- W& MCUXpresso SDK Documentation
Release 25.12.00

NXP

Dec 18, 2025 -

Table of contents

1 MIMXRT1160-EVK

2

1.1
1.2

1.3

14

1.5

1.6
1.7

Overview

Getting Started with MCUXpresso SDK Package
1.2.1 Getting Started with Package,
Getting Started with MCUXpresso SDKGitHub
1.3.1 Getting Started with MCUXpresso SDK Repository

Release Notes . .

1.41 MCUXpresso SDKReleaseNotes,

ChangeLog

1.5.1 MCUXpresso SDKChangelogo ...
Driver API Reference Manual it
Middleware Documentation oo i i it ittt e
1.71 VG-Lite GPULibrary @ittt it e e

1.7.2 Multicore
1.7.3 MCU Boot

1.7.4 Audio Voice COMPONENTS v v v vt e e e e e e e e e e e e e e e e
1.7.5 Maestro Audio Framework for MCU o i i v v i i i i it et

176 elQ

1.7.7 FreeMASTER e

1.7.8 AWSIoT .
1.79 NXP Wi-Fi
1.7.10 FreeRTOS
1.7.11 IwiIP. . ..

1.7.12 FilesystemFatfs e

MIMXRT1176
ACMP: Analog Comparator Driver ittt
ADC_ETC: ADC External Trigger Control

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

Anatop_ai.

AOLI: Crossbar AND/OR/INVERT Driver,
ASRC: Asynchronous sample rate convertero..uo....

ASRC Driver . ..

ASRCEDMANDIIVEL . . vt ot e et e e e e e e e e e e e e e e et e e e
CAAM: Cryptographic Acceleration and Assurance Module

CAAM AES driver

CAAM Key Blankening drivert ...

CAAM Blob driver

CAAM CRC driver
CAAM DES driver
Caam_driver_ecc

CAAM HASH AIivVer . . . v v i e
Caam_driver hmac ot e e e e e e e e e e e e e e
CAAM PKHA Ariver . . . v v i e

CAAM RNG driver

Caam_driver _rsa

CAAM Blocking APIS o i e e e e e e e e e e

201
201
201
201
201
202
202
202
202
202
202
202
202
202

203
203
209
213
222
225
225
241
245
254
263
263
267
269
279
281
284
285
293
296
298

2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
2.42
243
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78

