

Parameters
• name – The name of the selected ldo. Please see enumeration

pmu_ldo_name_t for details.

• setpointMap – The map of setpoints that the LDO low power mode will be
enabled in those setpoints if STBY assert, this value should be the OR’ed
Value of _pmu_setpoint_map.

1000 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void PMU_SetBandgapControlMode(ANADIG_PMU_Type *base, pmu_control_mode_t mode)
Selects the control mode of the Bandgap Reference.

Parameters
• base – PMU peripheral base address.

• mode – The control mode of the Bandgap Reference. Please refer to
pmu_control_mode_t.

void PMU_SwitchBandgapToGPCMode(ANADIG_PMU_Type *base)
Switches the Bandgap from Static/Software Mode to GPC/Hardware Mode.

Parameters
• base – PMU peripheral base address.

void PMU_DisableBandgapSelfBiasAfterPowerUp(void)
Disables Bandgap self bias for best noise performance.

This function should be invoked after powering up. This function will wait for the bandgap
stable and disable the bandgap self bias. After powering up, it need to wait for the bandgap
to get stable and then disable Bandgap Self bias for best noise performance.

void PMU_EnableBandgapSelfBiasBeforePowerDown(void)
Enables Bandgap self bias before power down.

This function will enable Bandgap self bias feature before powering down or there will be
risk of Bandgap not starting properly.

void PMU_StaticBandgapInit(const pmu_static_bandgap_config_t *config)
Initialize Bandgap.

Parameters
• config – Pointer to the structure pmu_static_bandgap_config_t.

static inline void PMU_GPCEnableBandgap(ANADIG_PMU_Type *base, uint32_t setpointMap)
Controls the ON/OFF of the Bandgap in certain setpoints with GPC mode.

For example, the code PMU_GPCEnableBandgap(PMU, kPMU_SetPoint0 | kPMU_SetPoint1);
means enable bandgap in setpoint0 and setpoint1 and disable bandgap in other setpoints.

Parameters
• base – PMU peripheral base address.

• setpointMap – The map of setpoints that the bandgap will be en-
abled in those setpoints, this parameter should be the OR’ed Value of
_pmu_setpoint_map.

static inline void PMU_GPCEnableBandgapStandbyMode(ANADIG_PMU_Type *base, uint32_t
setpointMap)

Controls the ON/OFF of the Bandgap’s Standby mode in certain setpoints with GPC mode.

Parameters
• base – PMU peripheral base address.

• setpointMap – The map of setpoints that the bandgap standby mode will
be enabled in those setpoints, this value should be the OR’ed Value of
_pmu_setpoint_map.

void PMU_WellBiasInit(ANADIG_PMU_Type *base, const pmu_well_bias_config_t *config)
Configures Well bias, such as power source, clock source and so on.

Parameters
• base – PMU peripheral base address.

2.94. Pmu 1001



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the pmu_well_bias_config_t structure.

void PMU_GetWellBiasDefaultConfig(pmu_well_bias_config_t *config)
Gets the default configuration of well bias.

Parameters
• config – The pointer to the pmu_well_bias_config_t structure.

void PMU_SetBodyBiasControlMode(ANADIG_PMU_Type *base, pmu_body_bias_name_t name,
pmu_control_mode_t mode)

Selects the control mode of the Body Bias.

Parameters
• base – PMU peripheral base address.

• name – The name of the body bias. Please refer to pmu_body_bias_name_t.

• mode – The control mode of the Body Bias. Please refer to
pmu_control_mode_t.

void PMU_EnableBodyBias(ANADIG_PMU_Type *base, pmu_body_bias_name_t name, bool
enable)

Enables/disables the selected body bias.

Parameters
• base – PMU peripheral base address.

• name – The name of the body bias to be turned on/off, please refer to
pmu_body_bias_name_t.

• enable – Used to turn on/off the specific body bias.

– true Enable the selected body bias.

– false Disable the selected body bias.

void PMU_GPCEnableBodyBias(pmu_body_bias_name_t name, uint32_t setpointMap)
Controls the ON/OFF of the selected body bias in certain setpoints with GPC mode.

Parameters
• name – The name of the selected body bias. Please see enumeration

pmu_body_bias_name_t for details.

• setpointMap – The map of setpoints that the specific body bias will be
enabled in those setpoints, this value should be the OR’ed Value of
_pmu_setpoint_map.

void PMU_GPCEnableBodyBiasStandbyMode(pmu_body_bias_name_t name, uint32_t
setpointMap)

Controls the ON/OFF of the selected Body Bias’ Wbias power switch in certain setpoints with
GPC mode.

Parameters
• name – The name of the selected body bias. Please see the enumeration

pmu_body_bias_name_t for details.

• setpointMap – The map of setpoints that the specific body bias’s wbias
power switch will be turn on in those setpoints, this value should be the
OR’ed Value of _pmu_setpoint_map.

void PMU_GPCGetBodyBiasDefaultConfig(pmu_gpc_body_bias_config_t *config)
Gets the default config of body bias in GPC mode.

Parameters

1002 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to structure pmu_gpc_body_bias_config_t.

void PMU_GPCSetBodyBiasConfig(pmu_body_bias_name_t name, const
pmu_gpc_body_bias_config_t *config)

Sets the config of the selected Body Bias in GPC mode.

Parameters
• name – The name of the selected body bias. Please see enumeration

pmu_body_bias_name_t for details.

• config – Pointer to structure pmu_gpc_body_bias_config_t.

FSL_PMU_DRIVER_VERSION
PMU driver version.

Version 2.1.2.

enum _pmu_setpoint_map
System setpoints enumeration.

Values:

enumerator kPMU_SetPoint0
Set point 0.

enumerator kPMU_SetPoint1
Set point 1.

enumerator kPMU_SetPoint2
Set point 2.

enumerator kPMU_SetPoint3
Set point 3.

enumerator kPMU_SetPoint4
Set point 4.

enumerator kPMU_SetPoint5
Set point 5.

enumerator kPMU_SetPoint6
Set point 6.

enumerator kPMU_SetPoint7
Set point 7.

enumerator kPMU_SetPoint8
Set point 8.

enumerator kPMU_SetPoint9
Set point 9.

enumerator kPMU_SetPoint10
Set point 10.

enumerator kPMU_SetPoint11
Set point 11.

enumerator kPMU_SetPoint12
Set point 12.

enumerator kPMU_SetPoint13
Set point 13.

2.94. Pmu 1003



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_SetPoint14
Set point 14.

enumerator kPMU_SetPoint15
Set point 15.

enum _pmu_ldo_name
The name of LDOs.

Values:

enumerator kPMU_PllLdo
The PLL LDO in SOC domain.

enumerator kPMU_LpsrAnaLdo
The LPSR ANA LDO in LPSR domain.

enumerator kPMU_LpsrDigLdo
The LPSR DIG LDO in LPSR domain.

enumerator kPMU_SnvsDigLdo
The SNVS DIG LDO in SNVS domain.

enum _pmu_body_bias_name
The name of body bias.

Values:

enumerator kPMU_RBB_SOC
The RBB implemented in SOC.

enumerator kPMU_RBB_LPSR
The RBB implemented in LPSRMIX.

enum _pmu_control_mode
The control mode of LDOs/Bandgaps/Body Bias.

Values:

enumerator kPMU_StaticMode
Static/Software Control mode.

enumerator kPMU_GPCMode
GPC/Hardware Control mode.

enum _pmu_ldo_operate_mode
The operation mode for the LDOs.

Values:

enumerator kPMU_LowPowerMode
LDOs operate in Low power mode.

enumerator kPMU_HighPowerMode
LDOs operate in High power mode.

enum _pmu_lpsr_ana_ldo_charge_pump_current
The enumeration of LPSR ANA LDO’s charge pump current.

Values:

enumerator kPMU_LpsrAnaChargePump300nA
The current of the charge pump is selected as 300nA.

1004 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_LpsrAnaChargePump400nA
The current of the charge pump is selected as 400nA.

enumerator kPMU_LpsrAnaChargePump500nA
The current of the charge pump is selected as 500nA.

enumerator kPMU_LpsrAnaChargePump600nA
The current of the charge pump is selected as 600nA.

enum _pmu_lpsr_ana_ldo_output_range
The enumeration of LPSR ANA LDO’s output range.

Values:

enumerator kPMU_LpsrAnaLdoOutputFrom1P77To1P83
The output voltage varies from 1.77V to 1.83V.

enumerator kPMU_LpsrAnaLdoOutputFrom1P72To1P77
The output voltage varies from 1.72V to 1.77V.

enumerator kPMU_LpsrAnaLdoOutputFrom1P82To1P88
The output voltage varies from 1.82V to 1.88V.

enum _pmu_lpsr_dig_voltage_step_time
The enumeration of voltage step time for LPSR DIG LDO.

Values:

enumerator kPMU_LpsrDigVoltageStepInc15us
LPSR DIG LDO voltage step time selected as 15us.

enumerator kPMU_LpsrDigVoltageStepInc25us
LPSR DIG LDO voltage step time selected as 25us.

enumerator kPMU_LpsrDigVoltageStepInc50us
LPSR DIG LDO voltage step time selected as 50us.

enumerator kPMU_LpsrDigVoltageStepInc100us
LPSR DIG LDO voltage step time selected as 100us.

enum _pmu_lpsr_dig_target_output_voltage
The target output voltage of LPSR DIG LDO.

Values:

enumerator kPMU_LpsrDigTargetStableVoltage0P631V
The target voltage selected as 0.631V

enumerator kPMU_LpsrDigTargetStableVoltage0P65V
The target voltage selected as 0.65V

enumerator kPMU_LpsrDigTargetStableVoltage0P67V
The target voltage selected as 0.67V

enumerator kPMU_LpsrDigTargetStableVoltage0P689V
The target voltage selected as 0.689V

enumerator kPMU_LpsrDigTargetStableVoltage0P709V
The target voltage selected as 0.709V

enumerator kPMU_LpsrDigTargetStableVoltage0P728V
The target voltage selected as 0.728V

2.94. Pmu 1005



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_LpsrDigTargetStableVoltage0P748V
The target voltage selected as 0.748V

enumerator kPMU_LpsrDigTargetStableVoltage0P767V
The target voltage selected as 0.767V

enumerator kPMU_LpsrDigTargetStableVoltage0P786V
The target voltage selected as 0.786V

enumerator kPMU_LpsrDigTargetStableVoltage0P806V
The target voltage selected as 0.806V

enumerator kPMU_LpsrDigTargetStableVoltage0P825V
The target voltage selected as 0.825V

enumerator kPMU_LpsrDigTargetStableVoltage0P845V
The target voltage selected as 0.845V

enumerator kPMU_LpsrDigTargetStableVoltage0P864V
The target voltage selected as 0.864V

enumerator kPMU_LpsrDigTargetStableVoltage0P883V
The target voltage selected as 0.883V

enumerator kPMU_LpsrDigTargetStableVoltage0P903V
The target voltage selected as 0.903V

enumerator kPMU_LpsrDigTargetStableVoltage0P922V
The target voltage selected as 0.922V

enumerator kPMU_LpsrDigTargetStableVoltage0P942V
The target voltage selected as 0.942V

enumerator kPMU_LpsrDigTargetStableVoltage0P961V
The target voltage selected as 0.961V

enumerator kPMU_LpsrDigTargetStableVoltage0P981V
The target voltage selected as 0.981V

enumerator kPMU_LpsrDigTargetStableVoltage1P0V
The target voltage selected as 1.0V

enumerator kPMU_LpsrDigTargetStableVoltage1P019V
The target voltage selected as 1.019V

enumerator kPMU_LpsrDigTargetStableVoltage1P039V
The target voltage selected as 1.039V

enumerator kPMU_LpsrDigTargetStableVoltage1P058V
The target voltage selected as 1.058V

enumerator kPMU_LpsrDigTargetStableVoltage1P078V
The target voltage selected as 1.078V

enumerator kPMU_LpsrDigTargetStableVoltage1P097V
The target voltage selected as 1.097V

enumerator kPMU_LpsrDigTargetStableVoltage1P117V
The target voltage selected as 1.117V

enumerator kPMU_LpsrDigTargetStableVoltage1P136V
The target voltage selected as 1.136V

1006 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_LpsrDigTargetStableVoltage1P155V
The target voltage selected as 1.155V

enumerator kPMU_LpsrDigTargetStableVoltage1P175V
The target voltage selected as 1.175V

enumerator kPMU_LpsrDigTargetStableVoltage1P194V
The target voltage selected as 1.194V

enumerator kPMU_LpsrDigTargetStableVoltage1P214V
The target voltage selected as 1.214V

enumerator kPMU_LpsrDigTargetStableVoltage1P233V
The target voltage selected as 1.233V

enum _pmu_snvs_dig_charge_pump_current
The enumeration of the SNVS DIG LDO’s charge pump current.

Values:

enumerator kPMU_SnvsDigChargePump12P5nA
The current of SNVS DIG LDO’s charge pump is selected as 12.5nA.

enumerator kPMU_SnvsDigChargePump6P25nA
The current of SNVS DIG LDO’s charge pump is selected as 6.25nA.

enumerator kPMU_SnvsDigChargePump18P75nA
The current of SNVS DIG LDO’s charge pump is selected as 18.75nA.

enum _pmu_snvs_dig_discharge_resistor_value
The enumeration of the SNVS DIG LDO’s discharge resistor.

Values:

enumerator kPMU_SnvsDigDischargeResistor15K
The Discharge Resistor is selected as 15K ohm

enumerator kPMU_SnvsDigDischargeResistor30K
The Discharge Resistor is selected as 30K ohm

enumerator kPMU_SnvsDigDischargeResistor9K
The Discharge Resistor is selected as 9K ohm

enum _pmu_static_bandgap_power_down_option
The enumeration of bandgap power down option.

Values:

enumerator kPMU_PowerDownBandgapFully
Fully power down the bandgap module.

enumerator kPMU_PowerDownVoltageReferenceOutputOnly
Power down only the reference output section of the bandgap

enumerator kPMU_PowerDownBandgapVBGUPDetector
Power down the VBGUP detector of the bandgap without affecting any additional func-
tionality.

enum _pmu_bandgap_output_VBG_voltage_value
The enumeration of output VBG voltage.

Values:

2.94. Pmu 1007



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_BandgapOutputVBGVoltageNominal
Output nominal voltage.

enumerator kPMU_BandgapOutputVBGVoltagePlus10mV
Output VBG voltage Plus 10mV.

enumerator kPMU_BandgapOutputVBGVoltagePlus20mV
Output VBG voltage Plus 20mV.

enumerator kPMU_BandgapOutputVBGVoltagePlus30mV
Output VBG voltage Plus 30mV.

enumerator kPMU_BandgapOutputVBGVoltageMinus10mV
Output VBG voltage Minus 10mV.

enumerator kPMU_BandgapOutputVBGVoltageMinus20mV
Output VBG voltage Minus 20mV.

enumerator kPMU_BandgapOutputVBGVoltageMinus30mV
Output VBG voltage Minus 30mV.

enumerator kPMU_BandgapOutputVBGVoltageMinus40mV
Output VBG voltage Minus 40mV.

enum _pmu_bandgap_output_current_value
The enumeration of output current.

Values:

enumerator kPMU_OutputCurrent11P5uA
Output 11.5uA current from the bandgap.

enumerator kPMU_OutputCurrent11P8uA
Output 11.8uA current from the bandgap.

enumerator kPMU_OutputCurrent12P1uA
Output 12.1uA current from the bandgap.

enumerator kPMU_OutputCurrent12P4uA
Output 12.4uA current from the bandgap.

enumerator kPMU_OutputCurrent12P7uA
Output 12.7uA current from the bandgap.

enumerator kPMU_OutputCurrent13P0uA
Output 13.0uA current from the bandgap.

enumerator kPMU_OutputCurrent13P3uA
Output 13.3uA current from the bandgap.

enum _pmu_well_bias_power_source
The enumerator of well bias power source.

Values:

enumerator kPMU_WellBiasPowerFromLpsrDigLdo
LPSR Dig LDO supplies the power stage and NWELL sampler.

enumerator kPMU_WellBiasPowerFromDCDC
DCDC supplies the power stage and NWELL sampler.

enum _pmu_bias_area_size
The enumerator of bias area size.

Values:

1008 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_180uA_6mm2At125C
Imax = 180uA; Areamax-RVT = 6.00mm2 at 125C

enumerator kPMU_150uA_5mm2At125C
Imax = 150uA; Areamax-RVT = 5.00mm2 at 125C

enumerator kPMU_120uA_4mm2At125C
Imax = 120uA; Areamax-RVT = 4.00mm2 at 125C

enumerator kPMU_90uA_3mm2At125C
Imax = 90uA; Areamax-RVT = 3.00mm2 at 125C

enumerator kPMU_60uA_2mm2At125C
Imax = 60uA; Areamax-RVT = 2.00mm2 at 125C

enumerator kPMU_45uA_1P5mm2At125C
Imax = 45uA; Areamax-RVT = 1P5mm2 at 125C

enumerator kPMU_30uA_1mm2At125C
Imax = 30uA; Areamax-RVT = 1.00mm2 at 125C

enumerator kPMU_15uA_0P5mm2At125C
Imax = 15uA; Areamax-RVT = 0.50mm2 at 125C

enum _pmu_well_bias_typical_freq
The enumerator of well bias typical frequency.

Values:

enumerator kPMU_OscFreqDiv128
Typical frequency = osc_freq / 128.

enumerator kPMU_OscFreqDiv64
Typical frequency = osc_freq / 64.

enumerator kPMU_OscFreqDiv32
Typical frequency = osc_freq / 32.

enumerator kPMU_OscFreqDiv16
Typical frequency = osc_freq / 16.

enumerator kPMU_OscFreqDiv8
Typical frequency = osc_freq / 8.

enumerator kPMU_OscFreqDiv2
Typical frequency = osc_freq / 2.

enumerator kPMU_OscFreq
Typical frequency = oscillator frequency.

enum _pmu_adaptive_clock_source
The enumerator of well bias adaptive clock source.

Values:

enumerator kPMU_AdaptiveClkSourceOscClk
The adaptive clock source is oscillator clock.

enumerator kPMU_AdaptiveClkSourceChargePumpClk
The adaptive clock source is charge pump clock.

enum _pmu_freq_reduction
The enumerator of frequency reduction due to cap increment.

Values:

2.94. Pmu 1009



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPMU_FreqReductionNone
No frequency reduction.

enumerator kPMU_FreqReduction30PCT
30% frequency reduction due to cap increment.

enumerator kPMU_FreqReduction40PCT
40% frequency reduction due to cap increment.

enumerator kPMU_FreqReduction50PCT
50% frequency reduction due to cap increment.

enum _pmu_well_bias_1P8_adjustment
The enumerator of well bias 1P8 adjustment.

Values:

enumerator kPMU_Cref0fFCspl0fFDeltaC0fF
Cref = 0fF, Cspl = 0fF, DeltaC = 0fF.

enumerator kPMU_Cref0fFCspl30fFDeltaCN30fF
Cref = 0fF, Cspl = 30fF, DeltaC = -30fF.

enumerator kPMU_Cref0fFCspl43fFDeltaCN43fF
Cref = 0fF, Cspl = 43fF, DeltaC = -43fF.

enumerator kPMU_Cref0fFCspl62fFDeltaCN62fF
Cref = 0fF, Cspl = 62fF, DeltaC = -62fF.

enumerator kPMU_Cref0fFCspl105fFDeltaCN105fF
Cref = 0fF, Cspl = 105fF, DeltaC = -105fF.

enumerator kPMU_Cref30fFCspl0fFDeltaC30fF
Cref = 30fF, Cspl = 0fF, DeltaC = 30fF.

enumerator kPMU_Cref30fFCspl43fFDeltaCN12fF
Cref = 30fF, Cspl = 43fF, DeltaC = -12fF.

enumerator kPMU_Cref30fFCspl105fFDeltaCN75fF
Cref = 30fF, Cspl = 105fF, DeltaC = -75fF.

enumerator kPMU_Cref43fFCspl0fFDeltaC43fF
Cref = 43fF, Cspl = 0fF, DeltaC = 43fF.

enumerator kPMU_Cref43fFCspl30fFDeltaC13fF
Cref = 43fF, Cspl = 30fF, DeltaC = 13fF.

enumerator kPMU_Cref43fFCspl62fFDeltaCN19fF
Cref = 43fF, Cspl = 62fF, DeltaC = -19fF.

enumerator kPMU_Cref62fFCspl0fFDeltaC62fF
Cref = 62fF, Cspl = 0fF, DeltaC = 62fF.

enumerator kPMU_Cref62fFCspl43fFDeltaC19fF
Cref = 62fF, Cspl = 43fF, DeltaC = 19fF.

enumerator kPMU_Cref105fFCspl0fFDeltaC105fF
Cref = 105fF, Cspl = 0fF, DeltaC = 105fF.

enumerator kPMU_Cref105fFCspl30fFDeltaC75fF
Cref = 105fF, Cspl = 30fF, DeltaC = 75fF.

1010 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pmu_ldo_name pmu_ldo_name_t
The name of LDOs.

typedef enum _pmu_body_bias_name pmu_body_bias_name_t
The name of body bias.

typedef enum _pmu_control_mode pmu_control_mode_t
The control mode of LDOs/Bandgaps/Body Bias.

typedef enum _pmu_ldo_operate_mode pmu_ldo_operate_mode_t
The operation mode for the LDOs.

typedef enum _pmu_lpsr_ana_ldo_charge_pump_current
pmu_lpsr_ana_ldo_charge_pump_current_t

The enumeration of LPSR ANA LDO’s charge pump current.

typedef enum _pmu_lpsr_ana_ldo_output_range pmu_lpsr_ana_ldo_output_range_t
The enumeration of LPSR ANA LDO’s output range.

typedef enum _pmu_lpsr_dig_voltage_step_time pmu_lpsr_dig_voltage_step_time_t
The enumeration of voltage step time for LPSR DIG LDO.

typedef enum _pmu_lpsr_dig_target_output_voltage pmu_lpsr_dig_target_output_voltage_t
The target output voltage of LPSR DIG LDO.

typedef enum _pmu_snvs_dig_charge_pump_current pmu_snvs_dig_charge_pump_current_t
The enumeration of the SNVS DIG LDO’s charge pump current.

typedef enum _pmu_snvs_dig_discharge_resistor_value
pmu_snvs_dig_discharge_resistor_value_t

The enumeration of the SNVS DIG LDO’s discharge resistor.

typedef enum _pmu_bandgap_output_VBG_voltage_value
pmu_bandgap_output_VBG_voltage_value_t

The enumeration of output VBG voltage.

typedef enum _pmu_bandgap_output_current_value pmu_bandgap_output_current_value_t
The enumeration of output current.

typedef enum _pmu_well_bias_power_source pmu_well_bias_power_source_t
The enumerator of well bias power source.

typedef enum _pmu_bias_area_size pmu_bias_area_size_t
The enumerator of bias area size.

typedef enum _pmu_well_bias_typical_freq pmu_well_bias_typical_freq_t
The enumerator of well bias typical frequency.

typedef enum _pmu_adaptive_clock_source pmu_adaptive_clock_source_t
The enumerator of well bias adaptive clock source.

typedef enum _pmu_freq_reduction pmu_freq_reduction_t
The enumerator of frequency reduction due to cap increment.

typedef enum _pmu_well_bias_1P8_adjustment pmu_well_bias_1P8_adjustment_t
The enumerator of well bias 1P8 adjustment.

typedef struct _pmu_static_lpsr_ana_ldo_config pmu_static_lpsr_ana_ldo_config_t
LPSR ANA LDO config.

typedef struct _pmu_static_lpsr_dig_config pmu_static_lpsr_dig_config_t
LPSR DIG LDO Config in Static/Software Mode.

2.94. Pmu 1011



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _pmu_snvs_dig_config pmu_snvs_dig_config_t
SNVS DIG LDO config.

typedef struct _pmu_static_bandgap_config pmu_static_bandgap_config_t
Bandgap config in static mode.

typedef union _pmu_well_bias_option pmu_well_bias_option_t
The union of well bias basic options, such as clock source, power source and so on.

typedef struct _pmu_well_bias_config pmu_well_bias_config_t
The structure of well bias configuration.

typedef struct _pmu_gpc_body_bias_config pmu_gpc_body_bias_config_t
The stucture of body bias config in GPC mode.

PMU_HAS_FBB

struct _pmu_static_lpsr_ana_ldo_config
#include <fsl_pmu.h> LPSR ANA LDO config.

Public Members

pmu_ldo_operate_mode_t mode
The operate mode of LPSR ANA LDO.

bool enable2mALoad
Enable/Disable 2mA load.

• true Enables 2mA loading to prevent overshoot;

• false Disables 2mA loading.

bool enable4mALoad
Enable/Disable 4mA load.

• true Enables 4mA loading to prevent dramatic voltage drop;

• false Disables 4mA load.

bool enable20uALoad
Enable/Disable 20uA load.

• true Enables 20uA loading to prevent overshoot;

• false Disables 20uA load.

bool enableStandbyMode
Enable/Disable Standby Mode.

• true Enables Standby mode, if the STBY assert, the LPSR ANA LDO enter LP mode

• false Disables Standby mode.

struct _pmu_static_lpsr_dig_config
#include <fsl_pmu.h> LPSR DIG LDO Config in Static/Software Mode.

Public Members

bool enableStableDetect
Enable/Disable Stable Detect.

• true Enables Stable Detect.

• false Disables Stable Detect.

1012 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

pmu_lpsr_dig_voltage_step_time_t voltageStepTime
Step time.

pmu_lpsr_dig_target_output_voltage_t targetVoltage
The target output voltage.

struct _pmu_snvs_dig_config
#include <fsl_pmu.h> SNVS DIG LDO config.

Public Members

pmu_ldo_operate_mode_t mode
The operate mode the SNVS DIG LDO.

pmu_snvs_dig_charge_pump_current_t chargePumpCurrent
The current of SNVS DIG LDO’s charge pump current.

pmu_snvs_dig_discharge_resistor_value_t dischargeResistorValue
The value of SNVS DIG LDO’s Discharge Resistor.

uint8_t trimValue
The trim value.

bool enablePullDown
Enable/Disable Pull down.

• true Enables the feature of using 1M ohm resistor to discharge the LDO output.

• false Disables the feature of using 1M ohm resistor to discharge the LDO output.

bool enableLdoStable
Enable/Disable SNVS DIG LDO Stable.

struct _pmu_static_bandgap_config
#include <fsl_pmu.h> Bandgap config in static mode.

Public Members

uint8_t powerDownOption
The OR’ed value of _pmu_static_bandgap_power_down_option. Please refer to
_pmu_static_bandgap_power_down_option.

bool enableLowPowerMode
Turn on/off the Low power mode.

• true Turns on the low power operation of the bandgap.

• false Turns off the low power operation of the bandgap.

pmu_bandgap_output_VBG_voltage_value_t outputVoltage
The output VBG voltage of Bandgap.

pmu_bandgap_output_current_value_t outputCurrent
The output current from the bandgap to the temperature sensors.

union _pmu_well_bias_option
#include <fsl_pmu.h> The union of well bias basic options, such as clock source, power
source and so on.

2.94. Pmu 1013



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint16_t wellBiasData
well bias configuration data.

struct _pmu_well_bias_option wellBiasStruct

struct _pmu_well_bias_config
#include <fsl_pmu.h> The structure of well bias configuration.

Public Members

pmu_well_bias_option_t wellBiasOption
Well bias basic function, please refer to pmu_well_bias_option_t.

pmu_well_bias_1P8_adjustment_t adjustment
Well bias adjustment 1P8, please refer to pmu_well_bias_1P8_adjustment_t.

struct _pmu_gpc_body_bias_config
#include <fsl_pmu.h> The stucture of body bias config in GPC mode.

Public Members

uint8_t PWELLRegulatorSize
The size of the PWELL Regulator.

uint8_t NWELLRegulatorSize
The size of the NWELL Regulator.

uint8_t oscillatorSize
The size of the oscillator bits.

uint8_t regulatorStrength
The strength of the selected regulator.

struct wellBiasStruct

Public Members

uint16_t enablePWellOnly
Turn on both PWELL and NWELL, or only trun on PWELL.

• 1b0 PWELL and NEWLL are both turned on.

• 1b1 PWELL is turned on only.

uint16_t reserved1
Reserved.

uint16_t biasAreaSize
Select size of bias area, please refer to pmu_bias_area_size_t

uint16_t disableAdaptiveFreq
Enable/Disable adaptive frequency.

• 1b0 Frequency change after each half cycle minimum frequency determined by
typical frequency.

• 1b1 Adaptive frequency disabled. Frequency determined by typical frequency.

1014 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t wellBiasFreq
Set well bias typical frequency, please refer to pmu_well_bias_typical_freq_t.

uint16_t clkSource
Config the adaptive clock source, please pmu_adaptive_clock_source_t.

uint16_t freqReduction
Config the percent of frequency reduction due to cap increment, please refer to
pmu_freq_reduction_t.

uint16_t enablePowerDownOption
Enable/Disable pull down option.

• false Pull down option is disabled.

• true Pull down option is enabled.

uint16_t reserved2
Reserved.

uint16_t powerSource
Set power source, please refer to pmu_well_bias_power_source_t.

uint16_t reserved3
Reserved.

2.95 PUF: Physical Unclonable Function

FSL_PUF_DRIVER_VERSION
PUF driver version. Version 2.2.0.

Current version: 2.2.0

Change log:

• 2.0.0

– Initial version.

• 2.0.1

– Fixed puf_wait_usec function optimization issue.

• 2.0.2

– Add PUF configuration structure and support for PUF SRAM controller. Remove
magic constants.

• 2.0.3

– Fix MISRA C-2012 issue.

• 2.1.0

– Align driver with PUF SRAM controller registers on LPCXpresso55s16.

– Update initizalition logic .

• 2.1.1

– Fix ARMGCC build warning .

• 2.1.2

– Update: Add automatic big to little endian swap for user (pre-shared) keys desti-
nated to secret hardware bus (PUF key index 0).

2.95. PUF: Physical Unclonable Function 1015



MCUXpresso SDK Documentation, Release 25.12.00

• 2.1.3

– Fix MISRA C-2012 issue.

• 2.1.4

– Replace register uint32_t ticksCount with volatile uint32_t ticksCount in
puf_wait_usec() to prevent optimization out delay loop.

• 2.1.5

– Use common SDK delay in puf_wait_usec()

• 2.1.6

– Changed wait time in PUF_Init(), when initialization fails it will try
PUF_Powercycle() with shorter time. If this shorter time will also fail, initial-
ization will be tried with worst case time as before.

• 2.2.0

• Add support for kPUF_KeySlot4.

• Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

enum _puf_key_index_register
Values:

enumerator kPUF_KeyIndex_00

enumerator kPUF_KeyIndex_01

enumerator kPUF_KeyIndex_02

enumerator kPUF_KeyIndex_03

enumerator kPUF_KeyIndex_04

enumerator kPUF_KeyIndex_05

enumerator kPUF_KeyIndex_06

enumerator kPUF_KeyIndex_07

enumerator kPUF_KeyIndex_08

enumerator kPUF_KeyIndex_09

enumerator kPUF_KeyIndex_10

enumerator kPUF_KeyIndex_11

enumerator kPUF_KeyIndex_12

enumerator kPUF_KeyIndex_13

enumerator kPUF_KeyIndex_14

enumerator kPUF_KeyIndex_15

enum _puf_min_max
Values:

enumerator kPUF_KeySizeMin

enumerator kPUF_KeySizeMax

enumerator kPUF_KeyIndexMax

1016 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _puf_key_slot
PUF key slot.

Values:

enumerator kPUF_KeySlot0
PUF key slot 0

enumerator kPUF_KeySlot1
PUF key slot 1

PUF status return codes.

Values:

enumerator kStatus_EnrollNotAllowed

enumerator kStatus_StartNotAllowed

typedef enum _puf_key_index_register puf_key_index_register_t

typedef enum _puf_min_max puf_min_max_t

typedef enum _puf_key_slot puf_key_slot_t
PUF key slot.

PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(x)
Get Key Code size in bytes from key size in bytes at compile time.

PUF_MIN_KEY_CODE_SIZE

PUF_ACTIVATION_CODE_SIZE

KEYSTORE_PUF_DISCHARGE_TIME_FIRST_TRY_MS

KEYSTORE_PUF_DISCHARGE_TIME_MAX_MS

struct puf_config_t
#include <fsl_puf.h>

2.96 PWM: Pulse Width Modulator

status_t PWM_Init(PWM_Type *base, pwm_submodule_t subModule, const pwm_config_t
*config)

Ungates the PWM submodule clock and configures the peripheral for basic operation.

This API should be called at the beginning of the application using the PWM driver. When
user select PWMX, user must choose edge aligned output, becasue there are some limita-
tion on center aligned PWMX output. When output PWMX in center aligned mode, VAL1
register controls both PWM period and PWMX duty cycle, PWMA and PWMB output will
be corrupted. But edge aligned PWMX output do not have such limit. In master reload
counter initialization mode, PWM period is depended by period of set LDOK in submodule
0 because this operation will reload register. Submodule 0 counter initialization cannot be
master sync or master reload.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• config – Pointer to user’s PWM config structure.

2.96. PWM: Pulse Width Modulator 1017



MCUXpresso SDK Documentation, Release 25.12.00

Returns
kStatus_Success means success; else failed.

void PWM_Deinit(PWM_Type *base, pwm_submodule_t subModule)
Gate the PWM submodule clock.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to deinitialize

void PWM_GetDefaultConfig(pwm_config_t *config)
Fill in the PWM config struct with the default settings.

The default values are:

config->enableDebugMode = false;
config->enableWait = false;
config->reloadSelect = kPWM_LocalReload;
config->clockSource = kPWM_BusClock;
config->prescale = kPWM_Prescale_Divide_1;
config->initializationControl = kPWM_Initialize_LocalSync;
config->forceTrigger = kPWM_Force_Local;
config->reloadFrequency = kPWM_LoadEveryOportunity;
config->reloadLogic = kPWM_ReloadImmediate;
config->pairOperation = kPWM_Independent;

Parameters
• config – Pointer to user’s PWM config structure.

status_t PWM_SetupPwm(PWM_Type *base, pwm_submodule_t subModule, const
pwm_signal_param_t *chnlParams, uint8_t numOfChnls,
pwm_mode_t mode, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz)

Sets up the PWM signals for a PWM submodule.

The function initializes the submodule according to the parameters passed in by the user.
The function also sets up the value compare registers to match the PWM signal require-
ments. If the dead time insertion logic is enabled, the pulse period is reduced by the dead
time period specified by the user. When user select PWMX, user must choose edge aligned
output, becasue there are some limitation on center aligned PWMX output. Due to edge
aligned PWMX is negative true signal, need to configure PWMX active low true level to get
correct duty cycle. The half cycle point will not be exactly in the middle of the PWM cycle
when PWMX enabled.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• chnlParams – Array of PWM channel parameters to configure the chan-
nel(s).

• numOfChnls – Number of channels to configure, this should be the size of
the array passed in. Array size should not be more than 3 as each submod-
ule has 3 pins to output PWM.

• mode – PWM operation mode, options available in enumeration
pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – PWM source clock of correspond submodule in Hz. If source
clock of submodule1,2,3 is from submodule0 AUX_CLK, its source clock

1018 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

is submodule0 source clock divided with submodule0 prescaler value in-
stead of submodule0 source clock.

Returns
Returns kStatus_Fail if there was error setting up the signal; kStatus_Success
otherwise

status_t PWM_SetupPwmPhaseShift(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz, uint8_t shiftvalue, bool doSync)

Set PWM phase shift for PWM channel running on channel PWM_A, PWM_B which with
50% duty cycle.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – PWM main counter clock in Hz.

• shiftvalue – Phase shift value, range in 0 ~ 50

• doSync – true: Set LDOK bit for the submodule list; false: LDOK bit don’t
set, need to call PWM_SetPwmLdok to sync update.

Returns
Returns kStatus_Fail if there was error setting up the signal; kStatus_Success
otherwise

void PWM_UpdatePwmDutycycle(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmSignal, pwm_mode_t currPwmMode,
uint8_t dutyCyclePercent)

Updates the PWM signal’s dutycycle.

The function updates the PWM dutycyle to the new value that is passed in. If the dead time
insertion logic is enabled then the pulse period is reduced by the dead time period specified
by the user.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmSignal – Signal (PWM A, PWM B, PWM X) to update

• currPwmMode – The current PWM mode set during PWM setup

• dutyCyclePercent – New PWM pulse width, value should be between 0 to
100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

void PWM_UpdatePwmDutycycleHighAccuracy(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmSignal, pwm_mode_t
currPwmMode, uint16_t dutyCycle)

Updates the PWM signal’s dutycycle with 16-bit accuracy.

The function updates the PWM dutycyle to the new value that is passed in. If the dead time
insertion logic is enabled then the pulse period is reduced by the dead time period specified
by the user.

Parameters
• base – PWM peripheral base address

2.96. PWM: Pulse Width Modulator 1019



MCUXpresso SDK Documentation, Release 25.12.00

• subModule – PWM submodule to configure

• pwmSignal – Signal (PWM A, PWM B, PWM X) to update

• currPwmMode – The current PWM mode set during PWM setup

• dutyCycle – New PWM pulse width, value should be between 0 to 65535
0=inactive signal(0% duty cycle)… 65535=active signal (100% duty cycle)

void PWM_UpdatePwmPeriodAndDutycycle(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmSignal, pwm_mode_t
currPwmMode, uint16_t pulseCnt, uint16_t
dutyCycle)

Update the PWM signal’s period and dutycycle for a PWM submodule.

The function updates PWM signal period generated by a specific submodule according to
the parameters passed in by the user. This function can also set dutycycle weather you want
to keep original dutycycle or update new dutycycle. Call this function in local sync control
mode because PWM period is depended by

INIT and VAL1 register of each submodule. In master sync initialization control mode, call
this function to update INIT and VAL1 register of all submodule because PWM period is
depended by INIT and VAL1 register in submodule0. If the dead time insertion logic is
enabled, the pulse period is reduced by the dead time period specified by the user. PWM
signal will not be generated if its period is less than dead time duration.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmSignal – Signal (PWM A or PWM B) to update

• currPwmMode – The current PWM mode set during PWM setup, options
available in enumeration pwm_mode_t

• pulseCnt – New PWM period, value should be between 0 to 65535 0=mini-
mum PWM period… 65535=maximum PWM period

• dutyCycle – New PWM pulse width of channel, value should be between
0 to 65535 0=inactive signal(0% duty cycle)… 65535=active signal (100%
duty cycle) You can keep original duty cycle or update new duty cycle

static inline void PWM_EnableInterrupts(PWM_Type *base, pwm_submodule_t subModule,
uint32_t mask)

Enables the selected PWM interrupts.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline void PWM_DisableInterrupts(PWM_Type *base, pwm_submodule_t subModule,
uint32_t mask)

Disables the selected PWM interrupts.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

1020 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration pwm_interrupt_enable_t

static inline uint32_t PWM_GetEnabledInterrupts(PWM_Type *base, pwm_submodule_t
subModule)

Gets the enabled PWM interrupts.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
pwm_interrupt_enable_t

static inline void PWM_DMAFIFOWatermarkControl(PWM_Type *base, pwm_submodule_t
subModule, pwm_watermark_control_t
pwm_watermark_control)

Capture DMA Enable Source Select.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwm_watermark_control – PWM FIFO watermark and control

static inline void PWM_DMACaptureSourceSelect(PWM_Type *base, pwm_submodule_t
subModule, pwm_dma_source_select_t
pwm_dma_source_select)

Capture DMA Enable Source Select.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwm_dma_source_select – PWM capture DMA enable source select

static inline void PWM_EnableDMACapture(PWM_Type *base, pwm_submodule_t subModule,
uint16_t mask, bool activate)

Enables or disables the selected PWM DMA Capture read request.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• mask – The DMA to enable or disable. This is a logical OR of members of
the enumeration pwm_dma_enable_t

• activate – true: Enable DMA read request; false: Disable DMA read request

static inline void PWM_EnableDMAWrite(PWM_Type *base, pwm_submodule_t subModule, bool
activate)

Enables or disables the PWM DMA write request.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• activate – true: Enable DMA write request; false: Disable DMA write re-
quest

2.96. PWM: Pulse Width Modulator 1021



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t PWM_GetStatusFlags(PWM_Type *base, pwm_submodule_t subModule)
Gets the PWM status flags.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

Returns
The status flags. This is the logical OR of members of the enumeration
pwm_status_flags_t

static inline void PWM_ClearStatusFlags(PWM_Type *base, pwm_submodule_t subModule,
uint32_t mask)

Clears the PWM status flags.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• mask – The status flags to clear. This is a logical OR of members of the
enumeration pwm_status_flags_t

static inline void PWM_StartTimer(PWM_Type *base, uint8_t subModulesToStart)
Starts the PWM counter for a single or multiple submodules.

Sets the Run bit which enables the clocks to the PWM submodule. This function can start
multiple submodules at the same time.

Parameters
• base – PWM peripheral base address

• subModulesToStart – PWM submodules to start. This is a logical OR of mem-
bers of the enumeration pwm_module_control_t

static inline void PWM_StopTimer(PWM_Type *base, uint8_t subModulesToStop)
Stops the PWM counter for a single or multiple submodules.

Clears the Run bit which resets the submodule’s counter. This function can stop multiple
submodules at the same time.

Parameters
• base – PWM peripheral base address

• subModulesToStop – PWM submodules to stop. This is a logical OR of mem-
bers of the enumeration pwm_module_control_t

FSL_PWM_DRIVER_VERSION
Version 2.9.1

enum _pwm_submodule
List of PWM submodules.

Values:

enumerator kPWM_Module_0
Submodule 0

enumerator kPWM_Module_1
Submodule 1

enumerator kPWM_Module_2
Submodule 2

1022 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _pwm_channels
List of PWM channels in each module.

Values:

enumerator kPWM_PwmB

enumerator kPWM_PwmA

enumerator kPWM_PwmX

enum _pwm_value_register
List of PWM value registers.

Values:

enumerator kPWM_ValueRegister_0
PWM Value0 register

enumerator kPWM_ValueRegister_1
PWM Value1 register

enumerator kPWM_ValueRegister_2
PWM Value2 register

enumerator kPWM_ValueRegister_3
PWM Value3 register

enumerator kPWM_ValueRegister_4
PWM Value4 register

enumerator kPWM_ValueRegister_5
PWM Value5 register

enum _pwm_value_register_mask
List of PWM value registers mask.

Values:

enumerator kPWM_ValueRegisterMask_0
PWM Value0 register mask

enumerator kPWM_ValueRegisterMask_1
PWM Value1 register mask

enumerator kPWM_ValueRegisterMask_2
PWM Value2 register mask

enumerator kPWM_ValueRegisterMask_3
PWM Value3 register mask

enumerator kPWM_ValueRegisterMask_4
PWM Value4 register mask

enumerator kPWM_ValueRegisterMask_5
PWM Value5 register mask

enum _pwm_clock_source
PWM clock source selection.

Values:

enumerator kPWM_BusClock
Device specific IPBus clock, refer reference manual for frequency

2.96. PWM: Pulse Width Modulator 1023



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_ExternalClock
EXT_CLK is used as the clock

enumerator kPWM_Submodule0Clock
Clock of the submodule 0 (AUX_CLK) is used as the source clock

enum _pwm_clock_prescale
PWM prescaler factor selection for clock source.

Values:

enumerator kPWM_Prescale_Divide_1
PWM clock frequency = fclk/1

enumerator kPWM_Prescale_Divide_2
PWM clock frequency = fclk/2

enumerator kPWM_Prescale_Divide_4
PWM clock frequency = fclk/4

enumerator kPWM_Prescale_Divide_8
PWM clock frequency = fclk/8

enumerator kPWM_Prescale_Divide_16
PWM clock frequency = fclk/16

enumerator kPWM_Prescale_Divide_32
PWM clock frequency = fclk/32

enumerator kPWM_Prescale_Divide_64
PWM clock frequency = fclk/64

enumerator kPWM_Prescale_Divide_128
PWM clock frequency = fclk/128

enum _pwm_force_output_trigger
Options that can trigger a PWM FORCE_OUT.

Values:

enumerator kPWM_Force_Local
The local force signal, CTRL2[FORCE], from the submodule is used to force updates

enumerator kPWM_Force_Master
The master force signal from submodule 0 is used to force updates

enumerator kPWM_Force_LocalReload
The local reload signal from this submodule is used to force updates without regard to
the state of LDOK

enumerator kPWM_Force_MasterReload
The master reload signal from submodule 0 is used to force updates if LDOK is set

enumerator kPWM_Force_LocalSync
The local sync signal from this submodule is used to force updates

enumerator kPWM_Force_MasterSync
The master sync signal from submodule0 is used to force updates

enumerator kPWM_Force_External
The external force signal, EXT_FORCE, from outside the PWM module causes updates

enumerator kPWM_Force_ExternalSync
The external sync signal, EXT_SYNC, from outside the PWM module causes updates

1024 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _pwm_output_state
PWM channel output status.

Values:

enumerator kPWM_HighState
The output state of PWM channel is high

enumerator kPWM_LowState
The output state of PWM channel is low

enumerator kPWM_NormalState
The output state of PWM channel is normal

enumerator kPWM_InvertState
The output state of PWM channel is invert

enumerator kPWM_MaskState
The output state of PWM channel is mask

enum _pwm_init_source
PWM counter initialization options.

Values:

enumerator kPWM_Initialize_LocalSync
Local sync causes initialization

enumerator kPWM_Initialize_MasterReload
Master reload from submodule 0 causes initialization

enumerator kPWM_Initialize_MasterSync
Master sync from submodule 0 causes initialization

enumerator kPWM_Initialize_ExtSync
EXT_SYNC causes initialization

enum _pwm_load_frequency
PWM load frequency selection.

Values:

enumerator kPWM_LoadEveryOportunity
Every PWM opportunity

enumerator kPWM_LoadEvery2Oportunity
Every 2 PWM opportunities

enumerator kPWM_LoadEvery3Oportunity
Every 3 PWM opportunities

enumerator kPWM_LoadEvery4Oportunity
Every 4 PWM opportunities

enumerator kPWM_LoadEvery5Oportunity
Every 5 PWM opportunities

enumerator kPWM_LoadEvery6Oportunity
Every 6 PWM opportunities

enumerator kPWM_LoadEvery7Oportunity
Every 7 PWM opportunities

2.96. PWM: Pulse Width Modulator 1025



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_LoadEvery8Oportunity
Every 8 PWM opportunities

enumerator kPWM_LoadEvery9Oportunity
Every 9 PWM opportunities

enumerator kPWM_LoadEvery10Oportunity
Every 10 PWM opportunities

enumerator kPWM_LoadEvery11Oportunity
Every 11 PWM opportunities

enumerator kPWM_LoadEvery12Oportunity
Every 12 PWM opportunities

enumerator kPWM_LoadEvery13Oportunity
Every 13 PWM opportunities

enumerator kPWM_LoadEvery14Oportunity
Every 14 PWM opportunities

enumerator kPWM_LoadEvery15Oportunity
Every 15 PWM opportunities

enumerator kPWM_LoadEvery16Oportunity
Every 16 PWM opportunities

enum _pwm_fault_input
List of PWM fault selections.

Values:

enumerator kPWM_Fault_0
Fault 0 input pin

enumerator kPWM_Fault_1
Fault 1 input pin

enumerator kPWM_Fault_2
Fault 2 input pin

enumerator kPWM_Fault_3
Fault 3 input pin

enum _pwm_fault_disable
List of PWM fault disable mapping selections.

Values:

enumerator kPWM_FaultDisable_0
Fault 0 disable mapping

enumerator kPWM_FaultDisable_1
Fault 1 disable mapping

enumerator kPWM_FaultDisable_2
Fault 2 disable mapping

enumerator kPWM_FaultDisable_3
Fault 3 disable mapping

enum _pwm_fault_channels
List of PWM fault channels.

Values:

1026 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_faultchannel_0

enum _pwm_input_capture_edge
PWM capture edge select.

Values:

enumerator kPWM_Disable
Disabled

enumerator kPWM_FallingEdge
Capture on falling edge only

enumerator kPWM_RisingEdge
Capture on rising edge only

enumerator kPWM_RiseAndFallEdge
Capture on rising or falling edge

enum _pwm_force_signal
PWM output options when a FORCE_OUT signal is asserted.

Values:

enumerator kPWM_UsePwm
Generated PWM signal is used by the deadtime logic.

enumerator kPWM_InvertedPwm
Inverted PWM signal is used by the deadtime logic.

enumerator kPWM_SoftwareControl
Software controlled value is used by the deadtime logic.

enumerator kPWM_UseExternal
PWM_EXTA signal is used by the deadtime logic.

enum _pwm_chnl_pair_operation
Options available for the PWM A & B pair operation.

Values:

enumerator kPWM_Independent
PWM A & PWM B operate as 2 independent channels

enumerator kPWM_ComplementaryPwmA
PWM A & PWM B are complementary channels, PWM A generates the signal

enumerator kPWM_ComplementaryPwmB
PWM A & PWM B are complementary channels, PWM B generates the signal

enum _pwm_register_reload
Options available on how to load the buffered-registers with new values.

Values:

enumerator kPWM_ReloadImmediate
Buffered-registers get loaded with new values as soon as LDOK bit is set

enumerator kPWM_ReloadPwmHalfCycle
Registers loaded on a PWM half cycle

enumerator kPWM_ReloadPwmFullCycle
Registers loaded on a PWM full cycle

2.96. PWM: Pulse Width Modulator 1027



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_ReloadPwmHalfAndFullCycle
Registers loaded on a PWM half & full cycle

enum _pwm_fault_recovery_mode
Options available on how to re-enable the PWM output when recovering from a fault.

Values:

enumerator kPWM_NoRecovery
PWM output will stay inactive

enumerator kPWM_RecoverHalfCycle
PWM output re-enabled at the first half cycle

enumerator kPWM_RecoverFullCycle
PWM output re-enabled at the first full cycle

enumerator kPWM_RecoverHalfAndFullCycle
PWM output re-enabled at the first half or full cycle

enum _pwm_interrupt_enable
List of PWM interrupt options.

Values:

enumerator kPWM_CompareVal0InterruptEnable
PWM VAL0 compare interrupt

enumerator kPWM_CompareVal1InterruptEnable
PWM VAL1 compare interrupt

enumerator kPWM_CompareVal2InterruptEnable
PWM VAL2 compare interrupt

enumerator kPWM_CompareVal3InterruptEnable
PWM VAL3 compare interrupt

enumerator kPWM_CompareVal4InterruptEnable
PWM VAL4 compare interrupt

enumerator kPWM_CompareVal5InterruptEnable
PWM VAL5 compare interrupt

enumerator kPWM_CaptureX0InterruptEnable
PWM capture X0 interrupt

enumerator kPWM_CaptureX1InterruptEnable
PWM capture X1 interrupt

enumerator kPWM_CaptureB0InterruptEnable
PWM capture B0 interrupt

enumerator kPWM_CaptureB1InterruptEnable
PWM capture B1 interrupt

enumerator kPWM_CaptureA0InterruptEnable
PWM capture A0 interrupt

enumerator kPWM_CaptureA1InterruptEnable
PWM capture A1 interrupt

enumerator kPWM_ReloadInterruptEnable
PWM reload interrupt

1028 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_ReloadErrorInterruptEnable
PWM reload error interrupt

enumerator kPWM_Fault0InterruptEnable
PWM fault 0 interrupt

enumerator kPWM_Fault1InterruptEnable
PWM fault 1 interrupt

enumerator kPWM_Fault2InterruptEnable
PWM fault 2 interrupt

enumerator kPWM_Fault3InterruptEnable
PWM fault 3 interrupt

enum _pwm_status_flags
List of PWM status flags.

Values:

enumerator kPWM_CompareVal0Flag
PWM VAL0 compare flag

enumerator kPWM_CompareVal1Flag
PWM VAL1 compare flag

enumerator kPWM_CompareVal2Flag
PWM VAL2 compare flag

enumerator kPWM_CompareVal3Flag
PWM VAL3 compare flag

enumerator kPWM_CompareVal4Flag
PWM VAL4 compare flag

enumerator kPWM_CompareVal5Flag
PWM VAL5 compare flag

enumerator kPWM_CaptureX0Flag
PWM capture X0 flag

enumerator kPWM_CaptureX1Flag
PWM capture X1 flag

enumerator kPWM_CaptureB0Flag
PWM capture B0 flag

enumerator kPWM_CaptureB1Flag
PWM capture B1 flag

enumerator kPWM_CaptureA0Flag
PWM capture A0 flag

enumerator kPWM_CaptureA1Flag
PWM capture A1 flag

enumerator kPWM_ReloadFlag
PWM reload flag

enumerator kPWM_ReloadErrorFlag
PWM reload error flag

2.96. PWM: Pulse Width Modulator 1029



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_RegUpdatedFlag
PWM registers updated flag

enumerator kPWM_Fault0Flag
PWM fault 0 flag

enumerator kPWM_Fault1Flag
PWM fault 1 flag

enumerator kPWM_Fault2Flag
PWM fault 2 flag

enumerator kPWM_Fault3Flag
PWM fault 3 flag

enum _pwm_dma_enable
List of PWM DMA options.

Values:

enumerator kPWM_CaptureX0DMAEnable
PWM capture X0 DMA

enumerator kPWM_CaptureX1DMAEnable
PWM capture X1 DMA

enumerator kPWM_CaptureB0DMAEnable
PWM capture B0 DMA

enumerator kPWM_CaptureB1DMAEnable
PWM capture B1 DMA

enumerator kPWM_CaptureA0DMAEnable
PWM capture A0 DMA

enumerator kPWM_CaptureA1DMAEnable
PWM capture A1 DMA

enum _pwm_dma_source_select
List of PWM capture DMA enable source select.

Values:

enumerator kPWM_DMARequestDisable
Read DMA requests disabled

enumerator kPWM_DMAWatermarksEnable
Exceeding a FIFO watermark sets the DMA read request

enumerator kPWM_DMALocalSync
A local sync (VAL1 matches counter) sets the read DMA request

enumerator kPWM_DMALocalReload
A local reload (STS[RF] being set) sets the read DMA request

enum _pwm_watermark_control
PWM FIFO Watermark AND Control.

Values:

enumerator kPWM_FIFOWatermarksOR
Selected FIFO watermarks are OR’ed together

1030 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_FIFOWatermarksAND
Selected FIFO watermarks are AND’ed together

enum _pwm_mode
PWM operation mode.

Values:

enumerator kPWM_SignedCenterAligned
Signed center-aligned

enumerator kPWM_CenterAligned
Unsigned cente-aligned

enumerator kPWM_SignedEdgeAligned
Signed edge-aligned

enumerator kPWM_EdgeAligned
Unsigned edge-aligned

enum _pwm_level_select
PWM output pulse mode, high-true or low-true.

Values:

enumerator kPWM_HighTrue
High level represents “on” or “active” state

enumerator kPWM_LowTrue
Low level represents “on” or “active” state

enum _pwm_fault_state
PWM output fault status.

Values:

enumerator kPWM_PwmFaultState0
Output is forced to logic 0 state prior to consideration of output polarity control.

enumerator kPWM_PwmFaultState1
Output is forced to logic 1 state prior to consideration of output polarity control.

enumerator kPWM_PwmFaultState2
Output is tristated.

enumerator kPWM_PwmFaultState3
Output is tristated.

enum _pwm_reload_source_select
PWM reload source select.

Values:

enumerator kPWM_LocalReload
The local reload signal is used to reload registers

enumerator kPWM_MasterReload
The master reload signal (from submodule 0) is used to reload

enum _pwm_fault_clear
PWM fault clearing options.

Values:

2.96. PWM: Pulse Width Modulator 1031



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPWM_Automatic
Automatic fault clearing

enumerator kPWM_ManualNormal
Manual fault clearing with no fault safety mode

enumerator kPWM_ManualSafety
Manual fault clearing with fault safety mode

enum _pwm_module_control
Options for submodule master control operation.

Values:

enumerator kPWM_Control_Module_0
Control submodule 0’s start/stop,buffer reload operation

enumerator kPWM_Control_Module_1
Control submodule 1’s start/stop,buffer reload operation

enumerator kPWM_Control_Module_2
Control submodule 2’s start/stop,buffer reload operation

enumerator kPWM_Control_Module_3
Control submodule 3’s start/stop,buffer reload operation

typedef enum _pwm_submodule pwm_submodule_t
List of PWM submodules.

typedef enum _pwm_channels pwm_channels_t
List of PWM channels in each module.

typedef enum _pwm_value_register pwm_value_register_t
List of PWM value registers.

typedef enum _pwm_clock_source pwm_clock_source_t
PWM clock source selection.

typedef enum _pwm_clock_prescale pwm_clock_prescale_t
PWM prescaler factor selection for clock source.

typedef enum _pwm_force_output_trigger pwm_force_output_trigger_t
Options that can trigger a PWM FORCE_OUT.

typedef enum _pwm_output_state pwm_output_state_t
PWM channel output status.

typedef enum _pwm_init_source pwm_init_source_t
PWM counter initialization options.

typedef enum _pwm_load_frequency pwm_load_frequency_t
PWM load frequency selection.

typedef enum _pwm_fault_input pwm_fault_input_t
List of PWM fault selections.

typedef enum _pwm_fault_disable pwm_fault_disable_t
List of PWM fault disable mapping selections.

typedef enum _pwm_fault_channels pwm_fault_channels_t
List of PWM fault channels.

1032 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pwm_input_capture_edge pwm_input_capture_edge_t
PWM capture edge select.

typedef enum _pwm_force_signal pwm_force_signal_t
PWM output options when a FORCE_OUT signal is asserted.

typedef enum _pwm_chnl_pair_operation pwm_chnl_pair_operation_t
Options available for the PWM A & B pair operation.

typedef enum _pwm_register_reload pwm_register_reload_t
Options available on how to load the buffered-registers with new values.

typedef enum _pwm_fault_recovery_mode pwm_fault_recovery_mode_t
Options available on how to re-enable the PWM output when recovering from a fault.

typedef enum _pwm_interrupt_enable pwm_interrupt_enable_t
List of PWM interrupt options.

typedef enum _pwm_status_flags pwm_status_flags_t
List of PWM status flags.

typedef enum _pwm_dma_enable pwm_dma_enable_t
List of PWM DMA options.

typedef enum _pwm_dma_source_select pwm_dma_source_select_t
List of PWM capture DMA enable source select.

typedef enum _pwm_watermark_control pwm_watermark_control_t
PWM FIFO Watermark AND Control.

typedef enum _pwm_mode pwm_mode_t
PWM operation mode.

typedef enum _pwm_level_select pwm_level_select_t
PWM output pulse mode, high-true or low-true.

typedef enum _pwm_fault_state pwm_fault_state_t
PWM output fault status.

typedef enum _pwm_reload_source_select pwm_reload_source_select_t
PWM reload source select.

typedef enum _pwm_fault_clear pwm_fault_clear_t
PWM fault clearing options.

typedef enum _pwm_module_control pwm_module_control_t
Options for submodule master control operation.

typedef struct _pwm_signal_param pwm_signal_param_t
Structure for the user to define the PWM signal characteristics.

typedef struct _pwm_config pwm_config_t
PWM config structure.

This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef struct _pwm_fault_input_filter_param pwm_fault_input_filter_param_t
Structure for the user to configure the fault input filter.

2.96. PWM: Pulse Width Modulator 1033



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _pwm_fault_param pwm_fault_param_t
Structure is used to hold the parameters to configure a PWM fault.

typedef struct _pwm_input_capture_param pwm_input_capture_param_t
Structure is used to hold parameters to configure the capture capability of a signal pin.

void PWM_SetupInputCapture(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, const
pwm_input_capture_param_t *inputCaptureParams)

Sets up the PWM input capture.

Each PWM submodule has 3 pins that can be configured for use as input capture pins. This
function sets up the capture parameters for each pin and enables the pin for input capture
operation.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – Channel in the submodule to setup

• inputCaptureParams – Parameters passed in to set up the input pin

void PWM_SetupFaultInputFilter(PWM_Type *base, const pwm_fault_input_filter_param_t
*faultInputFilterParams)

Sets up the PWM fault channel 0 input filter.

Parameters
• base – PWM peripheral base address

• faultInputFilterParams – Parameters passed in to set up the fault input filter.

void PWM_SetupFaultInputFilterExt(PWM_Type *base, pwm_fault_channels_t faultChannel,
const pwm_fault_input_filter_param_t
*faultInputFilterParams)

Sets up the PWM fault input filter.

Parameters
• base – PWM peripheral base address

• faultChannel – PWM fault channel to configure.

• faultInputFilterParams – Parameters passed in to set up the fault input filter.

void PWM_SetupFaults(PWM_Type *base, pwm_fault_input_t faultNum, const
pwm_fault_param_t *faultParams)

Sets up the PWM fault channel 0 protection.

Parameters
• base – PWM peripheral base address

• faultNum – PWM fault to configure.

• faultParams – Pointer to the PWM fault config structure

void PWM_SetupFaultsExt(PWM_Type *base, pwm_fault_channels_t faultChannel,
pwm_fault_input_t faultNum, const pwm_fault_param_t
*faultParams)

Sets up the PWM fault protection.

Parameters
• base – PWM peripheral base address

1034 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• faultChannel – PWM fault channel to configure.

• faultNum – PWM fault to configure.

• faultParams – Pointer to the PWM fault config structure

void PWM_FaultDefaultConfig(pwm_fault_param_t *config)
Fill in the PWM fault config struct with the default settings.

The default values are:

config->faultClearingMode = kPWM_Automatic;
config->faultLevel = false;
config->enableCombinationalPath = true;
config->recoverMode = kPWM_NoRecovery;

Parameters
• config – Pointer to user’s PWM fault config structure.

void PWM_SetupForceSignal(PWM_Type *base, pwm_submodule_t subModule, pwm_channels_t
pwmChannel, pwm_force_signal_t mode)

Selects the signal to output on a PWM pin when a FORCE_OUT signal is asserted.

The user specifies which channel to configure by supplying the submodule number and
whether to modify PWM A or PWM B within that submodule.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – Channel to configure

• mode – Signal to output when a FORCE_OUT is triggered

static inline void PWM_SetVALxValue(PWM_Type *base, pwm_submodule_t subModule,
pwm_value_register_t valueRegister, uint16_t value)

Set the PWM VALx registers.

This function allows the user to write value into VAL registers directly. And it will de-
stroying the PWM clock period set by the PWM_SetupPwm()/PWM_SetupPwmPhaseShift()
functions. Due to VALx registers are bufferd, the new value will not active uless call
PWM_SetPwmLdok() and the reload point is reached.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• valueRegister – VALx register that will be writen new value

• value – Value that will been write into VALx register

static inline uint16_t PWM_GetVALxValue(PWM_Type *base, pwm_submodule_t subModule,
pwm_value_register_t valueRegister)

Get the PWM VALx registers.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• valueRegister – VALx register that will be read value

Returns
The VALx register value

2.96. PWM: Pulse Width Modulator 1035



MCUXpresso SDK Documentation, Release 25.12.00

static inline void PWM_OutputTriggerEnable(PWM_Type *base, pwm_submodule_t subModule,
pwm_value_register_t valueRegister, bool activate)

Enables or disables the PWM output trigger.

This function allows the user to enable or disable the PWM trigger. The PWM has 2 triggers.
Trigger 0 is activated when the counter matches VAL 0, VAL 2, or VAL 4 register. Trigger 1
is activated when the counter matches VAL 1, VAL 3, or VAL 5 register.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• valueRegister – Value register that will activate the trigger

• activate – true: Enable the trigger; false: Disable the trigger

static inline void PWM_ActivateOutputTrigger(PWM_Type *base, pwm_submodule_t subModule,
uint16_t valueRegisterMask)

Enables the PWM output trigger.

This function allows the user to enable one or more (VAL0-5) PWM trigger.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• valueRegisterMask – Value register mask that will activate one or more
(VAL0-5) trigger enumeration _pwm_value_register_mask

static inline void PWM_DeactivateOutputTrigger(PWM_Type *base, pwm_submodule_t
subModule, uint16_t valueRegisterMask)

Disables the PWM output trigger.

This function allows the user to disables one or more (VAL0-5) PWM trigger.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• valueRegisterMask – Value register mask that will Deactivate one or more
(VAL0-5) trigger enumeration _pwm_value_register_mask

static inline void PWM_SetupSwCtrlOut(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, bool value)

Sets the software control output for a pin to high or low.

The user specifies which channel to modify by supplying the submodule number and
whether to modify PWM A or PWM B within that submodule.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – Channel to configure

• value – true: Supply a logic 1, false: Supply a logic 0.

static inline void PWM_SetPwmLdok(PWM_Type *base, uint8_t subModulesToUpdate, bool
value)

Sets or clears the PWM LDOK bit on a single or multiple submodules.

1036 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Set LDOK bit to load buffered values into CTRL[PRSC] and the INIT, FRACVAL and VAL reg-
isters. The values are loaded immediately if kPWM_ReloadImmediate option was choosen
during config. Else the values are loaded at the next PWM reload point. This function can
issue the load command to multiple submodules at the same time.

Parameters
• base – PWM peripheral base address

• subModulesToUpdate – PWM submodules to update with buffered
values. This is a logical OR of members of the enumeration
pwm_module_control_t

• value – true: Set LDOK bit for the submodule list; false: Clear LDOK bit

static inline void PWM_SetPwmFaultState(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, pwm_fault_state_t
faultState)

Set PWM output fault status.

These bits determine the fault state for the PWM_A output in fault conditions and STOP
mode. It may also define the output state in WAIT and DEBUG modes depending on the
settings of CTRL2[WAITEN] and CTRL2[DBGEN]. This function can update PWM output fault
status.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – Channel to configure

• faultState – PWM output fault status

static inline void PWM_SetupFaultDisableMap(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel,
pwm_fault_channels_t pwm_fault_channels,
uint16_t value)

Set PWM fault disable mapping.

Each of the four bits of this read/write field is one-to-one associated with the four FAULTx
inputs of fault channel 0/1. The PWM output will be turned off if there is a logic 1 on an
FAULTx input and a 1 in the corresponding bit of this field. A reset sets all bits in this field.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• pwm_fault_channels – PWM fault channel to configure

• value – Fault disable mapping mask value enumeration
pwm_fault_disable_t

static inline void PWM_OutputEnable(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule)

Set PWM output enable.

This feature allows the user to enable the PWM Output. Recommend to invoke this API
after PWM and fault configuration. But invoke this API before configure MCTRL register is
okay, such as set LDOK or start timer.

Parameters
• base – PWM peripheral base address

2.96. PWM: Pulse Width Modulator 1037



MCUXpresso SDK Documentation, Release 25.12.00

• pwmChannel – PWM channel to configure

• subModule – PWM submodule to configure

static inline void PWM_OutputDisable(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule)

Set PWM output disable.

This feature allows the user to disable the PWM output. Recommend to invoke this API
after PWM and fault configuration. But invoke this API before configure MCTRL register is
okay, such as set LDOK or start timer.

Parameters
• base – PWM peripheral base address

• pwmChannel – PWM channel to configure

• subModule – PWM submodule to configure

uint8_t PWM_GetPwmChannelState(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel)

Get the dutycycle value.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

Returns
Current channel dutycycle value.

status_t PWM_SetOutputToIdle(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule, bool idleStatus)

Set PWM output in idle status (high or low).

Note: This API should call after PWM_SetupPwm() APIs, and PWMX submodule is not
supported.

Parameters
• base – PWM peripheral base address

• pwmChannel – PWM channel to configure

• subModule – PWM submodule to configure

• idleStatus – True: PWM output is high in idle status; false: PWM output is
low in idle status.

Returns
kStatus_Fail if there was error setting up the signal; kStatus_Success if set out-
put idle success

void PWM_SetClockMode(PWM_Type *base, pwm_submodule_t subModule,
pwm_clock_prescale_t prescaler)

Set the pwm submodule prescaler.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

1038 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• prescaler – Set prescaler value

void PWM_SetPwmForceOutputToZero(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, bool forcetozero)

This function enables-disables the forcing of the output of a given eFlexPwm channel to
logic 0.

Parameters
• base – PWM peripheral base address

• pwmChannel – PWM channel to configure

• subModule – PWM submodule to configure

• forcetozero – True: Enable the pwm force output to zero; False: Disable the
pwm output resumes normal function.

void PWM_SetChannelOutput(PWM_Type *base, pwm_submodule_t subModule,
pwm_channels_t pwmChannel, pwm_output_state_t outputstate)

This function set the output state of the PWM pin as requested for the current cycle.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• outputstate – Set pwm output state, see pwm_output_state_t.

status_t PWM_SetPhaseDelay(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule, uint16_t delayCycles)

This function set the phase delay from the master sync signal of submodule 0.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• delayCycles – Number of cycles delayed from submodule 0.

Returns
kStatus_Fail if the number of delay cycles is set larger than the period defined
in submodule 0; kStatus_Success if set phase delay success

static inline void PWM_SetFilterSampleCount(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule, uint8_t
filterSampleCount)

This function set the number of consecutive samples that must agree prior to the input
filter.

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• filterSampleCount – Number of consecutive samples.

static inline void PWM_SetFilterSamplePeriod(PWM_Type *base, pwm_channels_t pwmChannel,
pwm_submodule_t subModule, uint8_t
filterSamplePeriod)

This function set the sampling period of the fault pin input filter.

2.96. PWM: Pulse Width Modulator 1039



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – PWM peripheral base address

• subModule – PWM submodule to configure

• pwmChannel – PWM channel to configure

• filterSamplePeriod – Sampling period of input filter.

PWM_SUBMODULE_SWCONTROL_WIDTH
Number of bits per submodule for software output control

PWM_SUBMODULE_CHANNEL
Submodule channels include PWMA, PWMB, PWMX.

struct _pwm_signal_param
#include <fsl_pwm.h> Structure for the user to define the PWM signal characteristics.

Public Members

pwm_channels_t pwmChannel
PWM channel being configured; PWM A or PWM B

uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)…
100=always active signal (100% duty cycle)

pwm_level_select_t level
PWM output active level select

uint16_t deadtimeValue
The deadtime value; only used if channel pair is operating in complementary mode

pwm_fault_state_t faultState
PWM output fault status

bool pwmchannelenable
Enable PWM output

struct _pwm_config
#include <fsl_pwm.h> PWM config structure.

This structure holds the configuration settings for the PWM peripheral. To initialize this
structure to reasonable defaults, call the PWM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableDebugMode
true: PWM continues to run in debug mode; false: PWM is paused in debug mode

pwm_init_source_t initializationControl
Option to initialize the counter

pwm_clock_source_t clockSource
Clock source for the counter

pwm_clock_prescale_t prescale
Pre-scaler to divide down the clock

1040 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

pwm_chnl_pair_operation_t pairOperation
Channel pair in indepedent or complementary mode

pwm_register_reload_t reloadLogic
PWM Reload logic setup

pwm_reload_source_select_t reloadSelect
Reload source select

pwm_load_frequency_t reloadFrequency
Specifies when to reload, used when user’s choice is not immediate reload

pwm_force_output_trigger_t forceTrigger
Specify which signal will trigger a FORCE_OUT

struct _pwm_fault_input_filter_param
#include <fsl_pwm.h> Structure for the user to configure the fault input filter.

Public Members

uint8_t faultFilterCount
Fault filter count

uint8_t faultFilterPeriod
Fault filter period;value of 0 will bypass the filter

bool faultGlitchStretch
Fault Glitch Stretch Enable: A logic 1 means that input fault signals will be stretched
to at least 2 IPBus clock cycles

struct _pwm_fault_param
#include <fsl_pwm.h> Structure is used to hold the parameters to configure a PWM fault.

Public Members

pwm_fault_clear_t faultClearingMode
Fault clearing mode to use

bool faultLevel
true: Logic 1 indicates fault; false: Logic 0 indicates fault

bool enableCombinationalPath
true: Combinational Path from fault input is enabled; false: No combination path is
available

pwm_fault_recovery_mode_t recoverMode
Specify when to re-enable the PWM output

struct _pwm_input_capture_param
#include <fsl_pwm.h> Structure is used to hold parameters to configure the capture capa-
bility of a signal pin.

Public Members

bool captureInputSel
true: Use the edge counter signal as source false: Use the raw input signal from the pin
as source

2.96. PWM: Pulse Width Modulator 1041



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t edgeCompareValue
Compare value, used only if edge counter is used as source

pwm_input_capture_edge_t edge0
Specify which edge causes a capture for input circuitry 0

pwm_input_capture_edge_t edge1
Specify which edge causes a capture for input circuitry 1

bool enableOneShotCapture
true: Use one-shot capture mode; false: Use free-running capture mode

uint8_t fifoWatermark
Watermark level for capture FIFO. The capture flags in the status register will set if the
word count in the FIFO is greater than this watermark level

2.97 PXP: Pixel Pipeline

void PXP_Init(PXP_Type *base)
Initialize the PXP.

This function enables the PXP peripheral clock, and resets the PXP registers to default status.

Parameters
• base – PXP peripheral base address.

void PXP_Deinit(PXP_Type *base)
De-initialize the PXP.

This function disables the PXP peripheral clock.

Parameters
• base – PXP peripheral base address.

void PXP_Reset(PXP_Type *base)
Reset the PXP.

This function resets the PXP peripheral registers to default status.

Parameters
• base – PXP peripheral base address.

void PXP_ResetControl(PXP_Type *base)
Reset the PXP and the control register to initialized state.

Parameters
• base – PXP peripheral base address.

static inline void PXP_Start(PXP_Type *base)
Start process.

Start PXP process using current configuration.

Parameters
• base – PXP peripheral base address.

1042 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void PXP_EnableLcdHandShake(PXP_Type *base, bool enable)
Enable or disable LCD hand shake.

Parameters
• base – PXP peripheral base address.

• enable – True to enable, false to disable.

static inline void PXP_EnableContinousRun(PXP_Type *base, bool enable)
Enable or disable continous run.

If continous run not enabled, PXP_Start starts the PXP process. When completed, PXP enters
idle mode and flag kPXP_CompleteFlag asserts.

If continous run enabled, the PXP will repeat based on the current configuration register
settings.

Parameters
• base – PXP peripheral base address.

• enable – True to enable, false to disable.

static inline void PXP_SetProcessBlockSize(PXP_Type *base, pxp_block_size_t size)
Set the PXP processing block size.

This function chooses the pixel block size that PXP using during process. Larger block size
means better performace, but be careful that when PXP is rotating, the output must be
divisible by the block size selected.

Parameters
• base – PXP peripheral base address.

• size – The pixel block size.

static inline void PXP_EnableProcessEngine(PXP_Type *base, uint32_t mask, bool enable)
Enables or disables PXP engines in the process flow.

Parameters
• base – PXP peripheral base address.

• mask – The engines to enable. Logical OR of pxp_process_engine_name_t.

• enable – true to enable, false to disable.

static inline uint32_t PXP_GetStatusFlags(PXP_Type *base)
Gets PXP status flags.

This function gets all PXP status flags. The flags are returned as the logical OR value of the
enumerators _pxp_flags. To check a specific status, compare the return value with enumer-
ators in _pxp_flags. For example, to check whether the PXP has completed process, use like
this:

if (kPXP_CompleteFlag & PXP_GetStatusFlags(PXP))
{

...
}

Parameters
• base – PXP peripheral base address.

Returns
PXP status flags which are OR’ed by the enumerators in the _pxp_flags.

2.97. PXP: Pixel Pipeline 1043



MCUXpresso SDK Documentation, Release 25.12.00

static inline void PXP_ClearStatusFlags(PXP_Type *base, uint32_t statusMask)
Clears status flags with the provided mask.

This function clears PXP status flags with a provided mask.

Parameters
• base – PXP peripheral base address.

• statusMask – The status flags to be cleared; it is logical OR value of
_pxp_flags.

static inline uint8_t PXP_GetAxiErrorId(PXP_Type *base, uint8_t axiIndex)
Gets the AXI ID of the failing bus operation.

Parameters
• base – PXP peripheral base address.

• axiIndex – Whitch AXI to get

– 0: AXI0

– 1: AXI1

Returns
The AXI ID of the failing bus operation.

static inline void PXP_EnableInterrupts(PXP_Type *base, uint32_t mask)
Enables PXP interrupts according to the provided mask.

This function enables the PXP interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _pxp_interrupt_enable. For example, to enable
PXP process complete interrupt and command loaded interrupt, do the following.

PXP_EnableInterrupts(PXP, kPXP_CommandLoadInterruptEnable | kPXP_
↪→CompleteInterruptEnable);

Parameters
• base – PXP peripheral base address.

• mask – The interrupts to enable. Logical OR of _pxp_interrupt_enable.

static inline void PXP_DisableInterrupts(PXP_Type *base, uint32_t mask)
Disables PXP interrupts according to the provided mask.

This function disables the PXP interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _pxp_interrupt_enable.

Parameters
• base – PXP peripheral base address.

• mask – The interrupts to disable. Logical OR of _pxp_interrupt_enable.

void PXP_SetAlphaSurfaceBufferConfig(PXP_Type *base, const pxp_as_buffer_config_t *config)
Set the alpha surface input buffer configuration.

Parameters
• base – PXP peripheral base address.

• config – Pointer to the configuration.

void PXP_SetAlphaSurfaceBlendConfig(PXP_Type *base, const pxp_as_blend_config_t *config)
Set the alpha surface blending configuration.

Parameters

1044 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – PXP peripheral base address.

• config – Pointer to the configuration structure.

void PXP_SetAlphaSurfaceBlendSecondaryConfig(PXP_Type *base, const
pxp_as_blend_secondary_config_t *config)

Set the alpha surface blending configuration for the secondary engine.

Parameters
• base – PXP peripheral base address.

• config – Pointer to the configuration structure.

void PXP_SetAlphaSurfaceOverlayColorKey(PXP_Type *base, uint8_t num, uint32_t colorKeyLow,
uint32_t colorKeyHigh)

Set the alpha surface overlay color key.

If a pixel in the current overlay image with a color that falls in the range from the colorKey-
Low to colorKeyHigh range, it will use the process surface pixel value for that location. If no
PS image is present or if the PS image also matches its colorkey range, the PS background
color is used.

Note: Colorkey operations are higher priority than alpha or ROP operations

Parameters
• base – PXP peripheral base address.

• num – instance number. 0 for alpha engine A, 1 for alpha engine B.

• colorKeyLow – Color key low range.

• colorKeyHigh – Color key high range.

static inline void PXP_EnableAlphaSurfaceOverlayColorKey(PXP_Type *base, uint32_t num, bool
enable)

Enable or disable the alpha surface color key.

Parameters
• base – PXP peripheral base address.

• num – instance number. 0 for alpha engine A, 1 for alpha engine B.

• enable – True to enable, false to disable.

void PXP_SetAlphaSurfacePosition(PXP_Type *base, uint16_t upperLeftX, uint16_t upperLeftY,
uint16_t lowerRightX, uint16_t lowerRightY)

Set the alpha surface position in output buffer.

Parameters
• base – PXP peripheral base address.

• upperLeftX – X of the upper left corner.

• upperLeftY – Y of the upper left corner.

• lowerRightX – X of the lower right corner.

• lowerRightY – Y of the lower right corner.

static inline void PXP_SetProcessSurfaceBackGroundColor(PXP_Type *base, uint8_t num,
uint32_t backGroundColor)

Set the back ground color of PS.

2.97. PXP: Pixel Pipeline 1045



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – PXP peripheral base address.

• num – instance number. 0 for alpha engine A, 1 for alpha engine B.

• backGroundColor – Pixel value of the background color.

void PXP_SetProcessSurfaceBufferConfig(PXP_Type *base, const pxp_ps_buffer_config_t *config)
Set the process surface input buffer configuration.

Parameters
• base – PXP peripheral base address.

• config – Pointer to the configuration.

void PXP_SetProcessSurfaceScaler(PXP_Type *base, uint16_t inputWidth, uint16_t inputHeight,
uint16_t outputWidth, uint16_t outputHeight)

Set the process surface scaler configuration.

The valid down scale fact is 1/(2^12) ~ 16.

Parameters
• base – PXP peripheral base address.

• inputWidth – Input image width.

• inputHeight – Input image height.

• outputWidth – Output image width.

• outputHeight – Output image height.

void PXP_SetProcessSurfacePosition(PXP_Type *base, uint16_t upperLeftX, uint16_t upperLeftY,
uint16_t lowerRightX, uint16_t lowerRightY)

Set the process surface position in output buffer.

Parameters
• base – PXP peripheral base address.

• upperLeftX – X of the upper left corner.

• upperLeftY – Y of the upper left corner.

• lowerRightX – X of the lower right corner.

• lowerRightY – Y of the lower right corner.

void PXP_SetProcessSurfaceBufferSize(PXP_Type *base, uint16_t lowerRightX, uint16_t
lowerRightY)

Set the size of the process surface frame buffer in pixels.

Parameters
• base – PXP peripheral base address.

• lowerRightX – X of the number of horizontal PIXELS in the processed sur-
face.

• lowerRightY – Y of the number of vertical PIXELS in the processed surface.

void PXP_SetProcessSurfaceColorKey(PXP_Type *base, uint8_t num, uint32_t colorKeyLow,
uint32_t colorKeyHigh)

Set the process surface color key.

If the PS image matches colorkey range, the PS background color is output. Set colorKeyLow
to 0xFFFFFFFF and p colorKeyHigh to 0 will disable the colorkeying.

Parameters

1046 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – PXP peripheral base address.

• num – instance number. 0 for alpha engine A, 1 for alpha engine B.

• colorKeyLow – Color key low range.

• colorKeyHigh – Color key high range.

static inline void PXP_SetProcessSurfaceYUVFormat(PXP_Type *base, pxp_ps_yuv_format_t
format)

Set the process surface input pixel format YUV or YCbCr.

If process surface input pixel format is YUV and CSC1 is not enabled, in other words, the
process surface output pixel format is also YUV, then this function should be called to set
whether input pixel format is YUV or YCbCr.

Parameters
• base – PXP peripheral base address.

• format – The YUV format.

void PXP_SetOutputBufferConfig(PXP_Type *base, const pxp_output_buffer_config_t *config)
Set the PXP outpt buffer configuration.

Parameters
• base – PXP peripheral base address.

• config – Pointer to the configuration.

static inline void PXP_SetOverwrittenAlphaValue(PXP_Type *base, uint8_t alpha)
Set the global overwritten alpha value.

If global overwritten alpha is enabled, the alpha component in output buffer pixels will be
overwritten, otherwise the computed alpha value is used.

Parameters
• base – PXP peripheral base address.

• alpha – The alpha value.

static inline void PXP_EnableOverWrittenAlpha(PXP_Type *base, bool enable)
Enable or disable the global overwritten alpha value.

If global overwritten alpha is enabled, the alpha component in output buffer pixels will be
overwritten, otherwise the computed alpha value is used.

Parameters
• base – PXP peripheral base address.

• enable – True to enable, false to disable.

static inline void PXP_SetRotateConfig(PXP_Type *base, pxp_rotate_position_t position,
pxp_rotate_degree_t degree, pxp_flip_mode_t flipMode)

Set the rotation configuration.

The PXP could rotate the process surface or the output buffer. There are two PXP versions:

• Version 1: Only has one rotate sub module, the output buffer and process surface share
the same rotate sub module, which means the process surface and output buffer could
not be rotate at the same time. When pass in kPXP_RotateOutputBuffer, the process
surface could not use the rotate, Also when pass in kPXP_RotateProcessSurface, output
buffer could not use the rotate.

• Version 2: Has two seperate rotate sub modules, the output buffer and process surface
could configure the rotation independently.

2.97. PXP: Pixel Pipeline 1047



MCUXpresso SDK Documentation, Release 25.12.00

Upper layer could use the macro PXP_SHARE_ROTATE to check which version is.
PXP_SHARE_ROTATE=1 means version 1.

Note: This function is different depends on the macro PXP_SHARE_ROTATE.

Parameters
• base – PXP peripheral base address.

• position – Rotate process surface or output buffer.

• degree – Rotate degree.

• flipMode – Flip mode.

void PXP_BuildRect(PXP_Type *base, pxp_output_pixel_format_t outFormat, uint32_t value,
uint16_t width, uint16_t height, uint16_t pitch, uint32_t outAddr)

Build a solid rectangle of given pixel value.

Parameters
• base – PXP peripheral base address.

• outFormat – output pixel format.

• value – The value of the pixel to be filled in the rectangle in ARGB8888 for-
mat.

• width – width of the rectangle.

• height – height of the rectangle.

• pitch – output pitch in byte.

• outAddr – address of the memory to store the rectangle.

void PXP_SetNextCommand(PXP_Type *base, void *commandAddr)
Set the next command.

The PXP supports a primitive ability to queue up one operation while the current operation
is running. Workflow:

a. Prepare the PXP register values except STAT, CSCCOEFn, NEXT in the memory in the
order they appear in the register map.

b. Call this function sets the new operation to PXP.

c. There are two methods to check whether the PXP has loaded the new operation. The
first method is using PXP_IsNextCommandPending. If there is new operation not
loaded by the PXP, this function returns true. The second method is checking the flag
kPXP_CommandLoadFlag, if command loaded, this flag asserts. User could enable in-
terrupt kPXP_CommandLoadInterruptEnable to get the loaded signal in interrupt way.

d. When command loaded by PXP, a new command could be set using this function.

uint32_t pxp_command1[48];
uint32_t pxp_command2[48];

pxp_command1[0] = ...;
pxp_command1[1] = ...;
...
pxp_command2[0] = ...;
pxp_command2[1] = ...;
...

(continues on next page)

1048 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

while (PXP_IsNextCommandPending(PXP))
{
}

PXP_SetNextCommand(PXP, pxp_command1);

while (PXP_IsNextCommandPending(PXP))
{
}

PXP_SetNextCommand(PXP, pxp_command2);

Parameters
• base – PXP peripheral base address.

• commandAddr – Address of the new command.

static inline bool PXP_IsNextCommandPending(PXP_Type *base)
Check whether the next command is pending.

Parameters
• base – UART peripheral base address.

Returns
True is pending, false is not.

static inline void PXP_CancelNextCommand(PXP_Type *base)
Cancel command set by PXP_SetNextCommand.

Parameters
• base – UART peripheral base address.

void PXP_SetCsc1Mode(PXP_Type *base, pxp_csc1_mode_t mode)
Set the CSC1 mode.

The CSC1 module receives scaled YUV/YCbCr444 pixels from the scale engine and converts
the pixels to the RGB888 color space. It could only be used by process surface.

Parameters
• base – PXP peripheral base address.

• mode – The conversion mode.

static inline void PXP_EnableCsc1(PXP_Type *base, bool enable)
Enable or disable the CSC1.

Parameters
• base – PXP peripheral base address.

• enable – True to enable, false to disable.

void PXP_SetInternalRamData(PXP_Type *base, pxp_ram_t ram, uint16_t bytesNum, uint8_t
*data, uint16_t memStartAddr)

Write data to the PXP internal memory.

Parameters
• base – PXP peripheral base address.

• ram – Which internal memory to write.

• bytesNum – How many bytes to write.

2.97. PXP: Pixel Pipeline 1049



MCUXpresso SDK Documentation, Release 25.12.00

• data – Pointer to the data to write.

• memStartAddr – The start address in the internal memory to write the data.

void PXP_SetDitherFinalLutData(PXP_Type *base, const pxp_dither_final_lut_data_t *data)
Set the dither final LUT data.

The dither final LUT is only applicble to dither engine 0. It takes the bits[7:4] of the output
pixel and looks up and 8 bit value from the 16 value LUT to generate the final output pixel
to the next process module.

Parameters
• base – PXP peripheral base address.

• data – Pointer to the LUT data to set.

static inline void PXP_SetDitherConfig(PXP_Type *base, const pxp_dither_config_t *config)
Set the configuration for the dither block.

If the pre-dither LUT, post-dither LUT or ordered dither is used, please call
PXP_SetInternalRamData to set the LUT data to internal memory.

If the final LUT is used, please call PXP_SetDitherFinalLutData to set the LUT data.

Note: When using ordered dithering, please set the PXP process block size same with the
ordered dithering matrix size using function PXP_SetProcessBlockSize.

Parameters
• base – PXP peripheral base address.

• config – Pointer to the configuration.

void PXP_EnableDither(PXP_Type *base, bool enable)
Enable or disable dither engine in the PXP process path.

After the initialize function PXP_Init, the dither engine is disabled and not use in the
PXP processing path. This function enables the dither engine and routes the dither en-
gine output to the output buffer. When the dither engine is enabled using this function,
PXP_SetDitherConfig must be called to configure dither engine correctly, otherwise there
is not output to the output buffer.

Parameters
• base – PXP peripheral base address.

• enable – Pass in true to enable, false to disable.

void PXP_SetPorterDuffConfig(PXP_Type *base, uint8_t num, const pxp_porter_duff_config_t
*config)

Set the Porter Duff configuration for one of the alpha process engine.

Parameters
• base – PXP peripheral base address.

• num – instance number.

• config – Pointer to the configuration.

status_t PXP_GetPorterDuffConfigExt(pxp_porter_duff_blend_mode_t mode,
pxp_porter_duff_config_t *config, uint8_t
dstGlobalAlphaMode, uint8_t dstAlphaMode, uint8_t
dstColorMode, uint8_t srcGlobalAlphaMode, uint8_t
srcAlphaMode, uint8_t srcColorMode, uint8_t
dstGlobalAlpha, uint8_t srcGlobalAlpha)

1050 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Get the Porter Duff configuration.

The FactorMode are selected based on blend mode, the other values are set based on input
parameters. These values could be modified after calling this function. This function is
extened PXP_GetPorterDuffConfig.

Parameters
• mode – The blend mode.

• config – Pointer to the configuration.

• dstGlobalAlphaMode – Destination layer (or PS, s0) global alpha mode, see
pxp_porter_duff_global_alpha_mode

• dstAlphaMode – Destination layer (or PS, s0) alpha mode, see
pxp_porter_duff_alpha_mode.

• dstColorMode – Destination layer (or PS, s0) color mode, see
pxp_porter_duff_color_mode.

• srcGlobalAlphaMode – Source layer (or AS, s1) global alpha mode, see
pxp_porter_duff_global_alpha_mode

• srcAlphaMode – Source layer (or AS, s1) alpha mode, see
pxp_porter_duff_alpha_mode.

• srcColorMode – Source layer (or AS, s1) color mode, see
pxp_porter_duff_color_mode.

• dstGlobalAlpha – Destination layer (or PS, s0) global alpha value, 0~255

• srcGlobalAlpha – Source layer (or AS, s1) global alpha value, 0~255

Return values
• kStatus_Success – Successfully get the configuratoin.

• kStatus_InvalidArgument – The blend mode not supported.

static inline status_t PXP_GetPorterDuffConfig(pxp_porter_duff_blend_mode_t mode,
pxp_porter_duff_config_t *config)

Get the Porter Duff configuration by blend mode.

The FactorMode are selected based on blend mode, the AlphaMode are set to
kPXP_PorterDuffAlphaStraight, the ColorMode are set to kPXP_PorterDuffColorWithAlpha,
the GlobalAlphaMode are set to kPXP_PorterDuffLocalAlpha. These values could be modi-
fied after calling this function.

Parameters
• mode – The blend mode.

• config – Pointer to the configuration.

Return values
• kStatus_Success – Successfully get the configuratoin.

• kStatus_InvalidArgument – The blend mode not supported.

FSL_PXP_DRIVER_VERSION

enum _pxp_interrupt_enable
PXP interrupts to enable.

Values:

2.97. PXP: Pixel Pipeline 1051



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_CompleteInterruptEnable
PXP process completed. bit 1

enumerator kPXP_CommandLoadInterruptEnable
Interrupt to show that the command set by PXP_SetNextCommand has been loaded.
bit 2

enumerator kPXP_CompressDoneInterruptEnable
Compress done interrupt enable. bit 15

enumerator kPXP_InputFetchCh0InterruptEnable
Input fetch channel 0 completed. bit 16

enumerator kPXP_InputFetchCh1InterruptEnable
Input fetch channel 1 completed. bit 17

enumerator kPXP_InputStoreCh0InterruptEnable
Input store channel 0 completed. bit 18

enumerator kPXP_InputStoreCh1InterruptEnable
Input store channel 1 completed. bit 19

enumerator kPXP_DitherFetchCh0InterruptEnable
Dither fetch channel 0 completed. bit 20

enumerator kPXP_DitherFetchCh1InterruptEnable
Dither fetch channel 1 completed. bit 21

enumerator kPXP_DitherStoreCh0InterruptEnable
Dither store channle 0 completed. bit 22

enumerator kPXP_DitherStoreCh1InterruptEnable
Dither store channle 1 completed. bit 23

enumerator kPXP_WfeaStoreCh0InterruptEnable
WFE-A store channel 0 completed. bit 24

enumerator kPXP_WfeaStoreCh1InterruptEnable
WFE-A store channel 1 completed. bit 25

enumerator kPXP_WfebStoreCh0InterruptEnable
WFE-B store channel 0 completed. bit 26

enumerator kPXP_WfebStoreCh1InterruptEnable
WFE-B store channel 1 completed. bit 27

enumerator kPXP_InputStoreInterruptEnable
Input store completed. bit 28

enumerator kPXP_DitherStoreInterruptEnable
Dither store completed. bit 29

enumerator kPXP_WfeaStoreInterruptEnable
WFE-A store completed. bit 30

enumerator kPXP_WfebStoreInterruptEnable
WFE-B store completed. bit 31

enum _pxp_flags
PXP status flags.

Note: These enumerations are meant to be OR’d together to form a bit mask.

1052 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Values:

enumerator kPXP_CompleteFlag
PXP process completed. bit 0

enumerator kPXP_Axi0WriteErrorFlag
PXP encountered an AXI write error and processing has been terminated. bit 1

enumerator kPXP_Axi0ReadErrorFlag
PXP encountered an AXI read error and processing has been terminated. bit 2

enumerator kPXP_CommandLoadFlag
The command set by PXP_SetNextCommand has been loaded, could set new command.
bit 3

enumerator kPXP_CompressDoneFlag
Compress done. bit 15

enumerator kPXP_InputFetchCh0CompleteFlag
Input fetch channel 0 completed. bit 16

enumerator kPXP_InputFetchCh1CompleteFlag
Input fetch channel 1 completed. bit 17

enumerator kPXP_InputStoreCh0CompleteFlag
Input store channel 0 completed. bit 18

enumerator kPXP_InputStoreCh1CompleteFlag
Input store channel 1 completed. bit 19

enumerator kPXP_DitherFetchCh0CompleteFlag
Dither fetch channel 0 completed. bit 20

enumerator kPXP_DitherFetchCh1CompleteFlag
Dither fetch channel 1 completed. bit 21

enumerator kPXP_DitherStoreCh0CompleteFlag
Dither store channel 0 completed. bit 22

enumerator kPXP_DitherStoreCh1CompleteFlag
Dither store channel 1 completed. bit 23

enumerator kPXP_WfeaStoreCh0CompleteFlag
WFE-A store channel 0 completed. bit 24

enumerator kPXP_WfeaStoreCh1CompleteFlag
WFE-A store channel 1 completed. bit 25

enumerator kPXP_WfebStoreCh0CompleteFlag
WFE-B store channel 0 completed. bit 26

enumerator kPXP_WfebStoreCh1CompleteFlag
WFE-B store channel 1 completed. bit 27

enumerator kPXP_InputStoreCompleteFlag
Input store completed. bit 28

enumerator kPXP_DitherStoreCompleteFlag
Dither store completed. bit 29

enumerator kPXP_WfeaStoreCompleteFlag
WFE-A store completed. bit 30

2.97. PXP: Pixel Pipeline 1053



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_WfebStoreCompleteFlag
WFE-B store completed. bit 31

enum _pxp_flip_mode
PXP output flip mode.

Values:

enumerator kPXP_FlipDisable
Flip disable.

enumerator kPXP_FlipHorizontal
Horizontal flip.

enumerator kPXP_FlipVertical
Vertical flip.

enumerator kPXP_FlipBoth
Flip both directions.

enum _pxp_rotate_position
PXP rotate mode.

Values:

enumerator kPXP_RotateOutputBuffer
Rotate the output buffer.

enumerator kPXP_RotateProcessSurface
Rotate the process surface. Cannot be used together with flip, scale, or decimation
function.

enum _pxp_rotate_degree
PXP rotate degree.

Values:

enumerator kPXP_Rotate0
Clock wise rotate 0 deg.

enumerator kPXP_Rotate90
Clock wise rotate 90 deg.

enumerator kPXP_Rotate180
Clock wise rotate 180 deg.

enumerator kPXP_Rotate270
Clock wise rotate 270 deg.

enum _pxp_interlaced_output_mode
PXP interlaced output mode.

Values:

enumerator kPXP_OutputProgressive
All data written in progressive format to output buffer 0.

enumerator kPXP_OutputField0
Only write field 0 data to output buffer 0.

enumerator kPXP_OutputField1
Only write field 1 data to output buffer 0.

1054 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_OutputInterlaced
Field 0 write to buffer 0, field 1 write to buffer 1.

enum _pxp_output_pixel_format
PXP output buffer format.

Values:

enumerator kPXP_OutputPixelFormatARGB8888
32-bit pixels with alpha.

enumerator kPXP_OutputPixelFormatRGB888
32-bit pixels without alpha (unpacked 24-bit format)

enumerator kPXP_OutputPixelFormatRGB888P
24-bit pixels without alpha (packed 24-bit format)

enumerator kPXP_OutputPixelFormatARGB1555
16-bit pixels with alpha.

enumerator kPXP_OutputPixelFormatARGB4444
16-bit pixels with alpha.

enumerator kPXP_OutputPixelFormatRGB555
16-bit pixels without alpha.

enumerator kPXP_OutputPixelFormatRGB444
16-bit pixels without alpha.

enumerator kPXP_OutputPixelFormatRGB565
16-bit pixels without alpha.

enumerator kPXP_OutputPixelFormatYUV1P444
32-bit pixels (1-plane XYUV unpacked).

enumerator kPXP_OutputPixelFormatUYVY1P422
16-bit pixels (1-plane U0,Y0,V0,Y1 interleaved bytes)

enumerator kPXP_OutputPixelFormatVYUY1P422
16-bit pixels (1-plane V0,Y0,U0,Y1 interleaved bytes)

enumerator kPXP_OutputPixelFormatY8
8-bit monochrome pixels (1-plane Y luma output)

enumerator kPXP_OutputPixelFormatY4
4-bit monochrome pixels (1-plane Y luma, 4 bit truncation)

enumerator kPXP_OutputPixelFormatYUV2P422
16-bit pixels (2-plane UV interleaved bytes)

enumerator kPXP_OutputPixelFormatYUV2P420
16-bit pixels (2-plane UV)

enumerator kPXP_OutputPixelFormatYVU2P422
16-bit pixels (2-plane VU interleaved bytes)

enumerator kPXP_OutputPixelFormatYVU2P420
16-bit pixels (2-plane VU)

enum _pxp_ps_pixel_format
PXP process surface buffer pixel format.

Values:

2.97. PXP: Pixel Pipeline 1055



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_PsPixelFormatRGB888
32-bit pixels without alpha (unpacked 24-bit format)

enumerator kPXP_PsPixelFormatRGB555
16-bit pixels without alpha.

enumerator kPXP_PsPixelFormatRGB444
16-bit pixels without alpha.

enumerator kPXP_PsPixelFormatRGB565
16-bit pixels without alpha.

enumerator kPXP_PsPixelFormatYUV1P444
32-bit pixels (1-plane XYUV unpacked).

enumerator kPXP_PsPixelFormatUYVY1P422
16-bit pixels (1-plane U0,Y0,V0,Y1 interleaved bytes)

enumerator kPXP_PsPixelFormatVYUY1P422
16-bit pixels (1-plane V0,Y0,U0,Y1 interleaved bytes)

enumerator kPXP_PsPixelFormatY8
8-bit monochrome pixels (1-plane Y luma output)

enumerator kPXP_PsPixelFormatY4
4-bit monochrome pixels (1-plane Y luma, 4 bit truncation)

enumerator kPXP_PsPixelFormatYUV2P422
16-bit pixels (2-plane UV interleaved bytes)

enumerator kPXP_PsPixelFormatYUV2P420
16-bit pixels (2-plane UV)

enumerator kPXP_PsPixelFormatYVU2P422
16-bit pixels (2-plane VU interleaved bytes)

enumerator kPXP_PsPixelFormatYVU2P420
16-bit pixels (2-plane VU)

enumerator kPXP_PsPixelFormatYVU422
16-bit pixels (3-plane)

enumerator kPXP_PsPixelFormatYVU420
16-bit pixels (3-plane)

enum _pxp_ps_yuv_format
PXP process surface buffer YUV format.

Values:

enumerator kPXP_PsYUVFormatYUV
YUV format.

enumerator kPXP_PsYUVFormatYCbCr
YCbCr format.

enum _pxp_as_pixel_format
PXP alpha surface buffer pixel format.

Values:

enumerator kPXP_AsPixelFormatARGB8888
32-bit pixels with alpha.

1056 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_AsPixelFormatRGB888
32-bit pixels without alpha (unpacked 24-bit format)

enumerator kPXP_AsPixelFormatARGB1555
16-bit pixels with alpha.

enumerator kPXP_AsPixelFormatARGB4444
16-bit pixels with alpha.

enumerator kPXP_AsPixelFormatRGB555
16-bit pixels without alpha.

enumerator kPXP_AsPixelFormatRGB444
16-bit pixels without alpha.

enumerator kPXP_AsPixelFormatRGB565
16-bit pixels without alpha.

enum _pxp_alpha_mode
PXP alpha mode during blending.

Values:

enumerator kPXP_AlphaEmbedded
The alpha surface pixel alpha value will be used for blend.

enumerator kPXP_AlphaOverride
The user defined alpha value will be used for blend directly.

enumerator kPXP_AlphaMultiply
The alpha surface pixel alpha value scaled the user defined alpha value will be used
for blend, for example, pixel alpha set set to 200, user defined alpha set to 100, then
the reault alpha is 200 * 100 / 255.

enumerator kPXP_AlphaRop
Raster operation.

enum _pxp_rop_mode
PXP ROP mode during blending.

Explanation:

• AS: Alpha surface

• PS: Process surface

• nAS: Alpha surface NOT value

• nPS: Process surface NOT value

Values:

enumerator kPXP_RopMaskAs
AS AND PS.

enumerator kPXP_RopMaskNotAs
nAS AND PS.

enumerator kPXP_RopMaskAsNot
AS AND nPS.

enumerator kPXP_RopMergeAs
AS OR PS.

2.97. PXP: Pixel Pipeline 1057



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_RopMergeNotAs
nAS OR PS.

enumerator kPXP_RopMergeAsNot
AS OR nPS.

enumerator kPXP_RopNotCopyAs
nAS.

enumerator kPXP_RopNot
nPS.

enumerator kPXP_RopNotMaskAs
AS NAND PS.

enumerator kPXP_RopNotMergeAs
AS NOR PS.

enumerator kPXP_RopXorAs
AS XOR PS.

enumerator kPXP_RopNotXorAs
AS XNOR PS.

enum _pxp_block_size
PXP process block size.

Values:

enumerator kPXP_BlockSize8
Process 8x8 pixel blocks.

enumerator kPXP_BlockSize16
Process 16x16 pixel blocks.

enum _pxp_csc1_mode
PXP CSC1 mode.

Values:

enumerator kPXP_Csc1YUV2RGB
YUV to RGB.

enumerator kPXP_Csc1YCbCr2RGB
YCbCr to RGB.

enum _pxp_csc2_mode
PXP CSC2 mode.

Values:

enumerator kPXP_Csc2YUV2RGB
YUV to RGB.

enumerator kPXP_Csc2YCbCr2RGB
YCbCr to RGB.

enumerator kPXP_Csc2RGB2YUV
RGB to YUV.

enumerator kPXP_Csc2RGB2YCbCr
RGB to YCbCr.

1058 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _pxp_ram
PXP internal memory.

Values:

enumerator kPXP_RamDither0Lut
Dither 0 LUT memory.

enumerator kPXP_RamDither1Lut
Dither 1 LUT memory.

enumerator kPXP_RamDither2Lut
Dither 2 LUT memory.

enumerator kPXP_RamDither0Err0
Dither 0 ERR0 memory.

enumerator kPXP_RamDither0Err1
Dither 0 ERR1 memory.

enumerator kPXP_RamAluA
ALU A instr memory.

enumerator kPXP_RamAluB
ALU B instr memory.

enumerator kPXP_WfeAFetch
WFE-A fetch memory.

enumerator kPXP_WfeBFetch
WFE-B fetch memory.

enum _pxp_dither_mode
PXP dither mode.