CAAM Non-blocking APIS o v i it e e e e e e e e e et e et e e e 298

CAAM Non-blocking AESdriver ittt 298
CAAM Non-blocking DESAriverttt 308
CAAM Non-blocking HASHAriver o ottt e e e e e e 319
Caam_nonblocking driver hmac, 321
CAAM Non-blocking RNG Ariver v v vt it i e e e e e e e e e e et e e 321
CACHE: ARMV7-M7 CACHE Memory Controller 322
CACHE: LMEM CACHE Memory Controller 325
CDOG . o ot e e e e e e e e e 329
Clock Driver o e e e e e e e e e 333
MIPI CSIZ RX: MIPI CSIZ RX Drivert e i 409
CSI: CMOS Sensor Interface i e 415
DAC12: 12-bit Digital-to-Analog Converter Driver 424
DCAC_SOC . . v ot ot e e e e e e 430
DCIC . . e e e e e e e e e 449
DCIC: Display Content Integrity Checker 454
DMAMUX: Direct Memory Access Multiplexer Driver 454
eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 456
eLCDIF: Enhanced LCD Interface, 475
ENC: Quadrature Encoder/Decodero i it i i 485
ENET: Ethernet MAC Driver i it ittt e e e e e 496
EQOS-TSN: Ethernet QoS with TSN Driver i i ittt 526
Enet oS gOS . . . ¢ v v it i e e e e e e e e e e e e e e 526
EWM: External Watchdog Monitor Driver 567
FlexCAN: Flex Controller Area Network Driver. 570
FlexXCAN DIIiVer o it e e e e e e e e e e e e e e 570
FleXCAN eDMA DIIVEL o it et e e e e e e e e e e e e e e e e e 611
FlexIO: FIeXIO DTIVET ottt e e e e e e e e e e e e e e e e 614
FleXIO DIiVer o o it e e e e e e e e e e e 614
FlexIO eDMA I2S DIIVEL o ot e e e e e e e e e e e e e e e e e e e 631
FlexIO eDMA SPIDIIVEL . . . o o i i i e 634
FlexIO eDMA UART DTIiVer ot ittt e e e e e e e e e e e et 638
FlexIO I2C Master DIiver ot it it i i i e e e e e e e et 641
FleXIO I2ZS DIIVET o o it e et e e e e e e e e e e e e e e e e e 649
FleXIO SPIDIIVET o ittt e e e e e e e e e 660
FleXIO UART DIIVET o it et e e 673
FLEXRAM: on-chip RAM manager ot ittt ittt e e et e 683
FLEXSPI: Flexible Serial Peripheral Interface Driver 692
FLEXSPIeDMA DIIVEL . . . o oot i et e e e e e e e e e e e e e e et e e et e e e 708
GPC . . o e e e e e e e e e e e e 711
GPIO: General-Purpose Input/Output Driver 725
GPT: General Purpose Timert i ittt et e e e 729
IEE: Inline Encryption Engine 736
Jeer . e e e 739
IOMUXC: IOMUX Controller. e e e e 741
Key_manager i e e e e e 785
KPP: KeyPad Port Driver. o oot e e e e 788
CommoOn DIivVer o e e e e e 790
LCDIFv2: LCD Interface v2 o e e 803
LPADC: 12-bit SAR Analog-to-Digital Converter Driver 815
LPI2C: Low Power Inter-Integrated Circuit Driver 836
LPI2ZC MasSter DTIVET ottt e e e e e e e et e e e e e e e e 837
LPI2CMaster DMA DIIVEr o i it et e e e e e e e e e e e e e e e 851
LPI2CSlave DIIVEr i i i et e e e e e e e e e e e e e e e e 853
LPSPI: Low Power Serial Peripheral Interface 864
LPSPI Peripheraldriver e 864
LPSPIeDMA DIIVET v i e e e e e e e e e e e e e e e e e e e 885
LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver 892

ii

3

2.79 LPUART DIiVer . . v o i v i e e et e e e e e e e e e e e e e e e e e e e s 892

2.80 LPUART eDMA DIIVEL . . . ¢ v ot it e e e e e e e e e e e e e e e e e e et 911
2.81 MCM: Miscellaneous ControlModule, 914
2.82 MECC: internal error correction code o v v v it i vt v it e 919
2.83 MIPIDSIDIIVEL ot ittt e e e e e e e e e e e e e e e e e e e 926
2.84 MIPI_DSI: MIPI DSI Host Controller 944
2.85 MU: Messaging Unit i ittt ittt et e it et e et et e e 944
2.86 NIC301 ot e 952
2.87 OCOTP: On Chip One-Time Programmable controller.. 957
2.88 OTFAD: On The Fly AES-128 Decryption Driver 960
2.89 PDM: Microphone Interface 964
290 PDM DIIVEL . . . o o ottt e e e e et e e e e e e e e e e e 964
2.91 PDM EDMA DIIVET . . . i v i i i i e e e e e e e e et e e e et e e e e e e e e e 975
292 PGMC . . . o e 979
2.93 PIT: Periodic Interrupt Timerttt e 992
294 PIMUo e e e e e 996
2.95 PUF: Physical Unclonable Function 1015
2.96 PWM: Pulse Width Modulator 1017
2.97 PXP:Pixel Pipeline e 1042
298 QTMR: Quad Timer Driver i ittt et et e 1078
2.99 RDC: Resource Domain Controller 1088
2.100RDC_SEMAA42: Hardware SemaphoresDriver. v v v v 1094
201 ROMAPL & v v v e 1097
2.102RTWDOG: 32-bit Watchdog Timer i i it i it 1113
2.103SAI: Serial Audio Interface e 1119
2004SAIDIIVET . . o ot i e e e e e e e e e e e e e e e e e 1119
2.105SAIEDMA DIIVET o o o e e e e e e e e 1145
2.106 SEMA4: Hardware Semaphores Driver.« . i vt it v i v e 1152
2.107SEMC: Smart External DRAM Controller Driver 1155
2.108Smart Card i e e e e e e e e e e e e e e e e e e 1180
2.109Smart Card EMVSIM Driver. o it e e e e e e e e 1188
2.110SNVS: Secure Non-Volatile Storage 1191
2.111Secure Non-Volatile Storage High-Power, 1191
2.112Secure Non-Volatile Storage Low-Power ittt v i e 1200
2.113S0C_MIPI_CSIZIX . & v v v e 1209
211480c_mipi_dSi . . o v v e e e e e e e e e 1210
2015 800 S C . o s e e e e e e e e e e e e e e e e e e e 1210
2.116 SPDIF: Sony/Philips Digital Interface 1223
2.117SPDIF eDMA DIIVET . . & v v e 1237
2.118SSARC: State Save and Restore Controller 1240
2.119TEMPSENSOR: Temperature Sensor Module 1247
2.120USDHC: Ultra Secured Digital Host Controller Driver 1250
2.121WDOG: Watchdog Timer Driver ittt 1279
2.122XBARA: Inter-Peripheral Crossbar Switch 1284
2.123XBARB: Inter-Peripheral Crossbar Switch 1286
2.124XECC: external error correction code controller 1287
2.125XRDC2: Extended Resource Domain Controller2 1291
Middleware 1305
31 BOOT & ottt e e e e e e e e e e e 1305
3.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 1305
3. 1.2 MCUDOOt. . . . ot e e e e 1306
3.2 COMMECHIVILY . . vttt it e e e e e e e e e e e e e e e e e e e 1307
321 IWIP. . e e e 1307
3.3 File System o e e e e e e e e e e 1308
331 FatFs . . . e e e e 1308
34 Motor Control e e 1310
341 FreeMASTERo e e e 1310

iii

35 MUltiCore v e 1348
3.5.1 Multicore SDK e e e e e e e 1348
3.6 Multimedia ot v i e e e e e e e e e e 1446
3.6.1 AudioVoiCe v i ittt e e e e e 1446
3.6.2 VGLite GraphicsDriver. e e 1522
3.7 WIrelesS . & v ot e e e e e e e e e e e e e e e e 1612
3.7.1 NXP Wireless Frameworkand Stacks 1612
RTOS 1659
41 FreeRTOS e e e e e e e 1659
411 FreeRTOSkernel it et e e 1659
4.1.2 FreeRTOSAIIVErS ot ittt e e e e e e e e e e e e 1659
4.1.3 backoffalgorithm 1659
414 corehttpo e e e e 1659
7 O T o0 i -1) o O 1659
4.1.6 COremMQlt. . . . v v it e e e e e e e e e e e e e e e e 1660
4.1.7 corepkesll e e e e 1660
4.1.8 freertos-plus-tCp o ot i e 1660

iv

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the evkmimxrt1160 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

MIMXRT1160-EVK

1.1 Overview

1.MX RT1160 crossover MCUs are part of the EdgeVerse edge computing platform, achieving
600MHz performance. This MCU family combines superior computing power and multiple me-
dia capabilities with ease of use and real-time functionality. The dual core i. MX RT1160 MCU
runs on the Arm Cortex-M7 core at 600 MHz and Arm Cortex-M4 at 240 MHz, while providing
excellent security. The i.MX RT1160 MCU offers support over a wide temperature range and
is designed for consumer, industrial and automotive markets. The i.MX RT1160 evaluation kit
(EVK) provides a high-performance solution enabled by a 6-layer PCB with through-hole design
for better EMC performance - all at a low cost.

MCU device and part on board is shown below:
* Device: MIMXRT1166
* PartNumber: MIMXRT1166DVM6A

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package
Overview

The MCUXpresso Software Development Kit (SDK) provides comprehensive software support
for Kinetis and LPC Microcontrollers. The MCUXpresso SDK includes a flexible set of periph-
eral drivers designed to speed up and simplify development of embedded applications. Along
with the peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of example

MCUXpresso SDK Documentation, Release 25.12.00

applications covering everything from basic peripheral use case examples to full demo applica-
tions. The MCUXpresso SDK contains FreeRTOS and various other middleware to support rapid
development.

For supported toolchain versions, see MCUXpresso SDK Release Notes for MIMXRT1160-EVK (doc-
ument MCUXSDKMIMXRT116XRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
Board Support
DMA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

MCUXpresso SDK board support package folders

MCUXpresso SDK board support package provides example applications for NXP development
and evaluation boards for Arm® Cortex®-M cores including Freedom, Tower System, and LPCX-
presso boards. Board support packages are found inside the top level boards folder and each
supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board name> folder, there are various sub-folders to classify the type of examples
it contain. These include (but are not limited to):

* cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

* demo_ apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

* driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

* rtos_examples: Basic FreeRTOSTM OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers.