Values:

enumerator kPXP_DitherPassThrough
Pass through, no dither.

enumerator kPXP_DitherFloydSteinberg
Floyd-Steinberg. For dither engine 0 only.

enumerator kPXP_DitherAtkinson
Atkinson. For dither engine 0 only.

enumerator kPXP_DitherOrdered
Ordered dither.

enumerator kPXP_DitherQuantOnly
No dithering, only quantization.

enumerator kPXP_DitherSierra
Sierra. For dither engine 0 only.

enum _pxp_dither_lut_mode
PXP dither LUT mode.

Values:

enumerator kPXP_DitherLutOff
The LUT memory is not used for LUT, could be used as ordered dither index matrix.

2.97. PXP: Pixel Pipeline 1059



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_DitherLutPreDither
Use LUT at the pre-dither stage, The pre-dither LUT could only be used in Floyd mode
or Atkinson mode, which are not supported by current PXP module.

enumerator kPXP_DitherLutPostDither
Use LUT at the post-dither stage.

enum _pxp_dither_matrix_size
PXP dither matrix size.

Values:

enumerator kPXP_DitherMatrix4
The dither index matrix is 4x4.

enumerator kPXP_DitherMatrix8
The dither index matrix is 8x8.

enumerator kPXP_DitherMatrix16
The dither index matrix is 16x16.

Porter Duff factor mode. .

Values:

enumerator kPXP_PorterDuffFactorOne
Use 1.

enumerator kPXP_PorterDuffFactorZero
Use 0.

enumerator kPXP_PorterDuffFactorStraight
Use straight alpha.

enumerator kPXP_PorterDuffFactorInversed
Use inversed alpha.

Porter Duff global alpha mode. .

Values:

enumerator kPXP_PorterDuffGlobalAlpha
Use global alpha.

enumerator kPXP_PorterDuffLocalAlpha
Use local alpha in each pixel.

enumerator kPXP_PorterDuffScaledAlpha
Use global alpha * local alpha.

Porter Duff alpha mode. .

Values:

enumerator kPXP_PorterDuffAlphaStraight
Use straight alpha, s0_alpha’ = s0_alpha.

enumerator kPXP_PorterDuffAlphaInversed
Use inversed alpha, s0_alpha’ = 0xFF - s0_alpha.

1060 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Porter Duff color mode. .

Values:

enumerator kPXP_PorterDuffColorStraight

Deprecated:
Use kPXP_PorterDuffColorNoAlpha.

enumerator kPXP_PorterDuffColorInversed

Deprecated:
Use kPXP_PorterDuffColorWithAlpha.

enumerator kPXP_PorterDuffColorNoAlpha
s0_pixel’ = s0_pixel.

enumerator kPXP_PorterDuffColorWithAlpha
s0_pixel’ = s0_pixel * s0_alpha”.

enum _pxp_porter_duff_blend_mode
PXP Porter Duff blend mode. Note: don’t change the enum item value.

Values:

enumerator kPXP_PorterDuffSrc
Source Only

enumerator kPXP_PorterDuffAtop
Source Atop

enumerator kPXP_PorterDuffOver
Source Over

enumerator kPXP_PorterDuffIn
Source In.

enumerator kPXP_PorterDuffOut
Source Out.

enumerator kPXP_PorterDuffDst
Destination Only.

enumerator kPXP_PorterDuffDstAtop
Destination Atop.

enumerator kPXP_PorterDuffDstOver
Destination Over.

enumerator kPXP_PorterDuffDstIn
Destination In.

enumerator kPXP_PorterDuffDstOut
Destination Out.

enumerator kPXP_PorterDuffXor
XOR.

enumerator kPXP_PorterDuffClear
Clear.

enumerator kPXP_PorterDuffMax

2.97. PXP: Pixel Pipeline 1061



MCUXpresso SDK Documentation, Release 25.12.00

enum _pxp_process_engine_name
PXP process engine enumeration.

Values:

enumerator kPXP_PsAsOutEngine

enumerator kPXP_DitherEngine

enumerator kPXP_WfeaEngine

enumerator kPXP_WfebEngine

enumerator kPXP_InputFetchStoreEngine

enumerator kPXP_Alpha1Engine

enumerator kPXP_Csc2Engine

enumerator kPXP_LutEngine

enumerator kPXP_Rotate0Engine

enumerator kPXP_Rotate1Engine

enum _pxp_fetch_engine_name
PXP fetch engine enumeration.

There are actually 4 fetch engine implemented, the others are WFE-A fetch engine and
WFE-B fetch engine, whose registers are reserved from developer.

Values:

enumerator kPXP_FetchInput

enumerator kPXP_FetchDither

enum _pxp_fetch_interface_mode
PXP fetch engine interface mode with the upstream store engine.

Values:

enumerator kPXP_FetchModeNormal

enumerator kPXP_FetchModeHandshake

enumerator kPXP_FetchModeBypass

enum _pxp_scanline_burst
PXP fetch/store engine burst length for scanline mode.

Values:

enumerator kPXP_Scanline8bytes

enumerator kPXP_Scanline16bytes

enumerator kPXP_Scanline32bytes

enumerator kPXP_Scanline64bytes

enum _pxp_activeBits
PXP fetch/store engine input/output active bits configuration.

Since fetch engine is 64-bit input and 32-bit output per channel, need to configure both
channels to use 64-bit input mode. And expand configuration will have no effect.

Values:

1062 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_Active8Bits

enumerator kPXP_Active16Bits

enumerator kPXP_Active32Bits

enumerator kPXP_Active64Bits

enum _pxp_fetch_output_word_order
PXP fetch engine output word order when using 2 channels for 64-bit mode.

Values:

enumerator kPXP_FetchOutputChannel1channel0
In 64bit mode, channel 1 output high byte.

enumerator kPXP_FetchOutputChannel0channel1
In 64bit mode, channel 0 output high byte.

enum _pxp_fetch_pixel_format
PXP fetch engine input pixel format.

Values:

enumerator kPXP_FetchFormatRGB565

enumerator kPXP_FetchFormatRGB555

enumerator kPXP_FetchFormatARGB1555

enumerator kPXP_FetchFormatRGB444

enumerator kPXP_FetchFormatARGB4444

enumerator kPXP_FetchFormatYUYVorYVYU

enumerator kPXP_FetchFormatUYVYorVYUY

enumerator kPXP_FetchFormatYUV422_2P

enum _pxp_store_engine_name
PXP store engine enumeration.

There are actually 4 store engine implemented, the others are WFE-A store engine and
WFE-B store engine, whose registers are reserved from developer.

Values:

enumerator kPXP_StoreInput

enumerator kPXP_StoreDither

enum _pxp_store_interface_mode
PXP store engine interface mode with the downstream fetch engine.

Values:

enumerator kPXP_StoreModeBypass
Store engine output the input data, after the shift function directly to the downstream
Fetch Engine.

enumerator kPXP_StoreModeNormal
Store engine stores the input data to memory.

2.97. PXP: Pixel Pipeline 1063



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_StoreModeHandshake
Downstream fetch engine fetch data per scanline from memory using buffer sharing
with store engine.

enumerator kPXP_StoreModeDual
Store engine outputs data directly to downstream fetch engine(Bypass) but also storing
it to memory at the same time.

enum _pxp_store_yuv_mode
PXP store engine YUV output mode.

Values:

enumerator kPXP_StoreYUVDisable
Do not output YUV pixel format.

enumerator kPXP_StoreYUVPlane1
Use channel to output YUV422_1p pixel format, need to use shift operation to make
sure each pixel component in its proper position: 64-bits of pixel data format and each
32 bits as {Y0, U0, Y1, V0}.

enumerator kPXP_StoreYUVPlane2
Use channel to output YUV422_2p pixel format, need to use shift operation to make sure
each pixel component in its proper position: channel 0 {Y0,Y1}, channel 1 {U0,V0}.

enum _pxp_cfa_input_format
PXP pre-dither CFA engine input pixel format.

Values:

enumerator kPXP_CfaRGB888

enumerator kPXP_CfaRGB444

enum _pxp_histogram_mask_condition
PXP histogram mask condition.

Values:

enumerator kPXP_HistogramMaskEqual
Value that equal to value0 will pass the mask operation.

enumerator kPXP_HistogramMaskNotequal
Value that not equal to value0 will pass the mask operation.

enumerator kPXP_HistogramMaskIn
Value that within the range of value0-value1 will pass the mask operation.

enumerator kPXP_HistogramMaskOut
Value that without the range of value0-value1 will pass the mask operation.

enum _pxp_histgram_flags
PXP Histogram operation result flags.

Values:

enumerator kPXP_Histogram2levelMatch

enumerator kPXP_Histogram4levelMatch

enumerator kPXP_Histogram8levelMatch

enumerator kPXP_Histogram16levelMatch

1064 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPXP_Histogram32levelMatch

typedef enum _pxp_flip_mode pxp_flip_mode_t
PXP output flip mode.

typedef enum _pxp_rotate_position pxp_rotate_position_t
PXP rotate mode.

typedef enum _pxp_rotate_degree pxp_rotate_degree_t
PXP rotate degree.

typedef enum _pxp_interlaced_output_mode pxp_interlaced_output_mode_t
PXP interlaced output mode.

typedef enum _pxp_output_pixel_format pxp_output_pixel_format_t
PXP output buffer format.

typedef struct _pxp_output_buffer_config pxp_output_buffer_config_t
PXP output buffer configuration.

typedef enum _pxp_ps_pixel_format pxp_ps_pixel_format_t
PXP process surface buffer pixel format.

typedef enum _pxp_ps_yuv_format pxp_ps_yuv_format_t
PXP process surface buffer YUV format.

typedef struct _pxp_ps_buffer_config pxp_ps_buffer_config_t
PXP process surface buffer configuration.

typedef enum _pxp_as_pixel_format pxp_as_pixel_format_t
PXP alpha surface buffer pixel format.

typedef struct _pxp_as_buffer_config pxp_as_buffer_config_t
PXP alphs surface buffer configuration.

typedef enum _pxp_alpha_mode pxp_alpha_mode_t
PXP alpha mode during blending.

typedef enum _pxp_rop_mode pxp_rop_mode_t
PXP ROP mode during blending.

Explanation:

• AS: Alpha surface

• PS: Process surface

• nAS: Alpha surface NOT value

• nPS: Process surface NOT value

typedef struct _pxp_as_blend_config pxp_as_blend_config_t
PXP alpha surface blending configuration.

typedef struct _pxp_as_blend_secondary_config pxp_as_blend_secondary_config_t
PXP secondary alpha surface blending engine configuration.

typedef enum _pxp_block_size pxp_block_size_t
PXP process block size.

typedef enum _pxp_csc1_mode pxp_csc1_mode_t
PXP CSC1 mode.

typedef enum _pxp_csc2_mode pxp_csc2_mode_t
PXP CSC2 mode.

2.97. PXP: Pixel Pipeline 1065



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _pxp_csc2_config pxp_csc2_config_t
PXP CSC2 configuration.

Converting from YUV/YCbCr color spaces to the RGB color space uses the following equation
structure:

R = A1(Y+D1) + A2(U+D2) + A3(V+D3) G = B1(Y+D1) + B2(U+D2) + B3(V+D3) B = C1(Y+D1) +
C2(U+D2) + C3(V+D3)

Converting from the RGB color space to YUV/YCbCr color spaces uses the following equation
structure:

Y = A1*R + A2*G + A3*B + D1 U = B1*R + B2*G + B3*B + D2 V = C1*R + C2*G + C3*B + D3

typedef enum _pxp_ram pxp_ram_t
PXP internal memory.

typedef struct _pxp_dither_final_lut_data pxp_dither_final_lut_data_t
PXP dither final LUT data.

typedef struct _pxp_dither_config pxp_dither_config_t
PXP dither configuration.

typedef enum _pxp_porter_duff_blend_mode pxp_porter_duff_blend_mode_t
PXP Porter Duff blend mode. Note: don’t change the enum item value.

typedef struct _pxp_pic_copy_config pxp_pic_copy_config_t
PXP Porter Duff blend mode. Note: don’t change the enum item value.

typedef enum _pxp_process_engine_name pxp_process_engine_name_t
PXP process engine enumeration.

typedef enum _pxp_fetch_engine_name pxp_fetch_engine_name_t
PXP fetch engine enumeration.

There are actually 4 fetch engine implemented, the others are WFE-A fetch engine and
WFE-B fetch engine, whose registers are reserved from developer.

typedef enum _pxp_fetch_interface_mode pxp_fetch_interface_mode_t
PXP fetch engine interface mode with the upstream store engine.

typedef enum _pxp_scanline_burst pxp_scanline_burst_t
PXP fetch/store engine burst length for scanline mode.

typedef struct _pxp_block_format_config pxp_block_config_t
PXP fetch engine block configuration.

typedef enum _pxp_activeBits pxp_active_bits_t
PXP fetch/store engine input/output active bits configuration.

Since fetch engine is 64-bit input and 32-bit output per channel, need to configure both
channels to use 64-bit input mode. And expand configuration will have no effect.

typedef enum _pxp_fetch_output_word_order pxp_fetch_output_word_order_t
PXP fetch engine output word order when using 2 channels for 64-bit mode.

typedef struct _pxp_fetch_shift_component pxp_fetch_shift_component_t
PXP fetch engine shift component configuration.

Fetch engine can divded each word into 4 components and shift them.

1066 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _pxp_fetch_shift_config pxp_fetch_shift_config_t
PXP fetch engine shift configuration.

Fetch engine can divded each word into 4 components and shift them. For example, to
change YUV444 to YVU444, U and V positions need to be shifted: OFFSET0=8, OFFSET1=0,
OFFSET2=16, OFFSET3=24, WIDTH0/1/2/3=8

typedef enum _pxp_fetch_pixel_format pxp_fetch_pixel_format_t
PXP fetch engine input pixel format.

typedef struct _pxp_fetch_engine_config pxp_fetch_engine_config_t
PXP fetch engine configuration for one of the channel.

typedef enum _pxp_store_engine_name pxp_store_engine_name_t
PXP store engine enumeration.

There are actually 4 store engine implemented, the others are WFE-A store engine and
WFE-B store engine, whose registers are reserved from developer.

typedef enum _pxp_store_interface_mode pxp_store_interface_mode_t
PXP store engine interface mode with the downstream fetch engine.

typedef enum _pxp_store_yuv_mode pxp_store_yuv_mode_t
PXP store engine YUV output mode.

typedef struct _pxp_store_shift_config pxp_store_shift_config_t
Shift configuration for PXP store engine.

typedef struct _pxp_store_engine_config pxp_store_engine_config_t
PXP store engine configuration for one of the channel.

typedef enum _pxp_cfa_input_format pxp_cfa_input_format_t
PXP pre-dither CFA engine input pixel format.

typedef struct _pxp_cfa_config pxp_cfa_config_t
PXP pre-dither CFA engine configuration.

typedef enum _pxp_histogram_mask_condition pxp_histogram_mask_condition_t
PXP histogram mask condition.

typedef struct _pxp_histogram_config pxp_histogram_config_t
PXP Histogram configuration.

typedef struct _pxp_histogram_mask_result pxp_histogram_mask_result_t
PXP Histogram mask result.

typedef struct _pxp_wfea_engine_config pxp_wfea_engine_config_t
PXP WFE-A engine configuration.

PXP_LUT_TABLE_BYTE

PXP_INTERNAL_RAM_LUT_BYTE

PXP_SHARE_ROTATE

PXP_USE_PATH

PXP_COMBINE_BYTE_TO_WORD(dataAddr)

struct _pxp_output_buffer_config
#include <fsl_pxp.h> PXP output buffer configuration.

2.97. PXP: Pixel Pipeline 1067



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

pxp_output_pixel_format_t pixelFormat
Output buffer pixel format.

pxp_interlaced_output_mode_t interlacedMode
Interlaced output mode.

uint32_t buffer0Addr
Output buffer 0 address.

uint32_t buffer1Addr
Output buffer 1 address, used for UV data in YUV 2-plane mode, or field 1 in output
interlaced mode.

uint16_t pitchBytes
Number of bytes between two vertically adjacent pixels.

uint16_t width
Pixels per line.

uint16_t height
How many lines in output buffer.

struct _pxp_ps_buffer_config
#include <fsl_pxp.h> PXP process surface buffer configuration.

Public Members

pxp_ps_pixel_format_t pixelFormat
PS buffer pixel format.

bool swapByte
For each 16 bit word, set true to swap the two bytes.

uint32_t bufferAddr
Input buffer address for the first panel.

uint32_t bufferAddrU
Input buffer address for the second panel.

uint32_t bufferAddrV
Input buffer address for the third panel.

uint16_t pitchBytes
Number of bytes between two vertically adjacent pixels.

struct _pxp_as_buffer_config
#include <fsl_pxp.h> PXP alphs surface buffer configuration.

Public Members

pxp_as_pixel_format_t pixelFormat
AS buffer pixel format.

uint32_t bufferAddr
Input buffer address.

uint16_t pitchBytes
Number of bytes between two vertically adjacent pixels.

1068 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _pxp_as_blend_config
#include <fsl_pxp.h> PXP alpha surface blending configuration.

Public Members

uint8_t alpha
User defined alpha value, only used when alphaMode is kPXP_AlphaOverride or
kPXP_AlphaRop.

bool invertAlpha
Set true to invert the alpha.

pxp_alpha_mode_t alphaMode
Alpha mode.

pxp_rop_mode_t ropMode
ROP mode, only valid when alphaMode is kPXP_AlphaRop.

struct _pxp_as_blend_secondary_config
#include <fsl_pxp.h> PXP secondary alpha surface blending engine configuration.

Public Members

bool invertAlpha
Set true to invert the alpha.

bool ropEnable
Enable rop mode.

pxp_rop_mode_t ropMode
ROP mode, only valid when ropEnable is true.

struct _pxp_csc2_config
#include <fsl_pxp.h> PXP CSC2 configuration.

Converting from YUV/YCbCr color spaces to the RGB color space uses the following equation
structure:

R = A1(Y+D1) + A2(U+D2) + A3(V+D3) G = B1(Y+D1) + B2(U+D2) + B3(V+D3) B = C1(Y+D1) +
C2(U+D2) + C3(V+D3)

Converting from the RGB color space to YUV/YCbCr color spaces uses the following equation
structure:

Y = A1*R + A2*G + A3*B + D1 U = B1*R + B2*G + B3*B + D2 V = C1*R + C2*G + C3*B + D3

Public Members

pxp_csc2_mode_t mode
Convertion mode.

float A1
A1.

float A2
A2.

float A3
A3.

2.97. PXP: Pixel Pipeline 1069



MCUXpresso SDK Documentation, Release 25.12.00

float B1
B1.

float B2
B2.

float B3
B3.

float C1
C1.

float C2
C2.

float C3
C3.

int16_t D1
D1.

int16_t D2
D2.

int16_t D3
D3.

struct _pxp_dither_final_lut_data
#include <fsl_pxp.h> PXP dither final LUT data.

Public Members

uint32_t data_3_0
Data 3 to data 0. Data 0 is the least significant byte.

uint32_t data_7_4
Data 7 to data 4. Data 4 is the least significant byte.

uint32_t data_11_8
Data 11 to data 8. Data 8 is the least significant byte.

uint32_t data_15_12
Data 15 to data 12. Data 12 is the least significant byte.

struct _pxp_dither_config
#include <fsl_pxp.h> PXP dither configuration.

Public Members

uint32_t enableDither0
Enable dither engine 0 or not, set 1 to enable, 0 to disable.

uint32_t enableDither1
Enable dither engine 1 or not, set 1 to enable, 0 to disable.

uint32_t enableDither2
Enable dither engine 2 or not, set 1 to enable, 0 to disable.

uint32_t ditherMode0
Dither mode for dither engine 0. See _pxp_dither_mode.

1070 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t ditherMode1
Dither mode for dither engine 1. See _pxp_dither_mode.

uint32_t ditherMode2
Dither mode for dither engine 2. See _pxp_dither_mode.

uint32_t quantBitNum
Number of bits quantize down to, the valid value is 1~7.

uint32_t lutMode
How to use the memory LUT, see _pxp_dither_lut_mode. This must be set to
kPXP_DitherLutOff if any dither engine uses kPXP_DitherOrdered mode.

uint32_t idxMatrixSize0
Size of index matrix used for dither for dither engine 0, see _pxp_dither_matrix_size.

uint32_t idxMatrixSize1
Size of index matrix used for dither for dither engine 1, see _pxp_dither_matrix_size.

uint32_t idxMatrixSize2
Size of index matrix used for dither for dither engine 2, see _pxp_dither_matrix_size.

uint32_t enableFinalLut
Enable the final LUT, set 1 to enable, 0 to disable.

struct pxp_porter_duff_config_t
#include <fsl_pxp.h> PXP Porter Duff configuration.

Public Members

uint32_t enable
Enable or disable Porter Duff.

uint32_t srcFactorMode
Source layer (or AS, s1) factor mode, see pxp_porter_duff_factor_mode.

uint32_t dstGlobalAlphaMode
Destination layer (or PS, s0) global alpha mode, see
pxp_porter_duff_global_alpha_mode.

uint32_t dstAlphaMode
Destination layer (or PS, s0) alpha mode, see pxp_porter_duff_alpha_mode.

uint32_t dstColorMode
Destination layer (or PS, s0) color mode, see pxp_porter_duff_color_mode.

uint32_t dstFactorMode
Destination layer (or PS, s0) factor mode, see pxp_porter_duff_factor_mode.

uint32_t srcGlobalAlphaMode
Source layer (or AS, s1) global alpha mode, see pxp_porter_duff_global_alpha_mode.

uint32_t srcAlphaMode
Source layer (or AS, s1) alpha mode, see pxp_porter_duff_alpha_mode.

uint32_t srcColorMode
Source layer (or AS, s1) color mode, see pxp_porter_duff_color_mode.

uint32_t dstGlobalAlpha
Destination layer (or PS, s0) global alpha value, 0~255.

2.97. PXP: Pixel Pipeline 1071



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t srcGlobalAlpha
Source layer (or AS, s1) global alpha value, 0~255.

struct _pxp_pic_copy_config
#include <fsl_pxp.h> PXP Porter Duff blend mode. Note: don’t change the enum item value.

Public Members

uint32_t srcPicBaseAddr
Source picture base address.

uint16_t srcPitchBytes
Pitch of the source buffer.

uint16_t srcOffsetX
Copy position in source picture.

uint16_t srcOffsetY
Copy position in source picture.

uint32_t destPicBaseAddr
Destination picture base address.

uint16_t destPitchBytes
Pitch of the destination buffer.

uint16_t destOffsetX
Copy position in destination picture.

uint16_t destOffsetY
Copy position in destination picture.

uint16_t width
Pixel number each line to copy.

uint16_t height
Lines to copy.

pxp_as_pixel_format_t pixelFormat
Buffer pixel format.

struct _pxp_block_format_config
#include <fsl_pxp.h> PXP fetch engine block configuration.

Public Members

bool enableblock
Enable to use block mode instead of scanline mode. Note: 1.Make sure to enable if
rotate or flip mode is enabled. 2.Block mode cannot work on 64bpp data stream where
activeBits = 64. 3. If LUT processing is in the path between the fetch and store engind,
block mode must be enabled.

bool blockSize16
Enable to use 16*16 block, otherwise it will be 8*8 block.

pxp_scanline_burst_t burstLength
When using scanline mode, configure this for burst length.

1072 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _pxp_fetch_shift_component
#include <fsl_pxp.h> PXP fetch engine shift component configuration.

Fetch engine can divded each word into 4 components and shift them.

struct _pxp_fetch_shift_config
#include <fsl_pxp.h> PXP fetch engine shift configuration.

Fetch engine can divded each word into 4 components and shift them. For example, to
change YUV444 to YVU444, U and V positions need to be shifted: OFFSET0=8, OFFSET1=0,
OFFSET2=16, OFFSET3=24, WIDTH0/1/2/3=8

struct _pxp_fetch_engine_config
#include <fsl_pxp.h> PXP fetch engine configuration for one of the channel.

Public Members

bool channelEnable
Enable channel.

uint32_t inputBaseAddr0
The input base address. Used for Y plane input when pixel format is YUV422_2p.

uint32_t inputBaseAddr1
Must configure this for UV plane when input pixel format is YUV422_2p.

uint16_t totalHeight
Total height for the actual fetch size.

uint16_t totalWidth
Total width for the actual fetch size.

uint16_t pitchBytes
Channel input pitch

uint16_t ulcX
X coordinate of upper left coordinate in pixels of the active area of the total input mem-
ory

uint16_t ulcY
Y coordinate of upper left coordinate in pixels of the active area of the total input mem-
ory

uint16_t lrcX
X coordinate of Lower right coordinate in pixels of the active area of the total input
memory

uint16_t lrcY
Y coordinate of Lower right coordinate in pixels of the active area of the total input
memory

uint32_t backGroundColor
Pixel value of the background color for the space outside the active area.

pxp_fetch_interface_mode_t interface
Interface mode, normal/bypass/handshake

pxp_active_bits_t activeBits
Input active bits.

pxp_fetch_pixel_format_t pixelFormat
Input pixel fetch format

2.97. PXP: Pixel Pipeline 1073



MCUXpresso SDK Documentation, Release 25.12.00

bool expandEnable
If enabled, input pixel will be expanded to ARGB8888, RGB888 or YUV444 of 32-bit
format at the output.

pxp_flip_mode_t flipMode
Flip the fetched input.

pxp_rotate_degree_t rotateDegree
Rotate the fetched input.

pxp_block_config_t fetchFormat
Block mode configuration. Make sure to enable block if rotate or flip mode is enabled.

pxp_fetch_shift_config_t shiftConfig
Shift operation configuration.

pxp_fetch_output_word_order_t wordOrder
Output word order when using 2 channels for 64-bit mode.

struct _pxp_store_shift_config
#include <fsl_pxp.h> Shift configuration for PXP store engine.

Public Members

bool shiftBypass
Bypass the data shift

uint64_t *pDataShiftMask
Pointer to mask0~mask7 to mask the 64-bit of output data, data is masked first then
shifted according to width.

uint8_t *pDataShiftWidth
Pointer to width0~width7. Bit 7 is for shifted direction, 0 to right. Bit0~5 is for shift
width.

uint8_t *pFlagShiftMask
Pointer to mask0~mask7 to mask the 8-bit of output flag, flag is masked first then
shifted according to width.

uint8_t *pFlagShiftWidth
Pointer to width0~width7. Bit 6 is for shifted direction, 0 to right. Bit0~5 is for shift
width.

struct _pxp_store_engine_config
#include <fsl_pxp.h> PXP store engine configuration for one of the channel.

Public Members

bool channelEnable
Enable channel.

uint32_t outputBaseAddr0

The channel 0 output address if using 2 channels. If using 1 channel(must be channel

0) and YUV422_2p output format, is for Y plane address.

uint32_t outputBaseAddr1

The channel 1 output address if using 2 channels. If using 1 channel(must be channel

0) and YUV422_2p output format, is for UV plane address.

1074 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint16_t totalHeight
Total height for the actual store size.

uint16_t totalWidth
Total width for the actual store size.

uint16_t pitchBytes
Channel input pitch

pxp_store_interface_mode_t interface
Interface mode, normal/bypass/handshake/dual. Make sure 2 channels use the same
mode if both enabled.

pxp_active_bits_t activeBits
Output active bits.

pxp_store_yuv_mode_t yuvMode
Whether to output YUV pixel format.

bool useFixedData
Whether to use fixed value for the output data. Can be used to write fixed value to
specific memory location for memory initialization.

uint32_t fixedData
The value of the fixed data.

bool packInSelect
When enabled, channel 0 will select low 32 bit shift out data to pack while channel i
select high 32 bit, otherwise all 64-bit of data will be selected.

pxp_block_config_t storeFormat
The format to store data, block or otherwise.

pxp_store_shift_config_t shiftConfig
Shift operation configuration.

struct _pxp_cfa_config
#include <fsl_pxp.h> PXP pre-dither CFA engine configuration.

Public Members

bool bypass
Bypass the CFA process

pxp_cfa_input_format_t pixelInFormat
The pixel input format for CFA.

uint8_t arrayWidth
CFA array vertical size in pixels, min 3 max 15.

uint8_t arrayHeight
CFA array horizontal size in pixels, min 3 max 15.

uint16_t totalHeight
Total height for the buffer size, make sure it is aligned with the dither fetch engine and
dither engine.

uint16_t totalWidth
Total width for the buffer size, make sure it is aligned with the dither fetch engine and
dither engine.

2.97. PXP: Pixel Pipeline 1075



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t *cfaValue
Pointer to the value for the CFA array. 2-bit per component: 00-R,01-G,10-B,11-W. For
a 4x4 array, 32 bits are need.

struct _pxp_histogram_config
#include <fsl_pxp.h> PXP Histogram configuration.

Public Members

bool enable
Enable histogram process.

uint8_t *pParamValue
Pointer to the 62(2+4+8+16+32) byte of param value for 2-level, 4-level…..32-level pa-
rameters. Only low 5-bit of each byte is valid.

uint8_t lutValueOffset
The starting bit position of the LUT value.

uint8_t lutValueWidth
The bit width of the LUT value, should be no more than 6 bits since only 63 LUTs are
supported.

bool enableMask
Enable mask operation.

uint8_t maskValue0
Value 0 for the condition judgement.

uint8_t maskValue1
Value 1 for the condition judgement.

uint8_t maskOffset
The starting bit position of the field to be checked against mask condition.

uint8_t maskWidth
The width of the field to be checked against mask condition.

pxp_histogram_mask_condition_t condition
The mask condition.

uint16_t totalHeight
Total height for the buffer size, make sure it is aligned with the output of legacy flow
or the WFE-A/B engine.

uint16_t totalWidth
Total width for the buffer size, make sure it is aligned with the output of legacy flow
or the WFE-A/B engine.

struct _pxp_histogram_mask_result
#include <fsl_pxp.h> PXP Histogram mask result.

Public Members

uint32_t pixelCount
The total count of the pixels that pass the mask(collided pixels).

uint32_t minX
The x offset of the ULC of the minimal histogram that covers all passed pixels.

1076 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t minY
The y offset of the ULC of the minimal histogram that covers all passed pixels.

uint32_t maxX
The x offset of the LRC of the minimal histogram that covers all passed pixels.

uint32_t maxY
The y offset of the LRC of the minimal histogram that covers all passed pixels.

uint64_t lutlist
The 64-bit LUT list of collided pixels, if pixel of LUT17 is collided, bit17 in the list is set.

struct _pxp_wfea_engine_config
#include <fsl_pxp.h> PXP WFE-A engine configuration.

Public Members

uint32_t y4Addr
Address for Y4 buffer.

uint32_t y4cAddr
Address for Y4C buffer, {Y4[3:0],3’b000,collision}, 8bpp.

uint32_t wbAddr
Address for EPDC working buffer.

uint16_t updateWidth
Width of the update area.

uint16_t updateHeight
Height of the update area.

uint16_t updatePitch
Pitch of the update area.

uint16_t ulcX
X coordinate of upper left coordinate of the total input memory

uint16_t ulcY
Y coordinate of upper left coordinate of the total input memory

uint16_t resX
Horizontal resolution in pixels.

uint8_t lutNum
The EPDC LUT number for the update.

bool fullUpdateEnable
Enable full update.

bool alphaEnable
Enable alpha field, upd is {Y4[3:0],3’b000,alpha} format, otherwise its
{Y4[3:0],4’b0000}.

bool detectionOnly
Detection only, do not write working buffer.

2.97. PXP: Pixel Pipeline 1077



MCUXpresso SDK Documentation, Release 25.12.00

2.98 QTMR: Quad Timer Driver

void QTMR_Init(TMR_Type *base, qtmr_channel_selection_t channel, const qtmr_config_t
*config)

Ungates the Quad Timer clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the Quad Timer
driver.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• config – Pointer to user’s Quad Timer config structure

void QTMR_Deinit(TMR_Type *base, qtmr_channel_selection_t channel)
Stops the counter and gates the Quad Timer clock.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

void QTMR_GetDefaultConfig(qtmr_config_t *config)
Fill in the Quad Timer config struct with the default settings.

The default values are:

config->debugMode = kQTMR_RunNormalInDebug;
config->enableExternalForce = false;
config->enableMasterMode = false;
config->faultFilterCount = 0;
config->faultFilterPeriod = 0;
config->primarySource = kQTMR_ClockDivide_2;
config->secondarySource = kQTMR_Counter0InputPin;

Parameters
• config – Pointer to user’s Quad Timer config structure.

void QTMR_EnableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t
mask)

Enables the selected Quad Timer interrupts.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration qtmr_interrupt_enable_t

void QTMR_DisableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t
mask)

Disables the selected Quad Timer interrupts.

Parameters
• base – Quad Timer peripheral base addres

1078 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• channel – Quad Timer channel number

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration qtmr_interrupt_enable_t

uint32_t QTMR_GetEnabledInterrupts(TMR_Type *base, qtmr_channel_selection_t channel)
Gets the enabled Quad Timer interrupts.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
qtmr_interrupt_enable_t

uint32_t QTMR_GetStatus(TMR_Type *base, qtmr_channel_selection_t channel)
Gets the Quad Timer status flags.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

Returns
The status flags. This is the logical OR of members of the enumeration
qtmr_status_flags_t

void QTMR_ClearStatusFlags(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t
mask)

Clears the Quad Timer status flags.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• mask – The status flags to clear. This is a logical OR of members of the
enumeration qtmr_status_flags_t

void QTMR_SetTimerPeriod(TMR_Type *base, qtmr_channel_selection_t channel, uint16_t ticks)
Sets the timer period in ticks.

Timers counts from initial value till it equals the count value set here. The counter will then
reinitialize to the value specified in the Load register.

Note:
a. This function will write the time period in ticks to COMP1 or COMP2 register depending

on the count direction

b. User can call the utility macros provided in fsl_common.h to convert to ticks

c. This function supports cases, providing only primary source clock without secondary
source clock.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• ticks – Timer period in units of ticks

2.98. QTMR: Quad Timer Driver 1079



MCUXpresso SDK Documentation, Release 25.12.00

void QTMR_SetCompareValue(TMR_Type *base, qtmr_channel_selection_t channel, uint16_t
ticks)

Set compare value.

This function sets the value used for comparison with the counter value.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• ticks – Timer period in units of ticks.

static inline void QTMR_SetLoadValue(TMR_Type *base, qtmr_channel_selection_t channel,
uint16_t value)

Set load value.

This function sets the value used to initialize the counter after a counter comparison.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• value – Load register initialization value.

static inline uint16_t QTMR_GetCurrentTimerCount(TMR_Type *base, qtmr_channel_selection_t
channel)

Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

Returns
Current counter value in ticks

static inline void QTMR_StartTimer(TMR_Type *base, qtmr_channel_selection_t channel,
qtmr_counting_mode_t clockSource)

Starts the Quad Timer counter.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• clockSource – Quad Timer clock source

static inline void QTMR_StopTimer(TMR_Type *base, qtmr_channel_selection_t channel)
Stops the Quad Timer counter.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

1080 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void QTMR_EnableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
Enable the Quad Timer DMA.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• mask – The DMA to enable. This is a logical OR of members of the enumer-
ation qtmr_dma_enable_t

void QTMR_DisableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
Disable the Quad Timer DMA.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• mask – The DMA to enable. This is a logical OR of members of the enumer-
ation qtmr_dma_enable_t

void QTMR_SetPwmOutputToIdle(TMR_Type *base, qtmr_channel_selection_t channel, bool
idleStatus)

Set PWM output in idle status (high or low).

Note: When the PWM is set again, the counting needs to be restarted.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• idleStatus – True: PWM output is high in idle status; false: PWM output is
low in idle status.

static inline qtmr_pwm_out_state_t QTMR_GetPwmOutputStatus(TMR_Type *base,
qtmr_channel_selection_t
channel)

Get the channel output status.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

Returns
Current channel output status.

uint8_t QTMR_GetPwmChannelStatus(TMR_Type *base, qtmr_channel_selection_t channel)
Get the PWM channel dutycycle value.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

Returns
Current channel dutycycle value.

2.98. QTMR: Quad Timer Driver 1081



MCUXpresso SDK Documentation, Release 25.12.00

void QTMR_SetPwmClockMode(TMR_Type *base, qtmr_channel_selection_t channel,
qtmr_primary_count_source_t prescaler)

This function set the value of the prescaler on QTimer channels.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• prescaler – Set prescaler value

FSL_QTMR_DRIVER_VERSION
Version

enum _qtmr_primary_count_source
Quad Timer primary clock source selection.

Values:

enumerator kQTMR_ClockCounter0InputPin
Use counter 0 input pin

enumerator kQTMR_ClockCounter1InputPin
Use counter 1 input pin

enumerator kQTMR_ClockCounter2InputPin
Use counter 2 input pin

enumerator kQTMR_ClockCounter3InputPin
Use counter 3 input pin

enumerator kQTMR_ClockCounter0Output
Use counter 0 output

enumerator kQTMR_ClockCounter1Output
Use counter 1 output

enumerator kQTMR_ClockCounter2Output
Use counter 2 output

enumerator kQTMR_ClockCounter3Output
Use counter 3 output

enumerator kQTMR_ClockDivide_1
IP bus clock divide by 1 prescaler

enumerator kQTMR_ClockDivide_2
IP bus clock divide by 2 prescaler

enumerator kQTMR_ClockDivide_4
IP bus clock divide by 4 prescaler

enumerator kQTMR_ClockDivide_8
IP bus clock divide by 8 prescaler

enumerator kQTMR_ClockDivide_16
IP bus clock divide by 16 prescaler

enumerator kQTMR_ClockDivide_32
IP bus clock divide by 32 prescaler

enumerator kQTMR_ClockDivide_64
IP bus clock divide by 64 prescaler

1082 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kQTMR_ClockDivide_128
IP bus clock divide by 128 prescaler

enum _qtmr_input_source
Quad Timer input sources selection.

Values:

enumerator kQTMR_Counter0InputPin
Use counter 0 input pin

enumerator kQTMR_Counter1InputPin
Use counter 1 input pin

enumerator kQTMR_Counter2InputPin
Use counter 2 input pin

enumerator kQTMR_Counter3InputPin
Use counter 3 input pin

enum _qtmr_counting_mode
Quad Timer counting mode selection.

Values:

enumerator kQTMR_NoOperation
No operation

enumerator kQTMR_PriSrcRiseEdge
Count rising edges of primary source

enumerator kQTMR_PriSrcRiseAndFallEdge
Count rising and falling edges of primary source

enumerator kQTMR_PriSrcRiseEdgeSecInpHigh
Count rise edges of pri SRC while sec inp high active

enumerator kQTMR_QuadCountMode
Quadrature count mode, uses pri and sec sources

enumerator kQTMR_PriSrcRiseEdgeSecDir
Count rising edges of pri SRC; sec SRC specifies dir

enumerator kQTMR_SecSrcTrigPriCnt
Edge of sec SRC trigger primary count until compare

enumerator kQTMR_CascadeCount
Cascaded count mode (up/down)

enum _qtmr_pwm_out_state
Quad Timer PWM output state.

Values:

enumerator kQTMR_PwmLow
The output state of PWM channel is low

enumerator kQTMR_PwmHigh
The output state of PWM channel is low

enum _qtmr_output_mode
Quad Timer output mode selection.

Values:

2.98. QTMR: Quad Timer Driver 1083



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kQTMR_AssertWhenCountActive
Assert OFLAG while counter is active

enumerator kQTMR_ClearOnCompare
Clear OFLAG on successful compare

enumerator kQTMR_SetOnCompare
Set OFLAG on successful compare

enumerator kQTMR_ToggleOnCompare
Toggle OFLAG on successful compare

enumerator kQTMR_ToggleOnAltCompareReg
Toggle OFLAG using alternating compare registers

enumerator kQTMR_SetOnCompareClearOnSecSrcInp
Set OFLAG on compare, clear on sec SRC input edge

enumerator kQTMR_SetOnCompareClearOnCountRoll
Set OFLAG on compare, clear on counter rollover

enumerator kQTMR_EnableGateClock
Enable gated clock output while count is active

enum _qtmr_input_capture_edge
Quad Timer input capture edge mode, rising edge, or falling edge.

Values:

enumerator kQTMR_NoCapture
Capture is disabled

enumerator kQTMR_RisingEdge
Capture on rising edge (IPS=0) or falling edge (IPS=1)

enumerator kQTMR_FallingEdge
Capture on falling edge (IPS=0) or rising edge (IPS=1)

enumerator kQTMR_RisingAndFallingEdge
Capture on both edges

enum _qtmr_preload_control
Quad Timer input capture edge mode, rising edge, or falling edge.

Values:

enumerator kQTMR_NoPreload
Never preload

enumerator kQTMR_LoadOnComp1
Load upon successful compare with value in COMP1

enumerator kQTMR_LoadOnComp2
Load upon successful compare with value in COMP2

enum _qtmr_debug_action
List of Quad Timer run options when in Debug mode.

Values:

enumerator kQTMR_RunNormalInDebug
Continue with normal operation

1084 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kQTMR_HaltCounter
Halt counter

enumerator kQTMR_ForceOutToZero
Force output to logic 0

enumerator kQTMR_HaltCountForceOutZero
Halt counter and force output to logic 0

enum _qtmr_interrupt_enable
List of Quad Timer interrupts.

Values:

enumerator kQTMR_CompareInterruptEnable
Compare interrupt.

enumerator kQTMR_Compare1InterruptEnable
Compare 1 interrupt.

enumerator kQTMR_Compare2InterruptEnable
Compare 2 interrupt.

enumerator kQTMR_OverflowInterruptEnable
Timer overflow interrupt.

enumerator kQTMR_EdgeInterruptEnable
Input edge interrupt.

enum _qtmr_status_flags
List of Quad Timer flags.

Values:

enumerator kQTMR_CompareFlag
Compare flag

enumerator kQTMR_Compare1Flag
Compare 1 flag

enumerator kQTMR_Compare2Flag
Compare 2 flag

enumerator kQTMR_OverflowFlag
Timer overflow flag

enumerator kQTMR_EdgeFlag
Input edge flag

enum _qtmr_channel_selection
List of channel selection.

Values:

enumerator kQTMR_Channel_0
TMR Channel 0

enumerator kQTMR_Channel_1
TMR Channel 1

enumerator kQTMR_Channel_2
TMR Channel 2

2.98. QTMR: Quad Timer Driver 1085



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kQTMR_Channel_3
TMR Channel 3

enum _qtmr_dma_enable
List of Quad Timer DMA enable.

Values:

enumerator kQTMR_InputEdgeFlagDmaEnable
Input Edge Flag DMA Enable.

enumerator kQTMR_ComparatorPreload1DmaEnable
Comparator Preload Register 1 DMA Enable.

enumerator kQTMR_ComparatorPreload2DmaEnable
Comparator Preload Register 2 DMA Enable.

typedef uint16_t qtmrRegType

typedef enum _qtmr_primary_count_source qtmr_primary_count_source_t
Quad Timer primary clock source selection.

typedef enum _qtmr_input_source qtmr_input_source_t
Quad Timer input sources selection.

typedef enum _qtmr_counting_mode qtmr_counting_mode_t
Quad Timer counting mode selection.

typedef enum _qtmr_pwm_out_state qtmr_pwm_out_state_t
Quad Timer PWM output state.

typedef enum _qtmr_output_mode qtmr_output_mode_t
Quad Timer output mode selection.

typedef enum _qtmr_input_capture_edge qtmr_input_capture_edge_t
Quad Timer input capture edge mode, rising edge, or falling edge.

typedef enum _qtmr_preload_control qtmr_preload_control_t
Quad Timer input capture edge mode, rising edge, or falling edge.

typedef enum _qtmr_debug_action qtmr_debug_action_t
List of Quad Timer run options when in Debug mode.

typedef enum _qtmr_interrupt_enable qtmr_interrupt_enable_t
List of Quad Timer interrupts.

typedef enum _qtmr_status_flags qtmr_status_flags_t
List of Quad Timer flags.

typedef enum _qtmr_channel_selection qtmr_channel_selection_t
List of channel selection.

typedef enum _qtmr_dma_enable qtmr_dma_enable_t
List of Quad Timer DMA enable.

typedef struct _qtmr_config qtmr_config_t
Quad Timer config structure.

This structure holds the configuration settings for the Quad Timer peripheral. To initialize
this structure to reasonable defaults, call the QTMR_GetDefaultConfig() function and pass
a pointer to your config structure instance.

The config struct can be made const so it resides in flash

1086 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t QTMR_SetupPwm(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t
pwmFreqHz, uint8_t dutyCyclePercent, bool outputPolarity,
uint32_t srcClock_Hz)

Sets up Quad timer module for PWM signal output.

The function initializes the timer module according to the parameters passed in by the
user. The function also sets up the value compare registers to match the PWM signal re-
quirements.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• pwmFreqHz – PWM signal frequency in Hz

• dutyCyclePercent – PWM pulse width, value should be between 0 to 100
0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

• outputPolarity – true: invert polarity of the output signal, false: no inver-
sion

• srcClock_Hz – Main counter clock in Hz.

Returns
Returns an error if there was error setting up the signal.

void QTMR_SetupInputCapture(TMR_Type *base, qtmr_channel_selection_t channel,
qtmr_input_source_t capturePin, bool inputPolarity, bool
reloadOnCapture, qtmr_input_capture_edge_t captureMode)

Allows the user to count the source clock cycles until a capture event arrives.

The count is stored in the capture register.

Parameters
• base – Quad Timer peripheral base address

• channel – Quad Timer channel number

• capturePin – Pin through which we receive the input signal to trigger the
capture

• inputPolarity – true: invert polarity of the input signal, false: no inversion

• reloadOnCapture – true: reload the counter when an input capture occurs,
false: no reload

• captureMode – Specifies which edge of the input signal triggers a capture

TMR_CSCTRL_OFLAG_MASK

TMR_CSCTRL_OFLAG_SHIFT

struct _qtmr_config
#include <fsl_qtmr.h> Quad Timer config structure.

This structure holds the configuration settings for the Quad Timer peripheral. To initialize
this structure to reasonable defaults, call the QTMR_GetDefaultConfig() function and pass
a pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

2.98. QTMR: Quad Timer Driver 1087



MCUXpresso SDK Documentation, Release 25.12.00

qtmr_primary_count_source_t primarySource
Specify the primary count source

qtmr_input_source_t secondarySource
Specify the secondary count source

bool enableMasterMode
true: Broadcast compare function output to other counters; false no broadcast

bool enableExternalForce
true: Compare from another counter force state of OFLAG signal false: OFLAG con-
trolled by local counter

uint8_t faultFilterCount
Fault filter count

uint8_t faultFilterPeriod
Fault filter period;value of 0 will bypass the filter

qtmr_debug_action_t debugMode
Operation in Debug mode

2.99 RDC: Resource Domain Controller

enum _rdc_interrupts
RDC interrupts.

Values:

enumerator kRDC_RestoreCompleteInterrupt
Interrupt generated when the RDC has completed restoring state to a recently re-
powered memory regions.

enum _rdc_flags
RDC status.

Values:

enumerator kRDC_PowerDownDomainOn
Power down domain is ON.

enum _rdc_access_policy
Access permission policy.

Values:

enumerator kRDC_NoAccess
Could not read or write.

enumerator kRDC_WriteOnly
Write only.

enumerator kRDC_ReadOnly
Read only.

enumerator kRDC_ReadWrite
Read and write.

typedef struct _rdc_hardware_config rdc_hardware_config_t
RDC hardware configuration.

1088 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _rdc_domain_assignment rdc_domain_assignment_t
Master domain assignment.

typedef struct _rdc_periph_access_config rdc_periph_access_config_t
Peripheral domain access permission configuration.

typedef struct _rdc_mem_access_config rdc_mem_access_config_t
Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config_t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

typedef struct _rdc_mem_status rdc_mem_status_t
Memory region access violation status.

void RDC_Init(RDC_Type *base)
Initializes the RDC module.

This function enables the RDC clock.

Parameters
• base – RDC peripheral base address.

void RDC_Deinit(RDC_Type *base)
De-initializes the RDC module.

This function disables the RDC clock.

Parameters
• base – RDC peripheral base address.

void RDC_GetHardwareConfig(RDC_Type *base, rdc_hardware_config_t *config)
Gets the RDC hardware configuration.

This function gets the RDC hardware configurations, including number of bus masters,
number of domains, number of memory regions and number of peripherals.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the structure to get the configuration.

static inline void RDC_EnableInterrupts(RDC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
• base – RDC peripheral base address.

• mask – Interrupts to enable, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC_DisableInterrupts(RDC_Type *base, uint32_t mask)
Disable interrupts.

Parameters
• base – RDC peripheral base address.

• mask – Interrupts to disable, it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_GetInterruptStatus(RDC_Type *base)
Get the interrupt pending status.

Parameters
• base – RDC peripheral base address.

2.99. RDC: Resource Domain Controller 1089



MCUXpresso SDK Documentation, Release 25.12.00

Returns
Interrupts pending status, it is OR’ed value of enum _rdc_interrupts.

static inline void RDC_ClearInterruptStatus(RDC_Type *base, uint32_t mask)
Clear interrupt pending status.

Parameters
• base – RDC peripheral base address.

• mask – Status to clear, it is OR’ed value of enum _rdc_interrupts.

static inline uint32_t RDC_GetStatus(RDC_Type *base)
Get RDC status.

Parameters
• base – RDC peripheral base address.

Returns
mask RDC status, it is OR’ed value of enum _rdc_flags.

static inline void RDC_ClearStatus(RDC_Type *base, uint32_t mask)
Clear RDC status.

Parameters
• base – RDC peripheral base address.

• mask – RDC status to clear, it is OR’ed value of enum _rdc_flags.

void RDC_SetMasterDomainAssignment(RDC_Type *base, rdc_master_t master, const
rdc_domain_assignment_t *domainAssignment)

Set master domain assignment.

Parameters
• base – RDC peripheral base address.

• master – Which master to set.

• domainAssignment – Pointer to the assignment.

void RDC_GetDefaultMasterDomainAssignment(rdc_domain_assignment_t *domainAssignment)
Get default master domain assignment.

The default configuration is:

assignment->domainId = 0U;
assignment->lock = 0U;

Parameters
• domainAssignment – Pointer to the assignment.

static inline void RDC_LockMasterDomainAssignment(RDC_Type *base, rdc_master_t master)
Lock master domain assignment.

Once locked, it could not be unlocked until next reset.

Parameters
• base – RDC peripheral base address.

• master – Which master to lock.

1090 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void RDC_SetPeriphAccessConfig(RDC_Type *base, const rdc_periph_access_config_t *config)
Set peripheral access policy.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the policy configuration.

void RDC_GetDefaultPeriphAccessConfig(rdc_periph_access_config_t *config)
Get default peripheral access policy.

The default configuration is:

config->lock = false;
config->enableSema = false;
config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) |

RDC_ACCESS_POLICY(1, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(2, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(3, kRDC_ReadWrite);

Parameters
• config – Pointer to the policy configuration.

static inline void RDC_LockPeriphAccessConfig(RDC_Type *base, rdc_periph_t periph)
Lock peripheral access policy configuration.

Once locked, it could not be unlocked until reset.

Parameters
• base – RDC peripheral base address.

• periph – Which peripheral to lock.

static inline uint8_t RDC_GetPeriphAccessPolicy(RDC_Type *base, rdc_periph_t periph, uint8_t
domainId)

Get the peripheral access policy for specific domain.

Parameters
• base – RDC peripheral base address.

• periph – Which peripheral to get.

• domainId – Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

void RDC_SetMemAccessConfig(RDC_Type *base, const rdc_mem_access_config_t *config)
Set memory region access policy.

Note that when setting the baseAddress and endAddress in config, should be aligned to the
region resolution, see rdc_mem_t definitions.

Parameters
• base – RDC peripheral base address.

• config – Pointer to the policy configuration.

void RDC_GetDefaultMemAccessConfig(rdc_mem_access_config_t *config)
Get default memory region access policy.

The default configuration is:

2.99. RDC: Resource Domain Controller 1091



MCUXpresso SDK Documentation, Release 25.12.00

config->lock = false;
config->baseAddress = 0;
config->endAddress = 0;
config->policy = RDC_ACCESS_POLICY(0, kRDC_ReadWrite) |

RDC_ACCESS_POLICY(1, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(2, kRDC_ReadWrite) |
RDC_ACCESS_POLICY(3, kRDC_ReadWrite);

Parameters
• config – Pointer to the policy configuration.

static inline void RDC_LockMemAccessConfig(RDC_Type *base, rdc_mem_t mem)
Lock memory access policy configuration.

Once locked, it could not be unlocked until reset. After locked, you can only call
RDC_SetMemAccessValid to enable the configuration, but can not disable it or change other
settings.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to lock.

static inline void RDC_SetMemAccessValid(RDC_Type *base, rdc_mem_t mem, bool valid)
Enable or disable memory access policy configuration.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to operate.

• valid – Pass in true to valid, false to invalid.

void RDC_GetMemViolationStatus(RDC_Type *base, rdc_mem_t mem, rdc_mem_status_t *status)
Get the memory region violation status.

The first access violation is captured. Subsequent violations are ignored until the status
register is cleared. Contents are cleared upon reading the register. Clearing of contents
occurs only when the status is read by the memory region’s associated domain ID(s).

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to get.

• status – The returned status.

static inline void RDC_ClearMemViolationFlag(RDC_Type *base, rdc_mem_t mem)
Clear the memory region violation flag.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to clear.

static inline uint8_t RDC_GetMemAccessPolicy(RDC_Type *base, rdc_mem_t mem, uint8_t
domainId)

Get the memory region access policy for specific domain.

Parameters
• base – RDC peripheral base address.

• mem – Which memory region to get.

1092 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• domainId – Get policy for which domain.

Returns
Access policy, see _rdc_access_policy.

static inline uint8_t RDC_GetCurrentMasterDomainId(RDC_Type *base)
Gets the domain ID of the current bus master.

This function returns the domain ID of the current bus master.

Parameters
• base – RDC peripheral base address.

Returns
Domain ID of current bus master.

FSL_RDC_DRIVER_VERSION

RDC_ACCESS_POLICY(domainID, policy)

struct _rdc_hardware_config
#include <fsl_rdc.h> RDC hardware configuration.

Public Members

uint32_t domainNumber
Number of domains.

uint32_t masterNumber
Number of bus masters.

uint32_t periphNumber
Number of peripherals.

uint32_t memNumber
Number of memory regions.

struct _rdc_domain_assignment
#include <fsl_rdc.h> Master domain assignment.

Public Members

uint32_t domainId
Domain ID.

uint32_t __pad0__
Reserved.

uint32_t lock
Lock the domain assignment.

struct _rdc_periph_access_config
#include <fsl_rdc.h> Peripheral domain access permission configuration.

Public Members

rdc_periph_t periph
Peripheral name.

2.99. RDC: Resource Domain Controller 1093



MCUXpresso SDK Documentation, Release 25.12.00

bool lock
Lock the permission until reset.

bool enableSema
Enable semaphore or not, when enabled, master should call RDC_SEMA42_Lock to lock
the semaphore gate accordingly before access the peripheral.

uint16_t policy
Access policy.

struct _rdc_mem_access_config
#include <fsl_rdc.h> Memory region domain access control configuration.

Note that when setting the rdc_mem_access_config_t::baseAddress and
rdc_mem_access_config_t::endAddress, should be aligned to the region resolution, see
rdc_mem_t definitions.

Public Members

rdc_mem_t mem
Memory region descriptor name.

bool lock
Lock the configuration.

uint64_t baseAddress
Start address of the memory region.

uint64_t endAddress
End address of the memory region.

uint16_t policy
Access policy.

struct _rdc_mem_status
#include <fsl_rdc.h> Memory region access violation status.

Public Members

bool hasViolation
Violating happens or not.

uint8_t domainID
Violating Domain ID.

uint64_t address
Violating Address.

2.100 RDC_SEMA42: Hardware Semaphores Driver

FSL_RDC_SEMA42_DRIVER_VERSION
RDC_SEMA42 driver version.

1094 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void RDC_SEMA42_Init(RDC_SEMAPHORE_Type *base)
Initializes the RDC_SEMA42 module.

This function initializes the RDC_SEMA42 module. It only enables the clock but does not
reset the gates because the module might be used by other processors at the same time. To
reset the gates, call either RDC_SEMA42_ResetGate or RDC_SEMA42_ResetAllGates function.

Parameters
• base – RDC_SEMA42 peripheral base address.

void RDC_SEMA42_Deinit(RDC_SEMAPHORE_Type *base)
De-initializes the RDC_SEMA42 module.

This function de-initializes the RDC_SEMA42 module. It only disables the clock.

Parameters
• base – RDC_SEMA42 peripheral base address.

status_t RDC_SEMA42_TryLock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainId)

Tries to lock the RDC_SEMA42 gate.

This function tries to lock the specific RDC_SEMA42 gate. If the gate has been locked by
another processor, this function returns an error code.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number to lock.

• masterIndex – Current processor master index.

• domainId – Current processor domain ID.

Return values
• kStatus_Success – Lock the sema42 gate successfully.

• kStatus_Failed – Sema42 gate has been locked by another processor.

void RDC_SEMA42_Lock(RDC_SEMAPHORE_Type *base, uint8_t gateNum, uint8_t
masterIndex, uint8_t domainId)

Locks the RDC_SEMA42 gate.

This function locks the specific RDC_SEMA42 gate. If the gate has been locked by other
processors, this function waits until it is unlocked and then lock it.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number to lock.

• masterIndex – Current processor master index.

• domainId – Current processor domain ID.

static inline void RDC_SEMA42_Unlock(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Unlocks the RDC_SEMA42 gate.

This function unlocks the specific RDC_SEMA42 gate. It only writes unlock value to the
RDC_SEMA42 gate register. However, it does not check whether the RDC_SEMA42 gate is
locked by the current processor or not. As a result, if the RDC_SEMA42 gate is not locked by
the current processor, this function has no effect.

Parameters
• base – RDC_SEMA42 peripheral base address.

2.100. RDC_SEMA42: Hardware Semaphores Driver 1095



MCUXpresso SDK Documentation, Release 25.12.00

• gateNum – Gate number to unlock.

static inline int32_t RDC_SEMA42_GetLockMasterIndex(RDC_SEMAPHORE_Type *base, uint8_t
gateNum)

Gets which master has currently locked the gate.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is not locked by any master, otherwise return the master
index.

int32_t RDC_SEMA42_GetLockDomainID(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Gets which domain has currently locked the gate.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is not locked by any domain, otherwise return the domain
ID.

status_t RDC_SEMA42_ResetGate(RDC_SEMAPHORE_Type *base, uint8_t gateNum)
Resets the RDC_SEMA42 gate to an unlocked status.

This function resets a RDC_SEMA42 gate to an unlocked status.

Parameters
• base – RDC_SEMA42 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – RDC_SEMA42 gate is reset successfully.

• kStatus_Failed – Some other reset process is ongoing.

static inline status_t RDC_SEMA42_ResetAllGates(RDC_SEMAPHORE_Type *base)
Resets all RDC_SEMA42 gates to an unlocked status.

This function resets all RDC_SEMA42 gate to an unlocked status.

Parameters
• base – RDC_SEMA42 peripheral base address.

Return values
• kStatus_Success – RDC_SEMA42 is reset successfully.

• kStatus_RDC_SEMA42_Reseting – Some other reset process is ongoing.

RDC_SEMA42_GATE_NUM_RESET_ALL
The number to reset all RDC_SEMA42 gates.

RDC_SEMA42_GATEn(base, n)
RDC_SEMA42 gate n register address.

RDC_SEMA42_GATE_COUNT
RDC_SEMA42 gate count.

RDC_SEMAPHORE_GATE_GTFSM_MASK

1096 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

2.101 Romapi

Flash Pad Definitions.

Values:

enumerator kSerialFlash_1Pad
1-wire communication

enumerator kSerialFlash_2Pads
2-wire communication

enumerator kSerialFlash_4Pads
4-wire communication

enumerator kSerialFlash_8Pads
8-wire communication

FLEXSPI clock configuration type.

Values:

enumerator kFLEXSPIClk_SDR
Clock configure for SDR mode

enumerator kFLEXSPIClk_DDR
Clock configure for DDR mode

enum _flexspi_read_sample_clk
FLEXSPI Read Sample Clock Source definition.

Values:

enumerator kFLEXSPIReadSampleClk_LoopbackInternally
FLEXSPI Read Sample Clock Source from the Internal loopback

enumerator kFLEXSPIReadSampleClk_LoopbackFromDqsPad
FLEXSPI Read Sample Clock Source from the Dqs Pad loopback

enumerator kFLEXSPIReadSampleClk_LoopbackFromSckPad
FLEXSPI Read Sample Clock Source from the Sck Pad loopback

enumerator kFLEXSPIReadSampleClk_ExternalInputFromDqsPad
FLEXSPI Read Sample Clock Source from the External Input by the Dqs Pad

Flash Type Definition.

Values:

enumerator kFLEXSPIDeviceType_SerialNOR
Flash device is Serial NOR

Flash Configuration Command Type.

Values:

enumerator kDeviceConfigCmdType_Generic
Generic command, for example: configure dummy cycles, drive strength, etc.

2.101. Romapi 1097



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDeviceConfigCmdType_QuadEnable
Quad Enable command

enumerator kDeviceConfigCmdType_Spi2Xpi
Switch from SPI to DPI/QPI/OPI mode

enumerator kDeviceConfigCmdType_Xpi2Spi
Switch from DPI/QPI/OPI to SPI mode

enumerator kDeviceConfigCmdType_Spi2NoCmd
Switch to 0-4-4/0-8-8 mode

enumerator kDeviceConfigCmdType_Reset
Reset device command

enum _flexspi_serial_clk_freq
Definitions for FLEXSPI Serial Clock Frequency.

Values:

enumerator kFLEXSPISerialClk_NoChange
FlexSPI serial clock no changed

enumerator kFLEXSPISerialClk_30MHz
FlexSPI serial clock 30MHz

enumerator kFLEXSPISerialClk_50MHz
FlexSPI serial clock 50MHz

enumerator kFLEXSPISerialClk_60MHz
FlexSPI serial clock 60MHz

enumerator kFLEXSPISerialClk_75MHz
FlexSPI serial clock 75MHz

enumerator kFLEXSPISerialClk_80MHz
FlexSPI serial clock 80MHz

enumerator kFLEXSPISerialClk_100MHz
FlexSPI serial clock 100MHz

enumerator kFLEXSPISerialClk_133MHz
FlexSPI serial clock 133MHz

enumerator kFLEXSPISerialClk_166MHz
FlexSPI serial clock 166MHz

Misc feature bit definitions.

Values:

enumerator kFLEXSPIMiscOffset_DiffClkEnable
Bit for Differential clock enable

enumerator kFLEXSPIMiscOffset_Ck2Enable
Bit for CK2 enable

enumerator kFLEXSPIMiscOffset_ParallelEnable
Bit for Parallel mode enable

enumerator kFLEXSPIMiscOffset_WordAddressableEnable
Bit for Word Addressable enable

1098 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPIMiscOffset_SafeConfigFreqEnable
Bit for Safe Configuration Frequency enable

enumerator kFLEXSPIMiscOffset_PadSettingOverrideEnable
Bit for Pad setting override enable

enumerator kFLEXSPIMiscOffset_DdrModeEnable
Bit for DDR clock configuration indication.

enumerator kFLEXSPIMiscOffset_UseValidTimeForAllFreq
Bit for DLLCR settings under all modes

Manufacturer ID.

Values:

enumerator kSerialFlash_ISSI_ManufacturerID
Manufacturer ID of the ISSI serial flash

enumerator kSerialFlash_Adesto_ManufacturerID
Manufacturer ID of the Adesto Technologies serial flash

enumerator kSerialFlash_Winbond_ManufacturerID
Manufacturer ID of the Winbond serial flash

enumerator kSerialFlash_Cypress_ManufacturerID
Manufacturer ID for Cypress

enum _flexspi_nor_status
ROM FLEXSPI NOR flash status.

Values:

enumerator kStatus_ROM_FLEXSPI_SequenceExecutionTimeout
Status for Sequence Execution timeout

enumerator kStatus_ROM_FLEXSPI_InvalidSequence
Status for Invalid Sequence

enumerator kStatus_ROM_FLEXSPI_DeviceTimeout
Status for Device timeout

enumerator kStatus_ROM_FLEXSPINOR_SFDP_NotFound
Status for SFDP read failure

enumerator kStatus_ROM_FLEXSPINOR_Flash_NotFound
Status for Flash detection failure

enumerator kStatus_FLEXSPINOR_DTRRead_DummyProbeFailed
Status for DDR Read dummy probe failure

enum _flexspi_operation
FLEXSPI Operation Context.

Values:

enumerator kFLEXSPIOperation_Command
FLEXSPI operation: Only command, both TX and RX buffer are ignored.

enumerator kFLEXSPIOperation_Config
FLEXSPI operation: Configure device mode, the TX FIFO size is fixed in LUT.

2.101. Romapi 1099



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXSPIOperation_Write
FLEXSPI operation: Write, only TX buffer is effective

enumerator kFLEXSPIOperation_Read
FLEXSPI operation: Read, only Rx Buffer is effective.

typedef struct _flexspi_lut_seq flexspi_lut_seq_t
FLEXSPI LUT Sequence structure.

typedef struct _flexspi_mem_config flexspi_mem_config_t
FLEXSPI Memory Configuration Block.

typedef struct _flexspi_nor_config flexspi_nor_config_t
Serial NOR configuration block.

typedef enum _flexspi_operation flexspi_operation_t
FLEXSPI Operation Context.

typedef struct _flexspi_xfer flexspi_xfer_t
FLEXSPI Transfer Context.

void ROM_API_Init(void)
ROM API init.

Get the bootloader api entry address.

kFLEXSPIOperation_End

MISRA_CAST(to_type, to_var, from_type, from_var)
convert the type for MISRA

typedef struct _serial_nor_config_option serial_nor_config_option_t
Serial NOR Configuration Option.

void ROM_RunBootloader(void *arg)
Enter Bootloader.

Parameters
• arg – A pointer to the storage for the bootloader param. refer to System

Boot Chapter in device reference manual for details.

status_t ROM_FLEXSPI_NorFlash_GetConfig(uint32_t instance, flexspi_nor_config_t *config,
serial_nor_config_option_t *option)

Get FLEXSPI NOR Configuration Block based on specified option.

Parameters
• instance – storage the instance of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• option – A pointer to the storage Serial NOR Configuration Option Context.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

1100 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t ROM_FLEXSPI_NorFlash_Init(uint32_t instance, flexspi_nor_config_t *config)
Initialize Serial NOR devices via FLEXSPI.

This function checks and initializes the FLEXSPI module for the other FLEXSPI APIs.

Parameters
• instance – storage the instance of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_ProgramPage(uint32_t instance, flexspi_nor_config_t *config,
uint32_t dst_addr, const uint32_t *src)

Program data to Serial NOR via FLEXSPI.

This function programs the NOR flash memory with the dest address for a given flash area
as determined by the dst address and the length.

Note: It is recommended that use page aligned access; If the dst_addr is not aligned to
page, the driver automatically aligns address down with the page address.

Parameters
• instance – storage the instance of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• dst_addr – A pointer to the desired flash memory to be programmed.

• src – A pointer to the source buffer of data that is to be programmed into
the NOR flash.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_Read(uint32_t instance, flexspi_nor_config_t *config,
uint32_t *dst, uint32_t start, uint32_t lengthInBytes)

Read data from Serial NOR via FLEXSPI.

This function read the NOR flash memory with the start address for a given flash area as
determined by the dst address and the length.

2.101. Romapi 1101



MCUXpresso SDK Documentation, Release 25.12.00

Note: It is recommended that use page aligned access; If the dstAddr is not aligned to page,
the driver automatically aligns address down with the page address.

Parameters
• instance – storage the instance of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• dst – A pointer to the dest buffer of data that is to be read from the NOR
flash.

• start – The start address of the desired NOR flash memory to be read.

• lengthInBytes – The length, given in bytes to be read.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_Erase(uint32_t instance, flexspi_nor_config_t *config,
uint32_t start, uint32_t length)

Erase Flash Region specified by address and length.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Note: It is recommended that use sector-aligned access nor device; If dstAddr is not aligned
with the sector,the driver automatically aligns address down with the sector address.

Note: It is recommended that use sector-aligned access nor device; If length is not aligned
with the sector,the driver automatically aligns up with the sector.

Parameters
• instance – storage the index of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired NOR flash memory to be erased.

• length – The length, given in bytes to be erased.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

1102 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t ROM_FLEXSPI_NorFlash_EraseSector(uint32_t instance, flexspi_nor_config_t *config,
uint32_t start)

Erase one sector specified by address.

This function erases one of NOR flash sectors based on the desired address.

Note: It is recommended that use sector-aligned access nor device; If dstAddr is not aligned
with the sector, the driver automatically aligns address down with the sector address.

Parameters
• instance – storage the index of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired NOR flash memory to be erased.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_EraseBlock(uint32_t instance, flexspi_nor_config_t *config,
uint32_t start)

Erase one block specified by address.

This function erases one block of NOR flash based on the desired address.

Note: It is recommended that use block-aligned access nor device; If dstAddr is not aligned
with the block, the driver automatically aligns address down with the block address.

Parameters
• instance – storage the index of FLEXSPI.

• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired NOR flash memory to be erased.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_EraseAll(uint32_t instance, flexspi_nor_config_t *config)
Erase all the Serial NOR devices connected on FLEXSPI.

Parameters
• instance – storage the instance of FLEXSPI.

2.101. Romapi 1103



MCUXpresso SDK Documentation, Release 25.12.00

• config – A pointer to the storage for the driver runtime state.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_DeviceTimeout – the device timeout

status_t ROM_FLEXSPI_NorFlash_CommandXfer(uint32_t instance, flexspi_xfer_t *xfer)
FLEXSPI command.

This function is used to perform the command write sequence to the NOR device.

Parameters
• instance – storage the index of FLEXSPI.

• xfer – A pointer to the storage FLEXSPI Transfer Context.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

status_t ROM_FLEXSPI_NorFlash_UpdateLut(uint32_t instance, uint32_t seqIndex, const
uint32_t *lutBase, uint32_t seqNumber)

Configure FLEXSPI Lookup table.

Parameters
• instance – storage the index of FLEXSPI.

• seqIndex – storage the sequence Id.

• lutBase – A pointer to the look-up-table for command sequences.

• seqNumber – storage sequence number.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

status_t ROM_FLEXSPI_NorFlash_WaitBusy(uint32_t instance, flexspi_nor_config_t *config,
bool isParallelMode, uint32_t address)

Wait until device is idle.

Parameters
• instance – Indicates the index of FLEXSPI.

• config – A pointer to the storage for the driver runtime state

• isParallelMode – Indicates whether NOR flash is in parallel mode.

1104 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• address – Indicates the operation(erase/program/read) address for serial
NOR flash.

Return values
• kStatus_Success – Api was executed successfully.

• kStatus_InvalidArgument – A invalid argument is provided.

• kStatus_ROM_FLEXSPI_SequenceExecutionTimeout – Sequence Execution
timeout.

• kStatus_ROM_FLEXSPI_InvalidSequence – A invalid Sequence is provided.

• kStatus_ROM_FLEXSPI_DeviceTimeout – Device timeout.

AT_QUICKACCESS_SECTION_CODE (void ROM_FLEXSPI_NorFlash_ClearCache(uint32_t in-
stance))

Software reset for the FLEXSPI logic.

This function sets the software reset flags for both AHB and buffer domain and resets both
AHB buffer and also IP FIFOs.

Parameters
• instance – storage the index of FLEXSPI.

FSL_ROM_HAS_FLEXSPINOR_API
ROM has FLEXSPI NOR API.

FSL_ROM_HAS_RUNBOOTLOADER_API
ROM has run bootloader API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_GET_CONFIG
ROM has FLEXSPI NOR get config API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_FLASH_INIT
ROM has flash init API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_ERASE
ROM has erase API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_ERASE_SECTOR
ROM has erase sector API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_ERASE_BLOCK
ROM has erase block API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_ERASE_ALL
ROM has erase all API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_READ
ROM has read API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_UPDATE_LUT
ROM has update lut API.

FSL_ROM_FLEXSPINOR_API_HAS_FEATURE_CMD_XFER
ROM has FLEXSPI command API.

kROM_StatusGroup_FLEXSPINOR
ROM FLEXSPI NOR status group number.

FSL_ROM_FLEXSPI_LUT_SEQ(cmd0, pad0, op0, cmd1, pad1, op1)

2.101. Romapi 1105



MCUXpresso SDK Documentation, Release 25.12.00

FSL_ROM_FLEXSPI_BITMASK(bit_offset)
Generate bit mask.

FLEXSPI_CFG_BLK_TAG
FLEXSPI memory config block related definitions.

ascii “FCFB” Big Endian

FLEXSPI_CFG_BLK_VERSION
V1.4.0

CMD_SDR

CMD_DDR

RADDR_SDR

RADDR_DDR

CADDR_SDR

CADDR_DDR

MODE1_SDR

MODE1_DDR

MODE2_SDR

MODE2_DDR

MODE4_SDR

MODE4_DDR

MODE8_SDR

MODE8_DDR

WRITE_SDR

WRITE_DDR

READ_SDR

READ_DDR

LEARN_SDR

LEARN_DDR

DATSZ_SDR

DATSZ_DDR

DUMMY_SDR

DUMMY_DDR

DUMMY_RWDS_SDR

DUMMY_RWDS_DDR

JMP_ON_CS

1106 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

STOP

FLEXSPI_1PAD

FLEXSPI_2PAD

FLEXSPI_4PAD

FLEXSPI_8PAD

NOR_CMD_LUT_SEQ_IDX_READ
NOR LUT sequence index used for default LUT assignment.

Note: It will take effect if the lut sequences are not customized. READ LUT sequence id in
lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_READSTATUS
Read Status LUT sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_READSTATUS_XPI
Read status DPI/QPI/OPI sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_WRITEENABLE
Write Enable sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_WRITEENABLE_XPI
Write Enable DPI/QPI/OPI sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_ERASESECTOR
Erase Sector sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_READID

NOR_CMD_LUT_SEQ_IDX_ERASEBLOCK
Erase Block sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM
Program sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_CHIPERASE
Chip Erase sequence in lookupTable id stored in config block

NOR_CMD_LUT_SEQ_IDX_READ_SFDP
Read SFDP sequence in lookupTable id stored in config block

NOR_CMD_LUT_SEQ_IDX_RESTORE_NOCMD
Restore 0-4-4/0-8-8 mode sequence id in lookupTable stored in config block

NOR_CMD_LUT_SEQ_IDX_EXIT_NOCMD
Exit 0-4-4/0-8-8 mode sequence id in lookupTable stored in config block

uint32_t max_freq
Maximum supported Frequency

uint32_t misc_mode
miscellaneous mode

uint32_t quad_mode_setting
Quad mode setting

uint32_t cmd_pads
Command pads

2.101. Romapi 1107



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t query_pads
SFDP read pads

uint32_t device_type
Device type

uint32_t option_size
Option size, in terms of uint32_t, size = (option_size + 1) * 4

uint32_t tag
Tag, must be 0x0E

struct _serial_nor_config_option B

uint32_t U

union _serial_nor_config_option option0

uint32_t dummy_cycles
Dummy cycles before read

uint32_t status_override
Override status register value during device mode configuration

uint32_t pinmux_group
The pinmux group selection

uint32_t dqs_pinmux_group
The DQS Pinmux Group Selection

uint32_t drive_strength
The Drive Strength of FlexSPI Pads

uint32_t flash_connection
Flash connection option: 0 - Single Flash connected to port A, 1 - Parallel mode, 2 - Single
Flash connected to Port B

struct _serial_nor_config_option B

uint32_t U

union _serial_nor_config_option option1

uint8_t seqNum
Sequence Number, valid number: 1-16

uint8_t seqId
Sequence Index, valid number: 0-15

uint16_t reserved

uint8_t time_100ps
Data valid time, in terms of 100ps

uint8_t delay_cells
Data valid time, in terms of delay cells

uint32_t tag
[0x000-0x003] Tag, fixed value 0x42464346UL

uint32_t version
[0x004-0x007] Version,[31:24] -‘V’, [23:16] - Major, [15:8] - Minor, [7:0] - bugfix

1108 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t reserved0
[0x008-0x00b] Reserved for future use

uint8_t readSampleClkSrc
[0x00c-0x00c] Read Sample Clock Source, valid value: 0/1/3

uint8_t csHoldTime
[0x00d-0x00d] Data hold time, default value: 3

uint8_t csSetupTime
[0x00e-0x00e] Date setup time, default value: 3

uint8_t columnAddressWidth
[0x00f-0x00f] Column Address with, for HyperBus protocol, it is fixed to 3, For Serial NAND,
need to refer to datasheet

uint8_t deviceModeCfgEnable
[0x010-0x010] Device Mode Configure enable flag, 1 - Enable, 0 - Disable

uint8_t deviceModeType
[0x011-0x011] Specify the configuration command type:Quad Enable, DPI/QPI/OPI switch,
Generic configuration, etc.

uint16_t waitTimeCfgCommands
[0x012-0x013] Wait time for all configuration commands, unit: 100us, Used for DPI/QPI/OPI
switch or reset command

flexspi_lut_seq_t deviceModeSeq
[0x014-0x017] Device mode sequence info, [7:0] - LUT sequence id, [15:8] - LUt sequence
number, [31:16] Reserved

uint32_t deviceModeArg
[0x018-0x01b] Argument/Parameter for device configuration

uint8_t configCmdEnable
[0x01c-0x01c] Configure command Enable Flag, 1 - Enable, 0 - Disable

uint8_t configModeType[3]
[0x01d-0x01f] Configure Mode Type, similar as deviceModeTpe

flexspi_lut_seq_t configCmdSeqs[3]
[0x020-0x02b] Sequence info for Device Configuration command, similar as deviceModeSeq

uint32_t reserved1
[0x02c-0x02f] Reserved for future use

uint32_t configCmdArgs[3]
[0x030-0x03b] Arguments/Parameters for device Configuration commands

uint32_t reserved2
[0x03c-0x03f] Reserved for future use

uint32_t controllerMiscOption
[0x040-0x043] Controller Misc Options, see Misc feature bit definitions for more details

uint8_t deviceType
[0x044-0x044] Device Type: See Flash Type Definition for more details

uint8_t sflashPadType
[0x045-0x045] Serial Flash Pad Type: 1 - Single, 2 - Dual, 4 - Quad, 8 - Octal

2.101. Romapi 1109



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t serialClkFreq
[0x046-0x046] Serial Flash Frequency, device specific definitions. See System Boot Chapter
for more details

uint8_t lutCustomSeqEnable
[0x047-0x047] LUT customization Enable, it is required if the program/erase cannot be done
using 1 LUT sequence, currently, only applicable to HyperFLASH

uint32_t reserved3[2]
[0x048-0x04f] Reserved for future use

uint32_t sflashA1Size
[0x050-0x053] Size of Flash connected to A1

uint32_t sflashA2Size
[0x054-0x057] Size of Flash connected to A2

uint32_t sflashB1Size
[0x058-0x05b] Size of Flash connected to B1

uint32_t sflashB2Size
[0x05c-0x05f] Size of Flash connected to B2

uint32_t csPadSettingOverride
[0x060-0x063] CS pad setting override value

uint32_t sclkPadSettingOverride
[0x064-0x067] SCK pad setting override value

uint32_t dataPadSettingOverride
[0x068-0x06b] data pad setting override value

uint32_t dqsPadSettingOverride
[0x06c-0x06f] DQS pad setting override value

uint32_t timeoutInMs
[0x070-0x073] Timeout threshold for read status command

uint32_t commandInterval
[0x074-0x077] CS deselect interval between two commands

flexspi_dll_time_t dataValidTime[2]
[0x078-0x07b] CLK edge to data valid time for PORT A and PORT B

uint16_t busyOffset
[0x07c-0x07d] Busy offset, valid value: 0-31

uint16_t busyBitPolarity
[0x07e-0x07f] Busy flag polarity, 0 - busy flag is 1 when flash device is busy, 1 - busy flag is
0 when flash device is busy

uint32_t lookupTable[64]
[0x080-0x17f] Lookup table holds Flash command sequences

flexspi_lut_seq_t lutCustomSeq[12]
[0x180-0x1af] Customizable LUT Sequences

uint32_t reserved4[4]
[0x1b0-0x1bf] Reserved for future use

flexspi_mem_config_t memConfig
Common memory configuration info via FLEXSPI

1110 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t pageSize
Page size of Serial NOR

uint32_t sectorSize
Sector size of Serial NOR

uint8_t ipcmdSerialClkFreq
Clock frequency for IP command

uint8_t isUniformBlockSize
Sector/Block size is the same

uint8_t isDataOrderSwapped
Data order (D0, D1, D2, D3) is swapped (D1,D0, D3, D2)

uint8_t reserved0[1]
Reserved for future use

uint8_t serialNorType
Serial NOR Flash type: 0/1/2/3

uint8_t needExitNoCmdMode
Need to exit NoCmd mode before other IP command

uint8_t halfClkForNonReadCmd
Half the Serial Clock for non-read command: true/false

uint8_t needRestoreNoCmdMode
Need to Restore NoCmd mode after IP command execution

uint32_t blockSize
Block size

uint32_t reserve2[11]
Reserved for future use

flexspi_operation_t operation
FLEXSPI operation

uint32_t baseAddress
FLEXSPI operation base address

uint32_t seqId
Sequence Id

uint32_t seqNum
Sequence Number

bool isParallelModeEnable
Is a parallel transfer

uint32_t *txBuffer
Tx buffer

uint32_t txSize
Tx size in bytes

uint32_t *rxBuffer
Rx buffer

uint32_t rxSize
Rx size in bytes

2.101. Romapi 1111



MCUXpresso SDK Documentation, Release 25.12.00

FSL_ROM_ROMAPI_VERSION
ROM API version 1.1.2.

FSL_ROM_FLEXSPINOR_DRIVER_VERSION
ROM FLEXSPI NOR driver version 1.7.0.

struct _serial_nor_config_option
#include <fsl_romapi.h> Serial NOR Configuration Option.

struct _flexspi_lut_seq
#include <fsl_romapi.h> FLEXSPI LUT Sequence structure.

struct flexspi_dll_time_t
#include <fsl_romapi.h> FLEXSPI DLL time.

struct _flexspi_mem_config
#include <fsl_romapi.h> FLEXSPI Memory Configuration Block.

struct _flexspi_nor_config
#include <fsl_romapi.h> Serial NOR configuration block.

struct _flexspi_xfer
#include <fsl_romapi.h> FLEXSPI Transfer Context.

union option0

Public Members

struct _serial_nor_config_option B

uint32_t U

struct B

Public Members

uint32_t max_freq
Maximum supported Frequency

uint32_t misc_mode
miscellaneous mode

uint32_t quad_mode_setting
Quad mode setting

uint32_t cmd_pads
Command pads

uint32_t query_pads
SFDP read pads

uint32_t device_type
Device type

uint32_t option_size
Option size, in terms of uint32_t, size = (option_size + 1) * 4

uint32_t tag
Tag, must be 0x0E

union option1

1112 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

struct _serial_nor_config_option B

uint32_t U

struct B

Public Members

uint32_t dummy_cycles
Dummy cycles before read

uint32_t status_override
Override status register value during device mode configuration

uint32_t pinmux_group
The pinmux group selection

uint32_t dqs_pinmux_group
The DQS Pinmux Group Selection

uint32_t drive_strength
The Drive Strength of FlexSPI Pads

uint32_t flash_connection
Flash connection option: 0 - Single Flash connected to port A, 1 - Parallel mode, 2 -
Single Flash connected to Port B

2.102 RTWDOG: 32-bit Watchdog Timer

void RTWDOG_GetDefaultConfig(rtwdog_config_t *config)
Initializes the RTWDOG configuration structure.

This function initializes the RTWDOG configuration structure to default values. The default
values are:

rtwdogConfig->enableRtwdog = true;
rtwdogConfig->clockSource = kRTWDOG_ClockSource1;
rtwdogConfig->prescaler = kRTWDOG_ClockPrescalerDivide1;
rtwdogConfig->workMode.enableWait = true;
rtwdogConfig->workMode.enableStop = false;
rtwdogConfig->workMode.enableDebug = false;
rtwdogConfig->testMode = kRTWDOG_TestModeDisabled;
rtwdogConfig->enableUpdate = true;
rtwdogConfig->enableInterrupt = false;
rtwdogConfig->enableWindowMode = false;
rtwdogConfig->windowValue = 0U;
rtwdogConfig->timeoutValue = 0xFFFFU;

See also:
rtwdog_config_t

Parameters
• config – Pointer to the RTWDOG configuration structure.

2.102. RTWDOG: 32-bit Watchdog Timer 1113



MCUXpresso SDK Documentation, Release 25.12.00

void RTWDOG_Init(RTWDOG_Type *base, const rtwdog_config_t *config)
Initializes the RTWDOG module.

This function initializes the RTWDOG. To reconfigure the RTWDOG without forcing a reset
first, enableUpdate must be set to true in the configuration.

Example:

rtwdog_config_t config;
RTWDOG_GetDefaultConfig(&config);
config.timeoutValue = 0x7ffU;
config.enableUpdate = true;
RTWDOG_Init(wdog_base,&config);

Parameters
• base – RTWDOG peripheral base address.

• config – The configuration of the RTWDOG.

void RTWDOG_Deinit(RTWDOG_Type *base)
De-initializes the RTWDOG module.

This function shuts down the RTWDOG. Ensure that the WDOG_CS.UPDATE is 1, which
means that the register update is enabled.

Parameters
• base – RTWDOG peripheral base address.

static inline void RTWDOG_Enable(RTWDOG_Type *base)
Enables the RTWDOG module.

This function writes a value into the WDOG_CS register to enable the RTWDOG. The
WDOG_CS register is a write-once register. Ensure that the WCT window is still open and
this register has not been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address.

static inline void RTWDOG_Disable(RTWDOG_Type *base)
Disables the RTWDOG module.

This function writes a value into the WDOG_CS register to disable the RTWDOG. The
WDOG_CS register is a write-once register. Ensure that the WCT window is still open and
this register has not been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address

static inline void RTWDOG_EnableInterrupts(RTWDOG_Type *base, uint32_t mask)
Enables the RTWDOG interrupt.

This function writes a value into the WDOG_CS register to enable the RTWDOG interrupt.
The WDOG_CS register is a write-once register. Ensure that the WCT window is still open
and this register has not been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address.

• mask – The interrupts to enable. The parameter can be a combination of
the following source if defined:

– kRTWDOG_InterruptEnable

1114 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void RTWDOG_DisableInterrupts(RTWDOG_Type *base, uint32_t mask)
Disables the RTWDOG interrupt.

This function writes a value into the WDOG_CS register to disable the RTWDOG interrupt.
The WDOG_CS register is a write-once register. Ensure that the WCT window is still open
and this register has not been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address.

• mask – The interrupts to disabled. The parameter can be a combination of
the following source if defined:

– kRTWDOG_InterruptEnable

static inline uint32_t RTWDOG_GetStatusFlags(RTWDOG_Type *base)
Gets the RTWDOG all status flags.

This function gets all status flags.

Example to get the running flag:

uint32_t status;
status = RTWDOG_GetStatusFlags(wdog_base) & kRTWDOG_RunningFlag;

See also:
_rtwdog_status_flags_t

• true: related status flag has been set.

• false: related status flag is not set.

Parameters
• base – RTWDOG peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

static inline void RTWDOG_EnableWindowMode(RTWDOG_Type *base, bool enable)
Enables/disables the window mode.

Parameters
• base – RTWDOG peripheral base address.

• enable – Enables(true) or disables(false) the feature.

static inline uint32_t RTWDOG_CountToMesec(RTWDOG_Type *base, uint32_t count, uint32_t
clockFreqInHz)

Converts raw count value to millisecond.

Note that if the clock frequency is too high the timeout period can be less than 1 ms. In this
case this api will return 0 value.

Parameters
• base – RTWDOG peripheral base address.

• count – Raw count value.

• clockFreqInHz – The frequency of the clock source RTWDOG uses.

Returns
Return converted time. Will return 0 if result is larger than 0xFFFFFFFF.

2.102. RTWDOG: 32-bit Watchdog Timer 1115



MCUXpresso SDK Documentation, Release 25.12.00

void RTWDOG_ClearStatusFlags(RTWDOG_Type *base, uint32_t mask)
Clears the RTWDOG flag.

This function clears the RTWDOG status flag.

Example to clear an interrupt flag:

RTWDOG_ClearStatusFlags(wdog_base,kRTWDOG_InterruptFlag);

Parameters
• base – RTWDOG peripheral base address.

• mask – The status flags to clear. The parameter can be any combination of
the following values:

– kRTWDOG_InterruptFlag

static inline void RTWDOG_SetTimeoutValue(RTWDOG_Type *base, uint16_t timeoutCount)
Sets the RTWDOG timeout value.

This function writes a timeout value into the WDOG_TOVAL register. The WDOG_TOVAL
register is a write-once register. Ensure that the WCT window is still open and this register
has not been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address

• timeoutCount – RTWDOG timeout value, count of RTWDOG clock ticks.

static inline void RTWDOG_SetWindowValue(RTWDOG_Type *base, uint16_t windowValue)
Sets the RTWDOG window value.

This function writes a window value into the WDOG_WIN register. The WDOG_WIN register
is a write-once register. Ensure that the WCT window is still open and this register has not
been written in this WCT while the function is called.

Parameters
• base – RTWDOG peripheral base address.

• windowValue – RTWDOG window value.

__STATIC_FORCEINLINE void RTWDOG_Unlock (RTWDOG_Type *base)
Unlocks the RTWDOG register written.

This function unlocks the RTWDOG register written.

Before starting the unlock sequence and following the configuration, disable the global in-
terrupts. Otherwise, an interrupt could effectively invalidate the unlock sequence and the
WCT may expire. After the configuration finishes, re-enable the global interrupts.

Parameters
• base – RTWDOG peripheral base address

static inline void RTWDOG_Refresh(RTWDOG_Type *base)
Refreshes the RTWDOG timer.

This function feeds the RTWDOG. This function should be called before the Watchdog timer
is in timeout. Otherwise, a reset is asserted.

Parameters
• base – RTWDOG peripheral base address

1116 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t RTWDOG_GetCounterValue(RTWDOG_Type *base)
Gets the RTWDOG counter value.

This function gets the RTWDOG counter value.

Parameters
• base – RTWDOG peripheral base address.

Returns
Current RTWDOG counter value.

WDOG_FIRST_WORD_OF_UNLOCK
First word of unlock sequence

WDOG_SECOND_WORD_OF_UNLOCK
Second word of unlock sequence

WDOG_FIRST_WORD_OF_REFRESH
First word of refresh sequence

WDOG_SECOND_WORD_OF_REFRESH
Second word of refresh sequence

FSL_RTWDOG_DRIVER_VERSION
RTWDOG driver version.

enum _rtwdog_clock_source
Describes RTWDOG clock source.

Values:

enumerator kRTWDOG_ClockSource0
Clock source 0

enumerator kRTWDOG_ClockSource1
Clock source 1

enumerator kRTWDOG_ClockSource2
Clock source 2

enumerator kRTWDOG_ClockSource3
Clock source 3

enum _rtwdog_clock_prescaler
Describes the selection of the clock prescaler.

Values:

enumerator kRTWDOG_ClockPrescalerDivide1
Divided by 1

enumerator kRTWDOG_ClockPrescalerDivide256
Divided by 256

enum _rtwdog_test_mode
Describes RTWDOG test mode.

Values:

enumerator kRTWDOG_TestModeDisabled
Test Mode disabled

enumerator kRTWDOG_UserModeEnabled
User Mode enabled

2.102. RTWDOG: 32-bit Watchdog Timer 1117



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kRTWDOG_LowByteTest
Test Mode enabled, only low byte is used

enumerator kRTWDOG_HighByteTest
Test Mode enabled, only high byte is used

enum _rtwdog_interrupt_enable_t
RTWDOG interrupt configuration structure.

This structure contains the settings for all of the RTWDOG interrupt configurations.

Values:

enumerator kRTWDOG_InterruptEnable
Interrupt is generated before forcing a reset

enum _rtwdog_status_flags_t
RTWDOG status flags.

This structure contains the RTWDOG status flags for use in the RTWDOG functions.

Values:

enumerator kRTWDOG_RunningFlag
Running flag, set when RTWDOG is enabled

enumerator kRTWDOG_InterruptFlag
Interrupt flag, set when interrupt occurs

typedef enum _rtwdog_clock_source rtwdog_clock_source_t
Describes RTWDOG clock source.

typedef enum _rtwdog_clock_prescaler rtwdog_clock_prescaler_t
Describes the selection of the clock prescaler.

typedef struct _rtwdog_work_mode rtwdog_work_mode_t
Defines RTWDOG work mode.

typedef enum _rtwdog_test_mode rtwdog_test_mode_t
Describes RTWDOG test mode.

typedef struct _rtwdog_config rtwdog_config_t
Describes RTWDOG configuration structure.

struct _rtwdog_work_mode
#include <fsl_rtwdog.h> Defines RTWDOG work mode.

Public Members

bool enableWait
Enables or disables RTWDOG in wait mode

bool enableStop
Enables or disables RTWDOG in stop mode

bool enableDebug
Enables or disables RTWDOG in debug mode

struct _rtwdog_config
#include <fsl_rtwdog.h> Describes RTWDOG configuration structure.

1118 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableRtwdog
Enables or disables RTWDOG

rtwdog_clock_source_t clockSource
Clock source select

rtwdog_clock_prescaler_t prescaler
Clock prescaler value

rtwdog_work_mode_t workMode
Configures RTWDOG work mode in debug stop and wait mode

rtwdog_test_mode_t testMode
Configures RTWDOG test mode

bool enableUpdate
Update write-once register enable

bool enableInterrupt
Enables or disables RTWDOG interrupt

bool enableWindowMode
Enables or disables RTWDOG window mode

uint16_t windowValue
Window value

uint16_t timeoutValue
Timeout value

2.103 SAI: Serial Audio Interface

2.104 SAI Driver

void SAI_Init(I2S_Type *base)
Initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_Init is called to enable
the clock.

Parameters
• base – SAI base pointer.

void SAI_Deinit(I2S_Type *base)
De-initializes the SAI peripheral.

This API gates the SAI clock. The SAI module can’t operate unless SAI_TxInit or SAI_RxInit
is called to enable the clock.

Parameters
• base – SAI base pointer.

void SAI_TxReset(I2S_Type *base)
Resets the SAI Tx.

This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset
bit.

2.103. SAI: Serial Audio Interface 1119



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – SAI base pointer

void SAI_RxReset(I2S_Type *base)
Resets the SAI Rx.

This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset
bit.

Parameters
• base – SAI base pointer

void SAI_TxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Tx.

Parameters
• base – SAI base pointer.

• enable – True means enable SAI Tx, false means disable.

void SAI_RxEnable(I2S_Type *base, bool enable)
Enables/disables the SAI Rx.

Parameters
• base – SAI base pointer.

• enable – True means enable SAI Rx, false means disable.

static inline void SAI_TxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetBitClockDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Rx bit clock direction.

Select bit clock direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_RxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t
masterSlave)

Set Rx frame sync direction.

Select frame sync direction, master or slave.

Parameters
• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

static inline void SAI_TxSetFrameSyncDirection(I2S_Type *base, sai_master_slave_t masterSlave)
Set Tx frame sync direction.

Select frame sync direction, master or slave.

Parameters

1120 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – SAI base pointer.

• masterSlave – reference sai_master_slave_t.

void SAI_TxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Transmitter bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – Bit clock source frequency.

• sampleRate – Audio data sample rate.

• bitWidth – Audio data bitWidth.

• channelNumbers – Audio channel numbers.

void SAI_RxSetBitClockRate(I2S_Type *base, uint32_t sourceClockHz, uint32_t sampleRate,
uint32_t bitWidth, uint32_t channelNumbers)

Receiver bit clock rate configurations.

Parameters
• base – SAI base pointer.

• sourceClockHz – Bit clock source frequency.

• sampleRate – Audio data sample rate.

• bitWidth – Audio data bitWidth.

• channelNumbers – Audio channel numbers.

void SAI_TxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t
*config)

Transmitter Bit clock configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – bit clock other configurations, can be NULL in slave mode.

void SAI_RxSetBitclockConfig(I2S_Type *base, sai_master_slave_t masterSlave, sai_bit_clock_t
*config)

Receiver Bit clock configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – bit clock other configurations, can be NULL in slave mode.

void SAI_SetMasterClockConfig(I2S_Type *base, sai_master_clock_t *config)
Master clock configurations.

Parameters
• base – SAI base pointer.

• config – master clock configurations.

2.104. SAI Driver 1121



MCUXpresso SDK Documentation, Release 25.12.00

void SAI_TxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)
SAI transmitter fifo configurations.

Parameters
• base – SAI base pointer.

• config – fifo configurations.

void SAI_RxSetFifoConfig(I2S_Type *base, sai_fifo_t *config)
SAI receiver fifo configurations.

Parameters
• base – SAI base pointer.

• config – fifo configurations.

void SAI_TxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave,
sai_frame_sync_t *config)

SAI transmitter Frame sync configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – frame sync configurations, can be NULL in slave mode.

void SAI_RxSetFrameSyncConfig(I2S_Type *base, sai_master_slave_t masterSlave,
sai_frame_sync_t *config)

SAI receiver Frame sync configurations.

Parameters
• base – SAI base pointer.

• masterSlave – master or slave.

• config – frame sync configurations, can be NULL in slave mode.

void SAI_TxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI transmitter Serial data configurations.

Parameters
• base – SAI base pointer.

• config – serial data configurations.

void SAI_RxSetSerialDataConfig(I2S_Type *base, sai_serial_data_t *config)
SAI receiver Serial data configurations.

Parameters
• base – SAI base pointer.

• config – serial data configurations.

void SAI_TxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI transmitter configurations.

Parameters
• base – SAI base pointer.

• config – transmitter configurations.

1122 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void SAI_RxSetConfig(I2S_Type *base, sai_transceiver_t *config)
SAI receiver configurations.

Parameters
• base – SAI base pointer.

• config – receiver configurations.

void SAI_GetClassicI2SConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get classic I2S mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetLeftJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get left justified mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetRightJustifiedConfig(sai_transceiver_t *config, sai_word_width_t bitWidth,
sai_mono_stereo_t mode, uint32_t saiChannelMask)

Get right justified mode configurations.

Parameters
• config – transceiver configurations.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to be enable.

void SAI_GetTDMConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth,
sai_word_width_t bitWidth, uint32_t dataWordNum, uint32_t
saiChannelMask)

Get TDM mode configurations.

Parameters
• config – transceiver configurations.

• frameSyncWidth – length of frame sync.

• bitWidth – audio data word width.

• dataWordNum – word number in one frame.

• saiChannelMask – mask value of the channel to be enable.

2.104. SAI Driver 1123



MCUXpresso SDK Documentation, Release 25.12.00

void SAI_GetDSPConfig(sai_transceiver_t *config, sai_frame_sync_len_t frameSyncWidth,
sai_word_width_t bitWidth, sai_mono_stereo_t mode, uint32_t
saiChannelMask)

Get DSP mode configurations.

DSP/PCM MODE B configuration flow for TX. RX is similiar but uses SAI_RxSetConfig instead
of SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
SAI_TxSetConfig(base, config)

Note: DSP mode is also called PCM mode which support MODE A and MODE B,
DSP/PCM MODE A configuration flow. RX is similiar but uses SAI_RxSetConfig instead of
SAI_TxSetConfig:

SAI_GetDSPConfig(config, kSAI_FrameSyncLenOneBitClk, bitWidth, kSAI_Stereo, channelMask)
config->frameSync.frameSyncEarly = true;
SAI_TxSetConfig(base, config)

Parameters
• config – transceiver configurations.

• frameSyncWidth – length of frame sync.

• bitWidth – audio data bitWidth.

• mode – audio data channel.

• saiChannelMask – mask value of the channel to enable.

static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters
• base – SAI base pointer

Returns
SAI Tx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Tx status flag state.

Parameters
• base – SAI base pointer

• mask – State mask. It can be a combination of the following source if de-
fined:

– kSAI_WordStartFlag

– kSAI_SyncErrorFlag

– kSAI_FIFOErrorFlag

static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base)
Gets the SAI Tx status flag state.

Parameters
• base – SAI base pointer

1124 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Returns
SAI Rx status flag value. Use the Status Mask to get the status value needed.

static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask)
Clears the SAI Rx status flag state.

Parameters
• base – SAI base pointer

• mask – State mask. It can be a combination of the following sources if de-
fined.

– kSAI_WordStartFlag

– kSAI_SyncErrorFlag

– kSAI_FIFOErrorFlag

void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Tx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like TCR1~TCR5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
• base – SAI base pointer

• resetType – Reset type, FIFO reset or software reset

void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t resetType)
Do software reset or FIFO reset .

FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. Soft-
ware reset means clear the Rx internal logic, including the bit clock, frame count etc. But
software reset will not clear any configuration registers like RCR1~RCR5. This function will
also clear all the error flags such as FIFO error, sync error etc.

Parameters
• base – SAI base pointer

• resetType – Reset type, FIFO reset or software reset

void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Tx channel FIFO enable mask.

Parameters
• base – SAI base pointer

• mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask)
Set the Rx channel FIFO enable mask.

Parameters
• base – SAI base pointer

• mask – Channel enable mask, 0 means all channel FIFO disabled, 1 means
channel 0 enabled, 3 means both channel 0 and channel 1 enabled.

2.104. SAI Driver 1125



MCUXpresso SDK Documentation, Release 25.12.00

void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Tx data order.

Parameters
• base – SAI base pointer

• order – Data order MSB or LSB

void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order)
Set the Rx data order.

Parameters
• base – SAI base pointer

• order – Data order MSB or LSB

void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Tx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity)
Set the Rx data order.

Parameters
• base – SAI base pointer

• polarity –

void SAI_TxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)
Set Tx FIFO packing feature.

Parameters
• base – SAI base pointer.

• pack – FIFO pack type. It is element of sai_fifo_packing_t.

void SAI_RxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack)
Set Rx FIFO packing feature.

Parameters
• base – SAI base pointer.

• pack – FIFO pack type. It is element of sai_fifo_packing_t.

1126 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SAI_TxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
Set Tx FIFO error continue.

FIFO error continue mode means SAI will keep running while FIFO error occurred. If this
feature not enabled, SAI will hang and users need to clear FEF flag in TCSR register.

Parameters
• base – SAI base pointer.

• isEnabled – Is FIFO error continue enabled, true means enable, false means
disable.

static inline void SAI_RxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled)
Set Rx FIFO error continue.

FIFO error continue mode means SAI will keep running while FIFO error occurred. If this
feature not enabled, SAI will hang and users need to clear FEF flag in RCSR register.

Parameters
• base – SAI base pointer.

• isEnabled – Is FIFO error continue enabled, true means enable, false means
disable.

static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Tx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask)
Enables the SAI Rx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Tx interrupt requests.

Parameters
• base – SAI base pointer

2.104. SAI Driver 1127



MCUXpresso SDK Documentation, Release 25.12.00

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask)
Disables the SAI Rx interrupt requests.

Parameters
• base – SAI base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSAI_WordStartInterruptEnable

– kSAI_SyncErrorInterruptEnable

– kSAI_FIFOWarningInterruptEnable

– kSAI_FIFORequestInterruptEnable

– kSAI_FIFOErrorInterruptEnable

static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Tx DMA requests.

Parameters
• base – SAI base pointer

• mask – DMA source The parameter can be combination of the following
sources if defined.

– kSAI_FIFOWarningDMAEnable

– kSAI_FIFORequestDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable)
Enables/disables the SAI Rx DMA requests.

Parameters
• base – SAI base pointer

• mask – DMA source The parameter can be a combination of the following
sources if defined.

– kSAI_FIFOWarningDMAEnable

– kSAI_FIFORequestDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline uintptr_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Tx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters
• base – SAI base pointer.

1128 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• channel – Which data channel used.

Returns
data register address.

static inline uintptr_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel)
Gets the SAI Rx data register address.

This API is used to provide a transfer address for the SAI DMA transfer configuration.

Parameters
• base – SAI base pointer.

• channel – Which data channel used.

Returns
data register address.

void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

void SAI_WriteMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Sends data to multi channel using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• channelMask – channel mask.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data)
Writes data into SAI FIFO.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

2.104. SAI Driver 1129



MCUXpresso SDK Documentation, Release 25.12.00

• data – Data needs to be written.

void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer,
uint32_t size)

Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

void SAI_ReadMultiChannelBlocking(I2S_Type *base, uint32_t channel, uint32_t channelMask,
uint32_t bitWidth, uint8_t *buffer, uint32_t size)

Receives multi channel data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

• channelMask – channel mask.

• bitWidth – How many bits in an audio word; usually 8/16/24/32 bits.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel)
Reads data from the SAI FIFO.

Parameters
• base – SAI base pointer.

• channel – Data channel used.

Returns
Data in SAI FIFO.

void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Tx handle.

This function initializes the Tx handle for the SAI Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SAI base pointer

• handle – SAI handle pointer.

• callback – Pointer to the user callback function.

1130 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• userData – User parameter passed to the callback function

void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t
callback, void *userData)

Initializes the SAI Rx handle.

This function initializes the Rx handle for the SAI Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function.

void SAI_TransferTxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI transmitter transfer configurations.

This function initializes the Tx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• config – tranmitter configurations.

void SAI_TransferRxSetConfig(I2S_Type *base, sai_handle_t *handle, sai_transceiver_t *config)
SAI receiver transfer configurations.

This function initializes the Rx, include bit clock, frame sync, master clock, serial data and
fifo configurations.

Parameters
• base – SAI base pointer.

• handle – SAI handle pointer.

• config – receiver configurations.

status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t
*xfer)

Performs an interrupt non-blocking send transfer on SAI.

Note: This API returns immediately after the transfer initiates. Call the
SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• xfer – Pointer to the sai_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

2.104. SAI Driver 1131



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_SAI_TxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t
*xfer)

Performs an interrupt non-blocking receive transfer on SAI.

Note: This API returns immediately after the transfer initiates. Call the
SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether the trans-
fer is finished. If the return status is not kStatus_SAI_Busy, the transfer is finished.

Parameters
• base – SAI base pointer

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• xfer – Pointer to the sai_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SAI_RxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a set byte count.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• count – Bytes count sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count)
Gets a received byte count.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

• count – Bytes count received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

1132 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
• base – SAI base pointer

• handle – Pointer to the sai_handle_t structure which stores the transfer
state.

void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortSend.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle)
Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortReceive.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SAI base pointer.

• handle – Pointer to the sai_handle_t structure.

void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SAI base pointer.

2.104. SAI Driver 1133



MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to the sai_handle_t structure.

void SAI_DriverIRQHandler(uint32_t instance)
SAI driver IRQ handler common entry.

This function provides the common IRQ request entry for SAI.

Parameters
• instance – SAI instance.

FSL_SAI_DRIVER_VERSION
Version 2.4.10

_sai_status_t, SAI return status.

Values:

enumerator kStatus_SAI_TxBusy
SAI Tx is busy.

enumerator kStatus_SAI_RxBusy
SAI Rx is busy.

enumerator kStatus_SAI_TxError
SAI Tx FIFO error.

enumerator kStatus_SAI_RxError
SAI Rx FIFO error.

enumerator kStatus_SAI_QueueFull
SAI transfer queue is full.

enumerator kStatus_SAI_TxIdle
SAI Tx is idle

enumerator kStatus_SAI_RxIdle
SAI Rx is idle

_sai_channel_mask,.sai channel mask value, actual channel numbers is depend soc specific

Values:

enumerator kSAI_Channel0Mask
channel 0 mask value

enumerator kSAI_Channel1Mask
channel 1 mask value

enumerator kSAI_Channel2Mask
channel 2 mask value

enumerator kSAI_Channel3Mask
channel 3 mask value

enumerator kSAI_Channel4Mask
channel 4 mask value

enumerator kSAI_Channel5Mask
channel 5 mask value

enumerator kSAI_Channel6Mask
channel 6 mask value

1134 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSAI_Channel7Mask
channel 7 mask value

enum _sai_protocol
Define the SAI bus type.

Values:

enumerator kSAI_BusLeftJustified
Uses left justified format.

enumerator kSAI_BusRightJustified
Uses right justified format.

enumerator kSAI_BusI2S
Uses I2S format.

enumerator kSAI_BusPCMA
Uses I2S PCM A format.

enumerator kSAI_BusPCMB
Uses I2S PCM B format.

enum _sai_master_slave
Master or slave mode.

Values:

enumerator kSAI_Master
Master mode include bclk and frame sync

enumerator kSAI_Slave
Slave mode include bclk and frame sync

enumerator kSAI_Bclk_Master_FrameSync_Slave
bclk in master mode, frame sync in slave mode

enumerator kSAI_Bclk_Slave_FrameSync_Master
bclk in slave mode, frame sync in master mode

enum _sai_mono_stereo
Mono or stereo audio format.

Values:

enumerator kSAI_Stereo
Stereo sound.

enumerator kSAI_MonoRight
Only Right channel have sound.

enumerator kSAI_MonoLeft
Only left channel have sound.

enum _sai_data_order
SAI data order, MSB or LSB.

Values:

enumerator kSAI_DataLSB
LSB bit transferred first

enumerator kSAI_DataMSB
MSB bit transferred first

2.104. SAI Driver 1135



MCUXpresso SDK Documentation, Release 25.12.00

enum _sai_clock_polarity
SAI clock polarity, active high or low.

Values:

enumerator kSAI_PolarityActiveHigh
Drive outputs on rising edge

enumerator kSAI_PolarityActiveLow
Drive outputs on falling edge

enumerator kSAI_SampleOnFallingEdge
Sample inputs on falling edge

enumerator kSAI_SampleOnRisingEdge
Sample inputs on rising edge

enum _sai_sync_mode
Synchronous or asynchronous mode.

Values:

enumerator kSAI_ModeAsync
Asynchronous mode

enumerator kSAI_ModeSync
Synchronous mode (with receiver or transmit)

enumerator kSAI_ModeSyncWithOtherTx
Synchronous with another SAI transmit

enumerator kSAI_ModeSyncWithOtherRx
Synchronous with another SAI receiver

enum _sai_bclk_source
Bit clock source.

Values:

enumerator kSAI_BclkSourceBusclk
Bit clock using bus clock

enumerator kSAI_BclkSourceMclkOption1
Bit clock MCLK option 1

enumerator kSAI_BclkSourceMclkOption2
Bit clock MCLK option2

enumerator kSAI_BclkSourceMclkOption3
Bit clock MCLK option3

enumerator kSAI_BclkSourceMclkDiv
Bit clock using master clock divider

enumerator kSAI_BclkSourceOtherSai0
Bit clock from other SAI device

enumerator kSAI_BclkSourceOtherSai1
Bit clock from other SAI device

_sai_interrupt_enable_t, The SAI interrupt enable flag

Values:

1136 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSAI_WordStartInterruptEnable
Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorInterruptEnable
Sync error flag, means the sync error is detected

enumerator kSAI_FIFOWarningInterruptEnable
FIFO warning flag, means the FIFO is empty

enumerator kSAI_FIFOErrorInterruptEnable
FIFO error flag

enumerator kSAI_FIFORequestInterruptEnable
FIFO request, means reached watermark

_sai_dma_enable_t, The DMA request sources

Values:

enumerator kSAI_FIFOWarningDMAEnable
FIFO warning caused by the DMA request

enumerator kSAI_FIFORequestDMAEnable
FIFO request caused by the DMA request

_sai_flags, The SAI status flag

Values:

enumerator kSAI_WordStartFlag
Word start flag, means the first word in a frame detected

enumerator kSAI_SyncErrorFlag
Sync error flag, means the sync error is detected

enumerator kSAI_FIFOErrorFlag
FIFO error flag

enumerator kSAI_FIFORequestFlag
FIFO request flag.

enumerator kSAI_FIFOWarningFlag
FIFO warning flag

enum _sai_reset_type
The reset type.

Values:

enumerator kSAI_ResetTypeSoftware
Software reset, reset the logic state

enumerator kSAI_ResetTypeFIFO
FIFO reset, reset the FIFO read and write pointer

enumerator kSAI_ResetAll
All reset.

enum _sai_fifo_packing
The SAI packing mode The mode includes 8 bit and 16 bit packing.

Values:

2.104. SAI Driver 1137



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSAI_FifoPackingDisabled
Packing disabled

enumerator kSAI_FifoPacking8bit
8 bit packing enabled

enumerator kSAI_FifoPacking16bit
16bit packing enabled

enum _sai_sample_rate
Audio sample rate.

Values:

enumerator kSAI_SampleRate8KHz
Sample rate 8000 Hz

enumerator kSAI_SampleRate11025Hz
Sample rate 11025 Hz

enumerator kSAI_SampleRate12KHz
Sample rate 12000 Hz

enumerator kSAI_SampleRate16KHz
Sample rate 16000 Hz

enumerator kSAI_SampleRate22050Hz
Sample rate 22050 Hz

enumerator kSAI_SampleRate24KHz
Sample rate 24000 Hz

enumerator kSAI_SampleRate32KHz
Sample rate 32000 Hz

enumerator kSAI_SampleRate44100Hz
Sample rate 44100 Hz

enumerator kSAI_SampleRate48KHz
Sample rate 48000 Hz

enumerator kSAI_SampleRate96KHz
Sample rate 96000 Hz

enumerator kSAI_SampleRate192KHz
Sample rate 192000 Hz

enumerator kSAI_SampleRate384KHz
Sample rate 384000 Hz

enum _sai_word_width
Audio word width.

Values:

enumerator kSAI_WordWidth8bits
Audio data width 8 bits

enumerator kSAI_WordWidth16bits
Audio data width 16 bits

enumerator kSAI_WordWidth24bits
Audio data width 24 bits

1138 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSAI_WordWidth32bits
Audio data width 32 bits

enum _sai_data_pin_state
sai data pin state definition

Values:

enumerator kSAI_DataPinStateTriState
transmit data pins are tri-stated when slots are masked or channels are disabled

enumerator kSAI_DataPinStateOutputZero
transmit data pins are never tri-stated and will output zero when slots are masked or
channel disabled

enum _sai_fifo_combine
sai fifo combine mode definition

Values:

enumerator kSAI_FifoCombineDisabled
sai TX/RX fifo combine mode disabled

enumerator kSAI_FifoCombineModeEnabledOnRead
sai TX fifo combine mode enabled on FIFO reads

enumerator kSAI_FifoCombineModeEnabledOnWrite
sai TX fifo combine mode enabled on FIFO write

enumerator kSAI_RxFifoCombineModeEnabledOnWrite
sai RX fifo combine mode enabled on FIFO write

enumerator kSAI_RXFifoCombineModeEnabledOnRead
sai RX fifo combine mode enabled on FIFO reads

enumerator kSAI_FifoCombineModeEnabledOnReadWrite
sai TX/RX fifo combined mode enabled on FIFO read/writes

enum _sai_transceiver_type
sai transceiver type

Values:

enumerator kSAI_Transmitter
sai transmitter

enumerator kSAI_Receiver
sai receiver

enum _sai_frame_sync_len
sai frame sync len

Values:

enumerator kSAI_FrameSyncLenOneBitClk
1 bit clock frame sync len for DSP mode

enumerator kSAI_FrameSyncLenPerWordWidth
Frame sync length decided by word width

typedef enum _sai_protocol sai_protocol_t
Define the SAI bus type.

2.104. SAI Driver 1139



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _sai_master_slave sai_master_slave_t
Master or slave mode.

typedef enum _sai_mono_stereo sai_mono_stereo_t
Mono or stereo audio format.

typedef enum _sai_data_order sai_data_order_t
SAI data order, MSB or LSB.

typedef enum _sai_clock_polarity sai_clock_polarity_t
SAI clock polarity, active high or low.

typedef enum _sai_sync_mode sai_sync_mode_t
Synchronous or asynchronous mode.

typedef enum _sai_bclk_source sai_bclk_source_t
Bit clock source.

typedef enum _sai_reset_type sai_reset_type_t
The reset type.

typedef enum _sai_fifo_packing sai_fifo_packing_t
The SAI packing mode The mode includes 8 bit and 16 bit packing.

typedef struct _sai_config sai_config_t
SAI user configuration structure.

typedef enum _sai_sample_rate sai_sample_rate_t
Audio sample rate.

typedef enum _sai_word_width sai_word_width_t
Audio word width.

typedef enum _sai_data_pin_state sai_data_pin_state_t
sai data pin state definition

typedef enum _sai_fifo_combine sai_fifo_combine_t
sai fifo combine mode definition

typedef enum _sai_transceiver_type sai_transceiver_type_t
sai transceiver type

typedef enum _sai_frame_sync_len sai_frame_sync_len_t
sai frame sync len

typedef struct _sai_transfer_format sai_transfer_format_t
sai transfer format

typedef struct _sai_master_clock sai_master_clock_t
master clock configurations

typedef struct _sai_fifo sai_fifo_t
sai fifo configurations

typedef struct _sai_bit_clock sai_bit_clock_t
sai bit clock configurations

typedef struct _sai_frame_sync sai_frame_sync_t
sai frame sync configurations

typedef struct _sai_serial_data sai_serial_data_t
sai serial data configurations

1140 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _sai_transceiver sai_transceiver_t
sai transceiver configurations

typedef struct _sai_transfer sai_transfer_t
SAI transfer structure.

typedef struct _sai_handle sai_handle_t

typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status,
void *userData)

SAI transfer callback prototype.

MCUX_SDK_SAI_ALLOW_NULL_FIFO_WATERMARK
Used to control whether SAI_RxSetFifoConfig()/SAI_TxSetFifoConfig() allows a NULL FIFO
watermark.

If this macro is set to 0 then SAI_RxSetFifoConfig()/SAI_TxSetFifoConfig() will set the water-
mark to half of the FIFO’s depth if passed a NULL watermark.

MCUX_SDK_SAI_DISABLE_IMPLICIT_CHAN_CONFIG
Disable implicit channel data configuration within SAI_TxSetConfig()/SAI_RxSetConfig().

Use this macro to control whether SAI_RxSetConfig()/SAI_TxSetConfig() will attempt to im-
plicitly configure the channel data. By channel data we mean the startChannel, channel-
Mask, endChannel, and channelNums fields from the sai_transciever_t structure. By de-
fault, SAI_TxSetConfig()/SAI_RxSetConfig() will attempt to compute these fields, which may
not be desired in cases where the user wants to set them before the call to said functions.

SAI_XFER_QUEUE_SIZE
SAI transfer queue size, user can refine it according to use case.

FSL_SAI_HAS_FIFO_EXTEND_FEATURE
sai fifo feature

struct _sai_config
#include <fsl_sai.h> SAI user configuration structure.

Public Members

sai_protocol_t protocol
Audio bus protocol in SAI

sai_sync_mode_t syncMode
SAI sync mode, control Tx/Rx clock sync

bool mclkOutputEnable
Master clock output enable, true means master clock divider enabled

sai_bclk_source_t bclkSource
Bit Clock source

sai_master_slave_t masterSlave
Master or slave

struct _sai_transfer_format
#include <fsl_sai.h> sai transfer format

2.104. SAI Driver 1141



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t sampleRate_Hz
Sample rate of audio data

uint32_t bitWidth
Data length of audio data, usually 8/16/24/32 bits

sai_mono_stereo_t stereo
Mono or stereo

uint32_t masterClockHz
Master clock frequency in Hz

uint8_t watermark
Watermark value

uint8_t channel
Transfer start channel

uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

sai_protocol_t protocol
Which audio protocol used

bool isFrameSyncCompact
True means Frame sync length is configurable according to bitWidth, false means
frame sync length is 64 times of bit clock.

struct _sai_master_clock
#include <fsl_sai.h> master clock configurations

Public Members

bool mclkOutputEnable
master clock output enable

uint32_t mclkHz
target mclk frequency

uint32_t mclkSourceClkHz
mclk source frequency

struct _sai_fifo
#include <fsl_sai.h> sai fifo configurations

Public Members

bool fifoContinueOneError
fifo continues when error occur

sai_fifo_combine_t fifoCombine
fifo combine mode

1142 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

sai_fifo_packing_t fifoPacking
fifo packing mode

uint8_t fifoWatermark
fifo watermark

struct _sai_bit_clock
#include <fsl_sai.h> sai bit clock configurations

Public Members

bool bclkSrcSwap
bit clock source swap

bool bclkInputDelay
bit clock actually used by the transmitter is delayed by the pad output delay, this has
effect of decreasing the data input setup time, but increasing the data output valid time
.

sai_clock_polarity_t bclkPolarity
bit clock polarity

sai_bclk_source_t bclkSource
bit Clock source

struct _sai_frame_sync
#include <fsl_sai.h> sai frame sync configurations

Public Members

uint8_t frameSyncWidth
frame sync width in number of bit clocks

bool frameSyncEarly
TRUE is frame sync assert one bit before the first bit of frame FALSE is frame sync
assert with the first bit of the frame

bool frameSyncGenerateOnDemand
internal frame sync is generated when FIFO waring flag is clear

sai_clock_polarity_t frameSyncPolarity
frame sync polarity

struct _sai_serial_data
#include <fsl_sai.h> sai serial data configurations

Public Members

sai_data_pin_state_t dataMode
sai data pin state when slots masked or channel disabled

sai_data_order_t dataOrder
configure whether the LSB or MSB is transmitted first

uint8_t dataWord0Length
configure the number of bits in the first word in each frame

2.104. SAI Driver 1143



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t dataWordNLength
configure the number of bits in the each word in each frame, except the first word

uint8_t dataWordLength
used to record the data length for dma transfer

uint8_t dataFirstBitShifted
Configure the bit index for the first bit transmitted for each word in the frame

uint8_t dataWordNum
configure the number of words in each frame

uint32_t dataMaskedWord
configure whether the transmit word is masked

struct _sai_transceiver
#include <fsl_sai.h> sai transceiver configurations

Public Members

sai_serial_data_t serialData
serial data configurations

sai_frame_sync_t frameSync
ws configurations

sai_bit_clock_t bitClock
bit clock configurations

sai_fifo_t fifo
fifo configurations

sai_master_slave_t masterSlave
transceiver is master or slave

sai_sync_mode_t syncMode
transceiver sync mode

uint8_t startChannel
Transfer start channel

uint8_t channelMask
enabled channel mask value, reference _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

struct _sai_transfer
#include <fsl_sai.h> SAI transfer structure.

Public Members

uint8_t *data
Data start address to transfer.

size_t dataSize
Transfer size.

1144 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _sai_handle
#include <fsl_sai.h> SAI handle structure.

Public Members

I2S_Type *base
base address

uint32_t state
Transfer status

sai_transfer_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

uint8_t bitWidth
Bit width for transfer, 8/16/24/32 bits

uint8_t channel
Transfer start channel

uint8_t channelMask
enabled channel mask value, refernece _sai_channel_mask

uint8_t endChannel
end channel number

uint8_t channelNums
Total enabled channel numbers

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint8_t watermark
Watermark value

2.105 SAI EDMA Driver

void SAI_TransferTxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle,
sai_edma_callback_t callback, void *userData,
edma_handle_t *txDmaHandle)

Initializes the SAI eDMA handle.

This function initializes the SAI master DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters

2.105. SAI EDMA Driver 1145



MCUXpresso SDK Documentation, Release 25.12.00

• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• txDmaHandle – eDMA handle pointer, this handle shall be static allocated
by users.

void SAI_TransferRxCreateHandleEDMA(I2S_Type *base, sai_edma_handle_t *handle,
sai_edma_callback_t callback, void *userData,
edma_handle_t *rxDmaHandle)

Initializes the SAI Rx eDMA handle.

This function initializes the SAI slave DMA handle, which can be used for other SAI mas-
ter transactional APIs. Usually, for a specified SAI instance, call this API once to get the
initialized handle.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• rxDmaHandle – eDMA handle pointer, this handle shall be static allocated
by users.

void SAI_TransferSetInterleaveType(sai_edma_handle_t *handle, sai_edma_interleave_t
interleaveType)

Initializes the SAI interleave type.

This function initializes the SAI DMA handle member interleaveType, it shall be called only
when application would like to use type kSAI_EDMAInterleavePerChannelBlock, since the
default interleaveType is kSAI_EDMAInterleavePerChannelSample always

Parameters
• handle – SAI eDMA handle pointer.

• interleaveType – Multi channel interleave type.

void SAI_TransferTxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle,
sai_transceiver_t *saiConfig)

Configures the SAI Tx.

Note: SAI eDMA supports data transfer in a multiple SAI channels if the FIFO
Combine feature is supported. To activate the multi-channel transfer enable SAI
channels by filling the channelMask of sai_transceiver_t with the corresponding
values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning
kSAI_FifoCombineModeEnabledOnWrite to the fifoCombine member of sai_fifo_combine_t
which is a member of sai_transceiver_t. This is an example of multi-channel data transfer
configuration step.

sai_transceiver_t config;
SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_
↪→Channel1Mask);
config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnWrite;
SAI_TransferTxSetConfigEDMA(I2S0, &edmaHandle, &config);

1146 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• saiConfig – sai configurations.

void SAI_TransferRxSetConfigEDMA(I2S_Type *base, sai_edma_handle_t *handle,
sai_transceiver_t *saiConfig)

Configures the SAI Rx.

Note: SAI eDMA supports data transfer in a multiple SAI channels if the FIFO
Combine feature is supported. To activate the multi-channel transfer enable SAI
channels by filling the channelMask of sai_transceiver_t with the corresponding
values of _sai_channel_mask enum, enable the FIFO Combine mode by assigning
kSAI_FifoCombineModeEnabledOnRead to the fifoCombine member of sai_fifo_combine_t
which is a member of sai_transceiver_t. This is an example of multi-channel data transfer
configuration step.

sai_transceiver_t config;
SAI_GetClassicI2SConfig(&config, kSAI_WordWidth16bits, kSAI_Stereo, kSAI_Channel0Mask|kSAI_
↪→Channel1Mask);
config.fifo.fifoCombine = kSAI_FifoCombineModeEnabledOnRead;
SAI_TransferRxSetConfigEDMA(I2S0, &edmaHandle, &config);

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• saiConfig – sai configurations.

status_t SAI_TransferSendEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t
*xfer)

Performs a non-blocking SAI transfer using DMA.

This function support multi channel transfer,

a. for the sai IP support fifo combine mode, application should enable the fifo combine
mode, no limitation on channel numbers

b. for the sai IP not support fifo combine mode, sai edma provide another solution which
using EDMA modulo feature, but support 2 or 4 channels only.

Note: This interface returns immediately after the transfer initiates. Call
SAI_GetTransferStatus to poll the transfer status and check whether the SAI transfer is fin-
ished.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• xfer – Pointer to the DMA transfer structure.

Return values
• kStatus_Success – Start a SAI eDMA send successfully.

2.105. SAI EDMA Driver 1147



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_TxBusy – SAI is busy sending data.

status_t SAI_TransferReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t
*xfer)

Performs a non-blocking SAI receive using eDMA.

This function support multi channel transfer,

a. for the sai IP support fifo combine mode, application should enable the fifo combine
mode, no limitation on channel numbers

b. for the sai IP not support fifo combine mode, sai edma provide another solution which
using EDMA modulo feature, but support 2 or 4 channels only.

Note: This interface returns immediately after the transfer initiates. Call the
SAI_GetReceiveRemainingBytes to poll the transfer status and check whether the SAI trans-
fer is finished.

Parameters
• base – SAI base pointer

• handle – SAI eDMA handle pointer.

• xfer – Pointer to DMA transfer structure.

Return values
• kStatus_Success – Start a SAI eDMA receive successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_RxBusy – SAI is busy receiving data.

status_t SAI_TransferSendLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle, sai_transfer_t
*xfer, uint32_t loopTransferCount)

Performs a non-blocking SAI loop transfer using eDMA.

Once the loop transfer start, application can use function SAI_TransferAbortSendEDMA to
stop the loop transfer.

Note: This function support loop transfer only,such as A->B->…->A, application must
be aware of that the more counts of the loop transfer, then more tcd memory required,
as the function use the tcd pool in sai_edma_handle_t, so application could redefine the
SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one
sai channel only.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• xfer – Pointer to the DMA transfer structure, should be a array with ele-
ments counts >=1(loopTransferCount).

• loopTransferCount – the counts of xfer array.

Return values

1148 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Success – Start a SAI eDMA send successfully.

• kStatus_InvalidArgument – The input argument is invalid.

status_t SAI_TransferReceiveLoopEDMA(I2S_Type *base, sai_edma_handle_t *handle,
sai_transfer_t *xfer, uint32_t loopTransferCount)

Performs a non-blocking SAI loop transfer using eDMA.

Once the loop transfer start, application can use function SAI_TransferAbortReceiveEDMA
to stop the loop transfer.

Note: This function support loop transfer only,such as A->B->…->A, application must
be aware of that the more counts of the loop transfer, then more tcd memory required,
as the function use the tcd pool in sai_edma_handle_t, so application could redefine the
SAI_XFER_QUEUE_SIZE to determine the proper TCD pool size. This function support one
sai channel only.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• xfer – Pointer to the DMA transfer structure, should be a array with ele-
ments counts >=1(loopTransferCount).

• loopTransferCount – the counts of xfer array.

Return values
• kStatus_Success – Start a SAI eDMA receive successfully.

• kStatus_InvalidArgument – The input argument is invalid.

void SAI_TransferTerminateSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Terminate all SAI send.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortSendEDMA.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferTerminateReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Terminate all SAI receive.

This function will clear all transfer slots buffered in the sai queue. If users only want to
abort the current transfer slot, please call SAI_TransferAbortReceiveEDMA.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferAbortSendEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Aborts a SAI transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
SAI_TransferTerminateSendEDMA.

Parameters

2.105. SAI EDMA Driver 1149



MCUXpresso SDK Documentation, Release 25.12.00

• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

void SAI_TransferAbortReceiveEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Aborts a SAI receive using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
SAI_TransferTerminateReceiveEDMA.

Parameters
• base – SAI base pointer

• handle – SAI eDMA handle pointer.

status_t SAI_TransferGetSendCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t
*count)

Gets byte count sent by SAI.

Parameters
• base – SAI base pointer.

• handle – SAI eDMA handle pointer.

• count – Bytes count sent by SAI.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is no non-blocking transaction in
progress.

status_t SAI_TransferGetReceiveCountEDMA(I2S_Type *base, sai_edma_handle_t *handle, size_t
*count)

Gets byte count received by SAI.

Parameters
• base – SAI base pointer

• handle – SAI eDMA handle pointer.

• count – Bytes count received by SAI.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is no non-blocking transaction in
progress.

uint32_t SAI_TransferGetValidTransferSlotsEDMA(I2S_Type *base, sai_edma_handle_t *handle)
Gets valid transfer slot.

This function can be used to query the valid transfer request slot that the application can
submit. It should be called in the critical section, that means the application could call it
in the corresponding callback function or disable IRQ before calling it in the application,
otherwise, the returned value may not correct.

Parameters
• base – SAI base pointer

• handle – SAI eDMA handle pointer.

Return values
valid – slot count that application submit.

1150 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_SAI_EDMA_DRIVER_VERSION
Version 2.7.3

enum _sai_edma_interleave
sai interleave type

Values:

enumerator kSAI_EDMAInterleavePerChannelSample

enumerator kSAI_EDMAInterleavePerChannelBlock

typedef struct sai_edma_handle sai_edma_handle_t

typedef void (*sai_edma_callback_t)(I2S_Type *base, sai_edma_handle_t *handle, status_t
status, void *userData)

SAI eDMA transfer callback function for finish and error.

typedef enum _sai_edma_interleave sai_edma_interleave_t
sai interleave type

MCUX_SDK_SAI_EDMA_RX_ENABLE_INTERNAL
the SAI enable position When calling SAI_TransferReceiveEDMA

MCUX_SDK_SAI_EDMA_TX_ENABLE_INTERNAL
the SAI enable position When calling SAI_TransferSendEDMA

struct sai_edma_handle
#include <fsl_sai_edma.h> SAI DMA transfer handle, users should not touch the content of
the handle.

Public Members

edma_handle_t *dmaHandle
DMA handler for SAI send

uint8_t nbytes
eDMA minor byte transfer count initially configured.

uint8_t bytesPerFrame
Bytes in a frame

uint8_t channelMask
Enabled channel mask value, reference _sai_channel_mask

uint8_t channelNums
total enabled channel nums

uint8_t channel
Which data channel

uint8_t count
The transfer data count in a DMA request

uint32_t state
Internal state for SAI eDMA transfer

sai_edma_callback_t callback
Callback for users while transfer finish or error occurs

void *userData
User callback parameter

2.105. SAI EDMA Driver 1151



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t tcd[((4U) + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA transfer.

sai_transfer_t saiQueue[(4U)]
Transfer queue storing queued transfer.

size_t transferSize[(4U)]
Data bytes need to transfer

sai_edma_interleave_t interleaveType
Transfer interleave type

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.106 SEMA4: Hardware Semaphores Driver

FSL_SEMA4_DRIVER_VERSION
SEMA4 driver version.

void SEMA4_Init(SEMA4_Type *base)
Initializes the SEMA4 module.

This function initializes the SEMA4 module. It only enables the clock but does not reset the
gates because the module might be used by other processors at the same time. To reset the
gates, call either SEMA4_ResetGate or SEMA4_ResetAllGates function.

Parameters
• base – SEMA4 peripheral base address.

void SEMA4_Deinit(SEMA4_Type *base)
De-initializes the SEMA4 module.

This function de-initializes the SEMA4 module. It only disables the clock.

Parameters
• base – SEMA4 peripheral base address.

status_t SEMA4_TryLock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Tries to lock the SEMA4 gate.

This function tries to lock the specific SEMA4 gate. If the gate has been locked by another
processor, this function returns an error code.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to lock.

• procNum – Current processor number.

Return values
• kStatus_Success – Lock the sema4 gate successfully.

• kStatus_Fail – Sema4 gate has been locked by another processor.

1152 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t SEMA4_Lock(SEMA4_Type *base, uint8_t gateNum, uint8_t procNum)
Locks the SEMA4 gate.

This function locks the specific SEMA4 gate. If the gate has been locked by other processors,
this function waits until it is unlocked and then lock it.

If SEMA4_BUSY_POLL_COUNT is defined and non-zero, the function will timeout after the
specified number of polling iterations and return kStatus_Timeout.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to lock.

• procNum – Current processor number.

Return values
• kStatus_Success – The gate was successfully locked.

• kStatus_Timeout – Timeout occurred while waiting for the gate to be un-
locked.

Returns
status_t

static inline void SEMA4_Unlock(SEMA4_Type *base, uint8_t gateNum)
Unlocks the SEMA4 gate.

This function unlocks the specific SEMA4 gate. It only writes unlock value to the SEMA4
gate register. However, it does not check whether the SEMA4 gate is locked by the current
processor or not. As a result, if the SEMA4 gate is not locked by the current processor, this
function has no effect.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number to unlock.

static inline int32_t SEMA4_GetLockProc(SEMA4_Type *base, uint8_t gateNum)
Gets the status of the SEMA4 gate.

This function checks the lock status of a specific SEMA4 gate.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Returns
Return -1 if the gate is unlocked, otherwise return the processor number
which has locked the gate.

status_t SEMA4_ResetGate(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate to an unlocked status.

This function resets a SEMA4 gate to an unlocked status.

Parameters
• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – SEMA4 gate is reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

2.106. SEMA4: Hardware Semaphores Driver 1153



MCUXpresso SDK Documentation, Release 25.12.00

static inline status_t SEMA4_ResetAllGates(SEMA4_Type *base)
Resets all SEMA4 gates to an unlocked status.

This function resets all SEMA4 gate to an unlocked status.

Parameters
• base – SEMA4 peripheral base address.

Return values
• kStatus_Success – SEMA4 is reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

static inline void SEMA4_EnableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Enable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

• mask – OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline void SEMA4_DisableGateNotifyInterrupt(SEMA4_Type *base, uint8_t procNum,
uint16_t mask)

Disable the gate notification interrupt.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

• mask – OR’ed value of the gate index, for example: (1«0) | (1«1) means gate
0 and gate 1.

static inline uint32_t SEMA4_GetGateNotifyStatus(SEMA4_Type *base, uint8_t procNum)
Get the gate notification flags.

Gate notification provides such feature, when core tried to lock the gate and failed, it could
get notification when the gate is idle. The status flags are cleared automatically when the
gate is locked by current core or locked again before the other core.

Parameters
• base – SEMA4 peripheral base address.

• procNum – Current processor number.

Returns
OR’ed value of the gate index, for example: (1«0) | (1«1) means gate 0 and gate
1 flags are pending.

status_t SEMA4_ResetGateNotify(SEMA4_Type *base, uint8_t gateNum)
Resets the SEMA4 gate IRQ notification.

This function resets a SEMA4 gate IRQ notification.

Parameters

1154 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – SEMA4 peripheral base address.

• gateNum – Gate number.

Return values
• kStatus_Success – Reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

static inline status_t SEMA4_ResetAllGateNotify(SEMA4_Type *base)
Resets all SEMA4 gates IRQ notification.

This function resets all SEMA4 gate IRQ notifications.

Parameters
• base – SEMA4 peripheral base address.

Return values
• kStatus_Success – Reset successfully.

• kStatus_Fail – Some other reset process is ongoing.

SEMA4_GATE_NUM_RESET_ALL
The number to reset all SEMA4 gates.

SEMA4_GATEn(base, n)
SEMA4 gate n register address.

SEMA4_BUSY_POLL_COUNT
Maximum polling iterations for SEMA4 waiting loops.

This parameter defines the maximum number of iterations for any polling loop in the
SEMA4 driver code before timing out and returning an error.

It applies to all waiting loops in SEMA4 driver, such as waiting for a gate to be unlocked,
waiting for a reset to complete, or waiting for a resource to become available.

This is a count of loop iterations, not a time-based value.

If defined as 0, polling loops will continue indefinitely until their exit condition is met,
which could potentially cause the system to hang if hardware doesn’t respond or if a re-
source is never released.

2.107 SEMC: Smart External DRAM Controller Driver

void SEMC_GetDefaultConfig(semc_config_t *config)
Gets the SEMC default basic configuration structure.

The purpose of this API is to get the default SEMC configure structure for SEMC_Init(). User
may use the initialized structure unchanged in SEMC_Init(), or modify some fields of the
structure before calling SEMC_Init(). Example:

semc_config_t config;
SEMC_GetDefaultConfig(&config);

Parameters
• config – The SEMC configuration structure pointer.

2.107. SEMC: Smart External DRAM Controller Driver 1155



MCUXpresso SDK Documentation, Release 25.12.00

void SEMC_Init(SEMC_Type *base, semc_config_t *configure)
Initializes SEMC. This function ungates the SEMC clock and initializes SEMC. This function
must be called before calling any other SEMC driver functions.

Parameters
• base – SEMC peripheral base address.

• configure – The SEMC configuration structure pointer.

void SEMC_Deinit(SEMC_Type *base)
Deinitializes the SEMC module and gates the clock.

This function gates the SEMC clock. As a result, the SEMC module doesn’t work after
calling this function, for some IDE, calling this API may cause the next downloading op-
eration failed. so, please call this API cautiously. Additional, users can using “#define
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL (1)” to disable the clock control operation in
drivers.

Parameters
• base – SEMC peripheral base address.

status_t SEMC_ConfigureSDRAM(SEMC_Type *base, semc_sdram_cs_t cs, semc_sdram_config_t
*config, uint32_t clkSrc_Hz)

Configures SDRAM controller in SEMC.

Parameters
• base – SEMC peripheral base address.

• cs – The chip selection.

• config – The sdram configuration.

• clkSrc_Hz – The SEMC clock frequency.

status_t SEMC_ConfigureNAND(SEMC_Type *base, semc_nand_config_t *config, uint32_t
clkSrc_Hz)

Configures NAND controller in SEMC.

Parameters
• base – SEMC peripheral base address.

• config – The nand configuration.

• clkSrc_Hz – The SEMC clock frequency.

status_t SEMC_ConfigureNOR(SEMC_Type *base, semc_nor_config_t *config, uint32_t clkSrc_Hz)
Configures NOR controller in SEMC.

Parameters
• base – SEMC peripheral base address.

• config – The nor configuration.

• clkSrc_Hz – The SEMC clock frequency.

status_t SEMC_ConfigureSRAMWithChipSelection(SEMC_Type *base, semc_sram_cs_t cs,
semc_sram_config_t *config, uint32_t
clkSrc_Hz)

Configures SRAM controller in SEMC.

Parameters
• base – SEMC peripheral base address.

• cs – The chip selection.

1156 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• config – The sram configuration.

• clkSrc_Hz – The SEMC clock frequency.

status_t SEMC_ConfigureSRAM(SEMC_Type *base, semc_sram_config_t *config, uint32_t
clkSrc_Hz)

Configures SRAM controller in SEMC.

Deprecated:
Do not use this function. It has been superceded by
SEMC_ConfigureSRAMWithChipSelection.

Parameters
• base – SEMC peripheral base address.

• config – The sram configuration.

• clkSrc_Hz – The SEMC clock frequency.

status_t SEMC_ConfigureDBI(SEMC_Type *base, semc_dbi_config_t *config, uint32_t clkSrc_Hz)
Configures DBI controller in SEMC.

Parameters
• base – SEMC peripheral base address.

• config – The dbi configuration.

• clkSrc_Hz – The SEMC clock frequency.

static inline void SEMC_EnableInterrupts(SEMC_Type *base, uint32_t mask)
Enables the SEMC interrupt.

This function enables the SEMC interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See semc_interrupt_enable_t. For example, to enable
the IP command done and error interrupt, do the following.

SEMC_EnableInterrupts(ENET, kSEMC_IPCmdDoneInterrupt | kSEMC_IPCmdErrInterrupt);

Parameters
• base – SEMC peripheral base address.

• mask – SEMC interrupts to enable. This is a logical OR of the enumeration
:: semc_interrupt_enable_t.

static inline void SEMC_DisableInterrupts(SEMC_Type *base, uint32_t mask)
Disables the SEMC interrupt.

This function disables the SEMC interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See semc_interrupt_enable_t. For example, to disable
the IP command done and error interrupt, do the following.

SEMC_DisableInterrupts(ENET, kSEMC_IPCmdDoneInterrupt | kSEMC_IPCmdErrInterrupt);

Parameters
• base – SEMC peripheral base address.

• mask – SEMC interrupts to disable. This is a logical OR of the enumeration
:: semc_interrupt_enable_t.

2.107. SEMC: Smart External DRAM Controller Driver 1157



MCUXpresso SDK Documentation, Release 25.12.00

static inline bool SEMC_GetStatusFlag(SEMC_Type *base)
Gets the SEMC status.

This function gets the SEMC interrupts event status. User can use the a logical OR of enu-
meration member as a mask. See semc_interrupt_enable_t.

Parameters
• base – SEMC peripheral base address.

Returns
status flag, use status flag in semc_interrupt_enable_t to get the related status.

static inline void SEMC_ClearStatusFlags(SEMC_Type *base, uint32_t mask)
Clears the SEMC status flag state.

The following status register flags can be cleared SEMC interrupt status.

Parameters
• base – SEMC base pointer

• mask – The status flag mask, a logical OR of enumeration member
semc_interrupt_enable_t.

static inline bool SEMC_IsInIdle(SEMC_Type *base)
Check if SEMC is in idle.

Parameters
• base – SEMC peripheral base address.

Returns
True SEMC is in idle, false is not in idle.

status_t SEMC_SendIPCommand(SEMC_Type *base, semc_mem_type_t memType, uint32_t
address, uint32_t command, uint32_t write, uint32_t *read)

SEMC IP command access.

Parameters
• base – SEMC peripheral base address.

• memType – SEMC memory type. refer to “semc_mem_type_t”

• address – SEMC device address.

• command – SEMC IP command. For NAND device, we should use
the SEMC_BuildNandIPCommand to get the right nand command. For
NOR/DBI device, take refer to “semc_ipcmd_nor_dbi_t”. For SRAM de-
vice, take refer to “semc_ipcmd_sram_t”. For SDRAM device, take refer
to “semc_ipcmd_sdram_t”.

• write – Data for write access.

• read – Data pointer for read data out.

static inline uint16_t SEMC_BuildNandIPCommand(uint8_t userCommand,
semc_ipcmd_nand_addrmode_t addrMode,
semc_ipcmd_nand_cmdmode_t cmdMode)

Build SEMC IP command for NAND.

This function build SEMC NAND IP command. The command is build of user command
code, SEMC address mode and SEMC command mode.

Parameters
• userCommand – NAND device normal command.

1158 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• addrMode – NAND address mode. Refer to
“semc_ipcmd_nand_addrmode_t”.

• cmdMode – NAND command mode. Refer to
“semc_ipcmd_nand_cmdmode_t”.

static inline bool SEMC_IsNandReady(SEMC_Type *base)
Check if the NAND device is ready.

Parameters
• base – SEMC peripheral base address.

Returns
True NAND is ready, false NAND is not ready.

status_t SEMC_IPCommandNandWrite(SEMC_Type *base, uint32_t address, uint8_t *data,
uint32_t size_bytes)

SEMC NAND device memory write through IP command.

Parameters
• base – SEMC peripheral base address.

• address – SEMC NAND device address.

• data – Data for write access.

• size_bytes – Data length.

status_t SEMC_IPCommandNandRead(SEMC_Type *base, uint32_t address, uint8_t *data,
uint32_t size_bytes)

SEMC NAND device memory read through IP command.

Parameters
• base – SEMC peripheral base address.

• address – SEMC NAND device address.

• data – Data pointer for data read out.

• size_bytes – Data length.

status_t SEMC_IPCommandNorWrite(SEMC_Type *base, uint32_t address, uint8_t *data,
uint32_t size_bytes)

SEMC NOR device memory write through IP command.

Parameters
• base – SEMC peripheral base address.

• address – SEMC NOR device address.

• data – Data for write access.

• size_bytes – Data length.

status_t SEMC_IPCommandNorRead(SEMC_Type *base, uint32_t address, uint8_t *data, uint32_t
size_bytes)

SEMC NOR device memory read through IP command.

Parameters
• base – SEMC peripheral base address.

• address – SEMC NOR device address.

• data – Data pointer for data read out.

• size_bytes – Data length.

2.107. SEMC: Smart External DRAM Controller Driver 1159



MCUXpresso SDK Documentation, Release 25.12.00

FSL_SEMC_DRIVER_VERSION
SEMC driver version.

SEMC status, _semc_status.

Values:

enumerator kStatus_SEMC_InvalidDeviceType
Invalid device type.

enumerator kStatus_SEMC_IpCommandExecutionError
IP command execution error.

enumerator kStatus_SEMC_AxiCommandExecutionError
AXI command execution error.

enumerator kStatus_SEMC_InvalidMemorySize
Invalid memory sie.

enumerator kStatus_SEMC_InvalidIpcmdDataSize
Invalid IP command data size.

enumerator kStatus_SEMC_InvalidAddressPortWidth
Invalid address port width.

enumerator kStatus_SEMC_InvalidDataPortWidth
Invalid data port width.

enumerator kStatus_SEMC_InvalidSwPinmuxSelection
Invalid SW pinmux selection.

enumerator kStatus_SEMC_InvalidBurstLength
Invalid burst length

enumerator kStatus_SEMC_InvalidColumnAddressBitWidth
Invalid column address bit width.

enumerator kStatus_SEMC_InvalidBaseAddress
Invalid base address.

enumerator kStatus_SEMC_InvalidTimerSetting
Invalid timer setting.

enum _semc_mem_type
SEMC memory device type.

Values:

enumerator kSEMC_MemType_SDRAM
SDRAM

enumerator kSEMC_MemType_SRAM
SRAM

enumerator kSEMC_MemType_NOR
NOR

enumerator kSEMC_MemType_NAND
NAND

enumerator kSEMC_MemType_8080

i.

1160 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_waitready_polarity
SEMC WAIT/RDY polarity.

Values:

enumerator kSEMC_LowActive
Low active.

enumerator kSEMC_HighActive
High active.

enum _semc_sdram_cs
SEMC SDRAM Chip selection .

Values:

enumerator kSEMC_SDRAM_CS0
SEMC SDRAM CS0.

enumerator kSEMC_SDRAM_CS1
SEMC SDRAM CS1.

enumerator kSEMC_SDRAM_CS2
SEMC SDRAM CS2.

enumerator kSEMC_SDRAM_CS3
SEMC SDRAM CS3.

enum _semc_sram_cs
SEMC SRAM Chip selection .

Values:

enumerator kSEMC_SRAM_CS0
SEMC SRAM CS0.

enum _semc_nand_access_type
SEMC NAND device type.

Values:

enumerator kSEMC_NAND_ACCESS_BY_AXI
Access to NAND flash by AXI bus.

enumerator kSEMC_NAND_ACCESS_BY_IPCMD
Access to NAND flash by IP bus.

enum _semc_interrupt_enable
SEMC interrupts .

Values:

enumerator kSEMC_IPCmdDoneInterrupt
Ip command done interrupt.

enumerator kSEMC_IPCmdErrInterrupt
Ip command error interrupt.

enumerator kSEMC_AXICmdErrInterrupt
AXI command error interrupt.

enumerator kSEMC_AXIBusErrInterrupt
AXI bus error interrupt.

2.107. SEMC: Smart External DRAM Controller Driver 1161



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_ipcmd_datasize
SEMC IP command data size in bytes.

Values:

enumerator kSEMC_IPcmdDataSize_1bytes
The IP command data size 1 byte.

enumerator kSEMC_IPcmdDataSize_2bytes
The IP command data size 2 byte.

enumerator kSEMC_IPcmdDataSize_3bytes
The IP command data size 3 byte.

enumerator kSEMC_IPcmdDataSize_4bytes
The IP command data size 4 byte.

enum _semc_refresh_time
SEMC auto-refresh timing.

Values:

enumerator kSEMC_RefreshThreeClocks
The refresh timing with three bus clocks.

enumerator kSEMC_RefreshSixClocks
The refresh timing with six bus clocks.

enumerator kSEMC_RefreshNineClocks
The refresh timing with nine bus clocks.

enum _semc_caslatency
CAS latency.

Values:

enumerator kSEMC_LatencyOne
Latency 1.

enumerator kSEMC_LatencyTwo
Latency 2.

enumerator kSEMC_LatencyThree
Latency 3.

enum _semc_sdram_column_bit_num
SEMC sdram column address bit number.

Values:

enumerator kSEMC_SdramColunm_12bit
12 bit.

enumerator kSEMC_SdramColunm_11bit
11 bit.

enumerator kSEMC_SdramColunm_10bit
10 bit.

enumerator kSEMC_SdramColunm_9bit
9 bit.

enumerator kSEMC_SdramColunm_8bit
8 bit.

1162 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_sdram_burst_len
SEMC sdram burst length.

Values:

enumerator kSEMC_Sdram_BurstLen1
According to ERR050577, Auto-refresh command may possibly fail to be triggered dur-
ing long time back-to-back write (or read) when SDRAM controller’s burst length is
greater than 1. Burst length 1

enum _semc_nand_column_bit_num
SEMC nand column address bit number.

Values:

enumerator kSEMC_NandColum_16bit
16 bit.

enumerator kSEMC_NandColum_15bit
15 bit.

enumerator kSEMC_NandColum_14bit
14 bit.

enumerator kSEMC_NandColum_13bit
13 bit.

enumerator kSEMC_NandColum_12bit
12 bit.

enumerator kSEMC_NandColum_11bit
11 bit.

enumerator kSEMC_NandColum_10bit
10 bit.

enumerator kSEMC_NandColum_9bit
9 bit.

enum _semc_nand_burst_len
SEMC nand burst length.

Values:

enumerator kSEMC_Nand_BurstLen1
Burst length 1

enumerator kSEMC_Nand_BurstLen2
Burst length 2

enumerator kSEMC_Nand_BurstLen4
Burst length 4

enumerator kSEMC_Nand_BurstLen8
Burst length 8

enumerator kSEMC_Nand_BurstLen16
Burst length 16

enumerator kSEMC_Nand_BurstLen32
Burst length 32

enumerator kSEMC_Nand_BurstLen64
Burst length 64

2.107. SEMC: Smart External DRAM Controller Driver 1163



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_norsram_column_bit_num
SEMC nor/sram column address bit number.

Values:

enumerator kSEMC_NorColum_12bit
12 bit.

enumerator kSEMC_NorColum_11bit
11 bit.

enumerator kSEMC_NorColum_10bit
10 bit.

enumerator kSEMC_NorColum_9bit
9 bit.

enumerator kSEMC_NorColum_8bit
8 bit.

enumerator kSEMC_NorColum_7bit
7 bit.

enumerator kSEMC_NorColum_6bit
6 bit.

enumerator kSEMC_NorColum_5bit
5 bit.

enumerator kSEMC_NorColum_4bit
4 bit.

enumerator kSEMC_NorColum_3bit
3 bit.

enumerator kSEMC_NorColum_2bit
2 bit.

enum _semc_norsram_burst_len
SEMC nor/sram burst length.

Values:

enumerator kSEMC_Nor_BurstLen1
Burst length 1

enumerator kSEMC_Nor_BurstLen2
Burst length 2

enumerator kSEMC_Nor_BurstLen4
Burst length 4

enumerator kSEMC_Nor_BurstLen8
Burst length 8

enumerator kSEMC_Nor_BurstLen16
Burst length 16

enumerator kSEMC_Nor_BurstLen32
Burst length 32

enumerator kSEMC_Nor_BurstLen64
Burst length 64

1164 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_dbi_column_bit_num
SEMC dbi column address bit number.

Values:

enumerator kSEMC_Dbi_Colum_12bit
12 bit.

enumerator kSEMC_Dbi_Colum_11bit
11 bit.

enumerator kSEMC_Dbi_Colum_10bit
10 bit.

enumerator kSEMC_Dbi_Colum_9bit
9 bit.

enumerator kSEMC_Dbi_Colum_8bit
8 bit.

enumerator kSEMC_Dbi_Colum_7bit
7 bit.

enumerator kSEMC_Dbi_Colum_6bit
6 bit.

enumerator kSEMC_Dbi_Colum_5bit
5 bit.

enumerator kSEMC_Dbi_Colum_4bit
4 bit.

enumerator kSEMC_Dbi_Colum_3bit
3 bit.

enumerator kSEMC_Dbi_Colum_2bit
2 bit.

enum _semc_dbi_burst_len
SEMC dbi burst length.

Values:

enumerator kSEMC_Dbi_BurstLen1
Burst length 1

enumerator kSEMC_Dbi_BurstLen2
Burst length 2

enumerator kSEMC_Dbi_Dbi_BurstLen4
Burst length 4

enumerator kSEMC_Dbi_BurstLen8
Burst length 8

enumerator kSEMC_Dbi_BurstLen16
Burst length 16

enumerator kSEMC_Dbi_BurstLen32
Burst length 32

enumerator kSEMC_Dbi_BurstLen64
Burst length 64

2.107. SEMC: Smart External DRAM Controller Driver 1165



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_iomux_pin
SEMC IOMUXC.

Values:

enumerator kSEMC_MUXA8
MUX A8 pin.

enumerator kSEMC_MUXCSX0
MUX CSX0 pin

enumerator kSEMC_MUXCSX1
MUX CSX1 Pin.

enumerator kSEMC_MUXCSX2
MUX CSX2 Pin.

enumerator kSEMC_MUXCSX3
MUX CSX3 Pin.

enumerator kSEMC_MUXRDY
MUX RDY pin.

enum _semc_iomux_nora27_pin
SEMC NOR/PSRAM Address bit 27 A27.

Values:

enumerator kSEMC_MORA27_NONE
No NOR/SRAM A27 pin.

enumerator kSEMC_NORA27_MUXCSX3
MUX CSX3 Pin.

enumerator kSEMC_NORA27_MUXRDY
MUX RDY pin.

enum _semc_port_size
SEMC port size.

Values:

enumerator kSEMC_PortSize8Bit
8-Bit port size.

enumerator kSEMC_PortSize16Bit
16-Bit port size.

enum _semc_addr_mode
SEMC address mode.

Values:

enumerator kSEMC_AddrDataMux
SEMC address/data mux mode.

enumerator kSEMC_AdvAddrdataMux
Advanced address/data mux mode.

enumerator kSEMC_AddrDataNonMux
Address/data non-mux mode.

1166 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _semc_dqs_mode
SEMC DQS read strobe mode.

Values:

enumerator kSEMC_Loopbackinternal
Dummy read strobe loopbacked internally.

enumerator kSEMC_Loopbackdqspad
Dummy read strobe loopbacked from DQS pad.

enum _semc_adv_polarity
SEMC ADV signal active polarity.

Values:

enumerator kSEMC_AdvActiveLow
Adv active low.

enumerator kSEMC_AdvActiveHigh
Adv active high.

enum _semc_sync_mode
SEMC sync mode.

Values:

enumerator kSEMC_AsyncMode
Async mode.

enumerator kSEMC_SyncMode
Sync mode.

enum _semc_adv_level_control
SEMC ADV signal level control.

Values:

enumerator kSEMC_AdvHigh
Adv is high during address hold state.

enumerator kSEMC_AdvLow
Adv is low during address hold state.

enum _semc_rdy_polarity
SEMC RDY signal active polarity.

Values:

enumerator kSEMC_RdyActiveLow
Adv active low.

enumerator kSEMC_RdyActivehigh
Adv active low.

enum _semc_ipcmd_nand_addrmode
SEMC IP command for NAND: address mode.

Values:

enumerator kSEMC_NANDAM_ColumnRow
Address mode: column and row address(5Byte-CA0/CA1/RA0/RA1/RA2).

enumerator kSEMC_NANDAM_ColumnCA0
Address mode: column address only(1 Byte-CA0).

2.107. SEMC: Smart External DRAM Controller Driver 1167



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSEMC_NANDAM_ColumnCA0CA1
Address mode: column address only(2 Byte-CA0/CA1).

enumerator kSEMC_NANDAM_RawRA0
Address mode: row address only(1 Byte-RA0).

enumerator kSEMC_NANDAM_RawRA0RA1
Address mode: row address only(2 Byte-RA0/RA1).

enumerator kSEMC_NANDAM_RawRA0RA1RA2
Address mode: row address only(3 Byte-RA0).

enum _semc_ipcmd_nand_cmdmode
SEMC IP command for NAND� command mode.

Values:

enumerator kSEMC_NANDCM_Command
command.

enumerator kSEMC_NANDCM_CommandHold
Command hold.

enumerator kSEMC_NANDCM_CommandAddress
Command address.

enumerator kSEMC_NANDCM_CommandAddressHold
Command address hold.

enumerator kSEMC_NANDCM_CommandAddressRead
Command address read.

enumerator kSEMC_NANDCM_CommandAddressWrite
Command address write.

enumerator kSEMC_NANDCM_CommandRead
Command read.

enumerator kSEMC_NANDCM_CommandWrite
Command write.

enumerator kSEMC_NANDCM_Read
Read.

enumerator kSEMC_NANDCM_Write
Write.

enum _semc_nand_address_option
SEMC NAND address option.

Values:

enumerator kSEMC_NandAddrOption_5byte_CA2RA3
CA0+CA1+RA0+RA1+RA2

enumerator kSEMC_NandAddrOption_4byte_CA2RA2
CA0+CA1+RA0+RA1

enumerator kSEMC_NandAddrOption_3byte_CA2RA1
CA0+CA1+RA0

enumerator kSEMC_NandAddrOption_4byte_CA1RA3
CA0+RA0+RA1+RA2

1168 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSEMC_NandAddrOption_3byte_CA1RA2
CA0+RA0+RA1

enumerator kSEMC_NandAddrOption_2byte_CA1RA1
CA0+RA0

enum _semc_ipcmd_nor_dbi
SEMC IP command for NOR.

Values:

enumerator kSEMC_NORDBICM_Read
NOR read.

enumerator kSEMC_NORDBICM_Write
NOR write.

enum _semc_ipcmd_sram
SEMC IP command for SRAM.

Values:

enumerator kSEMC_SRAMCM_ArrayRead
SRAM memory array read.

enumerator kSEMC_SRAMCM_ArrayWrite
SRAM memory array write.

enumerator kSEMC_SRAMCM_RegRead
SRAM memory register read.

enumerator kSEMC_SRAMCM_RegWrite
SRAM memory register write.

enum _semc_ipcmd_sdram
SEMC IP command for SDARM.

Values:

enumerator kSEMC_SDRAMCM_Read
SDRAM memory read.

enumerator kSEMC_SDRAMCM_Write
SDRAM memory write.

enumerator kSEMC_SDRAMCM_Modeset
SDRAM MODE SET.

enumerator kSEMC_SDRAMCM_Active
SDRAM active.

enumerator kSEMC_SDRAMCM_AutoRefresh
SDRAM auto-refresh.

enumerator kSEMC_SDRAMCM_SelfRefresh
SDRAM self-refresh.

enumerator kSEMC_SDRAMCM_Precharge
SDRAM precharge.

enumerator kSEMC_SDRAMCM_Prechargeall
SDRAM precharge all.

2.107. SEMC: Smart External DRAM Controller Driver 1169



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _semc_mem_type semc_mem_type_t
SEMC memory device type.

typedef enum _semc_waitready_polarity semc_waitready_polarity_t
SEMC WAIT/RDY polarity.

typedef enum _semc_sdram_cs semc_sdram_cs_t
SEMC SDRAM Chip selection .

typedef enum _semc_sram_cs semc_sram_cs_t
SEMC SRAM Chip selection .

typedef enum _semc_nand_access_type semc_nand_access_type_t
SEMC NAND device type.

typedef enum _semc_interrupt_enable semc_interrupt_enable_t
SEMC interrupts .

typedef enum _semc_ipcmd_datasize semc_ipcmd_datasize_t
SEMC IP command data size in bytes.

typedef enum _semc_refresh_time semc_refresh_time_t
SEMC auto-refresh timing.

typedef enum _semc_caslatency semc_caslatency_t
CAS latency.

typedef enum _semc_sdram_column_bit_num semc_sdram_column_bit_num_t
SEMC sdram column address bit number.

typedef enum _semc_sdram_burst_len sem_sdram_burst_len_t
SEMC sdram burst length.

typedef enum _semc_nand_column_bit_num semc_nand_column_bit_num_t
SEMC nand column address bit number.

typedef enum _semc_nand_burst_len sem_nand_burst_len_t
SEMC nand burst length.

typedef enum _semc_norsram_column_bit_num semc_norsram_column_bit_num_t
SEMC nor/sram column address bit number.

typedef enum _semc_norsram_burst_len sem_norsram_burst_len_t
SEMC nor/sram burst length.

typedef enum _semc_dbi_column_bit_num semc_dbi_column_bit_num_t
SEMC dbi column address bit number.

typedef enum _semc_dbi_burst_len sem_dbi_burst_len_t
SEMC dbi burst length.

typedef enum _semc_iomux_pin semc_iomux_pin
SEMC IOMUXC.

typedef enum _semc_iomux_nora27_pin semc_iomux_nora27_pin
SEMC NOR/PSRAM Address bit 27 A27.

typedef enum _semc_port_size smec_port_size_t
SEMC port size.

typedef enum _semc_addr_mode semc_addr_mode_t
SEMC address mode.

1170 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _semc_dqs_mode semc_dqs_mode_t
SEMC DQS read strobe mode.

typedef enum _semc_adv_polarity semc_adv_polarity_t
SEMC ADV signal active polarity.

typedef enum _semc_sync_mode semc_sync_mode_t
SEMC sync mode.

typedef enum _semc_adv_level_control semc_adv_level_control_t
SEMC ADV signal level control.

typedef enum _semc_rdy_polarity semc_rdy_polarity_t
SEMC RDY signal active polarity.

typedef enum _semc_ipcmd_nand_addrmode semc_ipcmd_nand_addrmode_t
SEMC IP command for NAND: address mode.

typedef enum _semc_ipcmd_nand_cmdmode semc_ipcmd_nand_cmdmode_t
SEMC IP command for NAND� command mode.

typedef enum _semc_nand_address_option semc_nand_address_option_t
SEMC NAND address option.

typedef enum _semc_ipcmd_nor_dbi semc_ipcmd_nor_dbi_t
SEMC IP command for NOR.

typedef enum _semc_ipcmd_sram semc_ipcmd_sram_t
SEMC IP command for SRAM.

typedef enum _semc_ipcmd_sdram semc_ipcmd_sdram_t
SEMC IP command for SDARM.

typedef struct _semc_sdram_config semc_sdram_config_t
SEMC SDRAM configuration structure.

a. The memory size in the configuration is in the unit of KB. So memsize_kbytes should be
set as 2^2, 2^3, 2^4 .etc which is base 2KB exponential function. Take refer to BR0~BR3
register in RM for details.

b. The prescalePeriod_N16Cycle is in unit of 16 clock cycle. It is a exception for
prescaleTimer_n16cycle = 0, it means the prescaler timer period is 256 * 16 clock
cycles. For precalerIf precalerTimer_n16cycle not equal to 0, The prescaler timer
period is prescalePeriod_N16Cycle * 16 clock cycles. idleTimeout_NprescalePeriod,
refreshUrgThreshold_NprescalePeriod, refreshPeriod_NprescalePeriod are similar to
prescalePeriod_N16Cycle.

typedef struct _semc_nand_timing_config semc_nand_timing_config_t
SEMC NAND device timing configuration structure.

typedef struct _semc_nand_config semc_nand_config_t
SEMC NAND configuration structure.

typedef struct _semc_nor_config semc_nor_config_t
SEMC NOR configuration structure.

typedef struct _semc_sram_config semc_sram_config_t
SEMC SRAM configuration structure.

typedef struct _semc_dbi_config semc_dbi_config_t
SEMC DBI configuration structure.

2.107. SEMC: Smart External DRAM Controller Driver 1171



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _semc_queuea_weight_struct semc_queuea_weight_struct_t
SEMC AXI queue a weight setting structure.

typedef union _semc_queuea_weight semc_queuea_weight_t
SEMC AXI queue a weight setting union.

typedef struct _semc_queueb_weight_struct semc_queueb_weight_struct_t
SEMC AXI queue b weight setting structure.

typedef union _semc_queueb_weight semc_queueb_weight_t
SEMC AXI queue b weight setting union.

typedef struct _semc_axi_queueweight semc_axi_queueweight_t
SEMC AXI queue weight setting.

typedef struct _semc_config_t semc_config_t
SEMC configuration structure.

busTimeoutCycles: when busTimeoutCycles is zero, the bus timeout cycle is 255*1024. oth-
erwise the bus timeout cycles is busTimeoutCycles*1024. cmdTimeoutCycles: is used for
command execution timeout cycles. it’s similar to the busTimeoutCycles.

struct _semc_sdram_config
#include <fsl_semc.h> SEMC SDRAM configuration structure.

a. The memory size in the configuration is in the unit of KB. So memsize_kbytes should be
set as 2^2, 2^3, 2^4 .etc which is base 2KB exponential function. Take refer to BR0~BR3
register in RM for details.

b. The prescalePeriod_N16Cycle is in unit of 16 clock cycle. It is a exception for
prescaleTimer_n16cycle = 0, it means the prescaler timer period is 256 * 16 clock
cycles. For precalerIf precalerTimer_n16cycle not equal to 0, The prescaler timer
period is prescalePeriod_N16Cycle * 16 clock cycles. idleTimeout_NprescalePeriod,
refreshUrgThreshold_NprescalePeriod, refreshPeriod_NprescalePeriod are similar to
prescalePeriod_N16Cycle.

Public Members

semc_iomux_pin csxPinMux
CS pin mux. The kSEMC_MUXA8 is not valid in sdram pin mux setting.

uint32_t address
The base address.

uint32_t memsize_kbytes
The memory size in unit of kbytes.

smec_port_size_t portSize
Port size.

sem_sdram_burst_len_t burstLen
Burst length.

semc_sdram_column_bit_num_t columnAddrBitNum
Column address bit number.

semc_caslatency_t casLatency
CAS latency.

1172 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t tPrecharge2Act_Ns
Precharge to active wait time in unit of nanosecond.

uint8_t tAct2ReadWrite_Ns
Act to read/write wait time in unit of nanosecond.

uint8_t tRefreshRecovery_Ns
Refresh recovery time in unit of nanosecond.

uint8_t tWriteRecovery_Ns
write recovery time in unit of nanosecond.

uint8_t tCkeOff_Ns
CKE off minimum time in unit of nanosecond.

uint8_t tAct2Prechage_Ns
Active to precharge in unit of nanosecond.

uint8_t tSelfRefRecovery_Ns
Self refresh recovery time in unit of nanosecond.

uint8_t tRefresh2Refresh_Ns
Refresh to refresh wait time in unit of nanosecond.

uint8_t tAct2Act_Ns
Active to active wait time in unit of nanosecond.

uint32_t tPrescalePeriod_Ns
Prescaler timer period should not be larger than 256 * 16 * clock cycle.

uint32_t tIdleTimeout_Ns
Idle timeout in unit of prescale time period.

uint32_t refreshPeriod_nsPerRow
Refresh timer period like 64ms * 1000000/8192 .

uint32_t refreshUrgThreshold
Refresh urgent threshold.

uint8_t refreshBurstLen
Refresh burst length.

uint8_t delayChain
Delay chain, which adds delays on DQS clock to compensate timings while DQS is faster
than read data.

uint8_t autofreshTimes
Auto Refresh cycles times.

struct _semc_nand_timing_config
#include <fsl_semc.h> SEMC NAND device timing configuration structure.

Public Members

uint8_t tCeSetup_Ns
CE setup time: tCS.

uint8_t tCeHold_Ns
CE hold time: tCH.

uint8_t tCeInterval_Ns
CE interval time:tCEITV.

2.107. SEMC: Smart External DRAM Controller Driver 1173



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t tWeLow_Ns
WE low time: tWP.

uint8_t tWeHigh_Ns
WE high time: tWH.

uint8_t tReLow_Ns
RE low time: tRP.

uint8_t tReHigh_Ns
RE high time: tREH.

uint8_t tTurnAround_Ns
Turnaround time for async mode: tTA.

uint8_t tWehigh2Relow_Ns
WE# high to RE# wait time: tWHR.

uint8_t tRehigh2Welow_Ns
RE# high to WE# low wait time: tRHW.

uint8_t tAle2WriteStart_Ns
ALE to write start wait time: tADL.

uint8_t tReady2Relow_Ns
Ready to RE# low min wait time: tRR.

uint8_t tWehigh2Busy_Ns
WE# high to busy wait time: tWB.

struct _semc_nand_config
#include <fsl_semc.h> SEMC NAND configuration structure.

Public Members

semc_iomux_pin cePinMux
The CE pin mux setting. The kSEMC_MUXRDY is not valid for CE pin setting.

uint32_t axiAddress
The base address for AXI nand.

uint32_t axiMemsize_kbytes
The memory size in unit of kbytes for AXI nand.

uint32_t ipgAddress
The base address for IPG nand .

uint32_t ipgMemsize_kbytes
The memory size in unit of kbytes for IPG nand.

semc_rdy_polarity_t rdyactivePolarity
Wait ready polarity.

bool edoModeEnabled
EDO mode enabled.

semc_nand_column_bit_num_t columnAddrBitNum
Column address bit number.

semc_nand_address_option_t arrayAddrOption
Address option.

1174 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

sem_nand_burst_len_t burstLen
Burst length.

smec_port_size_t portSize
Port size.

semc_nand_timing_config_t *timingConfig
SEMC nand timing configuration.

struct _semc_nor_config
#include <fsl_semc.h> SEMC NOR configuration structure.

Public Members

semc_iomux_pin cePinMux
The CE# pin mux setting.

semc_iomux_nora27_pin addr27
The Addr bit 27 pin mux setting.

uint32_t address
The base address.

uint32_t memsize_kbytes
The memory size in unit of kbytes.

uint8_t addrPortWidth
The address port width.

semc_rdy_polarity_t rdyactivePolarity
Wait ready polarity.

semc_adv_polarity_t advActivePolarity
ADV# polarity.

semc_norsram_column_bit_num_t columnAddrBitNum
Column address bit number.

semc_addr_mode_t addrMode
Address mode.

sem_norsram_burst_len_t burstLen
Burst length.

smec_port_size_t portSize
Port size.

uint8_t tCeSetup_Ns
The CE setup time.

uint8_t tCeHold_Ns
The CE hold time.

uint8_t tCeInterval_Ns
CE interval minimum time.

uint8_t tAddrSetup_Ns
The address setup time.

uint8_t tAddrHold_Ns
The address hold time.

2.107. SEMC: Smart External DRAM Controller Driver 1175



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t tWeLow_Ns
WE low time for async mode.

uint8_t tWeHigh_Ns
WE high time for async mode.

uint8_t tReLow_Ns
RE low time for async mode.

uint8_t tReHigh_Ns
RE high time for async mode.

uint8_t tTurnAround_Ns
Turnaround time for async mode.

uint8_t tAddr2WriteHold_Ns
Address to write data hold time for async mode.

uint8_t tWriteSetup_Ns
Write data setup time for sync mode.

uint8_t tWriteHold_Ns
Write hold time for sync mode.

uint8_t latencyCount
Latency count for sync mode.

uint8_t readCycle
Read cycle time for sync mode.

uint8_t delayChain
Delay chain, which adds delays on DQS clock to compensate timings while DQS is faster
than read data.

struct _semc_sram_config
#include <fsl_semc.h> SEMC SRAM configuration structure.

Public Members

semc_iomux_pin cePinMux
The CE# pin mux setting.

semc_iomux_nora27_pin addr27
The Addr bit 27 pin mux setting.

uint32_t address
The base address.

uint32_t memsize_kbytes
The memory size in unit of kbytes.

uint8_t addrPortWidth
The address port width.

semc_adv_polarity_t advActivePolarity
ADV# polarity 1: active high, 0: active low.

semc_addr_mode_t addrMode
Address mode.

1176 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

sem_norsram_burst_len_t burstLen
Burst length.

smec_port_size_t portSize
Port size.

semc_sync_mode_t syncMode
Sync mode.

bool waitEnable
Wait enable.

uint8_t waitSample
Wait sample.

semc_adv_level_control_t advLevelCtrl
ADV# level control during address hold state, 1: low, 0: high.

uint8_t tCeSetup_Ns
The CE setup time.

uint8_t tCeHold_Ns
The CE hold time.

uint8_t tCeInterval_Ns
CE interval minimum time.

uint8_t readHoldTime_Ns
read hold time.

uint8_t tAddrSetup_Ns
The address setup time.

uint8_t tAddrHold_Ns
The address hold time.

uint8_t tWeLow_Ns
WE low time for async mode.

uint8_t tWeHigh_Ns
WE high time for async mode.

uint8_t tReLow_Ns
RE low time for async mode.

uint8_t tReHigh_Ns
RE high time for async mode.

uint8_t tTurnAround_Ns
Turnaround time for async mode.

uint8_t tAddr2WriteHold_Ns
Address to write data hold time for async mode.

uint8_t tWriteSetup_Ns
Write data setup time for sync mode.

uint8_t tWriteHold_Ns
Write hold time for sync mode.

uint8_t latencyCount
Latency count for sync mode.

2.107. SEMC: Smart External DRAM Controller Driver 1177



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t readCycle
Read cycle time for sync mode.

uint8_t delayChain
Delay chain, which adds delays on DQS clock to compensate timings while DQS is faster
than read data.

struct _semc_dbi_config
#include <fsl_semc.h> SEMC DBI configuration structure.

Public Members

semc_iomux_pin csxPinMux
The CE# pin mux.

uint32_t address
The base address.

uint32_t memsize_kbytes
The memory size in unit of 4kbytes.

semc_dbi_column_bit_num_t columnAddrBitNum
Column address bit number.

sem_dbi_burst_len_t burstLen
Burst length.

smec_port_size_t portSize
Port size.

uint8_t tCsxSetup_Ns
The CSX setup time.

uint8_t tCsxHold_Ns
The CSX hold time.

uint8_t tWexLow_Ns
WEX low time.

uint8_t tWexHigh_Ns
WEX high time.

uint8_t tRdxLow_Ns
RDX low time.

uint8_t tRdxHigh_Ns
RDX high time.

uint8_t tCsxInterval_Ns
Write data setup time.

struct _semc_queuea_weight_struct
#include <fsl_semc.h> SEMC AXI queue a weight setting structure.

Public Members

uint32_t qos
weight of qos for queue 0 .

1178 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t aging
weight of aging for queue 0.

uint32_t slaveHitNoswitch
weight of read/write no switch for queue 0 .

uint32_t slaveHitSwitch
weight of read/write switch for queue 0.

union _semc_queuea_weight
#include <fsl_semc.h> SEMC AXI queue a weight setting union.

Public Members

semc_queuea_weight_struct_t queueaConfig
Structure configuration for queueA.

uint32_t queueaValue
Configuration value for queueA which could directly write to the reg.

struct _semc_queueb_weight_struct
#include <fsl_semc.h> SEMC AXI queue b weight setting structure.

Public Members

uint32_t qos
weight of qos for queue 1.

uint32_t aging
weight of aging for queue 1.

uint32_t weightPagehit
weight of page hit for queue 1 only .

uint32_t slaveHitNoswitch
weight of read/write no switch for queue 1.

uint32_t bankRotation
weight of bank rotation for queue 1 only .

union _semc_queueb_weight
#include <fsl_semc.h> SEMC AXI queue b weight setting union.

Public Members

semc_queueb_weight_struct_t queuebConfig
Structure configuration for queueB.

uint32_t queuebValue
Configuration value for queueB which could directly write to the reg.

struct _semc_axi_queueweight
#include <fsl_semc.h> SEMC AXI queue weight setting.

2.107. SEMC: Smart External DRAM Controller Driver 1179



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool queueaEnable
Enable queue a.

semc_queuea_weight_t queueaWeight
Weight settings for queue a.

bool queuebEnable
Enable queue b.

semc_queueb_weight_t queuebWeight
Weight settings for queue b.

struct _semc_config_t
#include <fsl_semc.h> SEMC configuration structure.

busTimeoutCycles: when busTimeoutCycles is zero, the bus timeout cycle is 255*1024. oth-
erwise the bus timeout cycles is busTimeoutCycles*1024. cmdTimeoutCycles: is used for
command execution timeout cycles. it’s similar to the busTimeoutCycles.

Public Members

semc_dqs_mode_t dqsMode
Dummy read strobe mode: use enum in “semc_dqs_mode_t”.

uint8_t cmdTimeoutCycles
Command execution timeout cycles.

uint8_t busTimeoutCycles
Bus timeout cycles.

semc_axi_queueweight_t queueWeight
AXI queue weight.

2.108 Smart Card

FSL_SMARTCARD_DRIVER_VERSION
Smart card driver version 2.3.0.

Smart card Error codes.

Values:

enumerator kStatus_SMARTCARD_Success
Transfer ends successfully

enumerator kStatus_SMARTCARD_TxBusy
Transmit in progress

enumerator kStatus_SMARTCARD_RxBusy
Receiving in progress

enumerator kStatus_SMARTCARD_NoTransferInProgress
No transfer in progress

enumerator kStatus_SMARTCARD_Timeout
Transfer ends with time-out

1180 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_SMARTCARD_Initialized
Smart card driver is already initialized

enumerator kStatus_SMARTCARD_PhyInitialized
Smart card PHY drive is already initialized

enumerator kStatus_SMARTCARD_CardNotActivated
Smart card is not activated

enumerator kStatus_SMARTCARD_InvalidInput
Function called with invalid input arguments

enumerator kStatus_SMARTCARD_OtherError
Some other error occur

enum _smartcard_control
Control codes for the Smart card protocol timers and misc.

Values:

enumerator kSMARTCARD_EnableADT

enumerator kSMARTCARD_DisableADT

enumerator kSMARTCARD_EnableGTV

enumerator kSMARTCARD_DisableGTV

enumerator kSMARTCARD_ResetWWT

enumerator kSMARTCARD_EnableWWT

enumerator kSMARTCARD_DisableWWT

enumerator kSMARTCARD_ResetCWT

enumerator kSMARTCARD_EnableCWT

enumerator kSMARTCARD_DisableCWT

enumerator kSMARTCARD_ResetBWT

enumerator kSMARTCARD_EnableBWT

enumerator kSMARTCARD_DisableBWT

enumerator kSMARTCARD_EnableInitDetect

enumerator kSMARTCARD_EnableAnack

enumerator kSMARTCARD_DisableAnack

enumerator kSMARTCARD_ConfigureBaudrate

enumerator kSMARTCARD_SetupATRMode

enumerator kSMARTCARD_SetupT0Mode

enumerator kSMARTCARD_SetupT1Mode

enumerator kSMARTCARD_EnableReceiverMode

enumerator kSMARTCARD_DisableReceiverMode

enumerator kSMARTCARD_EnableTransmitterMode

2.108. Smart Card 1181



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSMARTCARD_DisableTransmitterMode

enumerator kSMARTCARD_ResetWaitTimeMultiplier

enum _smartcard_card_voltage_class
Defines Smart card interface voltage class values.

Values:

enumerator kSMARTCARD_VoltageClassUnknown

enumerator kSMARTCARD_VoltageClassA5_0V

enumerator kSMARTCARD_VoltageClassB3_3V

enumerator kSMARTCARD_VoltageClassC1_8V

enum _smartcard_transfer_state
Defines Smart card I/O transfer states.

Values:

enumerator kSMARTCARD_IdleState

enumerator kSMARTCARD_WaitingForTSState

enumerator kSMARTCARD_InvalidTSDetecetedState

enumerator kSMARTCARD_ReceivingState

enumerator kSMARTCARD_TransmittingState

enum _smartcard_reset_type
Defines Smart card reset types.

Values:

enumerator kSMARTCARD_ColdReset

enumerator kSMARTCARD_WarmReset

enumerator kSMARTCARD_NoColdReset

enumerator kSMARTCARD_NoWarmReset

enum _smartcard_transport_type
Defines Smart card transport protocol types.

Values:

enumerator kSMARTCARD_T0Transport

enumerator kSMARTCARD_T1Transport

enum _smartcard_parity_type
Defines Smart card data parity types.

Values:

enumerator kSMARTCARD_EvenParity

enumerator kSMARTCARD_OddParity

enum _smartcard_card_convention
Defines data Convention format.

Values:

1182 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSMARTCARD_DirectConvention

enumerator kSMARTCARD_InverseConvention

enum _smartcard_interface_control
Defines Smart card interface IC control types.

Values:

enumerator kSMARTCARD_InterfaceSetVcc

enumerator kSMARTCARD_InterfaceSetClockToResetDelay

enumerator kSMARTCARD_InterfaceReadStatus

enum _smartcard_direction
Defines transfer direction.

Values:

enumerator kSMARTCARD_Receive

enumerator kSMARTCARD_Transmit

typedef enum _smartcard_control smartcard_control_t
Control codes for the Smart card protocol timers and misc.

typedef enum _smartcard_card_voltage_class smartcard_card_voltage_class_t
Defines Smart card interface voltage class values.

typedef enum _smartcard_transfer_state smartcard_transfer_state_t
Defines Smart card I/O transfer states.

typedef enum _smartcard_reset_type smartcard_reset_type_t
Defines Smart card reset types.

typedef enum _smartcard_transport_type smartcard_transport_type_t
Defines Smart card transport protocol types.

typedef enum _smartcard_parity_type smartcard_parity_type_t
Defines Smart card data parity types.

typedef enum _smartcard_card_convention smartcard_card_convention_t
Defines data Convention format.

typedef enum _smartcard_interface_control smartcard_interface_control_t
Defines Smart card interface IC control types.

typedef enum _smartcard_direction smartcard_direction_t
Defines transfer direction.

typedef void (*smartcard_interface_callback_t)(void *smartcardContext, void *param)
Smart card interface interrupt callback function type.

typedef void (*smartcard_transfer_callback_t)(void *smartcardContext, void *param)
Smart card transfer interrupt callback function type.

typedef void (*smartcard_time_delay_t)(uint32_t us)
Time Delay function used to passive waiting using RTOS [us].

typedef struct _smartcard_card_params smartcard_card_params_t
Defines card-specific parameters for Smart card driver.

2.108. Smart Card 1183



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _smartcard_timers_state smartcard_timers_state_t
Smart card defines the state of the EMV timers in the Smart card driver.

typedef struct _smartcard_interface_config smartcard_interface_config_t
Defines user specified configuration of Smart card interface.

typedef struct _smartcard_xfer smartcard_xfer_t
Defines user transfer structure used to initialize transfer.

typedef struct _smartcard_context smartcard_context_t
Runtime state of the Smart card driver.

SMARTCARD_INIT_DELAY_CLOCK_CYCLES
Smart card global define which specify number of clock cycles until initial ‘TS’ character
has to be received.

SMARTCARD_EMV_ATR_DURATION_ETU
Smart card global define which specify number of clock cycles during which ATR string has
to be received.

SMARTCARD_TS_DIRECT_CONVENTION
Smart card specification initial TS character definition of direct convention.

SMARTCARD_TS_INVERSE_CONVENTION
Smart card specification initial TS character definition of inverse convention.

struct _smartcard_card_params
#include <fsl_smartcard.h> Defines card-specific parameters for Smart card driver.

Public Members

uint16_t Fi
4 bits Fi - clock rate conversion integer

uint8_t fMax
Maximum Smart card frequency in MHz

uint8_t WI
8 bits WI - work wait time integer

uint8_t Di
4 bits DI - baud rate divisor

uint8_t BWI
4 bits BWI - block wait time integer

uint8_t CWI
4 bits CWI - character wait time integer

uint8_t BGI
4 bits BGI - block guard time integer

uint8_t GTN
8 bits GTN - extended guard time integer

uint8_t IFSC
Indicates IFSC value of the card

uint8_t modeNegotiable
Indicates if the card acts in negotiable or a specific mode.

1184 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t currentD
4 bits DI - current baud rate divisor

uint8_t status
Indicates smart card status

bool t0Indicated
Indicates ff T=0 indicated in TD1 byte

bool t1Indicated
Indicates if T=1 indicated in TD2 byte

bool atrComplete
Indicates whether the ATR received from the card was complete or not

bool atrValid
Indicates whether the ATR received from the card was valid or not

bool present
Indicates if a smart card is present

bool active
Indicates if the smart card is activated

bool faulty
Indicates whether smart card/interface is faulty

smartcard_card_convention_t convention
Card convention, kSMARTCARD_DirectConvention for direct convention, kSMART-
CARD_InverseConvention for inverse convention

struct _smartcard_timers_state
#include <fsl_smartcard.h> Smart card defines the state of the EMV timers in the Smart card
driver.

Public Members

volatile bool adtExpired
Indicates whether ADT timer expired

volatile bool wwtExpired
Indicates whether WWT timer expired

volatile bool cwtExpired
Indicates whether CWT timer expired

volatile bool bwtExpired
Indicates whether BWT timer expired

volatile bool initCharTimerExpired
Indicates whether reception timer for initialization character (TS) after the RST has
expired

struct _smartcard_interface_config
#include <fsl_smartcard.h> Defines user specified configuration of Smart card interface.

Public Members

uint32_t smartCardClock
Smart card interface clock [Hz]

2.108. Smart Card 1185



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t clockToResetDelay
Indicates clock to RST apply delay [smart card clock cycles]

uint8_t clockModule
Smart card clock module number

uint8_t clockModuleChannel
Smart card clock module channel number

uint8_t clockModuleSourceClock
Smart card clock module source clock [e.g., BusClk]

smartcard_card_voltage_class_t vcc
Smart card voltage class

uint8_t controlPort
Smart card PHY control port instance

uint8_t controlPin
Smart card PHY control pin instance

uint8_t irqPort
Smart card PHY Interrupt port instance

uint8_t irqPin
Smart card PHY Interrupt pin instance

uint8_t resetPort
Smart card reset port instance

uint8_t resetPin
Smart card reset pin instance

uint8_t vsel0Port
Smart card PHY Vsel0 control port instance

uint8_t vsel0Pin
Smart card PHY Vsel0 control pin instance

uint8_t vsel1Port
Smart card PHY Vsel1 control port instance

uint8_t vsel1Pin
Smart card PHY Vsel1 control pin instance

uint8_t dataPort
Smart card PHY data port instance

uint8_t dataPin
Smart card PHY data pin instance

uint8_t dataPinMux
Smart card PHY data pin mux option

uint8_t tsTimerId
Numerical identifier of the External HW timer for Initial character detection

struct _smartcard_xfer
#include <fsl_smartcard.h> Defines user transfer structure used to initialize transfer.

1186 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

smartcard_direction_t direction
Direction of communication. (RX/TX)

uint8_t *buff
The buffer of data.

size_t size
The number of transferred units.

struct _smartcard_context
#include <fsl_smartcard.h> Runtime state of the Smart card driver.

Public Members

void *base
Smart card module base address

smartcard_direction_t direction
Direction of communication. (RX/TX)

uint8_t *xBuff
The buffer of data being transferred.

volatile size_t xSize
The number of bytes to be transferred.

volatile bool xIsBusy
True if there is an active transfer.

uint8_t txFifoEntryCount
Number of data word entries in transmit FIFO.

uint8_t rxFifoThreshold
The max value of the receiver FIFO threshold.

smartcard_interface_callback_t interfaceCallback
Callback to invoke after interface IC raised interrupt.

smartcard_transfer_callback_t transferCallback
Callback to invoke after transfer event occur.

void *interfaceCallbackParam
Interface callback parameter pointer.

void *transferCallbackParam
Transfer callback parameter pointer.

smartcard_time_delay_t timeDelay
Function which handles time delay defined by user or RTOS.

smartcard_reset_type_t resetType
Indicates whether a Cold reset or Warm reset was requested.

smartcard_transport_type_t tType
Indicates current transfer protocol (T0 or T1)

volatile smartcard_transfer_state_t transferState
Indicates the current transfer state

2.108. Smart Card 1187



MCUXpresso SDK Documentation, Release 25.12.00

smartcard_timers_state_t timersState
Indicates the state of different protocol timers used in driver

smartcard_card_params_t cardParams
Smart card parameters(ATR and current) and interface slots states(ATR and current)

uint8_t IFSD
Indicates the terminal IFSD

smartcard_parity_type_t parity
Indicates current parity even/odd

volatile bool rxtCrossed
Indicates whether RXT thresholds has been crossed

volatile bool txtCrossed
Indicates whether TXT thresholds has been crossed

volatile bool wtxRequested
Indicates whether WTX has been requested or not

volatile bool parityError
Indicates whether a parity error has been detected

uint8_t statusBytes[2]
Used to store Status bytes SW1, SW2 of the last executed card command response

smartcard_interface_config_t interfaceConfig
Smart card interface configuration structure

bool abortTransfer
Used to abort transfer.

2.109 Smart Card EMVSIM Driver

void SMARTCARD_EMVSIM_GetDefaultConfig(smartcard_card_params_t *cardParams)
Fills in the smartcard_card_params structure with default values according to the EMV 4.3
specification.

Parameters
• cardParams – The configuration structure of type smart-

card_interface_config_t. Function fill in members: Fi = 372; Di = 1;
currentD = 1; WI = 0x0A; GTN = 0x00; with default values.

status_t SMARTCARD_EMVSIM_Init(EMVSIM_Type *base, smartcard_context_t *context,
uint32_t srcClock_Hz)

Initializes an EMVSIM peripheral for the Smart card/ISO-7816 operation.

This function un-gates the EMVSIM clock, initializes the module to EMV default settings,
configures the IRQ, enables the module-level interrupt to the core and, initializes the driver
context.

Parameters
• base – The EMVSIM peripheral base address.

• context – A pointer to the smart card driver context structure.

• srcClock_Hz – Smart card clock generation module source clock.

Returns
An error code or kStatus_SMARTCARD_Success.

1188 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void SMARTCARD_EMVSIM_Deinit(EMVSIM_Type *base)
This function disables the EMVSIM interrupts, disables the transmitter and receiver, flushes
the FIFOs, and gates EMVSIM clock in SIM.

Parameters
• base – The EMVSIM module base address.

int32_t SMARTCARD_EMVSIM_GetTransferRemainingBytes(EMVSIM_Type *base,
smartcard_context_t *context)

Returns whether the previous EMVSIM transfer has finished.

When performing an async transfer, call this function to ascertain the context of the current
transfer: in progress (or busy) or complete (success). If the transfer is still in progress, the
user can obtain the number of words that have not been transferred.

Parameters
• base – The EMVSIM module base address.

• context – A pointer to a smart card driver context structure.

Returns
The number of bytes not transferred.

status_t SMARTCARD_EMVSIM_AbortTransfer(EMVSIM_Type *base, smartcard_context_t
*context)

Terminates an asynchronous EMVSIM transfer early.

During an async EMVSIM transfer, the user can terminate the transfer early if the transfer
is still in progress.

Parameters
• base – The EMVSIM peripheral address.

• context – A pointer to a smart card driver context structure.

Return values
• kStatus_SMARTCARD_Success – The transmit abort was successful.

• kStatus_SMARTCARD_NoTransmitInProgress – No transmission is cur-
rently in progress.

status_t SMARTCARD_EMVSIM_TransferNonBlocking(EMVSIM_Type *base,
smartcard_context_t *context,
smartcard_xfer_t *xfer)

Transfer data using interrupts.

A non-blocking (also known as asynchronous) function means that the function returns
immediately after initiating the transfer function. The application has to get the transfer
status to see when the transfer is complete. In other words, after calling the non-blocking
(asynchronous) transfer function, the application must get the transfer status to check if
the transmit is completed or not.

Parameters
• base – The EMVSIM peripheral base address.

• context – A pointer to a smart card driver context structure.

• xfer – A pointer to the smart card transfer structure where the linked
buffers and sizes are stored.

Returns
An error code or kStatus_SMARTCARD_Success.

2.109. Smart Card EMVSIM Driver 1189



MCUXpresso SDK Documentation, Release 25.12.00

status_t SMARTCARD_EMVSIM_Control(EMVSIM_Type *base, smartcard_context_t *context,
smartcard_control_t control, uint32_t param)

Controls the EMVSIM module per different user request.

return kStatus_SMARTCARD_Success in success. return kStatus_SMARTCARD_OtherError
in case of error.

Parameters
• base – The EMVSIM peripheral base address.

• context – A pointer to a smart card driver context structure.

• control – Control type.

• param – Integer value of specific to control command.

void SMARTCARD_EMVSIM_IRQHandler(EMVSIM_Type *base, smartcard_context_t *context)
Handles EMVSIM module interrupts.

Parameters
• base – The EMVSIM peripheral base address.

• context – A pointer to a smart card driver context structure.

enum _emvsim_gpc_clock_select
General Purpose Counter clock selections.

Values:

enumerator kEMVSIM_GPCClockDisable
Disabled

enumerator kEMVSIM_GPCCardClock
Card clock

enumerator kEMVSIM_GPCRxClock
Receive clock

enumerator kEMVSIM_GPCTxClock
Transmit ETU clock

enum _presence_detect_edge
EMVSIM card presence detection edge control.

Values:

enumerator kEMVSIM_DetectOnFallingEdge
Presence detected on the falling edge

enumerator kEMVSIM_DetectOnRisingEdge
Presence detected on the rising edge

enum _presence_detect_status
EMVSIM card presence detection status.

Values:

enumerator kEMVSIM_DetectPinIsLow
Presence detected pin is logic low

enumerator kEMVSIM_DetectPinIsHigh
Presence detected pin is logic high

1190 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _emvsim_gpc_clock_select emvsim_gpc_clock_select_t
General Purpose Counter clock selections.

typedef enum _presence_detect_edge emvsim_presence_detect_edge_t
EMVSIM card presence detection edge control.

typedef enum _presence_detect_status emvsim_presence_detect_status_t
EMVSIM card presence detection status.

SMARTCARD_EMV_RX_NACK_THRESHOLD
EMV RX NACK interrupt generation threshold.

SMARTCARD_EMV_TX_NACK_THRESHOLD
EMV TX NACK interrupt generation threshold.

SMARTCARD_WWT_ADJUSTMENT
Smart card Word Wait Timer adjustment value.

SMARTCARD_CWT_ADJUSTMENT
Smart card Character Wait Timer adjustment value.

2.110 SNVS: Secure Non-Volatile Storage

2.111 Secure Non-Volatile Storage High-Power

void SNVS_HP_Init(SNVS_Type *base)
Initialize the SNVS.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

void SNVS_HP_Deinit(SNVS_Type *base)
Deinitialize the SNVS.

Parameters
• base – SNVS peripheral base address

void SNVS_HP_RTC_Init(SNVS_Type *base, const snvs_hp_rtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

• config – Pointer to the user’s SNVS configuration structure.

void SNVS_HP_RTC_Deinit(SNVS_Type *base)
Stops the RTC and SRTC timers.

Parameters

2.110. SNVS: Secure Non-Volatile Storage 1191



MCUXpresso SDK Documentation, Release 25.12.00

• base – SNVS peripheral base address

void SNVS_HP_RTC_GetDefaultConfig(snvs_hp_rtc_config_t *config)
Fills in the SNVS config struct with the default settings.

The default values are as follows.

config->rtccalenable = false;
config->rtccalvalue = 0U;
config->PIFreq = 0U;

Parameters
• config – Pointer to the user’s SNVS configuration structure.

status_t SNVS_HP_RTC_SetDatetime(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*datetime)

Sets the SNVS RTC date and time according to the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void SNVS_HP_RTC_GetDatetime(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Gets the SNVS RTC time and stores it in the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

status_t SNVS_HP_RTC_SetAlarm(SNVS_Type *base, const snvs_hp_rtc_datetime_t
*alarmTime)

Sets the SNVS RTC alarm time.

The function sets the RTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the function does not set the alarm and returns an error.

Parameters
• base – SNVS peripheral base address

• alarmTime – Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS RTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed

void SNVS_HP_RTC_GetAlarm(SNVS_Type *base, snvs_hp_rtc_datetime_t *datetime)
Returns the SNVS RTC alarm time.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the alarm date and time details
are stored.

1192 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void SNVS_HP_RTC_TimeSynchronize(SNVS_Type *base)
The function synchronizes RTC counter value with SRTC.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_RTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

static inline void SNVS_HP_RTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration :: _snvs_hp_interrupts_t

uint32_t SNVS_HP_RTC_GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters
• base – SNVS peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
:: _snvs_hp_interrupts_t

uint32_t SNVS_HP_RTC_GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.

Parameters
• base – SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_hp_status_flags_t

static inline void SNVS_HP_RTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
• base – SNVS peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_hp_status_flags_t

static inline void SNVS_HP_RTC_StartTimer(SNVS_Type *base)
Starts the SNVS RTC time counter.

Parameters
• base – SNVS peripheral base address

2.111. Secure Non-Volatile Storage High-Power 1193



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SNVS_HP_RTC_StopTimer(SNVS_Type *base)
Stops the SNVS RTC time counter.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_EnableHighAssuranceCounter(SNVS_Type *base, bool enable)
Enable or disable the High Assurance Counter (HAC)

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_HP_StartHighAssuranceCounter(SNVS_Type *base, bool start)
Start or stop the High Assurance Counter (HAC)

Parameters
• base – SNVS peripheral base address

• start – Pass true to start, false to stop.

static inline void SNVS_HP_SetHighAssuranceCounterInitialValue(SNVS_Type *base, uint32_t
value)

Set the High Assurance Counter (HAC) initialize value.

Parameters
• base – SNVS peripheral base address

• value – The initial value to set.

static inline void SNVS_HP_LoadHighAssuranceCounter(SNVS_Type *base)
Load the High Assurance Counter (HAC)

This function loads the HAC initialize value to counter register.

Parameters
• base – SNVS peripheral base address

static inline uint32_t SNVS_HP_GetHighAssuranceCounter(SNVS_Type *base)
Get the current High Assurance Counter (HAC) value.

Parameters
• base – SNVS peripheral base address

Returns
HAC currnet value.

static inline void SNVS_HP_ClearHighAssuranceCounter(SNVS_Type *base)
Clear the High Assurance Counter (HAC)

This function can be called in a functional or soft fail state. When the HAC is enabled:

• If the HAC is cleared in the soft fail state, the SSM transitions to the hard fail state
immediately;

• If the HAC is cleared in functional state, the SSM will transition to hard fail immediately
after transitioning to soft fail.

Parameters
• base – SNVS peripheral base address

1194 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SNVS_HP_LockHighAssuranceCounter(SNVS_Type *base)
Lock the High Assurance Counter (HAC)

Once locked, the HAC initialize value could not be changed, the HAC enable status could
not be changed. This could only be unlocked by system reset.

Parameters
• base – SNVS peripheral base address

FSL_SNVS_HP_DRIVER_VERSION
Version 2.3.2

enum _snvs_hp_interrupts
List of SNVS interrupts.

Values:

enumerator kSNVS_RTC_AlarmInterrupt
RTC time alarm

enumerator kSNVS_RTC_PeriodicInterrupt
RTC periodic interrupt

enum _snvs_hp_status_flags
List of SNVS flags.

Values:

enumerator kSNVS_RTC_AlarmInterruptFlag
RTC time alarm flag

enumerator kSNVS_RTC_PeriodicInterruptFlag
RTC periodic interrupt flag

enumerator kSNVS_ZMK_ZeroFlag
The ZMK is zero

enumerator kSNVS_OTPMK_ZeroFlag
The OTPMK is zero

enum _snvs_hp_sv_status_flags
List of SNVS security violation flags.

Values:

enumerator kSNVS_LP_ViolationFlag
Low Power section Security Violation

enumerator kSNVS_ZMK_EccFailFlag
Zeroizable Master Key Error Correcting Code Check Failure

enumerator kSNVS_LP_SoftwareViolationFlag
LP Software Security Violation

enumerator kSNVS_FatalSoftwareViolationFlag
Software Fatal Security Violation

enumerator kSNVS_SoftwareViolationFlag
Software Security Violation

enumerator kSNVS_Violation0Flag
Security Violation 0

2.111. Secure Non-Volatile Storage High-Power 1195



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSNVS_Violation1Flag
Security Violation 1

enumerator kSNVS_Violation2Flag
Security Violation 2

enumerator kSNVS_Violation4Flag
Security Violation 4

enumerator kSNVS_Violation5Flag
Security Violation 5

enum _snvs_hp_ssm_state
List of SNVS Security State Machine State.

Values:

enumerator kSNVS_SSMInit
Init

enumerator kSNVS_SSMHardFail
Hard Fail

enumerator kSNVS_SSMSoftFail
Soft Fail

enumerator kSNVS_SSMInitInter
Init Intermediate (transition state between Init and Check)

enumerator kSNVS_SSMCheck
Check

enumerator kSNVS_SSMNonSecure
Non-Secure

enumerator kSNVS_SSMTrusted
Trusted

enumerator kSNVS_SSMSecure
Secure

typedef enum _snvs_hp_interrupts snvs_hp_interrupts_t
List of SNVS interrupts.

typedef enum _snvs_hp_status_flags snvs_hp_status_flags_t
List of SNVS flags.

typedef enum _snvs_hp_sv_status_flags snvs_hp_sv_status_flags_t
List of SNVS security violation flags.

typedef struct _snvs_hp_rtc_datetime snvs_hp_rtc_datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_hp_rtc_config snvs_hp_rtc_config_t
SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_hp_ssm_state snvs_hp_ssm_state_t
List of SNVS Security State Machine State.

1196 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SNVS_HP_EnableMasterKeySelection(SNVS_Type *base, bool enable)
Enable or disable master key selection.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_HP_ProgramZeroizableMasterKey(SNVS_Type *base)
Trigger to program Zeroizable Master Key.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_ChangeSSMState(SNVS_Type *base)
Trigger SSM State Transition.

Trigger state transition of the system security monitor (SSM). It results only the following
transitions of the SSM:

• Check State -> Non-Secure (when Non-Secure Boot and not in Fab Configuration)

• Check State –> Trusted (when Secure Boot or in Fab Configuration )

• Trusted State –> Secure

• Secure State –> Trusted

• Soft Fail –> Non-Secure

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_SetSoftwareFatalSecurityViolation(SNVS_Type *base)
Trigger Software Fatal Security Violation.

The result SSM state transition is:

• Check State -> Soft Fail

• Non-Secure State -> Soft Fail

• Trusted State -> Soft Fail

• Secure State -> Soft Fail

Parameters
• base – SNVS peripheral base address

static inline void SNVS_HP_SetSoftwareSecurityViolation(SNVS_Type *base)
Trigger Software Security Violation.

The result SSM state transition is:

• Check -> Non-Secure

• Trusted -> Soft Fail

• Secure -> Soft Fail

Parameters
• base – SNVS peripheral base address

2.111. Secure Non-Volatile Storage High-Power 1197



MCUXpresso SDK Documentation, Release 25.12.00

static inline snvs_hp_ssm_state_t SNVS_HP_GetSSMState(SNVS_Type *base)
Get current SSM State.

Parameters
• base – SNVS peripheral base address

Returns
Current SSM state

static inline void SNVS_HP_ResetLP(SNVS_Type *base)
Reset the SNVS LP section.

Reset the LP section except SRTC and Time alarm.

Parameters
• base – SNVS peripheral base address

static inline uint32_t SNVS_HP_GetStatusFlags(SNVS_Type *base)
Get the SNVS HP status flags.

The flags are returned as the OR’ed value f the enumeration :: _snvs_hp_status_flags_t.

Parameters
• base – SNVS peripheral base address

Returns
The OR’ed value of status flags.

static inline void SNVS_HP_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP status flags.

The flags to clear are passed in as the OR’ed value of the enumeration ::
_snvs_hp_status_flags_t. Only these flags could be cleared using this API.

• kSNVS_RTC_PeriodicInterruptFlag

• kSNVS_RTC_AlarmInterruptFlag

Parameters
• base – SNVS peripheral base address

• mask – OR’ed value of the flags to clear.

static inline uint32_t SNVS_HP_GetSecurityViolationStatusFlags(SNVS_Type *base)
Get the SNVS HP security violation status flags.

The flags are returned as the OR’ed value of the enumeration :: _snvs_hp_sv_status_flags_t.

Parameters
• base – SNVS peripheral base address

Returns
The OR’ed value of security violation status flags.

static inline void SNVS_HP_ClearSecurityViolationStatusFlags(SNVS_Type *base, uint32_t mask)
Clear the SNVS HP security violation status flags.

The flags to clear are passed in as the OR’ed value of the enumeration ::
_snvs_hp_sv_status_flags_t. Only these flags could be cleared using this API.

• kSNVS_ZMK_EccFailFlag

• kSNVS_Violation0Flag

1198 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kSNVS_Violation1Flag

• kSNVS_Violation2Flag

• kSNVS_Violation3Flag

• kSNVS_Violation4Flag

• kSNVS_Violation5Flag

Parameters
• base – SNVS peripheral base address

• mask – OR’ed value of the flags to clear.

SNVS_HPSVSR_SV0_MASK

SNVS_HPSVSR_SV1_MASK

SNVS_HPSVSR_SV2_MASK

SNVS_HPSVSR_SV4_MASK

SNVS_HPSVSR_SV5_MASK

SNVS_MAKE_HP_SV_FLAG(x)
Macro to make security violation flag.

Macro help to make security violation flag kSNVS_Violation0Flag to kSNVS_Violation5Flag,
For example, SNVS_MAKE_HP_SV_FLAG(0) is kSNVS_Violation0Flag.

struct _snvs_hp_rtc_datetime
#include <fsl_snvs_hp.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

struct _snvs_hp_rtc_config
#include <fsl_snvs_hp.h> SNVS config structure.

This structure holds the configuration settings for the SNVS peripheral. To initialize this
structure to reasonable defaults, call the SNVS_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

2.111. Secure Non-Volatile Storage High-Power 1199



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool rtcCalEnable
true: RTC calibration mechanism is enabled; false:No calibration is used

uint32_t rtcCalValue
Defines signed calibration value for nonsecure RTC; This is a 5-bit 2’s complement
value, range from -16 to +15

uint32_t periodicInterruptFreq
Defines frequency of the periodic interrupt; Range from 0 to 15

2.112 Secure Non-Volatile Storage Low-Power

void SNVS_LP_Init(SNVS_Type *base)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_Deinit(SNVS_Type *base)
Deinit the SNVS LP section.

Parameters
• base – SNVS peripheral base address

status_t SNVS_LP_SRTC_SetDatetime(SNVS_Type *base, const snvs_lp_srtc_datetime_t
*datetime)

Sets the SNVS SRTC date and time according to the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the SNVS SRTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void SNVS_LP_SRTC_GetDatetime(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
Gets the SNVS SRTC time and stores it in the given time structure.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

status_t SNVS_LP_SRTC_SetAlarm(SNVS_Type *base, const snvs_lp_srtc_datetime_t
*alarmTime)

Sets the SNVS SRTC alarm time.