* usb_examples: Applications that use the USB host/device/OTG stack.

* multicore_examples: Applications for both cores showing the usage of multicore software
components and the interaction between cores.

* Other examples: See detail in package boards/evkmimxrt1160.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive

4 Chapter 1. MIMXRT1160-EVK

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that
are relevant to that specific piece of hardware. Although we use the hello_ world example (part of
the demo_ apps folder), the same general rules apply to any type of example in the <board name>
folder.

In the hello_world application folder you see the following contents:

armgcc _'I
iar — Toolchain folders: project and linker files
mdk __l

" board. _—

| oomes Board macro definitions (LEDs, buttons, etc)
board.h

clock_config.c Application-specific clock configuration

f clock_config.h

!

L
|

1
B
ded.c Bl L - . ,

/ — Application-specific dcd configuration
ded.h _

[les,
|
[les,
|
[les,
—
[les,
-
[les,
=l
fles,
]

| hello_world.bin ——» Pre-compiled application
& hello_world.c » Application main source file
B8 hello_world.mex ——» Application-specific MCUXpresso Config Tool configuration
%! hello_world.xml » Project definition file for MCUXpresso IDE and PG

i pin_mux.c 1 Aoblicat i o f' .
/ — ICation-SpecITIiC pIn contiguration

& pin_mux.h] PP P P d

& readme.txt » Description and instructions for running

All files in the application folder are specific to that example, so it is easy to copy and paste an

existing example to start developing a custom application based on a project provided in the

MCUXpresso SDK.

Parent topic:MCUXpresso SDK board support package folders

Locating example application source files When opening an example application in any of
the supported IDEs, a variety of source files are referenced. The MCUXpresso SDK devices folder
is the central component to all example applications. It means the examples reference the same
source files and, if one of these files is modified, it could potentially impact the behavior of other
examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and
a few other files

* devices/<device name>/drivers: All of the peripheral drivers for your specific MCU

* devices/<device_name>/<tool__name>: Toolchain-specific startup code, including vector ta-
ble definitions

* devices/<device_name> /utilities: Items such as the debug console that are used by many of
the example applications

* devices/<devices_name>/project_template Project template used in CMSIS PACK new project
creation

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.12.00

For examples containing an RTOS, there are references to the appropriate source code. RTOSes
are in the rtos folder. The core files of each of these are shared, so modifying one could have
potential impacts on other projects that depend on that file.

Parent topic:MCUXpresso SDK board support package folders

Run a demo using MCUXpresso IDE

Note:

Most MCUXpresso projects provide two targets (debug and release). For CM7 projects, they are
actually flash target. For CM4 projects, they are linked to RAM. To debug and run the CM7 ex-
amples, set SW1[1:4] to 0010 as internal flash boot mode. Currently, MCUXpresso IDE does not
support CM4 download/debug.

This section describes the steps required to configure MCUXpresso IDE to build, run, and de-
bug example applications. The hello_ world demo application targeted for the MIMXRT1160-EVK
hardware platform is used as an example, though these steps can be applied to any example
application in the MCUXpresso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside of the MCUXpresso SDK tree.

Parent topic:Run a demo using MCUXpresso IDE

Build an example application To build an example application, follow these steps.

1. Dragand drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

[Installed 5DKs 52 [] Properties &) Console | Problems [] Memory 3 Instruction”

i Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.

Mame Wersion Location

2. On the Quickstart Panel, click Import SDK example(s)....

6 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

() Quickstart P... 22 (9= Global Varia... (%= Variables @ Breakpoints 5= Outline = O

»

. MCUXpresso IDE (Free Edition) =
|_IoE)

+ Start here

m

. Import SDK example(s)...