The function sets the SRTC alarm. It also checks whether the specified alarm time is greater
than the present time. If not, the function does not set the alarm and returns an error. Please

1200 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

note, that SRTC alarm has limited resolution because only 32 most significant bits of SRTC
counter are compared to SRTC Alarm register. If the alarm time is beyond SRTC resolution,
the function does not set the alarm and returns an error.

Parameters
• base – SNVS peripheral base address

• alarmTime – Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the SNVS SRTC alarm kSta-
tus_InvalidArgument: Error because the alarm datetime format is incorrect
kStatus_Fail: Error because the alarm time has already passed or is beyond
resolution

void SNVS_LP_SRTC_GetAlarm(SNVS_Type *base, snvs_lp_srtc_datetime_t *datetime)
Returns the SNVS SRTC alarm time.

Parameters
• base – SNVS peripheral base address

• datetime – Pointer to the structure where the alarm date and time details
are stored.

static inline void SNVS_LP_SRTC_EnableInterrupts(SNVS_Type *base, uint32_t mask)
Enables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

static inline void SNVS_LP_SRTC_DisableInterrupts(SNVS_Type *base, uint32_t mask)
Disables the selected SNVS interrupts.

Parameters
• base – SNVS peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_SRTC_GetEnabledInterrupts(SNVS_Type *base)
Gets the enabled SNVS interrupts.

Parameters
• base – SNVS peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
:: _snvs_lp_srtc_interrupts

uint32_t SNVS_LP_SRTC_GetStatusFlags(SNVS_Type *base)
Gets the SNVS status flags.

Parameters
• base – SNVS peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration ::
_snvs_lp_srtc_status_flags

2.112. Secure Non-Volatile Storage Low-Power 1201



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SNVS_LP_SRTC_ClearStatusFlags(SNVS_Type *base, uint32_t mask)
Clears the SNVS status flags.

Parameters
• base – SNVS peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration :: _snvs_lp_srtc_status_flags

static inline void SNVS_LP_SRTC_StartTimer(SNVS_Type *base)
Starts the SNVS SRTC time counter.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_LP_SRTC_StopTimer(SNVS_Type *base)
Stops the SNVS SRTC time counter.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_EnablePassiveTamper(SNVS_Type *base, snvs_lp_external_tamper_t pin,
snvs_lp_passive_tamper_t config)

Enables the specified SNVS external tamper.

Parameters
• base – SNVS peripheral base address

• pin – SNVS external tamper pin

• config – Configuration structure of external passive tamper

status_t SNVS_LP_EnableTxActiveTamper(SNVS_Type *base, snvs_lp_active_tx_tamper_t pin,
tamper_active_tx_config_t config)

Enable active tamper tx external pad.

Parameters
• base – SNVS peripheral base address

• pin – SNVS active tamper pin

• config – Configuration structure of external active tamper

status_t SNVS_LP_EnableRxActiveTamper(SNVS_Type *base, snvs_lp_external_tamper_t rx,
tamper_active_rx_config_t config)

Enable active tamper rx external pad.

Parameters
• base – SNVS peripheral base address

• rx – SNVS external RX tamper pin

• config – SNVS RX tamper config structure

status_t SNVS_LP_SetVoltageTamper(SNVS_Type *base, bool enable)
Sets voltage tamper detect.

Parameters
• base – SNVS peripheral base address

• enable – True if enable false if disable

1202 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t SNVS_LP_SetTemperatureTamper(SNVS_Type *base, bool enable)
Sets temperature tamper detect.

Parameters
• base – SNVS peripheral base address

• enable – True if enable false if disable

status_t SNVS_LP_SetClockTamper(SNVS_Type *base, bool enable)
Sets clock tamper detect.

Parameters
• base – SNVS peripheral base address

• enable – True if enable false if disable

snvs_lp_external_tamper_status_t SNVS_LP_CheckVoltageTamper(SNVS_Type *base)
brief Check voltage tamper

param base SNVS peripheral base address

snvs_lp_external_tamper_status_t SNVS_LP_CheckTemperatureTamper(SNVS_Type *base)
Check temperature tamper.

Parameters
• base – SNVS peripheral base address

snvs_lp_external_tamper_status_t SNVS_LP_CheckClockTamper(SNVS_Type *base)
brief Check clock tamper

param base SNVS peripheral base address

void SNVS_LP_TamperPinTx_GetDefaultConfig(tamper_active_tx_config_t *config)
Fills in the SNVS tamper pin config struct with the default settings.

The default values are as follows. code config->clock = kSNVS_ActiveTamper16HZ; config-
>seed = 0U; config->polynomial = 0U; endcode

Parameters
• config – Pointer to the user’s SNVS configuration structure.

void SNVS_LP_TamperPinRx_GetDefaultConfig(tamper_active_rx_config_t *config)
brief Fills in the SNVS tamper pin config struct with the default settings.

The default values are as follows. code config->filterenable = 0U; config->filter = 0U; config-
>tx = kSNVS_ActiveTamper1; endcode param config Pointer to the user’s SNVS configura-
tion structure.

void SNVS_LP_PassiveTamperPin_GetDefaultConfig(snvs_lp_passive_tamper_t *config)
Fills in the SNVS tamper pin config struct with the default settings.

The default values are as follows. code config->polarity = 0U; config->filterenable = 0U; if
available on SoC config->filter = 0U; if available on SoC endcode

Parameters
• config – Pointer to the user’s SNVS configuration structure.

void SNVS_LP_DisableExternalTamper(SNVS_Type *base, snvs_lp_external_tamper_t pin)
Disables the specified SNVS external tamper.

Parameters
• base – SNVS peripheral base address

• pin – SNVS external tamper pin

2.112. Secure Non-Volatile Storage Low-Power 1203



MCUXpresso SDK Documentation, Release 25.12.00

void SNVS_LP_DisableAllExternalTamper(SNVS_Type *base)
Disable all external tamper.

Parameters
• base – SNVS peripheral base address

snvs_lp_external_tamper_status_t SNVS_LP_GetExternalTamperStatus(SNVS_Type *base,
snvs_lp_external_tamper_t
pin)

Returns status of the specified external tamper.

Parameters
• base – SNVS peripheral base address

• pin – SNVS external tamper pin

Returns
The status flag. This is the enumeration :: _snvs_lp_external_tamper_status

void SNVS_LP_ClearExternalTamperStatus(SNVS_Type *base, snvs_lp_external_tamper_t pin)
Clears status of the specified external tamper.

Parameters
• base – SNVS peripheral base address

• pin – SNVS external tamper pin

void SNVS_LP_ClearAllExternalTamperStatus(SNVS_Type *base)
Clears status of the all external tamper.

Parameters
• base – SNVS peripheral base address

static inline void SNVS_LP_EnableMonotonicCounter(SNVS_Type *base, bool enable)
Enable or disable the Monotonic Counter.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

uint64_t SNVS_LP_GetMonotonicCounter(SNVS_Type *base)
Get the current Monotonic Counter.

Parameters
• base – SNVS peripheral base address

Returns
Current Monotonic Counter value.

static inline void SNVS_LP_IncreaseMonotonicCounter(SNVS_Type *base)
Increase the Monotonic Counter.

Increase the Monotonic Counter by 1.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_WriteZeroizableMasterKey(SNVS_Type *base, uint32_t ZMKey[8U])
Write Zeroizable Master Key (ZMK) to the SNVS registers.

Parameters
• base – SNVS peripheral base address

1204 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• ZMKey – The ZMK write to the SNVS register.

static inline void SNVS_LP_SetZeroizableMasterKeyValid(SNVS_Type *base, bool valid)
Set Zeroizable Master Key valid.

This API could only be called when using software programming mode. After writing ZMK
using SNVS_LP_WriteZeroizableMasterKey, call this API to make the ZMK valid.

Parameters
• base – SNVS peripheral base address

• valid – Pass true to set valid, false to set invalid.

static inline bool SNVS_LP_GetZeroizableMasterKeyValid(SNVS_Type *base)
Get Zeroizable Master Key valid status.

In hardware programming mode, call this API to check whether the ZMK is valid.

Parameters
• base – SNVS peripheral base address

Returns
true if valid, false if invalid.

static inline void SNVS_LP_SetZeroizableMasterKeyProgramMode(SNVS_Type *base,
snvs_lp_zmk_program_mode_t
mode)

Set Zeroizable Master Key programming mode.

Parameters
• base – SNVS peripheral base address

• mode – ZMK programming mode.

static inline void SNVS_LP_EnableZeroizableMasterKeyECC(SNVS_Type *base, bool enable)
Enable or disable Zeroizable Master Key ECC.

Parameters
• base – SNVS peripheral base address

• enable – Pass true to enable, false to disable.

static inline void SNVS_LP_SetMasterKeyMode(SNVS_Type *base, snvs_lp_master_key_mode_t
mode)

Set SNVS Master Key mode.

Note: When kSNVS_ZMK or kSNVS_CMK used, the SNVS_HP must be configured to enable
the master key selection.

Parameters
• base – SNVS peripheral base address

• mode – Master Key mode.

FSL_SNVS_LP_DRIVER_VERSION
Version 2.4.6

enum _snvs_lp_srtc_interrupts
List of SNVS_LP interrupts.

Values:

2.112. Secure Non-Volatile Storage Low-Power 1205



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSNVS_SRTC_AlarmInterrupt
SRTC time alarm.

enum _snvs_lp_srtc_status_flags
List of SNVS_LP flags.

Values:

enumerator kSNVS_SRTC_AlarmInterruptFlag
SRTC time alarm flag

enum _snvs_lp_external_tamper
List of SNVS_LP external tampers.

Values:

enumerator kSNVS_ExternalTamper1

enum _snvs_lp_active_tamper
List of SNVS_LP active tampers.

Values:

enumerator kSNVS_ActiveTamper1

enumerator kSNVS_ActiveTamper2

enumerator kSNVS_ActiveTamper3

enumerator kSNVS_ActiveTamper4

enumerator kSNVS_ActiveTamper5

enum _snvs_lp_active_clock
List of SNVS_LP external tampers.

Values:

enumerator kSNVS_ActiveTamper16HZ

enumerator kSNVS_ActiveTamper8HZ

enumerator kSNVS_ActiveTamper4HZ

enumerator kSNVS_ActiveTamper2HZ

enum _snvs_lp_external_tamper_status
List of SNVS_LP external tampers status.

Values:

enumerator kSNVS_TamperNotDetected

enumerator kSNVS_TamperDetected

enum _snvs_lp_external_tamper_polarity
SNVS_LP external tamper polarity.

Values:

enumerator kSNVS_ExternalTamperActiveLow

enumerator kSNVS_ExternalTamperActiveHigh

1206 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enum _snvs_lp_zmk_program_mode
SNVS_LP Zeroizable Master Key programming mode.

Values:

enumerator kSNVS_ZMKSoftwareProgram
Software programming mode.

enumerator kSNVS_ZMKHardwareProgram
Hardware programming mode.

enum _snvs_lp_master_key_mode
SNVS_LP Master Key mode.

Values:

enumerator kSNVS_OTPMK
One Time Programmable Master Key.

enumerator kSNVS_ZMK
Zeroizable Master Key.

enumerator kSNVS_CMK
Combined Master Key, it is XOR of OPTMK and ZMK.

typedef enum _snvs_lp_srtc_interrupts snvs_lp_srtc_interrupts_t
List of SNVS_LP interrupts.

typedef enum _snvs_lp_srtc_status_flags snvs_lp_srtc_status_flags_t
List of SNVS_LP flags.

typedef enum _snvs_lp_external_tamper snvs_lp_external_tamper_t
List of SNVS_LP external tampers.

typedef enum _snvs_lp_active_tamper snvs_lp_active_tx_tamper_t
List of SNVS_LP active tampers.

typedef enum _snvs_lp_active_clock snvs_lp_active_clock_t
List of SNVS_LP external tampers.

typedef enum _snvs_lp_external_tamper_status snvs_lp_external_tamper_status_t
List of SNVS_LP external tampers status.

typedef enum _snvs_lp_external_tamper_polarity snvs_lp_external_tamper_polarity_t
SNVS_LP external tamper polarity.

typedef struct _snvs_lp_srtc_datetime snvs_lp_srtc_datetime_t
Structure is used to hold the date and time.

typedef struct _snvs_lp_srtc_config snvs_lp_srtc_config_t
SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _snvs_lp_zmk_program_mode snvs_lp_zmk_program_mode_t
SNVS_LP Zeroizable Master Key programming mode.

typedef enum _snvs_lp_master_key_mode snvs_lp_master_key_mode_t
SNVS_LP Master Key mode.

2.112. Secure Non-Volatile Storage Low-Power 1207



MCUXpresso SDK Documentation, Release 25.12.00

void SNVS_LP_SRTC_Init(SNVS_Type *base, const snvs_lp_srtc_config_t *config)
Ungates the SNVS clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SNVS driver.

Parameters
• base – SNVS peripheral base address

• config – Pointer to the user’s SNVS configuration structure.

void SNVS_LP_SRTC_Deinit(SNVS_Type *base)
Stops the SRTC timer.

Parameters
• base – SNVS peripheral base address

void SNVS_LP_SRTC_GetDefaultConfig(snvs_lp_srtc_config_t *config)
Fills in the SNVS_LP config struct with the default settings.

The default values are as follows.

config->srtccalenable = false;
config->srtccalvalue = 0U;

Parameters
• config – Pointer to the user’s SNVS configuration structure.

SNVS_ZMK_REG_COUNT
Define of SNVS_LP Zeroizable Master Key registers.

SNVS_LP_MAX_TAMPER
Define of SNVS_LP Max possible tamper.

struct tamper_active_tx_config_t
#include <fsl_snvs_lp.h> Structure is used to configure SNVS LP active TX tamper pins.

struct tamper_active_rx_config_t
#include <fsl_snvs_lp.h> Structure is used to configure SNVS LP active RX tamper pins.

struct snvs_lp_passive_tamper_t
#include <fsl_snvs_lp.h> Structure is used to configure SNVS LP passive tamper pins.

struct _snvs_lp_srtc_datetime
#include <fsl_snvs_lp.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

1208 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

struct _snvs_lp_srtc_config
#include <fsl_snvs_lp.h> SNVS_LP config structure.

This structure holds the configuration settings for the SNVS_LP peripheral. To initialize this
structure to reasonable defaults, call the SNVS_LP_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool srtcCalEnable
true: SRTC calibration mechanism is enabled; false: No calibration is used

uint32_t srtcCalValue
Defines signed calibration value for SRTC; This is a 5-bit 2’s complement value, range
from -16 to +15

2.113 Soc_mipi_csi2rx

void MIPI_CSI2RX_SoftwareReset(MIPI_CSI2RX_Type *base, bool reset)
Assert or deassert CSI2RX reset in system level.

Note: Don’t call this function directly.

Parameters
• base – The CSI2RX peripheral base address.

• reset – Pass in true to set to reset state, false to release reset.

void MIPI_CSI2RX_InitInterface(MIPI_CSI2RX_Type *base, uint8_t tHsSettle_EscClk)
Initialize the CSI2RX interface.

Note: Don’t call this function directly.

Parameters
• base – The CSI2RX peripheral base address.

• tHsSettle_EscClk – t-HS_SETTLE in esc clock period.

void MIPI_CSI2RX_DeinitInterface(MIPI_CSI2RX_Type *base)
Deinitialize the CSI2RX interface.

Note: Don’t call this function directly.

Parameters

2.113. Soc_mipi_csi2rx 1209



MCUXpresso SDK Documentation, Release 25.12.00

• base – The CSI2RX peripheral base address.

FSL_SOC_MIPI_CSI2RX_DRIVER_VERSION
Driver version.

2.114 Soc_mipi_dsi

FSL_SOC_MIPI_DSI_DRIVER_VERSION
Driver version 2.0.0.

DSI_DPHY_PLL_VCO_MAX

DSI_DPHY_PLL_VCO_MIN

FSL_COMPONENT_ID

2.115 Soc_src

enum _src_core_name
System core.

Values:

enumerator kSRC_CM7Core
System Core CM4.

enumerator kSRC_CM4Core
System Core CM7.

enum _src_boot_fuse_selection
The enumeration of the boot fuse selection.

Values:

enumerator kSRC_SerialDownloaderBootFlow
The Boot flow jumps directly to the serial downloader.

enumerator kSRC_NormalBootFlow
The Boot flow follows the Normal Boot flow.

enum _src_global_system_reset_source
The enumeration of global system reset sources.

Values:

enumerator kSRC_WdogReset
WDOG triggers the global system reset.

enumerator kSRC_Wdog3Reset
WDOG3 triggers the global system reset.

enumerator kSRC_Wdog4Reset
WODG4 triggers the global system reset.

enumerator kSRC_M4LockUpReset
M4 core lockup triggers the global system reset.

1210 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_M7LockUpReset
M7 core lockup triggers the global system reset.

enumerator kSRC_M4RequestReset
M4 core request triggers the global system reset.

enumerator kSRC_M7RequestReset
M7 core request triggers the global system reset.

enumerator kSRC_TempsenseReset
Tempsense trigggers the global system reset.

enumerator kSRC_CSUReset
CSU triggers the global system reset.

enumerator kSRC_JageSoftwareReset
JATG software triggers the global system reset.

enumerator kSRC_OverVoltageReset
Over voltage triggers the global system reset.

enum _src_global_system_reset_status_flags
The enumeration of reset status flags.

Values:

enumerator kSRC_M7CoreIppResetFlag
The M7 Core reset is the result of ipp_reset_b pin.

enumerator kSRC_M7CoreM7RequestResetFlag
The M7 Core reset is the result of M7 core reset request.

enumerator kSRC_M7CoreM7LockUpResetFlag
The M7 Core reset is the result of M7 core lock up.

enumerator kSRC_M7CoreCSUResetFlag
The M7 Core reset is the result of csu_reset_b input.

enumerator kSRC_M7CoreIppUserResetFlag
The M7 Core reset is the result of ipp_user_reset_b qualified reset.

enumerator kSRC_M7CoreWdogResetFlag
The M7 Core reset is the result of the watchdog time-out event.

enumerator kSRC_M7CoreJtagResetFlag
The M7 Core reset is the result of HIGH-Z reset from JTAG.

enumerator kSRC_M7CoreJtagSWResetFlag
The M7 Core reset is the result of software reset from JTAG.

enumerator kSRC_M7CoreWdog3ResetFlag
The M7 Core reset is the result of watchdog3 time-out event.

enumerator kSRC_M7CoreWdog4ResetFlag
The M7 Core reset is the result of watchdog4 time-out event.

enumerator kSRC_M7CoreTempsenseResetFlag
The M7 Core reset is the result of on-chip temperature sensor.

enumerator kSRC_M7CoreM4RequestResetFlag
The M7 Core reset is the result of M4 CPU reset request.

2.115. Soc_src 1211



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_M7CoreM4LockUpResetFlag
The M7 Core reset is the result of M4 CPU lock up.

enumerator kSRC_M7CoreOverVoltageResetFlag
The M7 Core reset is the result of over voltage.

enumerator kSRC_M7CoreCdogResetFlag
The M7 Core reset is the result of Cdog.

enumerator kSRC_M4CoreIppResetFlag
The M4 Core reset is the result of ipp_reset_b pin.

enumerator kSRC_M4CoreM4RequestResetFlag
The M4 Core reset is the result of M4 core reset request.

enumerator kSRC_M4CoreM4LockUpResetFlag
The M4 Core reset is the result of M4 core lock up.

enumerator kSRC_M4CoreCSUResetFlag
The M4 Core reset is the result of csu_reset_b input.

enumerator kSRC_M4CoreIppUserResetFlag
The M4 Core reset is the result of ipp_user_reset_b qualified reset.

enumerator kSRC_M4CoreWdogResetFlag
The M4 Core reset is the result of the watchdog time-out event.

enumerator kSRC_M4CoreJtagResetFlag
The M4 Core reset is the result of HIGH-Z reset from JTAG.

enumerator kSRC_M4CoreJtagSWResetFlag
The M4 Core reset is the result of software reset from JTAG.

enumerator kSRC_M4CoreWdog3ResetFlag
The M4 Core reset is the result of watchdog3 time-out event.

enumerator kSRC_M4CoreWdog4ResetFlag
The M4 Core reset is the result of watchdog4 time-out event.

enumerator kSRC_M4CoreTempsenseResetFlag
The M4 Core reset is the result of on-chip temperature sensor.

enumerator kSRC_M4CoreM7RequestResetFlag
The M4 Core reset is the result of M7 CPU reset request.

enumerator kSRC_M4CoreM7LockUpResetFlag
The M4 Core reset is the result of M7 CPU lock up.

enumerator kSRC_M4CoreOverVoltageResetFlag
The M4 Core reset is the result of over voltage.

enumerator kSRC_M4CoreCdogResetFlag
The M4 Core reset is the result of Cdog.

enum _src_global_system_reset_mode
The enumeration of global system reset mode.

Values:

enumerator kSRC_ResetSystem
Generate the global system reset.

1212 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_DoNotResetSystem
Do not generate the global system reset.

enum _src_reset_slice_name
The enumeration of the slice name.

Values:

enumerator kSRC_MegaSlice
Megamix reset slice.

enumerator kSRC_DisplaySlice
Displaymix reset slice.

enumerator kSRC_WakeUpSlice
Wakeupmix reset slice.

enumerator kSRC_LpsrSlice
Lpsrmix reset slice.

enumerator kSRC_M4CoreSlice
M4 core reset slice.

enumerator kSRC_M7CoreSlice
M7 core reset slice.

enumerator kSRC_M4DebugSlice
M4 debug reset slice.

enumerator kSRC_M7DebugSlice
M7 debug reset slice.

enumerator kSRC_Usbphy1Slice
USBPHY1 reset slice.

enumerator kSRC_Usbphy2Slice
USBPHY2 reset slice.

enum _src_domain_mode_selection
The enumeration of the domain mode.

Values:

enumerator kSRC_Cpu0RunModeAssertReset
CPU0 in run mode will assert slice reset.

enumerator kSRC_Cpu0WaitModeAssertReset
CPU0 in wait mode will assert reset.

enumerator kSRC_Cpu0StopModeAssertReset
CPU0 in stop mode will assert reset.

enumerator kSRC_Cpu0SuspendModeAssertReset
CPU0 in suspend mode will assert reset.

enumerator kSRC_Cpu1RunModeAssertReset
CPU1 in run mode will assert slice reset.

enumerator kSRC_Cpu1WaitModeAssertReset
CPU1 in wait mode will assert reset.

enumerator kSRC_Cpu1StopModeAssertReset
CPU1 in stop mode will assert reset.

2.115. Soc_src 1213



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_Cpu1SuspendModeAssertReset
CPU1 in suspend mode will assert reset.

enum _src_setpoint_selection
The enumeration of setpoint.

Values:

enumerator kSRC_SetPoint0AssertReset
In setpoint0 will assert slice reset.

enumerator kSRC_SetPoint1AssertReset
In setpoint1 will assert slice reset.

enumerator kSRC_SetPoint2AssertReset
In setpoint2 will assert slice reset.

enumerator kSRC_SetPoint3AssertReset
In setpoint3 will assert slice reset.

enumerator kSRC_SetPoint4AssertReset
In setpoint4 will assert slice reset.

enumerator kSRC_SetPoint5AssertReset
In setpoint5 will assert slice reset.

enumerator kSRC_SetPoint6AssertReset
In setpoint6 will assert slice reset.

enumerator kSRC_SetPoint7AssertReset
In setpoint7 will assert slice reset.

enumerator kSRC_SetPoint8AssertReset
In setpoint8 will assert slice reset.

enumerator kSRC_SetPoint9AssertReset
In setpoint9 will assert slice reset.

enumerator kSRC_SetPoint10AssertReset
In setpoint10 will assert slice reset.

enumerator kSRC_SetPoint11AssertReset
In setpoint11 will assert slice reset.

enumerator kSRC_SetPoint12AssertReset
In setpoint12 will assert slice reset.

enumerator kSRC_SetPoint13AssertReset
In setpoint13 will assert slice reset.

enumerator kSRC_SetPoint14AssertReset
In setpoint14 will assert slice reset.

enumerator kSRC_SetPoint15AssertReset
In setpoint15 will assert slice reset.

enum _src_general_purpose_register_index
The index of each general purpose register.

Values:

enumerator kSRC_GeneralPurposeRegister1
The index of General Purpose Register1.

1214 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_GeneralPurposeRegister2
The index of General Purpose Register2.

enumerator kSRC_GeneralPurposeRegister3
The index of General Purpose Register3.

enumerator kSRC_GeneralPurposeRegister4
The index of General Purpose Register4.

enumerator kSRC_GeneralPurposeRegister5
The index of General Purpose Register5.

enumerator kSRC_GeneralPurposeRegister6
The index of General Purpose Register6.

enumerator kSRC_GeneralPurposeRegister7
The index of General Purpose Register7.

enumerator kSRC_GeneralPurposeRegister8
The index of General Purpose Register8.

enumerator kSRC_GeneralPurposeRegister9
The index of General Purpose Register9.

enumerator kSRC_GeneralPurposeRegister10
The index of General Purpose Register10.

enumerator kSRC_GeneralPurposeRegister11
The index of General Purpose Register11.

enumerator kSRC_GeneralPurposeRegister12
The index of General Purpose Register12.

enumerator kSRC_GeneralPurposeRegister13
The index of General Purpose Register13.

enumerator kSRC_GeneralPurposeRegister14
The index of General Purpose Register14.

enumerator kSRC_GeneralPurposeRegister15
The index of General Purpose Register15.

enumerator kSRC_GeneralPurposeRegister16
The index of General Purpose Register16.

enumerator kSRC_GeneralPurposeRegister17
The index of General Purpose Register17.

enumerator kSRC_GeneralPurposeRegister18
The index of General Purpose Register18.

enumerator kSRC_GeneralPurposeRegister19
The index of General Purpose Register19.

enumerator kSRC_GeneralPurposeRegister20
The index of General Purpose Register20.

enum _src_slice_reset_source
The enumeration of the reset source of each slice.

Values:

2.115. Soc_src 1215



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSRC_SoftwareReset
Reset is caused by software setting.

enumerator kSRC_PowerModeTransferReset
Reset is caused by the power mode transfer.

enum _src_slice_reset_state
The enumeration of the reset state of each slice.

Values:

enumerator kSRC_SliceResetFinished
The reset is finished.

enumerator kSRC_SliceResetInProcess
The reset is in process.

typedef enum _src_core_name src_core_name_t
System core.

typedef enum _src_boot_fuse_selection src_boot_fuse_selection_t
The enumeration of the boot fuse selection.

typedef enum _src_global_system_reset_source src_global_system_reset_source_t
The enumeration of global system reset sources.

typedef enum _src_global_system_reset_mode src_global_system_reset_mode_t
The enumeration of global system reset mode.

typedef enum _src_reset_slice_name src_reset_slice_name_t
The enumeration of the slice name.

typedef enum _src_general_purpose_register_index src_general_purpose_register_index_t
The index of each general purpose register.

typedef struct _src_setpoint_authentication src_setpoint_authentication_t
The structure of setpoint authentication.

typedef struct _src_domain_mode_authentication src_domain_mode_authentication_t
The stucture of domain mode authentication.

typedef enum _src_slice_reset_state src_slice_reset_state_t
The enumeration of the reset state of each slice.

FSL_SRC_DRIVER_VERSION
SRC driver version 2.1.1.

SRC_SLICE_ADDRESS_OFFSET

SRC_SLICE_AUTHENTICATION_REGISTER_OFFSET

SRC_SLICE_CONTROL_REGISTER_OFFSET

SRC_SLICE_SETPOINT_CONFIG_REGISTER_OFFSET

SRC_SLICE_DOMAIN_CONFIG_REGISTER_OFFSET

SRC_SLICE_STATUS_REGISTER_OFFSET

SRC_GET_SLICE_REGISTER_ADDRESS(base, sliceName, registerOffset)

SRC_SLICE_STAT_UNDER_RST_MASK

SRC_SLICE_STAT_RST_BY_HW_MASK

1216 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

SRC_SLICE_STAT_RST_BY_SW_MASK

SRC_WHITE_LIST_VALUE(coreName)

SRC_ASSIGN_LIST_VALUE(coreName)

SRC_SLICE_AUTHEN_DOMAIN_MODE_MASK

SRC_SLICE_AUTHEN_SETPOINT_MODE_MASK

SRC_SLICE_AUTHEN_LOCK_MODE_MASK

SRC_SLICE_AUTHEN_LOCK_MODE_SHIFT

SRC_SLICE_AUTHEN_LOCK_MODE(x)

SRC_SLICE_AUTHEN_ASSIGN_LIST_MASK

SRC_SLICE_AUTHEN_ASSIGN_LIST_SHIFT

SRC_SLICE_AUTHEN_ASSIGN_LIST(x)

SRC_SLICE_AUTHEN_LOCK_ASSIGN_MASK

SRC_SLICE_AUTHEN_LOCK_ASSIGN_SHIFT

SRC_SLICE_AUTHEN_LOCK_ASSIGN(x)

SRC_SLICE_AUTHEN_WHITE_LIST_MASK

SRC_SLICE_AUTHEN_WHITE_LIST_SHIFT

SRC_SLICE_AUTHEN_WHITE_LIST(x)

SRC_SLICE_AUTHEN_LOCK_LIST_MASK

SRC_SLICE_AUTHEN_LOCK_LIST_SHIFT

SRC_SLICE_AUTHEN_LOCK_LIST(x)

SRC_SLICE_AUTHEN_USER_MASK

SRC_SLICE_AUTHEN_USER_SHIFT

SRC_SLICE_AUTHEN_USER(x)

SRC_SLICE_AUTHEN_NONSECURE_MASK

SRC_SLICE_AUTHEN_NONSECURE_SHIFT

SRC_SLICE_AUTHEN_NONSECURE(x)

SRC_SLICE_AUTHEN_LOCK_SETTING_MASK

SRC_SLICE_AUTHEN_LOCK_SETTING_SHIFT

SRC_SLICE_AUTHEN_LOCK_SETTING(x)

void SRC_ReleaseCoreReset(SRC_Type *base, src_core_name_t coreName)
Releases related core reset operation.

The core reset will be held until the boot core to release it.

Parameters
• base – SRC peripheral base address.

• coreName – The name of the reset core to be released.

2.115. Soc_src 1217



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t SRC_GetBootConfig(SRC_Type *base)
Gets Boot configuration.

Parameters
• base – SRC peripheral base address.

Returns
Boot configuration. Please refer to fusemap.

static inline uint8_t SRC_GetBootMode(SRC_Type *base)
Gets the latched state of the BOOT_MODE1 and BOOT_MODE0 signals.

Parameters
• base – SRC peripheral base address.

Returns
Boot mode. Please refer to the Boot mode pin setting section of System Boot.

static inline src_boot_fuse_selection_t SRC_GetBootFuseSelection(SRC_Type *base)
Gets the state of the BT_FUSE_SEL fuse.

Parameters
• base – SRC peripheral base address.

Returns
The state of the BT_FUSE_SEL fuse, please refer to fusemap for more informa-
tion.

static inline uint8_t SRC_GetSECConfigFuseState(SRC_Type *base)
Gets the state of the SECCONFIG[1] fuse.

Parameters
• base – SRC peripheral base address.

Returns
The state of the SECCONFIG[1] fuse. Please refer to fusemap for more infor-
mation.

void SRC_SetGlobalSystemResetMode(SRC_Type *base, src_global_system_reset_source_t
resetSource, src_global_system_reset_mode_t resetMode)

Sets the reset mode of global system reset source.

This function sets the selected mode of the input global system reset sources.

Parameters
• base – SRC peripheral base address.

• resetSource – The global system reset source. See
src_global_system_reset_source_t for more details.

• resetMode – The reset mode of each reset source. See
src_global_system_reset_mode_t for more details.

static inline uint32_t SRC_GetResetStatusFlags(SRC_Type *base)
Gets global system reset status flags.

Parameters
• base – SRC peripheral base address.

Returns
The status of global system reset status. See
_src_global_system_reset_status_flags for more details.

1218 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SRC_ClearGlobalSystemResetStatus(SRC_Type *base, uint32_t mask)
Clears the status of global reset.

Parameters
• base – SRC peripheral base address.

• mask – The reset status flag to be cleared. See
_src_global_system_reset_status_flags for more details.

void SRC_AssertSliceSoftwareReset(SRC_Type *base, src_reset_slice_name_t sliceName)
Asserts software reset for the selected slice.

Note: This function will return as soon as the resset is finished.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice to be reset. See src_reset_slice_name_t for more de-
tails.

static inline void SRC_AllowUserModeAccess(SRC_Type *base, src_reset_slice_name_t sliceName,
bool enable)

Allows/disallows user mode access.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• enable – Used to control user mode access.

– true Allow user mode access.

– false Disallow user mode access.

static inline void SRC_AllowNonSecureModeAccess(SRC_Type *base, src_reset_slice_name_t
sliceName, bool enable)

Allows/disallows non secure mode access.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• enable – Used to control non secure mode access.

– true Allow non secure mode access.

– false Disallow non secure mode access.

static inline void SRC_LockAccessSetting(SRC_Type *base, src_reset_slice_name_t sliceName)
Locks the setting of user mode access and non secure mode access.

Note: Once locked only reset can unlock related settings.

Parameters
• base – SRC peripheral base address.

2.115. Soc_src 1219



MCUXpresso SDK Documentation, Release 25.12.00

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

static inline void SRC_SetDomainIdWhiteList(SRC_Type *base, src_reset_slice_name_t
sliceName, uint8_t domainId)

Sets the domain ID white list for the selected slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• domainId – The core to access registers, should be the OR’ed value of
src_core_name_t.

static inline void SRC_LockDomainIdWhiteList(SRC_Type *base, src_reset_slice_name_t
sliceName)

Locks the value of white list.

Note: Once locked only reset can unlock related settings.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

static inline void SRC_SetAssignList(SRC_Type *base, src_reset_slice_name_t sliceName, uint32_t
assignList)

Sets the value of assign list.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• assignList – Cores that subject to corresponding core status transition,
should be the OR’ed value of src_core_name_t.

static inline void SRC_LockAssignList(SRC_Type *base, src_reset_slice_name_t sliceName)
Locks the value of assign list.

Note: Once locked only reset can unlock related settings.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

static inline void SRC_EnableSetPointTransferReset(SRC_Type *base, src_reset_slice_name_t
sliceName, bool enable)

Enable/disable setpoint transfer reset.

Parameters
• base – SRC peripheral base address.

1220 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• enable – User to control setpoint transfer reset.

– true Enable setpoint transfer reset.

– false Disable setpoint transfer reset.

static inline void SRC_EnableDomainModeTransferReset(SRC_Type *base, src_reset_slice_name_t
sliceName, bool enable)

Enable/disable domain mode transfer reset.

Parameters
• base – SRC peripheral base address.

• sliceName – The slice name to set, please refer to src_reset_slice_name_t for
details.

• enable – User to control domain mode reset.

– true Enable domain mode reset.

– false Disable domain mode reset.

void SRC_SetSliceSetPointConfig(SRC_Type *base, src_reset_slice_name_t sliceName, uint32_t
setpointConfig)

Sets setpoint configuration for the selected reset slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The selected reset slice. See src_reset_slice_name_t for more
details.

• setpointConfig – The logic OR’ed value of _src_setpoint_selection enumera-
tion, when the system in the selected setpoint slice reset will be asserted.

void SRC_SetSliceDomainModeConfig(SRC_Type *base, src_reset_slice_name_t sliceName,
uint32_t domainConfig)

Sets domain mode configuration for the selected reset slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The selected reset slice. See src_reset_slice_name_t for more
details.

• domainConfig – The logic OR’ed value of _src_domain_mode_selection enu-
merations.

void SRC_LockSliceMode(SRC_Type *base, src_reset_slice_name_t sliceName)
Locks the value of SETPOINT_MODE and DOMAIN_MODE for the selected reset slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The selected reset slice. See src_reset_slice_name_t for more
details.

static inline uint32_t SRC_GetSliceResetStatusFlags(SRC_Type *base, src_reset_slice_name_t
sliceName)

Gets the reset status flags of the selected slice.

Parameters

2.115. Soc_src 1221



MCUXpresso SDK Documentation, Release 25.12.00

• base – SRC peripheral base address.

• sliceName – The slice to be reset. See src_reset_slice_name_t for more de-
tails.

Returns
The reset status flags for the selected slice. Please refer to
_src_slice_reset_source for details.

static inline void SRC_ClearSliceResetStatusFlags(SRC_Type *base, src_reset_slice_name_t
sliceName, uint32_t mask)

Clears the reset status flags of the selected slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The selected slice. See src_reset_slice_name_t for more details.

• mask – The reset status flags to be cleared. Please refer to
_src_slice_reset_source for more details.

src_slice_reset_state_t SRC_GetSliceResetState(SRC_Type *base, src_reset_slice_name_t
sliceName)

Gets the reset state of the selected slice.

Parameters
• base – SRC peripheral base address.

• sliceName – The selected slice. See src_reset_slice_name_t for more details.

Return values
• kSRC_SliceResetInProcess – The reset is in process.

• kSRC_SliceResetFinished – The reset is finished.

static inline void SRC_SetGeneralPurposeRegister(SRC_Type *base,
src_general_purpose_register_index_t index,
uint32_t value)

Sets value to general purpose registers.

Parameters
• base – SRC peripheral base address.

• index – The index of GPRx register array. Please refer to
src_general_purpose_register_index_t.

• value – Setting value for GPRx register.

static inline uint32_t SRC_GetGeneralPurposeRegister(SRC_Type *base,
src_general_purpose_register_index_t
index)

Gets the value from general purpose registers.

Parameters
• base – SRC peripheral base address.

• index – The index of GPRx register array. Please refer to
src_general_purpose_register_index_t.

Returns
The setting value for GPRx register.

struct _src_setpoint_authentication
#include <fsl_soc_src.h> The structure of setpoint authentication.

1222 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableSetpointTranferReset
Control whether reset slice is in setpoint mode.

• true Slice hardware reset will be triggered by set point transition.

• false Slice hardware reset will not be trigged by set point transition.

uint32_t whiteList
Select the core to access set point control register. The logic OR’ed value of
src_core_name_t enumeration.

bool lockWhiteList
Control whether lock the value in white list

bool lockSetting
Control whether lock the setpoint access setting.

bool allowNonSecureModeAccess
Allow both secure and non-secure modes to config setpoint.

bool allowUserModeAccess
Allow both privilege and user modes to config setpoint.

struct _src_domain_mode_authentication
#include <fsl_soc_src.h> The stucture of domain mode authentication.

Public Members

bool enableDomainModeTransferReset
Control whether reset slice is in domaim mode.

• true Slice hardware reset will be triggered by cpu power mode transition.

• false Slice hardware reset will not be trigged by cpu power mode transition.

uint32_t assignList
Select the core that reset of slice would be subject to the selected core status transition.
The logic OR’ed value of src_core_name_t enumeration.

bool lockAssignList
Control whether lock the value in Assign list.

2.116 SPDIF: Sony/Philips Digital Interface

void SPDIF_Init(SPDIF_Type *base, const spdif_config_t *config)
Initializes the SPDIF peripheral.

Ungates the SPDIF clock, resets the module, and configures SPDIF with a configuration
structure. The configuration structure can be custom filled or set with default values by
SPDIF_GetDefaultConfig().

Note: This API should be called at the beginning of the application to use the SPDIF driver.
Otherwise, accessing the SPDIF module can cause a hard fault because the clock is not en-
abled.

Parameters

2.116. SPDIF: Sony/Philips Digital Interface 1223



MCUXpresso SDK Documentation, Release 25.12.00

• base – SPDIF base pointer

• config – SPDIF configuration structure.

void SPDIF_GetDefaultConfig(spdif_config_t *config)
Sets the SPDIF configuration structure to default values.

This API initializes the configuration structure for use in SPDIF_Init. The initialized struc-
ture can remain unchanged in SPDIF_Init, or it can be modified before calling SPDIF_Init.
This is an example.

spdif_config_t config;
SPDIF_GetDefaultConfig(&config);

Parameters
• config – pointer to master configuration structure

void SPDIF_Deinit(SPDIF_Type *base)
De-initializes the SPDIF peripheral.

This API gates the SPDIF clock. The SPDIF module can’t operate unless SPDIF_Init is called
to enable the clock.

Parameters
• base – SPDIF base pointer

uint32_t SPDIF_GetInstance(SPDIF_Type *base)
Get the instance number for SPDIF.

Parameters
• base – SPDIF base pointer.

static inline void SPDIF_TxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Tx.

This function makes Tx FIFO in reset mode.

Parameters
• base – SPDIF base pointer

static inline void SPDIF_RxFIFOReset(SPDIF_Type *base)
Resets the SPDIF Rx.

This function enables the software reset and FIFO reset of SPDIF Rx. After reset, clear the
reset bit.

Parameters
• base – SPDIF base pointer

void SPDIF_TxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Tx.

Parameters
• base – SPDIF base pointer

• enable – True means enable SPDIF Tx, false means disable.

static inline void SPDIF_RxEnable(SPDIF_Type *base, bool enable)
Enables/disables the SPDIF Rx.

Parameters
• base – SPDIF base pointer

1224 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• enable – True means enable SPDIF Rx, false means disable.

static inline uint32_t SPDIF_GetStatusFlag(SPDIF_Type *base)
Gets the SPDIF status flag state.

Parameters
• base – SPDIF base pointer

Returns
SPDIF status flag value. Use the _spdif_interrupt_enable_t to get the status
value needed.

static inline void SPDIF_ClearStatusFlags(SPDIF_Type *base, uint32_t mask)
Clears the SPDIF status flag state.

Parameters
• base – SPDIF base pointer

• mask – State mask. It can be a combination of the _spdif_interrupt_enable_t
member. Notice these members cannot be included, as these flags cannot
be cleared by writing 1 to these bits:

– kSPDIF_UChannelReceiveRegisterFull

– kSPDIF_QChannelReceiveRegisterFull

– kSPDIF_TxFIFOEmpty

– kSPDIF_RxFIFOFull

static inline void SPDIF_EnableInterrupts(SPDIF_Type *base, uint32_t mask)
Enables the SPDIF Tx interrupt requests.

Parameters
• base – SPDIF base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSPDIF_WordStartInterruptEnable

– kSPDIF_SyncErrorInterruptEnable

– kSPDIF_FIFOWarningInterruptEnable

– kSPDIF_FIFORequestInterruptEnable

– kSPDIF_FIFOErrorInterruptEnable

static inline void SPDIF_DisableInterrupts(SPDIF_Type *base, uint32_t mask)
Disables the SPDIF Tx interrupt requests.

Parameters
• base – SPDIF base pointer

• mask – interrupt source The parameter can be a combination of the follow-
ing sources if defined.

– kSPDIF_WordStartInterruptEnable

– kSPDIF_SyncErrorInterruptEnable

– kSPDIF_FIFOWarningInterruptEnable

– kSPDIF_FIFORequestInterruptEnable

– kSPDIF_FIFOErrorInterruptEnable

2.116. SPDIF: Sony/Philips Digital Interface 1225



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SPDIF_EnableDMA(SPDIF_Type *base, uint32_t mask, bool enable)
Enables/disables the SPDIF DMA requests.

Parameters
• base – SPDIF base pointer

• mask – SPDIF DMA enable mask, The parameter can be a combination of
the following sources if defined

– kSPDIF_RxDMAEnable

– kSPDIF_TxDMAEnable

• enable – True means enable DMA, false means disable DMA.

static inline uint32_t SPDIF_TxGetLeftDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Tx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_TxGetRightDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Tx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_RxGetLeftDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Rx left data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

static inline uint32_t SPDIF_RxGetRightDataRegisterAddress(SPDIF_Type *base)
Gets the SPDIF Rx right data register address.

This API is used to provide a transfer address for the SPDIF DMA transfer configuration.

Parameters
• base – SPDIF base pointer.

Returns
data register address.

void SPDIF_TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t
sourceClockFreq_Hz)

Configures the SPDIF Tx sample rate.

The audio format can be changed at run-time. This function configures the sample rate.

Parameters

1226 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – SPDIF base pointer.

• sampleRate_Hz – SPDIF sample rate frequency in Hz.

• sourceClockFreq_Hz – SPDIF tx clock source frequency in Hz.

uint32_t SPDIF_GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq_Hz)
Configures the SPDIF Rx audio format.

The audio format can be changed at run-time. This function configures the sample rate and
audio data format to be transferred.

Parameters
• base – SPDIF base pointer.

• clockSourceFreq_Hz – SPDIF system clock frequency in hz.

void SPDIF_WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Sends data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SPDIF base pointer.

• buffer – Pointer to the data to be written.

• size – Bytes to be written.

static inline void SPDIF_WriteLeftData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

static inline void SPDIF_WriteRightData(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

static inline void SPDIF_WriteChannelStatusHigh(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

static inline void SPDIF_WriteChannelStatusLow(SPDIF_Type *base, uint32_t data)
Writes data into SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

• data – Data needs to be written.

2.116. SPDIF: Sony/Philips Digital Interface 1227



MCUXpresso SDK Documentation, Release 25.12.00

void SPDIF_ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size)
Receives data using a blocking method.

Note: This function blocks by polling until data is ready to be sent.

Parameters
• base – SPDIF base pointer.

• buffer – Pointer to the data to be read.

• size – Bytes to be read.

static inline uint32_t SPDIF_ReadLeftData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadRightData(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadChannelStatusHigh(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadChannelStatusLow(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadQChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters
• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

static inline uint32_t SPDIF_ReadUChannel(SPDIF_Type *base)
Reads data from the SPDIF FIFO.

Parameters

1228 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – SPDIF base pointer.

Returns
Data in SPDIF FIFO.

void SPDIF_TransferTxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_callback_t callback, void *userData)

Initializes the SPDIF Tx handle.

This function initializes the Tx handle for the SPDIF Tx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SPDIF base pointer

• handle – SPDIF handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function

void SPDIF_TransferRxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_callback_t callback, void *userData)

Initializes the SPDIF Rx handle.

This function initializes the Rx handle for the SPDIF Rx transactional APIs. Call this function
once to get the handle initialized.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF handle pointer.

• callback – Pointer to the user callback function.

• userData – User parameter passed to the callback function.

status_t SPDIF_TransferSendNonBlocking(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_t *xfer)

Performs an interrupt non-blocking send transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_TxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• xfer – Pointer to the spdif_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SPDIF_TxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

2.116. SPDIF: Sony/Philips Digital Interface 1229



MCUXpresso SDK Documentation, Release 25.12.00

status_t SPDIF_TransferReceiveNonBlocking(SPDIF_Type *base, spdif_handle_t *handle,
spdif_transfer_t *xfer)

Performs an interrupt non-blocking receive transfer on SPDIF.

Note: This API returns immediately after the transfer initiates. Call the
SPDIF_RxGetTransferStatusIRQ to poll the transfer status and check whether the transfer
is finished. If the return status is not kStatus_SPDIF_Busy, the transfer is finished.

Parameters
• base – SPDIF base pointer

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• xfer – Pointer to the spdif_transfer_t structure.

Return values
• kStatus_Success – Successfully started the data receive.

• kStatus_SPDIF_RxBusy – Previous receive still not finished.

• kStatus_InvalidArgument – The input parameter is invalid.

status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count)
Gets a set byte count.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• count – Bytes count sent.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

status_t SPDIF_TransferGetReceiveCount(SPDIF_Type *base, spdif_handle_t *handle, size_t
*count)

Gets a received byte count.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

• count – Bytes count received.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

1230 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void SPDIF_TransferAbortSend(SPDIF_Type *base, spdif_handle_t *handle)
Aborts the current send.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_TransferAbortReceive(SPDIF_Type *base, spdif_handle_t *handle)
Aborts the current IRQ receive.

Note: This API can be called when an interrupt non-blocking transfer initiates to abort the
transfer early.

Parameters
• base – SPDIF base pointer

• handle – Pointer to the spdif_handle_t structure which stores the transfer
state.

void SPDIF_TransferTxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure.

void SPDIF_TransferRxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle)
Tx interrupt handler.

Parameters
• base – SPDIF base pointer.

• handle – Pointer to the spdif_handle_t structure.

FSL_SPDIF_DRIVER_VERSION
Version 2.0.7

SPDIF return status.

Values:

enumerator kStatus_SPDIF_RxDPLLLocked
SPDIF Rx PLL locked.

enumerator kStatus_SPDIF_TxFIFOError
SPDIF Tx FIFO error.

enumerator kStatus_SPDIF_TxFIFOResync
SPDIF Tx left and right FIFO resync.

2.116. SPDIF: Sony/Philips Digital Interface 1231



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_SPDIF_RxCnew
SPDIF Rx status channel value updated.

enumerator kStatus_SPDIF_ValidatyNoGood
SPDIF validaty flag not good.

enumerator kStatus_SPDIF_RxIllegalSymbol
SPDIF Rx receive illegal symbol.

enumerator kStatus_SPDIF_RxParityBitError
SPDIF Rx parity bit error.

enumerator kStatus_SPDIF_UChannelOverrun
SPDIF receive U channel overrun.

enumerator kStatus_SPDIF_QChannelOverrun
SPDIF receive Q channel overrun.

enumerator kStatus_SPDIF_UQChannelSync
SPDIF U/Q channel sync found.

enumerator kStatus_SPDIF_UQChannelFrameError
SPDIF U/Q channel frame error.

enumerator kStatus_SPDIF_RxFIFOError
SPDIF Rx FIFO error.

enumerator kStatus_SPDIF_RxFIFOResync
SPDIF Rx left and right FIFO resync.

enumerator kStatus_SPDIF_LockLoss
SPDIF Rx PLL clock lock loss.

enumerator kStatus_SPDIF_TxIdle
SPDIF Tx is idle

enumerator kStatus_SPDIF_RxIdle
SPDIF Rx is idle

enumerator kStatus_SPDIF_QueueFull
SPDIF queue full

enum _spdif_rxfull_select
SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.

Values:

enumerator kSPDIF_RxFull1Sample
Rx full at least 1 sample in left and right FIFO

enumerator kSPDIF_RxFull4Samples
Rx full at least 4 sample in left and right FIFO

enumerator kSPDIF_RxFull8Samples
Rx full at least 8 sample in left and right FIFO

enumerator kSPDIF_RxFull16Samples
Rx full at least 16 sample in left and right FIFO

enum _spdif_txempty_select
SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

Values:

1232 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPDIF_TxEmpty0Sample
Tx empty at most 0 sample in left and right FIFO

enumerator kSPDIF_TxEmpty4Samples
Tx empty at most 4 sample in left and right FIFO

enumerator kSPDIF_TxEmpty8Samples
Tx empty at most 8 sample in left and right FIFO

enumerator kSPDIF_TxEmpty12Samples
Tx empty at most 12 sample in left and right FIFO

enum _spdif_uchannel_source
SPDIF U channel source.

Values:

enumerator kSPDIF_NoUChannel
No embedded U channel

enumerator kSPDIF_UChannelFromRx
U channel from receiver, it is CD mode

enumerator kSPDIF_UChannelFromTx
U channel from on chip tx

enum _spdif_gain_select
SPDIF clock gain.

Values:

enumerator kSPDIF_GAIN_24
Gain select is 24

enumerator kSPDIF_GAIN_16
Gain select is 16

enumerator kSPDIF_GAIN_12
Gain select is 12

enumerator kSPDIF_GAIN_8
Gain select is 8

enumerator kSPDIF_GAIN_6
Gain select is 6

enumerator kSPDIF_GAIN_4
Gain select is 4

enumerator kSPDIF_GAIN_3
Gain select is 3

enum _spdif_tx_source
SPDIF tx data source.

Values:

enumerator kSPDIF_txFromReceiver
Tx data directly through SPDIF receiver

enumerator kSPDIF_txNormal
Normal operation, data from processor

2.116. SPDIF: Sony/Philips Digital Interface 1233



MCUXpresso SDK Documentation, Release 25.12.00

enum _spdif_validity_config
SPDIF tx data source.

Values:

enumerator kSPDIF_validityFlagAlwaysSet
Outgoing validity flags always set

enumerator kSPDIF_validityFlagAlwaysClear
Outgoing validity flags always clear

The SPDIF interrupt enable flag.

Values:

enumerator kSPDIF_RxDPLLLocked
SPDIF DPLL locked

enumerator kSPDIF_TxFIFOError
Tx FIFO underrun or overrun

enumerator kSPDIF_TxFIFOResync
Tx FIFO left and right channel resync

enumerator kSPDIF_RxControlChannelChange
SPDIF Rx control channel value changed

enumerator kSPDIF_ValidityFlagNoGood
SPDIF validity flag no good

enumerator kSPDIF_RxIllegalSymbol
SPDIF receiver found illegal symbol

enumerator kSPDIF_RxParityBitError
SPDIF receiver found parity bit error

enumerator kSPDIF_UChannelReceiveRegisterFull
SPDIF U channel revceive register full

enumerator kSPDIF_UChannelReceiveRegisterOverrun
SPDIF U channel receive register overrun

enumerator kSPDIF_QChannelReceiveRegisterFull
SPDIF Q channel receive reigster full

enumerator kSPDIF_QChannelReceiveRegisterOverrun
SPDIF Q channel receive register overrun

enumerator kSPDIF_UQChannelSync
SPDIF U/Q channel sync found

enumerator kSPDIF_UQChannelFrameError
SPDIF U/Q channel frame error

enumerator kSPDIF_RxFIFOError
SPDIF Rx FIFO underrun/overrun

enumerator kSPDIF_RxFIFOResync
SPDIF Rx left and right FIFO resync

enumerator kSPDIF_LockLoss
SPDIF receiver loss of lock

1234 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPDIF_TxFIFOEmpty
SPDIF Tx FIFO empty

enumerator kSPDIF_RxFIFOFull
SPDIF Rx FIFO full

enumerator kSPDIF_AllInterrupt
all interrupt

The DMA request sources.

Values:

enumerator kSPDIF_RxDMAEnable
Rx FIFO full

enumerator kSPDIF_TxDMAEnable
Tx FIFO empty

typedef enum _spdif_rxfull_select spdif_rxfull_select_t
SPDIF Rx FIFO full falg select, it decides when assert the rx full flag.

typedef enum _spdif_txempty_select spdif_txempty_select_t
SPDIF tx FIFO EMPTY falg select, it decides when assert the tx empty flag.

typedef enum _spdif_uchannel_source spdif_uchannel_source_t
SPDIF U channel source.

typedef enum _spdif_gain_select spdif_gain_select_t
SPDIF clock gain.

typedef enum _spdif_tx_source spdif_tx_source_t
SPDIF tx data source.

typedef enum _spdif_validity_config spdif_validity_config_t
SPDIF tx data source.

typedef struct _spdif_config spdif_config_t
SPDIF user configuration structure.

typedef struct _spdif_transfer spdif_transfer_t
SPDIF transfer structure.

typedef struct _spdif_handle spdif_handle_t

typedef void (*spdif_transfer_callback_t)(SPDIF_Type *base, spdif_handle_t *handle, status_t
status, void *userData)

SPDIF transfer callback prototype.

SPDIF_XFER_QUEUE_SIZE
SPDIF transfer queue size, user can refine it according to use case.

struct _spdif_config
#include <fsl_spdif.h> SPDIF user configuration structure.

Public Members

bool isTxAutoSync
If auto sync mechanism open

2.116. SPDIF: Sony/Philips Digital Interface 1235



MCUXpresso SDK Documentation, Release 25.12.00

bool isRxAutoSync
If auto sync mechanism open

uint8_t DPLLClkSource
SPDIF DPLL clock source, range from 0~15, meaning is chip-specific

uint8_t txClkSource
SPDIF tx clock source, range from 0~7, meaning is chip-specific

spdif_rxfull_select_t rxFullSelect
SPDIF rx buffer full select

spdif_txempty_select_t txFullSelect
SPDIF tx buffer empty select

spdif_uchannel_source_t uChannelSrc
U channel source

spdif_tx_source_t txSource
SPDIF tx data source

spdif_validity_config_t validityConfig
Validity flag config

spdif_gain_select_t gain
Rx receive clock measure gain parameter.

struct _spdif_transfer
#include <fsl_spdif.h> SPDIF transfer structure.

Public Members

uint8_t *data
Data start address to transfer.

uint8_t *qdata
Data buffer for Q channel

uint8_t *udata
Data buffer for C channel

size_t dataSize
Transfer size.

struct _spdif_handle
#include <fsl_spdif.h> SPDIF handle structure.

Public Members

uint32_t state
Transfer status

spdif_transfer_callback_t callback
Callback function called at transfer event

void *userData
Callback parameter passed to callback function

spdif_transfer_t spdifQueue[(4U)]
Transfer queue storing queued transfer

1236 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSize[(4U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint8_t watermark
Watermark value

2.117 SPDIF eDMA Driver

void SPDIF_TransferTxCreateHandleEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle,
spdif_edma_callback_t callback, void *userData,
edma_handle_t *dmaLeftHandle, edma_handle_t
*dmaRightHandle)

Initializes the SPDIF eDMA handle.

This function initializes the SPDIF master DMA handle, which can be used for other SPDIF
master transactional APIs. Usually, for a specified SPDIF instance, call this API once to get
the initialized handle.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF eDMA handle pointer.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• dmaLeftHandle – eDMA handle pointer for left channel, this handle shall be
static allocated by users.

• dmaRightHandle – eDMA handle pointer for right channel, this handle shall
be static allocated by users.

void SPDIF_TransferRxCreateHandleEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle,
spdif_edma_callback_t callback, void *userData,
edma_handle_t *dmaLeftHandle, edma_handle_t
*dmaRightHandle)

Initializes the SPDIF Rx eDMA handle.

This function initializes the SPDIF slave DMA handle, which can be used for other SPDIF
master transactional APIs. Usually, for a specified SPDIF instance, call this API once to get
the initialized handle.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF eDMA handle pointer.

• callback – Pointer to user callback function.

• userData – User parameter passed to the callback function.

• dmaLeftHandle – eDMA handle pointer for left channel, this handle shall be
static allocated by users.

• dmaRightHandle – eDMA handle pointer for right channel, this handle shall
be static allocated by users.

2.117. SPDIF eDMA Driver 1237



MCUXpresso SDK Documentation, Release 25.12.00

status_t SPDIF_TransferSendEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle,
spdif_edma_transfer_t *xfer)

Performs a non-blocking SPDIF transfer using DMA.

Note: This interface returns immediately after the transfer initiates. Call
SPDIF_GetTransferStatus to poll the transfer status and check whether the SPDIF transfer
is finished.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF eDMA handle pointer.

• xfer – Pointer to the DMA transfer structure.

Return values
• kStatus_Success – Start a SPDIF eDMA send successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_TxBusy – SPDIF is busy sending data.

status_t SPDIF_TransferReceiveEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle,
spdif_edma_transfer_t *xfer)

Performs a non-blocking SPDIF receive using eDMA.

Note: This interface returns immediately after the transfer initiates. Call the
SPDIF_GetReceiveRemainingBytes to poll the transfer status and check whether the SPDIF
transfer is finished.

Parameters
• base – SPDIF base pointer

• handle – SPDIF eDMA handle pointer.

• xfer – Pointer to DMA transfer structure.

Return values
• kStatus_Success – Start a SPDIF eDMA receive successfully.

• kStatus_InvalidArgument – The input argument is invalid.

• kStatus_RxBusy – SPDIF is busy receiving data.

void SPDIF_TransferAbortSendEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle)
Aborts a SPDIF transfer using eDMA.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF eDMA handle pointer.

void SPDIF_TransferAbortReceiveEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle)
Aborts a SPDIF receive using eDMA.

Parameters
• base – SPDIF base pointer

• handle – SPDIF eDMA handle pointer.

1238 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

status_t SPDIF_TransferGetSendCountEDMA(SPDIF_Type *base, spdif_edma_handle_t *handle,
size_t *count)

Gets byte count sent by SPDIF.

Parameters
• base – SPDIF base pointer.

• handle – SPDIF eDMA handle pointer.

• count – Bytes count sent by SPDIF.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is no non-blocking transaction in
progress.

status_t SPDIF_TransferGetReceiveCountEDMA(SPDIF_Type *base, spdif_edma_handle_t
*handle, size_t *count)

Gets byte count received by SPDIF.

Parameters
• base – SPDIF base pointer

• handle – SPDIF eDMA handle pointer.

• count – Bytes count received by SPDIF.

Return values
• kStatus_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is no non-blocking transaction in
progress.

FSL_SPDIF_EDMA_DRIVER_VERSION
Version 2.0.8

typedef struct _spdif_edma_handle spdif_edma_handle_t

typedef void (*spdif_edma_callback_t)(SPDIF_Type *base, spdif_edma_handle_t *handle, status_t
status, void *userData)

SPDIF eDMA transfer callback function for finish and error.

typedef struct _spdif_edma_transfer spdif_edma_transfer_t
SPDIF transfer structure.

struct _spdif_edma_transfer
#include <fsl_spdif_edma.h> SPDIF transfer structure.

Public Members

uint8_t *leftData
Data start address to transfer.

uint8_t *rightData
Data start address to transfer.

size_t dataSize
Transfer size.

struct _spdif_edma_handle
#include <fsl_spdif_edma.h> SPDIF DMA transfer handle, users should not touch the content
of the handle.

2.117. SPDIF eDMA Driver 1239



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

edma_handle_t *dmaLeftHandle
DMA handler for SPDIF left channel

edma_handle_t *dmaRightHandle
DMA handler for SPDIF right channel

uint8_t nbytes
eDMA minor byte transfer count initially configured.

uint8_t count
The transfer data count in a DMA request

uint32_t state
Internal state for SPDIF eDMA transfer

spdif_edma_callback_t callback
Callback for users while transfer finish or error occurs

void *userData
User callback parameter

edma_tcd_t leftTcd[(4U) + 1U]
TCD pool for eDMA transfer.

edma_tcd_t rightTcd[(4U) + 1U]
TCD pool for eDMA transfer.

spdif_edma_transfer_t spdifQueue[(4U)]
Transfer queue storing queued transfer.

size_t transferSize[(4U)]
Data bytes need to transfer, left and right are the same, so use one

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

2.118 SSARC: State Save and Restore Controller

static inline uint32_t SSARC_GetDescriptorRegisterAddress(SSARC_HP_Type *base, uint32_t
index)

Gets the address of the register to be saved/restored.

Parameters
• base – SSARC_HP peripheral base address.

• index – The index of descriptor. Range from 0 to 1023.

Returns
The address of the register.

static inline uint32_t SSARC_GetDescriptorRegisterData(SSARC_HP_Type *base, uint32_t index)
Gets the value of the register to be saved/restored.

Parameters
• base – SSARC_HP peripheral base address.

1240 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• index – The index of descriptor. Range from 0 to 1023.

Returns
The value of the register.

void SSARC_SetDescriptorConfig(SSARC_HP_Type *base, uint32_t index, const
ssarc_descriptor_config_t *config)

Sets the configuration of the descriptor.

Parameters
• base – SSARC_HP peripheral base address.

• index – The index of descriptor. Range from 0 to 1023.

• config – Pointer to the structure ssarc_descriptor_config_t. Please refer to
ssarc_descriptor_config_t for details.

void SSARC_GroupInit(SSARC_LP_Type *base, uint8_t groupID, const ssarc_group_config_t
*config)

Inits the selected group.

Note: For the groups with the same save priority or restore priority, the save/restore op-
eration runs in the group order.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

• config – Pointer to the structure ssarc_group_config_t. Please refer to
ssarc_group_config_t for details.

static inline void SSARC_GroupDeinit(SSARC_LP_Type *base, uint8_t groupID)
De-inits the selected group.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

static inline void SSARC_LockGroupDomain(SSARC_LP_Type *base, uint8_t groupID)
Locks the configuration of the domain.

This function locks the configuration of the domain. Once locked, only the access from the
same domain is allowed, access from other domains will be blocked. Once locked, it can
only be unlocked by a hardware reset.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

static inline void SSARC_LockGroupWrite(SSARC_LP_Type *base, uint8_t groupID)
Locks the write access to the control registers and descriptors for the selected group.

This function Locks the write access to the control registers and descriptors for the selected
group. All writes are blocked. Once locked, it can only be unlocked by a hardware reset.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

2.118. SSARC: State Save and Restore Controller 1241



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SSARC_LockGroupRead(SSARC_LP_Type *base, uint8_t groupID)
Locks the read access to the control registers and descriptors for the selected group.

This function Locks the read access to the control registers and descriptors for the selected
group. All reads are blocked. Once locked, it can only be unlocked by a hardware reset.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

void SSARC_TriggerSoftwareRequest(SSARC_LP_Type *base, uint8_t groupID,
ssarc_software_trigger_mode_t mode)

Triggers software request.

Note: Each group allows software to trigger the save/restore operation without getting the
request from basic power controller.

Parameters
• base – SSARC_LP peripheral base address.

• groupID – The index of the group. Range from 0 to 15.

• mode – Software trigger mode. Please refer to
ssarc_software_trigger_mode_t for details.

static inline void SSARC_ResetWholeBlock(SSARC_LP_Type *base)
Resets the whole SSARC block by software.

Note: Only reset the SSARC registers, not include the DESC in SRAM.

Parameters
• base – SSARC_LP peripheral base address.

static inline void SSARC_EnableHardwareRequest(SSARC_LP_Type *base, bool enable)
Enables/Disables save/restore request from the PGMC module.

Parameters
• base – SSARC_LP peripheral base address.

• enable – Used to enable/disable save/restore hardware request.

– true Enable GPC save/restore requests.

– false Disable GPC save/restore requests.

static inline uint32_t SSARC_GetStatusFlags(SSARC_LP_Type *base)
Gets status flags.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The value of status flags. See _ssarc_interrupt_status_flags for details.

1242 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void SSARC_ClearStatusFlags(SSARC_LP_Type *base, uint32_t mask)
Clears status flags.

Note: Only kSSARC_AddressErrorFlag, kSSARC_AHBErrorFlag, kSSARC_TimeoutFlag and
kSSARC_GroupConflictFlag can be cleared.

Parameters
• base – SSARC_LP peripheral base address.

• mask – The mask value for flags to be cleared. See
_ssarc_interrupt_status_flags for details.

static inline uint32_t SSARC_GetErrorIndex(SSARC_LP_Type *base)
Gets the error index that indicates which descriptor will trigger the AHB_ERR or ADDR_ERR
interrupt.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The error index.

static inline void SSARC_SetTimeoutValue(SSARC_LP_Type *base, uint32_t value)
Sets timeout value for the entire group to complete.

This function sets timeout value for the entire group to complete. Setting timeout value to
0 will disable this feature.

Parameters
• base – SSARC_LP peripheral base address.

• value – The timeout value, 0 means disable time out feature.

static inline uint32_t SSARC_GetTimeoutValue(SSARC_LP_Type *base)
Gets timeout value for AHB clock.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The timeout value.

static inline uint16_t SSARC_GetHardwareRequestRestorePendingGroup(SSARC_LP_Type *base)
Gets the value that indicates which groups are pending for restore from hardware request.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The value of the pending groups.

static inline uint16_t SSARC_GetHardwareRequestSavePendingGroup(SSARC_LP_Type *base)
Gets the value that indicates which groups are pending for save from hardware request.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The value of the pending groups.

2.118. SSARC: State Save and Restore Controller 1243



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t SSARC_GetSoftwareRequestRestorePendingGroup(SSARC_LP_Type *base)
Gets the value that indicates which groups are pending for restore from software request.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The value of the pending groups.

static inline uint16_t SSARC_GetSoftwareRequestSavePendingGroup(SSARC_LP_Type *base)
Gets the value that indicates which groups are pending for save from software request.

Parameters
• base – SSARC_LP peripheral base address.

Returns
The value of the pending groups.

FSL_SSARC_DRIVER_VERSION
SSARC driver version 2.1.0.

enum _ssarc_interrupt_status_flags
The enumeration of ssarc status flags.

Values:

enumerator kSSARC_AddressErrorFlag
If the descriptor is not in the range, assert address error.

enumerator kSSARC_AHBErrorFlag
If any AHB master access receives none-OKAY, assert AHB error.

enumerator kSSARC_SoftwareRequestDoneFlag
If a software triggered save or restore process is completed, assert sofware request
done .

enumerator kSSARC_TimeoutFlag
If processing of a group has exceeded the timeout value, assert timeout.

enumerator kSSARC_GroupConflictFlag
Group conflict.

enum _ssarc_descriptor_register_size
The size of the register to be saved/restored.

Values:

enumerator kSSARC_DescriptorRegister8bitWidth
The register to be saved/restored is 8 bit width.

enumerator kSSARC_DescriptorRegister16bitWidth
The register to be saved/restored is 16 bit width.

enumerator kSSARC_DescriptorRegister32bitWidth
The register to be saved/restored is 32 bit width.

enum _ssarc_descriptor_operation
The operation of the descriptor.

Values:

enumerator kSSARC_SaveDisableRestoreDisable
Disable Save operation, disable restore operation.

1244 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSSARC_SaveEnableRestoreDisable
Enable Save operation, disable restore operation.

enumerator kSSARC_SaveDisableRestoreEnable
Disable Save operation, enable restore operation.

enumerator kSSARC_SaveEnableRestoreEnable
Enable Save operation, enable restore operation.

enum _ssarc_descriptor_type
The type of operation.

Values:

enumerator kSSARC_ReadValueWriteBack
Read the register value on save operation and write it back on restore operation

enumerator kSSARC_WriteFixedValue
Always write a fixed value from DATA[31:0]

enumerator kSSARC_RMWOr
Read register, OR with the DATA[31:0], and write it back

enumerator kSSARC_RMWAnd
Read register, AND with the DATA[31:0], and write it back

enumerator kSSARC_DelayCycles
Delay for number of cycles based on the DATA[31:0]

enumerator kSSARC_Polling0
Read the register until read_data[31:0] & DATA[31:0] == 0

enumerator kSSARC_Polling1
Read the register until read_data[31:0] & DATA[31:0] != 0

enum _ssarc_save_restore_order
The order of the restore/save operation.

Values:

enumerator kSSARC_ProcessFromStartToEnd
Descriptors within the group are processed from start to end.

enumerator kSSARC_ProcessFromEndToStart
Descriptors within the group are processed from end to start.

enum _ssarc_software_trigger_mode
Software trigger mode.

Values:

enumerator kSSARC_TriggerSaveRequest
Don’t trigger restore operation, trigger the save operation by software.

enumerator kSSARC_TriggerRestoreRequest
Trigger the restore operation, don’t trigger the save operation.

typedef enum _ssarc_descriptor_register_size ssarc_descriptor_register_size_t
The size of the register to be saved/restored.

typedef enum _ssarc_descriptor_operation ssarc_descriptor_operation_t
The operation of the descriptor.

2.118. SSARC: State Save and Restore Controller 1245



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _ssarc_descriptor_type ssarc_descriptor_type_t
The type of operation.

typedef enum _ssarc_save_restore_order ssarc_save_restore_order_t
The order of the restore/save operation.

typedef enum _ssarc_software_trigger_mode ssarc_software_trigger_mode_t
Software trigger mode.

typedef struct _ssarc_descriptor_config ssarc_descriptor_config_t
The configuration of descriptor.

typedef struct _ssarc_group_config ssarc_group_config_t
The configuration of the group.

SSARC_INT_STATUS_ALL

struct _ssarc_descriptor_config
#include <fsl_ssarc.h> The configuration of descriptor.

Public Members

uint32_t address
The address of the register/memory to be saved/restored.

uint32_t data
The value of the register/memory to be saved/restored, please note that if the type is
selected as kSSARC_ReadValueWriteBack, this data field is useless.

ssarc_descriptor_register_size_t size
The size of register to be saved/restored.

ssarc_descriptor_operation_t operation
The operation mode of descriptor.

ssarc_descriptor_type_t type
The type of operation.

struct _ssarc_group_config
#include <fsl_ssarc.h> The configuration of the group.

Public Members

ssarc_cpu_domain_name_t cpuDomain
CPU domain, define the ownership of this group.

uint32_t startIndex
The index of the first descriptor of the group.

uint32_t endIndex
The index of the last descriptor of the group.

ssarc_save_restore_order_t restoreOrder
The restore order.

ssarc_save_restore_order_t saveOrder
The save order.

uint8_t restorePriority
Restore priority of current group. 0 is the highest priority, 15 is the lowest priority

1246 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t savePriority
Save priority of current group. 0 is the highest priority, 15 is the lowest priority.

ssarc_power_domain_name_t powerDomain
Power domain.

uint32_t highestAddress
Highest address that can be accessed for the descriptors in the group.

uint32_t lowestAddress
Lowest address that can be accessed for the descriptors in the group.

2.119 TEMPSENSOR: Temperature Sensor Module

FSL_TMPSNS_DRIVER_VERSION

TMPSNS interrupt status enable type, tmpsns_interrupt_status_enable_t.

Values:

enumerator kTEMPSENSOR_HighTempInterruptStatusEnable
High temperature interrupt status enable.

enumerator kTEMPSENSOR_LowTempInterruptStatusEnable
Low temperature interrupt status enable.

enumerator kTEMPSENSOR_PanicTempInterruptStatusEnable
Panic temperature interrupt status enable.

enumerator kTEMPSENSOR_FinishInterruptStatusEnable
Finish interrupt enable.

TMPSNS interrupt status type, tmpsns_interrupt_status_t.

Values:

enumerator kTEMPSENSOR_HighTempInterruptStatus
High temperature interrupt status.

enumerator kTEMPSENSOR_LowTempInterruptStatus
Low temperature interrupt status.

enumerator kTEMPSENSOR_PanicTempInterruptStatus
Panic temperature interrupt status.

enum tmpsns_measure_mode_t
TMPSNS measure mode, tempsensor_measure_mode.

Values:

enumerator kTEMPSENSOR_SingleMode
Single measurement mode.

enumerator kTEMPSENSOR_ContinuousMode
Continuous measurement mode.

enum _tmpsns_alarm_mode
TMPSNS alarm mode.

Values:

2.119. TEMPSENSOR: Temperature Sensor Module 1247



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTEMPMON_HighAlarmMode
The high alarm temperature interrupt mode.

enumerator kTEMPMON_PanicAlarmMode
The panic alarm temperature interrupt mode.

enumerator kTEMPMON_LowAlarmMode
The low alarm temperature interrupt mode.

typedef struct _tmpsns_config tmpsns_config_t
TMPSNS temperature structure.

typedef enum _tmpsns_alarm_mode tmpsns_alarm_mode_t
TMPSNS alarm mode.

void TMPSNS_Init(TMPSNS_Type *base, const tmpsns_config_t *config)
Initializes the TMPSNS module.

Parameters
• base – TMPSNS base pointer

• config – Pointer to configuration structure.

void TMPSNS_Deinit(TMPSNS_Type *base)
Deinitializes the TMPSNS module.

Parameters
• base – TMPSNS base pointer

void TMPSNS_GetDefaultConfig(tmpsns_config_t *config)
Gets the default configuration structure.

This function initializes the TMPSNS configuration structure to a default value. The default
values are: tempmonConfig->frequency = 0x02U; tempmonConfig->highAlarmTemp = 44U;
tempmonConfig->panicAlarmTemp = 90U; tempmonConfig->lowAlarmTemp = 39U;

Parameters
• config – Pointer to a configuration structure.

void TMPSNS_StartMeasure(TMPSNS_Type *base)
start the temperature measurement process.

Parameters
• base – TMPSNS base pointer.

void TMPSNS_StopMeasure(TMPSNS_Type *base)
stop the measurement process.

Parameters
• base – TMPSNS base pointer

float TMPSNS_GetCurrentTemperature(TMPSNS_Type *base)
Get current temperature with the fused temperature calibration data.

Parameters
• base – TMPSNS base pointer

Returns
current temperature with degrees Celsius.

1248 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void TMPSNS_SetTempAlarm(TMPSNS_Type *base, int32_t tempVal, tmpsns_alarm_mode_t
alarmMode)

Set the temperature count (raw sensor output) that will generate an alarm interrupt.

Parameters
• base – TMPSNS base pointer

• tempVal – The alarm temperature with degrees Celsius

• alarmMode – The alarm mode.

void TMPSNS_EnableInterrupt(TMPSNS_Type *base, uint32_t mask)
Enable interrupt status.

Parameters
• base – TMPSNS base pointer

• mask – The interrupts to enable from tmpsns_interrupt_status_enable_t.

void TMPSNS_DisableInterrupt(TMPSNS_Type *base, uint32_t mask)
Disable interrupt status.

Parameters
• base – TMPSNS base pointer

• mask – The interrupts to disable from tmpsns_interrupt_status_enable_t.

static inline uint32_t TMPSNS_GetInterruptFlags(TMPSNS_Type *base)
Get interrupt status flag.

Parameters
• base – TMPSNS base pointer

static inline void TMPSNS_ClearInterruptFlags(TMPSNS_Type *base, uint32_t mask)
Clear interrupt status flag.

Parameters
• base – TMPSNS base pointer

• mask – The interrupts to disable from tmpsns_interrupt_status_t.

struct _tmpsns_config
#include <fsl_tempsensor.h> TMPSNS temperature structure.

Public Members

tmpsns_measure_mode_t measureMode
The temperature measure mode.

uint16_t frequency
The temperature measure frequency.

int32_t highAlarmTemp
The high alarm temperature.

int32_t panicAlarmTemp
The panic alarm temperature.

int32_t lowAlarmTemp
The low alarm temperature.

2.119. TEMPSENSOR: Temperature Sensor Module 1249



MCUXpresso SDK Documentation, Release 25.12.00

2.120 USDHC: Ultra Secured Digital Host Controller Driver

void USDHC_Init(USDHC_Type *base, const usdhc_config_t *config)
USDHC module initialization function.

Configures the USDHC according to the user configuration.

Example:

usdhc_config_t config;
config.cardDetectDat3 = false;
config.endianMode = kUSDHC_EndianModeLittle;
config.dmaMode = kUSDHC_DmaModeAdma2;
config.readWatermarkLevel = 128U;
config.writeWatermarkLevel = 128U;
USDHC_Init(USDHC, &config);

Parameters
• base – USDHC peripheral base address.

• config – USDHC configuration information.

Return values
kStatus_Success – Operate successfully.

void USDHC_Deinit(USDHC_Type *base)
Deinitializes the USDHC.

Parameters
• base – USDHC peripheral base address.

bool USDHC_Reset(USDHC_Type *base, uint32_t mask, uint32_t timeout)
Resets the USDHC.

Parameters
• base – USDHC peripheral base address.

• mask – The reset type mask(_usdhc_reset).

• timeout – Timeout for reset.

Return values
• true – Reset successfully.

• false – Reset failed.

status_t USDHC_SetAdmaTableConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_data_t *dataConfig, uint32_t flags)

Sets the DMA descriptor table configuration. A high level DMA descriptor configuration
function.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – ADMA configuration

• dataConfig – Data descriptor

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values

1250 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-
scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetInternalDmaConfig(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
const uint32_t *dataAddr, bool enAutoCmd23)

Internal DMA configuration. This function is used to config the USDHC DMA related regis-
ters.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – ADMA configuration.

• dataAddr – Transfer data address, a simple DMA parameter, if ADMA is
used, leave it to NULL.

• enAutoCmd23 – Flag to indicate Auto CMD23 is enable or not, a simple DMA
parameter, if ADMA is used, leave it to false.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-

scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetADMA2Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMA2 descriptor table configuration.

Parameters
• admaTable – ADMA table address.

• admaTableWords – ADMA table length.

• dataBufferAddr – Data buffer address.

• dataBytes – Data Data length.

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-

scribe data.

• kStatus_Success – Operate successfully.

status_t USDHC_SetADMA1Descriptor(uint32_t *admaTable, uint32_t admaTableWords, const
uint32_t *dataBufferAddr, uint32_t dataBytes, uint32_t
flags)

Sets the ADMA1 descriptor table configuration.

Parameters
• admaTable – ADMA table address.

• admaTableWords – ADMA table length.

• dataBufferAddr – Data buffer address.

• dataBytes – Data length.

• flags – ADAM descriptor flag, used to indicate to create multiple or single
descriptor, please refer to enum _usdhc_adma_flag.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1251



MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_OutOfRange – ADMA descriptor table length isn’t enough to de-

scribe data.

• kStatus_Success – Operate successfully.

static inline void USDHC_EnableInternalDMA(USDHC_Type *base, bool enable)
Enables internal DMA.

Parameters
• base – USDHC peripheral base address.

• enable – enable or disable flag

static inline void USDHC_EnableInterruptStatus(USDHC_Type *base, uint32_t mask)
Enables the interrupt status.

Parameters
• base – USDHC peripheral base address.

• mask – Interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_DisableInterruptStatus(USDHC_Type *base, uint32_t mask)
Disables the interrupt status.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_EnableInterruptSignal(USDHC_Type *base, uint32_t mask)
Enables the interrupt signal corresponding to the interrupt status flag.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline void USDHC_DisableInterruptSignal(USDHC_Type *base, uint32_t mask)
Disables the interrupt signal corresponding to the interrupt status flag.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetEnabledInterruptStatusFlags(USDHC_Type *base)
Gets the enabled interrupt status.

Parameters
• base – USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetInterruptStatusFlags(USDHC_Type *base)
Gets the current interrupt status.

Parameters
• base – USDHC peripheral base address.

Returns
Current interrupt status flags mask(_usdhc_interrupt_status_flag).

1252 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void USDHC_ClearInterruptStatusFlags(USDHC_Type *base, uint32_t mask)
Clears a specified interrupt status. write 1 clears.

Parameters
• base – USDHC peripheral base address.

• mask – The interrupt status flags mask(_usdhc_interrupt_status_flag).

static inline uint32_t USDHC_GetAutoCommand12ErrorStatusFlags(USDHC_Type *base)
Gets the status of auto command 12 error.

Parameters
• base – USDHC peripheral base address.

Returns
Auto command 12 error status flags mask(_usdhc_auto_command12_error_status_flag).

static inline uint32_t USDHC_GetAdmaErrorStatusFlags(USDHC_Type *base)
Gets the status of the ADMA error.

Parameters
• base – USDHC peripheral base address.

Returns
ADMA error status flags mask(_usdhc_adma_error_status_flag).

static inline uint32_t USDHC_GetPresentStatusFlags(USDHC_Type *base)
Gets a present status.

This function gets the present USDHC’s status except for an interrupt status and an error
status.

Parameters
• base – USDHC peripheral base address.

Returns
Present USDHC’s status flags mask(_usdhc_present_status_flag).

void USDHC_GetCapability(USDHC_Type *base, usdhc_capability_t *capability)
Gets the capability information.

Parameters
• base – USDHC peripheral base address.

• capability – Structure to save capability information.

static inline void USDHC_ForceClockOn(USDHC_Type *base, bool enable)
Forces the card clock on.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

uint32_t USDHC_SetSdClock(USDHC_Type *base, uint32_t srcClock_Hz, uint32_t busClock_Hz)
Sets the SD bus clock frequency.

Parameters
• base – USDHC peripheral base address.

• srcClock_Hz – USDHC source clock frequency united in Hz.

• busClock_Hz – SD bus clock frequency united in Hz.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1253



MCUXpresso SDK Documentation, Release 25.12.00

Returns
The nearest frequency of busClock_Hz configured for SD bus.

bool USDHC_SetCardActive(USDHC_Type *base, uint32_t timeout)
Sends 80 clocks to the card to set it to the active state.

This function must be called each time the card is inserted to ensure that the card can
receive the command correctly.

Parameters
• base – USDHC peripheral base address.

• timeout – Timeout to initialize card.

Return values
• true – Set card active successfully.

• false – Set card active failed.

static inline void USDHC_AssertHardwareReset(USDHC_Type *base, bool high)
Triggers a hardware reset.

Parameters
• base – USDHC peripheral base address.

• high – 1 or 0 level

static inline void USDHC_SetDataBusWidth(USDHC_Type *base, usdhc_data_bus_width_t width)
Sets the data transfer width.

Parameters
• base – USDHC peripheral base address.

• width – Data transfer width.

static inline void USDHC_WriteData(USDHC_Type *base, uint32_t data)
Fills the data port.

This function is used to implement the data transfer by Data Port instead of DMA.

Parameters
• base – USDHC peripheral base address.

• data – The data about to be sent.

static inline uint32_t USDHC_ReadData(USDHC_Type *base)
Retrieves the data from the data port.

This function is used to implement the data transfer by Data Port instead of DMA.

Parameters
• base – USDHC peripheral base address.

Returns
The data has been read.

void USDHC_SendCommand(USDHC_Type *base, usdhc_command_t *command)
Sends command function.

Parameters
• base – USDHC peripheral base address.

• command – configuration

1254 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void USDHC_EnableWakeupEvent(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables a wakeup event in low-power mode.

Parameters
• base – USDHC peripheral base address.

• mask – Wakeup events mask(_usdhc_wakeup_event).

• enable – True to enable, false to disable.

static inline void USDHC_CardDetectByData3(USDHC_Type *base, bool enable)
Detects card insert status.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

static inline bool USDHC_DetectCardInsert(USDHC_Type *base)
Detects card insert status.

Parameters
• base – USDHC peripheral base address.

static inline void USDHC_EnableSdioControl(USDHC_Type *base, uint32_t mask, bool enable)
Enables or disables the SDIO card control.

Parameters
• base – USDHC peripheral base address.

• mask – SDIO card control flags mask(_usdhc_sdio_control_flag).

• enable – True to enable, false to disable.

static inline void USDHC_SetContinueRequest(USDHC_Type *base)
Restarts a transaction which has stopped at the block GAP for the SDIO card.

Parameters
• base – USDHC peripheral base address.

static inline void USDHC_RequestStopAtBlockGap(USDHC_Type *base, bool enable)
Request stop at block gap function.

Parameters
• base – USDHC peripheral base address.

• enable – True to stop at block gap, false to normal transfer.

void USDHC_SetMmcBootConfig(USDHC_Type *base, const usdhc_boot_config_t *config)
Configures the MMC boot feature.

Example:

usdhc_boot_config_t config;
config.ackTimeoutCount = 4;
config.bootMode = kUSDHC_BootModeNormal;
config.blockCount = 5;
config.enableBootAck = true;
config.enableBoot = true;
config.enableAutoStopAtBlockGap = true;
USDHC_SetMmcBootConfig(USDHC, &config);

Parameters

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1255



MCUXpresso SDK Documentation, Release 25.12.00

• base – USDHC peripheral base address.

• config – The MMC boot configuration information.

static inline void USDHC_EnableMmcBoot(USDHC_Type *base, bool enable)
Enables or disables the mmc boot mode.

Parameters
• base – USDHC peripheral base address.

• enable – True to enable, false to disable.

static inline void USDHC_SetForceEvent(USDHC_Type *base, uint32_t mask)
Forces generating events according to the given mask.

Parameters
• base – USDHC peripheral base address.

• mask – The force events bit posistion (_usdhc_force_event).

static inline bool USDHC_RequestTuningForSDR50(USDHC_Type *base)
Checks the SDR50 mode request tuning bit. When this bit set, application shall perform
tuning for SDR50 mode.

Parameters
• base – USDHC peripheral base address.

static inline bool USDHC_RequestReTuning(USDHC_Type *base)
Checks the request re-tuning bit. When this bit is set, user should do manual tuning or
standard tuning function.

Parameters
• base – USDHC peripheral base address.

static inline void USDHC_EnableAutoTuning(USDHC_Type *base, bool enable)
The SDR104 mode auto tuning enable and disable. This function should be called after
tuning function execute pass, auto tuning will handle by hardware.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

void USDHC_EnableAutoTuningForCmdAndData(USDHC_Type *base)
The auto tuning enbale for CMD/DATA line.

Parameters
• base – USDHC peripheral base address.

void USDHC_EnableManualTuning(USDHC_Type *base, bool enable)
Manual tuning trigger or abort. User should handle the tuning cmd and find
the boundary of the delay then calucate a average value which will be configured
to the CLK_TUNE_CTRL_STATUS This function should be called before function US-
DHC_AdjustDelayForManualTuning.

Parameters
• base – USDHC peripheral base address.

• enable – tuning enable flag

1256 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t USDHC_GetTuningDelayStatus(USDHC_Type *base)
Get the tuning delay cell setting.

Parameters
• base – USDHC peripheral base address.

Return values
CLK – Tuning Control and Status register value.

status_t USDHC_SetTuningDelay(USDHC_Type *base, uint32_t preDelay, uint32_t outDelay,
uint32_t postDelay)

The tuning delay cell setting.

Parameters
• base – USDHC peripheral base address.

• preDelay – Set the number of delay cells on the feedback clock between the
feedback clock and CLK_PRE.

• outDelay – Set the number of delay cells on the feedback clock between
CLK_PRE and CLK_OUT.

• postDelay – Set the number of delay cells on the feedback clock between
CLK_OUT and CLK_POST.

Return values
• kStatus_Fail – config the delay setting fail

• kStatus_Success – config the delay setting success

status_t USDHC_AdjustDelayForManualTuning(USDHC_Type *base, uint32_t delay)
Adjusts delay for mannual tuning.

Deprecated:
Do not use this function. It has been superceded by USDHC_SetTuingDelay

Parameters
• base – USDHC peripheral base address.

• delay – setting configuration

Return values
• kStatus_Fail – config the delay setting fail

• kStatus_Success – config the delay setting success

static inline void USDHC_SetStandardTuningCounter(USDHC_Type *base, uint8_t counter)
set tuning counter tuning.

Parameters
• base – USDHC peripheral base address.

• counter – tuning counter

Return values
• kStatus_Fail – config the delay setting fail

• kStatus_Success – config the delay setting success

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1257



MCUXpresso SDK Documentation, Release 25.12.00

void USDHC_EnableStandardTuning(USDHC_Type *base, uint32_t tuningStartTap, uint32_t step,
bool enable)

The enable standard tuning function. The standard tuning window and tuning counter
using the default config tuning cmd is sent by the software, user need to check whether the
tuning result can be used for SDR50, SDR104, and HS200 mode tuning.

Parameters
• base – USDHC peripheral base address.

• tuningStartTap – start tap

• step – tuning step

• enable – enable/disable flag

static inline uint32_t USDHC_GetExecuteStdTuningStatus(USDHC_Type *base)
Gets execute STD tuning status.

Parameters
• base – USDHC peripheral base address.

static inline uint32_t USDHC_CheckStdTuningResult(USDHC_Type *base)
Checks STD tuning result.

Parameters
• base – USDHC peripheral base address.

static inline uint32_t USDHC_CheckTuningError(USDHC_Type *base)
Checks tuning error.

Parameters
• base – USDHC peripheral base address.

void USDHC_EnableDDRMode(USDHC_Type *base, bool enable, uint32_t nibblePos)
The enable/disable DDR mode.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

• nibblePos – nibble position

static inline void USDHC_EnableHS400Mode(USDHC_Type *base, bool enable)
The enable/disable HS400 mode.

Parameters
• base – USDHC peripheral base address.

• enable – enable/disable flag

static inline void USDHC_ResetStrobeDLL(USDHC_Type *base)
Resets the strobe DLL.

Parameters
• base – USDHC peripheral base address.

static inline void USDHC_EnableStrobeDLL(USDHC_Type *base, bool enable)
Enables/disables the strobe DLL.

Parameters
• base – USDHC peripheral base address.

1258 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• enable – enable/disable flag

void USDHC_ConfigStrobeDLL(USDHC_Type *base, uint32_t delayTarget, uint32_t
updateInterval)

Configs the strobe DLL delay target and update interval.

Parameters
• base – USDHC peripheral base address.

• delayTarget – delay target

• updateInterval – update interval

static inline void USDHC_SetStrobeDllOverride(USDHC_Type *base, uint32_t delayTaps)
Enables manual override for slave delay chain using STROBE_SLV_OVERRIDE_VAL.

Parameters
• base – USDHC peripheral base address.

• delayTaps – Valid delay taps range from 1 - 128 taps. A value of 0 selects tap
1, and a value of 0x7F selects tap 128.

static inline uint32_t USDHC_GetStrobeDLLStatus(USDHC_Type *base)
Gets the strobe DLL status.

Parameters
• base – USDHC peripheral base address.

void USDHC_SetDataConfig(USDHC_Type *base, usdhc_transfer_direction_t dataDirection,
uint32_t blockCount, uint32_t blockSize)

USDHC data configuration.

Parameters
• base – USDHC peripheral base address.

• dataDirection – Data direction, tx or rx.

• blockCount – Data block count.

• blockSize – Data block size.

void USDHC_TransferCreateHandle(USDHC_Type *base, usdhc_handle_t *handle, const
usdhc_transfer_callback_t *callback, void *userData)

Creates the USDHC handle.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle pointer.

• callback – Structure pointer to contain all callback functions.

• userData – Callback function parameter.

status_t USDHC_TransferNonBlocking(USDHC_Type *base, usdhc_handle_t *handle,
usdhc_adma_config_t *dmaConfig, usdhc_transfer_t
*transfer)

Transfers the command/data using an interrupt and an asynchronous method.

This function sends a command and data and returns immediately. It doesn’t wait for the
transfer to complete or to encounter an error. The application must not call this API in
multiple threads at the same time. Because of that this API doesn’t support the re-entry
mechanism.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1259



MCUXpresso SDK Documentation, Release 25.12.00

Note: Call API USDHC_TransferCreateHandle when calling this API.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle.

• dmaConfig – ADMA configuration.

• transfer – Transfer content.

Return values
• kStatus_InvalidArgument – Argument is invalid.

• kStatus_USDHC_BusyTransferring – Busy transferring.

• kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor
failed.

• kStatus_Success – Operate successfully.

status_t USDHC_TransferBlocking(USDHC_Type *base, usdhc_adma_config_t *dmaConfig,
usdhc_transfer_t *transfer)

Transfers the command/data using a blocking method.

This function waits until the command response/data is received or the USDHC encounters
an error by polling the status flag.

The application must not call this API in multiple threads at the same time. Because this
API doesn’t support the re-entry mechanism.

Note: There is no need to call API USDHC_TransferCreateHandle when calling this API.

Parameters
• base – USDHC peripheral base address.

• dmaConfig – adma configuration

• transfer – Transfer content.

Return values
• kStatus_InvalidArgument – Argument is invalid.

• kStatus_USDHC_PrepareAdmaDescriptorFailed – Prepare ADMA descriptor
failed.

• kStatus_USDHC_SendCommandFailed – Send command failed.

• kStatus_USDHC_TransferDataFailed – Transfer data failed.

• kStatus_Success – Operate successfully.

void USDHC_TransferHandleIRQ(USDHC_Type *base, usdhc_handle_t *handle)
IRQ handler for the USDHC.

This function deals with the IRQs on the given host controller.

Parameters
• base – USDHC peripheral base address.

• handle – USDHC handle.

1260 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

FSL_USDHC_DRIVER_VERSION
Driver version 2.8.8.

Enum _usdhc_status. USDHC status.

Values:

enumerator kStatus_USDHC_BusyTransferring
Transfer is on-going.

enumerator kStatus_USDHC_PrepareAdmaDescriptorFailed
Set DMA descriptor failed.

enumerator kStatus_USDHC_SendCommandFailed
Send command failed.

enumerator kStatus_USDHC_TransferDataFailed
Transfer data failed.

enumerator kStatus_USDHC_DMADataAddrNotAlign
Data address not aligned.

enumerator kStatus_USDHC_ReTuningRequest
Re-tuning request.

enumerator kStatus_USDHC_TuningError
Tuning error.

enumerator kStatus_USDHC_NotSupport
Not support.

enumerator kStatus_USDHC_TransferDataComplete
Transfer data complete.

enumerator kStatus_USDHC_SendCommandSuccess
Transfer command complete.

enumerator kStatus_USDHC_TransferDMAComplete
Transfer DMA complete.

Enum _usdhc_capability_flag. Host controller capabilities flag mask. .

Values:

enumerator kUSDHC_SupportAdmaFlag
Support ADMA.

enumerator kUSDHC_SupportHighSpeedFlag
Support high-speed.

enumerator kUSDHC_SupportDmaFlag
Support DMA.

enumerator kUSDHC_SupportSuspendResumeFlag
Support suspend/resume.

enumerator kUSDHC_SupportV330Flag
Support voltage 3.3V.

enumerator kUSDHC_SupportV300Flag
Support voltage 3.0V.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1261



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_Support4BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 4-bit mode.

enumerator kUSDHC_Support8BitFlag
Flag in HTCAPBLT_MBL’s position, supporting 8-bit mode.

enumerator kUSDHC_SupportDDR50Flag
SD version 3.0 new feature, supporting DDR50 mode.

enumerator kUSDHC_SupportSDR104Flag
Support SDR104 mode.

enumerator kUSDHC_SupportSDR50Flag
Support SDR50 mode.

Enum _usdhc_wakeup_event. Wakeup event mask. .

Values:

enumerator kUSDHC_WakeupEventOnCardInt
Wakeup on card interrupt.

enumerator kUSDHC_WakeupEventOnCardInsert
Wakeup on card insertion.

enumerator kUSDHC_WakeupEventOnCardRemove
Wakeup on card removal.

enumerator kUSDHC_WakeupEventsAll
All wakeup events

Enum _usdhc_reset. Reset type mask. .

Values:

enumerator kUSDHC_ResetAll
Reset all except card detection.

enumerator kUSDHC_ResetCommand
Reset command line.

enumerator kUSDHC_ResetData
Reset data line.

enumerator kUSDHC_ResetTuning
Reset tuning circuit.

enumerator kUSDHC_ResetsAll
All reset types

Enum _usdhc_transfer_flag. Transfer flag mask.

Values:

enumerator kUSDHC_EnableDmaFlag
Enable DMA.

enumerator kUSDHC_CommandTypeSuspendFlag
Suspend command.

1262 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_CommandTypeResumeFlag
Resume command.

enumerator kUSDHC_CommandTypeAbortFlag
Abort command.

enumerator kUSDHC_EnableBlockCountFlag
Enable block count.

enumerator kUSDHC_EnableAutoCommand12Flag
Enable auto CMD12.

enumerator kUSDHC_DataReadFlag
Enable data read.

enumerator kUSDHC_MultipleBlockFlag
Multiple block data read/write.

enumerator kUSDHC_EnableAutoCommand23Flag
Enable auto CMD23.

enumerator kUSDHC_ResponseLength136Flag
136-bit response length.

enumerator kUSDHC_ResponseLength48Flag
48-bit response length.

enumerator kUSDHC_ResponseLength48BusyFlag
48-bit response length with busy status.

enumerator kUSDHC_EnableCrcCheckFlag
Enable CRC check.

enumerator kUSDHC_EnableIndexCheckFlag
Enable index check.

enumerator kUSDHC_DataPresentFlag
Data present flag.

Enum _usdhc_present_status_flag. Present status flag mask. .

Values:

enumerator kUSDHC_CommandInhibitFlag
Command inhibit.

enumerator kUSDHC_DataInhibitFlag
Data inhibit.

enumerator kUSDHC_DataLineActiveFlag
Data line active.

enumerator kUSDHC_SdClockStableFlag
SD bus clock stable.

enumerator kUSDHC_WriteTransferActiveFlag
Write transfer active.

enumerator kUSDHC_ReadTransferActiveFlag
Read transfer active.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1263



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_BufferWriteEnableFlag
Buffer write enable.

enumerator kUSDHC_BufferReadEnableFlag
Buffer read enable.

enumerator kUSDHC_ReTuningRequestFlag
Re-tuning request flag, only used for SDR104 mode.

enumerator kUSDHC_DelaySettingFinishedFlag
Delay setting finished flag.

enumerator kUSDHC_CardInsertedFlag
Card inserted.

enumerator kUSDHC_CommandLineLevelFlag
Command line signal level.

enumerator kUSDHC_Data0LineLevelFlag
Data0 line signal level.

enumerator kUSDHC_Data1LineLevelFlag
Data1 line signal level.

enumerator kUSDHC_Data2LineLevelFlag
Data2 line signal level.

enumerator kUSDHC_Data3LineLevelFlag
Data3 line signal level.

enumerator kUSDHC_Data4LineLevelFlag
Data4 line signal level.

enumerator kUSDHC_Data5LineLevelFlag
Data5 line signal level.

enumerator kUSDHC_Data6LineLevelFlag
Data6 line signal level.

enumerator kUSDHC_Data7LineLevelFlag
Data7 line signal level.

Enum _usdhc_interrupt_status_flag. Interrupt status flag mask. .

Values:

enumerator kUSDHC_CommandCompleteFlag
Command complete.

enumerator kUSDHC_DataCompleteFlag
Data complete.

enumerator kUSDHC_BlockGapEventFlag
Block gap event.

enumerator kUSDHC_DmaCompleteFlag
DMA interrupt.

enumerator kUSDHC_BufferWriteReadyFlag
Buffer write ready.

1264 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_BufferReadReadyFlag
Buffer read ready.

enumerator kUSDHC_CardInsertionFlag
Card inserted.

enumerator kUSDHC_CardRemovalFlag
Card removed.

enumerator kUSDHC_CardInterruptFlag
Card interrupt.

enumerator kUSDHC_ReTuningEventFlag
Re-Tuning event, only for SD3.0 SDR104 mode.

enumerator kUSDHC_TuningPassFlag
SDR104 mode tuning pass flag.

enumerator kUSDHC_TuningErrorFlag
SDR104 tuning error flag.

enumerator kUSDHC_CommandTimeoutFlag
Command timeout error.

enumerator kUSDHC_CommandCrcErrorFlag
Command CRC error.

enumerator kUSDHC_CommandEndBitErrorFlag
Command end bit error.

enumerator kUSDHC_CommandIndexErrorFlag
Command index error.

enumerator kUSDHC_DataTimeoutFlag
Data timeout error.

enumerator kUSDHC_DataCrcErrorFlag
Data CRC error.

enumerator kUSDHC_DataEndBitErrorFlag
Data end bit error.

enumerator kUSDHC_AutoCommand12ErrorFlag
Auto CMD12 error.

enumerator kUSDHC_DmaErrorFlag
DMA error.

enumerator kUSDHC_CommandErrorFlag
Command error

enumerator kUSDHC_DataErrorFlag
Data error

enumerator kUSDHC_ErrorFlag
All error

enumerator kUSDHC_DataFlag
Data interrupts

enumerator kUSDHC_DataDMAFlag
Data interrupts

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1265



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_CommandFlag
Command interrupts

enumerator kUSDHC_CardDetectFlag
Card detection interrupts

enumerator kUSDHC_SDR104TuningFlag
SDR104 tuning flag.

enumerator kUSDHC_AllInterruptFlags
All flags mask

Enum _usdhc_auto_command12_error_status_flag. Auto CMD12 error status flag mask. .

Values:

enumerator kUSDHC_AutoCommand12NotExecutedFlag
Not executed error.

enumerator kUSDHC_AutoCommand12TimeoutFlag
Timeout error.

enumerator kUSDHC_AutoCommand12EndBitErrorFlag
End bit error.

enumerator kUSDHC_AutoCommand12CrcErrorFlag
CRC error.

enumerator kUSDHC_AutoCommand12IndexErrorFlag
Index error.

enumerator kUSDHC_AutoCommand12NotIssuedFlag
Not issued error.

Enum _usdhc_standard_tuning. Standard tuning flag.

Values:

enumerator kUSDHC_ExecuteTuning
Used to start tuning procedure.

enumerator kUSDHC_TuningSampleClockSel
When std_tuning_en bit is set, this bit is used to select sampleing clock.

Enum _usdhc_adma_error_status_flag. ADMA error status flag mask. .

Values:

enumerator kUSDHC_AdmaLenghMismatchFlag
Length mismatch error.

enumerator kUSDHC_AdmaDescriptorErrorFlag
Descriptor error.

Enum _usdhc_adma_error_state. ADMA error state.

This state is the detail state when ADMA error has occurred.

Values:

1266 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_AdmaErrorStateStopDma
Stop DMA, previous location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateFetchDescriptor
Fetch descriptor, current location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateChangeAddress
Change address, no DMA error has occurred.

enumerator kUSDHC_AdmaErrorStateTransferData
Transfer data, previous location set in the ADMA system address is errored address.

enumerator kUSDHC_AdmaErrorStateInvalidLength
Invalid length in ADMA descriptor.

enumerator kUSDHC_AdmaErrorStateInvalidDescriptor
Invalid descriptor fetched by ADMA.

enumerator kUSDHC_AdmaErrorState
ADMA error state

Enum _usdhc_force_event. Force event bit position. .