X Import project(z)
A
7
1
1
&

B Quick Settings> >

(g

i

3. In the window that appears, select MIMXRT1166xxxxx. Then, select evkmimxrt1160 and
click Next.

B sDK Import Wizard

[m] X
(D) Impeorting project(s) for device: MIMXRT1166xxxxx using board: MIMXRT1160-EVE x @

. Board and/or Device selection page

+ SDK MCUs ® Available boards 1B 18| 4

MCUs from installed SDKs. Please click Please select an available board for your project.

above or visit mcuxpresso.nxp.com to S rted boards for device: MIMXRT1166x
obtain additional SDKs. | LPpOTEC Joares T e o ‘

NXP MIMXRT1 1660000 - Y
~ MIMXRT1160 2 5
MIMXRT1 1660000 3 -
evkmimzxrt1160 evkmimxrt1160_om13780host evkmimurt]1160_agm01
Selected Device: MIMXRT1166:0000¢ using board: MIMXRT1160-EVK SDKs for selected MCU
Target Core: multicore device with cores: cortex-md cortex-m7 Name SDK Version Manifest Ve.. Location
Description: i.MX1160 (Display Name to be updated)
H SDK_2.x_board_MIMXRT111 2.8.0 380 JE <Common>'\board_MIMXRT1160-

@ < Back Finish Cancel

4. Expand the demo_apps folder and select hello_world. Then, click Next.

1.2. Getting Started with MCUXpresso SDK Package 7

MCUXpresso SDK Documentation, Release 25.12.00

. SDK Import Wizard

L)
"N

"

1, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2.x_board_MIMXRT1160-EVK' SDK.

. Import projects

Project name prefix: |evkmimxrt1160 ¥ | Project name suffix:

Use default location

\Documents\MCUXpressolDE_11.4.0_6103_earZ\workspace\evkmimxrt1160 Browse...

C:\Usershnxfb!

Project Type Project Options

SDK Debug Console () Semihost @ UART Example default
Copy sources

[Import other files

@ CProject C++ Project | C Static Library C++ Static Library

Examples | E% BE
[type to filter |
MName Description Version (o}
~ [@] £ demo_apps
O bubble_peripheral_cm4 The bubble level demo demonstrates basic usage of the on-board accelerometer to im
[] = bubble_peripheral_cm7 The bubble level demo demonstrates basic usage of the on-board accelerometer to i
O ecompass_cmd The E-Compass demo application demonstrates the use of the FXOS8700 sensor. The til.
[] = ecompass_cm7 The E-Compass demo application demonstrates the use of the FXOSE700 sensar. The til...
g The HelloWerld demo prints the "Helle Werld” string to the terminal using the SDK UAR...
The HelloWoerld demo prints the "Hello World" string to the terminal using the SDK UAR...
[helle_world_virtual_com_cm4 Hello World Virtual Com demonstrates the use of virtual com to print the "Helle World"...
O hello_world_virtual_com_cm7 Hello World Virtual Com demonstrates the use of virtual com to print the "Helle World"...
[= iee.apc_cmd The IEE APC demao application demonstrates usage of the IEE and IEE APC driver. The Inl...
O iee_apc_cm7 The IEE APC demo application demonstrates usage of the IEE and IEE APC driver. The Inl...
[= iled_blinky_cmd The LED Blinky demo application provides s sanity check for the new SDK build environ.
O iled_blinky_cm7 The LED Blinky demo application provides a sanity check for the new 5DK build environ..
O Ipadec_high_sample_rate_sample_signal_cm4 This demo application demonstrates the use of the LPADC to sample the analog signal.
[] = Ipadc_high_sample_rate_sample_signal_cm7 This demo application demanstrates the use of the LPADC to sample the analog signal. ...
[= Ipadc_sample_rate_count_cmd The Ipadc sample rate count demo application can be used to measure ADC's sample ...
[] = Ipadc_sample_rate_count_cm7 The Ipadc sample rate count dema application can be used to measure ADC's sample ...
O me_pmsim This example demonstrates the control of the PMSM.
[= power_rmode_switch_brm_corel - Linked to: power_mode_switch_brm_corel: The Power mode switch demo application demonstrates the use of power modes in the...
[= power_mode_switch_bm_corel The Power made switch deme application demenstrates the use of power modes in the... v
@ <Back | Net> [fmsh | Concel

5. Ensure Redlib: Use floating point version of printf is selected if the example prints float-
ing point numbers on the terminal for demo applications such as adc_ basic, adc_burst,
adc_ dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

8 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

3 SDK Import Wizard O x

[|
L g |
E 3

. Advanced Settings

= C/C++ Library Settings

Setlibrary type (and hasting variant) | Redib (nohost-nf) o

iRedlib: Use floating p i printf NewlibMNano: Use floating point version of printf

|| Redlib: Use character rather than string based printf NewlibNano: Use floating point version of scanf