Values:

enumerator kUSDHC_ForceEventAutoCommand12NotExecuted
Auto CMD12 not executed error.

enumerator kUSDHC_ForceEventAutoCommand12Timeout
Auto CMD12 timeout error.

enumerator kUSDHC_ForceEventAutoCommand12CrcError
Auto CMD12 CRC error.

enumerator kUSDHC_ForceEventEndBitError
Auto CMD12 end bit error.

enumerator kUSDHC_ForceEventAutoCommand12IndexError
Auto CMD12 index error.

enumerator kUSDHC_ForceEventAutoCommand12NotIssued
Auto CMD12 not issued error.

enumerator kUSDHC_ForceEventCommandTimeout
Command timeout error.

enumerator kUSDHC_ForceEventCommandCrcError
Command CRC error.

enumerator kUSDHC_ForceEventCommandEndBitError
Command end bit error.

enumerator kUSDHC_ForceEventCommandIndexError
Command index error.

enumerator kUSDHC_ForceEventDataTimeout
Data timeout error.

enumerator kUSDHC_ForceEventDataCrcError
Data CRC error.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1267



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_ForceEventDataEndBitError
Data end bit error.

enumerator kUSDHC_ForceEventAutoCommand12Error
Auto CMD12 error.

enumerator kUSDHC_ForceEventCardInt
Card interrupt.

enumerator kUSDHC_ForceEventDmaError
Dma error.

enumerator kUSDHC_ForceEventTuningError
Tuning error.

enumerator kUSDHC_ForceEventsAll
All force event flags mask.

enum _usdhc_transfer_direction
Data transfer direction.

Values:

enumerator kUSDHC_TransferDirectionReceive
USDHC transfer direction receive.

enumerator kUSDHC_TransferDirectionSend
USDHC transfer direction send.

enum _usdhc_data_bus_width
Data transfer width.

Values:

enumerator kUSDHC_DataBusWidth1Bit
1-bit mode

enumerator kUSDHC_DataBusWidth4Bit
4-bit mode

enumerator kUSDHC_DataBusWidth8Bit
8-bit mode

enum _usdhc_endian_mode
Endian mode.

Values:

enumerator kUSDHC_EndianModeBig
Big endian mode.

enumerator kUSDHC_EndianModeHalfWordBig
Half word big endian mode.

enumerator kUSDHC_EndianModeLittle
Little endian mode.

enum _usdhc_dma_mode
DMA mode.

Values:

enumerator kUSDHC_DmaModeSimple
External DMA.

1268 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_DmaModeAdma1
ADMA1 is selected.

enumerator kUSDHC_DmaModeAdma2
ADMA2 is selected.

enumerator kUSDHC_ExternalDMA
External DMA mode selected.

Enum _usdhc_sdio_control_flag. SDIO control flag mask. .

Values:

enumerator kUSDHC_StopAtBlockGapFlag
Stop at block gap.

enumerator kUSDHC_ReadWaitControlFlag
Read wait control.

enumerator kUSDHC_InterruptAtBlockGapFlag
Interrupt at block gap.

enumerator kUSDHC_ReadDoneNo8CLK
Read done without 8 clk for block gap.

enumerator kUSDHC_ExactBlockNumberReadFlag
Exact block number read.

enum _usdhc_boot_mode
MMC card boot mode.

Values:

enumerator kUSDHC_BootModeNormal
Normal boot

enumerator kUSDHC_BootModeAlternative
Alternative boot

enum _usdhc_card_command_type
The command type.

Values:

enumerator kCARD_CommandTypeNormal
Normal command

enumerator kCARD_CommandTypeSuspend
Suspend command

enumerator kCARD_CommandTypeResume
Resume command

enumerator kCARD_CommandTypeAbort
Abort command

enumerator kCARD_CommandTypeEmpty
Empty command

enum _usdhc_card_response_type
The command response type.

Defines the command response type from card to host controller.

Values:

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1269



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCARD_ResponseTypeNone
Response type: none

enumerator kCARD_ResponseTypeR1
Response type: R1

enumerator kCARD_ResponseTypeR1b
Response type: R1b

enumerator kCARD_ResponseTypeR2
Response type: R2

enumerator kCARD_ResponseTypeR3
Response type: R3

enumerator kCARD_ResponseTypeR4
Response type: R4

enumerator kCARD_ResponseTypeR5
Response type: R5

enumerator kCARD_ResponseTypeR5b
Response type: R5b

enumerator kCARD_ResponseTypeR6
Response type: R6

enumerator kCARD_ResponseTypeR7
Response type: R7

Enum _usdhc_adma1_descriptor_flag. The mask for the control/status field in ADMA1 de-
scriptor.

Values:

enumerator kUSDHC_Adma1DescriptorValidFlag
Valid flag.

enumerator kUSDHC_Adma1DescriptorEndFlag
End flag.

enumerator kUSDHC_Adma1DescriptorInterrupFlag
Interrupt flag.

enumerator kUSDHC_Adma1DescriptorActivity1Flag
Activity 1 flag.

enumerator kUSDHC_Adma1DescriptorActivity2Flag
Activity 2 flag.

enumerator kUSDHC_Adma1DescriptorTypeNop
No operation.

enumerator kUSDHC_Adma1DescriptorTypeTransfer
Transfer data.

enumerator kUSDHC_Adma1DescriptorTypeLink
Link descriptor.

enumerator kUSDHC_Adma1DescriptorTypeSetLength
Set data length.

1270 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Enum _usdhc_adma2_descriptor_flag. ADMA1 descriptor control and status mask.

Values:

enumerator kUSDHC_Adma2DescriptorValidFlag
Valid flag.

enumerator kUSDHC_Adma2DescriptorEndFlag
End flag.

enumerator kUSDHC_Adma2DescriptorInterruptFlag
Interrupt flag.

enumerator kUSDHC_Adma2DescriptorActivity1Flag
Activity 1 mask.

enumerator kUSDHC_Adma2DescriptorActivity2Flag
Activity 2 mask.

enumerator kUSDHC_Adma2DescriptorTypeNop
No operation.

enumerator kUSDHC_Adma2DescriptorTypeReserved
Reserved.

enumerator kUSDHC_Adma2DescriptorTypeTransfer
Transfer type.

enumerator kUSDHC_Adma2DescriptorTypeLink
Link type.

Enum _usdhc_adma_flag. ADMA descriptor configuration flag. .

Values:

enumerator kUSDHC_AdmaDescriptorSingleFlag
Try to finish the transfer in a single ADMA descriptor. If transfer size is bigger than
one ADMA descriptor’s ability, new another descriptor for data transfer.

enumerator kUSDHC_AdmaDescriptorMultipleFlag
Create multiple ADMA descriptors within the ADMA table, this is used for mmc boot
mode specifically, which need to modify the ADMA descriptor on the fly, so the flag
should be used combining with stop at block gap feature.

enum _usdhc_burst_len
DMA transfer burst len config.

Values:

enumerator kUSDHC_EnBurstLenForINCR
Enable burst len for INCR.

enumerator kUSDHC_EnBurstLenForINCR4816
Enable burst len for INCR4/INCR8/INCR16.

enumerator kUSDHC_EnBurstLenForINCR4816WRAP
Enable burst len for INCR4/8/16 WRAP.

Enum _usdhc_transfer_data_type. Tansfer data type definition.

Values:

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1271



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSDHC_TransferDataNormal
Transfer normal read/write data.

enumerator kUSDHC_TransferDataTuning
Transfer tuning data.

enumerator kUSDHC_TransferDataBoot
Transfer boot data.

enumerator kUSDHC_TransferDataBootcontinous
Transfer boot data continuously.

typedef enum _usdhc_transfer_direction usdhc_transfer_direction_t
Data transfer direction.

typedef enum _usdhc_data_bus_width usdhc_data_bus_width_t
Data transfer width.

typedef enum _usdhc_endian_mode usdhc_endian_mode_t
Endian mode.

typedef enum _usdhc_dma_mode usdhc_dma_mode_t
DMA mode.

typedef enum _usdhc_boot_mode usdhc_boot_mode_t
MMC card boot mode.

typedef enum _usdhc_card_command_type usdhc_card_command_type_t
The command type.

typedef enum _usdhc_card_response_type usdhc_card_response_type_t
The command response type.

Defines the command response type from card to host controller.

typedef enum _usdhc_burst_len usdhc_burst_len_t
DMA transfer burst len config.

typedef uint32_t usdhc_adma1_descriptor_t
Defines the ADMA1 descriptor structure.

typedef struct _usdhc_adma2_descriptor usdhc_adma2_descriptor_t
Defines the ADMA2 descriptor structure.

typedef struct _usdhc_capability usdhc_capability_t
USDHC capability information.

Defines a structure to save the capability information of USDHC.

typedef struct _usdhc_boot_config usdhc_boot_config_t
Data structure to configure the MMC boot feature.

typedef struct _usdhc_config usdhc_config_t
Data structure to initialize the USDHC.

typedef struct _usdhc_command usdhc_command_t
Card command descriptor.

Defines card command-related attribute.

typedef struct _usdhc_adma_config usdhc_adma_config_t
ADMA configuration.

1272 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _usdhc_scatter_gather_data_list usdhc_scatter_gather_data_list_t
Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

typedef struct _usdhc_scatter_gather_data usdhc_scatter_gather_data_t
Card scatter gather data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_scatter_gather_transfer usdhc_scatter_gather_transfer_t
usdhc scatter gather transfer.

typedef struct _usdhc_data usdhc_data_t
Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

typedef struct _usdhc_transfer usdhc_transfer_t
Transfer state.

typedef struct _usdhc_handle usdhc_handle_t
USDHC handle typedef.

typedef struct _usdhc_transfer_callback usdhc_transfer_callback_t
USDHC callback functions.

typedef status_t (*usdhc_transfer_function_t)(USDHC_Type *base, usdhc_transfer_t *content)
USDHC transfer function.

typedef struct _usdhc_host usdhc_host_t
USDHC host descriptor.

USDHC_MAX_BLOCK_COUNT
Maximum block count can be set one time.

FSL_USDHC_ENABLE_SCATTER_GATHER_TRANSFER
USDHC scatter gather feature control macro.

USDHC_ADMA1_ADDRESS_ALIGN
The alignment size for ADDRESS filed in ADMA1’s descriptor.

USDHC_ADMA1_LENGTH_ALIGN
The alignment size for LENGTH field in ADMA1’s descriptor.

USDHC_ADMA2_ADDRESS_ALIGN
The alignment size for ADDRESS field in ADMA2’s descriptor.

USDHC_ADMA2_LENGTH_ALIGN
The alignment size for LENGTH filed in ADMA2’s descriptor.

USDHC_ADMA1_DESCRIPTOR_ADDRESS_SHIFT
The bit shift for ADDRESS filed in ADMA1’s descriptor.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1273



MCUXpresso SDK Documentation, Release 25.12.00

Address/page field Reserved Attribute
31 12 11 6 05 04 03 02 01 00
address or data length 000000 Act2 Act1 0 Int End Valid

Act2 Act1 Comment 31-28 27-12
0 0 No op Don’t care
0 1 Set data length 0000 Data Length
1 0 Transfer data Data address
1 1 Link descriptor Descriptor address

USDHC_ADMA1_DESCRIPTOR_ADDRESS_MASK
The bit mask for ADDRESS field in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH filed in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_LENGTH_MASK
The mask for LENGTH field in ADMA1’s descriptor.

USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH filed in ADMA1’s descriptor. Since the max transfer size
ADMA1 support is 65535 which is indivisible by 4096, so to make sure a large data load
transfer (>64KB) continuously (require the data address be always align with 4096), soft-
ware will set the maximum data length for ADMA1 to (64 - 4)KB.

USDHC_ADMA2_DESCRIPTOR_LENGTH_SHIFT
The bit shift for LENGTH field in ADMA2’s descriptor.

Address field Length Reserved Attribute
63 32 31 16 15 06 05 04 03 02 01 00
32-bit address 16-bit length 0000000000 Act2 Act1 0 Int End Valid

Act2 Act1 Comment Operation
0 0 No op Don’t care
0 1 Reserved Read this line and go to next one
1 0 Transfer data Transfer data with address and length set in this descriptor

line
1 1 Link descrip-

tor
Link to another descriptor

USDHC_ADMA2_DESCRIPTOR_LENGTH_MASK
The bit mask for LENGTH field in ADMA2’s descriptor.

USDHC_ADMA2_DESCRIPTOR_MAX_LENGTH_PER_ENTRY
The maximum value of LENGTH field in ADMA2’s descriptor.

struct _usdhc_adma2_descriptor
#include <fsl_usdhc.h> Defines the ADMA2 descriptor structure.

1274 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t attribute
The control and status field.

uint32_t address
The address field.

struct _usdhc_capability
#include <fsl_usdhc.h> USDHC capability information.

Defines a structure to save the capability information of USDHC.

Public Members

uint32_t sdVersion
Support SD card/sdio version.

uint32_t mmcVersion
Support EMMC card version.

uint32_t maxBlockLength
Maximum block length united as byte.

uint32_t maxBlockCount
Maximum block count can be set one time.

uint32_t flags
Capability flags to indicate the support information(_usdhc_capability_flag).

struct _usdhc_boot_config
#include <fsl_usdhc.h> Data structure to configure the MMC boot feature.

Public Members

uint32_t ackTimeoutCount
Timeout value for the boot ACK. The available range is 0 ~ 15.

usdhc_boot_mode_t bootMode
Boot mode selection.

uint32_t blockCount
Stop at block gap value of automatic mode. Available range is 0 ~ 65535.

size_t blockSize
Block size.

bool enableBootAck
Enable or disable boot ACK.

bool enableAutoStopAtBlockGap
Enable or disable auto stop at block gap function in boot period.

struct _usdhc_config
#include <fsl_usdhc.h> Data structure to initialize the USDHC.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1275



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t dataTimeout
Data timeout value.

usdhc_endian_mode_t endianMode
Endian mode.

uint8_t readWatermarkLevel
Watermark level for DMA read operation. Available range is 1 ~ 128.

uint8_t writeWatermarkLevel
Watermark level for DMA write operation. Available range is 1 ~ 128.

struct _usdhc_command
#include <fsl_usdhc.h> Card command descriptor.

Defines card command-related attribute.

Public Members

uint32_t index
Command index.

uint32_t argument
Command argument.

usdhc_card_command_type_t type
Command type.

usdhc_card_response_type_t responseType
Command response type.

uint32_t response[4U]
Response for this command.

uint32_t responseErrorFlags
Response error flag, which need to check the command reponse.

uint32_t flags
Cmd flags.

struct _usdhc_adma_config
#include <fsl_usdhc.h> ADMA configuration.

Public Members

usdhc_dma_mode_t dmaMode
DMA mode.

uint32_t *admaTable
ADMA table address, can’t be null if transfer way is ADMA1/ADMA2.

uint32_t admaTableWords
ADMA table length united as words, can’t be 0 if transfer way is ADMA1/ADMA2.

struct _usdhc_scatter_gather_data_list
#include <fsl_usdhc.h> Card scatter gather data list.

Allow application register uncontinuous data buffer for data transfer.

1276 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

struct _usdhc_scatter_gather_data
#include <fsl_usdhc.h> Card scatter gather data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand23
Enable auto CMD23.

bool enableIgnoreError
Enable to ignore error event to read/write all the data.

usdhc_transfer_direction_t dataDirection
data direction

uint8_t dataType
this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

usdhc_scatter_gather_data_list_t sgData
scatter gather data

struct _usdhc_scatter_gather_transfer
#include <fsl_usdhc.h> usdhc scatter gather transfer.

Public Members

usdhc_scatter_gather_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct _usdhc_data
#include <fsl_usdhc.h> Card data descriptor.

Defines a structure to contain data-related attribute. The ‘enableIgnoreError’ is used when
upper card driver wants to ignore the error event to read/write all the data and not to stop
read/write immediately when an error event happens. For example, bus testing procedure
for MMC card.

Public Members

bool enableAutoCommand12
Enable auto CMD12.

bool enableAutoCommand23
Enable auto CMD23.

2.120. USDHC: Ultra Secured Digital Host Controller Driver 1277



MCUXpresso SDK Documentation, Release 25.12.00

bool enableIgnoreError
Enable to ignore error event to read/write all the data.

uint8_t dataType
this is used to distinguish the normal/tuning/boot data.

size_t blockSize
Block size.

uint32_t blockCount
Block count.

uint32_t *rxData
Buffer to save data read.

const uint32_t *txData
Data buffer to write.

struct _usdhc_transfer
#include <fsl_usdhc.h> Transfer state.

Public Members

usdhc_data_t *data
Data to transfer.

usdhc_command_t *command
Command to send.

struct _usdhc_transfer_callback
#include <fsl_usdhc.h> USDHC callback functions.

Public Members

void (*CardInserted)(USDHC_Type *base, void *userData)
Card inserted occurs when DAT3/CD pin is for card detect

void (*CardRemoved)(USDHC_Type *base, void *userData)
Card removed occurs

void (*SdioInterrupt)(USDHC_Type *base, void *userData)
SDIO card interrupt occurs

void (*BlockGap)(USDHC_Type *base, void *userData)
stopped at block gap event

void (*TransferComplete)(USDHC_Type *base, usdhc_handle_t *handle, status_t status, void
*userData)

Transfer complete callback.

void (*ReTuning)(USDHC_Type *base, void *userData)
Handle the re-tuning.

struct _usdhc_handle
#include <fsl_usdhc.h> USDHC handle.

Defines the structure to save the USDHC state information and callback function.

Note: All the fields except interruptFlags and transferredWords must be allocated by the
user.

1278 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

usdhc_data_t *volatile data
Transfer parameter. Data to transfer.

usdhc_command_t *volatile command
Transfer parameter. Command to send.

volatile uint32_t transferredWords
Transfer status. Words transferred by DATAPORT way.

usdhc_transfer_callback_t callback
Callback function.

void *userData
Parameter for transfer complete callback.

struct _usdhc_host
#include <fsl_usdhc.h> USDHC host descriptor.

Public Members

USDHC_Type *base
USDHC peripheral base address.

uint32_t sourceClock_Hz
USDHC source clock frequency united in Hz.

usdhc_config_t config
USDHC configuration.

usdhc_capability_t capability
USDHC capability information.

usdhc_transfer_function_t transfer
USDHC transfer function.

2.121 WDOG: Watchdog Timer Driver

void WDOG_GetDefaultConfig(wdog_config_t *config)
Initializes the WDOG configuration structure.

This function initializes the WDOG configuration structure to default values. The default
values are as follows.

wdogConfig->enableWdog = true;
wdogConfig->workMode.enableWait = true;
wdogConfig->workMode.enableStop = true;
wdogConfig->workMode.enableDebug = true;
wdogConfig->enableInterrupt = false;
wdogConfig->enablePowerdown = false;
wdogConfig->resetExtension = flase;
wdogConfig->timeoutValue = 0xFFU;
wdogConfig->interruptTimeValue = 0x04u;

See also:
wdog_config_t

2.121. WDOG: Watchdog Timer Driver 1279



MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• config – Pointer to the WDOG configuration structure.

void WDOG_Init(WDOG_Type *base, const wdog_config_t *config)
Initializes the WDOG.

This function initializes the WDOG. When called, the WDOG runs according to the configu-
ration.

This is an example.

wdog_config_t config;
WDOG_GetDefaultConfig(&config);
config.timeoutValue = 0xffU;
config->interruptTimeValue = 0x04u;
WDOG_Init(wdog_base,&config);

Parameters
• base – WDOG peripheral base address

• config – The configuration of WDOG

void WDOG_Deinit(WDOG_Type *base)
Shuts down the WDOG.

This function shuts down the WDOG. Watchdog Enable bit is a write one once only bit. It
is not possible to clear this bit by a software write, once the bit is set. This bit(WDE) can be
set/reset only in debug mode(exception).

static inline void WDOG_Enable(WDOG_Type *base)
Enables the WDOG module.

This function writes a value into the WDOG_WCR register to enable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write, once the bit
is set. only debug mode exception.

Parameters
• base – WDOG peripheral base address

static inline void WDOG_Disable(WDOG_Type *base)
Disables the WDOG module.

This function writes a value into the WDOG_WCR register to disable the WDOG. This is a
write one once only bit. It is not possible to clear this bit by a software write,once the bit is
set. only debug mode exception

Parameters
• base – WDOG peripheral base address

static inline void WDOG_TriggerSystemSoftwareReset(WDOG_Type *base)
Trigger the system software reset.

This function will write to the WCR[SRS] bit to trigger a software system reset. This bit will
automatically resets to “1” after it has been asserted to “0”. Note: Calling this API will reset
the system right now, please using it with more attention.

Parameters
• base – WDOG peripheral base address

1280 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void WDOG_TriggerSoftwareSignal(WDOG_Type *base)
Trigger an output assertion.

This function will write to the WCR[WDA] bit to trigger WDOG_B signal assertion. The
WDOG_B signal can be routed to external pin of the chip, the output pin will turn to as-
sertion along with WDOG_B signal. Note: The WDOG_B signal will remain assert until a
power on reset occurred, so, please take more attention while calling it.

Parameters
• base – WDOG peripheral base address

static inline void WDOG_EnableInterrupts(WDOG_Type *base, uint16_t mask)
Enables the WDOG interrupt.

This bit is a write once only bit. Once the software does a write access to this bit, it will get
locked and cannot be reprogrammed until the next system reset assertion

Parameters
• base – WDOG peripheral base address

• mask – The interrupts to enable The parameter can be combination of the
following source if defined.

– kWDOG_InterruptEnable

uint16_t WDOG_GetStatusFlags(WDOG_Type *base)
Gets the WDOG all reset status flags.

This function gets all reset status flags.

uint16_t status;
status = WDOG_GetStatusFlags (wdog_base);

See also:
_wdog_status_flags

• true: a related status flag has been set.

• false: a related status flag is not set.

Parameters
• base – WDOG peripheral base address

Returns
State of the status flag: asserted (true) or not-asserted (false).

void WDOG_ClearInterruptStatus(WDOG_Type *base, uint16_t mask)
Clears the WDOG flag.

This function clears the WDOG status flag.

This is an example for clearing the interrupt flag.

WDOG_ClearStatusFlags(wdog_base,KWDOG_InterruptFlag);

Parameters
• base – WDOG peripheral base address

• mask – The status flags to clear. The parameter could be any combination
of the following values. kWDOG_TimeoutFlag

2.121. WDOG: Watchdog Timer Driver 1281



MCUXpresso SDK Documentation, Release 25.12.00

static inline void WDOG_SetTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG timeout value.

This function sets the timeout value. This function writes a value into WCR registers. The
time-out value can be written at any point of time but it is loaded to the counter at the time
when WDOG is enabled or after the service routine has been performed.

Parameters
• base – WDOG peripheral base address

• timeoutCount – WDOG timeout value; count of WDOG clock tick.

static inline void WDOG_SetInterrputTimeoutValue(WDOG_Type *base, uint16_t timeoutCount)
Sets the WDOG interrupt count timeout value.

This function sets the interrupt count timeout value. This function writes a value into WIC
registers which are wirte-once. This field is write once only. Once the software does a write
access to this field, it will get locked and cannot be reprogrammed until the next system
reset assertion.

Parameters
• base – WDOG peripheral base address

• timeoutCount – WDOG timeout value; count of WDOG clock tick.

static inline void WDOG_DisablePowerDownEnable(WDOG_Type *base)
Disable the WDOG power down enable bit.

This function disable the WDOG power down enable(PDE). This function writes a value into
WMCR registers which are wirte-once. This field is write once only. Once software sets this
bit it cannot be reset until the next system reset.

Parameters
• base – WDOG peripheral base address

void WDOG_Refresh(WDOG_Type *base)
Refreshes the WDOG timer.

This function feeds the WDOG. This function should be called before the WDOG timer is in
timeout. Otherwise, a reset is asserted.

Parameters
• base – WDOG peripheral base address

FSL_WDOG_DRIVER_VERSION
Defines WDOG driver version.

WDOG_REFRESH_KEY

enum _wdog_interrupt_enable
WDOG interrupt configuration structure, default settings all disabled.

This structure contains the settings for all of the WDOG interrupt configurations.

Values:

enumerator kWDOG_InterruptEnable
WDOG timeout generates an interrupt before reset

enum _wdog_status_flags
WDOG status flags.

This structure contains the WDOG status flags for use in the WDOG functions.

Values:

1282 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kWDOG_RunningFlag
Running flag, set when WDOG is enabled

enumerator kWDOG_PowerOnResetFlag
Power On flag, set when reset is the result of a powerOnReset

enumerator kWDOG_TimeoutResetFlag
Timeout flag, set when reset is the result of a timeout

enumerator kWDOG_SoftwareResetFlag
Software flag, set when reset is the result of a software

enumerator kWDOG_InterruptFlag
interrupt flag,whether interrupt has occurred or not

typedef struct _wdog_work_mode wdog_work_mode_t
Defines WDOG work mode.

typedef struct _wdog_config wdog_config_t
Describes WDOG configuration structure.

struct _wdog_work_mode
#include <fsl_wdog.h> Defines WDOG work mode.

Public Members

bool enableWait
If set to true, WDOG continues in wait mode

bool enableStop
If set to true, WDOG continues in stop mode

bool enableDebug
If set to true, WDOG continues in debug mode

struct _wdog_config
#include <fsl_wdog.h> Describes WDOG configuration structure.

Public Members

bool enableWdog
Enables or disables WDOG

wdog_work_mode_t workMode
Configures WDOG work mode in debug stop and wait mode

bool enableInterrupt
Enables or disables WDOG interrupt

uint16_t timeoutValue
Timeout value

uint16_t interruptTimeValue
Interrupt count timeout value

bool softwareResetExtension
software reset extension

bool enablePowerDown
power down enable bit

2.121. WDOG: Watchdog Timer Driver 1283



MCUXpresso SDK Documentation, Release 25.12.00

bool enableTimeOutAssert
Enable WDOG_B timeout assertion.

2.122 XBARA: Inter-Peripheral Crossbar Switch

void XBARA_Init(XBARA_Type *base)
Initializes the XBARA module.

This function un-gates the XBARA clock.

Parameters
• base – XBARA peripheral address.

void XBARA_Deinit(XBARA_Type *base)
Shuts down the XBARA module.

This function disables XBARA clock.

Parameters
• base – XBARA peripheral address.

void XBARA_SetSignalsConnection(XBARA_Type *base, xbar_input_signal_t input,
xbar_output_signal_t output)

Sets a connection between the selected XBARA_IN[*] input and the XBARA_OUT[*] output
signal.

This function connects the XBARA input to the selected XBARA output. If more than one
XBARA module is available, only the inputs and outputs from the same module can be con-
nected.

Example:

XBARA_SetSignalsConnection(XBARA, kXBARA_InputPIT_TRG0, kXBARA_
↪→OutputDMAMUX18);

Parameters
• base – XBARA peripheral address.

• input – XBARA input signal.

• output – XBARA output signal.

uint32_t XBARA_GetStatusFlags(XBARA_Type *base)
Gets the active edge detection status.

This function gets the active edge detect status of all XBARA_OUTs. If the active edge occurs,
the return value is asserted. When the interrupt or the DMA functionality is enabled for
the XBARA_OUTx, this field is 1 when the interrupt or DMA request is asserted and 0 when
the interrupt or DMA request has been cleared.

Parameters
• base – XBARA peripheral address.

Returns
the mask of these status flag bits.

void XBARA_ClearStatusFlags(XBARA_Type *base, uint32_t mask)
Clears the edge detection status flags of relative mask.

Parameters

1284 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – XBARA peripheral address.

• mask – the status flags to clear.

void XBARA_SetOutputSignalConfig(XBARA_Type *base, xbar_output_signal_t output, const
xbara_control_config_t *controlConfig)

Configures the XBARA control register.

This function configures an XBARA control register. The active edge detection and the
DMA/IRQ function on the corresponding XBARA output can be set.

Example:

xbara_control_config_t userConfig;
userConfig.activeEdge = kXBARA_EdgeRising;
userConfig.requestType = kXBARA_RequestInterruptEnalbe;
XBARA_SetOutputSignalConfig(XBARA, kXBARA_OutputDMAMUX18, &userConfig);

Parameters
• base – XBARA peripheral address.

• output – XBARA output number.

• controlConfig – Pointer to structure that keeps configuration of control reg-
ister.

enum _xbara_active_edge
XBARA active edge for detection.

Values:

enumerator kXBARA_EdgeNone
Edge detection status bit never asserts.

enumerator kXBARA_EdgeRising
Edge detection status bit asserts on rising edges.

enumerator kXBARA_EdgeFalling
Edge detection status bit asserts on falling edges.

enumerator kXBARA_EdgeRisingAndFalling
Edge detection status bit asserts on rising and falling edges.

enum _xbar_request
Defines the XBARA DMA and interrupt configurations.

Values:

enumerator kXBARA_RequestDisable
Interrupt and DMA are disabled.

enumerator kXBARA_RequestDMAEnable
DMA enabled, interrupt disabled.

enumerator kXBARA_RequestInterruptEnable
Interrupt enabled, DMA disabled.

enum _xbara_status_flag_t
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions.

Values:

2.122. XBARA: Inter-Peripheral Crossbar Switch 1285



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kXBARA_EdgeDetectionOut0
XBAR_OUT0 active edge interrupt flag, sets when active edge detected.

enumerator kXBARA_EdgeDetectionOut1
XBAR_OUT1 active edge interrupt flag, sets when active edge detected.

enumerator kXBARA_EdgeDetectionOut2
XBAR_OUT2 active edge interrupt flag, sets when active edge detected.

enumerator kXBARA_EdgeDetectionOut3
XBAR_OUT3 active edge interrupt flag, sets when active edge detected.

typedef enum _xbara_active_edge xbara_active_edge_t
XBARA active edge for detection.

typedef enum _xbar_request xbara_request_t
Defines the XBARA DMA and interrupt configurations.

typedef enum _xbara_status_flag_t xbara_status_flag_t
XBARA status flags.

This provides constants for the XBARA status flags for use in the XBARA functions.

typedef struct XBARAControlConfig xbara_control_config_t
Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

FSL_XBARA_DRIVER_VERSION

XBARA_SELx(base, output)

XBARA_WR_SELx_SELx(base, input, output)

kXBARA_RequestInterruptEnalbe

struct XBARAControlConfig
#include <fsl_xbara.h> Defines the configuration structure of the XBARA control register.

This structure keeps the configuration of XBARA control register for one output. Control
registers are available only for a few outputs. Not every XBARA module has control regis-
ters.

Public Members

xbara_active_edge_t activeEdge
Active edge to be detected.

xbara_request_t requestType
Selects DMA/Interrupt request.

2.123 XBARB: Inter-Peripheral Crossbar Switch

void XBARB_Init(XBARB_Type *base)
Initializes the XBARB module.

This function un-gates the XBARB clock.

Parameters

1286 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• base – XBARB peripheral address.

void XBARB_Deinit(XBARB_Type *base)
Shuts down the XBARB module.

This function disables XBARB clock.

Parameters
• base – XBARB peripheral address.

void XBARB_SetSignalsConnection(XBARB_Type *base, xbar_input_signal_t input,
xbar_output_signal_t output)

Configures a connection between the selected XBARB_IN[*] input and the XBARB_OUT[*]
output signal.

This function configures which XBARB input is connected to the selected XBARB output.
If more than one XBARB module is available, only the inputs and outputs from the same
module can be connected.

Parameters
• base – XBARB peripheral address.

• input – XBARB input signal.

• output – XBARB output signal.

FSL_XBARB_DRIVER_VERSION

XBARB_SELx(base, output)

XBARB_WR_SELx_SELx(base, input, output)

2.124 XECC: external error correction code controller

void XECC_Init(XECC_Type *base, const xecc_config_t *config)
XECC module initialization function.

Parameters
• base – XECC base address.

• config – pointer to the XECC configuration structure.

void XECC_Deinit(XECC_Type *base)
Deinitializes the XECC.

Parameters
• base – XECC base address.

void XECC_GetDefaultConfig(xecc_config_t *config)
Sets the XECC configuration structure to default values.

Parameters
• config – pointer to the XECC configuration structure.

static inline uint32_t XECC_GetStatusFlags(XECC_Type *base)
Gets XECC status flags.

Parameters
• base – XECC peripheral base address.

2.124. XECC: external error correction code controller 1287



MCUXpresso SDK Documentation, Release 25.12.00

Returns
XECC status flags.

static inline void XECC_ClearStatusFlags(XECC_Type *base, uint32_t mask)
XECC module clear interrupt status.

Parameters
• base – XECC base address.

• mask – status to clear from xecc_interrupt_status_t.

static inline void XECC_EnableInterruptStatus(XECC_Type *base, uint32_t mask)
XECC module enable interrupt status.

Parameters
• base – XECC base address.

• mask – status to enable from xecc_interrupt_status_enable_t.

static inline void XECC_DisableInterruptStatus(XECC_Type *base, uint32_t mask)
XECC module disable interrupt status.

Parameters
• base – XECC base address.

• mask – status to disable from xecc_interrupt_status_enable_t.

static inline void XECC_EnableInterrupts(XECC_Type *base, uint32_t mask)
XECC module enable interrupt.

Parameters
• base – XECC base address.

• mask – The interrupts to enable from xecc_interrupt_enable_t.

static inline void XECC_DisableInterrupts(XECC_Type *base, uint32_t mask)
XECC module disable interrupt.

Parameters
• base – XECC base address.

• mask – The interrupts to disable from xecc_interrupt_enable_t.

static inline void XECC_WriteECCEnable(XECC_Type *base, bool enable)
XECC module write ECC function enable.

Parameters
• base – XECC base address.

• enable – enable or disable.

static inline void XECC_ReadECCEnable(XECC_Type *base, bool enable)
XECC module read ECC function enable.

Parameters
• base – XECC base address.

• enable – enable or disable.

static inline void XECC_SwapECCEnable(XECC_Type *base, bool enable)
XECC module swap data enable.

Parameters
• base – XECC base address.

1288 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• enable – enable or disable.

status_t XECC_ErrorInjection(XECC_Type *base, uint32_t errordata, uint8_t erroreccdata)
XECC module error injection.

Parameters
• base – XECC base address.

• errordata – error data.

• erroreccdata – ecc code.

Return values
kStatus_Success. –

void XECC_GetSingleErrorInfo(XECC_Type *base, xecc_single_error_info_t *info)
XECC module get single error information.

Parameters
• base – XECC base address.

• info – single error information.

void XECC_GetMultiErrorInfo(XECC_Type *base, xecc_multi_error_info_t *info)
XECC module get multiple error information.

Parameters
• base – XECC base address.

• info – multiple error information.

FSL_XECC_DRIVER_VERSION
Driver version 2.0.0.

XECC interrupt configuration structure, , xecc_interrupt_enable_t.

This structure contains the settings for all of the XECC interrupt configurations.

Values:

enumerator kXECC_SingleErrorInterruptEnable
Single bit error interrupt enable

enumerator kXECC_MultiErrorInterruptEnable
Multiple bit error interrupt enable

enumerator kXECC_AllInterruptsEnable
all interrupts enable

XECC interrupt status configuration structure, xecc_interrupt_status_enable_t.

This structure contains the settings for all of the XECC interrupt status configurations.

Values:

enumerator kXECC_SingleErrorInterruptStatusEnable
Single bit error interrupt status enable

enumerator kXECC_MultiErrorInterruptStatusEnable
Multiple bits error interrupt status enable

enumerator kXECC_AllInterruptsStatusEnable
all interrupts enable

2.124. XECC: external error correction code controller 1289



MCUXpresso SDK Documentation, Release 25.12.00

XECC status flags, xecc_interrupt_status_t.

This provides constants for the XECC status flags for use in the XECC functions.

Values:

enumerator kXECC_SingleErrorInterruptFlag
Single bit error interrupt happens on read data

enumerator kXECC_MultiErrorInterruptFlag
Multiple bits error interrupt happens on read data

enumerator kXECC_AllInterruptsFlag
all interrupts happens on read data

typedef struct _xecc_config xecc_config_t
XECC user configuration.

typedef struct _xecc_single_error_info xecc_single_error_info_t
XECC single error information, including single error address, ECC code, error data, error
bit position and error bit field.

typedef struct _xecc_multi_error_info xecc_multi_error_info_t
XECC multiple error information, including multiple error address, ECC code, error data
and error bit field.

struct _xecc_config
#include <fsl_xecc.h> XECC user configuration.

Public Members

bool enableXECC
Enable the XECC function.

bool enableWriteECC
Enable write ECC function.

bool enableReadECC
Enable read ECC function.

bool enableSwap
Enable swap function. The minimum ECC region range is 4k, so the lower 12 bits of
this register must be 0.

uint32_t Region0BaseAddress
ECC region 0 base address.

uint32_t Region0EndAddress
ECC region 0 end address.

uint32_t Region1BaseAddress
ECC region 1 base address.

uint32_t Region1EndAddress
ECC region 1 end address.

uint32_t Region2BaseAddress
ECC region 2 base address.

uint32_t Region2EndAddress
ECC region 2 end address.

1290 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t Region3BaseAddress
ECC region 3 base address.

uint32_t Region3EndAddress
ECC region 3 end address.

struct _xecc_single_error_info
#include <fsl_xecc.h> XECC single error information, including single error address, ECC
code, error data, error bit position and error bit field.

Public Members

uint32_t singleErrorAddress
Single error address

uint32_t singleErrorData
Single error read data

uint32_t singleErrorEccCode
Single error ECC code

uint32_t singleErrorBitPos
Single error bit postion

uint32_t singleErrorBitField
Single error bit field

struct _xecc_multi_error_info
#include <fsl_xecc.h> XECC multiple error information, including multiple error address,
ECC code, error data and error bit field.

Public Members

uint32_t multiErrorAddress
Multiple error address

uint32_t multiErrorData
Multiple error read data

uint32_t multiErrorEccCode
Multiple error ECC code

uint32_t multiErrorBitField
Single error bit field

2.125 XRDC2: Extended Resource Domain Controller 2

void XRDC2_SetGlobalValid(XRDC2_Type *base, bool valid)
Sets the XRDC2 global valid.

This function sets the XRDC2 global valid or invalid. When the XRDC2 is global invalid, all
accesses from all bus masters to all slaves are allowed.

Parameters
• base – XRDC2 peripheral base address.

• valid – True to valid XRDC2.

2.125. XRDC2: Extended Resource Domain Controller 2 1291



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint8_t XRDC2_GetCurrentMasterDomainId(XRDC2_Type *base)
Gets the domain ID of the current bus master.

This function returns the domain ID of the current bus master.

Parameters
• base – XRDC2 peripheral base address.

Returns
Domain ID of current bus master.

static inline void XRDC2_SetGlobalConfigLock(XRDC2_Type *base, xrdc2_global_config_lock_t
mode)

Set the global configuration lock mode.

Once change the lock mode, it could not be changed until next reset.

Parameters
• base – XRDC2 peripheral base address.

• mode – The lock mode.

static inline uint8_t XRDC2_GetCurrentGlobalConfigLockOwnerDomainId(XRDC2_Type *base)
Gets the domain ID of global configuration lock owner.

Parameters
• base – XRDC2 peripheral base address.

Returns
Domain ID of the global configuration lock owner.

void XRDC2_GetDefaultMasterDomainAssignment(xrdc2_master_domain_assignment_t
*assignment)

Gets the default master domain assignment.

This function sets the assignment as follows:

config->lock = false;
config->privilegeAttr = kXRDC2_MasterPrivilege;
config->secureAttr = kXRDC2_MasterSecure;
config->domainId = 0U;
config->mask = 0U;
config->match = 0U;

Parameters
• assignment – Pointer to the assignment structure.

void XRDC2_SetMasterDomainAssignment(XRDC2_Type *base, xrdc2_master_t master, uint8_t
assignIndex, const
xrdc2_master_domain_assignment_t *assignment)

Sets the processor bus master domain assignment.

Parameters
• base – XRDC2 peripheral base address.

• master – Which master to configure.

• assignIndex – Which assignment register to set.

• assignment – Pointer to the assignment structure.

1292 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

static inline void XRDC2_LockMasterDomainAssignment(XRDC2_Type *base, xrdc2_master_t
master, uint8_t assignIndex)

Locks the bus master domain assignment register.

This function locks the master domain assignment. One bus master might have multiple do-
main assignment registers. The parameter assignIndex specifies which assignment register
to lock. After it is locked, the register can’t be changed until next reset.

Parameters
• base – XRDC2 peripheral base address.

• master – Which master to configure.

• assignIndex – Which assignment register to lock.

static inline void XRDC2_SetMasterDomainAssignmentValid(XRDC2_Type *base, xrdc2_master_t
master, uint8_t assignIndex, bool
valid)

Sets the master domain assignment as valid or invalid.

This function sets the master domain assignment as valid or invalid. One bus master might
have multiple domain assignment registers. The parameter assignIndex specifies which as-
signment register to configure.

Parameters
• base – XRDC2 peripheral base address.

• master – Which master to configure.

• assignIndex – Index for the domain assignment register.

• valid – True to set valid, false to set invalid.

void XRDC2_GetMemSlotAccessDefaultConfig(xrdc2_mem_slot_access_config_t *config)
Gets the default memory slot access configuration.

This function sets the assignment as follows:

config->lockMode = kXRDC2_AccessConfigLockDisabled;
config->policy[0] = kXRDC2_AccessPolicyNone;
config->policy[1] = kXRDC2_AccessPolicyNone;
...

Parameters
• config – Pointer to the configuration.

void XRDC2_SetMemSlotAccessConfig(XRDC2_Type *base, xrdc2_mem_slot_t memSlot, const
xrdc2_mem_slot_access_config_t *config)

Sets the memory slot access policy.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – Which memory slot descriptor to set.

• config – Pointer to the access policy configuration structure.

void XRDC2_SetMemSlotAccessValid(XRDC2_Type *base, xrdc2_mem_slot_t memSlot, bool
valid)

Sets the memory slot descriptor as valid or invalid.

Parameters
• base – XRDC2 peripheral base address.

2.125. XRDC2: Extended Resource Domain Controller 2 1293



MCUXpresso SDK Documentation, Release 25.12.00

• memSlot – Which memory slot descriptor to set.

• valid – True to set valid, false to set invalid.

void XRDC2_SetMemSlotAccessLockMode(XRDC2_Type *base, xrdc2_mem_slot_t memSlot,
xrdc2_access_config_lock_t lockMode)

Sets the memory slot descriptor lock mode.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – Which memory slot descriptor to set.

• lockMode – The lock mode to set.

void XRDC2_SetMemSlotDomainAccessPolicy(XRDC2_Type *base, xrdc2_mem_slot_t memSlot,
uint8_t domainId, xrdc2_access_policy_t policy)

Sets the memory slot access policy for specific domain.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

• domainId – The ID of the domain whose policy will be changed.

• policy – The access policy to set.

void XRDC2_EnableMemSlotExclAccessLock(XRDC2_Type *base, xrdc2_mem_slot_t memSlot,
bool enable)

Enable or disable the memory slot exclusive access lock.

The lock must be enabled first before use. Once disabled, it could not be enabled until reset.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

• enable – True to enable, false to disable.

uint8_t XRDC2_GetMemSlotExclAccessLockDomainOwner(XRDC2_Type *base, xrdc2_mem_slot_t
memSlot)

Get current memory slot exclusive access lock owner.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

Returns
The domain ID of the lock owner.

status_t XRDC2_TryLockMemSlotExclAccess(XRDC2_Type *base, xrdc2_mem_slot_t memSlot)
Try to lock the memory slot exclusive access.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

Return values
• kStatus_Fail – Failed to lock.

• kStatus_Success – Locked succussfully.

1294 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

void XRDC2_LockMemSlotExclAccess(XRDC2_Type *base, xrdc2_mem_slot_t memSlot)
Lock the memory slot exclusive access using blocking method.

Note: This function must be called when the lock is not disabled.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

static inline void XRDC2_UnlockMemSlotExclAccess(XRDC2_Type *base, xrdc2_mem_slot_t
memSlot)

Unlock the memory slot exclusive access.

Note: This function must be called by the lock owner.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

static inline void XRDC2_ForceMemSlotExclAccessLockRelease(XRDC2_Type *base,
xrdc2_mem_slot_t memSlot)

Force the memory slot exclusive access lock release.

The master does not own the lock could call this function to force release the lock.

Parameters
• base – XRDC2 peripheral base address.

• memSlot – The memory slot to operate.

void XRDC2_GetMemAccessDefaultConfig(xrdc2_mem_access_config_t *config)
Gets the default memory access configuration.

This function sets the assignment as follows:

config->startAddr = 0U;
config->endAddr = 0xFFFFFFFFU;
config->lockMode = kXRDC2_AccessConfigLockDisabled;
config->policy[0] = kXRDC2_AccessPolicyNone;
config->policy[1] = kXRDC2_AccessPolicyNone;
...

Parameters
• config – Pointer to the configuration.

void XRDC2_SetMemAccessConfig(XRDC2_Type *base, xrdc2_mem_t mem, const
xrdc2_mem_access_config_t *config)

Sets the memory region access policy.

Parameters
• base – XRDC2 peripheral base address.

• mem – Which memory region descriptor to set.

• config – Pointer to the access policy configuration structure.

2.125. XRDC2: Extended Resource Domain Controller 2 1295



MCUXpresso SDK Documentation, Release 25.12.00

void XRDC2_SetMemAccessValid(XRDC2_Type *base, xrdc2_mem_t mem, bool valid)
Sets the memory region descriptor as valid or invalid.

Parameters
• base – XRDC2 peripheral base address.

• mem – Which memory region descriptor to set.

• valid – True to set valid, false to set invalid.

void XRDC2_SetMemAccessLockMode(XRDC2_Type *base, xrdc2_mem_t mem,
xrdc2_access_config_lock_t lockMode)

Sets the memory descriptor lock mode.

Parameters
• base – XRDC2 peripheral base address.

• mem – Which memory descriptor to set.

• lockMode – The lock mode to set.

void XRDC2_SetMemDomainAccessPolicy(XRDC2_Type *base, xrdc2_mem_t mem, uint8_t
domainId, xrdc2_access_policy_t policy)

Sets the memory region access policy for specific domain.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

• domainId – The ID of the domain whose policy will be changed.

• policy – The access policy to set.

void XRDC2_EnableMemExclAccessLock(XRDC2_Type *base, xrdc2_mem_t mem, bool enable)
Enable or disable the memory region exclusive access lock.

Once disabled, it could not be enabled until reset.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

• enable – True to enable, false to disable.

uint8_t XRDC2_GetMemExclAccessLockDomainOwner(XRDC2_Type *base, xrdc2_mem_t mem)
Get current memory region exclusive access lock owner.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

Returns
The domain ID of the lock owner.

status_t XRDC2_TryLockMemExclAccess(XRDC2_Type *base, xrdc2_mem_t mem)
Try to lock the memory region exclusive access.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

Return values

1296 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_Fail – Failed to lock.

• kStatus_Success – Locked succussfully.

void XRDC2_LockMemExclAccess(XRDC2_Type *base, xrdc2_mem_t mem)
Lock the memory region exclusive access using blocking method.

Note: This function must be called when the lock is not disabled.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

void XRDC2_UnlockMemExclAccess(XRDC2_Type *base, xrdc2_mem_t mem)
Unlock the memory region exclusive access.

Note: This function must be called by the lock owner.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

void XRDC2_ForceMemExclAccessLockRelease(XRDC2_Type *base, xrdc2_mem_t mem)
Force the memory region exclusive access lock release.

The master does not own the lock could call this function to force release the lock.

Parameters
• base – XRDC2 peripheral base address.

• mem – The memory region to operate.

void XRDC2_GetPeriphAccessDefaultConfig(xrdc2_periph_access_config_t *config)
Gets the default peripheral access configuration.

The default configuration is set as follows:

config->lockMode = kXRDC2_AccessConfigLockWritable;
config->policy[0] = kXRDC2_AccessPolicyNone;
config->policy[1] = kXRDC2_AccessPolicyNone;
...
config->policy[15] = kXRDC2_AccessPolicyNone;

Parameters
• config – Pointer to the configuration structure.

void XRDC2_SetPeriphAccessConfig(XRDC2_Type *base, xrdc2_periph_t periph, const
xrdc2_periph_access_config_t *config)

Sets the peripheral access policy.

Parameters
• base – XRDC2 peripheral base address.

• periph – Which peripheral descriptor to set.

• config – Pointer to the access policy configuration structure.

2.125. XRDC2: Extended Resource Domain Controller 2 1297



MCUXpresso SDK Documentation, Release 25.12.00

void XRDC2_SetPeriphAccessValid(XRDC2_Type *base, xrdc2_periph_t periph, bool valid)
Sets the peripheral descriptor as valid or invalid.

Parameters
• base – XRDC2 peripheral base address.

• periph – Which peripheral descriptor to set.

• valid – True to set valid, false to set invalid.

void XRDC2_SetPeriphAccessLockMode(XRDC2_Type *base, xrdc2_periph_t periph,
xrdc2_access_config_lock_t lockMode)

Sets the peripheral descriptor lock mode.

Parameters
• base – XRDC2 peripheral base address.

• periph – Which peripheral descriptor to set.

• lockMode – The lock mode to set.

void XRDC2_SetPeriphDomainAccessPolicy(XRDC2_Type *base, xrdc2_periph_t periph, uint8_t
domainId, xrdc2_access_policy_t policy)

Sets the peripheral access policy for specific domain.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

• domainId – The ID of the domain whose policy will be changed.

• policy – The access policy to set.

void XRDC2_EnablePeriphExclAccessLock(XRDC2_Type *base, xrdc2_periph_t periph, bool
enable)

Disable the peripheral exclusive access lock.

Once disabled, it could not be enabled until reset.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

• enable – True to enable, false to disable.

uint8_t XRDC2_GetPeriphExclAccessLockDomainOwner(XRDC2_Type *base, xrdc2_periph_t
periph)

Get current peripheral exclusive access lock owner.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

Returns
The domain ID of the lock owner.

status_t XRDC2_TryLockPeriphExclAccess(XRDC2_Type *base, xrdc2_periph_t periph)
Try to lock the peripheral exclusive access.

Parameters
• base – XRDC2 peripheral base address.

1298 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

• periph – The peripheral to operate.

Return values
• kStatus_Fail – Failed to lock.

• kStatus_Success – Locked succussfully.

void XRDC2_LockPeriphExclAccess(XRDC2_Type *base, xrdc2_periph_t periph)
Lock the peripheral exclusive access using blocking method.

Note: This function must be called when the lock is not disabled.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

void XRDC2_UnlockPeriphExclAccess(XRDC2_Type *base, xrdc2_periph_t periph)
Unlock the peripheral exclusive access.

Note: This function must be called by the lock owner.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

void XRDC2_ForcePeriphExclAccessLockRelease(XRDC2_Type *base, xrdc2_periph_t periph)
Force the peripheral exclusive access lock release.

The master does not own the lock could call this function to force release the lock.

Parameters
• base – XRDC2 peripheral base address.

• periph – The peripheral to operate.

enum _xrdc2_global_config_lock
Global configuration lock.

Values:

enumerator kXRDC2_GlobalConfigLockDisabled
Lock disabled, registers can be written by any domain.

enumerator kXRDC2_GlobalConfigLockDisabledUntilReset
Lock disabled until the next reset.

enumerator kXRDC2_GlobalConfigLockOwnerOnly
Lock enabled, only the lock owner can write.

enumerator kXRDC2_GlobalConfigLockEnabledUntilReset
Lock enabled, all registers are read only until the next reset.

enum _xrdc2_secure_attr
XRDC2 secure attribute, the register bit MDACi_MDAj_W0[SA], secure/nonsecure attribute
output on a hit.

Values:

2.125. XRDC2: Extended Resource Domain Controller 2 1299



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kXRDC2_MasterSecure
Use the bus master’s secure/nonsecure attribute directly.

enumerator kXRDC2_ForceSecure
Force the bus attribute for this master to secure.

enumerator kXRDC2_ForceNonSecure
Force the bus attribute for this master to non-secure.

enum _xrdc2_privilege_attr
XRDC2 privileged attribute, the register bit MDACi_MDAj_W0[PA], defines the privi-
leged/user attribute on a hit.

Values:

enumerator kXRDC2_MasterPrivilege
Use the bus master’s attribute directly.

enumerator kXRDC2_ForceUser
Force the bus attribute for this master to user.

enumerator kXRDC2_ForcePrivilege
Force the bus attribute for this master to privileged.

enum _xrdc2_access_policy
XRDC2 domain access control policy.

Values:

enumerator kXRDC2_AccessPolicyNone

enumerator kXRDC2_AccessPolicyAlt1

enumerator kXRDC2_AccessPolicyAlt2

enumerator kXRDC2_AccessPolicyAlt3

enumerator kXRDC2_AccessPolicyAlt4

enumerator kXRDC2_AccessPolicyAlt5

enumerator kXRDC2_AccessPolicyAlt6

enumerator kXRDC2_AccessPolicyAll

enum _xrdc2_access_config_lock
Access configuration lock mode, the register field PDAC and MRGD LK2.

Values:

enumerator kXRDC2_AccessConfigLockDisabled
Entire PDACn/MRGDn/MSC can be written.

enumerator kXRDC2_AccessConfigLockDisabledUntilReset
Entire PDACn/MRGDn/MSC can be written until next reset.

enumerator kXRDC2_AccessConfigLockDomainXOnly
Domain x only write the DxACP field.

enumerator kXRDC2_AccessConfigLockEnabledUntilReset
PDACn/MRGDn/MSC is read-only until the next reset.

typedef enum _xrdc2_global_config_lock xrdc2_global_config_lock_t
Global configuration lock.

1300 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _xrdc2_secure_attr xrdc2_secure_attr_t
XRDC2 secure attribute, the register bit MDACi_MDAj_W0[SA], secure/nonsecure attribute
output on a hit.

typedef enum _xrdc2_privilege_attr xrdc2_privilege_attr_t
XRDC2 privileged attribute, the register bit MDACi_MDAj_W0[PA], defines the privi-
leged/user attribute on a hit.

typedef struct _xrdc2_master_domain_assignment xrdc2_master_domain_assignment_t
Domain assignment for the bus master.

XRDC2 compares the bus master match input with the parameter
xrdc2_master_domain_assignment_t::mask and xrdc2_master_domain_assignment_t::match
in this structure. If hit, the domain ID, privilege attribute, and secure attribute are used
for the access.

typedef enum _xrdc2_access_policy xrdc2_access_policy_t
XRDC2 domain access control policy.

typedef enum _xrdc2_access_config_lock xrdc2_access_config_lock_t
Access configuration lock mode, the register field PDAC and MRGD LK2.

typedef struct _xrdc2_periph_access_config xrdc2_periph_access_config_t
XRDC2 peripheral domain access control configuration.

typedef struct _xrdc2_mem_access_config xrdc2_mem_access_config_t
XRDC2 memory region domain access control configuration.

typedef struct _xrdc2_mem_slot_access_config xrdc2_mem_slot_access_config_t
XRDC2 memory slot domain access control configuration.

void XRDC2_Init(XRDC2_Type *base)
Initializes the XRDC2 module.

Parameters
• base – XRDC2 peripheral base address.

void XRDC2_Deinit(XRDC2_Type *base)
De-initializes the XRDC2 module.

Parameters
• base – XRDC2 peripheral base address.

FSL_XRDC2_DRIVER_VERSION
Driver version.

XRDC2_EAL_FORCE_RELEASE_MAGIC_0

XRDC2_EAL_FORCE_RELEASE_MAGIC_1

XRDC2_EAL_DISABLE

XRDC2_EAL_DISABLE_UNTIL_RESET

XRDC2_EAL_UNLOCKED

XRDC2_EAL_LOCKED

XRDC2_EAL_MASK

2.125. XRDC2: Extended Resource Domain Controller 2 1301



MCUXpresso SDK Documentation, Release 25.12.00

struct _xrdc2_master_domain_assignment
#include <fsl_xrdc2.h> Domain assignment for the bus master.

XRDC2 compares the bus master match input with the parameter
xrdc2_master_domain_assignment_t::mask and xrdc2_master_domain_assignment_t::match
in this structure. If hit, the domain ID, privilege attribute, and secure attribute are used
for the access.

Public Members

bool lock
Set true to lock the descriptor.

xrdc2_privilege_attr_t privilegeAttr
Privilege attribute.

xrdc2_secure_attr_t secureAttr
Secure attribute.

uint8_t domainId
Domain ID used when this descriptor hit.

uint16_t mask
Mask used for descriptor hit.

uint16_t match
Match used for descriptor hit.

struct _xrdc2_periph_access_config
#include <fsl_xrdc2.h> XRDC2 peripheral domain access control configuration.

Public Members

xrdc2_access_config_lock_t lockMode
PDACn lock configuration.

xrdc2_access_policy_t policy[1]
Access policy for each domain.

struct _xrdc2_mem_access_config
#include <fsl_xrdc2.h> XRDC2 memory region domain access control configuration.

Public Members

uint32_t startAddr
Memory region start address, should be 4k aligned.

uint32_t endAddr
Memory region end address, (endAddr + 1) should be 4k aligned.

xrdc2_access_config_lock_t lockMode
MRGDn lock configuration.

xrdc2_access_policy_t policy[1]
Access policy for each domain.

struct _xrdc2_mem_slot_access_config
#include <fsl_xrdc2.h> XRDC2 memory slot domain access control configuration.

1302 Chapter 2. MIMXRT1176



MCUXpresso SDK Documentation, Release 25.12.00

Public Members

xrdc2_access_config_lock_t lockMode
Descriptor lock configuration.

xrdc2_access_policy_t policy[1]
Access policy for each domain.

2.125. XRDC2: Extended Resource Domain Controller 2 1303



MCUXpresso SDK Documentation, Release 25.12.00

1304 Chapter 2. MIMXRT1176



Chapter 3

Middleware

3.1 Boot

3.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

1305

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation


MCUXpresso SDK Documentation, Release 25.12.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

3.1.2 MCUboot

License: Apache 2.0

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

There are also instructions for the Simulator.

1306 Chapter 3. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/


MCUXpresso SDK Documentation, Release 25.12.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

• boot/bootutil - The core of the bootloader itself.

• boot/boot_serial - Support for serial upgrade within the bootloader itself.

• boot/zephyr - Port of the bootloader to Zephyr.

• boot/mynewt - Bootloader application for Apache Mynewt.

• boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.

• boot/mbed - Port of the bootloader to Mbed OS.

• boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

• boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

• imgtool - A tool to securely sign firmware images for booting by MCUboot.

• sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

• Our developer mailing list

• Our Discord channel Get your invite

3.2 Connectivity

3.2.1 lwIP

This is the NXP fork of the lwIP networking stack.
• For details about changes and additions made by NXP, see CHANGELOG.

• For details about the NXP porting layer, see The NXP lwIP Port.

• For usage and API of lwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP lwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is lwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

3.2. Connectivity 1307

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/


MCUXpresso SDK Documentation, Release 25.12.00

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for lwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif_probe_link() which reads those data from
PHY and forwards them into lwIP stack.

In almost all examples this function is called every ETH_LINK_POLLING_INTERVAL_MS
(1500ms) by a function probe_link_cyclic().

By setting ETH_LINK_POLLING_INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif_init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX_TASK_STACK_SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH_DO_RX_IN_SEPARATE_TASK macro to 0.

Disabling Rx interrupt when out of buffers If ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH_MAX_RX_PKTS_AT_ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

• ethernetif_wait_linkup()- Blocks until the link on the passed netif is not up.

• ethernetif_wait_linkup_array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif_wait_ipv4_valid() does this.

3.3 File System

3.3.1 FatFs

1308 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content This is MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUXpresso version is extending original content by following hardware specific porting layers:

• mmc_disk

• nand_disk

• ram_disk

• sd_disk

• sdspi_disk

• usb_disk

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15_rev0]
• Upgraded to version 0.15

• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev0]
• Upgraded to version 0.14b

3.3. File System 1309

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/


MCUXpresso SDK Documentation, Release 25.12.00

[R0.14a_rev0]
• Upgraded to version 0.14a

• Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
• Upgraded to version 0.14

• Applied patch ff14_p1.diff and ff14_p2.diff

[R0.13c_rev0]
• Upgraded to version 0.13c

• Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff_13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
• Upgraded to version 0.13b

[R0.13a_rev0]
• Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[R0.12c_rev1]
• Add NAND disk support.

[R0.12c_rev0]
• Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[R0.12b_rev0]
• Upgraded to version 0.12b.

[R0.11a]
• Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.

• Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

• Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

• Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

• Conditional compilation of physical disk interfaces in diskio.c.

3.4 Motor Control

3.4.1 FreeMASTER

Communication Driver User Guide

1310 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

3.4. Motor Control 1311

https://www.nxp.com/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster


MCUXpresso SDK Documentation, Release 25.12.00

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

1312 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,

3.4. Motor Control 1313

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support


MCUXpresso SDK Documentation, Release 25.12.00

the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

1314 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

3.4. Motor Control 1315



MCUXpresso SDK Documentation, Release 25.12.00

Masked Memory Write To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

1316 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

3.4. Motor Control 1317



MCUXpresso SDK Documentation, Release 25.12.00

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

1318 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

3.4. Motor Control 1319



MCUXpresso SDK Documentation, Release 25.12.00

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

1320 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

3.4. Motor Control 1321



MCUXpresso SDK Documentation, Release 25.12.00

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

1322 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

3.4. Motor Control 1323



MCUXpresso SDK Documentation, Release 25.12.00

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

1324 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

3.4. Motor Control 1325



MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

1326 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

3.4. Motor Control 1327



MCUXpresso SDK Documentation, Release 25.12.00

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

1328 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

3.4. Motor Control 1329



MCUXpresso SDK Documentation, Release 25.12.00

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

1330 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When

3.4. Motor Control 1331



MCUXpresso SDK Documentation, Release 25.12.00

a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

1332 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

3.4. Motor Control 1333



MCUXpresso SDK Documentation, Release 25.12.00

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

1334 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

3.4. Motor Control 1335



MCUXpresso SDK Documentation, Release 25.12.00

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

(continues on next page)

1336 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

3.4. Motor Control 1337



MCUXpresso SDK Documentation, Release 25.12.00

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

1338 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

3.4. Motor Control 1339



MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

1340 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

3.4. Motor Control 1341



MCUXpresso SDK Documentation, Release 25.12.00

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

1342 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.4. Motor Control 1343



MCUXpresso SDK Documentation, Release 25.12.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

1344 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.4. Motor Control 1345



MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

1346 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html


MCUXpresso SDK Documentation, Release 25.12.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.4. Motor Control 1347

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860


MCUXpresso SDK Documentation, Release 25.12.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

3.5 MultiCore

3.5.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUXpresso SDK to make the software framework for easy development of multicore applica-
tions.

1348 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit
(MCSDK) version 25.12.00.
This software package contains components for efficient work with multicore devices as well as
for the
multiprocessor communication.

What is new
• eRPC CHANGELOG

• RPMsg-Lite CHANGELOG

• MCMgr CHANGELOG

• Supported evaluation boards (multicore examples):

– LPCXpresso55S69

– FRDM-K32L3A6

– MIMXRT1170-EVKB

– MIMXRT1160-EVK

– MIMXRT1180-EVK

– MCX-N5XX-EVK

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– KW47-EVK

– KW47-LOC

– FRDM-MCXW72

– MCX-W72-EVK

– FRDM-IMXRT1186

• Supported evaluation boards (multiprocessor examples):

– LPCXpresso55S36

– FRDM-K22F

– FRDM-K32L2B

– MIMXRT685-EVK

– MIMXRT1170-EVKB

– MIMXRT1180

– FRDM-MCXN236

– FRDM-MCXC242

– FRDM-MCXC444

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– FRDM-IMXRT1186

3.5. MultiCore 1349

https://github.com/EmbeddedRPC/erpc/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.12.00/CHANGELOG.md


MCUXpresso SDK Documentation, Release 25.12.00

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location
Multicore SDK location
<MCSDK_dir>

<MCUXpressoSDK_install_dir>/middleware/
multicore/

Documentation <MCSDK_dir>/mcuxsdk-doc/
Embedded Remote Procedure Call
component

<MCSDK_dir>/erpc/

Multicore Manager component <MCSDK_dir>/mcmgr/
RPMsg-Lite <MCSDK_dir>/rpmsg_lite/
Multicore demo applications <MCUXpressoSDK_install_dir>/examples/

multicore_examples/
Multiprocessor demo applications <MCUXpressoSDK_install_dir>/examples/

multiprocessor_examples/

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

• Embedded Remote Procedure Call (eRPC)

• Multicore Manager (MCMGR) - included just in SDK for multicore devices

• Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.
The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in
the <MCUXpressoSDK_install_dir>/examples/multicore_examples subdirectories.

• erpc_matrix_multiply_mu

• erpc_matrix_multiply_mu_rtos

• erpc_matrix_multiply_rpmsg

• erpc_matrix_multiply_rpmsg_rtos

• erpc_two_way_rpc_rpmsg_rtos

• freertos_message_buffers

• hello_world

• multicore_manager

• rpmsg_lite_pingpong

• rpmsg_lite_pingpong_rtos

• rpmsg_lite_pingpong_dsp

• rpmsg_lite_pingpong_tzm

1350 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain


MCUXpresso SDK Documentation, Release 25.12.00

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.
The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in
the <MCUXpressoSDK_install_dir>/examples/multiprocessor_examples subdirectories.

• erpc_client_matrix_multiply_spi

• erpc_server_matrix_multiply_spi

• erpc_client_matrix_multiply_uart

• erpc_server_matrix_multiply_uart

• erpc_server_dac_adc

• erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

3.5. MultiCore 1351



MCUXpresso SDK Documentation, Release 25.12.00

All the MCSDK-related files are located in <MCUXpressoSDK_install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.12.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

• Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

• Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

• Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

1352 Chapter 3. Middleware

http://www.nxp.com


MCUXpresso SDK Documentation, Release 25.12.00

RPC implementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

Main eRPC features:
• Scalable from BareMetal to Linux OS - configurable memory and threading policies.

• Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

• Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:

• Maintains information about all cores in system.

• Secondary/auxiliary cores startup and shutdown.

• Remote core monitoring and event handling.

The MCMGR library is located in the<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:

• Shared memory interprocessor communication.

• Virtio-based messaging bus.

• Application-defined messages sent between endpoints.

3.5. MultiCore 1353



MCUXpresso SDK Documentation, Release 25.12.00

• Portable to different environments/platforms.

• Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder
Multicore example
projects

<MCUXpressoSDK_install_dir>/examples/multicore_examples/
<application_name>/

Multiprocessor example
projects

<MCUXpressoSDK_install_dir>/examples/
multiprocessor_examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers
The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism
On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging API.

1354 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls
To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

• Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)

• Sensor aggregation/fusion applications

• Encryption algorithms

• Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.2

– RPMsg-Lite v5.3.0

[25.09.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

3.5. MultiCore 1355

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.1

– RPMsg-Lite v5.2.1

[25.06.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.0

– RPMsg-Lite v5.2.0

[25.03.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.7

– RPMsg-Lite v5.1.4

[24.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.6

– RPMsg-Lite v5.1.3

[2.16.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.2

[2.15.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.12.0

– eRPC generator (erpcgen) v1.12.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.1

1356 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[2.14.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.11.0

– eRPC generator (erpcgen) v1.11.0

– Multicore Manager (MCMgr) v4.1.4

– RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.13.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.12.0_imx93]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.1

[2.12.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.0

3.5. MultiCore 1357



MCUXpresso SDK Documentation, Release 25.12.00

[2.11.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.1

[2.11.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.0

[2.10.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.1

– eRPC generator (erpcgen) v1.8.1

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.2

[2.9.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.0

– eRPC generator (erpcgen) v1.8.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.1

[2.8.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.4

– eRPC generator (erpcgen) v1.7.4

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.1.0

1358 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.3

– eRPC generator (erpcgen) v1.7.3

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.0.0

[2.6.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.2

– eRPC generator (erpcgen) v1.7.2

– Multicore Manager (MCMgr) v4.0.3

– RPMsg-Lite v2.2.0

[2.5.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.1

– eRPC generator (erpcgen) v1.7.1

– Multicore Manager (MCMgr) v4.0.2

– RPMsg-Lite v2.0.2

[2.4.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.0

– eRPC generator (erpcgen) v1.7.0

– Multicore Manager (MCMgr) v4.0.1

– RPMsg-Lite v2.0.1

[2.3.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.6.0

– eRPC generator (erpcgen) v1.6.0

– Multicore Manager (MCMgr) v4.0.0

– RPMsg-Lite v1.2.0

3.5. MultiCore 1359



MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.5.0

– eRPC generator (erpcgen) v1.5.0

– Multicore Manager (MCMgr) v3.0.0

– RPMsg-Lite v1.2.0

[2.2.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.4.0

– eRPC generator (erpcgen) v1.4.0

– Multicore Manager (MCMgr) v2.0.1

– RPMsg-Lite v1.1.0

[2.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.3.0

– eRPC generator (erpcgen) v1.3.0

[2.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.2.0

– eRPC generator (erpcgen) v1.2.0

– Multicore Manager (MCMgr) v2.0.0

– RPMsg-Lite v1.0.0

[1.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.1.0

– Multicore Manager (MCMgr) v1.1.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev01

[1.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.0.0

– Multicore Manager (MCMgr) v1.0.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

1360 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For overview please read RPMSG-Lite VirtIO Overview.

For RPMSG-Lite Design Considerations please read RPMSG-Lite Design Considerations.

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

3.5. MultiCore 1361

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://nxp-mcuxpresso.github.io/rpmsg-lite/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation


MCUXpresso SDK Documentation, Release 25.12.00

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static API in RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352
Relative Difference [%] ~52.7% ~77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.

1362 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action
in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_cb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

3.5. MultiCore 1363



MCUXpresso SDK Documentation, Release 25.12.00

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

• Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

• Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

• Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

• Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

• Read received data directly from the shared memory.

• Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

1364 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

3.5. MultiCore 1365

https://mcuxpresso.nxp.com


MCUXpresso SDK Documentation, Release 25.12.00

see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board_name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

• rpmsg_env_bm.c

• rpmsg_env_freertos.c

• rpmsg_env_xos.c

• rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

1366 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme


MCUXpresso SDK Documentation, Release 25.12.00

Config-
uration
option

De-
fault
value

Usage

RL_MS_PER_INTERVAL(1) Delay in milliseconds used in non-blocking API functions for polling.
RL_BUFFER_PAYLOAD_SIZE(496) Size of the buffer payload, it must be more than 1 byte, and has to be word

align (including rpmsg header size 16 bytes), if not it will be aligned up
RL_BUFFER_COUNT(2) Number of the buffers, it must be power of two (2, 4, …)
RL_API_HAS_ZEROCOPY(1) Zero-copy API functions enabled/disabled.
RL_USE_STATIC_API(0) Static API functions (no dynamic allocation) enabled/disabled.
RL_USE_DCACHE(0) Memory cache management of shared memory. Use in case of data cache

is enabled for shared memory.
RL_CLEAR_USED_BUFFERS(0) Clearing used buffers before returning back to the pool of free buffers en-

abled/disabled.
RL_USE_MCMGR_IPC_ISR_HANDLER(0) When enabled IPC interrupts are managed by the Multicore Manager (IPC

interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_ENVIRONMENT_CONTEXT(0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some
RAM).

RL_DEBUG_CHECK_BUFFERS(0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by
RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION(0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOW_CUSTOM_SHMEM_CONFIG(0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RL_ASSERTsee
rpmsg_default_config.h

Assert implementation.

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvm project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_clang_format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

3.5. MultiCore 1367

http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

[v5.3.0]

Added
• RT700 porting layer added support to send rpmsg messages between CM33_0 <-> Hifi1 and

CM33_1 <-> Hifi4 cores.

• Add new platform macro RL_PLATFORM_MAX_ISR_COUNT this will set number of IRQ
count per platform. This macro is then used in environment layers to set isr_table size
where irq handles are registered. It size should match the bit length of VQ_ID so all combi-
nations can fit into table.

• Unit tests updated to improve code coverage, new unit tests added covering static alloca-
tions in rtos environment layers.

Fixed
• virtio.h removed typedef uint8_t boolean and in its place use standard C99 bool type to avoid

potential type conflicts.

• env_acquire_sync_lock() and env_release_sync_lock() synchronization primitives removed

• Kconfig consolidation, when RL_ALLOW_CUSTOM_SHMEM_CONFIG enabled the plat-
form_get_custom_shmem_config() function needs to be implemented in platform layer to
provide custom shared memory configuration for RPMsg-Lite instance.

v5.2.1

Added
• Doc added RPMSG-Lite VirtIO Overview

• Doc added RPSMG-Lite Design Consi derations

• Added frdmimxrt1186 unit testing

Changed
• Remove limitation that RL_BUFFER_SIZE needs to be power of 2. It just has to be more

than 16 bytes, e.g. 16 bytes of rpmsg header and payload size at least 1 byte and word
aligned, if not it will be aligned up.

Fixed
• Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for

imxrt700_m33, imxrt700_hifi4, imxrt700_hifi1 platforms

v5.2.0

Added
• Add MCXL20 porting layer and unit testing

• New utility macro RL_CALCULATE_BUFFER_COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

• RT700 platform add support for MCMGR in DSPs

1368 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Change rpmsg_platform.c to support new MCMGR API

• Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

• Refactored repeated buffer count calculation pattern for better code maintainability.

• To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed
• Fixed env_wait_for_link_up function to handle timeout in link state checks for baremetal

and qnx environment, RL_BLOCK mode can be used to wait indefinitely.

• Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST_LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

• Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_config.vring_size
expressions.

• Fixed CERT INT31-C violation in platform_interrupt_disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

• Fixed unsigned integer underflow in rpmsg_lite_alloc_tx_buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

• Fixed CERT-C INT31-C violation in rpmsg_lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

– Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& 0xFFFFU).

– This fix prevents potential data loss when size values exceed 65535.

• Fixed CERT INT31-C violation in env_memset functions by explicitly converting int32_t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

• Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

– rpmsg_env_freertos.c: Added validation before converting int32_t to UBaseType_t.

– rpmsg_env_qnx.c: Fixed format string and added validation before assigning to mqstat
fields.

– rpmsg_env_threadx.c: Added validation to prevent integer overflow and negative val-
ues.

– rpmsg_env_xos.c: Added range checking before casting to uint16_t.

– rpmsg_env_zephyr.c: Added validation before passing values to k_msgq_init.

• Fixed a CERT INT31-C compliance issue in env_get_current_queue_size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

• Fixed CERT INT31-C violation in rpmsg_platform.c where memcmp() return value (signed int)
was compared with unsigned constant without proper type handling.

3.5. MultiCore 1369



MCUXpresso SDK Documentation, Release 25.12.00

• Fixed CERT INT31-C violation in rpmsg_platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

• Fixed potential integer overflow in env_sleep_msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

• Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

• Added RL_MAX_BUFFER_COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

• Fixed CERT INT31-C violation in vring_need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
• Add KW43B43 porting layer

Changed
• Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

Added
• Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg_config.h in case of data cache is used.

• Cmake/Kconfig support added.

• Porting layers for imx95, imxrt700, mcmxw71x, mcmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
• Zephyr-related changes.

• Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
• Test suite provided.

• Zephyr support added.

1370 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
• RPMsg-Lite: Added aarch64 support.

Changed
• RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.

• Code formatting using LLVM16.

Fixed
• Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added
• Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

Changed
• Improved debug check buffers implementation - instead of checking the pointer fits into

shared memory check the presence in the VirtIO ring descriptors list.

• VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
• Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

• Misra corrections.

v4.0.0 - 20-Jun-2022

Added
• Added support for custom shared memory arrangement per the RPMsg_Lite instance.

• Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
• Adjusted rpmsg_lite_is_link_up() to return RL_TRUE/RL_FALSE.

3.5. MultiCore 1371

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21


MCUXpresso SDK Documentation, Release 25.12.00

v3.2.0 - 17-Jan-2022

Added
• Added support for i.MX8 MP multicore platform.

Changed
• Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR

#14.

• Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
• Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added
• Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK

examples, otherwise stdio printf is used).

• Added environment layers for XOS.

• Added support for i.MX RT500, i.MX RT1160 and i.MX RT1170 multicore platforms.

Fixed
• Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
• Updated RL_BUFFER_COUNT documentation (issue #10).

• Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added
• Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-

site side notification sending each time received buffers are consumed and put into the
queue of available buffers.

• Added environment layers for Threadx.

• Added support for i.MX8QM multicore platform.

Changed
• Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

1372 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20
https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10


MCUXpresso SDK Documentation, Release 25.12.00

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed (7.4).

• Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

• Correction of rpmsg_lite_instance structure members description.

• Address -Waddress-of-packed-member warnings in GCC9.

Changed
• Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed, incl. data types consolidation.

• Code formatted.

v2.2.0 - 20-Mar-2019

Added
• Added configuration macro RL_DEBUG_CHECK_BUFFERS.

• Several MISRA violations fixed.

• Added environment layers for QNX and Zephyr.

• Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

• Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
• Supporting i.MX6SX and i.MX7D MPU platforms.

• Supporting LPC5411x MCU platform.

• Baremental and FreeRTOS support.

• Support of copy and zero-copy transfer.

• Support of static API (without dynamic allocations).

3.5. MultiCore 1373



MCUXpresso SDK Documentation, Release 25.12.00

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview This repository is for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
mcmgr directory.

1374 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://nxp-mcuxpresso.github.io/mcux-mcmgr/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation


MCUXpresso SDK Documentation, Release 25.12.00

The Multicore Manager provides the following major functions:

• Maintains information about all cores in system.

• Secondary/auxiliary core(s) startup and shutdown.

• Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

Example of MCMGR usage to start secondary core:

#include ”mcmgr.h”

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

(continues on next page)

3.5. MultiCore 1375



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass ”1” as startup data,␣
↪→starting synchronously. */

MCMGR_StartCore(kMCMGR_Core1, CORE1_BOOT_ADDRESS, 1, kMCMGR_Start_Synchronous);
.
.
.

/* Stop secondary core execution. */
MCMGR_StopCore(kMCMGR_Core1);

}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

It could also happen that the secondary core application stops running correctly and the primary
core application does not know about that situation. Therefore, it is beneficial to implement a
mechanism for core health monitoring. The test_heartbeat unit test can serve as an example
how to ensure that: secondary core could periodically send heartbeat signals to the primary
core using MCMGR_TriggerEvent() API to indicate that it is alive and functioning properly.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() API. Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)
#define APP_NUMBER_OF_CORES (2)
#define APP_SECONDARY_CORE kMCMGR_Core1

/* Callback function registered via the MCMGR_RegisterEvent() and triggered by MCMGR_TriggerEvent()␣
↪→called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_core_t coreNum, uint16_t eventData, void *context)
{

uint16_t *data = &((uint16_t *)context)[coreNum];

*data = eventData;
}

void main()
{

uint16_t RPMsgRemoteReadyEventData[NUMBER_OF_CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

/* Register the application event before starting the secondary core */
MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void␣

↪→*)RPMsgRemoteReadyEventData);

(continues on next page)

1376 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass rpmsg_lite_base address␣

↪→as startup data, starting synchronously. */
MCMGR_StartCore(APP_SECONDARY_CORE, CORE1_BOOT_ADDRESS, (uint32_t)rpmsg_lite_

↪→base, kMCMGR_Start_Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to␣
↪→communicate. */

while(APP_RPMSG_READY_EVENT_DATA != RPMsgRemoteReadyEventData[APP_SECONDARY_
↪→CORE]) {};
.
.
.
}

Code for the secondary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

.

.

.

/* Signal the to other core that we are ready by triggering the event and passing the APP_RPMSG_
↪→READY_EVENT_DATA */

MCMGR_TriggerEvent(kMCMGR_Core0, kMCMGR_RemoteApplicationEvent, APP_RPMSG_
↪→READY_EVENT_DATA);
.
.
.
}

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

3.5. MultiCore 1377



MCUXpresso SDK Documentation, Release 25.12.00

1378 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[v5.0.2]

Added
• Added gcov options and configs to support mcmgr code coverage

• Added new test_weak_mu_isr testcase for devices with MU peripheral

• Added new test_heartbeat testcase showing heartbeat mechanism between primary and
secondary cores using the MCMGR

v5.0.1

Added
• Added frdmimxrt1186 unit testing

Changed
• [KW43] Rename core#1 reset control register

Fixed
• Added CX flag into CMakeLists.txt to allow c++ build compatibility.

• Fix path to mcmgr headers directory in doxyfile

v5.0.0

Added
• Added MCMGR_BUSY_POLL_COUNT macro to prevent infinite polling loops in MCMGR

operations.

• Implemented timeout mechanism for all polling loops in MCMGR code.

• Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

– MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

– MCMGR_TriggerEvent(mcmgr_event_type_t type, uint16_t eventData, mcmgr_core_t
coreNum)

– MCMGR_TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

– typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

3.5. MultiCore 1379

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

When registering the event with function MCMGR_RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

• Updated all porting files to support new MCMGR API.

• Added new platform specific include file mcmgr_platform.h. It will contain common plat-
form specific macros that can be then used in mcmgr and application. e.g. platform core
count MCMGR_CORECOUNT 4.

• Move all header files to new inc directory.

• Added new platform-specific include files inc/platform/<platform_name>/mcmgr_platform.
h.

Added
• Add MCXL20 porting layer and unit testing

v4.1.7

Fixed
• mcmgr_stop_core_internal() function now returns kStatus_MCMGR_NotImplemented status

code instead of kStatus_MCMGR_Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mcxw716, mcxw727.

[v4.1.6]

Added
• Multicore Manager moved to standalone repository.

• Add porting layers for imxrt700, mcmxw727, kw47b42.

• New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added
• Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid

using uninitialized data in their implementations.

[v4.1.4]

Fixed
• Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable

flag is not set in the CR/TCR register.

• Messaging Unit RX and status registers are cleared after the initialization.

1380 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[v4.1.3]

Added
• Add porting layers for imxrt1180.

Fixed
• mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-

able flag is not set in the CR/TCR register.

• mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed
• Update mcmgr_stop_core_internal() implementations to set core state to kM-

CMGR_ResetCoreState.

[v4.1.0]

Fixed
• Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
• Documentation updated to describe handshaking in a graphic form.

• Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
• Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed
• Code formatting, removed unused code

[v4.0.0]

3.5. MultiCore 1381



MCUXpresso SDK Documentation, Release 25.12.00

Added
• Add new MCMGR_TriggerEventForce() API.

[v3.0.0]

Removed
• Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
• Modified MCMGR_GetStartupData()

Added
• Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()

• Added the ability for remote core monitoring and event handling

[v2.0.1]

Fixed
• Updated to be Misra compliant.

[v2.0.0]

Added
• Support for lpcxpresso54114 board.

[v1.1.0]

Fixed
• Ported to KSDK 2.0.0.

[v1.0.0]

Added
• Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

1382 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

eRPC

• MCUXpresso SDK : mcuxsdk-middleware-erpc

– Overview

– Documentation

– Setup

– Contribution

• eRPC

– About

– Releases

* Edge releases

– Documentation

– Examples

– References

– Directories

– Building and installing

* Requirements

· Windows

· Mac OS X

* Building

· CMake and KConfig

· Make

3.5. MultiCore 1383

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation


MCUXpresso SDK Documentation, Release 25.12.00

* Installing for Python

– Known issues and limitations

– Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the
internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {

// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void

}

Client side usage:

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* init eRPC client IO service */
initIO_client(client_manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */
deinitIO_client();
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);

(continues on next page)

1384 Chapter 3. Middleware

http://thrift.apache.org


MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
erpc_transport_tcp_deinit(transport);

}

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* scope for client service */
{

/* init eRPC client IO service */
IO_client client(client_manager);

// Now we can call the remote function to turn on the green LED.
client.set_led(kGreen, true);

}

/* deinit objects */
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

Server side usage:

// Implement the remote function.
void set_led(LEDName whichLed, bool onOrOff) {

// implementation goes here
}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
erpc_service_t service = create_IO_service();

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */
destroy_IO_service(service);
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

// Implement the remote function.
class IO : public IO_interface

(continues on next page)

3.5. MultiCore 1385



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{

/* eRPC call definition */
void set_led(LEDName whichLed, bool onOrOff) override {

// implementation goes here
}

}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
IO IOImpl;
IO_service io(&IOImpl);

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, &io);

/* poll for requests */
erpc_status_t err = server.run();

/* deinit objects */
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

A number of transports are supported, and new transport classes are easy to write.

Supported transports can be found in erpc/erpc_c/transport folder. E.g:

• CMSIS UART

• NXP Kinetis SPI and DSPI

• POSIX and Windows serial port

• TCP/IP (mostly for testing)

• NXP RPMsg-Lite / RPMsg TTY

• SPIdev Linux

• USB CDC

• NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

1386 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc


MCUXpresso SDK Documentation, Release 25.12.00

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and
update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in

mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

• erpc (EmbeddedRPC) getting started notes

• ERPC Linux Local Environment Construction and Use

• The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c - Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.

erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.

examples - Several example IDL files.

mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

3.5. MultiCore 1387

https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd


MCUXpresso SDK Documentation, Release 25.12.00

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

• CMake (minimal version 3.20.0)

• Generator - Make, Ninja, …

• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Requirements when using Make:

• Make
• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_v14/readme_erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install_dependencies.ps1
* ```

#### Linux

```bash
./install_dependencies.sh

Mandatory for case, when build for different architecture is needed

• gcc-multilib, g++-multilib

Mac OS X

1388 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

./install_dependencies.sh

Building

CMake and KConfig eRPC use CMake and KConfig to configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc/ execute:

cmake -B ./build # in erpc/build generate cmake project
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:

• erpc: build the liberpc.a static library

• erpcgen: build the erpcgen tool

• erpcsniffer: build the sniffer tool

• test: build the unit tests under the test directory

• all: build all of the above

• install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

3.5. MultiCore 1389



MCUXpresso SDK Documentation, Release 25.12.00

Known issues and limitations
• Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully

supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor, Inc.

Copyright 2016-2025 NXP

eRPC Getting Started

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install_dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

1390 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

3.5. MultiCore 1391



MCUXpresso SDK Documentation, Release 25.12.00

|

1392 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

3.5. MultiCore 1393



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

1394 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

3.5. MultiCore 1395



MCUXpresso SDK Documentation, Release 25.12.00

|

1396 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

3.5. MultiCore 1397



MCUXpresso SDK Documentation, Release 25.12.00

|

1398 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

3.5. MultiCore 1399



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1400 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1401



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

1402 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

3.5. MultiCore 1403



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

1404 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1405



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1406 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1407



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

1408 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

3.5. MultiCore 1409



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

1410 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

3.5. MultiCore 1411



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

• The primary core (CM7) runs the eRPC client.

• The secondary core (CM4) runs the eRPC server.

• RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

1412 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

|Multicore application source and project files|<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/|
|Multiprocessor application source and project files|<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files|<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/|

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc_matrix_multiply
/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
const int32 matrix_size = 5;
/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
type Matrix = int32[matrix_size][matrix_size];
interface MatrixMultiplyService {
erpcMatrixMultiply(in Matrix matrix1, in Matrix matrix2, out Matrix result_matrix) ->
void
}

Details:

• The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

• The declaration and definition of the constant variable namedmatrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

• The alias name for the two-dimensional array type (Matrix) is declared.

• The interface groupMatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

• As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

3.5. MultiCore 1413



MCUXpresso SDK Documentation, Release 25.12.00

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.

2. New data types and constants declarations.

3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPC generator tool |Windows OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Windows|
|Linux OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

| |Mac OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac|

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

• The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_file>.erpc

• In the “Matrix multiply” example, the command should look like:

erpcgen erpc_matrix_multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

• “-?”/”—help” – Shows supported commands.

• “-o <filePath>”/”—output<filePath>” – Sets the output directory.

For example,

<path_to_erpcgen>/erpcgen –o <path_to_output>
<path_to_IDL>/<IDL_file_name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:

erpcgen –o

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

In both cases, the following four files are generated into the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

• erpc_matrix_multiply.h

• erpc_matrix_multiply_client.cpp

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service
folder.

For Linux OS users:
• Do not forget to set the permissions for the eRPC generator application.

• Run the application as ./erpcgen… instead of as erpcgen ….

1414 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

3.5. MultiCore 1415



MCUXpresso SDK Documentation, Release 25.12.00

|

1416 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

3.5. MultiCore 1417



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

1418 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

3.5. MultiCore 1419



MCUXpresso SDK Documentation, Release 25.12.00

|

1420 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

3.5. MultiCore 1421



MCUXpresso SDK Documentation, Release 25.12.00

|

1422 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

3.5. MultiCore 1423



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1424 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1425



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

1426 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

3.5. MultiCore 1427



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

1428 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1429



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1430 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.5. MultiCore 1431



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

1432 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

3.5. MultiCore 1433



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

1434 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

3.5. MultiCore 1435



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

1436 Chapter 3. Middleware

https://github.com/EmbeddedRPC


MCUXpresso SDK Documentation, Release 25.12.00

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed
• Python code of the eRPC infrastructure was updated to match the proper python code style,

add type annotations and improve readability.

1.14.0

Added
• Added Cmake/Kconfig support.

• Made java code jdk11 compliant, GitHub PR #432.

• Added imxrt1186 support into mu transport layer.

• erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
• eRPC: Sources reformatted.

• erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

• erpc: Free the arbitrated client token from client manager, GitHub PR #444.

3.5. MultiCore 1437

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

• erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

• erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

• Examples and tests consolidated.

1.13.0

Added
• erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.

• eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).

• eRPC: Add new Zephyr-related examples.

Fixed
• eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.

• eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.

• eRPC,erpcgen: Align switch brackets, GitHub PR #396.

• erpc: Fix zephyr uart transport, GitHub PR #410.

• erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
• eRPC,erpcgen: Remove cstbool library, GitHub PR #403.

1.12.0

Added
• eRPC: Add dynamic/static option for transport init, GitHub PR #361.

• eRPC,erpcgen: Winsock2 support, GitHub PR #365.

• eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

• eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

• eRPC,erpcgen: Add experimental Java support.

Fixed
• eRPC: Fix receive error value for spidev, GitHub PR #363.

• eRPC: UartTransport::init adaptation to changed driver.

• eRPC: Fix typo in assert, GitHub PR #371.

• eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

• eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

1438 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.11.0

Fixed
• eRPC: Makefiles update, GitHub PR #301.

• eRPC: Resolving warnings in Python, GitHub PR #325.

• eRPC: Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.

• eRPC: Improved codec function to use reference instead of address, GitHub PR #324.

• eRPC: Fix NULL check for pending client creation, GitHub PR #341.

• eRPC: Replace sprintf with snprintf, GitHub PR #343.

• eRPC: Use MU_SendMsg blocking call in MU transport.

• eRPC: New LPSPI and LPI2C transport layers.

• eRPC: Freeing static objects, GitHub PR #353.

• eRPC: Fixed casting in deinit functions, GitHub PR #354.

• eRPC: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.

• erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

• erpcgen: Add check that string read is not more than max length, GitHub PR #328.

• erpcgen: Move to g++ in pytest, GitHub PR #335.

• erpcgen: Use build=release for make, GitHub PR #334.

• erpcgen: Removed boost dependency, GitHub PR #346.

• erpcgen: Mingw support, GitHub PR #344.

• erpcgen: VS build update, GitHub PR #347.

• erpcgen: Modified name for common types macro scope, GitHub PR #337.

• erpcgen: Fixed memcpy for template, GitHub PR #352.

• eRPC,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.

• eRPC,erpcgen: Remove redundant includes, GitHub PR #338.

• eRPC,erpcgen: Many minor code improvements, GitHub PR #323.

1.10.0

Fixed
• eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added
• eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

3.5. MultiCore 1439



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: MUTransport adaptation to new supported SoCs.

• eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

• eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

• eRPC: Endianness agnostic update, GitHub PR #276.

• eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

• eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.

• eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

• eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

• eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

• eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

• eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker, GitHub
PR #266.

• eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

• eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.

• erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.

• erpcgen: Several fixes for tests and CI, GitHub PR #289.

• erpcgen: Refactoring erpcgen code, GitHub PR #302.

• erpcgen: Fixed assigning const value to enum, GitHub PR #309.

• erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

1.9.1

Fixed
• eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

• eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

• eRPC: Improve python detection in make, GitHub PR #225.

• eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

• eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.

• eRPC: Fix making test under Linux, GitHub PR #229.

• eRPC: Assert costumizing, GitHub PR #148.

• eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

• eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

• eRPC: Fix inout cases, GitHub PR #237.

1440 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

• eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

• eRPC: MessageBuffer usage improvement, GitHub PR #258.

• eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

• eRPC: Several MISRA violations addressed.

• eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

• eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.

• eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

• erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

• erpcgen: Fix serialization of list/binary types, GitHub PR #240.

• erpcgen: Fix empty list parsing, GitHub PR #72.

• erpcgen: Fix templates for malloc errors, GitHub PR #110.

• erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #249, #250.

• erpcgen: Fix compile error:UniqueIdChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

1.9.0

Added
• eRPC: Allow used LIBUSBSIO device index being specified from the Python command line

argument.

Fixed
• eRPC: Improving template usage, GitHub PR #153.

• eRPC: run_clang_format.py cleanup, GitHub PR #177.

• eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

• eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

• eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.

• eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

• eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APi,
GitHub PR #168, #169.

• erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

1.8.1

Added
• eRPC: New i2c_slave_transport trasnport introduced.

3.5. MultiCore 1441



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: Fix misra erpc c, GitHub PR #158.

• eRPC: Allow conditional compilation of message_loggers and pre_post_action.

• eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.

• erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

• erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

• erpcgen: Fix bison file, GitHub PR #156.

1.8.0

Added
• eRPC: Support win32 thread, GitHub PR #108.

• eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

• eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.

• eRPC: Introduced new USB CDC transport.

• eRPC: Introduced new Linux spidev-based transport.

• eRPC: Added formatting extension for VSC, GitHub PR #134.

• erpcgen: Introduce ustring type for unsigned char and force cast to char*, GitHub PR #125.

Fixed
• eRPC: Update makefile.

• eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.

• eRPC: Extend error msg for python server service handle function, GitHub PR #132.

• eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

• eRPC: SPI transport update to allow usage without handshaking GPIO.

• eRPC: Native _WIN32 erpc serial transport and threading.

• eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

• eRPC: Update of matrix_multiply.py example: Add –serial and –baud argument, GitHub PR
#137.

• eRPC: Update of .clang-format, GitHub PR #140.

• eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

• eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

• eRPC, erpcgen: Core re-formatted using Clang version 10.

• erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

• erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

1442 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

• erpcgen: Python generator improvements, GitHub PR #100, #118.

• erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.7.4

Added
• eRPC: Support MU transport unit testing.

• eRPC: Adding mbed os support.

Fixed
• eRPC: Unit test code updated to handle service add and remove operations.

• eRPC: Several MISRA issues in rpmsg-based transports addressed.

• eRPC: Fixed Linux/TCP acceptance tests in release target.

• eRPC: Minor documentation updates, code formatting.

• erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed
• eRPC: Improved the test_callbacks logic to be more understandable and to allow requested

callback execution on the server side.

• eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

• eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

• erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added
• eRPC: Add missing doxygen comments for transports.

Fixed
• eRPC: Improved support of const types.

• eRPC: Fixed Mac build.

• eRPC: Fixed serializing python list.

• eRPC: Documentation update.

3.5. MultiCore 1443



MCUXpresso SDK Documentation, Release 25.12.00

1.7.1

Fixed
• eRPC: Fixed semaphore in static message buffer factory.

• erpcgen: Fixed MU received error flag.

• erpcgen: Fixed tcp transport.

1.7.0

Added
• eRPC: List names are based on their types. Names are more deterministic.

• eRPC: Service objects are as a default created as global static objects.

• eRPC: Added missing doxygen comments.

• eRPC: Added support for 64bit numbers.

• eRPC: Added support of program language specific annotations.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Generating crc value is optional.

• eRPC: Fixed CMSIS Uart driver. Removed dependency on KSDK.

• eRPC: Forbid users use reserved words.

• eRPC: Removed outByref for function parameters.

• eRPC: Optimized code style of callback functions.

1.6.0

Added
• eRPC: Added @nullable support for scalar types.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Improved eRPC nested calls.

• eRPC: Improved eRPC list length variable serialization.

1.5.0

1444 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Added
• eRPC: Added support for unions type non-wrapped by structure.

• eRPC: Added callbacks support.

• eRPC: Added support @external annotation for functions.

• eRPC: Added support @name annotation.

• eRPC: Added Messaging Unit transport layer.

• eRPC: Added RPMSG Lite RTOS TTY transport layer.

• eRPC: Added version verification and IDL version verification between eRPC code and eRPC
generated shim code.

• eRPC: Added support of shared memory pointer.

• eRPC: Added annotation to forbid generating const keyword for function parameters.

• eRPC: Added python matrix multiply example.

• eRPC: Added nested call support.

• eRPC: Added struct member “byref” option support.

• eRPC: Added support of forward declarations of structures

• eRPC: Added Python RPMsg Multiendpoint kernel module support

• eRPC: Added eRPC sniffer tool

1.4.0

Added
• eRPC: New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

Fixed
• eRPC: win_flex_bison.zip for windows updated.

• eRPC: Use one codec (instead of inCodec outCodec).

[1.3.0]

Added
• eRPC: New annotation types introduced (@length, @max_length, …).

• eRPC: Support for running both erpc client and erpc server on one side.

• eRPC: New transport layers for (LP)UART, (D)SPI.

• eRPC: Error handling support.

[1.2.0]

Added
• eRPC source directory organization changed.

• Many eRPC improvements.

3.5. MultiCore 1445



MCUXpresso SDK Documentation, Release 25.12.00

[1.1.0]

Added
• Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added
• Initial Release

3.6 Multimedia

3.6.1 Audio Voice

Audio Voice Components

MCUXpresso SDK : audio-voice-components

Overview This repository is for MCUXpresso SDK audio-voice-components middleware deliv-
ery and it contains the components officially provided in NXP MCUXpresso SDK. This repos-
itory is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Audio Voice Components - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Overview This repository allows users to add additional functionality to the Maestro Audio
framework. This structure is designed for integration with Maestro and is not intended for stan-
dalone use. For information on the use of individual components, please refer to the Maestro
programmer’s guide.

This repository acts as Zephyr module, to be able to use these libraries in Zephyr build system.

1446 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/components/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro
https://github.com/nxp-mcuxpresso/maestro/blob/main/doxygen/ProgrammersGuide.md


MCUXpresso SDK Documentation, Release 25.12.00

Content
• asrc - Libraries and public files of Asynchronous Sample Rate Converter, version 1.0.0

• ssrc - Libraries and public files of Synchronous Sample Rate Converter, version 1.0.0

• opus - Source files of Opus decoder and encoder, version 1.3.1

• opusfile - Source files for Opus streams in the Ogg container, version 0.12

• ogg - Source files of Ogg container, version 1.3.5

• decoders - Libraries and public files of following audio decoders:

– aac - AAC decoder, version 1.0.0

– flac - FLAC decoder, version 1.0.0

– mp3 - MP3 decoder, version 1.0.0

– wav - WAV decoder, version 1.0.0

• zephyr/ - Files allowing usage of the libraries in Zephyr build

Following table contains information about libraries and source files availability:

Asynchronous Sample Rate Converter The Asynchronous Sample Rate Converter (ASRC) soft-
ware module compensates the drift between two mono audio signals. This is not a frequency
converter and so the nominal signal frequency is the same before and after the ASRC. More de-
tails about ASRC are available in the User Guide, which is located in asrc\doc\.

Synchronous Sample Rate Converter The Synchronous Sample Rate Converter (SSRC) soft-
ware module converts an audio signal (mono or stereo) with a certain sampling frequency to
an audio signal with another sampling frequency. More details about SSRC are available in the
User Guide.

Opus For Opus decoder and encoder documentation please see following link: opus.

Opus File The Opus File provides a API for decoding and basic manipulation of Opus streams
in Ogg container and depends on Opus and Ogg libraries. For Opus File documentation please
see following link: opusfile.

Ogg Container For Ogg container documentation please see following link: ogg.

Decoders Each decoder contains libraries for supported processor and toolchain (see table
above), corresponding Public API file and documentation folder.

AAC For decoder features please see aacdec, for API Usage please see aacd_ug.

FLAC For decoder features please see flacdec, for API Usage please see flacd_ug.

MP3 For decoder features please see mp3dec, for API Usage please see mp3d_ug.

WAV For decoder features please see wavdec, for API Usage please see wavd_ug.

3.6. Multimedia 1447

https://opus-codec.org/docs/opus_api-1.3.1/
https://opus-codec.org/docs/opusfile_api-0.12/index.html
https://xiph.org/ogg/doc/


MCUXpresso SDK Documentation, Release 25.12.00

Zephyr build To add library into the Zephyr build, add CON-
FIG_NXP_AUDIO_VOICE_COMPONENTS_* for specific libraries into your prj.conf. For
all configuration options, see zephyr/Kconfig.

List of supported libraries in Zephyr:

• Decoders:

– AAC

– FLAC

– MP3

– FLAC

– OPUS

• Encoders

– OPUS

AAC decoder

AAC decoder features
• The AAC decoder implementation supports the following:

• Supported profile : AAC-LC

• Sampling rate : 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48
kHz

• Channel : stereo and mono

• Bits per samples : 16 bit

• Container format : (MPEG-2 Style)AAC transport format - ADTS and ADIF.

Specification and reference

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 26332 + 19264 = 45596

• Data/RAM = 26832

Section Size
.text 26332
.ro & .const 19264
.bss 26832

1448 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
• CPU core clock in MHz: 20.97.

Track type Duration of track in sec-
ond

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz,
stereo

38 s 4096 12.2 MHz

API Usage of AAC Decoder

Overview
• This section describes the integration steps to call AAC decoder APIs by the application code.

During each step, the used data structures and functions are explained. All CCI public APIs
are defined in aac_cci.h header file. This file is located at \decoders\aac.

Configuration

Build Options AAC Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the AAC decoder.

Buffer Allocation
• The AAC decoder does not perform dynamic memory allocation. The application calls

the function AACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder, then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• AACDecoderInit() function must be called before decode API. This API allocates the memory

to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which is used by the decoder to read
or seek the input stream.

Decoding
• AACDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

3.6. Multimedia 1449



MCUXpresso SDK Documentation, Release 25.12.00

Seeking
• AACDecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions are assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API AAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

FLAC decoder

FLAC decoder features
• The FLAC decoder implementation support the following:

• Sampling rate: 8 kHz, 11.05 kHz, 12 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel : stereo and mono

• Bits per samples : 16 bits

Specification and reference

Official website
• FLAC lossless audio codec is at https://xiph.org/flac.

Inbound licensing
• For licensing information please refer to FLAC’s official website:

https://xiph.org/flac/license.html.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 15744 + 2080 = 17824

• Data/RAM = 27936

Section Size
.text 15744
.ro & .const 2080
.bss 27936

1450 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage
• Output frame size: 16384 bytes.

• CPU core clock in MHz: 20.97.

Track type Duration of track in second Performance MIPS of codec (in MHz)
48 kHz, stereo 76 s 30.7 MHz
32 kHz, stereo 76 s 20.3 MHz
8 kHz, stereo 37 s 5.34 MHz

Following test cases are performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of FLAC Decoder

Overview
• This section describes the integration steps to call FLAC decoder APIs by the application

code. During each step the used data structures and functions are explained. All cci public
APIs are defined in flac_cci.h header file. This file is located at \decoders\flac\include.

Configuration

Build Options
• SUPPORT_16_BITS_ONLY :- This macro is used to enable 16bits per sample flac decoder.

• ASM :- This macro is used to enable ARM assembly macros for 24bits per sample flac de-
coder.

Buffer Allocation
• The FLAC decoder does not perform dynamic memory allocation. The application calls

the function FLACDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• FLACDecoderInit() function must be called before decode API. This API allocates the mem-

ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

3.6. Multimedia 1451



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• FLACDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• FLACDecoderSeek() function calculates the actual frame boundary align offset from the

unalign seek offset and returns the actual seek offset. It also resets the decoder internal
states and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API FLAC Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

MP3 decoder

MP3 decoder features
• MP3 decoder supports mpeg-1, mpeg-2, mpeg-2.5.

• All MP3 features supported , including joint stereo, mid-side stereo, intensity stereo, and
dual channel.

• Supported sampling rate: 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1
kHz and 48 kHz.

• Supported channel: stereo and mono

• Supported bits per samples: 16 bit

• Supported bit rate: 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256,
320, 384, 416, and 448.

Performance

Memory information The memory usage of the decoder (data obtained from IAR compiler) in
bytes is:

• Code/flash = 26884 + 18372 = 45256

• RAM = 16200

1452 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Section Size
.text 26884
.ro & .const 18372
.bss 16200

CPU usage The performance of the decoder was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec
(in MHz)

320 Kbps, 44.1 kHz,
stereo

358 s 2304 ~24 MHz

192 Kbps, 48 kHz,
stereo

10 s 2304 ~18 MHz

API Usage of MP3 Decoder

Overview
• This section describes the integration steps to call MP3 decoder APIs by the application code.

During each step the used data structures and functions are explained. All cci public APIs
are defined in mp3_cci.h header file. This file is located at \decoders\mp3.

Configuration

Build Options MP3 Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the MP3 decoder.

Buffer Allocation
• The MP3 decoder does not perform dynamic memory allocation. The application calls

the function MP3DecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• MP3DecoderInit() function must be called before decode API. This API allocates the memory

to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

3.6. Multimedia 1453



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• MP3DecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• MP3DecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API MP3 Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

WAV decoder

WAV decoder features
• The WAV decoder implementation support the following:

• Sampling rate: 8 kHz, 11.025kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, and 48 kHz.

• Channel: stereo and mono

• PCM format with 8/16/24 bits per sample.

Performance

Memory information The memory usage of the decoder in bytes is:

• Code/flash = 6260 + 342 = 6602

• Data/RAM = 16 + 20696 = 20712

Section Size
.text 6260
.ro & .const 342
.bss 20696
.data 16

1454 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

CPU usage The performance of the decoder was measured using the decoder standalone unit
test.

• CPU core clock in MHz: 20.97 MHz.

Track type Duration of track in
second

Frame size in
bytes

Performance MIPS of codec (in
MHz)

48 kHz, stereo,
PCM

12 s 4096 9.68 MHz

Following test cases were performed:
• Audio format listening test

• Audio quality test

For all above test cases, test tracks are played through the end without any distortion, glitching,
hanging, or crashing.

API Usage of WAV Decoder

Overview
• This section describes the integration steps to call MP3 decoder APIs by the application code.

During each step the used data structures and functions are explained. All cci public APIs
are defined in wav_cci.h header file. This file is located at \decoders\wav.

Configuration

Build Options WAV Decoder library is built with the following defined/enabled macros.

• There is no macro or define used to build the WAV decoder.

Buffer Allocation
• The WAV decoder does not perform dynamic memory allocation. The application calls

the function WAVDecoderGetMemorySize() to get the decoder memory requirements. This
function must be called before all other decoder functions are invoked.

• The application first gets the required memory size for the decoder and then allocates mem-
ory for the decoder structures. Structures contain Main Decoder parameters and decoder
information parameters.

• This function populates the required memory for the decoder and returns the required
memory size in bytes.

Initialization
• WAVDecoderInit() function must be called before decode API. This API allocates the mem-

ory to decoder main structure and also initializes the decoder main structure parameters.

• It also registers the call back functions to the decoder, which will be used by decoder to read
or to seek the input stream.

3.6. Multimedia 1455



MCUXpresso SDK Documentation, Release 25.12.00

Decoding
• WAVDecoderDecode() function is main decoding API of the decoder. This API decodes the

encoded input stream and fills the PCM output samples into decoder output PCM buffer.

• This API gives the information about the number of samples produced by the decoder and
also provides the pointer to the decoder output PCM samples buffer.

Seeking
• WAVDecoderSeek() function calculates the actual frame boundary align offset from the un-

align seek offset and returns the actual seek offset. It also resets the decoder internal states
and variables.

Callback Usage All the callback functions will be assigned to the respective pointers before the
codec initialization is called. Callback APIs are described below.

Read Callback API WAV Decoder read call back API reads the bytes from the input stream and
fills them into decoder internal bit stream buffer. It returns the number of bytes read from the
input stream.

Seek Callback API This call back API is for the seek operation.

Get File Position Callback API This call back API gives the current file position.

Synchronous Sample Rate Converter

Introduction The Synchronous Sample Rate Converter (SSRC) software module converts a
mono or stereo audio signal with a certain sampling frequency to an audio signal with a differ-
ent sampling frequency. The sample rate converter works synchronously, meaning that input
and output sampling rates are exactly known for a mutual clock reference.

To accomplish a professional sampling conversion quality and minimal system footprint, the
SRC SW module contains highly optimized components.

The SSRC module supports the following features.

• Multiple instances of the sample rate converter can run at the same time.

• Supported sampling frequencies: 32 kHz, 44.1 kHz, and 48 kHz plus the halves and the quar-
ters of these three sample rates. The input and output sample rates are freely selectable out
of the supported sampling rates

• Selectable Mono/Stereo Input/Output.

• Selectable quality level: high quality/ very high quality.

Acronyms Table 1 lists the acronyms used in this document.

1456 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

AcronymDescription
Fs Sampling Frequency
Fs-
LOWow

Lowest sample rate used for the conversion Note: Input sample rate for up sampling
and the output sample rate for down sampling

FsIN Input sample rate
FsOUTOutput sample rate
MIPS Million Instructions Per Second
SSRC Synchronous sample rate converter
THD+NTotal Harmonic Distortion plus Noise Note: The THD+N is defined as the total power of

the unwanted signal divided by the power of the wanted signal. The wanted signal is
defined as a full scale, 1 kHz sine wave.

Parent topic:Introduction

Performance figures The Total Harmonic Distortion Plus Noise (THD+N) of the converted sig-
nals is below - 76 (high-quality mode) and - 85 (very high-quality mode) for signal frequencies
below 0.45*FsLOW (=90 % of the Nyquist range of the lowest sample clock)

Table 1 and Table 2 give the THD+N performance (FsIN on the vertical axis and FsOUT on the
horizontal axis) for the two supported quality levels. The numbers in the tables give the worst-
case THD+N measured for signal frequencies below 0.45*FsLOW. For each conversion ratio, 100
THD+N measurements were executed with signal frequencies linearly spread over the complete
Nyquist range.

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -79.7 -80.1 -80.1 -79.6 -80.2 -79.4 -79.1 -79.2
11025 -79 -92.9 -80 -79.9 -80.2 -79.8 -79.9 -79.5 -78.9
12000 -79 -79.2 -92.7 -80.1 -79.8 -80.3 -79.8 -79.8 -79.5
16000 -81.7 -78.8 -80.2 -93 -78.3 -77.7 -78.3 -78.3 -77.9
22050 -77.5 -81.8 -78.2 -79 -93 -79.9 -79.8 -80.3 -79.9
24000 -77.4 -77.9 -81.2 -79.1 -79.2 -92.5 -80.1 -79.8 -79.9
32000 -81 -77.5 -78.9 -81.2 -78.7 -80.1 -92.9 -79.7 -79.2
44100 -79.1 -81.2 -76.7 -77.8 -82 -78.2 -79.1 -93 -79.7
48000 -78.7 -78.8 -81.1 -77.6 -77.9 -81.8 -79.1 -79.3 -93

FsIN/ FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 -92.1 -86.6 -88.6 -91.5 -86.4 -89 -89.7 -89.3 -89.3
11025 -89.1 -92.9 -86.3 -86.3 -91.6 -86.3 -86.5 -89.7 -89.3
12000 -91.4 -88.4 -92.7 -89.6 -86.6 -91.5 -86.8 -86.6 -89.7
16000 -93.1 -88.4 -90.4 -93 -86.6 -88.8 -91.5 -86.5 -89.4
22050 -90.7 -93.5 -89.7 -89.3 -93 -86.5 -86.3 -91.5 -86.6
24000 -93.8 -90.5 -93.5 -91.7 -88.4 -92.5 -89.7 -86.6 -91.5
32000 -93.8 -91 -91.2 -93.3 -88.4 -90.5 -92.9 -86.7 -89
44100 -93.7 -93.6 -91.5 -90.6 -93.8 -89.8 -89.3 -93 -86.5
48000 -94.1 -92.6 -94 -94 -90.1 -93.7 -91.8 -88.4 -93

Parent topic:Introduction

Resource usage This section lists the memory and processing requirements for the SSRC mod-
ule.

3.6. Multimedia 1457



MCUXpresso SDK Documentation, Release 25.12.00

Memory requirements The following are the memory requirements for the SSRC module.

Memory item Size in bytes
Instance memory (persistent) 548
Scratch memory (non-persistent) 15.536 1
Program memory for Arm9E and XScale 14k
Program memory for Arm7 15k

Parent topic:Resource usage

1 Worst case number for I/O buffers of 40 ms. If smaller I/O buffers are used, this number is
smaller. The required scratch memory is roughly equal to 2 times the buffer size on the highest
sample rate.

Processing requirements The following tables give the MIPS performance of the SSRC module.
The cycles are measured with zero wait state memory and for I/O buffers of 40 ms.

Note: The user processing 32-bit processing must refer to the very high-quality MIPS results.

On Arm7 and Arm9

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 4.77 5.17 1.84 6.75 7.33 3.55 9.1 9.89
11025 5.42 0.18 5.58 6.84 2.53 7.75 9.71 4.89 10.31
12000 5.85 6.39 0.2 7.01 8.97 2.76 9.89 12.94 5.32
16000 1.69 7.74 7.99 0.26 9.54 10.33 3.68 13.5 14.65
22050 7.2 2.33 10.09 10.83 0.36 11.17 13.67 5.07 15.49
24000 7.79 8.33 2.53 11.7 12.78 0.39 14.03 17.94 5.51
32000 3.12 10.32 10.58 3.38 15.48 15.98 0.52 19.08 20.66
44100 9.96 4.3 13.65 14.4 4.65 20.18 21.67 0.72 22.34
48000 10.8 11.34 4.68 15.58 16.67 5.06 23.4 25.56 0.78

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.07 7.71 8.24 2.28 10.5 11.28 4.41 13.44 14.48
11025 8.19 0.1 8.96 11.04 3.14 12 15.09 6.08 15.2
12000 8.76 9.52 0.1 11.3 14.48 3.41 15.36 20.07 6.61
16000 2.14 11.73 12.01 0.14 15.41 16.48 4.55 21 22.56
22050 10.78 2.94 15.39 16.38 0.19 17.92 22.08 6.27 24
24000 11.57 12.34 3.2 17.51 19.04 0.21 22.61 28.97 6.83
32000 4.19 15.48 15.77 4.27 23.46 24.01 0.28 30.83 32.96
44100 14.78 5.77 20.56 21.56 5.89 30.77 32.75 0.38 35.83
48000 15.92 16.7 6.28 23.15 24.69 6.41 35.02 38.08 0.42

1458 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.13 13.61 14.52 4.43 19.03 20.43 8.8 25.06 26.99
11025 14.85 0.18 15.91 19.47 6.1 21.82 27.35 12.13 28.38
12000 15.84 17.36 0.2 19.97 25.4 6.64 27.85 36.26 13.21
16000 4.25 21.24 21.79 0.26 27.22 29.03 8.86 38.07 40.85
22050 20.02 5.85 27.72 29.7 0.36 31.81 38.94 12.2 43.63
24000 21.45 22.98 6.37 31.68 34.71 0.39 39.94 50.8 13.28
32000 8.39 28.74 29.29 8.5 42.48 43.58 0.52 54.43 58.07
44100 28.11 11.57 38.05 40.03 11.71 55.43 59.4 0.72 63.62
48000 30.19 31.71 12.59 42.9 45.96 12.74 63.36 69.42 0.78

Parent topic:Processing requirements

On Arm9e and XScale

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.14 1.25 0.54 1.95 2.14 1.04 3.85 4.23
11025 1.31 0.05 1.36 1.62 0.75 2.23 2.78 1.44 4.38
12000 1.43 1.57 0.05 1.68 2.13 0.82 2.84 3.72 1.57
16000 0.5 1.86 1.93 0.07 2.27 2.5 1.09 3.9 4.29
22050 2.19 0.69 2.42 2.61 0.1 2.72 3.24 1.5 4.46
24000 2.4 2.52 0.75 2.86 3.15 0.1 3.35 4.25 1.63
32000 0.92 3.12 3.18 1.01 3.72 3.86 0.14 4.55 4.99
44100 4.28 1.27 4.15 4.37 1.39 4.83 5.23 0.19 5.43
48000 4.7 4.9 1.39 4.8 5.03 1.51 5.72 6.3 0.21

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 1.87 2.02 1.07 3.09 3.36 2.07 6.09 6.63
11025 2.27 0.09 2.25 2.66 1.47 3.56 4.4 2.85 7.01
12000 2.45 2.76 0.09 2.75 3.43 1.6 4.5 5.83 3.1
16000 0.99 3.23 3.36 0.13 3.73 4.05 2.14 6.17 6.72
22050 3.69 1.36 4.14 4.55 0.17 4.51 5.31 2.95 7.13
24000 4.01 4.28 1.48 4.9 5.51 0.19 5.51 6.85 3.21
32000 1.83 5.26 5.39 1.98 6.46 6.71 0.25 7.47 8.09
44100 7.22 2.52 6.94 7.38 2.72 8.27 9.1 0.35 9.02
48000 7.85 8.33 2.74 8.02 8.57 2.97 9.81 11.03 0.38

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.03 1.21 1.33 0.61 2.08 2.29 1.17 4.1 4.51
11025 1.47 0.05 1.44 1.72 0.84 2.38 2.97 1.61 4.66
12000 1.62 1.76 0.05 1.78 2.26 0.91 3.03 3.98 1.75
16000 0.55 2.1 2.17 0.07 2.42 2.65 1.22 4.16 4.57
22050 2.49 0.76 2.73 2.95 0.1 2.88 3.45 1.68 4.75
24000 2.75 2.86 0.83 3.23 3.52 0.1 3.56 4.53 1.83
32000 1 3.56 3.63 1.11 4.2 4.34 0.14 4.84 5.3
44100 4.86 1.38 4.74 4.98 1.53 5.46 5.89 0.19 5.75
48000 5.38 5.55 1.5 5.5 5.71 1.66 6.47 7.05 0.21

3.6. Multimedia 1459



MCUXpresso SDK Documentation, Release 25.12.00

FsIN / FsOUT 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 0.06 2.11 2.29 1.2 3.55 3.86 2.31 6.99 7.61
11025 2.62 0.09 2.52 3.01 1.66 4.07 5.07 3.19 8
12000 2.85 3.15 0.09 3.11 3.9 1.81 5.17 6.75 3.47
16000 1.09 3.73 3.85 0.13 4.22 4.57 2.41 7.1 7.72
22050 4.32 1.5 4.79 5.23 0.17 5.05 6.02 3.32 8.15
24000 4.74 4.99 1.64 5.69 6.3 0.19 6.22 7.8 3.61
32000 1.98 6.18 6.3 2.18 7.45 7.71 0.25 8.44 9.14
44100 8.43 2.72 8.18 8.64 3.01 9.59 10.47 0.35 10.1
48000 9.26 9.66 2.97 9.49 9.97 3.27 11.39 12.59 0.38

Parent topic:Processing requirements

On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
Mode MIPs
Mono at High Quality 3.13
Stereo at High Quality 3.61
Mono at Very High Quality 4.13
Stereo at Very High Quality 6.52

Parent topic:Processing requirements

Parent topic:Resource usage

Parent topic:Introduction

Application programmers interface (API) This section describes the application program-
ming interface (API) libraries of the SSRC module.

Type definitions This section describes the type definitions of the SSRC module.

Types for allocation of instance and scratch memory The instance memory is the memory
that contains the state of one instance of the SSRC module. Multiple instances of the SSRC mod-
ule can exist, each with it is own instance memory. S memory is the memory that is only used
temporarily by the process function of the SSRC module. This memory can be used as scratch
memory by any other function running in the same thread as the SSRC module. Different threads
cannot share the scratch memories.

The application must allocate both the instance and the scratch memory. The SSRC module does
not allocate memory.

There is a data type available for both the instance and the scratch memory, namely
SSRC_Instance_t and SSRC_Scratch_t. The instance type is defined as structures of the correct
size in the SSRC header file. Both the instance and the scratch memory must be 4 bytes aligned.

Parent topic:Type definitions

LVM_Fs_en Definition:

typedef enum
{

LVM_FS_8000 = 0,
LVM_FS_11025 = 1,

(continues on next page)

1460 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
LVM_FS_12000 = 2,
LVM_FS_16000 = 3,
LVM_FS_22050 = 4,
LVM_FS_24000 = 5,
LVM_FS_32000 = 6,
LVM_FS_44100 = 7,
LVM_FS_48000 = 8

} LVM_Fs_en;

Description:
Used to pass the input and the output sample rate to the SSRC.

Parent topic:Type definitions

LVM_Format_en Definition:

typedef enum
{

LVM_STEREO = 0,
LVM_MONOINSTEREO = 1,
LVM_MONO = 2

} LVM_Format_en;

Description:
The LVM_Format_en enumerated type is used to set the value of the SSRC data format.

The SSRC supports input data in two formats Mono and Stereo. For an input buffer of NumSamples
= N (meaning N sample pairs for Stereo and MonoInStereo or N samples for Mono), the format
of data in the buffer is as listed in Table 1:

Sample Number Stereo MonoInStereo Mono
0 Left(0) Mono(0) Mono(0)
1 Right(0) Mono(0) Mono(1)
2 Left(1) Mono(1) Mono(2)
3 Right(1) Mono(1) Mono(3)
4 Left(2) Mono(2) Mono(4)
“ “ “ “
“ “ “ “
N-2 Left(N/2-1) Mono(N/2-1) Mono(N-2)
N-1 Right(N/2-1) Mono(N/2-1) Mono(N-1)
N Left(N/2) Mono(N/2) Not Used
N+1 Right(N/2) Mono(N/2) Not Used
N+2 Left(N/2+1) Mono(N/2+1) Not Used
N+3 Right(N/2+1) Mono(N/2+1) Not Used
“ “ “ Not Used
“ “ “ Not Used
2*N-2 Left(N-1) Mono(N-1) Not Used

Parent topic:Type definitions

SSRC_Quality_en Definition:

typedef enum
{

SSRC_QUALITY_HIGH = 0,
(continues on next page)

3.6. Multimedia 1461



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
SSRC_QUALITY_VERY_HIGH = 1,
SSRC_QUALITY_DUMMY = LVM_MAXENUM

} SSRC_Quality_en;

Description:
Used to select the quality level of the SSRC. For details, see Performance figures. Selecting the
highest-quality level, comes with a cost in the SSRC processing requirements. Therefore, it should
only be done for critical applications.

Parent topic:Type definitions

Instance parameters Definition:

typedef struct
{

SSRC_Quality_en Quality;
LVM_Fs_en SSRC_Fs_In;
LVM_Fs_en SSRC_Fs_Out;
LVM_Format_en SSRC_NrOfChannels;
short NrSamplesIn;
short NrSamplesOut;

} SSRC_Params_t;

Description:
Used to pass the SSRC instance parameters to the SSRC module. It is a structure that contains the
members for input sample rate, output sample rate, the number of channels, and the number of
samples on the input and output audio stream.

Parent topic:Type definitions

Nr of samples mode Definition:

typedef enum
{

SSRC_NR_SAMPLES_DEFAULT = 0,
SSRC_NR_SAMPLES_MIN = 1,
SSRC_NR_SAMPLES_DUMMY = LVM_MAXENUM

} SSRC_NR_SAMPLES_MODE_en;

Description:
The SSRC_NR_SAMPLES_MODE_en enumerated type specifies the two different modes that
can be used to retrieve the number of samples using the SSRC_GetNrSamples function.

Parent topic:Type definitions

Function return status Definition:

typedef enum
{

SSRC_OK = 0,
SSRC_INVALID_FS = 1,
SSRC_INVALID_NR_CHANNELS = 2,
SSRC_NULL_POINTER = 3,
SSRC_WRONG_NR_SAMPLES = 4,
SSRC_ALLINGMENT_ERROR = 5,

(continues on next page)

1462 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
SSRC_INVALID_MODE = 6,
SSRC_INVALID_VALUE = 7,
SSRC_ALLINGMENT_ERROR = 8,
LVXXX_RETURNSTATUS_DUMMY = LVM_MAXENUM

} SSRC_ReturnStatus_en;

Description:
The SSRC_ReturnStatus_en enumerated type specifies the different error codes returned by the
API functions. For the exact meaning, see the individual function descriptions.

Parent topic:Type definitions

Parent topic:Application programmers interface (API)

Functions This section lists all the API functions of the SSRC module and explains their param-
eters.

SSRC_GetNrSamples Prototype:

SSRC_ReturnStatus_en SSRC_GetNrSamples
(SSRC_NR_SAMPLES_MODE_en Mode,
SSRC_Params_t* pSSRC_Params );

Description:
This function retrieves the number of samples or sample pairs for stereo used as an input and
as an output of the SSRC module.

NameType Description
ModeSSRC_NR_SAMPLES_MODE_enThere are two modes: - SSRC_NR_SAMPLES_DEFAULT: In this

mode, the function returns the number of samples for 40 ms blocks -
SSRC_NR_SAMPLES_MIN: the function returns the minimal number of sam-
ples supported for this conversion ratio. The SSRC_Init function accepts each
integer multiple of this ratio. Formula: blocksize (ms) = 1/gcd(Fs_In,Fs_Out)

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. The application fills in the values of the in-
put sample rate, the output sample rate, and the number of channels. Based on
this input, the SSRC_GetNrSamples fills in the values for the number of samples
for the input and the output audio stream.

Returns:

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params is a NULL pointer.
SSRC_INVALID_MODE When mode is not a valid setting.

Note: The SSRC_GetNrSamples function returns the values from the following tables. Instead of
calling the SSRC_GetNrSamples function, use the values from these tables directly.

3.6. Multimedia 1463



MCUXpresso SDK Documentation, Release 25.12.00

Sample rate Nr of samples
8000 320
11025 441
12000 480
16000 640
22050 882
24000 960
32000 1280
44100 1764
48000 1920

In/Out 8000 11025 12000 16000 22050 24000 32000 44100 48000
8000 11 320441 23 12 160441 13 14 80441 16
11025 441320 11 147160 441640 12 147320 4411280 14 147640
12000 32 160147 11 34 80147 12 38 40147 14
16000 21 640441 43 11 320441 23 12 160441 13
22050 441160 21 14780 441320 11 147160 441640 12 147320
24000 31 320147 21 32 160147 11 34 80147 12
32000 41 1280441 83 21 640441 43 11 320441 23
44100 44180 41 14740 441160 21 14780 441320 11 147160
48000 61 640147 41 31 320147 21 32 160147 11

Parent topic:Functions

SSRC_GetScratchSize Prototype:

SSRC_ReturnStatus_en SSRC_GetScratchSize
(SSRC_Params_t* pSSRC_Params,
LVM_INT32* pScratchSize );

Description:
This function retrieves the scratch size for a given conversion ratio and for given buffer sizes at
the input and at the output.

Name Type Description
pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters. All members should have a

valid value.
pScratch-
Size

LVM_INT32* Pointer to the scratch size. The SSRC_GetScratchSize function fills
in the correct value (in bytes).

|

Returns:

1464 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.

Parent topic:Functions

SSRC_Init Prototype:

SSRC_ReturnStatus_en SSRC_Init
(SSRC_Instance_t* pSSRC_Instance,
SSRC_Scratch_t* pSSRC_Scratch,
SSRC_Params_t* pSSRC_Params,
LVM_INT16** ppInputInScratch,
LVM_INT16** ppOutputInScratch);

Description:
The SSRC_Init function initializes an instance of the SSRC module.

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC. This application must allocate the memory

before calling the SSRC_Init function.
pSSRC_ScratchSSRC_Scratch_t*Pointer to the scratch memory. The pointer is saved inside the instance and is

used by the SSRC_Process function. The application must allocate the scratch
memory before calling the SSRC_Init function.

pSSRC_ParamsSSRC_Params_t*Pointer to the instance parameters.
ppIn-
putIn-
Scratch

LVM_INT16**The SSRC module can be called with the input samples located in scratch.
This pointer points to a location that holds the pointer to the location in the
scratch memory that can be used to store the input samples. For example, to
save memory.

ppOut-
putIn-
Scratch

LVM_INT16**The SSRC module can store the output samples in the scratch memory. This
pointer points to a location that holds the pointer to the location in the scratch
memory that can be used to store the output samples. For example, to save
memory.

Returns:

3.6. Multimedia 1465



MCUXpresso SDK Documentation, Release 25.12.00

SSRC_OK When the function call succeeds.
SSRC_INVALID_FS When the requested input or output sampling rates are in-

valid.
SSRC_INVALID_NR_CHANNELSWhen the channel format is not equal to LVM_MONO or

LVM_STEREO.
SSRC_NULL_POINTER When pSSRC_Params or pScratchSize is a NULL pointer.
SSRC_WRONG_NR_SAMPLESWhen the number of samples on the input or on the output are

incorrect.
SSRC_ALIGNMENT_ERROR When the instance memory or the scratch memory is not 4

bytes aligned.

Parent topic:Functions

SSRC_SetGains Prototype:

SSRC_ReturnStatus_en SSRC_SetGains
(SSRC_Instance_t* pSSRC_Instance,
LVM_Mode_en bHeadroomGainEnabled,
LVM_Mode_en bOutputGainEnabled,
LVM_INT16 OutputGain);

Description:
This function sets headroom gain and the post gain of the SSRC. The SSRC_SetGains function is
an optional function that should be used only in rare cases. Preferably, use the default settings.

Name Type Description
pSSRC_InstanceSSRC_Instance_t*Pointer to the instance of the SSRC.
bHead-
room-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the headroom gain of the SSRC. The default
value is LVM_MODE_ON. LVM_MODE_OFF can be used if it can be guaran-
teed that the input level is below - 6 in all cases (the default headroom is -6 dB).

bOut-
put-
GainEn-
abled

LVM_Mode_enParameter to enable or disable the output gain. The default value is
LVM_MODE_ON.

Out-
put-
Gain

LVM_INT16The value of the output gain. The output gain is a linear gain value. 0x7FFF
is equal to +6 dB and 0x0000 corresponds to -inf dB. By default, a 3 dB gain is
applied (OutputGain = 23197), resulting in an overall gain of -3 dB (-6 dB head-
room +3 dB output gain). Unit Q format Data Range Default value Linear gain
Q1.14 [0;32767] 23197

Returns:

SSRC_OK When the function call succeeds
SSRC_NULL_POINTERWhen pSSRC_Instance is a NULL pointer
SSRC_INVALID_MODEWrong value used for the bHeadroomGainEnabled or the OutputGainEn-

abled parameters.
SSRC_INVALID_VALUEWhen OutputGain is out of the range [0;32767].

1466 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

SSRC_Process Prototype:

SSRC_ReturnStatus_en SSRC_Process
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT16* pSSRC_AudioIn,
LVM_INT16* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 16-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT16* Pointer to the input samples.
pSSRC_AudioOut LVM_INT16* Pointer to the output samples.

Returns:

SSRC_OK When the function call succeeds.
SSRC_NULL_POINTERWhen one of pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is

NULL.

Parent topic:Functions

SSRC_Process_D32 Prototype:

SSRC_ReturnStatus_en SSRC_Process_D32
(SSRC_Instance_t* pSSRC_Instance,
LVM_INT32* pSSRC_AudioIn,
LVM_INT32* pSSRC_AudioOut);

Description:
Process function for the SSRC module. The function takes pointers as input and output audio
buffers.

The sample format used for the input and output buffers is 32-bit little-endian. Stereo buffers
are interleaved (L1, R1, L2, R2, and so on), mono buffers are deinterleaved (L1, L2, and so on).

Name Type Description
pSSRC_Instance SSRC_Instance_t* Pointer to the instance of the SSRC.
pSSRC_AudioIn LVM_INT32* Pointer to the input samples.
pSSRC_AudioOut LVM_INT32* Pointer to the output samples.

Returns:
|SSRC_OK|When the function call succeeds.| |SSRC_NULL_POINTER|When one of
pSSRC_Instance, pSSRC_AudioIn, or pSSRC_AudioOut is NULL.|

3.6. Multimedia 1467



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Functions

Parent topic:Application programmers interface (API)

Dynamic function usage This chapter explains how and when the SSRC functions are or can
be used.

Define the number of samples to be used on input and output Call the function
SSRC_GetNrSamples. Each integer multiple of the returned number of samples can be used.

Parent topic:Dynamic function usage

Allocate scratch memory To calculate the required size of the scratch memory, call the
SSRC_GetScratchSize function. Allocate memory for the returned size.

Parent topic:Dynamic function usage

Initialize the SSRC instance Call the SSRC_Init function.

Parent topic:Dynamic function usage

Process samples The SSRC_Process function can now be called any number of times.

Parent topic:Dynamic function usage

Destroy the SSRC instance When the processing is completed, the allocated memory for the
instance and the scratch can be freed.

Parent topic:Dynamic function usage

Parent topic:Application programmers interface (API)

Reentrancy None of the SSRC functions are re-entrant.

Parent topic:Application programmers interface (API)

Additional user information This section provides information on the Attenuation of the sig-
nal and Notes on integration.

Attenuation of the signal When a fully saturated or clipped input is applied to an SRC module,
the aliases after the sample rate conversion, although sufficiently suppressed, can still result in
a clipped output. To prevent clipped output, the output of the SSRC module is by default atten-
uated with 3 dB. Although not advised, this gain value can be changed using the SSRC_SetGains
function.

Parent topic:Additional user information

1468 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Notes on integration Although the sample rate converter module works with audio signals on
different sampling rates, it is a synchronous module. The module takes a block of input samples,
consumes the input completely, and produces a full buffer with output samples. As a result, the
SSRC only accepts a limited number of input and output block sizes. To flush last, incomplete,
block of an audio stream, the block is padded with zeros until it is full before the SSRC processes
it.

Parent topic:Additional user information

Example application The source code of the example application can be found in the .
\EX_APP\APP_FileIO\SRC directory of the release package. The .\EX_APP\APP_FileIO\
MAKE directory contains a make file that can be used to build the example application. When
building the application, an executable is generated in the .\EX_APP\APP_FileIO\EXE direc-
tory.

The example application takes as command-line input parameters:

1. The path toward the input PCM file. It assumes raw 16 bit signed little-endian put. Stereo
input samples should be interleaved (L1, L2 R1, R2,…), mono samples should be deinter-
leaved (L1, L2, and so on).

2. The path toward the output PCM file.

3. The input sample rate.

4. The output sample rate.

5. The channel format (mono or stereo).

Integration test A correct integration of the SSRC module can be verified in two ways.

• Bit accurate test

• THD+N measurement

Bit accurate test The TestFiles directory of the release package contains a test input (sampled
at 44,100 Hz) and several expected output files (sample rates from 8000 Hz to 48,000 Hz). If the
same test input file is applied to the SRC after integration in the target platform, the output is bit
accurate with the expected output file that matches the output-sample rate

Parent topic:Integration test

THD+N measurement Produce a swept sine and feed it through the SSRC module. Do a THD+N
measurement on the obtained output signal. The THD+N of the converted signals should be
below - 77 in the interval [0 - 0.45] FsLOW.

Parent topic:Integration test

Maestro Audio Framework

MCUXpresso SDK : Maestro

Overview This repository is for MCUXpresso SDK maestro middleware delivery and it contains
the components officially provided in NXP MCUXpresso SDK. This repository is part of the MCUX-
presso SDK overall delivery which is composed of several sub-repositories/projects. Navigate to
the top/parent repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

3.6. Multimedia 1469



MCUXpresso SDK Documentation, Release 25.12.00

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Maestro - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
Maestro project placed on github. Contributing can be managed via pull-requests.

Introduction Maestro audio framework intends to enable chaining of basic audio processing
blocks, called elements. These blocks then form stream processing objects, called pipeline. This
pipeline can be used for multiple audio processing use cases.

The processing blocks can include (but are not limited to) different audio sources (for exam-
ple file or microphone), decoders or encoders, filters or effects, and audio sinks. Framework
overview is depicted in the following picture:

*not all elements and libraries are supported in Zephyr port. For more information, see Maestro
on Zephyr

The Maestro audio framework is an open-source component developed by NXP Semiconductors
and released under the BSD-compatible license. It is running on RTOS (Zephyr or FreeRTOS),
abstracted by OSA layer.

For detailed description of the audio Maestro framework, please refer to the programmer’s guide.

To see what is new, see changelog.

Maestro on Zephyr Getting started guide and further information for Maestro on Zephyr may
be found here.

Maestro on FreeRTOS Maestro on FreeRTOS is supported in NXP’s SDK. To get started, see
mcuxsdk doc.

1470 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/audio_voice/maestro/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/index.html


MCUXpresso SDK Documentation, Release 25.12.00

Supported examples The current version of the Maestro audio framework supports several
optional features, some of which are used in these examples:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

The examples can be found in the audio_examples folder of the desired board. The demo ap-
plications are based on FreeRTOS and use multiple tasks to form the application functionality.

Example applications overview To set up the audio framework properly, it is necessary to
create a streamer with streamer_create API. It is also essential to set up the desired hardware
peripherals using the functions described in streamer_pcm.h. The Maestro example projects con-
sist of several files regarding the audio framework. The initial file is main.c with code to create
multiple tasks. For features including SD card (in the maestro_playback examples, reading a
file from SD card is supported and in maestro_record writing to SD card is currently supported)
the APP_SDCARD_Task is created. The command prompt and connected functionalities are
handled by APP_Shell_Task.

One of the most important parts of the configuration is the streamer_pcm.c where the initial-
ization of the hardware peripherals, input and output buffer management can be found. For
further information please see also streamer_pcm.h

In the Maestro USB examples (maestro_usb_mic and maestro_usb_speaker), the USB configura-
tion is located in the usb_device_descriptor.c, audio_microphone.c and audio_speaker.cfiles. For fur-
ther information please see also usb_device_descriptor.h, audio_microphone.h and audio_speaker.h.

In order to be able to get the messages from the audio framework, it is necessary to create a
thread for receiving the messages from the streamer, which is usually called a Message Task. The
message thread is placed in the app_streamer.c file, reads the streamer message queue, and reacts
to the following messages:

• STREAM_MSG_ERROR - stops the streamer and exits the message thread

• STREAM_MSG_EOS - stops the streamer and exits the message thread

• STREAM_MSG_UPDATE_DURATION - prints info about the stream duration

• STREAM_MSG_UPDATE_POSITION - prints info about current stream position

• STREAM_MSG_CLOSE_TASK - exits the message thread

File structure

3.6. Multimedia 1471



MCUXpresso SDK Documentation, Release 25.12.00

Folder Description
src Maestro audio framework sources
src/inc Maestro include files
src/core Maestro core sources
src/cci Common decoder interface sources
src/cei Common encoder interface sources
src/elements Maestro elements sources
src/devices External audio devices implementation (audio source & audio sink ele-

ments)
src/utils Helper utilities utilized by Maestro
docs Generated documentation
doxygen Documentation sources
components Glue for audio libraries, so they can be used in elements
tests Maestro tests
zephyr/ Zephyr related files
zephyr/samples/ Zephyr samples
zephyr/tests/ Zephyr tests
zephyr/audioTracks/ Audio tracks for testing
zephyr/wrappers/ Zephyr NXP SDK Wrappers
zephyr/doc/ Zephyr documentation configuration for Sphinx
zephyr/scripts/ Zephyr helper scripts, mostly for testing

Maestro Audio Framework Programmer’s Guide

Introduction Maestro audio framework provides instruments for playback and capture of dif-
ferent audio streams. In order to do that the framework uses API for creating various audio and
voice pipelines with the support of media and track information. This document describes the
framework in its detail, and the usage of API for pipeline creation using different elements. The
framework needs an operating system in order to create different tasks for audio processing and
communication with the application.

Architecture overview A high-level block diagram of the streamer used in Maestro is shown
below. An element is the most important class of objects in the streamer (see streamer_element.c).
A chain of elements will be created and linked together when a pipeline is created. Data flows
through this chain of elements in form of data buffers. An element has one specific function,
which can be the reading of data from a file, decoding of this data, or outputting this data to
a sink device. By chaining together several such elements, a pipeline is created that can do a
specific task, for example, the playback.

Pipeline

1472 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The pipeline is created within the streamer_create API using the streamer_create_pipeline call.
In the example applications provided in the MCUXpresso SDK the pipeline is created in the
app_streamer.c file. In order to create a pipeline user needs to provide a PipelineElements struc-
ture consisting of array of element indexes ElementIndex and the number of elements in the
pipeline. Then the pipeline is built automatically and user can specify the properties of the
elements using the streamer_set_property API. All the element properties can be found in the
streamer_element_properties.h file.

The streamer can handle up to two pipelines within a single task. The first pipeline with
index 0 can be created using the streamer_create function as described above. Then the
streamer_create_pipeline function should be used to create the second pipeline (pipeline with in-
dex 1). Both pipelines are processed sequentially, so after the first pipeline is processed, the
second pipeline is processed.

After the pipeline is sucessfully created, all elements and entire pipeline are in STATE_NULL
state. A user can start the streamer by setting the pipeline state to STATE_PLAYING using the
streamer_set_state function. The pipeline can also be paused or stopped using the same function.
Use the STATE_PAUSED to pause and use STATE_NULL to stop. The function changes the state
of each element that is in the pipeline in turn, and after all the elements have obtained the desired
state, the state of entire pipeline is changed.

Elements The current version of the Maestro framework supports several types of elements
(StreamElementType). In each pipeline should be used one source element (elements with the
_SRC suffix) and one sink element (elements with the _SINK suffix). A decoder, encoder or au-
dio_proc element can be connected between these two elements. The audio_proc element can be
used more than once within the same pipeline.

Each element type (StreamElementType) has several functions that are determined by a unique el-
ement index (ElementIndex). These indexes are used to create a pipeline, and each element index
can only be used once in the same pipeline. The type_lookup_table shows which StreamElement-
Type supports which ElementIndex.

Each element index (ElementIndex) has its own properties and a list of these properties can be
found in the streamer_element_properties.hfile. These properties are divided into groups and each
group is identified by a property mask (e.g. for speaker it is PROP_SPEAKER_MASK). Then
the property_lookup_table in the streamer_msg.c file determines which property group relates to
which element index (ElementIndex). When an element is created and added to the pipeline, its
properties are set to their defalut values. Default values can be seen in the initialization function
of a particular element. The initialization functions are specified in the element_list array in the
streamer_element.c file (e.g. for the audio_proc element it is the audio_proc_init_element function).
The user can get the value of the property using the streamer_get_property function or change its
value using the streamer_set_property function.

The source code of the elements can be found in themiddleware\audio_voice\maestro\src\elements\
folder.

Add a new element type The user can add a new element type (StreamElementType) to the
Maestro audio framework. For this, the following steps need to be done.

• Add a new element type to the StreamElementType enum type in the streamer_api.h.

• Create a new *.c and *.h files for the new element type in the middleware\audio_voice\
maestro\src\elements\ folder. All necessary structures and functions (functions for src pads,
sink pads and element itself) needs to be defined in these files. Inspiration can be found in
other elements.

• Link the initialization function to the element type in the element_list array in the
streamer_element.c file. To do this, a new definition that enables the element needs to be
created (e.g. there is a STREAMER_ENABLE_AUDIO_PROC definition for the audio_proc
element).

3.6. Multimedia 1473



MCUXpresso SDK Documentation, Release 25.12.00

• Associate the newly created element type with an element index (ElementIndex) by adding
a new pair to the type_lookup_table in the streamer.c file.

• If the user wants to use the newly created element in an application, the definiton that
enables the element must be defined at the project level.

Mostly the user doesn’t need to create a new element type, but just create an element index.

Add a new element index To create a new element index in the Maestro audio framework,
follow these steps:

• Add a new element index to the ElementIndex enum type in the streamer_api.h.

• Create the required properties for the newly created element index in the
streamer_element_properties.h file.

• Associate the newly created property group with newly created element index by adding a
new pair to the property_lookup_table in the streamer_msg.c file.

• Associate the newly created element index with an element type (StreamElementType) by
adding a new pair to the type_lookup_table in the streamer.c file.

• Add support for the created properties to functions of the associated element type. These
functions are defined in files that correspond to a particular element type. The files are
located in the middleware\audio_voice\maestro\src\elements\ folder.

It is important to know that each element type (StreamElementType) can be associated with
more than one element index (ElementIndex), but each element index (ElementIndex) can be
associated with only one element type (StreamElementType).

Pads Pads are elements’ inputs and outputs. A pad can be viewed as a “plug” or “port” on an
element where links may be made with other elements, and through which data can flow to or
from those elements. Data flows out of an element through a source pad, and elements accept
incoming data through a sink pad. Source and sink elements have only source and sink pads,
respectively. For detailed information about pads, please see the API reference from pad.c.

1474 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Internal communication The streamer (the core of the framework) provides several mecha-
nisms for communication and data exchange between the application, a pipeline, and pipeline
elements:

• Buffers are objects for passing streaming data between elements in the pipeline. Buffers
always travel from sources to sinks (downstream).

• Messages are objects sent from the application to the streamer task to construct, configure,
and control a streamer pipeline.

• Callbacks are used to transmit information such as errors, tags, state changes, etc. from the
pipeline and elements to the application.

• Events are objects sent between elements. Events can travel upstream and downstream.
Events may also be sent to the application

• Queries allow applications to request information such as duration or current playback
position from the pipeline. Elements can also use queries to request information from their
peer elements (such as the file size or duration). They can be used both ways within a
pipeline, but upstream queries are more common

Decoders and encoders Maestro framework uses a common codec interface for decoding pur-
poses and a common encoder interface for encoding. Those interfaces encapsulate the usage
of specific codecs. Reference codecs are available in audio-voice-components repository which
should be in \middleware\audio_voice\components\ folder.

Common codec interface The Common Codec Interface is the intended interface for all used
decoders. The framework will integrate a CCI decoder element into the streamer to interface
with all decoders.

Using the CCI to interface with Metadata
• cci_extract_meta_data must be called before any other Codec Interface APIs. This

API extracts the metadata information of the codec and fills this information in the

3.6. Multimedia 1475



MCUXpresso SDK Documentation, Release 25.12.00

file_meta_data_t structure. The file_meta_data_t structure must be allocated by the appli-
cation.

• This function first extracts the input file extension and based on that it calls the specific
codec’s metadata extraction function. If it finds an invalid extension or unsupported ex-
tension then it returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

• If this API finds the valid metadata then it returns with META_DATA_FOUND code. If this
API does not find any metadata information then it returns with META_DATA_NOT_FOUND
code. It also returns with META_DATA_FILE_NOT_SUPPORTED code for any unsupported
file format.

Using the CCI to interface with Decoders
• codec_get_mem_info gets the memory requirement based on the specific decoder stream

type. It returns the size in bytes of the specific codec. The user of the decoders must al-
locate memory of this size and this memory is used by the initialization API. The user or
application must pass this allocated memory pointer to the init API.

• codec_init must be called before the codec’s decode API. This API calls the codec-specific
initialization function based on the codec stream type. This API allocates the memory to
the codec main structure and also initializes the codec main structure parameters. It also
registers the call back functions to the codec which will be used by the codec to read or seek
the input stream.

• codec_decode is the main decoding API of the codec. This API calls the codec-specific decod-
ing function based on the codec stream type. This API decodes the input raw stream and
fills the PCM output samples into codec output PCM buffer. This API gives the information
about the number of samples produced by the codec and also gives the pointer of the codec
output PCM samples buffer.

• codec_get_pcm_samples must be called after the codec’s decode API. This API calls the codec
specific Get PCM Sample API based on the codec stream type. This API gets the PCM samples
from the codec in constant block size and fills them into the output PCM buffer. It returns
the number of samples get from the codec and also gives the pointer of the output PCM
buffer.

• codec_reset calls the codec specific reset API base on stream type and resets the codec.

• codec_seek accepts the seek bytes offset converted from the time by application. This API
calls the decoder’s internal seek API to calculate the actual seek offset which frame bound-
ary aligns. This API returns the actual seek offset.

The basic sequence to use a decoder with the CCI is shown below:

1476 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Adding new decoders to the CCI This section explains how to integrate a new decoder in the
Common Codec Interface. The CCI assumes the decoder library to be used is in the \middleware\
audio_voice\audiocomponents\decoders\*decoder*\libs\ folder of the maestro framework. The CCI
is just a wrapper around a specific implementation. The decoder is expected to be extended as
needed to meet the APIs described above.

• Register Decoder Top level APIs in Common Codec Interface

– Place the decoder lib in libs folder.

– Add prototypes of the decoder top level APIs in codec_interface.h file (located at
maestro\src\cci\inc\ folder).

– In codec_interface.c file (located at maestro\src\cci\src\), add top level Decoder APIs in
decoder function table.

– Pseudo code for this is as described below.

const codec_interface_function_table_t g_codec_function_table[STREAM_TYPE_COUNT] = {
#ifdef VORBIS_CODEC

{
&VORBISDecoderGetMemorySize,
&VORBISDecoderInit,
&VORBISDecoderDecode,
NULL,

(continues on next page)

3.6. Multimedia 1477



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
NULL,
&VORBISDecoderSeek,
&VORBISDecoderGetIOFrameSize,

},
#else

{
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

}
#endif
};

• Enable or Disable Decoder

– Define VORBIS_CODEC macro in audio_cfg.h file.

– Comment this macro if you want to disable VORBIS Decoder otherwise keep it defined
in order to enable the decoder.

• Add Extract Metadata API for the decoder

– Add extract metadata API source file for the decoder at
streamer/cci/metadata/src/vorbis folder.

– Add this code in extract metadata lib project space.

– Build the extract metadata lib and copy that lib to libs folder.

– Add the desired stream type into ccidec_extract_meta_data API (in codecextractmeta-
data.c file) to call VORBIS Decoder extract metadata API.

• Add stream type of the new decoder in the stream type enum audio_stream_type_t in
codec_interface_public_api.h

– Stream type of the decoder in stream type enum and decoder APIs in decoder function
table must be in the same sequence.

Common encoder interface Please see the following section about the cei.

Maestro performance

Memory information The memory usage of the framework components using reference
codecs (data obtained from GNU ARM compiler) in bytes is:

text data bss component
48790 2752 4 aac decoder
4348 16400 212 asrc
15512 0 4 flac decoder
76462 16 5013 maestro
34211 0 4 mp3 decoder
211974 0 0 opus
65446 0 4 ssrc
5850 16 12 wav decoder

1478 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro framework uses dynamic allocation of audio buffers. The total amount of memory al-
located for the pipeline depends on the following parameters:

• Number of elements in the pipeline

• Element types

• Audio stream properties

– Sampling rate

– Bit width

– Channel number

– Frame size

CPU usage The performance of the pipeline was measured using the real hardware platform
(RT1060).

• CPU core clock in MHz: 600.

Pipeline type Performance MIPS of pipeline (in MHz)
audio source -> audio sink ~10.26 MHz
audio source -> file sink ~9.84 MHz
file source (8-channel PCM) -> audio sink ~16.5 MHz

For performance details about the supported codecs please see audio-voice-components reposi-
tory documentation.

CEI encoder The Maestro streamer contains an element adapting an extensible set of audio en-
coders in the form of functions conforming to the CEI (Common Encoder Interface). This element
enables the user to choose and configure a suitable encoder at runtime.

Header files CEI itself and the CEI encoders are using following header files, in which you may
be interested:

• cei.h - contains types used by the element itself and an encoder implementing the CEI

• cei_enctypes.h - contains a list of possible encoders and types used for interfacing with a CEI
encoder

• cei_table.h - contains a table of functions implementing integrated CEI encoders

Instantiating the element This element’s index is ELEMENT_ENCODER_INDEX and its type
is TYPE_ELEMENT_ENCODER, as defined in streamer_api.h. It has one source pad (data in-
put) and one sink pad (data output). It is initialized like any other element, meaning that
it is instantiated and inserted into the pipeline using the create_element, add_element_pipeline
and link_elements functions. Inversely, for destroying the element, the unlink_elements, re-
move_element_pipeline and destroy_element are used. This element alone does not depend on
any additional software layers other than these required by the Maestro streamer itself, so no
pre-initialization before this element instantiation is necessary.

Element properties Use Maestro streamer property API (streamer_set_property and
streamer_get_property) for setting or getting these. The constants are defined in
streamer_element_properties.h.

• PROP_ENCODER_CHUNK_SIZE

3.6. Multimedia 1479



MCUXpresso SDK Documentation, Release 25.12.00

– Synopsis: Determines the length of a chunk pulled from the sibling of the source pad
and essentially influences the size of allocated buffers. If the actual amount of data
pulled is smaller, the rest is zero-filled.

– Type: unsigned 32-bit integer

– Default value: 1920
– Constraints:

* Must be bigger than zero, otherwise STREAM_ERR_INVALID_ARGS is returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS is returned.

• PROP_ENCODER_TYPE

– Synopsis: Determines the exact encoder (CEI implementation) to be used.

– Type: CeiEncoderType (cei_enctypes.h)

– Default value: CEIENC_LAST

– Constraints:

* Must not be equal to CEIENC_LAST, otherwise STREAM_ERR_INVALID_ARGS
will be returned.

* Selected encoder must be implemented, otherwise
STREAM_ERR_INVALID_ARGS will be returned.

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

– Behaviour influenced: The encoder element process function will return
FLOW_ERROR if this property isn’t set.

• PROP_ENCODER_CONFIG

– Synopsis: Determines encoder-specific configuration (application, bitrate, …).

– Type: Pointer to the encoder-specific configuration structure.

– Default value: Determined by the encoder.

– Constraints:

* The encoder has to be configurable. If it is not, STREAM_ERR_ERR_GENERAL
will be returned on any access.

* The structure has to conform to the encoder requirements. If the encoder returns
an error code, STREAM_ERR_GENERAL will be returned.

• PROP_ENCODER_BITSTREAMINFO

– Synopsis: Specifies information about the incoming bitstream (sample rate, sample
depth, …).

– Type: Pointer to CeiBitstreamInfo (cei_enctypes.h).

– Default value:

(CeiBitstreamInfo) {
.sample_rate = 0,
.num_channels = 0,
.endian = AF_LITTLE_ENDIAN,
.sign = TRUE,
.sample_size = 0,
.interleaved = TRUE

}

1480 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

– Constraints:

* Cannot be changed if the actual encoder has been created. If done so,
STREAM_ERR_ELEMENT_BAD_STATUS will be returned.

* As of now, only bitstreams containing 16-bit interleaved (if 2 or more channels will
be encoded) samples are supported. If anything else was set to the sample_size and
interleaved members, STREAM_ERR_INVALID_ARGS will be returned.

– Behaviour influenced:

* Given the characteristics of some elements available, different packets of data
(header and payload, referred to as “chunk” above) may be pulled by this element.
Each packet can contain a different header, which may or may not contain useful
information about the bitstream. If a packet with the AudioPacketHeader (todofile.h)
is pulled at first and any other iteration of the streamer pipeline, the bitstream pa-
rameters configured by this property are implicitly available and are not expected
to be specified by the user. Other packet header types (such as RawPacketHeader)
don’t contain any bitstream parameters and require the user to specify the param-
eters manually using this property. Failure to do so will result in the element’s
process function returning FLOW_ERROR. Same situation will occur if a packet
with the AudioPacketHeader is received and its contents differ from the already ac-
quired bitstream parameters.

* As of now, CEI is defined to work with 16-bit signed little-endian (s16le) samples,
which are interleaved if the bitstream contains more than one channels. This ele-
ment handles endianness and unsigned to signed conversion.

CEI definition - implementing your own encoder The CEI defines following function pointer
types:

• CeiFnGetMemorySize: Returns number of bytes required for encoder state for a given num-
ber of channels.

• CeiFnEncoderInit: Initialize an encoder for a given sample rate and channel count.

• CeiFnEncoderGetConfig: Copy current or default configuration to a given structure pointer.

• CeiFnEncoderSetConfig: Configure the encoder from a given structure pointer.

• CeiFnEncode: Encode a given buffer to a given output buffer.

Detailed descriptions of function behaviour, parameters and expected return values are avail-
able as docblocks in the cei.h file.

Each encoder is implemented as a set of pointers pointing to functions conforming to these types,
grouped in theCeiEncoderFunctions structure. Specifying theCeiEncoderGetConfig fnGetConfig and
CeiFnEncoderSetConfig fnSetConfig members is optional, as an encoder does not have to be con-
figurable. If so desired, specify NULL. Implementation of the remaining functions is mandatory,
however. If at least one of these functions isn’t implemented and NULL is specified instead, the
encoder will be considered as not implemented.

To register an implemented encoder with the element, add a new entry to the CeiEncoderType
enum and add the CeiEncoderFunctions struct value to the table CeiEncoderFunctions ceiEncTable[]
located in the cei_table.h header file. Note and match the order of items in that table, as a CeiEn-
coderType value is used as an index. Same goes for the size_t ceiEncConfigSizeTable[]. If configura-
tion is not applicable, specify 0 at the appropriate index. If configuration is applicable, describe
the configuration structure in the cei_enctypes.h header file and add its size to that table.

Maestro playback example

3.6. Multimedia 1481



MCUXpresso SDK Documentation, Release 25.12.00

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview The Maestro playback example demonstrates audio processing on the ARM cortex
core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console and the
audio files are read from the SD card.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback of encoded files from an SD card with up to 2
channels, up to 48 kHz sample rate and up to 16 bit width. This mode is enabled by default.

• Multi-channel - The mode demonstrates playback of raw PCM files from an SD card with 2
or 8 channels, 96kHz sample rate and 32 bit width. The decoders and synchronous sample
rate converter are not supported in this mode. The Multi-channel mode is only supported
on selected platforms, see the table below. The Example configuration section contains in-
formation on how to enable it.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Decoder:

– AAC:

* The reference decoder is supported only in the MCUXpresso IDE and ARMGCC.

– FLAC:

* LPCXpresso55s69 - When playing FLAC audio files with too small frame size (block
size), the audio output may be distorted because the board is not fast enough.

– OPUS:

* LPCXpresso55s69 - The decoder is disabled due to insufficient memory may be dis-
torted because the board is not fast enough.

• Sample rate converter:

– SSRC:

1482 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

* LPCXpresso55s69 - When a memory allocation ERROR occurs, it is necessary to
disable the SSRC element due to insufficient memory.

Known issues:
• Decoder:

– MP3:

* The reference decoder has issues with some of the files. One of the channels can
be sometimes distorted or missing parts of the signal.

– OPUS:

* The decoder doesn’t support all the combinations of frame sizes and sample rates.
The application might crash when playing an unspupported file.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• SD card with supported audio files

• Personal computer

• Optional:

– Audio expansion board AUD-EXP-42448 (REV B)

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

Preparation
1. Connect a micro USB cable between the PC host and the debug USB port on the development

board.

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

3.6. Multimedia 1483

https://www.nxp.com/part/AUD-EXP-42448#/


MCUXpresso SDK Documentation, Release 25.12.00

5. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*********************************
Maestro audio playback demo start
*********************************

[APP_Main_Task] started

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console (If
multi-channel playback mode is enabled, the description is slightly different):

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”file”: Perform audio file decode and playback

USAGE: file [stop|pause|volume|seek|play|list|info]
stop Stops actual playback.
pause Pause actual track or resume if already paused.
volume <volume> Set volume. The volume can be set from 0 to 100.
seek <seek_time> Seek currently paused track. Seek time is absolute time in milliseconds.
play <filename> Select audio track to play.
list List audio files available on mounted SD card.
info Prints playback info.

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– Add the MULTICHANNEL_EXAMPLE symbol to preprocessor defines on project level.

– Connect AUD-EXP-42448 (see the point below).

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962 macro to 0 in the app_definitions.h file

1484 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

5. Set the DEMO_CODEC_CS42448 macro to 1 in the app_definitions.h file.

Functionality The file play <filename> command calls the STREAMER_file_Create or
STREAMER_PCM_Create function from the app_streamer.c file depending on the selected mode.

• When the Standard mode is enabled, the command calls the STREAMER_file_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX

– ELEMENT_DECODER_INDEX

– ELEMENT_SRC_INDEX (If SSRC_PROC is defined)

– ELEMENT_SPEAKER_INDEX

• When the Multi-channel mode is enabled, the command calls STREAMER_PCM_Create
function, which creates a pipeline with the following elements:

– ELEMENT_FILE_SRC_INDEX (PCM format only)

– ELEMENT_SPEAKER_INDEX

– Note:

* If the input file is an 8 channel PCM file, output to all 8 channels is available. The
properties of the PCM file are set in the app_streamer.c file using file source prop-
erties sent to the streamer:

· PROP_FILESRC_SET_SAMPLE_RATE - default value is 96000 [Hz]

· PROP_FILESRC_SET_NUM_CHANNELS - default value is 8

· PROP_FILESRC_SET_BIT_WIDTH - default value is 32

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

EXT_PROCESS_DESC_T ssrc_proc = {SSRC_Proc_Init, SSRC_Proc_Execute, SSRC_Proc_Deinit,␣
↪→&get_app_data()->proc_args};

prop.prop = PROP_SRC_PROC_FUNCPTR;
prop.val = (uintptr_t)&ssrc_proc;

if (streamer_set_property(streamer, 0, prop, true) != 0)
{

return -1;
}

prop.prop = PROP_AUDIOSINK_SET_VOLUME;
prop.val = volume;
streamer_set_property(streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 3 different states:

• Idle

3.6. Multimedia 1485



MCUXpresso SDK Documentation, Release 25.12.00

• Running

• Paused

In each state, each command can have a different behavior. For more information, see Com-
mands in detail section.

Commands in detail The applicatin is controlled by commands from the shell interface and the
available commands for the selected mode can be displayed using the help command. Commands
are processed in the cmd.c file.

• help, version

• file stop

• file pause

• file volume <volume>

• file seek <seek_time>

• file play <filename>

• file list

• file info

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> D[Write help or version]:::function
B((Running)):::state --> D
C((Paused)):::state --> D
D-->E((No state
change)):::state

file stop
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

1486 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

B((Idle)):::state --> B
C((Running)):::state -->E((Idle)):::state
D((Paused)):::state -->E

file pause
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> B
C((Running)):::state -->E((Paused)):::state
D((Paused)):::state -->F((Running)):::state

file volume <volume>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> M[Error: Play a track first]:::error
C((Running)):::state --> G{Volume
parameter
empty?}:::condition
D((Paused)):::state --> G
G -- Yes -->H[Error: Enter volume parameter]:::error
G -- No -->I{Volume
in range?}:::condition
I -- No -->J[Error: invalid value]:::error
I -- Yes -->K[Set volume]:::function
J --> L((No state
change)):::state
K --> L
H--> L

file seek <seek_time> The seek argument is only supported in the Standard mode.

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> E[Error: First select
an audio track to play]:::error
E-->B
C((Running)):::state --> F[Error: First
pause the track]:::error
F --> C
D((Paused)):::state --> G{Seek
parameter
empty?}:::condition
G --No --> H{AAC file?}:::condition

3.6. Multimedia 1487



MCUXpresso SDK Documentation, Release 25.12.00

G --Yes --> I[Error: Enter
a seek time value]:::error
I-->N((Paused)):::state;
H --Yes -->J[Error: The AAC decoder
does not support
the seek command]:::error
J-->N
H --No -->K{Seek
parameter
positive?}:::condition
K --No -->L[Error: The seek
time must be
a positive value]:::error
L-->N
K --Yes -->M[Seek the file]:::function
M-->N

file play <filename>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

C((Running)):::state --> Z[Error: First stop
current track]:::error
D((Paused)):::state --> Z
B((Idle)):::state --> E{SD Card
inserted?}:::condition
E -- No -->F[Error: Insert SD
card]:::error
E -- Yes -->G{File
name
empty?}:::condition
G -- Yes -->H[Error: Enter
file name]:::error
G -- No -->I{File exists?}:::condition
I -- No -->O[Error: File
doesn't exist]:::error
I -- Yes -->J{Supported
format?}:::condition
J -- Yes -->K[Play the track]:::function
J -- No -->L[Error: Unsupported
file]:::error
K -->M((Running)):::state
L --> W((No state
change)):::state
O --> W
H --> W
F --> W
Z --> W

file list
flowchart TD

classDef function fill:#69CA00

1488 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> G{SD Card
inserted?}:::condition
C((Running)):::state --> G
D((Paused)):::state --> G
G -- Yes -->H[List supported files]:::function
G -- No -->I[Error: Insert SD card]:::error
I --> J((No state
change)):::state
H --> J

file info
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->E[Write file info]:::function
C((Running)):::state -->E
D((Paused)):::state -->E
E --> F((No state

change)):::state

Processing Time Typical streamer pipeline execution times and their individual elements for
the EVKC-MIMXRT1060 development board are presented in the following tables. The time spent
on output buffers is not included in the traversal measurements. However, file reading time
is accounted for. In the case of the WAV codec, the audio file was accessed in every pipeline
run. Therefore, during each run, the file was read from the SD card. However, for the MP3
codec, where data must be processed in complete MP3 frames, the file was not read in every
run. Instead, it was read periodically only when the codec buffer did not contain a complete
frame of data.

For further details, please refer to the Processing Time document.

WAV streamer file_src codec SSRC_proc speaker
48kHz 1.1 ms 850 μs 150 μs 70 μs 40 μs
44kHz 1.75 ms 850 μs 180 μs 670 μs 40 μs

MP3 streamer file_src codec SSRC_proc speaker
48 kHz with file read 2.9 ms 2.3 μs 450 μs 60 μs 50 μs
48 kHz without file read 0.5 ms x 400 μs 40 μs 40 μs
44 kHz with file read 3.2 ms 2.3 μs 440 μs 400 μs 50 μs
44 kHz without file read 0.9 ms x 440 μs 390 μs 40 μs

Maestro record example

3.6. Multimedia 1489



MCUXpresso SDK Documentation, Release 25.12.00

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

• Processing Time

Overview The Maestro record example demonstrates audio processing on the ARM cortex core
utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Loopback - The application demonstrates a loopback from the microphone to the speaker
without any audio processing. Mono, stereo or multichannel mode can be used, depending
on the hardware, see table below.

• File recording - The application takes audio samples from the microphone inputs and
stores them to an SD card as an PCM file. The PCM file has following parameters:

– Mono and stereo : 2 channels, 16kHz, 16bit width

– Multi-channel (AUD-EXP-42448): 6 channels, 16kHz, 32bit width

• Voice control - The application takes audio samples from the microphone input and uses
the VIT library to recognize wake words and voice commands. If a wake word or a voice
command is recognized, the application write it to the serial terminal.

• Encoding - The application takes PCM samples from memory and sends them to the Opus
encoder. The encoded data is stored in memory and compared to a reference. The result of
the comparison is finally written into the serial terminal.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

– LPCXPresso55s69 - MCUXpresso IDE project default debug console is semihost

• Addition labraries

– VIT:

* The VIT is supported only in the MCUXpresso IDE and ARMGCC.

* LPCXpresso55s69 - The VIT is disabled by default due to insufficient memory. To
enable it, see the Example configuration section.

1490 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

* EVK-MCXN5XX - Some VIT models can’t fit into memory. In order to free some
space it is necessary to disable SD card handling and opus encoder. To disable it,
see the Example configuration section.

• Encoder

– OPUS:

* LPCXpresso55s69 - The encoder is not supported due to insufficient memory.

• The File recording mode is not supported on RW612BGA development board due to missing
SD card slot.

Known issues:
• EVKB-MIMXRT1170 - After several tens of runs (the number of runs is not deterministic),

the development board restarts because a power-up sequence is detected on the RESET pin
(due to a voltage drop).

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• Micro USB cable

• Headphones with 3.5 mm stereo jack

• Personal computer

• Optional:

– SD card for file output

– Audio expansion board AUD-EXP-42448 (REV B)

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

• EVKB-MIMXRT1170:

1. Please remove below resistors if on board wifi chip is not DNP:

– R228, R229, R232, R234

2. Please make sure R136 is weld for GPIO card detect.

• EVK-MCXN5XX:

– Short: JP7 2-3, JP8 2-3, JP10 2-3, JP11 2-3

• RW612BGA:

– Connect: JP50; Disconnect JP9, JP11

Preparation
1. Connect a micro USB cable between the PC host and the debug USB port on the development

board

2. Open a serial terminal with the following settings:

• 115200 baud rate

3.6. Multimedia 1491

https://www.nxp.com/part/AUD-EXP-42448#/


MCUXpresso SDK Documentation, Release 25.12.00

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Insert the headphones into the Line-Out connector (headphone jack) on the development
board.

5. LPCXpresso55s69:

• Insert source of sound to audio Line-In connector (headphone jack) on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*******************************
Maestro audio record demo start
*******************************

Copyright 2022 NXP
[APP_SDCARD_Task] start
[APP_Shell_Task] start

>> [APP_SDCARD_Task] SD card drive mounted

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”record_mic”: Record MIC audio and perform one (or more) of following actions:
- playback on codec
- perform voice recognition (VIT)
- store samples to a file.

USAGE: record_mic [audio|file|<file_name>|vit] 20 [<language>]
The number defines length of recording in seconds.

Please see the project defined symbols for the languages supported.
Then specify one of: en/cn/de/es/fr/it/ja/ko/pt/tr as the language parameter.
For voice recognition say supported WakeWord and in 3s frame supported command.
Please note that this VIT demo is near-field and uses 1 on-board microphone.

NOTES: This command returns to shell after the recording is finished.
To store samples to a file, the ”file” option can be used to create a file
with a predefined name, or any file name (without whitespaces) can be specified
instead of the ”file” option.

”opus_encode”: Initializes the streamer with the Opus memory-to-memory pipeline and
encodes a hardcoded buffer.

1492 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Details of commands can be found here.

Example configuration The example can be configured by user. There are several options how
to configure the example settings, depending on the environment. For configuration using west
and Kconfig, please follow the instructions here. Before configuration, please check the table to
see if the feature is supported on the development board.

• Connect AUD-EXP-42448:
– EVKC-MIMXRT1060:

1. Disconnect the power supply for safety reasons.

2. Insert AUD-EXP-42448 into J19 to be able to use the CS42448 codec for multichannel
output.

3. Uninstall J99.

4. Set the DEMO_CODEC_WM8962 macro to 0 in the app_definitions.h file

5. Set the DEMO_CODEC_CS42448 macro to 1 in the app_definitions.h file.

– Note:

* The audio stream is as follows:

· Stereo INPUT 1 (J12) -> LINE 1&2 OUTPUT (J6)

· Stereo INPUT 2 (J15) -> LINE 3&4 OUTPUT (J7)

· MIC1 & MIC2 (P1, P2) -> LINE 5&6 OUTPUT (J8)

· Insert the headphones into the different line outputs to hear the inputs.

· To use the Stereo INPUT 1, 2, connect an audio source LINE IN jack.

• Enable VIT:
– LPCXpresso55s69 and MCX-N5XX:

* In MCUXPresso IDE (SDK package):

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level.

2. Add VIT_PROC symbol to preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Prepro-
cessor)

* In armgcc in SDK package:

1. Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

2. Remove OPUS_ENCODE=1 and STREAMER_ENABLE_ENCODER prepro-
cessor defines in flags.cmake file.

3. Add VIT_PROC symbol to preprocessor defines in flags.cmake file.

4. Remove sdmmc_config.c,.h files from CMakeLists.txt file.

* In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.
element.file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.
sdmmc.sd and MCUX_COMPONENT_middleware.sdmmc.host.usdhc

3. Make sure sdmmc_config files (.c, .h) is excluded from project build

3.6. Multimedia 1493

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/develop/build_system/Configuration_System.html


MCUXpresso SDK Documentation, Release 25.12.00

· remove mcux_add_source function that adds the sources in reconfig.cmake
in maestro_record/cm33_core0 folder

4. Disable fatfs MCUX_COMPONENT_middleware.fatfs and
MCUX_COMPONENT_middleware.fatfs.sd

5. Disable file utils MCUX_COMPONENT_middleware.audio_voice.maestro.
file_utils.enable

6. Make sure Opus encoder is disabled MCUX_COMPONENT_middleware.
audio_voice.maestro.element.encoder.opus.enable

7. Make sure VIT_PROC symbol is defined

· remove mcux_remove_macro function that removes the VIT_PROC preproces-
sor definition in reconfig.cmake in maestro_record folder

8. Make sure VIT processing is enabled MCUX_PRJSEG_middleware.audio_voice.
components.vit

• VIT model generation:
– For custom VIT model generation (defining own wake words and voice commands)

please use https://vit.nxp.com/

• Disable SD card handling:
– In MCUXPresso IDE:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines on project level:

· (Project -> Properties -> C/C++ Build -> Settings -> MCU C Compiler -> Preproces-
sor)

– In armgcc in SDK package:

* Remove SD_ENABLED and STREAMER_ENABLE_FILE_SINK symbols from
preprocessor defines in flags.cmake file.

– In Kconfig:

1. Disable File sink MCUX_COMPONENT_middleware.audio_voice.maestro.element.
file_sink.enable

2. Make sure SD card support is disabled MCUX_COMPONENT_middleware.sdmmc.
sd

Functionality The record_mic or opus_encode command calls the STREAMER_mic_Create or
STREAMER_opusmem2mem_Create function from the app_streamer.c file depending on the se-
lected mode.

• When the Loopback mode is selected, the command calls the STREAMER_mic_Create func-
tion that creates a pipeline with the following elements:

– ELEMENT_MICROPHONE_INDEX

– ELEMENT_SPEAKER_INDEX

• When the File recording mode is selected, the command calls the STREAMER_mic_Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_FILE_SINK_INDEX

• When the Voice control mode is selected, the command calls the STREAMER_mic_Create
function that creates a pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_VIT_INDEX

1494 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• When the Encoding mode is selected, the command calls the
STREAMER_opusmem2mem_Create function that creates a pipeline with the fol-
lowing elements: - ELEMENT_MEM_SRC_INDEX - ELEMENT_ENCODER_INDEX - ELE-
MENT_MEM_SINK_INDEX

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = DEMO_MIC_CHANNEL_NUM;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_BITS_PER_SAMPLE;
prop.val = DEMO_AUDIO_BIT_WIDTH;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
prop.val = DEMO_MIC_FRAME_SIZE;
streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = DEMO_AUDIO_SAMPLE_RATE;
streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• record_mic audio <time>

• record_mic file <time>

• record_mic <file_name> <time>

• record_mic vit <time> <language>

• opus_encode

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

3.6. Multimedia 1495



MCUXpresso SDK Documentation, Release 25.12.00

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

record_mic audio <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> D{time
> 0 ?}:::condition
D -- Yes --> F[recording]:::function
D -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
F --> C((Running)):::state
C -->G{time
expired?}:::condition
G -- No --> C
G -- Yes --> B

record_mic file <time>/record_mic <file_name> <time>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> D{SD card
inserted?}:::condition
C -- No --> E[Error: Record length
must be greater than 0]:::error
E --> B
D -- Yes --> G{Custom
file name?}:::condition
G -- Yes --> H[Create custom
file name]:::function
G -- No --> I[Create default
file name]:::function
H --> J[Recording]:::function
I --> J
J --> K((Running)):::state

1496 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

K -->L{time
expired?}:::condition
L -- No --> K
L -- Yes --> B
D -- No --> F[Error: Insert SD
card first]:::error
F --> B

record_mic vit <time> <language>
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state --> C{time
> 0 ?}:::condition
C -- Yes --> E{Selected
language?}:::condition
C -- No --> D[Error: Record length
must be greater than 0]:::error
D --> B
E -- Yes --> G{Supported
language?}:::condition
E -- No --> F[Error: Language
not selected]:::error
F -->B
G -- Yes -->I[Recording with
voice recognition]:::function
G -- No -->H[Error: Language not supported]:::error
H --> B
I --> J((Running)):::state
J -->K{time
expired?}:::condition
K -- No --> J
K -- Yes --> B

opus_encode
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

B((Idle)):::state -->C[Encode file]:::function
C -->D[Check result]:::function
D -->B

Processing Time Typical execution times of the streamer pipeline for the EVKC-MIMXRT1060
development board are detailed in the following table. The duration spent on output buffers
and reading from the microphone is excluded from traversal measurements. Three measured

3.6. Multimedia 1497



MCUXpresso SDK Documentation, Release 25.12.00

pipelines were considered. The first involves a loopback from microphone to speaker, support-
ing both mono and stereo configurations. The second pipeline is a mono voice control setup,
comprising microphone and VIT blocks. The final pipeline is a stereo voice control setup, inte-
grating microphone and VIT blocks.

For further details of execution times on individual elements, please refer to the Processing Time
document.

streamer

microphone -> speaker 1 channel 40 μs
microphone -> speaker 2 channels 115 μs
microphone -> VIT 7.4 ms

Maestro USB microphone example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro USB microphone example demonstrates audio processing on the ARM
cortex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host. The
application takes audio samples from the microphone inputs and sends them to the USB host
via the USB bus. User will see the volume levels obtained from the USB host but this is only an
example application. To leverage the volume values, the demo has to be modified.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• Note:

1. When connected to MacBook, change the PCM format from (0x02,0x00,) to (0x01,0x00,
) in the g_config_descriptor[CONFIG_DESC_SIZE] in the usb_descriptor.c file. Otherwise,
it can’t be enumerated and noise is present when recording with the QuickTime player
because the sampling frequency and bit resolution do not match.

1498 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

2. When device functionality is changed, please uninstall the previous PC driver to make
sure the device with changed functionality can run normally.

3. If you’re having audio problems on Windows 10 for recorder, please disable signal
enhancement as the following if it is enabled and have a try again.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• LPCXpresso55s69:

– Source of sound with 3.5 mm stereo jack connector

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. LPCXpresso55s69:

• Insert source of sound to Audio Line-In connector (headphone jack) on the develop-
ment board.

5. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

*************************************************
Maestro audio USB microphone solutions demo start
*************************************************

Copyright 2022 NXP
(continues on next page)

3.6. Multimedia 1499



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
[APP_Shell_Task] start

>> usb_mic -1

Starting maestro usb microphone application
The application will run until the board restarts
[STREAMER] Message Task started
Starting recording
[STREAMER] start usb microphone
Set Cur Volume : 1f00

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_mic”: Record MIC audio and playback to the USB port as an audio 2.0
microphone device.

USAGE: usb_mic <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_mic 20

Details of commands can be found here.

Example configuration The example only supports one mode and do not support any addi-
tional libraries, so the example can’t be configured by user.

Functionality The usb_mic command calls the STREAMER_mic_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_MICROPHONE_INDEX - ELEMENT_USB_SINK_INDEX

Recording itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_MICROPHONE_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_NUM_CHANNELS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_MICROPHONE_SET_FRAME_MS;
(continues on next page)

1500 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_mic <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

usb_mic <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{seconds
== 0?}:::condition
C -- No --> E{seconds
< 0?}:::condition
C -- Yes --> D[Error: Incorrect

3.6. Multimedia 1501



MCUXpresso SDK Documentation, Release 25.12.00

command parameter]:::error
D -->B
E -- Yes --> G[recording]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[recording]:::function
F --> I((Running)):::state
I --> J{seconds
expired?}:::condition
J -- No -->I
J -- Yes --> B

Maestro USB speaker example

Table of content
• Overview

• Hardware requirements

• Hardware modifications

• Preparation

• Running the demo

• Example configuration

• Functionality

• States

• Commands in detail

Overview The Maestro USB speaker example demonstrates audio processing on the ARM cor-
tex core utilizing the Maestro Audio Framework library.

The application is controlled by commands from a shell interface using serial console.

The development board will be enumerated as a USB audio class 2.0 device on the USB host.
The application takes audio samples from the USB host and sends them to the audio Line-Out
port. User will see the volume levels obtained from the USB host but this is only an example
application. To leverage the volume values, the demo has to be modified.

Depending on target platform or development board there are different modes and features of
the demo supported.

• Standard - The mode demonstrates playback with up to 2 channels, up to 48 kHz sample
rate and up to 16 bit width. This mode is enabled by default.

• Multi-Channel - In this mode the device is enumerated as a UAC 5.1. This mode is disabled
by default. See the Example configuration section to see how to enable the mode.

– When playing an 5.1 audio file, the example sends only the front-left and front-right
channels to the audio Line-Out port (the other channels are ignored), since this exam-
ple only supports on-board codecs with stereo audio output.

As shown in the table below, the application is supported on several development boards, and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:

1502 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Note:

– If the USB device audio speaker example uses an ISO IN feedback endpoint, please
attach the device to a host like PC which supports feedback function. Otherwise, there
might be attachment issue or other problems.

Known issues:
• No known issues.

More information about supported features can be found on the Supported features page.

Hardware requirements
• Desired development board

• 2x Micro USB cable

• Personal Computer

• Headphones with 3.5 mm stereo jack

Hardware modifications Some development boards need some hardware modifications to
run the application. If the development board is not listed here, its default setting is required.

Preparation
1. Connect the first micro USB cable between the PC host and the debug USB port on the de-

velopment board

2. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

3. Download the program to the target board.

4. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

5. Insert the headphones into Line-Out connector (headphone jack) on the development
board.

6. Either press the reset button on your development board or launch the debugger in your
IDE to begin running the demo.

Running the demo When the example runs successfully, you should see similar output on the
serial terminal as below:

**********************************************
Maestro audio USB speaker solutions demo start
**********************************************

Copyright 2022 NXP
[APP_Shell_Task] start

>> usb_speaker -1
(continues on next page)

3.6. Multimedia 1503



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

Starting maestro usb speaker application
The application will run until the board restarts
[STREAMER] Message Task started
Starting playing
[STREAMER] start usb speaker
Set Cur Volume : fbd5

Type help to see the command list. Similar description will be displayed on serial console:

>> help

”help”: List all the registered commands

”exit”: Exit program

”version”: Display component versions

”usb_speaker”: Play data from the USB port as an audio 2.0
speaker device.

USAGE: usb_speaker <seconds>
<seconds> Time in seconds how long the application should run.

When you enter a negative number the application will
run until the board restarts.

EXAMPLE: The application will run for 20 seconds: usb_speaker 20

Details of commands can be found here.

Example configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• Enable Multi-channel mode:
– The feature can be enabled by set the USB_AUDIO_CHANNEL5_1 macro to 1U in the
usb_device_descriptor.h file.

– Note: When device functionality is changed, such as UAC 5.1, please uninstall the pre-
vious PC driver to make sure the device with changed functionality can run normally.

Functionality The Usb_speaker command calls the STREAMER_speaker_Create function
from the app_streamer.cfile that creates pipeline with the following elements: - ELE-
MENT_USB_SRC_INDEX - ELEMENT_SPEAKER_INDEX

Playback itself can be started with the STREAMER_Start function.

Each of the elements has several properties that can be accessed using the streamer_get_property
or streamer_set_property function. These properties allow a user to change the values of the
appropriate elements. The list of properties can be found in streamer_element_properties.h. See
the example of setting property value in the following piece of code from the app_streamer.c file:

ELEMENT_PROPERTY_T prop;

prop.prop = PROP_USB_SRC_SET_SAMPLE_RATE;
prop.val = AUDIO_SAMPLING_RATE;

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_NUM_CHANNELS;
prop.val = 2;

(continues on next page)

1504 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

streamer_set_property(handle->streamer, 0, prop, true);

prop.prop = PROP_USB_SRC_SET_FRAME_MS;
prop.val = 1;

streamer_set_property(handle->streamer, 0, prop, true);

Some of the predefined values can be found in the streamer_api.h.

States The application can be in 2 different states:

• Idle

• Running

Commands in detail
• help, version

• usb_speaker <seconds>

Legend for diagrams:

flowchart TD
classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((State)):::state
B{Condition}:::condition
C[Error message]:::error
D[Process function]:::function

help, version
flowchart TD

classDef function fill:#69CA00
classDef condition fill:#0EAFE0
classDef state fill:#F9B500
classDef error fill:#F54D4D

A((Idle)):::state --> C[Write help or version]:::function
B((Running)):::state --> C
C --> E((No state
change)):::state

usb_speaker <seconds>
flowchart TD

classDef function fill:#c6d22c
classDef condition fill:#7cb2de
classDef state fill:#fcb415
classDef error fill:#FF999C

B((Idle)):::state -->C{Duration
== 0?}:::condition

3.6. Multimedia 1505



MCUXpresso SDK Documentation, Release 25.12.00

C -- No --> E{Duration
< 0?}:::condition
C -- Yes --> D[Error: Incorrect
command parameter]:::error
D -->B
E -- Yes --> G[playing]:::function
G --> H((Running)):::state
H --> H
E -- No --> F[playing]:::function
F --> I((Running)):::state
I --> J{Duration
expired?}:::condition
J -- No -->I
J -- Yes --> B

Supported features The current version of the audio framework supports several optional
features. These can be limited to some MCU cores or development boards variants. More infor-
mation about support can be found on the specific example page:

• maestro_playback

• maestro_record

• maestro_usb_mic

• maestro_usb_speaker

Some features are delivered as prebuilt library and the binaries can be found in the \middleware\
audio_voice\components\*component*\libs folder. The source code of some features can be found
in the \middleware\audio_voice\maestro\src folder.

Decoders Supported decoders and its options are:

Decoder Sample rates [kHz] Number of channels Bit depth
AAC 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
FLAC 8, 11.025, 12, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 16
MP3 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 1, 2 (mono/stereo) 16
OPUS 8, 16, 24, 48 1, 2 (mono/stereo) 16
WAV 8, 11.025, 16, 22.05, 32, 44.1, 48 1, 2 (mono/stereo) 8, 16, 24

For more details about the reference decoders please see audio-voice-components repository
documentation \middleware\audio_voice\components\.

Encoders
• OPUS encoder - The current verion of the audio framework only supports a OPUS encoder.

For more details about the encoder please see the following link.

Sample rate converters
• SSRC - Synchronous sample rate converter. More details about SSRC are available in the

User Guide, which is located in middleware\audio_voice\components\ssrc\doc\.

• ASRC - Asynchronous sample rate converter is not used in our examples, but it is part of the
maestro middleware and can be enabled. To enable ASRC, the maestro_framework_asrc and
CMSIS_DSP_Library_Source components must be added to the project. Furthermore, it is
necessary to switch from Redlib to Newlib (semihost) library and add a platform definition

1506 Chapter 3. Middleware

https://opus-codec.org/docs/opus_api-1.3.1/


MCUXpresso SDK Documentation, Release 25.12.00

to the project (e.g. for RT1170: PLATFORM_RT1170_CORTEXM7). Supported platforms
can be found in the PL_platformTypes.h file. More details about ASRC are available in the
User Guide, which is located in middleware\audio_voice\components\asrc\doc\.

Additional libraries
• VIT - Voice Intelligent Technology (VIT) Wake Word and Voice Command Engines pro-

vide free, ready to use voice UI enablement for developers. It enables customer-defined
wake words and commands using free online tools. More details about VIT are available
in the VIT package, which is located in middleware\audio_voice\components\vit\{platform}\
Doc\(depending on the platform) or via following link.

Processing Time

Table of content
• Maestro playback example

• Maestro record example

The individual time measurements were conducted using a logic analyzer by monitoring
changes in the GPIO port levels on the EVKC-MIMXRT1060 development board. These measure-
ments were executed for each individual pipeline run, capturing the timing at each correspond-
ing element, and, when relevant, the interconnections between these elements.

Maestro playback example For the Maestro playback example the following reference audio
file was used: test_48khz_16bit_2ch.wav. In this example, the pipeline depicted in the diagram
was considered. Media codecs WAV and MP3 were taken into account. To compare the times
spent on the SSRC block, sampling rates for both codecs were selected: 44.1 kHz and 48 kHz.

The measurement of streamer pipeline run started at the beginning of
streamer_process_pipelines(): streamer.c and ended in the function streamer_pcm_write():
streamer_pcm.c just before the output buffer.

In the scenario involving the WAV codec, the audio file was accessed in every iteration of the
streamer pipeline. Meaning, during each run, the file was read directly from the SD card. How-
ever, in the case of the MP3 codec, where data processing necessitates complete MP3 frames,
the file wasn’t read during every run. Rather, it was accessed periodically, triggered when the
codec buffer lacked a complete MP3 frame of data. The total time spent on codec processing
varies significantly depending on the type and implementation of the codec. For certain types of
codecs, like FLAC, there may be multiple file accesses during a single pipeline run. The provided
values are specific to the reference implementation. For details about the codecs please see see
audio-voice-components documentation middleware\audio_voice\components\.

The duration of the streamer pipeline illustrates that with a sampling frequency of 48 kHz, there
is no resampling occurring at the SSRC element. Consequently, the overall pipeline time is lower
than in the case of 44.1 kHz audio, where resampling takes place.

To enhance comprehension of the system’s behavior, histograms of the pipeline run times and
its elements are included. The greater time variance with the MP3 codec is precisely due to

3.6. Multimedia 1507

https://nxp.com/vit


MCUXpresso SDK Documentation, Release 25.12.00

the absence of file reads in every run. In clusters with shorter times, there are no file accesses,
while in clusters with longer times, file reads occur. This indicates that the majority of runs do
not involve file access.

WAV 48
kHz

WAV 44
kHz

MP3 48 kHz
file read

MP3 48 kHz w/o
file read

MP3 44 kHz
file read

MP3 44 kHz w/o
file read

mean 1.11 ms 1.76 ms 2.87 ms 0.51 ms 3.22 ms 0.89 ms
min 1.03 ms 1.60 ms 2.74 ms 0.41 ms 2.33 ms 0.74 ms
max 1.29 ms 2.23 ms 3.24 ms 1.83 ms 3.73 ms 1.12 ms

Time on each element In the tables and histograms below, the timings for individual elements
and their connections are provided. Given that the file reading function was invoked during the
codec’s operation, the tables for individual elements display the total time on the codec element,
the time on the codec element before the file read, and the time on the codec element after the
file read. The individual blocks in the tables are as follows:

• streamer - total time of one pipeline run without time on output buffers

• codec start - time on decoder before file read

• codec end - time on decoder after file read

• codec total - codec_start+codec_end

• file_src - file reading time

• SSRC_proc - time on SSRC element

• audio_sink - time on audio sink without ouput buffers

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• codec - decoder_sink_pad_process_handler():decoder_pads.c

• file_src - filesrc_read():file_src_rtos.c

• SSRC_proc - SSRC_Proc_Execute():ssrc_proc.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

1508 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

WAV
48kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.119
ms

152
μs

31 μs 0.843
ms

120
μs

5 μs 64 μs 2 μs 40 μs 20.228
ms

min 1.026
ms

125
μs

21 μs 0.773
ms

104
μs

<1 μs 47 μs <1 μs 30 μs 19.805
ms

max 1.290
ms

193
μs

49 μs 1.311
ms

144
μs

23 μs 93 μs 14 μs 91 μs 20.324
ms

WAV
44kHz

streamercodec
total

codec
start

file_src codec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 1.765
ms

178
μs

44 μs 0.853
ms

134
μs

5 μs 671
μs

3 μs 42 μs 21.472
ms

min 1.604
ms

145
μs

33 μs 0.770
ms

112
μs

<1 μs 574
μs

<1 μs 33 μs 18.163
ms

max 2.233
ms

218
μs

57 μs 1.335
ms

161
μs

18 μs 715
μs

5 μs 89 μs 21.746
ms

MP348 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 2.871
ms

441
μs

279
μs

2.271
ms

162
μs

6 μs 56 μs 3 μs 50 μs 11.019
ms

min 2.739
ms

353
μs

74 μs 1.353
ms

26
μs

<1 μs 40 μs <1 μs 34 μs 10.091
ms

max 3.244
ms

570
μs

409
μs

2.728
ms

467
μs

18 μs 80 μs 14 μs 62 μs 12.910
ms

3.6. Multimedia 1509



MCUXpresso SDK Documentation, Release 25.12.00

MP3 48
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.508
ms

403
μs

x x x 8 μs 39 μs 3 μs 36 μs 11.326
ms

min 0.407
ms

208
μs

x x x <1 μs 25 μs <1 μs 21 μs 7.715
ms

max 1.834
ms

563
μs

x x x 41 μs 69 μs 16 μs 104
μs

12.941
ms

MP344 kHz
w/ file read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 3.217
ms

436
μs

367
μs

2.300
ms

66
μs

7 μs 403
μs

3 μs 51 μs 12.188
ms

min 2.329
ms

383
μs

73 μs 1.411
ms

26
μs

2 μs 318
μs

<1 μs 35 μs 9.119
ms

max 3.726
ms

547
μs

464
μs

2.801
ms

441
μs

27 μs 454
μs

12 μs 65 μs 12.529
ms

MP3 44
kHz w/o file
read

streamercodec
total

codec
start

file_srccodec
end

link
codec-
SSRC

SSRC_proclink SSRC-
audio_sink

au-
dio_sink

pcm_write

mean 0.891
ms

437
μs

x x x 9 μs 388
μs

3 μs 38 μs 11.934
ms

min 0.738
ms

268
μs

x x x <1 μs 290
μs

<1 μs 22 μs 8.964
ms

max 1.115
ms

620
μs

x x x 45 μs 438
μs

17 μs 92 μs 12.624
ms

1510 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro record example Typical execution times of the streamer pipeline and its individual
elements for the EVKC-MIMXRT1060 development board are detailed in the following tables. The
duration spent on output buffers and reading from the microphone is excluded from traversal
measurements. Three measured pipelines are depicted in the figure below. The first involves
a loopback from microphone to speaker, supporting both mono and stereo configurations. The
second pipeline is a mono voice control setup, comprising microphone and VIT blocks. The final
pipeline is a stereo voice control setup, integrating microphone and VIT blocks. The measure-
ment of streamer pipeline run started at the beginning of streamer_process_pipelines():streamer.c
and ended in the function streamer_pcm_write(): streamer_pcm.c just before the output buffer.

The individual blocks in the tables are as follows:

• streamer - total time of one pipeline run without time on output buffers and without time
reading from the microphone

• audio_src_start - time on audio src before reading from the microphone

• audio_src_end - time on audio src after reading from the microphone

• pcm_read - reading from the microphone

• vit - time on VIT element

• audio_sink - time on audio sink without ouput buffers

3.6. Multimedia 1511



MCUXpresso SDK Documentation, Release 25.12.00

• pcm_write - time on output buffers

• link - time on element links

The start times of the time intervals for individual blocks and their respective links were mea-
sured by altering the GPIO pin level in the following functions:

• streamer - streamer_process_pipelines():streamer.c

• audio_src - audiosrc_src_process():audio_src.c

• pcm_read - streamer_pcm_read():streamer_pcm.c

• vit - vitsink_sink_pad_chain_handler():vit_sink.c

• audio_sink - audiosink_sink_pad_chain_handler():audio_sink.c

• pcm_write - streamer_pcm_write():streamer_pcm.c

• link - pad_push():pad.c

Pipeline Microphone -> Speaker

microphone ->
speaker mono

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 43 μs 3 μs 29.938
ms

29 μs <1 μs 10 μs 18 μs

min 26 μs <1 μs 29.350
ms

19 μs <1 μs 5 μs 12 μs

max 72 μs 12 μs 29.957
ms

44 μs 1 μs 15 μs 25 μs

microphone ->
speaker stereo

streamerau-
dio_src_start

pcm_readau-
dio_src_end

link audio_src-
audio_sink

au-
dio_sink

pcm_write

mean 115
μs

5 μs 29.861
ms

54 μs 2 μs 55 μs 23 μs

min 94 μs <1 μs 29.768
ms

43 μs <1 μs 50 μs 12 μs

max 154
μs

14 μs 29.880
ms

67 μs 8 μs 65 μs 49 μs

1512 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pipeline Microphone -> VIT

microphone ->
VIT

streamer au-
dio_src_start

pcm_read au-
dio_src_end

link audio_src-
vit

vit

mean 7.380
ms

30 μs 22.624
ms

78 μs 2 μs 7.261
ms

min 2.641
ms

10 μs 2.2265
ms

58 μs <1 μs 2.559
ms

max 7.780
ms

42 μs 2.7341
ms

94 μs 5 μs 7.624
ms

Maestro on Zephyr
• Based on and tested with Zephyr version, given by tag v4.0.0

• Tested with Zephyr SDK version 16.4

• To see the pre-built documentation, see: README.html. Also see the documentation section.

Maestro sample for recording data from microphone to RAM

Description This sample records data from microphone (alias dmic0 in devicetree) and stores
them to a buffer in RAM.

Currently one PDM channel with fixed 16 kHz sample rate and 16 bit sample width is supported.

For configuration options, see Kconfig and prj.conf.

User Input/Output
• Input:

None.

• Output:

UART Output:

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro voice detection sample using VIT

3.6. Multimedia 1513

doc/doc/README.html


MCUXpresso SDK Documentation, Release 25.12.00

Description Records data from microphone (alias dmic0 in devicetree) and detects voice com-
mands from selected language model. Detected commands are printed via UART.

Language model may be changed via Kconfig usingCONFIG_MAESTRO_EXAMPLE_VIT_LANGUAGE
selection. For other configuration options, see example’s Kconfig and prj.conf.

This project requires an NXP board supported by the VIT library.

The example has to be modified if a new board needs to be added. Please create an issue in that
case.

User Input/Output
• Input:

None.

• Output:

UART Output:

– List of voice commands the model can detect (printed immediately after start)

– <Specific voice command> if voice command was detected

– Demo result: FAIL otherwise

Dependencies
• VIT library: https://www.nxp.com/design/design-center/software/embedded-software/

voice-intelligent-technology-wake-word-and-voice-command-engines:
VOICE-INTELLIGENT-TECHNOLOGY

Supported platforms Currently tested for:

• RD_RW612_BGA.

Maestro decoder sample

Description Tests and demonstrates decoder functionality in Maestro pipeline.

Supported decoders:

• MP3

• WAV

• AAC

• FLAC

• OPUS with OGG envelop

• (RAW OPUS - TBD)

Data Input:

• Prepared encoded audio data (part of Maestro repository, folder zephyr/audioTracks)

• Prepared decoded audio data (RAW PCM format, part of Maestro repository, folder zephyr/
audioTracks)

Function:

1. Loads encoded data into source buffer stored in RAM

1514 Chapter 3. Middleware

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY
https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY


MCUXpresso SDK Documentation, Release 25.12.00

2. Decodes audio data using selected decoder and stores data in RAM

3. Compares prepared data with decoded data to check if its the same

4. Prints Demo result: OK or Demo result: FAIL via UART

User Input/Output
• Input:

None

• Output:

UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Decoder libraries

Configuration
• See prj.conf for user input sections

– Selecting decoder may be done by enablingCONFIG_MAESTRO_EXAMPLE_DECODER_SELECTED_<DECODER_NAME>
in prj.conf file. When no decoder is selected, default one (WAV) is used instead.

– System settings should be modified (stack size, heap size) based on selected decoder
and system capabilities/requirements in prj.conf.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working decoders: FLAC, WAV, OPUS OGG

Maestro encoder sample

Description Tests and demonstrates encoder functionality in Maestro pipeline.

Supported encoders:
• OPUS with OGG envelop - TBD

• RAW OPUS - TBD

Input:

• Prepared decoded audio data (RAW PCM format, part of Maestro repository)

• Prepared encoded audio data (part of Maestro repository)

Function:

1. Loads RAW data into source buffer stored in RAM

2. Encodes audio data using selected encoder and stores data in RAM

3. Compares prepared data with decoded data if same

4. Prints Demo result: OK or Demo result: FAIL via UART

3.6. Multimedia 1515



MCUXpresso SDK Documentation, Release 25.12.00

Dependencies
• Audio voice component library (pulled in by Maestro’s west), containing Encoder libraries

User Input/Output Input:

• None

Output:

• UART Output

– Demo result: OK if everything went OK

– Demo result: FAIL otherwise

Configuration
• See prj.conf for user input sections

– Selecting encoder may be done by enablingCONFIG_MAESTRO_EXAMPLE_ENCODER_SELECTED_<ENCODER_NAME>
in prj.conf file. When no encoder is selected, default one (OPUS) is used instead.

– System settings should be modified (stack size, heap size) based on selected encoder
and system capabilities/requirements in prj.conf file.

• For other configuration options, see example’s Kconfig and prj.conf.

Supported platforms Currently tested for:

• RD_RW612_BGA - Working encoders: None.

Maestro mem2mem sample

Description Tests basic memory to memory pipeline.

Function:
1. Moves generated data with fixed size of 256B from memory source to memory sink.

2. Compares copied data to check if they’re the same.

3. Returns Demo result: OK or Demo result: FAIL via UART.

• Maestro environment setup

• Build and run Maestro example

– Using command line

– Using MCUXpresso for VS Code

• Folder structure

• Supported elements and libraries

• Examples support

• Creating your own example

• Documentation

• FAQ

1516 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Maestro environment setup Follow these steps to set up a Maestro development environment
on your machine.

1. If you haven’t already, please follow this guide to set up a Zephyr development environment
and its dependencies first:

• Cmake

• Python

• Devicetree compiler

• West

• Zephyr SDK bundle

2. Get Maestro. You can pick either of the options listed below. If you need help deciding
which option is the best fit for your needs, please see the FAQ.

• Freestanding Maestro - This option pulls in only Maestro’s necessary dependencies.

Run:

1. west init -m <maestro repository url> --mr <revision> --mf west-freestanding.yml
↪→<foldername>
2. cd <foldername>
3. west update

• Maestro as a Zephyr module

To include Maestro into Zephyr, update Zephyr’s west.yml file:

projects:
name: maestro
url: <maestro repository url>
revision: <revision with Zephyr support>
path: modules/audio/maestro
import: west.yml

Then run west update maestro command.

Build and run Maestro example These steps will guide you through building and running
Maestro samples. You can use either the command line utilizing Zephyr’s powerful west tool or
you can use VS Code’s GUI. Detailed steps for both options are listed below.

Using command line See Zephyr’s Building, Flashing and Debugging guide if you aren’t famil-
iar with it yet.

1. To build a project, run:

west build -b <board> -d <output build directory> <path to example> -p

For example, this compiles VIT example for rd_rw612_bga board:

1. cd maestro/zephyr
2. west build -b rd_rw612_bga -d build samples/vit -p

2. To run a project, run:

west flash -d <directory>

e.g.:

3.6. Multimedia 1517

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html


MCUXpresso SDK Documentation, Release 25.12.00

west flash -d build

3. To debug a project, run:

west debug -d <directory>

e.g.:

west debug -d build

Using MCUXpresso for VS Code For this you have to have NXP’s MCUXpresso for VS Code
extension installed.

1. Import your topdir as a repository to MCUXPresso for VS Code:

• Open the MCUXpresso Extension. In the Quickstart Panel click Import Repository.

• In the displayed menu click LOCAL tab and select the folder location of your topdir.

• Click Import.

• The repository is successfully added to the Installed Repositories view once the import
is successful.

2. To import any project from the imported repository:

• In the Quickstart Panel click Import Example from Repository.

• For Repository select your imported repository.

• For Zephyr SDK the installed Zephyr SDK is selected automatically. If not, select one.

• For Board select your board (make sure you’ve selected the correct revision).

• For Template select the folder path to your project.

• Click the Create button.

3. Build the project by clicking the Build Selected icon (displayed on hover) in the extension’s
Projects view. After the build, the debug console window displays the memory usage (or
compiler errors if any).

4. Debug the project by clicking the Debug (play) icon (displayed on hover) in the extension’s
Projects view.

5. The execution will pause. To continue execution click Continue on the debug options.

6. In the SERIAL MONITOR tab of your console panel, the application prints the Zephyr boot
banner during startup and then prints the test results.

Folder structure
maestro/
���� ...
���� zephyr/ All Zephyr related files

��� samples/ Sample examples
��� tests/ Tests
��� audioTracks/ Audio tracks for testing
��� doc/ Documentation configuration for Sphinx
��� wrappers/ NXP SDK Wrappers
��� scripts/ Helper scripts, mostly for testing
��� module.yml Defines module name, Cmake and Kconfig locations
��� CMakeList.txt Defines module's build process
��� Kconfig Defines module's configuration
��� osa/ Deprecated. OSA port for Zephyr
��� ...

1518 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/vscode-for-mcux
https://github.com/nxp-mcuxpresso/vscode-for-mcux


MCUXpresso SDK Documentation, Release 25.12.00

Supported elements and libraries Here is the list of all features currently supported in Mae-
stro on Zephyr. Our goal is to support all features in Maestro on Zephyr that are already sup-
ported in Maestro on NXP’s SDK and to extend them further.

Supported elements:
• Memory source

• Memory sink

• Audio source

• Audio sink

• Process sink

• Decoder

• Encoder

Supported decoders:
• WAV

• MP3

• FLAC

• OPUS OGG

• AAC

Supported encoders:
• OPUS RAW

Supported libraries:
• VIT

Examples support All included examples use UART as output. Examples are located in zephyr/
tests and zephyr/samples directories.

List of included examples:
• Maestro sample for recording data from microphone to RAM

• Maestro voice detection sample using VIT

• Maestro encoder sample

• Maestro decoder sample

• Maestro mem2mem sample

Examples support for specific boards:

Example RDRW612BGA LPCx-
presso55s69

MIMXRT1060EVKB MIMXRT1170EVKB

Record YES TO BE TESTED TO BE TESTED TO BE TESTED
VIT YES TO BE TESTED TO BE TESTED TO BE TESTED
Encoder In progress: OPUS RAW TO BE TESTED TO BE TESTED TO BE TESTED
Decoder YES - WAV, FLAC, OPUS

OGG
TO BE TESTED TO BE TESTED TO BE TESTED

Mem2mem YES TO BE TESTED TO BE TESTED TO BE TESTED

3.6. Multimedia 1519

https://www.nxp.com/design/design-center/software/embedded-software/voice-intelligent-technology-wake-word-and-voice-command-engines:VOICE-INTELLIGENT-TECHNOLOGY


MCUXpresso SDK Documentation, Release 25.12.00

Creating your own example There are two ways to create your own example - you can either
one of the included examples as a reference or you can create your own example from scratch
by hand.

When creating your own example from scratch, setCONFIG_MAESTRO_AUDIO_FRAMEWORK=y
in your prj.conf file. Then you can start enabling specific elements by setting CON-
FIG_MAESTRO_ELEMENT_<NAME>_ENABLE=y.

However, the recommended way to edit config options is to open gui-config (or menuconfig) by
calling west build -t guiconfig. Then you can use the graphical interface to interactively turn on/off
the features you need.

Documentation Please note, Maestro documentation is under reconstruction. It is currently
mixing several tools and formats.

To see the pre-generated Maestro Zephyr documentation, see zephyr/doc/doc/README.html

To generate the Zephyr documentation, go under zephyr/doc folder and execute make html.
Sphinx version sphinx-build 8.1.3 must be installed. Open doc/doc/html/README.hml afterwards.

To see Maestro core documentation, go to the Maestro top directory and see README.md.

FAQ
1. Should I choose the freestanding version of Maestro or should integrate it into my west

instead?

• Freestanding version of Maestro pulls in all the dependencies it needs including
Zephyr itself.

• Integrating it as a module is easier if you already have your Zephyr environment set
up.

Maestro Audio Framework changelog

2.0.2
• Removed VoiceSeeker support

2.0.1
• Fixed filesrc buffer alignment

2.0.0 (newest)
• Added Zephyr port, see Zephyr README.

– Possible to use standalone version, pulling its own Zephyr and dependencies

– Possible to import it as a module in your Zephyr project

• Changed build system - newly uses Kconfig and Cmake

• Supports NXP MCUXSDK (previously 2.x)

• Changed folder structure and names to improve readability (description may be found in
README)

• Removed audio libraries and placed into audio-voice-components repository

• Added libraries are pulled into the build via Kconfig and Cmake

1520 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Changed Maestro library core - minor changes

1.8.0
• New platforms support: MCX-N5XX-EVK, FRDMMCXN236 and RD-RW612-BGA

• Fixed compilation warnings

• Documentation improvements and updates

– Added section with processing time information

– Added application state diagrams

• Various updates and fixes

1.7.0
• Removed EAP support for future SDK releases

• Created new API for audio_sink and audio_src to support USB source, sink

• ASRC library integrated

• License changed to BSD 3-Clause

• Improved pipeline creation API

• Fixed compilation warnings in Opus

• Various other improvements and bug fixes

1.6.0
• Up to 2 parallel pipelines supported

• Synchronous Sample Rate Converter support Added

• Various improvements and bug fixes

1.5.0
• Enabled switching from 2 to 4 channel output during processing

• PadReturn type has been replaced by FlowReturn

• Support of AAC, WAV, FLAC decoders

• Renamed eap element to audio_proc element

• Added audio_proc to VIT pipeline to support VoiceSeeker

• Minor bug fixes

1.4.0
• Use Opusfile lib for Ogg Opus decoder

• Refactor code, fix issues found in unit tests

• Various bug fixes

3.6. Multimedia 1521



MCUXpresso SDK Documentation, Release 25.12.00

1.3.0
• Make Maestro framework open source (except mp3 and wav decoder)

• Refactor code, remove unused parts, add comments

1.2.0
• Unified buffering in audio source, audio sink

• Various improvements and bug fixes

1.0_rev0
• Initial version of framework with support for Cortex-M7 platforms

3.6.2 VGLite Graphics Driver

IMXRTVGLITEAPIRM

Introduction The VGLite Graphics API (Application Programming Interface) is designed to sup-
port 2D vector and 2D raster-based operations for rendering the interactive user interface that
may include menus, fonts, curves, and images. The goal is to provide the maximum 2D vec-
tor/raster rendering performance, while keeping the memory footprint to the minimum.