[Redirect SDK "PRINTF" to C library "printf" [Redirect printf/scanf to ITM
Include semihost HardFault handler Redirect printf/scanf to UART

= Hardware settings

Set Flaating Paint type | py5-D16 (Hard ABI) v
= MCU C Compiler

Language standard | GNU C39 (-std=gnu99) ~
= MCU Linker

[] Link application to RAM

~ Memory Configuration

Memory details
Default LinkServer Flash Driver | | Browse...
Type MName Alias Location Size Driver 5
Flash BOARD_FLASH Flash 0x30000000 01000000 MIMXRT1160_SFDP_QSPl.cfx
RAM BOARD_SDRAM RAM 0x80000000 0%3000000 1L
RAM MNCACHE REGION RAMZ 023000000 01000000
RAM SRAM_DTC _cm7 RAM3 0x20000000 D:40000
RAM SRAM_ITC_cm7 RAMA x0 0:40000
RAM SRAM_OCT RAMS 0x20240000 0x 10000
RAM SRAM_OC2 RAME 0%x202c0000 0x10000
v

Parent topic:Run a demo using MCUXpresso IDE

Run an example application To download and run the application, perform the following
steps:

1. See Table 1 to determine the debug interface that comes loaded on your specific hardware
platform.

¢ If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link soft-
ware (drivers and utilities) from SEGGER.

 For boards with the OSJTAG interface, install the driver from KEIL.
2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number. To determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD DEBUG UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 9

https://www.segger.com/downloads/jlink/
https://www.keil.com/

MCUXpresso SDK Documentation, Release 25.12.00

Category: =
| & Session Basic options for your PUTTY session
o Logalghg Specify the destination you want to connect to
= Temin Soral i
Keyboard 7599“
Bel COM16 115200
Features ection type:
= Window) Raw Telnet () Rlogin) SSH | @ Seqal
x:mu Load.sa\retlrddetea stored session
Tranalation Saved Sessions
Selection Debug
- Colours
Default
= Connection . [E]
=
Proxy
i
Rlogin
[SSH
Setd Close window on et
() Aways Never @ Only on clean exit
[ow |[He | [Open J[Cance |
4. 1stop bit

4. On the Quickstart Panel,

bug].

&) Quickstart Panel 57 (4= Variables @ Breakpoints

MCUXpresso IDE - Quickstart Panel
(Ciee | Project: evkmimxit1160_hello_world_demo_cm7 [Debug]

~ Create or import a project
p— & New project..
3 tmport SDK example(s)...
@ Import project(s) from file system...
~ Build your project

R A suild
(9] o clenn

+ Debug your project

4 Debug
1

« Miscellaneous

® Edit project settings
Moo

Program flash action using LinkServer

Erase flash action using LinkServer

(@ Installed SDKs 53 [Properties [£] Problems

@ Installed SDKs

>

click Debug ‘evkmimxrt1160_demo_apps_hello_world’ [De-

) Console & Terminal & Image Info [} Debugger Console @oz|Oo=mo

Te install an SDK, simply drag and drop an SDK (zip file/folder) inte the ‘Installed SDKs' view. [Commen 'mcuxpresse’ folder]

Installed SDKs . Available Boards| Available Devices |

Name
2 SDK_2.x_board_MIMXRTI160-EVK

obes (Ctrl+Alt+Shift+)
LinkServer (Ctrl+ Alt+5)

v

SDK Version
290

Meanifest Version
380

ocation

L
£

\board_MIMXRTI 160-EVK (3).zip

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

10

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

. Probes discovered

Connect to target: MIMXRT1166:0000¢
1 probe found. Select the probe to use:

Available attached probes

Serial number... Type Manufactur.. 1DE Debug Ma...