Note: This document contains proprietary information of VeriSilicon Holdings Co., Ltd, and Vi-
vante Corporation.

VGLite Graphics API The Vivante VGLite Graphics API is used to control the Vivante vector
graphics hardware units that provide accelerated vector and raster operations.

The Vivante VGLite API is developed for use with Vivante GCNanoLiteV, GCNanoUltraV, GCNanoV,
GC355, and GC555 hardware. GC355 and GC555 support the Khronos OpenVG 1.1 feature set,
while GCNanoLiteV, GCNanoUltraV and GCNanoV have a feature set smaller than that required
to pass Khronos OpenVG CTS.

The VGLite API driver V4 is a new design and implementation of the driver (from 2023Q1) to sup-
port the new generation 2.5D GPU (GC555), and the previous 2.5D GPU releases (GC255, GC265,
GC355). The new V4 driver supports the new and improved VGLite API (version 3.0) and can
generate the most CPU-efficient, customized driver build for a specific 2.5D GPU release based
on the hardware feature set.

VGLite API supported features include: Porter-Duff Blending, Gradient Controls, Fast Clear, Ar-
bitrary Rotations, Path Filling rules, Path painting, and Pattern Path Filling.

By default, VGLite API driver V4 supports one implicit global application context in a single
thread. VGLite V4 driver does not support multithreaded applications, which is not suitable
for embedded IoT devices.

Parent topic:Introduction

API function group The VGLite Graphics API has been designed to have independent function
groups. It is permissible for a user to use only one of the function groups in the VGLite applica-
tion:

• Initialization is used for initializing hardware and software structures

• Blit API is used for the raster part of rendering

• Draw API is used for 2D vector-based draw operations

1522 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Introduction

API files The VGLite source code is available as part of the NXP MCUXpresso SDK:

The VGLite graphics API functions are defined in the header file VGLite/inc/vg_lite.h.

All VGLite enumerations and data types are defined in VGLite/inc/vg_lite.h.

Parent topic:Introduction

Hardware versions The Vivante VGLite API is compatible with a range of Vivante Vector
Graphics IPs including: GCNanoLiteV, GCNanoUltraV, GCNanoV, GC355, and GC555.

Note: A specific hardware version has customized feature set that may limit hardware support
for some VGLite API options. The VGLite application can use the vg_lite_query_feature API to
query specific VGLite feature availability.

Users can also check the VGLite/VGLite/vg_lite_options.h file which includes CHIPID, REVISION,
CID to identify specific HW releases, and the gcFEATURE_VG_* macros to define the feature set
for the HW release.

The gcFEATURE_VG_* macro values (except a few SW features) should NOT be changed. Other-
wise, the VGLite driver does not function correctly on the specific HW release. Users can change
the “SW Features” macro values to disable some software features, unnecessary error checks, or
enable VGLite API trace for debug purposes.

.

Parent topic:Introduction

Common parameters and error values This chapter provides an overview of the common
parameter types and the enumeration used for error reporting.

Common parameter types The VGLite graphics API uses a naming convention scheme
wherein definitions are preceded by vg_lite.

Below is the list of types and structures in the driver implementation.

3.6. Multimedia 1523



MCUXpresso SDK Documentation, Release 25.12.00

NameType-
def

Value

vg_lite_bool_tint A signed 32-bit integer 0: FALSE; 1: TRUE.
vg_lite_int8_tchar A signed 8-bit integer
vg_lite_uint8_tun-

signed
char

An unsigned 8-bit integer

vg_lite_int16_tshort A signed 16-bit integer
vg_lite_uint16_tun-

signed
short

An unsigned 16-bit integer

vg_lite_int32_tint A signed 32-bit integer
vg_lite_uint32_tun-

signed
int

An unsigned 32-bit integer

vg_lite_uint64_tun-
signed
long
long

An unsigned 64-bit integer

vg_lite_float_tfloat A 32-bit single precision floating point number
vg_lite_double_tdou-

ble
A 64-bit double precision floating point number

vg_lite_char_tchar A signed 8-bit integer
vg_lite_stringchar* A pointer to a character string
vg_lite_pointervoid* A generic address pointer (void *). On 32-bit OS, it is a 32-bit address pointer. On

64-bit OS, it is a 64-bit address pointer.
vg_lite_voidvoid The void type
vg_lite_color_tvg_lite_uint32_tA 32-bit color value The color value specifies the color used in various func-

tions. The color is formed using 8-bit RGBA channels. The red chan-
nel is in the lower 8-bit of the color value, followed by the green and
blue channels. The alpha channel is in the upper 8-bit of the color value.

For L8 target formats, the RGB
color is converted to L8 by using the default ITU-R BT.709 conversion rules.

VG_LITE_S8enum
vg_lite_format_t

A signed 8-bit integer coordinate

VG_LITE_S16enum
vg_lite_format_t

A signed 16 bit integer coordinate

VG_LITE_S32enum
vg_lite_format_t

A signed 32-bit integer coordinate

VG_LITE_FP32enum
vg_lite_format_t

A 32-bit floating point coordinate

Parent topic:Common parameters and error values

Enumerations for error reporting This section describes enumerations used for error report-
ing.

vg_lite_error_t enumeration Most functions in the API include an error status via the
vg_lite_error_tenumeration. API functions return the status of the command and will report
VG_LITE_SUCCESS if successful with no errors. Possible error values include the values in
the table below. vg_lite_error_tenumeration is used in many functions, including initialization,
flush, blit, draw, gradient, and pattern functions.

1524 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t string values Description
VG_LITE_GENERIC_IO Cannot communicate with the kernel driver
VG_LITE_INVALID_ARGUMENTAn invalid argument was specified
VG_LITE_MULTI_THREAD_FAILMulti-thread/tasks fail (available from June 2020)
VG_LITE_NO_CONTEXT No context specified
VG_LITE_NOT_SUPPORT Function call is not supported. Hardware support is not

available.
VG_LITE_OUT_OF_MEMORY Out of memory (driver heap)
VG_LITE_OUT_OF_RESOURCESOut of resources (OS heap)
VG_LITE_SUCCESS Successful with no errors
VG_LITE_TIMEOUT Timeout
VG_LITE_ALREADY_EXISTS Object exists (available from August 2021)
VG_LITE_NOT_ALIGNED Data alignment error (available from August 2021)

Parent topic:Enumerations for error reporting

Parent topic:Common parameters and error values

Hardware product and feature information These query functions can be used to identify
the product and its key features and to get VGLite driver information.

Enumerations for product and feature queries This section describes enumerations used for
product and feature queries.

vg_lite_feature_t enumeration The following feature values may be queried for availability in
compatible hardware. (expanded March 2023 to support additional hardware for driver V4)

Used in information function: vg_lite_query_feature.

vg_lite_feature_t string values Description
gcFEATURE_BIT_VG_16PIXELS_ALIGN Require 16 pixels aligned for the input pixel buffer
gcFEATURE_BIT_VG_24BIT RGB888 or RGBA5658 formats support
gcFEATURE_BIT_VG_24BIT_PLANAR 24-bit planar format support
gcFEATURE_BIT_VG_AYUV_INPUT AYUV input format support
gcFEATURE_BIT_VG_BORDER_CULLING Border culling support
gcFEATURE_BIT_VG_COLOR_KEY Color key support.
gcFEATURE_BIT_VG_COLOR_TRANSFORMATION Color transform support.
gcFEATURE_BIT_VG_DEC_COMPRESS DEC compression format output support
gcFEATURE_BIT_VG_DITHER Dither support
gcFEATURE_BIT_VG_DOUBLE_IMAGE Support two image source inputs
gcFEATURE_BIT_VG_FLEXA FLEXA interface support
gcFEATURE_BIT_VG_GAMMA Gamma support
gcFEATURE_BIT_VG_GAUSSIAN_BLUR Gaussian blur sampling support
gcFEATURE_BIT_VG_GLOBAL_ALPHA Global alpha support
gcFEATURE_BIT_VG_HW_PREMULTIPLY HW supports alpha premultiply for image
gcFEATURE_BIT_VG_IM_DEC_INPUT DEC compressed format input support
gcFEATURE_BIT_VG_IM_FASTCLEAR Fast Clear support
gcFEATURE_BIT_VG_IM_INDEX_FORMAT Index format support for image
gcFEATURE_BIT_VG_IM_INPUT Blit and draw API support
gcFEATURE_BIT_VG_IM_REPEAT_REFLECT Image repeat reflect mode support
gcFEATURE_BIT_VG_INDEX_ENDIAN Index format endian support
gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT Support for extended linear gradient capabilities

continues on next page

3.6. Multimedia 1525



MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
vg_lite_feature_t string values Description
gcFEATURE_BIT_VG_LVGL_SUPPORT LVGL blend mode support
gcFEATURE_BIT_VG_MASK Mask support
gcFEATURE_BIT_VG_MIRROR Mirror support
gcFEATURE_BIT_VG_NEW_BLEND_MODE New blend mode DARKEN/LIGHTEN support
gcFEATURE_BIT_VG_NEW_IMAGE_INDEX New CLUT image index support
gcFEATURE_BIT_VG_PARALLEL_PATHS New parallel path HW support
gcFEATURE_BIT_VG_PE_CLEAR Pixel engine clear support
gcFEATURE_BIT_VG_PIXEL_MATRIX Pixel matrix support
gcFEATURE_BIT_VG_QUALITY_8X 8x anti-aliasing path support
gcFEATURE_BIT_VG_RADIAL_GRADIENT Radial gradient support
gcFEATURE_BIT_VG_RECTANGLE_TILED_OUT Rectangle tiled output support
gcFEATURE_BIT_VG_RGBA2_FORMAT RGBA2222 format support
gcFEATURE_BIT_VG_RGBA8_ETC2_EAC ETC2/EAC compressed image format support
gcFEATURE_BIT_VG_SCISSOR Scissor support
gcFEATURE_BIT_VG_SRC_PREMULTIPLIED Source image alpha premultiplied
gcFEATURE_BIT_VG_STENCIL Stencil image mode support
gcFEATURE_BIT_VG_STRIPE_MODE Stripe mode support
gcFEATURE_BIT_VG_TESSELLATION_TILED_OUT Tessellation tiled output support
gcFEATURE_BIT_VG_USE_DST Read destination pixel support
gcFEATURE_BIT_VG_YUV_INPUT YUV input format support
gcFEATURE_BIT_VG_YUV_OUTPUT YUV format output support
gcFEATURE_BIT_VG_YUV_TILED_INPUT YUV tiled input format support
gcFEATURE_BIT_VG_YUY2_INPUT YUY2 input format support

Parent topic:Enumerations for product and feature queries

Parent topic:Hardware product and feature information

Structures for product and feature queries This section describes structures used for prod-
uct and feature queries.

vg_lite_info_t structure This structure is used to query VGLite driver information.

Used in function: vg_lite_get_info_t.

vg_lite_info_t member Type Description
api_version vg_lite_uint32_t VGLite API version
header_version vg_lite_uint32_t VGLite header version
release_version vg_lite_uint32_t VGLite driver release version
reserved vg_lite_uint32_t Reserved for future use

Parent topic:Structures for product and feature queries

Parent topic:Hardware product and feature information

Functions for product and feature queries This section describes functions used for product
and feature queries.

vg_lite_get_product_info Description:
This function is used to identify the VGLite-compatible product.

Syntax:

1526 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

uint32_t vg_lite_get_product_info (
char *name,
uint32_t *chip_id,
uint32_t *chip_rev

);

Parameters:

Name Description
name A character array to store the name of the chip.
chip_id Stores an ID number for the chip.
chip_rev Stores a revision number for the chip.

Parent topic:Functions for product and feature queries

vg_lite_get_info Description:
This function is used to query the VGLite driver information.

Syntax:

vg_lite_error_t vg_lite_get_info (
vg_lite_info_t *info

);

Parameters:

Name Description
info Points to the VGLite driver information structure, which includes the API version,

header version, and release version

Parent topic:Functions for product and feature queries

vg_lite_get_register Description:
This function can be used to read a GPU AHB register value given the AHB byte address of a
register. Refer to the appropriate Vivante GPU AHB register specification documents for register
descriptions. The value range of AHB accessible addresses for VGLite cores is usually 0x0 to 0x1FF
and 0xA00 to 0xA7F.

Syntax:

vg_lite_error_t vg_lite_get_register (
vg_lite_uint32_t address,
vg_lite_uint32_t *result

);

Parameters:

Name Description
address Byte Address of the register which value you want.
*result The registers value.

Parent topic:Functions for product and feature queries

3.6. Multimedia 1527



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_query_feature Description:
This function is used to query if a specific feature is available.

Syntax:

vg_lite_uint32_t vg_lite_query_feature (
vg_lite_feature_t feature

);

Parameters:

Name Description
feature Feature to be queried, as detailed in enum vg_lite_feature_t

Returns:
The feature is either not supported (0) or supported (1).

Parent topic:Functions for product and feature queries

vg_lite_get_mem_size Description:
This function queries whether there is any remaining allocated contiguous video memory.
(available from June 2020)

Syntax:

vg_lite_error_t vg_lite_get_mem_size(
vg_lite_uint32_t *size

);

Parameters:

Name Description
size Pointer to the remaining allocated contiguous video memory.

Returns:
Returns VG_LITE_SUCCESS if the query is successful and memory is available. Returns
VG_LITE_NO_CONTEXT if the driver is not initialized or there is no available memory.

Parent topic:Functions for product and feature queries

Parent topic:Hardware product and feature information

API control Before calling any VGLite API function, the application must initialize the VGLite
implicit (global) context by calling vg_lite_init(), which will fill in a features table, reset the fast-
clear buffer, reset the compositing target buffer and allocate the command and tessellation
buffers.

The VGLite driver only supports one current context and one thread to issue commands to the
Vivante Vector Graphics hardware. The VGLite driver does not support multiple concurrent
contexts running simultaneously in multiple threads/processes, as the VGLite kernel driver does
not support context switching. A VGLite application can only use a single context at any time to
issue commands to the Vivante Vector Graphics hardware. If a VGLite application must switch
contexts, vg_lite_close() must be called to close the current context in the current thread, then

1528 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init() can be called to initialize a new context either in the current thread or from another
thread/process.

Context initialization and control functions This section provides an overview of the context
initialization and control functions.

vg_lite_init Description:
This function initializes the memory and data structures needed for VGLite draw/blit functions,
by allocating memory for the command buffer and a tessellation buffer of the specified size.

GC555 has a newly designed hardware tessellation module that requires less memory for the
tessellation buffer than GC355 and GNanoLite-V. Specifically, the GC555 required tessellation
buffer size is “buffer_height * 128 byte”. vg_lite_init API can simply be called with the render
buffer “width” and “height” as the input parameters for GC555. This results in the best path to
tessellation performance.

GC355 and GCNanoLiteV hardware tessellation module requires a tessellation buffer with size
“buffer_height * buffer_width * 8 byte”. If system memory is limited, the application can define
a smaller tessellation window based on the amount of memory available. GPU hardware can
process the entire render buffer path tessellation in multiple passes with the tessellation window
sliding across the render buffer. The multi-pass path tessellation with the smaller tessellation
window has a certain performance overhead.

The minimum tessellation window that can be used is 16x16. If tess_height or tess_width is less
than 0 in vg_lite_init API, then no path tessellation buffer is created and path drawing APIs do
not work, only blit APIs can be used after vg_lite_init.

If this would be the first context that accesses the hardware, the hardware is turned on and
initialized. If a new context must be initialized, vg_lite_close must be called to close the current
context. Otherwise, vg_lite_init will return an error.

Syntax:

vg_lite_error_t vg_lite_init (
vg_lite_int32_t tess_width,
vg_lite_int32_t tess_height

);

Parameters:

Name Description
tess_widthWidth of tessellation window. Maximum cannot be greater than render buffer width.

If less than or equal to 0, then no tessellation buffer is created, in which case only blit
APIs can be used afterward.

tess_heightHeight of tessellation window. Maximum cannot be greater than render buffer height.
If less than or equal to 0, then no tessellation buffer is created, in which case blit APIs
can be used afterward.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

3.6. Multimedia 1529



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_close Description:
This function deallocates all the resources and free up all the memory that was initialized earlier
by the vg_lite_init function. It will also turn OFF the hardware automatically if this was the only
active context.

Syntax:

vg_lite_error_t vg_lite_close (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg_lite_flush Description:
This function explicitly submits the command buffer to the GPU without waiting for it to com-
plete. (From Dec 2019, return type is vg_lite_error_t, previously was void.)

Syntax:

vg_lite_error_t vg_lite_flush (
void

);

Returns:
Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_finish Description:
This function explicitly submits the command buffer to the GPU and waits for it to complete.

Syntax:

vg_lite_error_t vg_lite_finish (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enumeration for
other return codes.

Parent topic:Context initialization and control functions

vg_lite_frame_delimiter Description:
This function sets a flag for GPU to signal the completion of current frame. A vg_lite_finish is
called by default within this API. The enum VG_LITE_FRAME_END_FLAG is the only value
that can be set by flag parameter.

Syntax:

1530 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_frame_delimiter (
vg_lite_frame_flag_t flag

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_set_command_buffer_size Description:
This function is optional. If used, call it before vg_lite_init if you want to change the command
buffer size. (available from March 2020)

Syntax:

vg_lite_error_t vg_lite_set_command_buffer_size (
vg_lite_uint32_t size

);

Parameters:

Name Description
size Size of the VGLite Command buffer. Default is 64K.

Returns:
Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enumeration for other
return codes.

Parent topic:Context initialization and control functions

vg_lite_set_command_buffer Description:
This function sets a user-defined external memory buffer (physical, 64-byte aligned) as the VGLite
command buffer. By default, the VGLite driver allocates a static command buffer internally.
Thus, it is not necessary for an application to allocate and set the command buffer. This function
is only used for devices where an application needs to allocate the command buffer dynamically.
(from December 2021)

Syntax:

vg_lite_error_t vg_lite_set_command_buffer (
vg_lite_uint32_t physical,
vg_lite_uint32_t size

);

Parameters:

Name Description
physical The physical address of a memory buffer. The address must be 64-byte aligned.
size The size of memory buffer. The size must be 128-byte aligned.

Returns:
Returns VG_LITE_SUCCESS if the command buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

3.6. Multimedia 1531



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Context initialization and control functions

vg_lite_set_tess_buffer Description:
This function specifies a memory buffer from an application as the VGLite driver’s tessellation
buffer. By default, the VGLite driver allocates a static tessellation buffer internally. Thus, it is not
necessary for an application to allocate and set the tessellation buffer. This function is only used
for devices where the application needs to allocate the tessellation buffer dynamically. (from
December 2021)

Syntax:

vg_lite_error_t vg_lite_set_tess_buffer (
vg_lite_uint32_t physical,
vg_lite_uint32_t size

);

Parameters:

Name Description
physi-
cal

The physical address of a tessellation buffer. The address must be 64-byte aligned.

size The size of tessellation buffer. tessellation buffer size = target buffer’s height * 128B.

Returns:
Returns VG_LITE_SUCCESS if the tessellation buffer set is successful. See vg_lite_error_t enu-
meration for other return codes.

Parent topic:Context initialization and control functions

vg_lite_set_memory_pool Description:
This function sets the specific memory pool from which certain type of
buffers, VG_LITE_COMMAND_BUFFER, VG_LITE_TESSELLATION_BUFFER, or
VG_LITE_RENDER_BUFFER, should be allocated. By default, all types of buffers are al-
located from VG_LITE_MEMORY_POOL_1. This API must be called before vg_lite_init()
for setting VG_LITE_COMMAND_BUFFER or VG_LITE_TESSELLATION_BUFFER memory
pools. This API can be called anytime for VG_LITE_RENDER_BUFFER to affect the following
vg_lite_allocate() calls.(from December 2023)

Syntax:

vg_lite_error_t vg_lite_set_memory_pool (
vg_lite_buffer_type_t type,
vg_lite_memory_pool_t pool

);

Parameters:

NameDescription
type The buffer type (VG_LITE_COMMAND_BUFFER, VG_LITE_TESSELLATION_BUFFER,

or VG_LITE_RENDER_BUFFER) to be allocated from memory pool.
pool The memory pool (VG_LITE_MEMORY_POOL_1, VG_LITE_MEMORY_POOL_2)

from which the buffer type should be allocated.

1532 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Returns:
Returns VG_LITE_SUCCESS if the memory pool set is successful. See vg_lite_error_t enumera-
tion for other return codes.

Parent topic:Context initialization and control functions

Parent topic:API control

Pixel buffers This chapter provides an overview of the pixel buffer alignment, cache, internal
representation, enumerations, structures, and functions.

Pixel buffer alignment The VGLite hardware requires the pixel buffer start address and
stride to be properly byte-aligned to work correctly. The start address and stride align-
ment requirement for a pixel buffer depends on the specific pixel format, and gcFEA-
TURE_VG_16PIXELS_ALIGNED value (0/1) in vg_lite_options.h file.

Parent topic:Pixel buffers

Pixel cache The Vivante Imaging Engine (IM) includes two fully associative caches. Each cache
has 8 lines. Each line has 64 bytes. In this case, one cache line can hold either a 4x4-pixel tile or
a 16x1-pixel row.

Parent topic:Pixel buffers

Internal representation For non-32-bit color formats, each pixel is extended to 32 bits as fol-
lows:

If the source and destination formats have the same color format, but differ in the number of
bits per color channel, the source channel is multiplied by (2d- 1)/(2s– 1) and is rounded to the
nearest integer, where:

• d is the number of bits in the destination channel

• s is the number of bits in the source channel

Example: a b11111 5-bit source channel gets converted to an 8-bit destination b11111000.

The YUV formats are internally converted to RGB. The pixel selection is unified for all formats
by using the LSB of the coordinate.

Parent topic:Pixel buffers

Pixel buffer enumerations This section provides an overview of the pixel buffer enumera-
tions.

vg_lite_buffer_format_t enumeration This enumeration specifies the color format to use for
a buffer. This applies to both image and Render Target. Formats include supported swizzles for
RGB. For YUV swizzles, use the related values and parameters in vg_lite_swizzle_t.

The application shall use the vg_lite_query_feature API to determine support for some
hardware-specific formats. For example, related vg_lite_feature_t enum values include gcFEA-
TURE_BIT_VG_RGBA2_FORMAT and gcFEATURE_BIT_VG_IM_INDEX_FORMAT.

(Alignment columns refined March and Sept 2023)

Used in structure: vg_lite_buffer_t.

See also vg_lite_blit, vg_lite_clear, vg_lite_draw.

3.6. Multimedia 1533



MCUXpresso SDK Documentation, Release 25.12.00

Attention: OpenVG VGImageFormat Note: The bits for each color channel are stored within
a machine word from MSB to LSB in the order indicated by the pixel format name. This is the
opposite of the original VG_LITE_* formats that are ordered from LSB to MSB. The formats with
the same organization are listed in the same row as their VG_Lite counterparts.

Attention: Original VGLite API Image Format Note: The bits for each color channel are stored
within a machine word from LSB to MSB in the order indicated by the pixel format name. This
is the opposite of the OPENVG VG_* formats that are ordered from MSB to LSB.

The following codes, as also used in OpenVG 1.1 Specification Table 11, are used for format de-
scription:

• A - Alpha channel

• B - Blue color channel

• G - Green color channel

• R - Red color channel

• X - Uninterpreted padding byte or bit

• L - Grayscale

• BW - 1-bit black and white

• l - Linear color space

• s - Non-linear (sRGB) color space

• PRE - Alpha values are premultiplied

1534 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_format_t String Value Description Sup-
ported
as
source

Sup-
ported
as desti-
nation

Start ad-
dress/ Stride
alignment:
bytes

VG_LITE_ABGR8888
VG_sRGBA_8888
VG_sRGBA_8888_PRE
VG_lRGBA_8888
VG_lRGBA_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_ARGB8888
VG_sBGRA_8888
VG_sBGRA_8888_PRE
VG_lBGRA_8888
VG_lBGRA_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_BGRA8888
VG_sARGB_8888
VG_sARGB_8888_PRE
VG_lARGB_8888
VG_lARGB_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_RGBA8888
VG_sABGR_8888
VG_sABGR_8888_PRE
VG_lABGR_8888
VG_lABGR_8888_PRE

Yes Yes Start 4B /
Stride 64B

VG_LITE_BGRX8888
VG_sXRGB_8888 VG_lXRGB_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_RGBX8888
VG_sXBGR_8888 VG_lXBGR_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_XBGR8888 RGBX
VG_sRGBX_8888 VG_lRGBX_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_XRGB8888
VG_sBGRX_8888 VG_lBGRX_8888

Yes Yes Start 4B /
Stride 64B

VG_LITE_ABGR1555
VG_sRGBA_5551

Yes Yes Start 4B /
Stride 32B

VG_LITE_ARGB1555
VG_sBGRA_5551

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGRA5551
VG_sARGB_1555

Yes Yes Start 4B /
Stride 32B

VG_LITE_RGBA5551
VG_sABGR_1555

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGR565 VG_sRGB_565 Yes Yes Start 4B /
Stride 32B

VG_LITE_RGB565 VG_sBGR_565 Yes Yes Start 4B /
Stride 32B

VG_LITE_ABGR4444
VG_sRGBA_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_ARGB4444
VG_sBGRA_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_BGRA4444
VG_sARGB_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_RGBA4444
VG_sABGR_4444

Yes Yes Start 4B /
Stride 32B

VG_LITE_YUY2 VG_LITE_YUYV Yes No Start 4B /
Stride 32B

VG_LITE_A4 VG_A_4 Yes No Start 4B /
Stride 8B

VG_LITE_A8 VG_A_8 Yes Yes Start 4B /
Stride 16B

VG_LITE_L8 VG_sL_8 VG_lL_8 Yes Yes Start 4B /
Stride 16B

3.6. Multimedia 1535



MCUXpresso SDK Documentation, Release 25.12.00

Hardware-dependent
formats for
vg_lite_buffer_format_t

Description Sup-
ported
as
source

Supported
as destina-
tion

Alignment
(bytes)

VG_LITE_ABGR2222 Yes Yes Start 4B / Stride
16B

VG_LITE_ARGB2222 Yes Yes Start 4B / Stride
16B

VG_LITE_BGRA2222 Yes Yes Start 4B / Stride
16B

VG_LITE_RGBA2222 Yes No 8B
VG_LITE_INDEX_1 1-bit index format Yes No 8B
VG_LITE_INDEX_2 2-bit index format Yes No both 8B
VG_LITE_INDEX_4 4-bit index format Yes No both 8B
VG_LITE_INDEX_8 8-bit index format Yes No both 16B

VG_LITE_NV12_TILED Yes No Y: both 16
Bytes UV: both
8 Bytes

VG_LITE_ANV12_TILED Yes No A, Y: both 16
Bytes UV: both
8 Bytes

VG_LITE_AYUY2_TILED Yes No both 32B

VG_LITE_RGB888 Yes Yes Start 4B / Stride
32B

VG_LITE_BGR888 Yes Yes

VG_LITE_ARGB8565 Yes Yes

VG_LITE_BGRA5658 Yes Yes Start 4B / Stride
32B

VG_LITE_ABGR8565 Yes Yes Start 4B / Stride
32B

VG_LITE_RGBA5658 Yes Yes Start 4B / Stride
32B

1536 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

Image buffer alignment requirement The image (or source) buffer alignment requirement
depends on the specific pixel format, and some gcFEATURE_*_ALIGNED defines in the
vg_lite_options.h file.

Image format Bits per pixel Source tile mode Start address alignment requirement in bytes Stride alignment requirement in bytes Buffer height alignment requirement Supported for destination
VG_LITE_INDEX1 1 linear 8B 2B 1
VG_LITE_INDEX1 1 tile 8B 1B 4
VG_LITE_INDEX2 2 linear 8B 4B 1
VG_LITE_INDEX2 2 tile 8B 1B 4
VG_LITE_INDEX4 4 linear 8B 8B 1
VG_LITE_INDEX4 4 tile 8B 2B 4
VG_LITE_INDEX8 8 linear 16B 16B 1
VG_LITE_INDEX8 8 tile 16B 4B 4
VG_LITE_A4 4 linear 8B 8B 1
VG_LITE_A4 4 tile 8B 2B 4
VG_LITE_A8 8 linear 16B 16B 1 Yes
VG_LITE_A8 8 tile 16B 4B 4 Yes
VG_LITE_L8 8 linear 16B 16B 1 Yes
VG_LITE_L8 8 tile 16B 4B 4 Yes
VG_LITE_ARGB2222 8 linear 16B 16B 1 Yes
VG_LITE_ARGB2222 8 tile 16B 4B 4 Yes
VG_LITE_RGB565 16 linear 32B 32B 1 Yes
VG_LITE_RGB565 16 tile 32B 8B 4 Yes
VG_LITE_ARGB1555 16 linear 32B 32B 1 Yes
VG_LITE_ARGB1555 16 tile 32B 8B 4 Yes
VG_LITE_ARGB4444 16 linear 32B 32B 1 Yes
VG_LITE_ARGB4444 16 tile 32B 8B 4 Yes
VG_LITE_ARGB8888 32 linear 64B 64B 1 Yes
VG_LITE_ARGB8888 32 tile 64B 16B 4 Yes
VG_LITE_XRGB8888 32 linear 64B 64B 1 Yes
VG_LITE_XRGB8888 32 tile 64B 16B 4 Yes
VG_LITE_ARGB8565 24 linear 64B 48B* 1 Yes
VG_LITE_ARGB8565 24 tile 64B 12B* 4 Yes
VG_LITE_RGB888 24 linear 64B 48B* 1 Yes
VG_LITE_RGB888 24 tile 64B 12B* 4 Yes
VG_LITE_YUY2/UYVY 16 linear 32B 32B 1
VG_LITE_YUY2/UYVY 16 tile 32B 8B 4
VG_LITE_NV12 12 linear Y: 32B UV: 32B Y: 32B UV: 32B 1
VG_LITE_YV12 12 linear Y: 32B U: 16B V: 16B Y: 32B U: 16B V: 16B 1
VG_LITE_NV16 16 linear Y: 32B UV: 32B Y: 32B UV: 32B 1
VG_LITE_YV16 16 linear Y: 32B U: 16B V: 16B Y: 32B U: 16B V: 16B 1
VG_LITE_YV24 24 linear Y: 32B U: 32B V: 32B Y: 32B U: 32B V: 32B 1
VG_LITE_ETC2 8 tile 16B 4B 4

Note:
1. The values in the table reflect the alignment requirements of the data in memory. The stride

of ARGB8888 / ARGB8565 is seen as 4Byte per pixel when configuring the hardware.

2. For tile mode, the stride is still the byte size of a row of pixels in the buffer instead of 4 rows.

3. When DECNano function is enabled for the buffer, the total buffer size need align to
64Byte*compression rate for ARGB8888 or XRGB8888 format, align to 48Byte*compress rate
for RGB888 format.

Additional Alignment Requirement

3.6. Multimedia 1537



MCUXpresso SDK Documentation, Release 25.12.00

1. Buffer starting address must be 16 pixel-byte-size aligned, that is 8 bit-per-pixel format
buffer must be 16 bytes aligned; 16 bit-per-pixel format buffer must be 32 bytes aligned;
24 and 32 bit-per-pixel format buffer must be 64 bytes aligned.

2. For linear mode buffer, the buffer stride must be 16 pixel-byte-size aligned.

3. For tile mode buffer, buffer width and height must be 4 pixel aligned so buffer width and
height end at tile boundary.

Parent topic:Pixel buffer enumerations

Destination buffer alignment requirement The destination (or render target) buffer align-
ment requirement depends on the specific pixel format, and some gcFEATURE_*_ALIGNED
defines in the vg_lite_options.h file.

Target format Bits per pixel Target tile mode VG tile mode Start address alignment requirement in bytes Stride alignment requirement in bytes Buffer height alignment requirement
VG_LITE_A8 8 linear linear 4B 1B 1
VG_LITE_A8 8 linear tile 64B 64B 4
VG_LITE_A8 8 tile linear 64B 64B 4
VG_LITE_A8 8 tile tile 64B 16B 4
VG_LITE_L8 8 linear linear 4B 1B 1
VG_LITE_L8 8 linear tile 64B 64B 4
VG_LITE_L8 8 tile linear 64B 64B 4
VG_LITE_L8 8 tile tile 64B 16B 4
VG_LITE_ARGB2222 8 linear linear 4B 1B 1
VG_LITE_ARGB2222 8 linear tile 64B 64B 4
VG_LITE_ARGB2222 8 tile linear 64B 64B 4
VG_LITE_ARGB2222 8 tile tile 64B 16B 4
VG_LITE_RGB565 16 linear linear 4B 2B 1
VG_LITE_RGB565 16 linear tile 64B 64B 4
VG_LITE_RGB565 16 tile linear 64B 64B 4
VG_LITE_RGB565 16 tile tile 64B 16B 4
VG_LITE_ARGB1555 16 linear linear 4B 2B 1
VG_LITE_ARGB1555 16 linear tile 64B 64B 4
VG_LITE_ARGB1555 16 tile linear 64B 64B 4
VG_LITE_ARGB1555 16 tile tile 64B 16B 4
VG_LITE_ARGB4444 16 linear linear 4B 2B 1
VG_LITE_ARGB4444 16 linear tile 64B 64B 4
VG_LITE_ARGB4444 16 tile linear 64B 64B 4
VG_LITE_ARGB4444 16 tile tile 64B 16B 4
VG_LITE_ARGB8888 32 linear linear 4B 4B 1
VG_LITE_ARGB8888 32 linear tile 64B 64B 4
VG_LITE_ARGB8888 32 tile linear 64B 64B 4
VG_LITE_ARGB8888 32 tile tile 64B 16B 4
VG_LITE_XRGB8888 32 linear linear 4B 4B 1
VG_LITE_XRGB8888 32 linear tile 64B 64B 4
VG_LITE_XRGB8888 32 tile linear 64B 64B 4
VG_LITE_XRGB8888 32 tile tile 64B 16B 4
VG_LITE_ARGB8565 24 linear linear 64B 3B* 1
VG_LITE_ARGB8565 24 linear tile 64B 48B* 4
VG_LITE_ARGB8565 24 tile linear 64B 48B* 4
VG_LITE_ARGB8565 24 tile tile 64B 12B* 4
VG_LITE_RGB888 24 linear linear 64B 3B* 1
VG_LITE_RGB888 24 linear tile 64B 48B* 4
VG_LITE_RGB888 24 tile linear 64B 48B* 4
VG_LITE_RGB888 24 tile tile 64B 12B* 4

1538 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Note:
1. The values in the table reflect the alignment requirements of pixel data in memory. The

stride of ARGB8888/ARGB8565 is seen as 4 Bytes per pixel when configuring the hardware.

2. For tile mode, the buffer stride is still the byte size of a row of pixels instead of 4 rows of
pixels.

3. For PE clear function, the clear size must align to 48 Bytes for the RGB888 or ARGB8565
format.

4. For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for
RGB888, align to 64 Bytes for ARGB8888 or XRGB8888.

5. If the DECNano function is enabled for the buffer, the target buffer start address needs to
align to 64 Bytes.

6. If the DECNano function is enabled for the buffer, the total buffer size needs to align
to a 64-byte compression rate for ARGB8888 or XRGB8888 format and align to a 48
Byte*compression rate for RGB888 format.

Additional Alignment Requirement
1. Buffer starting address must be at least 4-byte aligned. Buffer stride must be at least one

pixel size aligned.

2. Buffer starting address must be 64-byte aligned for 24 bit-per-pixel format, or tile mode, or
DECNano enabled.

3. Buffer height must be 4-pixel aligned for tile mode buffer.

4. For tile mode buffer, the buffer stride must be 16-byte aligned for non-24bit-per-pixel for-
mats. So, 8 bits-per-pixel format buffer width must be 16-pixel aligned; 16 bits-per-pixel
format buffer width must be 8-pixel aligned; 32 bit-per-pixel format buffer width must be
4 pixel aligned.

5. For tile mode buffer, the buffer stride must be 12-byte aligned for 24 bits-per-pixel formats,
that is, the buffer width must be 4-pixel aligned.

6. For PE clear function, the clear size must align to 48 Bytes for 24-bits-per-pixel formats.

7. For PE clear function with DECNano enabled, the clear size must align to 48 Bytes for 24
bits-per-pixel formats and align to 64 Bytes for 32 bits-per-pixel formats.

8. If source buffer tile mode is different from destination buffer tile mode, buffer starting
address must be 64 Byte aligned, buffer stride must be 64 Byte aligned for non-24 bits-per-
pixel formats, buffer stride must be 48-Byte aligned for 24 bits-per-pixel formats.

VGLite hardware requires the raster image width to be a multiple of 16 pixels for linear gradient
and radial gradient operations. This requirement applies to all image formats. Therefore, the
user must pad an arbitrary image width to a multiple of 16 pixels for VGLite linear gradient and
radial gradient APIs.

Parent topic:Pixel buffer enumerations

vg_lite_buffer_layout_t enumeration Specifies the buffer data layout in memory.

Used in structure: vg_lite_buffer.

3.6. Multimedia 1539



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_layout_t
String Value

Description

VG_LITE_LINEAR Linear (scanline) layout.
VG_LITE_TILED Data is organized in 4x4 pixel tiles. Note: for this layout, the buffer

start address and stride must be 64-byte aligned

Parent topic:Pixel buffer enumerations

vg_lite_compress_mode_t enumeration Specifies the DECNano comprssion mode. (from
March 2023)

Used in structure: vg_lite_buffer_t.

vg_lite_compress_mode_t string
value

Description

VG_LITE_DEC_DISABLE Disable compression.
VG_LITE_DEC_NON_SAMPLE compression ratio is 1.6 for ARGB8888, 2.0 for

XRGB8888
VG_LITE_DEC_HSAMPLE compression ratio is 2.0 for ARGB8888, 2.6 for

XRGB8888
VG_LITE_DEC_HV_SAMPLE compression ratio is 2.6 for ARGB8888, 4.0 for

XRGB8888

Parent topic:Pixel buffer enumerations

vg_lite_gamma_conversion_t enumeration Specifies the gamma conversion mode (from Sept
2022)

Used in function: vg_lite_set_gamma.

vg_lite_gamma_conversion_t string value Description
VG_LITE_GAMMA_NO_CONVERSION Leave the color as it is.
VG_LITE_GAMMA_LINEAR Convert from sRGB to linear.
VG_LITE_GAMMA_NON_LINEAR Convert from linear to sRGB space.

Parent topic:Pixel buffer enumerations

vg_lite_index_endian_t enumeration Specifies the endian order parsing mode for index for-
mats (from March 2023).

Used in structure: vg_lite_buffer_t.

vg_lite_index_endian_t
string value

Description

VG_LITE_INDEX_ENDIAN_LITTLE_ENDIANParse the index pixel from low to high, when using index1, the
parsing order is bit0~bit7. when using index2, the parsing order
is bit0:1,bit2:3,bit4:5.bit6:7. when using index4, the parsing order is
bit0:3,bit4:7.

VG_LITE_INDEX_ENDIAN_BIG_ENDIANParse the index pixel from low to high, when using index1, the
parsing order is bit7~bit0. when using index2, the parsing order
is bit7:6,bit5:4,bit3:2.bit1:0. when using index4, the parsing order is
bit4:7,bit0:3.

1540 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Pixel buffer enumerations

vg_lite_image_mode_t enumeration Specifies how an image is rendered onto a buffer (prior
to Sept 2022 name was vg_lite_buffer_image_mode_t).

Used in structure: vg_lite_buffer_t.

vg_lite_image_mode_t string value Description
VG_LITE_ZERO

VG_LITE_NORMAL_IMAGE_MODE Image drawn with blending mode
VG_LITE_MULTIPLY_IMAGE_MODE Image is multiplied with paint color
VG_LITE_STENCIL_MODE

VG_LITE_NONE_IMAGE_MODE Image input is ignored.
VG_LITE_RECOLOR_MODE

Parent topic:Pixel buffer enumerations

vg_lite_map_flag_t enumeration Specifies whether mapping is for user memory or the DMA
buffer (from March 2023).

Used in function: vg_lite_map.

vg_lite_map_flag_t string value Description
VG_LITE_MAP_USER_MEMORY Mapping is for user memory.
VG_LITE_MAP_DMABUF Mapping is for the DMA buffer.

Parent topic:Pixel buffer enumerations

vg_lite_paint_type_t enumeration Specifies paint type (from May 2023).

Used in structure: vg_lite_buffer_t.

vg_lite_paint_type_t string value Description
VG_LITE_PAINT_ZERO

VG_LITE_PAINT_COLOR Color
VG_LITE_PAINT_LINEAR_GRADIENT Linear Gradient
VG_LITE_PAINT_RADIAL_GRADIENT Radial Gradient
VG_LITE_PAINT_PATTERN Pattern

Parent topic:Pixel buffer enumerations

vg_lite_transparency_t enumeration Specifies the transparency mode for a buffer (prior to
Sept 2022 name was vg_lite_buffer_transparency_mode_t).

Used in structure:vg_lite_buffer.

3.6. Multimedia 1541



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_transparency_t
string value

Description

VG_LITE_IMAGE_OPAQUEOpaque image: all image pixels are copied to the VG PE for rasterization
VG_LITE_IMAGE_TRANSPARENTTransparent image: only the non-transparent image pixels are copied

to the VG PE. Note: This mode is only valid when IMAGE_MODE
(vg_lite_image_mode_t) is either VG_LITE_NORMAL_IMAGE_MODE or
VG_LITE_MULTIPLY_IMAGE_MODE.

Parent topic:Pixel buffer enumerations

vg_lite_swizzle_t enumeration This enumeration specifies the swizzle for the UV components
of YUV data.

Used in structure: vg_lite_yuvinfo.

vg_lite_swizzle_t string value Description
VG_LITE_SWIZZLE_UV U in lower bits, V in upper bits
VG_LITE_SWIZZLE_VU V in lower bits, U in upper bits

Parent topic:Pixel buffer enumerations

vg_lite_yuv2rgb_t enumeration This enumeration specifies the standard for conversion of
YUV data to RGB data.

Used in structure: vg_lite_yuvinfo.

vg_lite_yuv2rgb_t string value Description
VG_LITE_YUV601 YUV Converting with ITC.BT-601 standard
VG_LITE_YUV709 YUV Converting with ITC.BT-709 standard

Parent topic:Pixel buffer enumerations

Parent topic:Pixel buffers

Pixel buffer structures This section provides an overview on the pixel buffer structures.

vg_lite_buffer_t structure This structure defines the buffer layout for a VGLite image or mem-
ory data.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in init functions: vg_lite_allocate, vg_lite_free, vg_lite_upload_buffer, vg_lite_map,
vg_lite_unmap.

Used in blit functions:vg_lite_blit, vg_lite_blit_rect, vg_lite_clear, vg_lite_create_masklayer,
vg_lite_fill_masklayer, vg_lite_blend_masklayer, vg_lite_set_masklayer,
vg_lite_render_masklayer, vg_lite_destroy_masklayer

Used in draw functions: vg_lite_draw, vg_lite_draw_pattern, vg_lite_draw_grad,
vg_lite_draw_radial_grad

1542 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_buffer_t
member

Type Description

width vg_lite_int32_t Width of buffer in pixels
height vg_lite_int32_t Height of buffer in pixels
stride vg_lite_int32_t Stride in bytes
tiled vg_lite_buffer_layout_tLinear or tiled format for buffer enum
format vg_lite_buffer_format_tcolor format enum
handle vg_lite_pointer memory handle
memory vg_lite_pointer pointer to the start address of the memory
address vg_lite_uint32_t GPU address
yuv vg_lite_yuvinfo_t YUV format info struct
image_mode vg_lite_image_mode_tBlit image mode enum
trans-
parency_mode

vg_lite_transparency_tImage transparency mode enum

fc_buffer[3] vg_lite_fc_buffer_t Three (3) fast clear buffers, reserved YUV format
(from March 2023)

compress_mode vg_lite_compress_modeCompression mode (from March 2023)
index_endian vg_lite_index_endian_tBig/Little Endian setting for index formats (from

March 2023)
paintType vg_lite_paint_type_t Paint type enum (from May 2023)
fc_enable vg_lite_int8_t Enable Image fast clear (moved from Aug 2023)
scissor_layer vg_lite_int8_t Get paintcolor from different paint types (from Aug

2023)
premulitplied vg_lite_int8_t The RGB pixel values are alpha-premultipled (from

Aug 2023)

Parent topic:Pixel buffer structures

vg_lite_fc_buffer_t structure This structure defines the organization of a fast clear buffer.
(from March 2023)

Used in structure: vg_lite_buffer_t.

vg_lite_fc_buffer_t
members

Type Description

width vg_lite_int32_t Width of buffer in pixels
height vg_lite_int32_t Height of buffer in pixels
stride vg_lite_int32_t Stride in bytes
handle vg_lite_pointer memory handle as allocated by the VGLite kernel
memory vg_lite_pointer logical pointer to the start address of the memory

for the CPU
address vg_lite_uint32_taddress to the buffer’s memory for the GPU hard-

ware
color vg_lite_uint32_tThe fast clear color value

Parent topic:Pixel buffer structures

vg_lite_yuvinfo_t structure This structure defines the organization of VGLite YUV data.

Used in structure: vg_lite_buffer_t.

3.6. Multimedia 1543



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_yuvinfo_t
member

Type Description

swizzle vg_lite_swizzle_t UV swizzle enum
yuv2rgb vg_lite_yuv2rgb_tYUV conversion standard enum
‘uv_planar vg_lite_uint32_t UV (U) planar address for GPU, generated by driver
v_planar vg_lite_uint32_t V planar address for GPU, generated by driver
‘alpha_planar vg_lite_uint32_t Alpha planar address for GPU, generated by driver
‘uv_stride vg_lite_uint32_t UV (U) stride in bytes
‘v_stride vg_lite_uint32_t V planar stride in bytes
alpha_stride vg_lite_uint32_t Alpha stride in bytes
‘uv_height vg_lite_uint32_t UV (U) height in pixels
‘v_height vg_lite_uint32_t V stride in bytes
uv_memory vg_lite_pointer Logical pointer to the UV (U) planar memory
‘v_memory vg_lite_pointer Logical pointer to the V planar memory
uv_handle vg_lite_pointer Memory handle of the UV (U) planar, generated by

the driver
v_handle vg_lite_pointer Memory handle of the V planar, generated by the

driver

Parent topic:Pixel buffer structures

Parent topic:Pixel buffers

Pixel buffer functions This section provides an overview of the pixel buffer functions.

vg_lite_allocate function Description:
This function is used to allocate a buffer before it is used in either blit or draw functions.

To allow the hardware to access some memory, such as a source image or target buffer, you
must first allocate the memory. The supplied vg_lite_buffer_t structure must be initialized with
the size (width and height) and format of the requested buffer. If the stride is set to zero, then
this function fills it in. The only input parameter to this function is the pointer to the buffer
structure. If the structure has all the information needed, then appropriate memory is allocated
for the buffer.

This function calls the kernel to allocate the memory. The kernel fills in the memory handle,
logical address, and hardware addresses in the vg_lite_buffer_t structure.

Alignment note:
Vivante GPUs have an alignment requirement of 64 bytes. However, to meet the alignment re-
quirements of the Vivante display controller, the VGLite driver sets the render target buffer align-
ment to 128 bytes. For source image buffer alignment requirements, see the alignment notes
available in Table 1.

The vg_lite_buffer_format_t value descriptions:

Syntax:

vg_lite_error_t vg_lite_allocate (
vg_lite_buffer_t *buffer

);

Parameters:

1544 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
bufferPointer to the buffer that holds the size and format of the buffer being allocated. Either

the memory or address field must be set to a non-zero value to map either a logical or
physical address into hardware accessible memory.

Returns:
• VG_LITE_SUCCESS if the contiguous buffer was allocated successfully.

• VG_LITE_OUT_OF_RESOURCES if there is insufficient memory in the host OS heap for
the buffer.

• VG_LITE_OUT_OF_MEMORY if allocation of a contiguous buffer failed.

Parent topic:Pixel buffer functions

vg_lite_free function Description:
This function is used to deallocate the buffer that was previously allocated. It frees up the mem-
ory for that buffer.

Syntax:

vg_lite_error_t vg_lite_free (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() function.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_upload_buffer function Description:
The function uploads the pixel data to a GPU memory buffer object. The format of the data
(pixel) to be uploaded must match the format defined for the buffer object. The input data mem-
ory buffer should contain enough data to be uploaded to the GPU buffer pointed by the input
parameter buffer.

Note: Vivante Vector Graphics IP only uses data[0] and stride[0] as it does not support planar
YUV formats..

Syntax:

vg_lite_error_t vg_lite_upload_buffer (
vg_lite_buffer_t *buffer,
vg_lite_uint8_t *data[3],
vg_lite_uint32_t stride[3]

);

3.6. Multimedia 1545



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_allocate() func-

tion
data[3] Pointer to pixel data. For the YUV format, there may be up to 3 pointers.
stride[3] Stride for the pixel data

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_map function Description:
This function is used to map the memory appropriately for a particular buffer. For some oper-
ating systems, it is used to get proper translation to the physical or logical address of the buffer
needed by the GPU.

To use a frame buffer directly as a target buffer:

• Wrap a vg_lite_buffer_t structure around the buffer

• Call the kernel to map the supplied logical or physical address into hardware accessible
memory

For example, if you know the logical address of the frame buffer, set the memory field of the
vg_lite_buffer_t structure with that address and call this function. If you know the physical ad-
dress, set the memory field to NULL and program the address field with the physical address.

Syntax:

vg_lite_error_t vg_lite_map (
vg_lite_buffer_t *buffer,
vg_lite_map_flag_t flag,
int32_t fd
);

Parameters:

Name Description
*bufferPointer to a buffer structure that was filled in by calling the vg_lite_allocate() function
flag Enumerate the vg_lite_map_flag_t value that specifies whether the mapping is for user

memory or DMA buffer. (from March 2023)
fd File descriptor for dma_buf if the flag is VG_LITE_MAP_DMABUF. Otherwise, this

parameter is ignored. (from March 2023)

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_unmap function Description:
This function unmaps the buffer and frees any memory resources allocated by a previous call to
the vg_lite_map() function.

1546 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_unmap (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
buffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_flush_mapped_buffer function Description:
This function flushes the CPU cache for the mapped buffer to make sure the buffer contents are
written to GPU memory.

Syntax:

vg_lite_error_t vg_lite_flush_mapped_buffer (
vg_lite_buffer_t *buffer

);

Parameters:

Name Description
*buffer Pointer to a buffer structure that was filled in by calling the vg_lite_map() function

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set_CLUT function Description:
This function sets the Color Lookup Table (CLUT) in the context state for index color image. Once
the CLUT is set (Not NULL), the image pixel color for index format image rendering is obtained
from the Color Lookup Table (CLUT) according to the pixel’s color index value.

Note: Available only for IP with Indexed color support..

Syntax:

vg_lite_error_t vg_lite_set_CLUT (
vg_lite_uint32_t count,
vg_lite_uint32_t *colors

);

Parameters:

3.6. Multimedia 1547



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
count This is the count of the colors in the color look-up table: - For INDEX_1, there can be up to

2 colors in the table - For INDEX_2, there can be up to 4 colors in the table - For INDEX_4,
there can be up to 16 colors in the table - For INDEX_8, there can be up to 256 colors in
the table

*col-
ors

The Color Lookup Table (CLUT) pointed by “colors” will be stored in the context and
programmed to the command buffer when needed. The CLUT will not take effect until
the command buffer is submitted to HW. The color is in ARGB format with A located in
the upper bits. Note: The VGLite driver does not validate the CLUT contents from the
application.

Returns:
VG_LITE_SUCCESS as no checking is done.

Parent topic:Pixel buffer functions

vg_lite_enable_dither function Description:
This function is used to enable the dither function. Dither is turned off by default. The application
can use the VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_DITHER) to determine HW
support for dither.

Syntax:

vg_lite_error_t vg_lite_enable_dither (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_disable_dither function Description:
This function is used to disable the dither function. Dither is turned off by default.

Syntax:

vg_lite_error_t vg_lite_disable_dither (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

vg_lite_set_gamma function Description:
This function sets a gamma value.

1548 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Application can use the VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_GAMMA) to deter-
mine HW support for gamma.

Syntax:

vg_lite_error_t vg_lite_set_gamma (
vg_lite_gamma_conversion_t gamma_value

);

Parameters:

Name Description
gamma_value Sets a gamma value. See enum vg_lite_gamma_conversion_t.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Pixel buffer functions

Parent topic:Pixel buffers

Matrices This part of the API provides matrix controls.

Note: All the transformations in the driver/API are actually the final plane/surface coordinate
system. There is no transformation of different coordinate systems with VGLite.

Matrix control float parameter type

Name Typedef Value
vg_lite_float_t float A single-precision floating-point number

vg_lite_pixel_matrix_t [20] vg_lite_float_t

Parent topic:Matrices

Matrix control structures This section provides an overview of the graphic transformation
matrix control structures.

vg_lite_matrix_t structure This structure defines a 3x3 floating point matrix.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient,
vg_lite_draw_pattern, vg_lite_identity, vg_lite_scale, vg_lite_translate.

3.6. Multimedia 1549



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_matrix_t member Type Description
m[3][3] vg_lite_float_t 3x3 matrix, in [row] [column] order

Parent topic:Matrix control structures

vg_lite_pixel_channel_enable_t structure This structure provides enable disable flags for hard-
ware pixel channels A,R,G,B.

Used in function: vg_lite_set_pixel_matrix_t.

vg_lite_pixel_channel_enable_t members Type Description
enable_a vg_lite_uint8_t Enable A channel
enable_b vg_lite_uint8_t Enable B channel
enable_g vg_lite_uint8_t Enable G channel
enable_r vg_lite_uint8_t Enable R channel

Parent topic:Matrix control structures

Parent topic:Matrices

Matrix control functions This section provides an overview of the matrix control functions.

vg_lite_identity function Description:
This function loads an identity matrix into a matrix variable.

Syntax:

vg_lite_error_t vg_lite_identity (
vg_lite_matrix_t *matrix,

);

Parameters:

Name Description
*ma-
trix

Pointer to the vg_lite_matrix_t structure that will be loaded with an identity matrix.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_set_pixel_matrix function Description:
This function sets up a pixel transform matrix m[20] which transforms each pixel as follows:

1550 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The pixel transform for the A, R, G, B channels can be enabled/disabled individually with the
channel parameter.

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_PIXEL_MATRIX)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_set_pixel_matrix (
vg_lite_pixel_matrix_t matrix,
vg_lite_pixel_channel_enable_t *channel

);

Parameters:

Name Description
*ma-
trix

Specifies the vg_lite_pixel_matrix_t pixel transform matrix that will be loaded.

*chan-
nel

Pointer to the vg_lite_pixel_channel_enable_t structure used to enable/disable indi-
vidual channels.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_rotate function Description:
This function rotates a matrix a specified number of degrees.

Syntax:

vg_lite_error_t vg_lite_rotate (
vg_lite_float_t degrees,
vg_lite_matrix_t *matrix

);

Parameters:

NameDescription
de-
grees

Number of degrees to rotate the matrix. Positive numbers rotate clockwise.The coordi-
nates for the transformation are given in the surface coordinate system (top-to-bottom
orientation). Rotations with positive angles are in the clockwise direction.

*ma-
trix

Pointer to the vg_lite_matrix_t structure that has to be rotated

Returns:

3.6. Multimedia 1551



MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_scale function Description:
This function scales a matrix in both horizontal and vertical directions.

Syntax:

vg_lite_error_t vg_lite_scale (
vg_lite_float_t scale_x,
vg_lite_float_t scale_y,
vg_lite_matrix_t *matrix

);

Parameters:

Name Description
scale_x Horizontal scale
scale_y Vertical scale
matrix Pointer to the vg_lite_matrix_t structure that will be scaled.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

vg_lite_translate function Description:
This function translates a matrix to a new location.

Syntax:

vg_lite_error_t vg_lite_translate (
vg_lite_float_t x,
vg_lite_float_t y,
vg_lite_matrix_t *matrix

);

Parameters:

Name Description
x X location of the transformation.
y Y location of the transformation.
matrix Pointer to the vg_lite_matrix_t structure that will be translated.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Matrix control functions

Parent topic:Matrices

1552 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Blits for compositing and blending This part of the API performs the hardware accelerated
blit operations.

Compositing rules describes how two areas are combined to form a single area. Blending rules
describes how combining the colors of the overlapping areas are combined. VGLite supports two
blending operations and a subset of the Porter-Duff operations [PD84]. The Porter-Duff operators
assume that the pixels have the alpha associated (premultiplied), it means that the pixels are
premultiplied prior to the blending operation. GC555, GC355, and some GCNanoUltraV hardware
support alpha premultiply for RGB image, but GCNanoLiteV does not.

The source image is copied to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction.

• The blit function can be used with or without the blend mode.

• The blit function can be used with or without specifying any color value.

• The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Blit enumerations This section gives details on blit enumerations.

vg_lite_blend_t enumeration This enumeration defines the blending modes supported by
some VGLite API functions. S and D represent source and destination non-premultiplied RGB
color channels. Sa and Da represent the source and destination alpha channels. SP and DP rep-
resent source and destination alpha-premultiplied RGB color channels (SP = S*Sa, DP = D*Da).

Note: VG_LITE_BLEND_*_LVGL modes are supported on all VG cores. On VG cores that do
not support gcFEATURE_BIT_VG_LVGL_SUPPORT, the LVGL blend modes are supported by
a combination of software and hardware operations. OPENVG_BLEND_* modes can only be
supported on GC355 and GC555 cores.

Used in blit functions: vg_lite_blit, vg_lite_blit2, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

3.6. Multimedia 1553



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_blend_t String Values Description
VG_LITE_BLEND_NONE S, no blending Non-premultiplied
VG_LITE_BLEND_SRC_OVER S + D * (1 - Sa) Non-premultiplied
VG_LITE_BLEND_DST_OVER S * (1 – Da) + D Non-premultiplied
VG_LITE_BLEND_SRC_IN S * Da Non-premultiplied
VG_LITE_BLEND_DST_IN D * Sa Non-premultiplied
VG_LITE_BLEND_MULTIPLY S * (1 - Da) + D * (1 - Sa) + S * D Non-premultiplied
VG_LITE_BLEND_SCREEN S + D - S * D Non-premultiplied
VG_LITE_BLEND_DARKEN min(SRC_OVER, DST_OVER) Non-premultiplied
VG_LITE_BLEND_LIGHTEN max(SRC_OVER, DST_OVER) Non-premultiplied
VG_LITE_BLEND_ADDITIVE S + D Non-premultiplied
VG_LITE_BLEND_SUBTRACT D * (1 - Sa) Non-premultiplied
VG_LITE_BLEND_NORMAL_LVGL S * Sa + D * (1 - Sa) Non-premultiplied (from March 2023)
VG_LITE_BLEND_ADDITIVE_LVGL (S + D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
VG_LITE_BLEND_SUBTRACT_LVGL (S - D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
VG_LITE_BLEND_MULTIPLY_LVGL (S * D) * Sa + D * (1 - Sa) Non-premultiplied (from March

2023)
OpenVG Porter-Duff Blend String
Values

(from Aug 2023)

OPENVG_BLEND_NONE SP, no blending Premultiplied
OPENVG_BLEND_SRC_OVER (SP + DP * (1 - Sa)) / (Sa + Da * (1 - Sa)) Premultiplied
OPENVG_BLEND_DST_OVER (SP * (1 - Da) + DP) / (Sa * (1 - Da) + Da) Premultiplied
OPENVG_BLEND_SRC_IN (SP * Da) / (Sa * Da) Premultiplied
OPENVG_BLEND_DST_IN (DP * Sa) / (Sa * Da) Premultiplied
OPENVG_BLEND_MULTIPLY (SP*DP + SP*(1 - Da) + DP*(1 - Sa)) / (Sa + Da*(1 - Sa))

Premultiplied
OPENVG_BLEND_SCREEN (SP + DP - (SP*DP)) / (Sa + Da*(1 - Sa)) Premultiplied
OPENVG_BLEND_DARKEN min(SRC_OVER, DST_OVER) Premultiplied
OPENVG_BLEND_LIGHTEN max(SRC_OVER, DST_OVER) Premultiplied
OPENVG_BLEND_ADDITIVE (SP + DP) / (Sa + Da) Premultiplied

Parent topic:Blit enumerations

vg_lite_color_t parameter The common parameter vg_lite_color_t is described in Table 1.

Parent topic:Blit enumerations

vg_lite_color_transform_t structure Specifies the pixel color_transform values for scale and
bias.

Used in functions: vg_lite_set_color_transform.

vg_lite_color_transform_t members Type Description
a_scale vg_lite_float_t Scale value for alpha.
a_bias vg_lite_float_t Bias value for alpha.
r_scale vg_lite_float_t Scale value for red.
r_bias vg_lite_float_t Bias value for red.
g_scale vg_lite_float_t Scale value for green.
g_bias vg_lite_float_t Bias value for green.
b_scale vg_lite_float_t Scale value for blue.
b_bias vg_lite_float_t Bias value for blue.

1554 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Blit enumerations

vg_lite_filter_t enumeration Specifies the sample-filtering mode in VGLite blit and draw APIs.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

vg_lite_filter_t string val-
ues

Description

VG_LITE_FILTER_POINTFetch only the nearest image pixel
VG_LITE_FILTER_LINEARUse linear interpolation along a horizontal line
VG_LITE_FILTER_BI_LINEARUse a 2x2 box around the image pixel and perform an interpola-

tion
VG_LITE_FILTER_GAUSSIANPerform 3x3 gaussian blur with the convolution for image pixel.

(from March 2023)

Parent topic:Blit enumerations

vg_lite_color_transform_t structure Specifies the pixel color_transform values for scale and
bias.

Used in functions: vg_lite_set_color_transform.

vg_lite_color_transform_t members Type Description
a_scale vg_lite_float_t Scale value for alpha.
a_bias vg_lite_float_t Bias value for alpha.
r_scale vg_lite_float_t Scale value for red.
r_bias vg_lite_float_t Bias value for red.
g_scale vg_lite_float_t Scale value for green.
g_bias vg_lite_float_t Bias value for green.
b_scale vg_lite_float_t Scale value for blue.
b_bias vg_lite_float_t Bias value for blue.

Parent topic:Blit enumerations

vg_lite_mask_operation_t enumeration Specifies the mask operation mode in VGLite blit APIs.

Used in functions: vg_lite_blend_masklayer, vg_lite_render_masklayer.

3.6. Multimedia 1555



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_mask_operation_t
string values

Description

VG_LITE_CLEAR_MASKThis operation sets all mask values in the region of interest to 0, ignoring the
new mask layer.

VG_LITE_FILL_MASKThis operation sets all mask values in the region of interest to 1, ignoring the
new mask layer.

VG_LITE_SET_MASKThis operation copies values in the region of interest from the new mask layer,
overwriting the previous mask values.

VG_LITE_UNION_MASKThis operation replaces the previous mask in the region of interest by its union
with the new mask layer. The resulting values are always greater than or
equal to their previous value.

VG_LITE_INTERSECT_MASKThis operation replaces the previous mask in the region of interest by its in-
tersection with the new mask layer. The resulting mask values are always less
than or equal to their previous value.

VG_LITE_SUBTRACT_MASKThis operation subtracts the new mask from the previous mask and replaces
the previous mask in the region of interest by the resulting mask. The result-
ing values are always less than or equal to their previous value.

Parent topic:Blit enumerations

vg_lite_orientation_t enumeration Specifies the mirror orientation in VGLite blit APIs.

Used in functions: vg_lite_set_mirror.

vg_lite_orientation_t string values Description
VG_LITE_ORIENTATION_TOP_BOTTOMTarget output orientation is from top to bottom (de-

fault).
VG_LITE_ORIENTATION_BOTTOM_TOPTarget output orientation is from bottom to top.

Parent topic:Blit enumerations

vg_lite_param_type_t enumeration Specifies the parameter type in VGLite blit APIs.

Used in functions: vg_lite_get_parameter.

vg_lite_param_type_t string value Description
VG_LITE_GPU_IDLE_STATE The count must be 1 for GPU idle state TRUE or FALSE.
VG_LITE_SCISSOR_RECT The count must be 4n for x, y, right, bottom.

Parent topic:Blit enumerations

Parent topic:Blits for compositing and blending

Blit structures This section provides details about blit structures.

vg_lite_buffer_t structure Defined under the “Pixel buffer structures” section (see
vg_lite_buffer_t structure).

Parent topic:Blit structures

1556 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_color_key_t structure A “color key” have two sections, where each section contains
R,G,B channels, which are noted as high_rgb and low_rgb respectively. (from April 2022)

When the enable value is true, the color key specified is effective and the alpha value is used to
replace the alpha channel of the destination pixel when its RGB channels are in range [low_rgb,
high_rgb]. After the color key is used in the current frame, if the color key is not needed for the
next frame, it should be disabled before the next frame.

Used in structure: vg_lite_color_key4_t

vg_lite_color_key_t
members

Type Description

enable vg_lite_uint8_tWhen set (true), this color key is enabled
low_r vg_lite_uint8_tThe R channel of low_rgb
low_g vg_lite_uint8_tThe G channel of low_rgb
low_b vg_lite_uint8_tThe B channel of low_rgb
alpha vg_lite_uint8_tThe alpha value to replace the destination pixel alpha

channel value with
high_r vg_lite_uint8_tThe R channel of high_rgb
high g vg_lite_uint8_tThe G channel of high_rgb
high_b vg_lite_uint8_tThe B channel of high_rgb

Parent topic:Blit structures

vg_lite_color_key4_t structure The priority order is: color_key_0 > color_key_1 > color_key_2
> color_key_3. (from April 2022)

Used in blit function: vg_lite_set_color_key

vg_lite_color_key4_t members Type Description
color_key_0 high_rgb_0, low_rgb_0, alpha_0, enable_0

color_key_1 high_rgb_1, low_rgb_1, alpha_1, enable_1

color_key_2 high_rgb_2, low_rgb_2, alpha_2, enable_2

color_key_3 high_rgb_3, low_rgb_3, alpha_3, enable_3

Parent topic:Blit structures

vg_lite_matrix_t structure Defined under the “Matrix control structures” section (see
vg_lite_matrix_t structure).

Parent topic:Blit structures

vg_lite_path_t structure Defined under the “Vector path structures” section (see vg_lite_path_t
structure).

Parent topic:Blit structures

vg_lite_rectangle_t structure This structure defines a rectangle by using coordinates.

Used in blit function: vg_lite_clear.

3.6. Multimedia 1557



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_rectangle_t member Type Description
x vg_lite_int32_t X origin of rectangle, left coordinate in pixels
y vg_lite_int32_t Y origin of rectangle, top coordinate in pixels
width vg_lite_int32_t X Width of rectangle in pixels
height vg_lite_int32_t Y Height of rectangle in pixels

Parent topic:Blit structures

vg_lite_point_t structure This structure defines a 2D point (from March 2021).

Used in structure: vg_lite_point4_t.

vg_lite_point_t member Type Description
X vg_lite_int32_t X value of coordinate
Y vg_lite_int32_t Y value of coordinate

Parent topic:Blit structures

vg_lite_point4_t structure This structure defines four 2D points that form a polygon. The
points are defined by structure vg_lite_point_t. (from March 2021)

vg_lite_point4_t member Type Description
vg_lite_point_t[4] vg_lite_int32_t each a set of four points

Parent topic:Blit structures

vg_lite_float_point_t structure This structure defines a 2D float point (from March 2024).

Used in structure: vg_lite_float_point4_t.

vg_lite_float_point_t members Type Description
x vg_lite_float_t X value of coordinate
y vg_lite_float_t Y value of coordinate

Parent topic:Blit structures

vg_lite_float_point4_t structure This structure defines four 2D float points that form a poly-
gon. The points are defined by structure vg_lite_float_point_t. (from March 2024)

Used in blit function: vg_lite_get_transform_matrix.

vg_lite_float_point4_t members Type Description
vg_lite_float_point[4] vg_lite_float_t each a set of four points

Parent topic:Blit structures

Parent topic:Blits for compositing and blending

1558 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Blit functions This section provides an overview on blit functions.

vg_lite_blit function Description:
This is the blit function. The blit operation is performed using a source and a destination buffer.
The source and destination buffer structures are defined using the vg_lite_buffer_t structure.
Blit copies a source image to the destination window with a specified matrix that can include
translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does not
support coverage sample anti-aliasing so the destination buffer edge may not be smooth, espe-
cially with a rotation matrix. VGLite path rendering can be used to achieve high-quality coverage
sample anti-aliasing (16X, 8X, 4X) rendering effect.

Note:
• The blit function can be used with or without the blend function (vg_lite_blend_t)

• The blit function can be used with or without specifying a foreground color value
(vg_lite_color_t)

• The blit function can be used for color conversion with an identity matrix and appropriate
formats specified for the source and the destination buffers. In this case, do not specify
blend mode and color value.

Syntax:

vg_lite_error_t vg_lite_blit (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

3.6. Multimedia 1559



MCUXpresso SDK Documentation, Release 25.12.00

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Image
Source Alignment Requirement for valid destination color formats for the blit functions.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

*ma-
trix

Points to a vg_lite_matrix_t structure that defines the transformation matrix of source
pixels into the target. If the matrix is NULL, then an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is sup-
ported, then Transparency mode is always set to TRANSPARENT- If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, then Blend
mode is always set to VG_LITE_BLEND_SRC_OVER. It happens due to some limita-
tions in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mixed color gets mul-
tiplied with each source pixel before blending happens. If you don’t need a
mix color, set the color parameter to 0.Note: this parameter has no effect if the
source vg_lite_buffer_t structure member image_mode is set to VG_LITE_ZERO or
VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_blit2 function Description:
This is the blit function for use with two sources. The blit2 operation is performed using two
source buffers and one destination buffer. The source and destination buffer structures are de-
fined using the vg_lite_buffer_t structure. Source0 and Source1 are first blended according to
the blend mode with a specific transformation matrix for each image. Source1 is used as the
source while Source0 is used as the dest and is directly output to the render target buffer.

The specified matrices can include translation, rotation, scaling, and perspective correction.
Note that vg_lite_buffer_t does not support coverage sample anti-aliasing so the destination
buffer edge may not be smooth, especially with a rotation matrix. VGLite path rendering can
be used to achieve high-quality coverage sample anti-aliasing (16X, 8X, 4X) rendering effect.

Application can use VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_DOUBLE_IMAGE)
to determine HW support for double image.

Note:
• The vg_lite_blit function can be used for color conversion for Source0 or Source1 before

merging sources with vg_lite_blit2.

Syntax:

vg_lite_error_t vg_lite_blit2 (
vg_lite_buffer_t *target,

(continues on next page)

1560 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
vg_lite_buffer_t *source0,
vg_lite_buffer_t *source1,
vg_lite_matrix_t *matrix0,
vg_lite_matrix_t *matrix1,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure, which defines the destination buffer. See Align-
ment notes for valid destination color formats for the blit functions

*source0,

*source1

Points to the vg_lite_buffer_t structure for the source0 and source1 buffers. All color
formats available in the vg_lite_buffer_format_t‘ enum are valid source formats for the
blit functions.

*matrix0,

*ma-
trix1

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix0 for the
source0 pixels and matrix1 for the source1 pixels. If matrix0 and matrix1 are both NULL,
the identity matrix is assumed, meaning the blending result of Source0 and Source1 is
copied directly on the target at location(0,0).

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the “matrix” parameter is specified with rotation
or perspective, and the “blend” parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN, the VGLite driver
overwrites the application’s setting for the BLIT operation as follows: - If
gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,
the transparency mode will always be set to TRANSPARENT. - If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, the blend
mode will always be set to VG_LITE_BLEND_SRC_OVER. This is due to some limita-
tions in the VGLite hardware.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_blit_rect function Description:
This is the blit rectangle function. The blit operation is performed using a source and a destina-
tion buffer. The source and destination buffer structures are defined using the vg_lite_buffer_t
structure. Blit copies a source image to the destination window with a specified matrix that can
include translation, rotation, scaling, and perspective correction. Note that vg_lite_buffer_t does
not support coverage sample anti-aliasing so the destination buffer edge may not be smooth,
especially with a rotation matrix. VGLite path rendering can be used to achieve high-quality
coverage sample anti-aliasing (16X, 8X, 4X) rendering effect.

Note:
• The blit_rect function can be used with or without the blend function (vg_lite_blend_t).

• The blit_rect function can be used with or without specifying any color value
(vg_lite_color_t).

3.6. Multimedia 1561



MCUXpresso SDK Documentation, Release 25.12.00

• The blit_rect function can be used for color conversion with an identity matrix and appro-
priate formats specified for the source and destination buffers. In this case, do not specify
blend mode and color value.

• The vg_lite_blit_rect rectangle start origin point is always (0,0) for hardware versions prior
to GCNanoLiteV 1311p that do not support a non-zero rectangle origin.

Syntax:

vg_lite_error_t vg_lite_blit_rect (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_rectangle_t *rect,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure that defines the destination buffer.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit_rect function.

*rect Specifies the rectangle area of the source image to blit. rect[0]/[1]/[2]/[3] are x, y, width,
and height of the source rectangle respectively. Note: Non-zero source origins are sup-
ported.

*ma-
trix

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of
source pixels into the target. If the matrix is NULL, then an identity matrix is assumed,
which means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the enum vg_lite_blend_t values for hardware-supported blend
modes to be applied to each image pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0). Note: If the matrix parameter is specified with rotation
or perspective, and the blend parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN; then, the VGLite
driver overwrites the application setting for the blit operation as follows:
- If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is sup-
ported, then Transparency mode is always set to TRANSPARENT - If gcFEA-
TURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is not supported, then Blend
mode is always set to VG_LITE_BLEND_SRC_OVER. It happens due to some limita-
tions in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mixed color gets multi-
plied with each source pixel before blending happens. If you do not need a mix
color, then set the color parameter to 0. Note: This parameter has no effect if the
source vg_lite_buffer_t structure member image_mode is set to VG_LITE_ZERO or
VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

1562 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_copy_image function Description:
This API copied a pixel rectangle with dimension (width, height) from source buffer to destina-
tion buffer. The source image pixel (sx *+ i,*sy + j) is copied to the destination image pixel (dx
*+ i,*dy + j), for *0 � i <*width and *0 � j <*height. Pixels whose source or destination lie outside
the bounds of the respective image are ignored. Pixel format conversion is applied as needed.

No pre-multiply, transformation, blending, filtering operations are applied to the pixel copy.

Syntax:

vg_lite_error_t vg_lite_copy_image (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_int32_t sx,
vg_lite_int32_t sy,
vg_lite_int32_t dx,
vg_lite_int32_t dy,
vg_lite_int32_t width,
vg_lite_int32_t height

);

Parameters:

NameDescription
*tar-
get

Points to the vg_lite_buffer_t structure that defines the destination buffer.

*sourcePoints to the vg_lite_buffer_t structure for the source buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid source formats for the blit function.

sx,
sy

Pixel coordinates of the lower-left corner of a pixel rectangle within the source buffer.

dx,
dy

Pixel coordinates of the lower-left corner of a pixel rectangle within the target buffer.

width Width of the copied pixel rectangle.
heightHeight of the copied pixel rectangle.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_get_transform_matrix function Description:
This function generates a 3x3 homogenous transform matrix from 4 float point source coordi-
nates and 4 float point target coordinates. (from March 2021)

Syntax:

vg_lite_error_t vg_lite_get_transform_matrix (
vg_lite_float_point4_t src,
vg_lite_float_point4_t dst,
vg_lite_matrix_t *mat

);

Parameters:

3.6. Multimedia 1563



MCUXpresso SDK Documentation, Release 25.12.00

Name Description
src Pointer to the four 2D points that form a source polygon
dst Pointer to the four 2D points that form a destination polygon
mat Output parameter, pointer to a 3x3 homogenous matrix that transforms the source

polygon to a destination polygon.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_clear function Description:
This function performs the clear operation, clearing/filling the specified buffer (entire buffer or
partial rectangle in a buffer) with an explicit color.

Syntax:

vg_lite_error_t vg_lite_clear (
vg_lite_buffer_t *target,
vg_lite_rectangle_t *rect,
vg_lite_color_t color

);

Parameters:

NameDescription
*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the clear
function.

*rect Pointer to the vg_lite_rectangle_tstructure that specifies the area to be filled. If the rect-
angle is NULL, the entire target buffer is filled with the specified color.

color Clear color, as specified in the vg_lite_color_t enum that is the color value to use for filling
the buffer. If the buffer is in L8 format, the RGBA color is converted into a luminance
value.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit functions

vg_lite_set_color_key function Description:
This function sets a color key. Color key can be used for blit or for draw pattern operations. (from
April 2022)

A “color key” have two sections, where each section contains R,G,B channels which are noted as
high_rgb and low_rgb respectively.

When the vg_lite_color_key_t structure value enable is true, the color key specified is effective
and the alpha value is used to replace the alpha channel of the destination pixel when its RGB

1564 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

channels are within range [low_rgb, high_rgb]. After the color key is used in the current frame,
if the color key is not needed for the next frame, it should be disabled before the next frame.

Hardware support for color key is not available for GCNanoLiteV. Application can use VGLite
API vg_lite_query_feature(gcFEATURE_BIT_VG_COLOR_KEY) to determine HW support for
color key.

Syntax:

vg_lite_error_t vg_lite_set_color_key (
vg_lite_color_key4_t colorkey

);

Parameters:

Parameter Description
colorkey Color keying parameters as defined by vg_lite_color_key4_t.

Here are 4 groups of color key states:

• color_key_0, high_rgb_0, low_rgb_0, alpha_0, enable_0

• color_key_1, high_rgb_1, low_rgb_1, alpha_1, enable_1

• color_key_2, high_rgb_2, low_rgb_2, alpha_2, enable_2

• color_key_3, high_rgb_3, low_rgb_3, alpha_3, enable_3

The priority order of these states is:

color_key_0 > color_key_1 > color_key_2 > color_key_3.

Returns:
VG_LITE_SUCCESS if successful. VG_LITE_NOT_SUPPORT if color key is not supported in
hardware.

Parent topic:Blit functions

vg_lite_gaussian_filter function Description:
This function sets 3x3 gaussian blur weighted values to filter an image pixel. (from March 2023)

The parameters w0, w1, w2 define a 3x3 gaussian blur weight matrix as:

The sum of the 9 kernel weights must be 1.0 to avoid convolution overflow ( w0 + 4*w1 + 4*w2 =
1.0 ).

The 3x3 weight matrix applies to a 3x3 pixel block:

With the following dot product equation:

3.6. Multimedia 1565



MCUXpresso SDK Documentation, Release 25.12.00

Applications can useVGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_GAUSSIAN_BLUR)
to determine HW support for gaussian blur.

Syntax:

vg_lite_error_t vg_lite_gaussian_filter (
vg_lite_float_t w0
vg_lite_float_t w1
vg_lite_float_t w2

);

Parameters:

Parameter Description

w0, w1, w2 w0, w1, w2 define a 3x3 gaussian blur weighted matrix as:

Returns:
VG_LITE_SUCCESS if successful. Otherwise, VG_LITE_NOT_SUPPORT if gaussian blur is not
supported in hardware.

Parent topic:Blit functions

Parent topic:Blits for compositing and blending

Blit/Draw extended functions The following BLIT or DRAW-related functions typically re-
quire GC355 or GC555 hardware and are not available for all Vivante Vector Graphics hardware
configurations.

Applications can use the VGLite API vg_lite_query_feature to determine HW support for the re-
lated functionality.

vg_lite_get_parameter function Description:
This function returns the selected VGLite / GPU states to the application.

(from Aug 2023)

Syntax:

vg_lite_error_t vg_lite_get_parameter (
vg_lite_param_type_t type,
vg_lite_int32_t count,
vg_lite_pointer params

);

Parameters:

1566 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parame-
ter

Description

type The parameter type to be queried (VG_LITE_GPU_IDLE_STATE,
VG_LITE_SCISSOR_RECT)

count The number of returned parameters
params The pointer to the array of returned parameters

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_scissor function Description:
This function enables scissor rectangle operation for the rectangle regions defined by
vg_lite_scissor_rects API. (fromMarch 2020, modified August 2020, requires GC355 or GC555 hard-
ware)

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_SCISSOR) to deter-
mine HW support for scissoring. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_enable_scissor (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_disable_scissor function Description:
This function disables scissor operation for the rectangle regions defined by the
vg_lite_scissor_rects API. (from March 2020, modified August 2020, requires GC355 or GC555
hardware).

Syntax:

vg_lite_error_t vg_lite_disable_scissor (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_scissor_rects function Description:
This function defines scissor rectangle regions on the hardware mask layer. But the scissor func-
tion is enable/disabled by vg_lite_enable_scissor and vg_lite_disable_scissor APIs. (from August
2022, requires GC355 or GC555 hardware).

3.6. Multimedia 1567



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_scissor_rects (
vg_lite_buffer_t *target,
vg_lite_uint32_t nums,
vg_lite_rectangle_t rect[]

);

Parameters:

Parameter Description
target Target render buffer that has the scissor mask layer.
nums Number of scissor rectangles.
rect[] The scissor rectangle array.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_scissor function Description:
This is a legacy scissor API function that can be used to set a single scissor rectangle for the render
target. This scissor API is supported by a different hardware mechanism other than the mask
layer and it has better performance than the mask layer scissor function.

This API is not enabled/disabled by vg_lite_enable_scissor and vg_lite_disable_scissor APIs. In-
stead, the vg_lite_set_scissor API calls with a valid scissor rectangle input (x, y, right, bottom)
enables the scissor function by default. The vg_lite_set_scissor API call with input parameter (-1,
-1, -1, -1) disables the scissor function. (requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_scissor (
vg_lite_int32_t x,
vg_lite_int32_t y,
vg_lite_int32_t right,
vg_lite_int32_t bottom

);

Parameters:

Parameter Description
x X Origin of rectangle, left coordinate in pixels
Y Y Origin of rectangle, top coordinate in pixels
right X rightmost pixel of the rectangle
bottom Y bottom pixel of the rectangle

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

1568 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_disable_color_transform function Description:
This function is used to disable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Applications can use the VGLite API vg_lite_query_feature(gcFEATURE_BIT_VG_COLOR_TRANSFORMATION)‘
to determine HW support for color transformation. Support is available with GC355 and GC555.

Syntax:

vg_lite_error_t vg_lite_disable_color_transform (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_color_transform function Description:
This function is used to enable color transformation. By default, the color transform is turned
off. (from Sept 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_enable_color_transform (
);

Parameters: None

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_color_transform function Description:
This function is used to set pixel scale and bias values for color transformation for each pixel
channel. (from August 2022, only for GC355 and GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_color_transform (
vg_lite_color_transform_t *values

);

Parameters:

Parame-
ter

Description

*values Pointer to the color transformation values to set. See enum
vg_lite_color_transform_t.

Returns:

3.6. Multimedia 1569



MCUXpresso SDK Documentation, Release 25.12.00

Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_enable_masklayer function Description:
This function controls the availability of mask functionality. The mask is turned off by default.
(from August - Sept mber 2022, requires GC555 hardware)

Applications can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_MASK) to determine
HW support for mask. The blit and draw mask functions below require GC555 hardware support.
These functions were introduced in August 2022 and the syntax or name was further refined in
September 2022.

Syntax:

vg_lite_error_t vg_lite_enable_masklayer (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_disable_masklayer function Description:
This function controls the availability of mask functionality. The mask is turned off by de-
fault. (from August -September 2022, requires GC555 hardware, prior to Sept 2022 name was
vg_lite_disable_mask_layer)

Syntax:

vg_lite_error_t vg_lite_disable_masklayer (
void

);

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_create_masklayer function Description:
This function creates a mask layer with the specified width and height. The mask format defaults
to A8 and the default mask value is 255. (from August 2022-September, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_create_masklayer (
vg_lite_buffer_t *masklayer,
vg_lite_uint32_t width,
vg_lite_uint32_t height

);

1570 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be created.
width Mask layer width (in pixels).
height Mask layer height (in pixels).

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_blend_masklayer function Description:
This function blends the specified area of the source mask layer with the destination mask layer
according to an vg_lite_mask_operation_t enumeration value, to create a blended destination
mask layer. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_blend_masklayer (
vg_lite_buffer_t *dst_masklayer,
vg_lite_buffer_t *src_masklayer,
vg_lite_mask_operation operation,
vg_lite_rectangle_t *rect,

);

Parameters:

Parameter Description
*dst_masklayerPoints to the address of the buffer of the destination mask layer.
*src_masklayerPoints to the address of the buffer of the source mask layer.
operation Blending mode to be applied to each image pixel, as defined by the enum

vg_lite_mask_operation_t.
*rect The rectangle area (x, y, width, height) of the blend operation.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_masklayer function Description:
This function sets the given mask layer to the hardware. (from August-September 2022, requires
GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_masklayer (
vg_lite_buffer_t *masklayer

);

Parameters:

3.6. Multimedia 1571



MCUXpresso SDK Documentation, Release 25.12.00

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be set.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_render_masklayer function Description:
This function draws the mask layer according to the specified path, color, and matrix informa-
tion. (from August-September 2022, requires GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_render_masklayer (
vg_lite_buffer_t *masklayer,
vg_lite_mask_operation operation,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_color_t color,
vg_lite_matrix_t *matrix

);

Parameters:

Pa-
ram-
e-
ter

Description

*masklayerPoints to the address of the buffer of the destination mask layer.
op-
er-
a-
tion

Blending mode to be applied to each image pixel, as defined by the enum
vg_lite_mask_operation_t

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. Refer to Vector path opcodes for plotting paths in this document for opcode detail.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
color Specifies the color vg_lite_color_t RGBA value to be applied to each pixel drawn by the

path.
*ma-
trix

Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If the matrix is NULL, an identity matrix is assumed, meaning the source is copied
directly on the target at 0,0 location. which is usually a bad idea since the path can be
anything.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_destroy_masklayer function Description:
This function is used to free a mask layer. (from August-September 2022, requires GC555 hard-
ware)

1572 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_destroy_masklayer (
vg_lite_buffer_t masklayer

);

Parameters:

Parameter Description
*masklayer Points to the address of the buffer of the mask layer to be destroyed.

Returns:
Returns VG_LITE_SUCCESS if the function is successful. See vg_lite_error_t enum for other
return codes.

Parent topic:Blit/Draw extended functions

vg_lite_set_mirror function Description:
This function is used to control mirror functionality. By default, the mirror is turned off and the
default output orientation is from top to bottom. (from August 2022, only for GC555 hardware)

Application can use VGLite API [vg\_lite\_query\_feature](vg_lite_query_feature_function.md)
(gcFEATURE_BIT_VG_MIRROR) to determine HW support for mirror. Mirror functions re-
quire GC555 hardware.

Syntax:

vg_lite_error_t vg_lite_set_mirror (
vg_lite_orientation_t orientation

);

Parameters:

Parameter Description
orientation The orientation mode as defined by the enum vg_lite_orientation_t.‘

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if not supported.

Parent topic:Blit/Draw extended functions

vg_lite_source_global_alpha function Description:
This function sets the image/source global alpha and return a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Application can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_GLOBAL_ALPHA) to
determine HW support for global alpha. The global alpha BLIT-related functions require GC-
NanoUltraV or GC555 hardware.

Syntax:

3.6. Multimedia 1573



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_error_t vg_lite_source_global_alpha (
vg_lite_global_alpha_t alpha_mode,
vg_lite_uint8_t alpha_value

);

Parameters:

Parameter Description
alpha_mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The image/source global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if global alpha is not supported.

Parent topic:Blit/Draw extended functions

vg_lite_dest_global_alpha function Description:
This function sets the destination global alpha and returns a status error code. (from June 2021,
requires GCNanoUltraV or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_dest_global_alpha (
vg_lite_global_alpha_t alpha_mode,
vg_lite_uint8_t alpha_value

);

Parameters:

Parameter Description
alpha_mode Global alpha mode value. See enum vg_lite_global_alpha_t.
alpha_value The destination global alpha value to set.

Returns:
VG_LITE_SUCCESS or VG_LITE_NOT_SUPPORT if global alpha is not supported.

Parent topic:Blit/Draw extended functions

Parent topic:Blits for compositing and blending

Vector path control This chapter provides an overview of the vector path enumerations, struc-
tures, functions, and opcodes for plotting paths.

Vector path enumerations This section provides an overview of vector path enumerations.

vg_lite_format_t enumeration Values for vg_lite_format_t enum are defined in Table 1.

If vg_lite_format_t Path data alignment in the array should be:
VG_LITE_S8 8 bit
VG_LITE_S16 2 bytes
VG_LITE_S32 4 bytes

1574 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path enumerations

vg_lite_quality_t enumeration Specifies the level of hardware assisted anti-aliasing.

Used in structure: vg_lite_path_t.

Used in function: vg_lite_init_path, vg_lite_init_arc_path.

vg_lite_quality_t
string
values

Description

VG_LITE_HIGHHigh quality: 16x coverage sample anti-aliasing
VG_LITE_UPPERUpper quality: 8x coverage sample anti-aliasing. Use vg_lite_query_feature

to determine availability of 8x CSAA (feature enum value gcFEA-
TURE_BIT_VG_QUALITY_8X.(deprecated from June 2020, available with
supported hardware from August 2022).

VG_LITE_MEDIUMMedium quality: 4x coverage sample anti-aliasing
VG_LITE_LOWLow quality: No anti-aliasing

Parent topic:Vector path enumerations

Parent topic:Vector path control

Vector path structures This section provides an overview of vector path structures.

vg_lite_hw_memory structure This structure gets the memory allocation information recorded
by the kernel.

Used in structure: vg_lite_path_t.

vg_lite_hw_memory_t
member

Type Description

handle vg_lite_pointerGPU memory object handle
memory vg_lite_pointerLogical memory address
address vg_lite_uint32_tGPU memory address
bytes vg_lite_uint32_tSize of memory
property vg_lite_uint32_tBit 0 is used for path upload: - 0: Disable path data uploading (al-

ways embedded into command buffer) - 1: Enable auto path data
uploading

Parent topic:Vector path structures

vg_lite_path_t structure This structure describes VGLite path data.

Path data is made of op codes and coordinates. The format for op codes is always VG_LITE_S8.
For more details on opcodes, see Vector path opcodes for plotting paths.

Used in init functions: vg_lite_init_path, vg_lite_init_arc_path, vg_lite_upload_path,
vg_lite_clear_path, vg_lite_append_path.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

3.6. Multimedia 1575



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_t
members

Type Description

bound-
ing_box[4]

vg_lite_float_t bounding box for path [0] left [1] top [2] right [3] bottom

quality vg_lite_quality_tenum for quality hint for the path, anti-aliasing level
format vg_lite_format_tenum for coordinate format
uploaded vg_lite_hw_memory_tstruct with path data that has been uploaded into GPU ad-

dressable memory
path_length vg_lite_uint32_tnumber of bytes in the path
path vg_lite_pointer pointer to path data
path_changed vg_lite_int8_t 0: not changed; 1: changed.
pdata_internal vg_lite_int8_t 0: path data memory is allocated by application; 1: path data

memory is allocated by driver.
path_type vg_lite_path_type_tThe draw path type as specified in enum vg_lite_path_type_t.

(added for stroke control, from March 2022)
*stroke vg_lite_stroke_tAs defined by structure vg_lite_stroke_t (added for stroke con-

trol, from March 2022)
stroke_path vg_lite_pointer Pointer to the physical description of the stroke path. (added

for stroke control, from March 2022)
stroke_size vg_lite_uint32_tNumber of bytes in the stroke path data. (added for stroke con-

trol, from March 2022)
stroke_color vg_lite_color_t The stroke path fill color. (from Sept 2022)
add_end vg_lite_int8_t Flag that add end_path in driver (from March 2023)

Special notes for path objects:
• Endianness has no impact, as it is aligned against the boundaries

• Multiple contiguous opcodes should be packed by the size of the specified data format. For
example, by 2 bytes for VG_LITE_S16 or by 4 bytes for VG_LITE_S32.

For example, because opcodes are 8-bit (1-byte), 16-bit (2-byte), or 32-bit (4-byte) data types:

…
<opcode1_that_needs_data>
<align_to_data_size>
<data_for_opcode1>
<opcode2_that_doesnt_need_data>
<align_to_data_size>
<opcode3_that_needs_data>
<align_to_data_size>
<data_for_opcode3>
…

• Path data in the array should always be 1-, 2-, or 4-byte aligned, depending on the format:

For example, for 32-bit (4-byte) data types:

…
<opcode1_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode1>
<opcode2_that_doesnt_need_data>
<pad to 4 bytes>
<opcode3_that_needs_data>
<pad to 4 bytes>
<4 byte data_for_opcode3>
…

Parent topic:Vector path structures

1576 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector path functions When using a small tessellation window and depending on a path’s size,
a path might be uploaded to the hardware multiple times because the hardware scanline convert
path with the provided tessellation window size, so VGLite path rendering performance might
go down. That is why it is preferable to set the tessellation buffer size to the most common path
size, for example if you only render 24-pt fonts, you can set the tessellation buffer to be 24x24.

All the RGBA color formats available in the vg_lite_buffer_format_t are supported as the destina-
tion buffer for the draw function.

vg_lite_get_path_length function Description:
This function calculates the path command buffer length (in bytes).

The application is responsible for allocating a buffer according to the buffer length calculated
with this function. Then, the buffer is used by the path as a command buffer. The VGLite driver
does not allocate the path command buffer.

Syntax:

vg_lite_uint32_t vg_lite_get_path_length (
vg_lite_uint8_t *opcode,
vg_lite_uint32_t count,
vg_lite_format_t format

);

Parameters:

Param-
eter

Description

*opcode Pointer to the opcode array to use to construct the path. (*opcode fromMarch 2023)
count The opcode count
format The coordinate data format. All formats available in the vg_lite_format_t enum are

valid formats for this function.

Returns:
Returns the command buffer length in bytes.

Parent topic:Vector path functions

vg_lite_append_path function Description:
This function assembles the command buffer for the path. The command buffer is allocated by
the application and assigned to the path. This function makes the final GPU command buffer for
the path based on the input opcodes (cmd) and coordinates (data). The application is responsible
for allocating a buffer large enough for the path*. (from Jan 2022, returns a vg_lite_error_t status
code)*

Syntax:

vg_lite_error_t vg_lite_append_path (
vg_lite_path_t *path
vg_lite_uint8_t *opcode,
vg_lite_pointer data,
vg_lite_uint32_t seg_count

(continues on next page)

3.6. Multimedia 1577



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
);

Parameters:

Parame-
ter

Description

*path Pointer to the vg_lite_path_t structure with the path definition.
*opcode Pointer to the opcode array to use to construct the path. (*opcode from March

2023)
data Pointer to the coordinate data array to use to construct the path
seg_count The opcode count

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite_init_path function Description:
This function initializes a path definition with specified values. (From Dec 2019 returns
vg_lite_error_t, previous was void.)

Syntax:

vg_lite_error_t vg_lite_init_path (
vg_lite_path_t *path,
vg_lite_format_t format,
vg_lite_quality_t quality,
vg_lite_uint32_t length,
vg_lite_pointer *data,
vg_lite_float_t min_x,
vg_lite_float_t min_y,
vg_lite_float_t max_x,
vg_lite_float_t max_y

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t structure for the path object to be initialized

with the member values specified.
format The coordinate data format. All formats available in the vg_lite_format_t

enum are valid formats for this function.
quality The quality for the path object. All formats available in the

vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes)
*data Pointer to path data
min_x min_y
max_x max_y

Minimum and maximum x and y values specifying the bounding box of
the path

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

1578 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_init_arc_path function Description:
This function initializes an arc path definition with specified values. (from February 2021)

Syntax:

vg_lite_error_t vg_lite_init_arc_path (
vg_lite_path_t *path,
vg_lite_format_t format,
vg_lite_quality_t quality,
vg_lite_uint32_t length,
vg_lite_pointer *data,
vg_lite_float_t min_x,
vg_lite_float_t min_y,
vg_lite_float_t max_x,
vg_lite_float_t max_y

);

Parameters:

Parameter Function
*path Pointer to the vg_lite_path_t structure for the path object to be initialized

with the member values specified.
format The coordinate data format. The vg_lite_format_t enum value should be

FP32.
quality The quality for the path object. All formats available in the

vg_lite_quality_t enum are valid formats for this function.
length The length of the path data (in bytes).
*data Pointer to path data.
min_x min_y
max_x max_y

Minimum and maximum x and y values specifying the bounding box of
the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

vg_lite_upload_path function Description:
This function is used to upload a path to GPU memory.

In normal cases, the VGLite driver will copy any path data into a command buffer structure
during runtime. This does take some time if there are many paths to be rendered. Also, in an
embedded system the path data won’t change - so it makes sense to upload the path data into GPU
memory in such a form that the GPU can directly access it. This function will signal the driver to
allocate a buffer that will contain the path data and the required command buffer header and
footer data for the GPU to access the data directly. Call vg_lite_clear_path to free this buffer after
the path is used.

Syntax:

vg_lite_error_t vg_lite_upload_path (
vg_lite_path_t *path

);

Parameters:

Parameter Description
*path Pointer to a vg_lite_path_t structure that contains the path to be uploaded.

3.6. Multimedia 1579



MCUXpresso SDK Documentation, Release 25.12.00

Returns:
VG_LITE_OUT_OF_MEMORY if not enough GPU memory is available for buffer allocation.

Parent topic:Vector path functions

vg_lite_clear_path function Description:
This function will clear and reset path member values. If the path has been uploaded, it frees
the GPU memory allocated when uploading the path. (From Dec 2019 returns vg_lite_error_t,
previous was void.)

.

Syntax:

vg_lite_error_t vg_lite_clear_path (
vg_lite_path_t *path

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t path definition to be cleared.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Vector path functions

Parent topic:Vector path control

Vector path opcodes for plotting paths The following opcodes are path drawing commands
available for vector path data.

A path operation is submitted to the GPU as [Opcode | Coordinates]. The operation code is stored
as a VG_LITE_S8 while the coordinates are specified via vg_lite_format_t.

1580 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Op-
code

Arguments Description

0x00 None VLC_OP_END. Finish tessellation. Close any open path.
0x01 None VLC_OP_CLOSE. For VGLite driver internal use only. Applica-

tion should not use this OP directly.

0x02 (x, y)

0x03 (�x, �y)

0x04 (x, y)

0x05 (�x, �y)

0x06 (cx, cy) (x, y)

0x07 (�cx, �cy) (�x, �y)

0x08 (cx-1, cy1) (cx2, cy2)
(x, y)

0x09 (�cx-1, �cy1) (�cx2,
�cy2) (�x, �y)

0x0A None VLC_OP_BREAK. Indicates 64-bit path data (including the op-
code) is a no-op.

0x0B (x)

0x0C (�x)

0x0D (y)

0x0E (�y)

0x0F (x,y)

0x10 (�x,�y)

0x11 (cx2,cy2) (x,y)

0x12 (�cx2,�cy2) (�x,�y)

0x13 (rh,rv,rot,x,y)

0x14 (rh,rv,rot,x,y)

0x15 (rh,rv,rot,x,y)

0x16 (rh,rv,rot,x,y)

0x17 (rh,rv,rot,x,y)

0x18 (rh,rv,rot,x,y)

0x19 (rh,rv,rot,x,y)

0x1A (rh,rv,rot,x,y)

3.6. Multimedia 1581



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Vector path control

Vector-dased draw operations This part of the API performs the hardware accelerated draw
operations.

Draw and gradient enumerations This section provides an overview of draw and gradient
enumerations.

vg_lite_blend_t enumeration This enumeration is defined under the “Blit enumerations” sec-
tion (see vg_lite_blend_t enumeration).

Parent topic:Draw and gradient enumerations

vg_lite_color_t parameter The common parameter vg_lite_color_t is described in Common
parameter types.

Parent topic:Draw and gradient enumerations

vg_lite_fill_t enumeration This enumeration is used to specify the fill rule to use. For drawing
any path, the hardware supports both non-zero and odd-even fill rules.

To determine whether any point is contained inside an object, imagine drawing a line from that
point out to infinity in any direction such that the line does not cross any vertex of the path. For
each edge that is crossed by the line, add 1 to the counter if the edge is crossed from left to right,
as seen by an observer walking across the line towards infinity, and subtract 1 if the edge crossed
from right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that a point is inside the shape if the resulting sum is not equal to zero.
The even/odd rule says that a point is inside the shape if the resulting sum is odd, regardless of
sign.

Used in function: vg_lite_render_masklayer.

Used in draw functions: vg_lite_draw, vg_lite_draw_grad, vg_lite_draw_radial_grad,
vg_lite_draw_pattern.

vg_lite_fill_t string
values

Description

VG_LITE_FILL_NON_ZERONon-zero fill rule. A pixel is drawn if it crosses at least one path pixel.
VG_LITE_FILL_EVEN_ODDEven-odd fill rule. A pixel is drawn if it crosses an odd number of

path pixels.

Parent topic:Draw and gradient enumerations

vg_lite_filter_t enumeration This enum is defined under the “Blit enumerations” section (see
vg_lite_filter_t enumeration).

Parent topic:Draw and gradient enumerations

1582 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_gradient_spreadmode_t enumeration vg_lite_gradient_spreadmode_t enum is
defined to match OpenVG enum VGColorRampSpreadMode (from March 2023, re-
placesvg_lite_radial_gradient_spreadmode*, requires GC355/GC555 hardware)*

The application may only define stops with offsets between 0 and 1. Spread modes define how
the given set of stops are repeated or extended in order to define interpolated color values for
arbitrary input values outside the [0,1] range.

Used in structure: vg_lite_radial_gradient_t.

vg_lite_gradient_spreadmode_t
String Values

Description

VG_LITE_GRADIENT_SPREAD_FILLThe current fill color is used for all stop values less than 0 or greater
than 1 respectively.

VG_LITE_GRADIENT_SPREAD_PADColors defined at 0 and 1 are used for all stop values less than 0 or
greater than 1 respectively.

VG_LITE_GRADIENT_SPREAD_REPEATColor values defined between 0 and 1 are repeated indefinitely in
both directions.

VG_LITE_GRADIENT_SPREAD_REFLECTColor values defined between 0 and 1 are repeated indefinitely in
both directions but with alternate copies of the range reversed.

Parent topic:Draw and gradient enumerations

vg_lite_pattern_mode_t enumeration Defines how the region outside the image pattern is
filled for the path.

Used in function: vg_lite_draw_gradient, vg_lite_draw_pattern.

vg_lite_pattern_mode_t
string values

Description

VG_LITE_PATTERN_COLORPixels outside the bounds of the source image should be taken as the color.
VG_LITE_PATTERN_PADPixels outside the bounds of the source image should be taken as having

the same color as the closest edge pixel. The color of the pattern border is
expanded to fill the region outside the pattern.

VG_LITE_PATTERN_REPEATPixels outside the bounds of the source image should be repeated indefi-
nitely in all directions. (from March 2023)

VG_LITE_PATTERN_REFLECTPixels outside the bounds of the source image should be reflected indefi-
nitely in all directions. (from March 2023)

Parent topic:Draw and gradient enumerations

vg_lite_radial_gradient_spreadmode_t enumeration (Deprecated March 2023) use
vg_lite_gradient_spreadmode_t. Defines the radial gradient padding mode. (from Nov 2020,
requires GC355 hardware)

Used in structure: vg_lite_radial_gradient_t.

3.6. Multimedia 1583



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_spreadmode_t
String Values

Description

VG_LITE_RADIAL_GRADIENT_SPREAD_FILL
= 0

The current fill color is used for all stop values less than 0 or
greater than 1 respectively.

VG_LITE_RADIAL_GRADIENT_SPREAD_PADColors defined at 0 and 1 are used for all stop values less than 0
or greater than 1 respectively.