Mame

CMSIS-DAP Non-5top

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSI5-DAP] probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

@ Cancs

6. The application is downloaded to the target and automatically runs to main().

1.2. Getting Started with MCUXpresso SDK Package

11

MCUXpresso SDK Documentation, Release 25.12.00

File Edit Source Refactor Navigate Search Project Run Analysis FreeRTOS Window Help
[& | B-/-& w0 oE e R iR kS - BORH LI EH O A - Bl v G|
[Project Explo.. 53 |7, Peripherals+ ilf Registers s Fauts = B 4 Debug 3 = i+ § = 0

g v @ evkmimxrt1160_hello_werld_demo_cm7 LinkServer Debug [C/C++ (NXP Semiconducters) MCU Application]

v 8 evkmimurt1160_hello_world_demo_cm7.axf [MIMXRT1166x000x (cortex-m7)]

v 125 evkmimurt1160_helle_world_deme_cm7 <Maste

B v @ Thread #1 1 (Suspended : Breakpoint]
@ Project Settings o Thread #1 1 (Suspended : Breakp
4 Binories = main() at hello_world.c:35 0x30002b16
) Includes W arm-none-eabi-gdb (10.1:90.20201028)
5 Cmsis
(5 board
@ component [E] main() at hello_world.c:35 (x30002b16. [4 hello_world.c £2 = a
(2 device - =~
(2 drivers w
(& evimimurt1160 @brief Main functien
~ (& source
[¢] hello_world.c int main(void)
[¢] semihost_hardfault.c char chs
(2 startup ‘
(5 utilities = Init board hardware.
(& xip BOARD_ConfigMPU();
(= Debug BOARD_InitPins();
doc BOARD_BootClockRUN() ;
=4 BOARD_InitDebugConsole();
(B evkmimsrt1160_hello_werld_deme_cm? LinkServer Debug Jaunch InitDebugConsole()
PRINTF("hello world.\rin"};
while (1)
ch = GETCHAR();
PUTCHAR(ch);
- ¥
I
48 v
(1) Quickstart Panel §3 (x)=Variables ®g Breakpoints = B [{Installed SDKs [] Properties [£] Problems B Console 57 (& Terminal [} Image Info [} Debugger Console =8
A = LEEREE MBI

m MCUXpresso IDE - Quickstart Panel

evkmimxrt1160_hello_world_demo_cm7 LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
Ciez)) Project: evkmimurt1160_hello_world_deme_cm?7 [Debug]

[MCUXpresso Semihosting Telmet console for 'evkmimxrt1168_hello_world_demo_cm7 LinkServer Debug' started on port 51281 @ 127.8.8.1]
~ Create or import a project

ooy B Hew project...

B import SDK example(s)

& Import project(s) from file system

~ Build your project

7. Start the application by clicking Resume.

Window

=

The hello_world application is now running and a banner is displayed on the terminal. If this is
not the case, check your terminal settings and connections.

Parent topic:Run a demo using MCUXpresso IDE

Build a multicore example application This section describes the steps required to configure
MCUZXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-core
version of hello_ world example application targeted for the evkmimxrt1160 hardware platform
is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for evk-
mimxrt1160 is installed and available in the Installed SDKs view, click Import SDK exam-
ple(s)... on the Quickstart Panel. In the window that appears, select MIMXRT1166xxXxXXX.
Then, select evkmimxrt1160 and click Next.

12 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

B SOK Import Wizard

[m] X
»
(D Importing project(s) for device: MIMXRT1166w0cuc using board: MIMXRT1160-EVK x @

. Board and/or Device selection page

~ SDK MCUs @ Available boards

1% | &
MCUs from installed SDKs, Please click Please select an available board for your project.

above or visit mcux presso.nxp.com to -
obtain additional SDKe. |Supported boards for device: MIMXRTT186x:000

NXP MIMXRT11686xxx%
~ MIMXRT1160

IIMXRTT186:000¢

=

evkmimurt1160 evkmimuxrt1160_om13790host

evkmimucrt1160_agm01

Selected Device: MIMXRT1166:0000¢ using board: MIMXRT1160-EVK SDKs for selected MCU

Target Core: multicore device with cores: cortex-md cortex-m7 Name SDK Version Manifest Ve, Location
Description: LMX1160 (Display Name to be updated)

H SDK_2:x_board_MIMXRTI1 2.9.0 3.80 B <Common>\board_MIMXRT1160-

@ < Back Finich Cancel

2. Expand the multicore_examples folder and select hello_world_cm7. The hello_ world_cm4

counterpart project is automatically imported with the cm7 project, because the multicore
examples are linked together and there is no need to select it explicitly. Click Finish.

1.2. Getting Started with MCUXpresso SDK Package

13

MCUXpresso SDK Documentation, Release 25.12.