VG_LITE_RADIAL_GRADIENT_SPREAD_REPEATColor values defined between 0 and 1 are repeated indefinitely
in both directions.

VG_LITE_RADIAL_GRADIENT_SPREAD_REFLECTColor values defined between 0 and 1 are repeated indefinitely
in both directions but with alternate copies of the range re-
versed.

Parent topic:Draw and gradient enumerations

Parent topic:Vector-dased draw operations

Draw and gradient structures This section provides an overview of the draw and gradient
structures.

vg_lite_buffer_t structure This structure is defined under the “Pixel buffer structures” section
(see vg_lite_buffer_t structure).

Parent topic:Draw and gradient structures

vg_lite_color_ramp_t structure This structure defines the stops for the radial gradient. The
five parameters provide the offset and color for the stop. Each stop is defined by a set of floating
point values which specify the offset and the sRGBA color and alpha values. Color channel values
are in the form of a non-premultiplied (R, G, B, alpha) quad. All parameters are in the range of
[0,1]. The red, green, blue, alpha value of [0, 1] is mapped to an 8-bit pixel value [0, 255].(from
November 2020, requires GC355 hardware)

The define for the max number of radial gradient stops is #define
MAX_COLOR_RAMP_STOPS256.

Used in radial gradient structure: vg_lite_radial_gradient_t.

vg_lite_color_ramp_t mem-
bers

Type Description

stop vg_lite_float_t Offset value for the color stop
red vg_lite_float_t Red color channel value for the color stop
green vg_lite_float_t Green color channel value for the color stop
blue vg_lite_float_t Blue color channel value for the color stop
alpha vg_lite_float_t Alpha color channel value for the color stop

Parent topic:Draw and gradient structures

vg_lite_linear_gradient_t structure This structure defines the organization of a linear gradi-
ent in VGLite data. The linear gradient is applied to filling a path. It generates a 256x1 image
according to the specified settings.

Used in init and draw functions: vg_lite_init_grad, vg_lite_set_grad, vg_lite_update_grad,
vg_lite_get_grad_matrix, vg_lite_clear_grad, vg_lite_draw_grad.

1584 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_linear_gradient_t con-
stants

Type Description

VLC_MAX_GRADIENT_STOPSvg_lite_int32_tConstant. Maximum number of gradient col-
ors = 16.

vg_lite_linear_gradient_t
members
colors
[VLC_MAX_GRADIENT_STOPS]

vg_lite_uint32_tColor array for the gradient

count vg_lite_uint32_tNumber of colors
stops
[VLC_MAX_GRADIENT_STOPS]

vg_lite_uint32_tNumber of color stops, from 0 to 255

matrix vg_lite_matrix_tStruct for the matrix to transform the gradi-
ent color ramp

image vg_lite_buffer_tImage object struct to represent the color
ramp

Parent topic:Draw and gradient structures

vg_lite_ext_linear_gradient structure This structure defines the organization of the extended
parameters possible for a linear gradient (from April 2022).

Used in functions: vg_lite_draw_linear_grad.

vg_lite_ext_linear_gradient_t
members

Type Description

count vg_lite_uint32_t Count of colors, up to 256.
matrix vg_lite_matrix_t The matrix to transform the gradient.
image vg_lite_buffer_t The image for rendering as gradient pattern.
linear_grad vg_lite_linear_gradient_parameter_tLinear gradient parameters. Includes center

point, focal point and radius.
ramp_length vg_lite_uint32_t Color ramp length for gradient paints provided

to the driver.
color_ramp[VLC_MAX_COLOR_RAMP_STOPS]vg_lite_color_ramp_tColor ramp parameter for gradient paints pro-

vided to the driver.
converted_length vg_lite_uint32_t Converted internal color ramp length.
con-
verted_ramp[VLC_MAX_COLOR_RAMP_STOPS+2]

vg_lite_color_ramp_tConverted internal color ramp.

pre-multiplied vg_lite_uint8_t If this value is set to 1, the color value of
color_ramp will be multiplied by the alpha
value of color_ramp.

spread_mode vg_lite_radial_gradient_spreadmode_tThe spread mode that is applied to the pixels
out of the image after transformed.

|

Parent topic:Draw and gradient structures

vg_lite_linear_gradient_parameter structure This structure defines a radial direction for a lin-
ear gradient. (from April 2022)

Line0 connects point (X0, Y0) to point (X1, Y1) and represents the radial direction of the linear
gradient.

Line1 is a line perpendicular to line0 which passes through point (X0, Y0).

Line2 is a line perpendicular to line0 which passes through point (X1, Y1)

3.6. Multimedia 1585



MCUXpresso SDK Documentation, Release 25.12.00

The linear gradient paint is applied at the intersection of the path fill area and the plane starting
from line 1 and ending at line 2.

Used in structure: vg_lite_ext_linear_gradient.

Used in functions: vg_lite_set_linear_grad.

vg_lite_linear_gradient_parameter_t
members

Type Description

X0 vg_lite_float_tX origin of linear gradient radial di-
rection.

Y0 vg_lite_float_tY origin of linear gradient radial di-
rection.

X1 vg_lite_float_tX end point of linear gradient radial
direction.

Y1 vg_lite_float_tY end point of linear gradient radial
direction.

Parent topic:Draw and gradient structures

vg_lite_matrix_t structure This structure is defined under the “Matrix control structures” sec-
tion (see vg_lite_matrix_t structure).

Parent topic:Draw and gradient structures

vg_lite_path_t structure This structure is defined under the “Vector path structures” section
(see vg_lite_path_t structure).

Parent topic:Draw and gradient structures

vg_lite_radial_gradient_parameter_t structure This structure defines the gradient radius and
the X and Y coordinates for the center and focal points of the gradient (from November 2020,
requires GC355 or GC555 hardware).

Used in radial gradient structure: vg_lite_radial_gradient_t.

1586 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_parameter_t
member

Type Description

cx vg_lite_float_t
cy vg_lite_float_t

r vg_lite_float_t

fx vg_lite_float_t
fy vg_lite_float_t

Parent topic:Draw and gradient structures

vg_lite_radial_gradient_t structure This structure defines the application of the radial gradient
to fill a path. (from November 2020, requires GC355 or GC555 hardware).

Used in radial gradient functions: vg_lite_draw_grad, vg_lite_set_radial_grad,
vg_lite_update_radial_grad, vg_lite_get_radial_grad, vg_lite_clear_radial_grad.

3.6. Multimedia 1587



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_radial_gradient_t
member

Type Description

count vg_lite_uint32_t Count of colors, up to 256
matrix vg_lite_matrix_t Structure that specifies the transform matrix

for the gradient
image vg_lite_buffer_t Structure that specifies the image for render-

ing as a gradient pattern
radial_grad vg_lite_radial_gradient_parameter_tStructure that specifies the location of the gra-

dient’s center point (cx, cy), focal point(fx, fy)
and radius(r)

ramp_length vg_lite_uint32_t Color ramp parameters for gradient paints
provided to the driver

color_ramp[VLC_MAX_COLOR_RAMP_STOPS]vg_lite_color_ramp_tStructure that specifies the color ramp
converted_length vg_lite_uint32_t Converted internal color ramp.
con-
verted_ramp[VLC_MAX_COLOR_RAMP_STOPS+2]

vg_lite_color_ramp_tStructure that specifies the internal color ramp

pre_multiplied vg_lite_uint32_t If this value is set to 1, the color value of
color_ramp will be multiplied by the alpha
value of color_ramp.

spread_mode vg_lite_radial_gradient_spreadmode_tEnum that specifies the tiling mode, which is
applied to the pixels out of the image after
transformation

Parent topic:Draw and gradient structures

Parent topic:Vector-dased draw operations

Draw functions This section provides an overview of the draw functions.

vg_lite_draw function Description:
This function performs a hardware accelerated 2D vector draw operation.

The size of the tessellation buffer can be specified at initialization and it is aligned with the min-
imum hardware alignment requirements of the kernel. Specifying a smaller size for tessellation
buffer allocates less memory but reduces performance. Because the hardware walks the target
with the provided tessellation window size, a path may be sent to the hardware multiple times.
It is a good practice to set the tessellation buffer size to the most common path size. For example,
if all you do is render up to 24-point fonts, you can set the tessellation buffer to 24x24.

Note:
• All the color formats available in the vg_lite_buffer_format_t enum are supported as the

destination buffer for the draw function

• The hardware does not support strokes; they must be converted to paths before you use
them in the draw API

Syntax:

vg_lite_error_t vg_lite_draw (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color

);

1588 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the draw
function.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*ma-
trix

Pointer to a vg_lite_matrix_t structure that defines the affine transformation matrix of
the path. If the matrix is NULL, an identity matrix is assumed. Note: Non-affine trans-
formations are not supported by vg_lite_draw; therefore, a perspective transformation
matrix might have unexpected effects on path rendering.

blend Select one of the hardware-supported blend modes in the vg_lite_blend_t enum
to be applied to each drawn pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0).

color The color applied to each pixel drawn by the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_grad function Description:
This function is used to fill a path with a linear gradient according to the specified fill rules. The
specified path is transformed according to the selected matrix and is filled with the specified
color gradient.

Syntax:

vg_lite_error_t vg_lite_draw_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *matrix,
vg_lite_linear_gradient_t *grad,
vg_lite_blend_t blend

);

Parameters:

3.6. Multimedia 1589



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
eter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw and fill with the linear gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*ma-
trix

Pointer to the vg_lite_matrix_t structure that defines the 3x3 transformation matrix
of the path. If the matrix is NULL, an identity matrix is assumed; however, this option
is not preferable.

*grad Pointer to the vg_lite_linear_gradient_t structure that contains the values to be used to
fill the path.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_radial_grad function Description:
This function is used to fill a path with a radial gradient according to the specified fill
rules. The specified path is transformed according to the selected matrix and is filled
with the radial color gradient. The application can use VGLite API vg_lite_query_feature
(gcFEATURE_BIT_VG_RADIAL_GRADIENT) to determine HW support for radial gradient.

Syntax:

vg_lite_error_t vg_lite_draw_radial_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_radial_gradient_t *grad,
vg_lite_color_t paint_color,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

1590 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw for and fill with the radial gradient. See opcode details in Vector path opcodes for
plotting paths.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path
*path_matrixPointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the path. If the matrix is NULL, an identity matrix is assumed; however, his option is
not preferable.

*grad Pointer to the vg_lite_radial_gradient_t structure that contains the values to
be used to fill the path. Note: grad->image.image_mode does not support
VG_LITE_MULTIPLY_IMAGE_MODE .

paint_colorSpecifies the paint color vg_lite_color_t RGBA value to be applied
by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL set by the function
vg_lite_set_radial_grad. When pixels are out of the image after transformation,
paint_color is applied to them. For details, see vg_lite_radial_gradient_spreadmode_t.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel.
If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

fil-
ter

Specified the filter mode vg_lite_filter_t enum value to be applied to each drawn pixel.
If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

vg_lite_draw_pattern function Description:
This function fills a path with an image pattern. The path is transformed according to the speci-
fied matrix and is filled with the transformed image pattern.

Syntax:

vg_lite_error_t vg_lite_draw_pattern (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_buffer_t *pattern_image,
vg_lite_matrix_t *pattern_matrix,
vg_lite_blend_t blend,
vg_lite_pattern_mode_t pattern_mode,
vg_lite_color_t pattern_color,
vg_lite_color_t color,
vg_lite_filter_t filter

);

Parameters:

3.6. Multimedia 1591



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for this
draw function.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw. See opcode details in Vector path opcodes for plotting paths

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
*path_matrixPointer to the vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the source pixels into the target. If the matrix is NULL, an identity matrix is assumed,
meaning the source is copied directly onto the target at 0,0 location.

*pat-
tern_image

Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If the matrix is NULL, an identity matrix is assumed.

*pat-
tern_matrix

Pointer to the vg_lite_buffer_t structure that describes the source of the image pattern

Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
source pixels into the target. If the matrix is NULL, an identity matrix is assumed, which
means that the source is copied directly at 0,0 location on the target.

blend Specifies one of the vg_lite_blend_t enum values for hardware-supported blend modes
to be applied to each drawn pixel in the image. If no blending is required, set this value
to VG_LITE_BLEND_NONE (0).

pat-
tern_mode

Specifies the vg_lite_pattern_mode_t value that defines how the region outside the im-
age pattern is to be filled.

pat-
tern_color

Specifies a 32bpp ARGB color (vg_lite_color_t) to be applied to the fill outside the image
pattern area when the pattern_mode value is VG_LITE_PATTERN_COLOR. (from Dec
2019, type now vg_lite_color_t, previously was uint32_t)

color Specifies a 32bpp ARGB color (vg_lite_color_t) to be applied as a mix color. If non-zero,
the mix color value gets multiplied with each source pixel before blending happens. If a
mix color is not needed, set the color parameter to 0 (fromMay 2023). Note: This param-
eter has no effect if the pattern image vg_lite_buffer_t structure member image_mode is
set to VG_LITE_ZERO or VG_LITE_NORMAL_IMAGE_MODE.

fil-
ter

Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid for-
mats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Draw functions

Parent topic:Vector-dased draw operations

Linear gradient initialization and control functions This part of the API performs linear
gradient operations.

A color gradient (color progression, color ramp) is a smooth transition between a set of colors
(color stops) that is done along a line (linear, or axial color gradient) or radially, along concentric
circles (radial color gradient). The color transition is done by linear interpolation between two
consecutive color stops.

Note: VGLite supports linear color gradients for GCNanoLiteV and GCNanoUltraV. Both linear
and radial gradients are supported with GC355 and GC555.

vg_lite_init_grad function Description:

1592 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

This function initializes the internal buffer for the linear gradient object with default settings for
rendering.

Syntax:

vg_lite_error_t vg_lite_init_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Param-
eter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which defines the gradient to be
initialized. Default values are used.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_clear_grad function Description:
This function is used to clear the values of a linear gradient object and free up the memory of
the image buffer.

Syntax:

vg_lite_error_t vg_lite_clear_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_linear_gradient_t structure that is to be cleared

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_set_grad function Description:
This function is used to set values for the members of the vg_lite_linear_gradient_t structure.

Note: The vg_lite_set_grad API adopts the following rules to set the default gradient colors if the
input parameters are incomplete or invalid:

• If no valid stops have been specified (for example, due to an empty input array, out-of-range
or out-of-order stops), a stop at 0 with (R, G, B, A) color (0.0, 0.0, 0.0, 1.0) (opaque black) and
a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are implicitly defined

• If at least one valid stop has been specified, but none has been defined with an offset of 0,
then an implicit stop is added with an offset of 0 and the same color as the first user-defined
stop

3.6. Multimedia 1593



MCUXpresso SDK Documentation, Release 25.12.00

• If at least one valid stop has been specified, but none has been defined with an offset of 1,
then an implicit stop is added with an offset of 1 and the same color as the last user-defined
stop

Syntax:

vg_lite_error_t vg_lite_set_grad (
vg_lite_linear_gradient_t *grad,
uint32_t count,
uint32_t *colors,
uint32_t *stops
);

Parameters:

Param-
eter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure to be set
count The number of colors in the linear gradient. The maximum color stop count is de-

fined by VLC_MAX_GRAD which is 16.
*colors Specifies the color array for the gradient stops. The color is in ARGB8888 format

with alpha in the upper byte.
*stops Pointer to the gradient stop offset

Returns:
Always returns VG_LITE_SUCCESS.

Parent topic:Linear gradient initialization and control functions

vg_lite_get_grad_matrix function Description:
This function is used to get a pointer to the transformation matrix of the gradient object. It allows
an application to manipulate the matrix to facilitate correct rendering of the gradient path.

Syntax:

vg_lite_error_t vg_lite_get_grad_matrix (
vg_lite_linear_gradient_t *grad

);

Parameters:

Parame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which contains the matrix to be
retrieved

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

vg_lite_update_grad function Description:
This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_linear_gradient_t object has an image buffer, which is used to render the gradient
pattern. The image buffer is created or updated with the corresponding gradient parameters.

1594 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Syntax:

vg_lite_error_t vg_lite_update_grad (
vg_lite_linear_gradient_t *grad

);

Parameters:

Pa-
rame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_t structure, which contains the update values
to be used for the object to be rendered

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient initialization and control functions

Parent topic:Vector-dased draw operations

Linear gradient extended functions The following functions are available only with IP that
includes hardware support for extended linear gradient capabilities, such as GC355 and GC555.
These functions are not available with GCNanoLiteV, GCNanoUltraV, or GCNanoV. Applications
can use VGLite API vg_lite_query_feature (gcFEATURE_BIT_VG_LINEAR_GRADIENT_EXT)
to determine HW support for linear gradient.

vg_lite_set_linear_grad function Description:
This function is used to set the values that define the linear gradient. (from April 2022)

Syntax:

vg_lite_error_t vg_lite_set_linear_grad (
vg_lite_ext_linear_gradient_t *grad,
vg_lite_uint32_t count,
vg_lite_color_ramp_t *color_ramp,
vg_lite_linear_gradient_parameter_t grad_param,
vg_lite_radial_gradient_spreadmode_t spread_mode,
vg_lite_uint8_t pre_mult

);

Parameters:

3.6. Multimedia 1595



MCUXpresso SDK Documentation, Release 25.12.00

Pa-
ram-
e-
ter

Description

*grad Pointer to the vg_lite_ext_linear_gradient_t structure that is to be set.
count Count of the colors in the gradient. The maximum color stop count is defined by

MAX_COLOR_RAMP_STOPS, which is set to 256.
*color_rampIt is the array of stops for the linear gradient. The number of parameters for each stop

is 5, and gives the offset and color of the stop. Each stop is defined by a floating-point
offset value and four floating-point values containing the sRGBA color and alpha value
associated with each stop, in the form of a non-premultiplied (R, G, B, alpha) quad. The
range of all parameters is [0,1].

grad_paramGradient parameters as specified in the structure vg_lite_linear_gradient_parameter_t.
spread_modeThe fill mode is applied to the pixels out of the paint after transformation. Uses

the same spread mode enumeration types as radial gradient. For details, see
vg_lite_radial_gradient_spreadmode_t enum.

pre_multThis parameter controls whether color and alpha values are interpolated in premulti-
plied or non-premultiplied form.

Returns:
Returns VG_LITE_INVALID_ARGUMENTS to indicate the parameters are wrong.

Parent topic:Linear gradient extended functions

vg_lite_get_linear_grad_matrix function Description:
This function returns a pointer to an extended linear gradient object’s matrix.(fromMarch 2023).

Syntax:

vg_lite_matrix_t* vg_lite_get_linear_grad_matrix (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_ext_linear_gradient_t structure.

Returns:
Returns a pointer to vg_lite_matrix_t for the specified extended linear gradient.

Parent topic:Linear gradient extended functions

vg_lite_draw_linear_grad function Description:
This function returns a pointer to an extended linear gradient object’s matrix.(fromMarch 2023).

Syntax:

vg_lite_error_t vg_lite_draw_linear_grad (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,

(continues on next page)

1596 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
vg_lite_matrix_t *path_matrix,
vg_lite_ext_linear_gradient_t *grad,
vg_lite_color_t paint_color,
vg_lite_blend_t blend,
vg_lite_filter_t filter

);

Parameters:

Pa-
ram-
e-
ter

Description

*tar-
get

Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data that describes the path to
draw for the linear gradient. Refer to Vector path opcodes for plotting paths in this
document for opcode detail.

fill_ruleSpecifies the vg_lite_fill_t enum value for the fill rule for the path.
*path_matrixPointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of

the path. If the matrix is NULL, an identity matrix is assumed; however, this option is
not preferable.

*grad Pointer to the vg_lite_ext_linear_gradient_t structure that contains the values
to be used to fill the path. Note: grad->image.image_mode does not support
VG_LITE_MULTIPLY_IMAGE_MODE.

paint_colorSpecifies the paint color vg_lite_color_t RGBA value to be applied
by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL, set by function
vg_lite_set_linear_grad. When pixels are out of the image after trans-
formation, this paint_color is applied to them. For details, see enum
vg_lite_radial_gradient_spreadmode_t.

blend Specifies blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel. If
no blending is required, set this value to VG_LITE_BLEND_NONE (0).

fil-
ter

Specified the filter mode vg_lite_filter_t enum value to be applied to each drawn pixel.
If no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg_lite_update_linear_grad function Description:
This function is used to update or generate the corresponding image object to render (from April
2022).

The vg_lite_ext_linear_gradient_t object has an image buffer that is used to render the linear
gradient paint. The image buffer is created/updated according to the specified grad parameters.

Syntax:

vg_lite_error_t vg_lite_update_linear_grad (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

3.6. Multimedia 1597



MCUXpresso SDK Documentation, Release 25.12.00

Parame-
ter

Description

*grad Pointer to the vg_lite_linear_gradient_ext_t structure that is to be updated or cre-
ated.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

vg_lite_clear_linear_grad function Description:
This function is used to clear the linear gradient object. This resets the grad members and free
the image buffer’s memory (from April 2022).

Syntax:

vg_lite_error_t vg_lite_clear_linear_grad (
vg_lite_ext_linear_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_linear_gradient_ext_t structure that is to be cleared.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Linear gradient extended functions

Parent topic:Vector-dased draw operations

Radial gradient functions initialization and control functions The following functions are
available only with IP that supports radial gradients, such as GC355 and GC555. These functions
are not available with GCNanoLiteV, or GCNanoUltraV or GCNanoV.

Note: There is no init function required for radial gradients. Buffer initialization is done through
the vg_lite_update_radial_grad function. (from Nov 2020, requires GC355 or GC555 hardware)

vg_lite_set_radial_grad function Description:
This function is used to set the values for the radial linear gradient definition. (from November
2020, requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_set_radial_grad (
vg_lite_radial_gradient_t *grad,
vg_lite_uint32_t count,
vg_lite_color_ramp_t *color_ramp,
vg_lite_radial_gradient_parameter_t grad_param,
vg_lite_radial_gradient_spreadmode_t spread_mode,
vg_lite_uint8_t pre_mult

);

1598 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parameters:

Pa-
ram-
e-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure for the radial gradient that has to be
set

count The number of color stops in the gradient. The maximum color stop count is defined by
MAX_COLOR_RAMP_STOPS, which is currently 256.

*color_rampPointer to the vg_lite_color_ramp_t structure that defines the stops for the radial gradi-
ent. The five parameters provide the offset and color for each stop. Each stop is defined
by a set of floating point values that specify the offset and the sRGBA color and alpha val-
ues. Color channel values are in the form of a non-premultiplied (R, G, B, alpha) quad.
All parameters are in the range of [0,1]. The red, green, blue, alpha value of [0, 1] is
mapped to an 8-bit pixel value [0, 255].

grad_paramThe radial gradient parameters are supplied as a vector of 5 floats. Parameters (cx, cy)
specify the center point, parameters (fx, fy) specify the focal point, and r specifies the
radius. See structure vg_lite_radial_gradient_parameter_t.

spread_modeThe tiling mode that is applied to pixels out of the paint after transformation. See enum
vg_lite_radial_gradient_spreadmode_t.

pre_multControls whether color and alpha values are interpolated in premultiplied or non-
premultiplied form. If this value is set to 1, the color value of vgColorRamp is multipled
by the alpha value of vgColorRamp.

Returns:
Returns VG_LITE_INVALID_ARGUMENTS to indicate that the parameters are wrong.

Parent topic:Radial gradient functions initialization and control functions

vg_lite_update_radial_grad function Description:
This function is used to update or generate values for an image object that is going to be rendered.
The vg_lite_radial_gradient_t object has an image buffer that is used to render the gradient pat-
tern. The image buffer will be created or updated with the corresponding gradient parameters.
(from November 2020, requires GC355 or GC555 hardware)

Syntax:

vg_lite_error_t vg_lite_update_radial_grad (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Pa-
rame-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure, which contains the updated values
to be used for the object to be rendered

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

3.6. Multimedia 1599



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_get_radial_grad_matrix function Description:
This function is used to get a pointer to the radial gradient object’s transformation matrix. This
allows an application to manipulate the matrix to facilitate correct rendering of the gradient
path*. (from Nov 2020, requires GC355 or GC555 hardware).*

Syntax:

vg_lite_error_t vg_lite_get_radial_grad_matrix (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Parame-
ter

Description

*grad Pointer to the vg_lite_radial_gradient_t structure, which contains the matrix to be
retrieved

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

vg_lite_clear_rad_grad function Description:
This function is used to clear the values of a radial gradient object and free the image buffer’s
memory*. (from Nov 2020, requires GC355 or GC555 hardware)*

Syntax:

vg_lite_error_t vg_lite_clear_radial_grad (
vg_lite_radial_gradient_t *grad,

);

Parameters:

Parameter Description
*grad Pointer to the vg_lite_radial_gradient_t structure which is to be cleared

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Radial gradient functions initialization and control functions

Parent topic:Vector-dased draw operations

Stroke operations This part of the API performs stroke operations. (from March 2022)

Stroke enumerations This section gives details on stroke enumerations.

1600 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_cap_style_t enumeration Defines the style of cap at the end of a stroke (from March
2022).

Used in structure: vg_lite_stroke_t.

Used in function: vg_lite_set_stroke.

vg_lite_cap_style_t
values

Description

VG_LITE_CAP_BUTTThe butt end cap style terminates each segment with a line perpendicular to the
tangent at each endpoint.

VG_LITE_CAP_ROUNDThe round end cap style appends a semicircle with a diameter equal to the line
width centered around each endpoint.

VG_LITE_CAP_SQUAREThe square end cap style appends a rectangle with two sides of length equal to the
line width perpendicular to the tangent, and two sides of length equal to half the
line width parallel to the tangent, at each endpoint.

Parent topic:Stroke enumerations

vg_lite_path_type_t enumeration Defines the type of draw path (from March 2022).

Used in structure: vg_lite_path_t, vg_lite_stroke_t.

Used in function: vg_lite_set_path_type.

vg_lite_path_type_t string values Description
VG_LITE_DRAW_FILL_PATH Draw path is fill.
VG_LITE_DRAW_STROKE_PATH Draw path is stroke.
VG_LITE_DRAW_FILL_STROKE_PATH Draw path is both fill and stroke.

Parent topic:Stroke enumerations

vg_lite_join_style_t enumeration Defines the type of styles available for line joints. (from
March 2022)

Used in structure: vg_lite_stroke_t.

Used in function: vg_lite_set_stroke.

vg_lite_join_style_t
string
values

Description

VG_LITE_JOIN_MITERThe miter join style appends a trapezoid with one vertex at the intersection point
of the two original lines, two adjacent vertices at the outer endpoints of the two
“thickened” lines and a fourth vertex at the extrapolated intersection point of the
outer perimeters of the two “thickened” lines.

VG_LITE_JOIN_ROUNDThe round join style appends a wedge-shaped portion of a circle, centered at the
intersection point of the two original lines, having a radius equal to half the line
width.

VG_LITE_JOIN_BEVELThe bevel type join style appends a triangle with two vertices at the outer end-
points of the two “thickened” lines and a third vertex at the intersection point of
the two original lines.

Parent topic:Stroke enumerations

Parent topic:Stroke operations

3.6. Multimedia 1601



MCUXpresso SDK Documentation, Release 25.12.00

Stroke structures This section gives details on stroke structures.

vg_lite_path_t structure Defined under Vector Path Structures - vg_lite_path_t structure.

(additional members added for stroke from March 2022)

Parent topic:Stroke structures

vg_lite_path_list_t structure The structure vg_lite_path_list_ptr points to the
vg_lite_path_list structure that provides divided path data according to MOVE/MOVE_REL.
(from Aug 2023)

Used (vg_lite_path_list_ptr) in structures: vg_lite_stroke_t.

vg_lite_path_list_t members Type Description
path_points vg_lite_path_point_ptr

path_end vg_lite_path_point_ptr

point_count vg_lite_uint32_t

next vg_lite_path_list_ptr

closed vg_lite_uint8_t

Parent topic:Stroke structures

vg_lite_path_point_t structure The structure vg_lite_path_point_ptr points to the
vg_lite_path_point structure which provides path detail (from March 2022)

Used (vg_lite_path_point_ptr) in structures: vg_lite_path_point_t, vg_lite_stroke_conversion.
vg_lite_sub_path_t.

vg_lite_path_point_t mem-
bers

Type Description

x vg_lite_float_t X coordinate
y vg_lite_float_t Y coordinate
flatten_flag vg_lite_uint8_t Flatten flag for flattened path
curve_type vg_lite_uint8_t Curve type for the stroke path
tangentX vg_lite_float_t X tangent (Note: #define centerX tan-

gent)
tangentY vg_lite_float_t Y tangent (Note: #define centerX tan-

gent)
length vg_lite_float_t Line length
prev vg_lite_path_point_ptr Pointer to the previous point node

Parent topic:Stroke structures

vg_lite_stroke_t structure The structure provides stroke parameters and pointers to temp stor-
age for a stroke sub path. Refer to the function vg_lite_set_stroke parameter descriptions for
additional description for some members. (from March 2022)

Used in structure: vg_lite_path_t.

1602 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_stroke_t members Type Description
cap_style vg_lite_cap_style_t Stroke cap style
join_style vg_lite_join_style_t Stroke joint style
line_width vg_lite_float_t Stroke line width
miter_limit vg_lite_float_t Stroke miter limit
*dash_pattern vg_lite_float_t Pointer to stroke dash pattern
pattern_count vg_lite_uint32_t Number of dash pattern repetitions
dash_phase vg_lite_float_t Stroke dash phrase
dash_length vg_lite_float_t Stroke dash initial length
dash_index vg_lite_uint32_t Stroke dash initial index
half_width vg_lite_float_t Half line width
pattern_length vg_lite_float_t Total length of stroke dash patterns.
miter_square vg_lite_float_t For fast checking
path_points vg_lite_path_point_ptr Temp storage for stroke sub path
path_end vg_lite_path_point_ptr Temp storage for stroke sub path
point_count unint32_t Temp storage for stroke sub path
left_point vg_lite_path_point_ptr Temp storage for stroke sub path
right_pont vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_points vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_end vg_lite_path_point_ptr Temp storage for stroke sub path
stroke_count vg_lite_uint32_t Temp storage for stroke sub path
path_list_divide vg_lite_path_list_ptr Divide stroke path according to move or move_rel for avoiding implicit closure. (from Aug 2023)
cur_list vg_lite_path_list_ptr Pointer to current divided path data. (from Aug 2023)
add_end vg_lite_uint8_t Flag that adds end_path in driver (from Aug 2023)
dash_reset vg_lite_uint8_t (from Aug 2023)
stroke_paths vg_lite_sub_path_ptr
last_stroke vg_lite_sub_path_ptr
swing_handling vg_lite_uint32_t
swing_deltax vg_lite_float_t
swing_deltay vg_lite_float_t
swing_start vg_lite_path_point_ptr
swing_stroke vg_lite_path_point_ptr
swing_length vg_lite_float_t
swing_centlen vg_lite_float_t
swing_count vg_lite_uint32_t
need_swing vg_lite_uint8_t
swing_ccw vg_lite_uint8_t
stroke_length vg_lite_float_t
stroke_size vg_lite_uint32_t
fattened vg_lite_uint8_t The stroke line is a fat line.
closed vg_lite_uint8_t

Parent topic:Stroke structures

vg_lite_sub_path_t structure The structure vg_lite_sub_path_ptr points to the
vg_lite_sub_path structure that provides sub path detail and a pointer to the next sub path.
(from March 2022)

Used in structure: vg_lite_stroke_conversion.

3.6. Multimedia 1603



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_path_point_t mem-
bers

Type Description

next vg_lite_sub_path_ptr Pointer to the next sub path
point_count vg_lite_uint32_t Number of points in the sub path
point_list vg_lite_path_point_ptr Pointer to the point list.
end_point vg_lite_path_point_ptr Pointer to the last point.
closed vg_lite_uint8_t Indicates whether or not the path is

closed.
length vg_lite_float_t Length of the sub path.

Parent topic:Stroke structures

Parent topic:Stroke operations

Stroke functions All return vg_lite_error_t status.

vg_lite_set_path_type function Description:
This function sets the path type*. (from March 2022)*

Syntax:

vg_lite_error_t vg_lite_set_path_type (
vg_lite_path_t *path,
vg_lite_path_type_t path_type

);

Parameters:

Parameter Description
*path Pointer to the vg_lite_path_t structure that describes the vector path.
path_type Pointer to a vg_lite_path_type_t structure that describes the path type.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_set_stroke function Description:
This function uses input parameters to set stroke attributes (from March 2022).

Syntax:

vg_lite_error_t vg_lite_set_stroke (
vg_lite_path_t *path,
vg_lite_cap_style_t cap_style,
vg_lite_join_style_t join_style,
vg_lite_float_t line_width,
vg_lite_float_t miter_limit,
vg_lite_float_t *dash_pattern,
vg_lite_uint32_t pattern_count,
vg_lite_float_t dash_phase,
vg_lite_color_t color

(continues on next page)

1604 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
);

Parameters:

Pa-
ram-
e-
ter

Description

*path Pointer to the vg_lite_path_t structure that describes the path.
cap_styleThe end cap style is defined by the vg_lite_cap_style_t enum.
join_styleThe line join style defined by the vg_lite_join_style_t enum.
line_widthThe line width of the stroke path. A line width less than or equal to 0 prevents stroking

from taking place.
miter_limitWhen stroking using the Miter stroke vg_lite_join_style_t, the miter length (that is, the

length between the intersection points of the inner and outer perimeters of the two “fat-
tened” lines) is compared to the product of the user-set miter limit and the line width.
If the miter length exceeds this product, the Miter join is not drawn and a Bevel join is
substituted. Note: Miter limit values less than 1 are silently clamped to 1.

*dash_patternPointer to a dash pattern that consists of a sequence of lengths of alternating “on” and
“off” dash segments. The first value of the dash array defines the length, in user coordi-
nates, of the first “on” dash segment. The second value defines the length of the following
“off” segment. Each subsequent pair of values defines one “on” and one “off” segment.
Note: If the dash pattern has an odd number of elements, the final element is ignored.

pat-
tern_count

The count of dash on/off segments.

dash_phaseDefines the starting point in the dash pattern that is associated with the start of the first
segment of the path. For example, if the dash pattern is [10 20 30 40] and the dash
phase is 35, the path is stroked with an “on” segment of length 25 (skipping the first
“on” segment of length 10, the following “off” segment of length 20, and the first 5 units
of the next “on” segment), followed by an “off” segment of length 40. The pattern is then
repeated from the beginning, with an “on” segment of length 10, an “off” segment of
length 20, an “on” segment of length 30.

color The stroke color.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

vg_lite_update_stroke function Description:
This function uses the path and stroke attributes as specified with the function vg_lite_set_stroke
to update the stroke path’s parameters and generate stroke path data . (from March 2022)

Syntax:

vg_lite_error_t vg_lite_update_stroke (
vg_lite_path_t *path,

);

Parameters:

3.6. Multimedia 1605



MCUXpresso SDK Documentation, Release 25.12.00

Parameter Description
*path Pointer to the vg_lite_path_t structure that describes the path.

Returns:
Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

Parent topic:Stroke functions

Parent topic:Stroke operations

Deprecated and renamed APIs The following functions are deprecated and are either obso-
lete or replaced by a more efficient implementation. Their use is discouraged and will produce
unpredictable behaviors.

The names of some functions, enums and structures were modified during code refinements in
2022Q3. If the parameters did not change, the deprecated syntax detail is not provided below.
Changes to enums and structs are not mentioned here, instead refer to the item itself.

Deprecated or renamed API Recommended replacement
API

Source
file

Date depre-
cated

vg_lite_perspective n/a vg_lite.h August 2022
vg_lite_set_dither vg_lite_enable_dither

vg_lite_disable_dither
vg_lite.h August 2022

vg_lite_append_path vg_lite_path_append vg_lite.h Sept 2022
vg_lite_path_calc_length vg_lite_get_path_length vg_lite.h Sept 2022
vg_lite_set_image_global_alpha vg_lite_set_source_global_alpha vg_lite.h Sept 2022
vg_lite_dest_global_alpha vg_lite_set_dest_global_alpha vg_lite.h Sept 2022
vg_lite_mem_avail vg_lite_get_mem_size vg_lite.h Sept 2022
vg_lite_enable_premultiply n/a vg_lite.h Dec 2022
vg_lite_disable_premultiply n/a vg_lite.h Dec 2022
vg_lite_set_premultiply n/a vg_lite.h Aug 2023
vg_lite_radial_gradient_spreadmode_t
enum

vg_lite_gradient_spreadmode_t
enum

vg_lite.h March 2023

API Name Refinement (no change to parameters)

vg_lite_buffer_upload vg_lite_upload_buffer_ vg_lite.h Sept 2022
vg_lite_*mask* most vg_lite_*mask_layer vg_lite.h Sept 2022
vg_lite_*_grad vg_lite_*_gradient (parameters

unchanged)
vg_lite.h Sept 2022

vg_lite_*_radial_grad* vg_lite_*_rad_grad* vg_lite.h Sept 2022
vg_lite_buffer_image_mode_t vg_lite_image_mode_t vg_lite.h Sept 2022
vg_lite_transparency_mode_t vg_lite_transparency_t vg_lite.h Sept 2022
vg_lite_set_update_stroke vg_lite_update_stroke vg_lite.h Sept 2022
vg_lite_set_draw_path_type vg_lite_set_path_type vg_lite.h Sept 2022

Deprecated vg_lite syntax Syntax for deprecated functions is provided below for reference.

Note: This list does not include items renamed during code refinement of Sept 2022.

vg_lite_perspective (deprecated) Syntax:

1606 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

void vg_lite_perspective (
vg_lite_float_t px,
vg_lite_float_t py,
vg_lite_matrix_t *matrix

);

Parent topic:Deprecated vg_lite syntax

vg_lite_set_dither (deprecated) Syntax:

vg_lite_error_t vg_lite_set_dither (
int enable

);

Parent topic:Deprecated vg_lite syntax

vg_lite_enable_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_enable_premultiply (
void

);

Parent topic:Deprecated vg_lite syntax

vg_lite_disable_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_disable_premultiply (
void

);

Parent topic:Deprecated vg_lite syntax

vg_lite_set_premultiply (deprecated) Syntax:

vg_lite_error_t vg_lite_set_premultiply (
vg_lite_uint8_t src_premult,
vg_lite_uint8_t dst_premult,

);

Parent topic:Deprecated vg_lite syntax

Parent topic:Deprecated and renamed APIs

VGLite API version 2.0 to 3.0 migration guide The VGLite API version 3.0 is not fully compat-
ible with VGLite API version 2.0. VGLite API version 3.0 includes some new API functions for the
new features in the latest VG GPU like GC555. Some VGLite API version 2.0 function interfaces
are changed in API version 3.0. So, the existing VGLite API version 2.0 applications must be mod-
ified to compile and run properly with the VGLite API version 3.0 driver. This chapter provides
guidance for migrating VGLite API version 2.0 applications to VGLite API version 3.0.

VGLite API name changes in API version 3.0 Some original VGLite API names are changed in
API version 3.0 for API naming consistency. In the VGLite API version 3.0 header file vg_lite.h, a
set of API name macros are defined for the equivalent API names between API version 3.0 and
API version 2.0, so it is not necessary to modify the VGLite API function names in API version 2.0
applications for the application to compile and run with the API version 3.0 driver.

3.6. Multimedia 1607



MCUXpresso SDK Documentation, Release 25.12.00

The list of equivalent VGLite API functions between API version 3.0 and API version 2.0 is shown
below. These API functions’ parameters are the same between API version 3.0 and API version
2.0.

/* API name defines for backward compatibility to VGLite 2.0 APIs */
#define vg_lite_buffer_upload vg_lite_upload_buffer
#define vg_lite_path_append vg_lite_append_path
#define vg_lite_path_calc_length vg_lite_get_path_length
#define vg_lite_set_ts_buffer vg_lite_set_tess_buffer
#define vg_lite_set_draw_path_type vg_lite_set_path_type
#define vg_lite_create_mask_layer vg_lite_create_masklayer
#define vg_lite_fill_mask_layer vg_lite_fill_masklayer
#define vg_lite_blend_mask_layer vg_lite_blend_masklayer
#define vg_lite_generate_mask_layer_by_path vg_lite_render_masklayer
#define vg_lite_set_mask_layer vg_lite_set_masklayer
#define vg_lite_destroy_mask_layer vg_lite_destroy_masklayer
#define vg_lite_enable_mask vg_lite_enable_masklayer
#define vg_lite_enable_color_transformation vg_lite_enable_color_transform
#define vg_lite_set_color_transformation vg_lite_set_color_transform
#define vg_lite_set_image_global_alpha vg_lite_source_global_alpha
#define vg_lite_set_dest_global_alpha vg_lite_dest_global_alpha
#define vg_lite_clear_rad_grad vg_lite_clear_radial_grad
#define vg_lite_update_rad_grad vg_lite_update_radial_grad
#define vg_lite_get_rad_grad_matrix vg_lite_get_radial_grad_matrix
#define vg_lite_set_rad_grad vg_lite_set_radial_grad
#define vg_lite_draw_linear_gradient vg_lite_draw_linear_grad
#define vg_lite_draw_radial_gradient vg_lite_draw_radial_grad
#define vg_lite_draw_gradient vg_lite_draw_grad
#define vg_lite_mem_avail vg_lite_get_mem_size
#define vg_lite_set_update_stroke vg_lite_update_stroke

The list of equivalent VGLite API structures and enumerations is shown below:

#define vg_lite_buffer_image_mode_t vg_lite_image_mode_t
#define vg_lite_draw_path_type_t vg_lite_path_type_t
#define vg_lite_linear_gradient_ext_t vg_lite_ext_linear_gradient_t
#define vg_lite_buffer_transparency_mode_t vg_lite_transparency_t

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_set_scissor API interface change The VGLite API vg_lite_set_scissor() function name
is not changed in API version 3.0, but the API parameters are defined differently in API version
3.0.

In VGLite API version 3.0, the vg_lite_set_scissor() function is defined as:

/* Set and enable a scissor rectangle for render target. */
vg_lite_error_t vg_lite_set_scissor(vg_lite_int32_t x, vg_lite_int32_t y,

vg_lite_int32_t right, vg_lite_int32_t bottom);

In VGLite API version 2.0, the vg_lite_set_scissor() function is defined as:

vg_lite_error_t vg_lite_set_scissor(int32_t x, int32_t y, int32_t width, int32_t height);

So, the vg_lite_set_scissor() API parameters “width” and “height” in the VGLite API version 2.0
application must be changed to “right” x-coordinate value and “bottom” y-coordinate value.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_map API interface change The VGLite API vg_lite_map() function name is not changed
in API version 3.0, but the API parameters are defined differently in API version 3.0.

1608 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

In VGLite API version 3.0, the vg_lite_map() function is defined as:

/* Map a buffer into hardware accessible address space. */
vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer, vg_lite_map_flag_t flag, int32_t fd);

In VGLite API version 2.0, the vg_lite_map() function is defined as:

vg_lite_error_t vg_lite_map(vg_lite_buffer_t *buffer);

So, vg_lite_map() in VGLite API version 3.0 API requires two extra parameters “flag” and “fd”,
which can simply be set as vg_lite_map (buffer, 0, 0) in applications.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_enable_scissor / vg_lite_disable_scissor API The VGLite API vg_lite_enable_scissor()
and vg_lite_disable_scissor() functions are valid only for vg_lite_scissor_rects() API. They have
no effect for vg_lite_set_scissor() in VGLite API version 3.0.

Although the behavior of vg_lite_enable_scissor() and vg_lite_disable_scissor() is changed in
VGLite API version 3.0, there is no need to change these functions in VGLite API version 2.0
applications to work with the VGLite API version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

vg_lite_draw_pattern API interface change The VGLite API vg_lite_draw_pattern() function
name is not changed in API version 3.0, but the API parameters are defined differently in API
version 3.0.

In VGLite API version 3.0, the vg_lite_draw_pattern() function is defined as:

/* Draw a path that is filled by a transformed image pattern. */
vg_lite_error_t vg_lite_draw_pattern(vg_lite_buffer_t *target,

vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *path_matrix,
vg_lite_buffer_t *pattern_image,
vg_lite_matrix_t *pattern_matrix,
vg_lite_blend_t blend,
vg_lite_pattern_mode_t pattern_mode,
vg_lite_color_t pattern_color,
vg_lite_color_t color,
vg_lite_filter_t filter);

Compared to the VGLite API version 2.0 vg_lite_draw_pattern() function, “color” is a new addi-
tional parameter. It specifies a 32bpp ARGB color (vg_lite_color_t) to be applied as a mix color.
If nonzero, the mix color value gets multiplied with each source pixel before blending happens.
If a mix color is not needed, set the color parameter to 0.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

[New] vg_lite_copy_image in VGLite API version 3.0 The new API vg_lite_copy_image() is
added in VGLite API version 3.0 to support the OpenVG vgCopyImage API, which performs a pixel
rectangle copy without pixel transformation, blending, filtering operations.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

3.6. Multimedia 1609



MCUXpresso SDK Documentation, Release 25.12.00

vg_lite_set_dither API is deprecated in API version 3.0 The original API version 2.0 function
vg_lite_set_dither(int enable) API is removed from API version 3.0, it is replaced with two new
APIs for dither enable/disable:

/* Enable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_enable_dither();
/* Disable dither function. Dither is OFF by default. */
vg_lite_error_t vg_lite_disable_dither();

Therefore, the vg_lite_set_dither(enable) function in the VGLite API version 2.0 application must
be replaced with vg_lite_enable_dither() or vg_lite_disable_dither() to work with the VGLite API
version 3.0 driver.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Deprecated VGLite API version 2.0 functions The VGLite API vg_lite_perspective(),
vg_lite_enable_premultiply(), vg_lite_disable_premultiply() functions are removed from API
version 3.0. These API functions must be deleted from a VGLite API version 2.0 application to
work with the VGLite API version 3.0 driver.

In VGLite API version 3.0, the color premultiply setting is defined by the vg_lite_blend_t enu-
meration to replace the original vg_lite_enable_premultiply() and vg_lite_disable_premultiply()
APIs.

• VG_LITE_BLEND_* enumeration values in vg_lite_blend_t define non-premultiplied blend-
ing modes.

• OPEVG_BLEND_* enumeration values in vg_lite_blend_t define premultiplied Porter-Duff
blending modes.

So, the VGLite API version 3.0 application can set different blending modes to get the desired
premultiplied/non-premultiplied blending result.

Parent topic:VGLite API version 2.0 to 3.0 migration guide

Revision history

1610 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Doc-
u-
ment
ID

Re-
lease
date

Description

IMXRTVGLITEAPIRM,
Rev.
1.2

17
Jan-
uary
2025

The document is updated to correspond to the API version 3.0

IMXRTVGLITEAPIRM,
Rev.
1.1

22
Septem-
ber
2022

- Paragraph 4.1.1 Updated Table 3 - vg_lite_feature_t enumeration. - Paragraph
6.6 Added documentation for new API vg_lite_set_dither - Paragraph 8.2 Blit
structures- Added documentation for new data structure vg_lite_color_key_t -;
added documentation for new data structure vg_lite_color_key4_t - Paragraph
8.3.1, vg_lite_blit function- added note related to HW limitation on RT500 platform
- Paragraph 8.3.2, vg_lite_blit_rect function -added note related to HW limitation
on RT500 platforms - Paragraph 8.3.3, vg_lite_get_transform_matrix function- ad-
justed function description, adjusted function parameters description - Paragraph
8.3, blit functions- added documentation for new API vg_lite_set_color_key - Para-
graph 8.4.1, vg_lite_enable_premultiply function- added note about limited support
on specific platforms - Paragraph 8.4.2, vg_lite_disable_premultiply function- added
note about limited support on specific platforms - Paragraph 10.1.3, vg_lite_fill_t
enumeration- added note about crossing points buffer limitation - Paragraph
10.2, draw and gradient structures- added documentation for new data struc-
ture vg_lite_gradient_parameter_t - done- added documentation for new data struc-
ture vg_lite_gradient_ext_t- Paragraph 10.3, draw functions- added documentation
for new API vg_lite_draw_linear_gradient- Paragraph 10, vector-Based Draw Op-
erations - added new paragraph 10.5 Extended linear gradient initialization and
control functions; added documentation for new API vg_lite_set_linear_gradient;
added documentation for new API vg_lite_get_linear_grad_matrix; added docu-
mentation for new API vg_lite_update_linear_grad; Added documentation for new
API vg_lite_clear_linear_grad - Paragraph 10.5, Radial gradient functions - adjusted
paragraph title - Added new Chapter Stroke Operations - Chapter Platform-Specific
Features -updated Table 41 - Platform-specific VGLite features

IMXRTVGLITEAPIRM,
Rev.
1

27
Jan-
uary
2022

Introduction Added i.MX RT1160 to the list of NXP devices that support VGLite
graphics API vg_lite_error_t enumeration Updated Table 1 vg_lite_feature_t enu-
merationUpdated Table 1 API control

IMXRTVGLITEAPIRM,
Rev.
0

22
Febru-
ary
2021

Initial release

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials must be
provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

3.6. Multimedia 1611



MCUXpresso SDK Documentation, Release 25.12.00

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.7 Wireless

3.7.1 NXP Wireless Framework and Stacks

Wi-Fi, Bluetooth, 802.15.4

Application notes
• Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i.MX-RT-SDK.pdf

• Link TN00066-WFA-Derivative-Certification-Process.pdf

User manuals
• Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i.MX-RT-

Platforms.pdf

• UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i.MX-RT-Platforms.pdf

• Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i.MX-RT-
Platforms.pdf

• Link UM11567-WFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i.MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.12.00 has been tested for the wireless SoCs listed in Supported prod-
ucts.

Supported products
• 88W8987

• IW416

• IW6111

• IW6122

1612 Chapter 3. Middleware

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf


MCUXpresso SDK Documentation, Release 25.12.00

• AW6113

• RW610

• RW612

Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-
port is available only in i.MX RT1180 EVKA

Features

Wi-Fi radio

Client mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) TX and RX support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) 4k TX and RX support Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) 1x1 20 MHz and 40 MHz Y N Y N N Y
802.11n - High throughput HT Beamformee (explicit) Y Y Y N N Y
802.11ac - Very high throughput 2.4 GHz band supported channel bandwidth: 20MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 80 MHz Y N Y N N Y
802.11ac - Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac - Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1 Y N Y N N Y
802.11ac - Very high throughput MU-MIMO Beamformee (Explicit and Implicit) Y N Y Y Y Y
802.11ac - Very high throughput RTS/CTS with BW signaling N N N N N N
802.11ac - Very high throughput Operation mode notification Y N Y N N Y
802.11ac - Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac - Very high throughput TX VHT MCS rate adaptation Y N Y Y Y Y
802.11ac - Very high throughput Low density parity check (LDPC) Y N Y N N Y
802.11ax - High efficiency 2.4 GHz band supported channel bandwidth: 20MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 20 MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 40 MHz N N Y N N Y
802.11ax - High efficiency 5 GHz band supported channel bandwidths: 80 MHz N N Y N N Y
802.11ax - High efficiency OFDMA (UL/DL, 106 RU) N N Y Y Y Y
802.11ax - High efficiency OFDMA (UL/DL, 484 RU) N N Y N N Y
802.11ax - High efficiency 1024 QAM N N Y N N Y
802.11ax - High efficiency Target wake time (TWT) N N Y Y Y Y
802.11ax - High efficiency 256 QAM modulation – MCS8 and MCS9 N N Y Y Y Y
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 2.4 GHz N N Y N N Y

continues on next page

3.7. Wireless 1613



MCUXpresso SDK Documentation, Release 25.12.00

Table 5 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 5 GHz N N Y N N Y
802.11ax - High efficiency DCM N N Y N N Y
802.11ax - High efficiency DCM N N Y Y N Y
802.11ax - High efficiency ER (extended range) N N Y Y Y Y
802.11ax - High efficiency SU Beamforming N N Y Y Y Y
802.11ax - High efficiency OMI (operating mode indication) N N Y Y Y Y
802.11a/b/g features 802.11b/g data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features 802.11a data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features TX rate adaptation (BG) Y Y Y Y Y Y
802.11a/b/g features Fragmentation/defragmentation N N N Y Y N
802.11a/b/g features ERP protection, slot time, preamble Y Y Y Y Y Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)3 Y Y Y Y Y Y
802.11i security Opensource WPA Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | WPA Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | WPA Supplicant Y Y Y Y Y Y
802.11i security 802.1x EAP Authentication Methods3 | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode3 | WPA Supplicant N N N Y Y N
802.11i security WPA3-Enterprise3 (Suite-B) |National Security Algorithm (CSNA) | WPA Supplicant Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | WPA Supplicant Y Y Y Y Y Y
802.11i security Embedded Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Roaming Y Y Y Y Y Y
802.11i security WPA3 Enterprise3 Y Y Y YY Y
Power save mode Deep sleep Y Y Y Y Y Y
Power save mode IEEE power save Y Y Y Y Y Y
Power save mode Host sleep/WoWLAN (inband)3 N N N Y Y N
Power save mode Host sleep/WoWLAN (outband)3 Y Y Y N N Y
Power save mode U-APSD Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF require and capable Y Y Y Y Y Y
802.11w - PMF (protected management frames) Unicast management frames - Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - PMF (protected management frames) Broadcast management frames - Encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - PMF (protected management frames) SA query request/response Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF support using embedded supplicant Y Y Y Y Y Y
DPP functionality Wi-Fi easy connect3 Y Y Y Y Y Y
General features Embedded supplicant Y Y Y Y Y Y
General features Host sleep packet filtering N N Y Y Y Y
General features Host-based supplicant Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EDMAC - EU adaptivity support (ETSI certification) Y Y Y Y Y Y
General features External coexistence N N N N N N
General features IPv6 NS offload N N Y Y Y Y
General features FIPS Y Y Y Y Y Y
General features TKIP1 N N N N N Y
General features RF test mode Y Y Y Y Y Y
General features 802.11k Y Y Y Y Y Y
General features 802.11v Y Y Y Y Y Y
General features DFS radar detection in peripheral mode (follow AP)5 Y Y Y Y Y Y
General features Embedded roaming based on RSSI threshold beacon loss Y Y Y Y Y Y
General features ARP offload N N Y Y Y Y

continues on next page

1614 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 5 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
General features Cloud keep alive Y Y Y N N Y
General features UNII-4 channel support N N Y Y Y Y
General features ClockSync using TSF N N Y N N Y
General features Auto reconnect Y Y N N N N
General features CSI (channel state information)3 Y N Y Y Y Y
General features Ambient Motion Index (AMI)3 N N Y Y Y Y
General features Independent reset (in-band)3 Y Y Y Y Y Y
General features Independent reset (out-band)3 Y Y Y N N Y
General features Wi-Fi agile multiband N N Y Y Y Y
General features Network co-processor (NCP) mode N N N Y4 N N
General features 802.11mc - WLS (Wi-Fi location service)3 N N Y N N Y
General features 802.11az3 N N Y N N Y

Parent topic:Wi-Fi radio

[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.

[2] Support available in host-base supplicant.

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Read more about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1 must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y N N Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) Rx support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) -4k RX support Y Y Y Y Y Y
802.11n - High throughput Max client support (up to 8 devices) Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 80MHz Y N Y N N Y
802.11ac – Very high throughput Short/long guard interval (400ns/800ns) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) Y N Y Y N Y
802.11ac – Very high throughput Single user- Aggregated MAC protocol data unit (SU-AMPDU) aggregation Y N Y Y Y Y
802.11ac – Very high throughput RTS/CTS with BW signaling N N Y N N Y
802.11ac – Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac – Very high throughput TX VHT MCS rate adaptation Y N N Y Y N
802.11ac – Very high throughput MU-MIMO Beamformee (explicit and implicit) Y N Y Y Y Y
802.11ac – Very high throughput Operation mode notification Y N Y N N Y

continues on next page

3.7. Wireless 1615



MCUXpresso SDK Documentation, Release 25.12.00

Table 6 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11ax – High efficiency 2.4 GHz band operation (20 MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 2.4 GHz band operation (40 MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (20MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 5 GHz band operation (40MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (80 MHz channel bandwidth) N N Y N N Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e -QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)1 Y Y Y Y Y Y
802.11i security Hostapd Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | hostapd Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Hostapd Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | Hostapd Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | Hostapd Y Y Y N N Y
802.11i security 802.1x EAP Authentication Methods | Hostapd Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode1 | Hostapd N N N Y Y N
802.11i security WPA3-Enterprise (Suite-B)1 |National Security Algorithm (CSNA) | Hostapd Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Hostapd Y Y Y Y Y Y
802.11i security Embedded Authenticator Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11y Extended channel switch announcement (ECSA) Y Y Y Y Y Y
802.11w - protected management frames (PMF) PMF require and capable Y Y Y Y Y Y
802.11w - protected management frames (PMF) Unicast management frames -Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - protected management frames (PMF) Broadcast management frames -encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - protected management frames (PMF) SA query request/response Y Y Y Y Y Y
General features Embedded authenticator Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EU adaptivity support Y Y Y Y Y Y
General features Automatic channel selection (ACS) Y Y Y Y Y Y
General features External coexistence (software interface) N N N N N N
General features Independent reset (in-band)1 Y Y Y Y Y Y
General features Network co-processor (NCP) mode2 N N N Y N N
General features Vendor specific IE (custom IE) Y Y Y Y Y Y
General features Hidden SSID (broadcast SSID disabled) Y Y Y Y Y Y
General features MAC address filter N N N Y Y N
General features Multiple external STA support Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in
References.

AP-STA mode

Features Sub features 88W8987IW416IW611/IW612RW610/RW612IW610AW611
Simultaneous AP-STA oper-
ation (same channel)

AP-STA func-
tionality

Y Y Y Y Y Y

SAD Software an-
tenna diver-
sity1

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

1616 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

Fea-
tures

Sub features 88W8987IW416 IW611/IW612RW610/RW612IW610 AW611

Generic Firmware download (paral-
lel)1

Y Y Y N N Y

Generic Secure boot N N Y Y Y Y
Generic Kconfig memory optimizer3 Y Y Y Y Y Y
Generic Firmware Compression2 N Y N N N N
Generic u-AP intra-BSS Y N Y Y Y Y
Generic Net Monitor Mode N N N Y Y N
Generic Net Monitor Mode with packet

transmission
N N N Y Y N

Generic In-Channel Net Monitor mode N N N N N N

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W89873IW4162IW611/IW6123RW610/RW6123IW6103AW6113
P2P basic func-
tionality1

P2P Auto GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GC Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Persistent
Group

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Invitation Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Device Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Provision Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GO + STA

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GC + uAP

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

3.7. Wireless 1617



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth radio

1618 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth classic

Feature Sub feature 88W8987IW416IW611/IW612RW610/RW612IW610AW611
General fea-
tures

Bluetooth Class 1.5 and Class 2 sup-
port

Y Y Y N N Y

General fea-
tures

Scatternet support Y Y Y N N Y

General fea-
tures

Maximum of seven simultaneous
ACL connections – Central links

Y Y Y N N Y

General fea-
tures

Automatic packet type selection Y Y Y N N Y

General fea-
tures

Bluetooth - 2.1 to 5.0 specification
support

Y Y Y N N Y

General fea-
tures

Low power sniff Y Y Y N N Y

General fea-
tures

Deep sleep using out-of-band Y Y N N N N

General fea-
tures

Wake on Bluetooth (SoC to host) Y Y Y N N Y

General fea-
tures

Independent reset (in-band)1 Y Y Y Y N Y

General fea-
tures

Independent reset (out-band)1 Y Y N N N N

General fea-
tures

Firmware download (parallel)1 Y Y N N N N

General fea-
tures

RF test mode Y Y Y N N Y

Bluetooth
packet type
supported

ACL (DM1, DH1, DM3, DH3, DM5,
DH5, 2-DH1, 2-DH3, 2-DH5, 3-DH1,
3-DH3, 3-DH5)

Y Y Y N N Y

Bluetooth
packet type
supported

SCO (HV1, HV3) Y Y Y N N Y

Bluetooth
packet type
supported

eSCO (EV3, EV4, EV5, 2EV3, 3EV3,
2EV5, 3EV5)

Y Y Y N N Y

Bluetooth
profiles sup-
ported

A2DP source/sink Y Y Y N N Y

Bluetooth
profiles sup-
ported

AVRCP target/controller Y Y Y N N Y

Bluetooth
profiles sup-
ported

HFP Dev/AG Y Y Y N N Y

Bluetooth
profiles sup-
ported

OPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

SPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

HID target/device Y Y Y N N Y

Bluetooth au-
dio features

PCM NBS central/peripheral Y Y Y N N Y

Bluetooth au-
dio features

PCM WBS central/peripheral Y Y Y N N Y

3.7. Wireless 1619



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Generic features Maximum 16 Bluetooth LE connections (central role) Y Y Y Y Y Y
Generic features Deep sleep using out-of-band Y Y N N N N
Generic features Wake on Bluetooth LE (SoC to Host) Y Y Y N N Y
Generic features RF Test mode Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE HID over GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GAP Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy physical layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy link layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Enhancements to HCI for Low Energy Y Y Y Y Y Y
Bluetooth LE 4.0 support Low energy direct test mode Y Y Y Y Y Y
Bluetooth 4.1 support Low duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE dual mode topology Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE privacy v1.1 Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE link layer topology Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE secure connection Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE link layer privacy v1.2 Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE data length extension Y Y Y Y Y Y
Bluetooth 4.2 support Link layer extended scanner filter policies Y Y Y Y Y Y
Bluetooth 5.0 support Bluetooth LE 2 Mbps support Y Y Y Y Y Y
Bluetooth 5.0 support High duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 5.0 support Low Energy advertising extension N Y Y Y Y Y
Bluetooth 5.0 support Low Energy long range N Y Y Y Y Y
Bluetooth 5.0 support Low Energy periodic advertisement N Y Y Y Y Y
Bluetooth 5.2 support Low Energy power control N N Y Y Y Y
Bluetooth LE audio support1 2 Isochronous channel N N Y Y Y Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS source N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS sink N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIG Validation N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio: Mono and Stereo N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS source N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS sink N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIG validation N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS synchronization N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio: mono and stereo N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio TX/RX and bidirectional traffic N N Y N N Y

continues on next page

1620 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 7 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Bluetooth LE audio support1 2 ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms N N Y N N Y
Bluetooth LE audio support1 2 Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kHz, 44.1kHz, 48kHz N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Auracast use cases: Auracast streaming 2 BISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast use cases: Unicast streaming 2 CISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast Use cases: Unicast streaming 4 CISes N N Y N N Y
Bluetooth LE audio support1 2 A2DP + Auracast/Unicast Bridge use cases – CIS/BIS N N Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y

Note: Details of the tested Bluetooth LE Audio use cases:

• Number of streams:

– 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

– 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

– 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

• PHY: 2M and 1M

• Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

• Packing: sequential and interleaved

• Bit rate: maximum 96kbps

– For 1-CIG with upto 3-CIS: maximum bit rate 96kbps

– For 1-CIG with 4-CIS: maximum bit rate 80kbps

– For 1-BIG with 4-BIS: maximum bit rate 80kbps

– For 2-CIG cases: maximum bit rate 80kbps

• Mode: unframed mode

• 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

• Bluetooth + Bluetooth LE Audio

• A2DP + Bluetooth LE Audio bridging support

• A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |
PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR and Wi-Fi co-
existence scenarios such as LE audio + BR/EDR link or LE audio + Wi-Fi link. From the perspective

3.7. Wireless 1621



MCUXpresso SDK Documentation, Release 25.12.00

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea-
tures

Spinel over SPI Y N N

General fea-
tures

OpenThread RCP Mode implementing Thread1.3 Y N N

General fea-
tures

802.15.4-2015 MAC/PHY as required by Thread
1.3

Y Y Y

General fea-
tures

OpenThread Border Router (OTBR) v1.1 Y Y Y

General fea-
tures

Direct/indirect transmission with/without ACK Y Y Y

General fea-
tures

802.15.4 CSL parent feature implementation Y Y Y

General fea-
tures

Enhanced Frame Pending Y Y Y

General fea-
tures

Enhanced keep alive Y Y Y

General fea-
tures

Router Y Y Y

General fea-
tures

Leader Y Y Y

General fea-
tures

Router Eligible End Device (REED) Y Y Y

General fea-
tures

End Device (FED, MED) Y Y Y

Zigbee features Coordinator N N Y
Zigbee features Router N N Y
Zigbee features End Device (RX ON) N N Y
Zigbee features R23 N N Y
Zigbee features OTA Client N N Y
Zigbee features OTA server N N Y
Matter features Matter over Wi-Fi Y N N
Matter features Matter over Thread Y N Y

Parent topic:Features

Coexistence

1622 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW612IW610RW612
BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

STA + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Mobile AP + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + Wi-Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth LE2

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth + Bluetooth LE

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth +
OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE +
OpenThread + Wi-
Fi

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Single antenna configu-
ration

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

External Coexistence
PTA

N Y Y

Parent topic:Coexistence

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

3.7. Wireless 1623



MCUXpresso SDK Documentation, Release 25.12.00

Features Macros to enable the feature Memory
impact

CSI CONFIG_CSI Flash
- 60K,
RAM -
4K

AMI CONFIG_CSI_AMI3 Flash -
2032K,
RAM -
772K

DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K

Independent
reset

CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal

Parallel
firmware
download
Wi-Fi

CONFIG_WIFI_IND_DNLD Minimal

Parallel
firmware
download
Bluetooth

CONFIG_BT_IND_DNLD Minimal

WPA3 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

WPA2 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash

- 10K,
RAM -
57K

802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

802.11az CONFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

Non-
blocking
firmware
download
mechanism

CONFIG_FW_DNLD_ASYNC —

Antenna di-
versity

CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -

P2P CONFIG_WPA_SUPP_P2P -

Note:
• For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h

1624 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory***.***

• Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.

[2] Prerequisite macros for 802.11mc and 802.11az features

[3] Enable PRINTF_FLOAT_ENABLE only for MCUXpresso IDE and specifically for the RT1060-
EVKC and RT1170-EVKB platforms

• Go to project properties > C/C++ Build > Settings > Preprocessor.

• Add PRINTF_FLOAT_ENABLE=1

88W8987 release notes

Package information
• SDK version: 25.12.00

Parent topic:88W8987 release notes

Version information
• Wireless SoC: 88W8987

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

– 21 - Release version

– p153.9 - Patch number

Parent topic:88W8987 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

3.7. Wireless 1625



MCUXpresso SDK Documentation, Release 25.12.00

WFA certifications
• STA | 802.11n

• STA | 802.11ac

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• External Access Point: ASUS AX88U

• DUT: W8987 Murata (Module: 1ZM M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• External Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

1626 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External APs: ASUS AX88U

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 52 60 63
WPA2-AES 50 51 60 62
WPA3-SAE 50 51 60 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

3.7. Wireless 1627



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155

STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 124 119 228 235
WPA2-AES 118 107 228 204
WPA3-SAE 114 107 229 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 47 48 57 60
WPA2-AES 46 49 57 60
WPA3-SAE 47 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

1628 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 127 141 227 217
WPA2-AES 124 127 227 198
WPA3-SAE 125 127 227 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com-
po-
nent

Description

Wi-
Fi

WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

3.7. Wireless 1629



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo-
nent

Description

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo-
nent

Description

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

1630 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues
Component Description
NA

Parent topic:88W8987 release notes

IW416 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW416 release notes

Version information
• Wireless SoC: IW416

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

3.7. Wireless 1631



MCUXpresso SDK Documentation, Release 25.12.00

– 21 - Release version

– p153.9 - Patch number

Parent topic:IW416 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW416 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW416 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

1632 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 47 59 59
WPA2-AES 39 43 58 55
WPA3-SAE 39 45 57 53

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 72 59 95 87
WPA2-AES 69 58 116 92
WPA3-SAE 57 58 115 91

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 43 48 59 59
WPA2-AES 42 48 56 60
WPA3-SAE 42 47 57 58

3.7. Wireless 1633



MCUXpresso SDK Documentation, Release 25.12.00

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 68 64 118 96
WPA2-AES 65 59 117 96
WPA3-SAE 69 59 118 96

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 41 45 52 54
WPA2-AES 42 45 53 53
WPA3-SAE 45 42 53 53

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 62 70 123 90
WPA2-AES 61 65 117 90
WPA3-SAE 61 65 118 87

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 45 58 57
WPA2-AES 42 45 55 56
WPA3-SAE 43 45 57 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 75 85 118 100
WPA2-AES 77 68 118 100
WPA3-SAE 77 69 118 100

Parent topic:Wi-Fi throughput

Parent topic:IW416 release notes

1634 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo-
nent

Description

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com-
ponent

Description

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

3.7. Wireless 1635



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description
Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com-
ponent

Description

Wi-Fi The DUT encounters a command response timeout during the execution of the wlan-
info command following UDP traffic tests.

Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW416 release notes

Known issues

Compo-
nent

Description

Coex Wi-Fi connection in 2.4GHz is not stable, observed deauthentication within
10sec.

Parent topic:IW416 release notes

1636 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in i.MX RT1170 EVKB
and i.MX RT1060 EVKC.

Package information
• SDK version: 25.12.00

Parent topic:IW611/IW612 release notes

Version information
• Wireless SoC: IW611/IW612

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.10

– 18 - Major revision

– 99 - Feature pack

– 3 - Release version

– p27.10 - Patch number

Parent topic:IW611/IW612 release notes

Host platform
• i.MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

– 802.15.4 over SPI (IW612 only)

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

3.7. Wireless 1637



MCUXpresso SDK Documentation, Release 25.12.00

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW611/IW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi_wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

1638 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
To get the highest throughput, the throughput values shown in STA throughput and Mobile
AP throughput are measured with the maximum values of the default host configuration
macros. STA and AP throughput captured with the minimum values of the host configuration
macros shows the throughput numbers obtained when using the minimum values of the host
configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX_SIZE 96 32
DEFAULT_RAW_RECVMBOX_SIZE 32 12
DEFAULT_UDP_RECVMBOX_SIZE 64 12
DEFAULT_TCP_RECVMBOX_SIZE 64 12
TCP_MSS 1460 536
TCP_SND_BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

3.7. Wireless 1639



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 51 64 63
WPA2-AES 51 50 62 62
WPA3-SAE 51 50 63 61

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 79 85 118 131
WPA2-AES 78 84 118 129
WPA3-SAE 78 83 118 130

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 50 52 63 64
WPA2-AES 49 51 63 63
WPA3-SAE 49 51 63 63

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 77 86 118 133
WPA2-AES 76 86 118 132
WPA3-SAE 79 86 118 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 56 59 76 76
WPA2-AES 56 59 74 75
WPA3-SAE 56 59 76 75

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (VHT)

1640 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 88 95 118 177
WPA2-AES 87 94 118 175
WPA3-SAE 91 94 118 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 121 102 118 200
WPA2-AES 121 103 118 200
WPA3-SAE 121 103 118 200

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 78 64 117 105
WPA2-AES 78 67 117 104
WPA3-SAE 79 65 117 97

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 95 91 118 199
WPA2-AES 93 90 118 200
WPA3-SAE 91 87 118 199

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 76 66 118 127
WPA2-AES 75 68 118 125
WPA3-SAE 75 68 118 126

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HE)

3.7. Wireless 1641



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 105 69 118 200
WPA2-AES 104 70 118 200
WPA3-SAE 104 70 118 200

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 125 73 118 200
WPA2-AES 123 76 118 200
WPA3-SAE 123 76 118 200

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 54 61 60
WPA2-AES 50 55 61 60
WPA3-SAE 51 54 61 60

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 85 107 118 124
WPA2-AES 86 101 118 126
WPA3-SAE 84 102 118 126

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 43 63 60
WPA2-AES 50 43 62 60
WPA3-SAE 50 43 63 60

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 89 115 118 128
WPA2-AES 88 110 118 128
WPA3-SAE 88 115 118 128

1642 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 58 66 76 72
WPA2-AES 58 65 75 72
WPA3-SAE 58 65 75 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 103 141 135 168
WPA2-AES 102 134 137 167
WPA3-SAE 102 134 139 167

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 137 180 182 218
WPA2-AES 130 174 181 218
WPA3-SAE 136 175 182 218

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 53 66 85 120
WPA2-AES 52 65 83 116
WPA3-SAE 52 65 83 118

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 86 100 133 132
WPA2-AES 83 100 135 134
WPA3-SAE 86 100 136 134

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 65 82 83
WPA2-AES 58 65 82 82
WPA3-SAE 58 65 81 81

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

3.7. Wireless 1643



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 104 141 151 170
WPA2-AES 102 137 151 170
WPA3-SAE 103 136 150 170

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 138 180 189 219
WPA2-AES 135 175 190 218
WPA3-SAE 135 175 192 218

Parent topic:Wi-Fi throughput

Parent topic:IW611/IW612 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW611/IW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com-
po-
nent

Description

Blue-
tooth

Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming
sessions.

Parent topic:Bug fixes and/or feature enhancements

1644 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com-
po-
nent

Description

Wi-
Fi

802.11R Fast BSS roaming works only with hostapd and does not work with standard
APs (supporting 11R)

Blue-
tooth

DUT is not able to sustain a connection with the remote device that does extended ad-
vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com-
po-
nent

Description

Wi-
Fi

STAUT not sending Neighbor Advertisement packet after receiving Neighbor Solicitation
packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Blue-
tooth

When DUT works as CIS source and CIS Offset is 612us, high packet drops observed
which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bit rate.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com-
po-
nent

Description

Wi-
Fi

After performing independent reset (out-of-band mode), the STAUT fails to connect to
the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue-
tooth

Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established
with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo-
nent

Description

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue-
tooth

CIS Sink frequently fails to acknowledge CIS Source TX PDU.

3.7. Wireless 1645



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com-
ponent

Description

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,

with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW611/IW612 release notes

Known issues

Com-
po-
nent

Description

Blue-
tooth

Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-
connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Parent topic:IW611/IW612 release notes

RW610/RW612 release notes

1646 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Package information
• SDK version: 25.12.00

Parent topic:RW610/RW612 release notes

Version information
• Wi-Fi firmware version: 18.99.6.p50

– rw61x_sb_wifi_a2.bin for A2

– 18 - Major revision

– 99 - Feature pack

– 6 - Release version

– p50 - Patch number

• Bluetooth LE firmware version: 18.25.6.p50

– rw61x_sb_ble_a2.bin for A2

– 18 - Major revision

– 25 - Feature pack

– 6 - Release version

– p50 - Patch number

• 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p50

– rw61x_sb_ble_15d4_combo_a2.bin for A2

– 18 - Major revision

– 34 - Feature pack

– 6 - Release version

– p50 - Patch number

Parent topic:RW610/RW612 release notes

Host platform
• RW610/RW612 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

3.7. Wireless 1647



MCUXpresso SDK Documentation, Release 25.12.00

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 1.

Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: refer to 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio

Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread

Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: RW610/RW612

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

1648 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

3.7. Wireless 1649



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

1650 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput

Parent topic:RW610/RW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com-
ponent

Description

Zigbee Zigbee Coordinator and Router are disconnected during BLE connection pairing and
bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo-
nent

Description

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue-
tooth

NCP cannot work after flash uart bins for both host and device side

Parent topic:Bug fixes and/or feature enhancements

3.7. Wireless 1651



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.6.p46 to 18.99.6.p47
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:RW610/RW612 release notes

Known issues
Component Description
Wi-Fi —
Bluetooth LE —
Zigbee -
Coex -

Parent topic:RW610/RW612 release notes

IW610 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW610 release notes

Version information
• Wireless SoC: IW610

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.5.p86

– 18 - Major revision

– 99 - Feature pack

– 5 - Release version

– p86 - Patch number

Parent topic:IW610 release notes

Host platform
• IW610 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1652 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW610 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW610

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

3.7. Wireless 1653



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 48 44 61 61
WPA2-AES 47 43 59 59
WPA3-SAE 47 43 59 59

1654 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 49 46 64 63
WPA2-AES 48 45 62 61
WPA3-SAE 48 45 62 61

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 50 73 73
WPA2-AES 53 49 73 72
WPA3-SAE 52 49 73 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 51 71 70
WPA2-AES 53 50 71 70
WPA3-SAE 52 50 71 70

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 59 56 93 90
WPA2-AES 57 53 94 84
WPA3-SAE 57 53 94 84

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 61 58 96 91
WPA2-AES 59 56 98 85
WPA3-SAE 59 55 98 85

Parent topic:Wi-Fi throughput

Parent topic:IW610 release notes

Bug fixes and/or feature enhancements

3.7. Wireless 1655



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo-
nent

Description

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.5.p76 to 18.99.5.p79
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW610 release notes

Known issues
Component Description
NA

Parent topic:IW610 release notes

Abbreviations
Abbreviation Definition
A2DP Advanced audio distribution profile
AMPDU Aggregated MAC protocol data unit
AMSDU Aggregated MAC service data unit
AP Access point
BW Bandwidth
CCMP Counter mode CBC-MAC protocol
CSI Channel state information
CTS Clear To Send
DL Down link
EDCA Enhanced distributed channel access
ER Extended range
ERP Extended rate physical
GATT Generic attribute profile
HFP Hands free profile
HID Human interface device
HT High throughput
LDPC Low density parity check
MCS Modulation and coding scheme
MLME Mac layer management entity
OMI Operating mode indication
PMF Protected management frames
RTS Request to send
SAE Simultaneous authentication of equals
STA Station

continues on next page

1656 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 8 – continued from previous page
Abbreviation Definition
TWT Target wake time
UL Up link
VHT Very high throughput
WEP Wired equivalent private
WFD Wi-Fi direct
WMM Wireless multi-media
WPA Wi-Fi protected access
WPS Wi-Fi protected setup
WSC Wi-Fi Simple Configuration

References
1. Application note - AN13681 – Wi-Fi Alliance (WFA) Derivative Certification Process (avail-

able in the SDK package)

2. User manual – UM11442 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for i.MX
RT Platforms (available in the SDK package)

3. User manual – UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

4. Certification – Bluetooth controller - QDID (link)

5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

6. Technical note - TN00066 – Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page – Thread certified products (link)

8. Web page – Connectivity standard alliance (csa) – NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

9. Web page – Connectivity standard alliance (csa) – NXP RW610 Wireless MCU Development
Platform (link)

10. Application note - AN14634 – Kconfig Memory Optimizer (link)

3.7. Wireless 1657

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html


MCUXpresso SDK Documentation, Release 25.12.00

1658 Chapter 3. Middleware



Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

1659



MCUXpresso SDK Documentation, Release 25.12.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 corepkcs11

PKCS #11 key management library.

Readme

4.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

1660 Chapter 4. RTOS


	MIMXRT1160-EVK
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using Keil® MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application

	Run a demo using ARMGCC / VSCODE
	MCUXpresso config tools
	How to determine COM port
	Default debug interfaces
	How to add or remove boot header for XIP targets


	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Overview
	Benefits of the Multi-Repository Approach
	Setup and Configuration
	Development Tools Installation
	Quick Start: Automated Installation (Recommended)
	Manual Installation
	Essential Tools
	Git - Version Control
	Python - Scripting Environment
	West - SDK Management Tool
	Build System Tools
	CMake - Build Configuration
	Ninja - Fast Build System
	Ruby - IDE Project Generation (Optional)
	Compiler Toolchains
	Setting Up Environment Variables
	Verify Your Installation
	Troubleshooting Installation Issues

	GitHub Repository Setup
	Prerequisites
	Workspace Initialization
	Step 1: Initialize Workspace
	Step 2: Choose Your Repository Update Strategy
	Option A: Download All Repositories (Complete SDK)
	Option B: Targeted Repository Download (Recommended)
	Step 3: Verify Installation
	Advanced Repository Management
	Board-Specific Setup
	Device-Specific Setup
	Custom Configuration
	Benefits of Targeted Setup
	Repository Information
	Package Generation (Optional)
	Workspace Management
	Updating Your Workspace
	Workspace Status
	Troubleshooting
	Next Steps


	Explore SDK Structure and Content
	SDK Architecture Overview
	Repository Organization
	Manifest Repository
	Base Repositories
	Middleware Repositories
	Internal Repositories
	Repository Hosting
	Benefits of This Architecture
	Workspace Management

	Workspace Structure
	Top-Level Organization
	SDK Component Layout
	Example Organization
	Common Example Files
	Board-Specific Files
	Device Support Structure
	Middleware Organization
	Documentation Structure
	Understanding Example Structure
	1. General README: examples/demo_apps/hello_world/readme.md
	2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/example_board_readme.md


	Development Workflows
	Building Your First Project
	Prerequisites
	Understanding Board Support
	Basic Build Process
	Simple Build
	Specifying Configuration
	Alternative Toolchains
	Multicore Applications
	Flash an Application
	Debug
	Common Build Options
	Clean Build
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Troubleshooting
	Build Failures
	Getting Help
	Check Supported Configurations
	Next Steps

	MCUXpresso for VS Code Development
	Prerequisites
	Extension Installation
	Install MCUXpresso for VS Code
	SDK Import and Setup
	Import Methods
	Import GitHub Repository SDK
	Import Repository-Layout SDK Package
	Building Example Applications
	Import Example Project
	Application Types
	Trust Confirmation
	Building Projects
	Build Process
	Running and Debugging
	Serial Monitor Setup
	Debug Session
	Debug Controls
	Monitor Output
	Debug Probe Support
	Project Configuration
	Workspace Management
	Multi-Project Support
	Troubleshooting
	Import Issues
	Build Problems
	Debug Issues
	Integration with Command Line
	Advanced Features
	Project Types
	Build System Integration
	Next Steps

	Command Line Development
	Prerequisites
	Understanding Board Support
	Basic Build Commands
	Standard Build Process
	Specifying Build Configuration
	Multicore Applications
	Shield Support
	Advanced Build Options
	Clean Builds
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Flashing and Debugging
	Flash Application
	Debug Session
	IDE Project Generation
	Troubleshooting
	Build Failures
	Toolchain Issues
	Getting Help
	Check Supported Configurations
	Best Practices
	Project Organization
	Build Efficiency
	Development Workflow
	Next Steps

	Using MCUXpresso Config Tools
	Prerequisites
	Board Files
	Visual Studio Code
	Manual Workflow
	Updating the SDK West project




	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	MCU Boot
	coreHTTP
	openvg
	NXP Wi-Fi
	VG-Lite GPU Library
	USB Type-C PD Stack
	USB Host, Device, OTG Stack
	TinyCBOR
	Simple Open EtherCAT Master
	SDMMC stack
	PNG decoder
	PKCS#11
	Openh264
	Multicore
	MMCAU
	MCU Boot
	mbedTLS
	mbedTLS
	lwIP
	Maestro Audio Framework for MCU
	Voice intelligent technology library
	Audio Voice components
	eIQ
	LVGL
	llhttp
	LittleFS
	JPEG library
	FreeMASTER
	File systemFatfs
	emWin
	NAND Flash Management Stack
	cJSON
	NXP PSA CRYPTO DRIVER

	Release contents
	Known issues
	New Project Wizard compile failure
	CMSIS-PACK svd issue
	CMSIS PACK new project compile failure
	MCUXpresso IDE limitation
	IAR debug limitation
	Extra option required when using CMSIS-DAP to debug
	aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target
	aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target
	The cmsis_lpi2c_edma_b2b_transfer examples don’t work correctly on CM4 core.
	Modify dummy cycles value for external qspi flash


	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]


	ACMP
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]

	ADC_ETC
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	ANATOP_AI
	[2.0.0]

	AOI
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ASRC
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	ASRC EDMA Driver
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	CAAM
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CACHE LMEM
	[2.1.0]
	[2.1.0]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CACHE ARMv7-M7
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CDOG
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	COMMON
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CSI
	[2.2.0]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	DAC12
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	DCDC
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	DCIC
	[2.0.2]
	[2.0.1]
	[2.0.0]

	DMAMUX
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	EDMA
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ELCDIF
	[2.1.0]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ENC
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ENET
	[2.11.0]
	[2.10.1]
	[2.10.0]
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.4]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.1.1]
	[2.0.1]
	[2.0.0]

	EWM
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLEXCAN
	[2.14.5]
	[2.14.4]
	[2.14.3]
	[2.14.2]
	[2.14.1]
	[2.14.0]
	[2.13.1]
	[2.13.0]
	[2.12.0]
	[2.11.8]
	[2.11.7]
	[2.11.6]
	[2.11.5]
	[2.11.4]
	[2.11.3]
	[2.11.2]
	[2.11.1]
	[2.11.0]
	[2.10.1]
	[2.10.0]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.7]
	[2.8.6]
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	FLEXCAN_EDMA
	[2.12.1]
	[2.12.0]
	[2.11.7]

	FLEXIO
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]

	FLEXIO_I2C
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_I2S
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_I2S_EDMA
	[2.1.9]
	[2.1.8]

	FLEXIO_SPI
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_UART
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_UART_EDMA
	[2.3.1]
	[2.3.0]

	FLEXRAM
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLEXSPI
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLEXSPI EDMA Driver
	[2.3.3]
	[2.3.2]
	[2.0.2]
	[2.0.0]

	GPC
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	GPIO
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	GPT
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IEE
	[2.1.1]
	[2.1.0]
	[2.0.0]

	IEE_APC
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOMUXC
	[2.0.1]
	[2.0.0]

	KEYMGR
	[2.0.2]
	[2.0.1]
	[2.0.0]

	KPP
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	LCDIFv2
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	LPADC
	[2.9.5]
	[2.9.4]
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPI2C
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.7]
	[2.5.6]
	[2.5.5]
	[2.5.4]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	LPI2C_EDMA
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]

	LPSPI
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.10]
	[2.6.9]
	[2.6.8]
	[2.6.7]
	[2.6.6]
	[2.6.5]
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPSPI_EDMA
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]

	LPUART
	[2.10.0]
	[2.9.4]
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.7]
	[2.7.6]
	[2.7.5]
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]

	LPUART_EDMA
	[2.4.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	MECC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MIPI CSI2RX
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MIPI_DSI
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.1]
	[2.2.0]
	[2.1.0]

	MU
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	NIC301
	[2.0.1]
	[2.0.0]

	OCOTP
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.0.1]
	[2.0.0]

	OTFAD
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	PDM
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.1]
	[2.8.0]
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PDM_EDMA
	[2.6.5]
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]

	PGMC
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	PIT
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PMU
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	PUF
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PWM
	[2.9.1]
	[2.9.0]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PXP
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QTMR
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RDC_SEMA42
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	ROMAPI
	[1.1.2]
	[1.1.1]
	[1.1.0]
	[1.0.0]

	RTWDOG
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	SAI
	[2.4.10]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.8]
	[2.3.7]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SAI_EDMA
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.2]

	SEMA4
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SEMC
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SMARTCARD
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	SNVS_HP
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SNVS_LP
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SOC_MIPI_CSI2RX
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPDIF
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPDIF DMA Driver
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SSARC
	[2.1.0]
	[2.0.0]

	TEMPSENSOR
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USDHC
	[2.8.8]
	[2.8.7]
	[2.8.6]
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	WDOG
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	XBARA
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	XBARB
	[2.0.2]
	[2.0.1]
	[2.0.0]

	XECC
	[2.0.0]

	XRDC2
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]



	Driver API Reference Manual
	Middleware Documentation
	VG-Lite GPU Library
	Multicore
	MCU Boot
	Audio Voice components
	Maestro Audio Framework for MCU
	eIQ
	FreeMASTER
	AWS IoT
	NXP Wi-Fi
	FreeRTOS
	lwIP
	File systemFatfs


	MIMXRT1176
	ACMP: Analog Comparator Driver
	ADC_ETC: ADC External Trigger Control
	Anatop_ai
	AOI: Crossbar AND/OR/INVERT Driver
	ASRC: Asynchronous sample rate converter
	ASRC Driver
	ASRC EDMA Driver
	CAAM: Cryptographic Acceleration and Assurance Module
	CAAM AES driver
	CAAM Key Blankening driver
	CAAM Blob driver
	CAAM CRC driver
	CAAM DES driver
	Caam_driver_ecc
	CAAM HASH driver
	Caam_driver_hmac
	CAAM PKHA driver
	CAAM RNG driver
	Caam_driver_rsa
	CAAM Blocking APIs
	CAAM Non-blocking APIs
	CAAM Non-blocking AES driver
	CAAM Non-blocking DES driver
	CAAM Non-blocking HASH driver
	Caam_nonblocking_driver_hmac
	CAAM Non-blocking RNG driver
	CACHE: ARMV7-M7 CACHE Memory Controller
	CACHE: LMEM CACHE Memory Controller
	CDOG
	Clock Driver
	MIPI CSI2 RX: MIPI CSI2 RX Driver
	CSI: CMOS Sensor Interface
	DAC12: 12-bit Digital-to-Analog Converter Driver
	Dcdc_soc
	DCIC
	DCIC: Display Content Integrity Checker
	DMAMUX: Direct Memory Access Multiplexer Driver
	eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver
	eLCDIF: Enhanced LCD Interface
	ENC: Quadrature Encoder/Decoder
	ENET: Ethernet MAC Driver
	EQOS-TSN: Ethernet QoS with TSN Driver
	Enet_qos_qos
	EWM: External Watchdog Monitor Driver
	FlexCAN: Flex Controller Area Network Driver
	FlexCAN Driver
	FlexCAN eDMA Driver
	FlexIO: FlexIO Driver
	FlexIO Driver
	FlexIO eDMA I2S Driver
	FlexIO eDMA SPI Driver
	FlexIO eDMA UART Driver
	FlexIO I2C Master Driver
	FlexIO I2S Driver
	FlexIO SPI Driver
	FlexIO UART Driver
	FLEXRAM: on-chip RAM manager
	FLEXSPI: Flexible Serial Peripheral Interface Driver
	FLEXSPI eDMA Driver
	Gpc
	GPIO: General-Purpose Input/Output Driver
	GPT: General Purpose Timer
	IEE: Inline Encryption Engine
	Ieer
	IOMUXC: IOMUX Controller
	Key_manager
	KPP: KeyPad Port Driver
	Common Driver
	LCDIFv2: LCD Interface v2
	LPADC: 12-bit SAR Analog-to-Digital Converter Driver
	LPI2C: Low Power Inter-Integrated Circuit Driver
	LPI2C Master Driver
	LPI2C Master DMA Driver
	LPI2C Slave Driver
	LPSPI: Low Power Serial Peripheral Interface
	LPSPI Peripheral driver
	LPSPI eDMA Driver
	LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver
	LPUART Driver
	LPUART eDMA Driver
	MCM: Miscellaneous Control Module
	MECC: internal error correction code
	MIPI DSI Driver
	MIPI_DSI: MIPI DSI Host Controller
	MU: Messaging Unit
	Nic301
	OCOTP: On Chip One-Time Programmable controller.
	OTFAD: On The Fly AES-128 Decryption Driver
	PDM: Microphone Interface
	PDM Driver
	PDM EDMA Driver
	PGMC
	PIT: Periodic Interrupt Timer
	Pmu
	PUF: Physical Unclonable Function
	PWM: Pulse Width Modulator
	PXP: Pixel Pipeline
	QTMR: Quad Timer Driver
	RDC: Resource Domain Controller
	RDC_SEMA42: Hardware Semaphores Driver
	Romapi
	RTWDOG: 32-bit Watchdog Timer
	SAI: Serial Audio Interface
	SAI Driver
	SAI EDMA Driver
	SEMA4: Hardware Semaphores Driver
	SEMC: Smart External DRAM Controller Driver
	Smart Card
	Smart Card EMVSIM Driver
	SNVS: Secure Non-Volatile Storage
	Secure Non-Volatile Storage High-Power
	Secure Non-Volatile Storage Low-Power
	Soc_mipi_csi2rx
	Soc_mipi_dsi
	Soc_src
	SPDIF: Sony/Philips Digital Interface
	SPDIF eDMA Driver
	SSARC: State Save and Restore Controller
	TEMPSENSOR: Temperature Sensor Module
	USDHC: Ultra Secured Digital Host Controller Driver
	WDOG: Watchdog Timer Driver
	XBARA: Inter-Peripheral Crossbar Switch
	XBARB: Inter-Peripheral Crossbar Switch
	XECC: external error correction code controller
	XRDC2: Extended Resource Domain Controller 2

	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project


	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions



	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]



	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications


	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types


	Document references
	Links
	Documents
	Revision history



	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.12.00]
	[25.09.00]
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	[v5.3.0]
	Added
	Fixed
	v5.2.1
	Added
	Changed
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	[v5.0.2]
	Added
	v5.0.1
	Added
	Changed
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	Added
	Fixed
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added




	Multimedia
	Audio Voice
	Audio Voice Components
	MCUXpresso SDK : audio-voice-components
	Overview
	Documentation
	Setup
	Contribution
	Overview
	Content
	Asynchronous Sample Rate Converter
	Synchronous Sample Rate Converter
	Opus
	Opus File
	Ogg Container
	Decoders
	AAC
	FLAC
	MP3
	WAV
	Zephyr build

	AAC decoder
	AAC decoder features
	Specification and reference
	Performance
	Memory information
	CPU usage

	API Usage of AAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	FLAC decoder
	FLAC decoder features
	Specification and reference
	Official website
	Inbound licensing
	Performance
	Memory information
	CPU usage
	Following test cases are performed:

	API Usage of FLAC Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	MP3 decoder
	MP3 decoder features
	Performance
	Memory information
	CPU usage

	API Usage of MP3 Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	WAV decoder
	WAV decoder features
	Performance
	Memory information
	CPU usage
	Following test cases were performed:

	API Usage of WAV Decoder
	Overview
	Configuration
	Build Options
	Buffer Allocation
	Initialization
	Decoding
	Seeking
	Callback Usage
	Read Callback API
	Seek Callback API
	Get File Position Callback API

	Synchronous Sample Rate Converter
	Introduction
	Acronyms
	Performance figures
	Resource usage
	Memory requirements
	Processing requirements
	On Arm7 and Arm9
	On Arm9e and XScale
	On Cortex-A8 for worst case of 48000 Hz to 44100 Hz
	Application programmers interface (API)
	Type definitions
	Types for allocation of instance and scratch memory
	LVM_Fs_en
	LVM_Format_en
	SSRC_Quality_en
	Instance parameters
	Nr of samples mode
	Function return status
	Functions
	SSRC_GetNrSamples
	SSRC_GetScratchSize
	SSRC_Init
	SSRC_SetGains
	SSRC_Process
	SSRC_Process_D32
	Dynamic function usage
	Define the number of samples to be used on input and output
	Allocate scratch memory
	Initialize the SSRC instance
	Process samples
	Destroy the SSRC instance
	Reentrancy
	Additional user information
	Attenuation of the signal
	Notes on integration
	Example application
	Integration test
	Bit accurate test
	THD+N measurement


	Maestro Audio Framework
	MCUXpresso SDK : Maestro
	Overview
	Documentation
	Setup
	Contribution
	Introduction
	Maestro on Zephyr
	Maestro on FreeRTOS
	Supported examples
	Example applications overview
	File structure

	Maestro Audio Framework Programmer’s Guide
	Introduction
	Architecture overview
	Pipeline
	Elements
	Add a new element type
	Add a new element index
	Pads
	Internal communication
	Decoders and encoders
	Common codec interface
	Using the CCI to interface with Metadata
	Using the CCI to interface with Decoders
	Adding new decoders to the CCI
	Common encoder interface
	Maestro performance
	Memory information
	CPU usage

	CEI encoder
	Header files
	Instantiating the element
	Element properties
	CEI definition - implementing your own encoder

	Maestro playback example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	file stop
	file pause
	file volume <volume>
	file seek <seek_time>
	file play <filename>
	file list
	file info
	Processing Time

	Maestro record example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	record_mic audio <time>
	record_mic file <time>/record_mic <file_name> <time>
	record_mic vit <time> <language>
	opus_encode
	Processing Time

	Maestro USB microphone example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_mic <seconds>

	Maestro USB speaker example
	Table of content
	Overview
	Hardware requirements
	Hardware modifications
	Preparation
	Running the demo
	Example configuration
	Functionality
	States
	Commands in detail
	help, version
	usb_speaker <seconds>

	Supported features
	Decoders
	Encoders
	Sample rate converters
	Additional libraries

	Processing Time
	Table of content
	Maestro playback example
	Time on each element
	Maestro record example
	Pipeline Microphone -> Speaker
	Pipeline Microphone -> VIT

	Maestro on Zephyr
	Maestro sample for recording data from microphone to RAM
	Description
	User Input/Output
	Supported platforms
	Maestro voice detection sample using VIT
	Description
	User Input/Output
	Dependencies
	Supported platforms
	Maestro decoder sample
	Description
	User Input/Output
	Dependencies
	Configuration
	Supported platforms
	Maestro encoder sample
	Description
	Dependencies
	User Input/Output
	Configuration
	Supported platforms
	Maestro mem2mem sample
	Description
	Maestro environment setup
	Build and run Maestro example
	Using command line
	Using MCUXpresso for VS Code
	Folder structure
	Supported elements and libraries
	Examples support
	Creating your own example
	Documentation
	FAQ

	Maestro Audio Framework changelog
	2.0.2
	2.0.1
	2.0.0 (newest)
	1.8.0
	1.7.0
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.0_rev0



	VGLite Graphics Driver
	IMXRTVGLITEAPIRM
	Introduction
	VGLite Graphics API
	API function group
	API files
	Hardware versions

	Common parameters and error values
	Common parameter types
	Enumerations for error reporting
	vg_lite_error_t enumeration

	Hardware product and feature information
	Enumerations for product and feature queries
	vg_lite_feature_t enumeration
	Structures for product and feature queries
	vg_lite_info_t structure
	Functions for product and feature queries
	vg_lite_get_product_info
	vg_lite_get_info
	vg_lite_get_register
	vg_lite_query_feature
	vg_lite_get_mem_size

	API control
	Context initialization and control functions
	vg_lite_init
	vg_lite_close
	vg_lite_flush
	vg_lite_finish
	vg_lite_frame_delimiter
	vg_lite_set_command_buffer_size
	vg_lite_set_command_buffer
	vg_lite_set_tess_buffer
	vg_lite_set_memory_pool

	Pixel buffers
	Pixel buffer alignment
	Pixel cache
	Internal representation
	Pixel buffer enumerations
	vg_lite_buffer_format_t enumeration
	Image buffer alignment requirement
	Destination buffer alignment requirement
	vg_lite_buffer_layout_t enumeration
	vg_lite_compress_mode_t enumeration
	vg_lite_gamma_conversion_t enumeration
	vg_lite_index_endian_t enumeration
	vg_lite_image_mode_t enumeration
	vg_lite_map_flag_t enumeration
	vg_lite_paint_type_t enumeration
	vg_lite_transparency_t enumeration
	vg_lite_swizzle_t enumeration
	vg_lite_yuv2rgb_t enumeration
	Pixel buffer structures
	vg_lite_buffer_t structure
	vg_lite_fc_buffer_t structure
	vg_lite_yuvinfo_t structure
	Pixel buffer functions
	vg_lite_allocate function
	vg_lite_free function
	vg_lite_upload_buffer function
	vg_lite_map function
	vg_lite_unmap function
	vg_lite_flush_mapped_buffer function
	vg_lite_set_CLUT function
	vg_lite_enable_dither function
	vg_lite_disable_dither function
	vg_lite_set_gamma function

	Matrices
	Matrix control float parameter type
	Matrix control structures
	vg_lite_matrix_t structure
	vg_lite_pixel_channel_enable_t structure
	Matrix control functions
	vg_lite_identity function
	vg_lite_set_pixel_matrix function
	vg_lite_rotate function
	vg_lite_scale function
	vg_lite_translate function

	Blits for compositing and blending
	Blit enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_color_transform_t structure
	vg_lite_filter_t enumeration
	vg_lite_color_transform_t structure
	vg_lite_mask_operation_t enumeration
	vg_lite_orientation_t enumeration
	vg_lite_param_type_t enumeration
	Blit structures
	vg_lite_buffer_t structure
	vg_lite_color_key_t structure
	vg_lite_color_key4_t structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_rectangle_t structure
	vg_lite_point_t structure
	vg_lite_point4_t structure
	vg_lite_float_point_t structure
	vg_lite_float_point4_t structure
	Blit functions
	vg_lite_blit function
	vg_lite_blit2 function
	vg_lite_blit_rect function
	vg_lite_copy_image function
	vg_lite_get_transform_matrix function
	vg_lite_clear function
	vg_lite_set_color_key function
	vg_lite_gaussian_filter function
	Blit/Draw extended functions
	vg_lite_get_parameter function
	vg_lite_enable_scissor function
	vg_lite_disable_scissor function
	vg_lite_scissor_rects function
	vg_lite_set_scissor function
	vg_lite_disable_color_transform function
	vg_lite_enable_color_transform function
	vg_lite_set_color_transform function
	vg_lite_enable_masklayer function
	vg_lite_disable_masklayer function
	vg_lite_create_masklayer function
	vg_lite_blend_masklayer function
	vg_lite_set_masklayer function
	vg_lite_render_masklayer function
	vg_lite_destroy_masklayer function
	vg_lite_set_mirror function
	vg_lite_source_global_alpha function
	vg_lite_dest_global_alpha function

	Vector path control
	Vector path enumerations
	vg_lite_format_t enumeration
	vg_lite_quality_t enumeration
	Vector path structures
	vg_lite_hw_memory structure
	vg_lite_path_t structure
	Vector path functions
	vg_lite_get_path_length function
	vg_lite_append_path function
	vg_lite_init_path function
	vg_lite_init_arc_path function
	vg_lite_upload_path function
	vg_lite_clear_path function
	Vector path opcodes for plotting paths

	Vector-dased draw operations
	Draw and gradient enumerations
	vg_lite_blend_t enumeration
	vg_lite_color_t parameter
	vg_lite_fill_t enumeration
	vg_lite_filter_t enumeration
	vg_lite_gradient_spreadmode_t enumeration
	vg_lite_pattern_mode_t enumeration
	vg_lite_radial_gradient_spreadmode_t enumeration
	Draw and gradient structures
	vg_lite_buffer_t structure
	vg_lite_color_ramp_t structure
	vg_lite_linear_gradient_t structure
	vg_lite_ext_linear_gradient structure
	vg_lite_linear_gradient_parameter structure
	vg_lite_matrix_t structure
	vg_lite_path_t structure
	vg_lite_radial_gradient_parameter_t structure
	vg_lite_radial_gradient_t structure
	Draw functions
	vg_lite_draw function
	vg_lite_draw_grad function
	vg_lite_draw_radial_grad function
	vg_lite_draw_pattern function
	Linear gradient initialization and control functions
	vg_lite_init_grad function
	vg_lite_clear_grad function
	vg_lite_set_grad function
	vg_lite_get_grad_matrix function
	vg_lite_update_grad function
	Linear gradient extended functions
	vg_lite_set_linear_grad function
	vg_lite_get_linear_grad_matrix function
	vg_lite_draw_linear_grad function
	vg_lite_update_linear_grad function
	vg_lite_clear_linear_grad function
	Radial gradient functions initialization and control functions
	vg_lite_set_radial_grad function
	vg_lite_update_radial_grad function
	vg_lite_get_radial_grad_matrix function
	vg_lite_clear_rad_grad function

	Stroke operations
	Stroke enumerations
	vg_lite_cap_style_t enumeration
	vg_lite_path_type_t enumeration
	vg_lite_join_style_t enumeration
	Stroke structures
	vg_lite_path_t structure
	vg_lite_path_list_t structure
	vg_lite_path_point_t structure
	vg_lite_stroke_t structure
	vg_lite_sub_path_t structure
	Stroke functions
	vg_lite_set_path_type function
	vg_lite_set_stroke function
	vg_lite_update_stroke function

	Deprecated and renamed APIs
	Deprecated vg_lite syntax
	vg_lite_perspective (deprecated)
	vg_lite_set_dither (deprecated)
	vg_lite_enable_premultiply (deprecated)
	vg_lite_disable_premultiply (deprecated)
	vg_lite_set_premultiply (deprecated)

	VGLite API version 2.0 to 3.0 migration guide
	VGLite API name changes in API version 3.0
	vg_lite_set_scissor API interface change
	vg_lite_map API interface change
	vg_lite_enable_scissor / vg_lite_disable_scissor API
	vg_lite_draw_pattern API interface change
	[New] vg_lite_copy_image in VGLite API version 3.0
	vg_lite_set_dither API is deprecated in API version 3.0
	Deprecated VGLite API version 2.0 functions

	Revision history
	Note about the source code in the document



	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Firmware version: 18.99.6.p46 to 18.99.6.p47
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Firmware version: 18.99.5.p76 to 18.99.5.p79
	Known issues
	Abbreviations
	References





	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme




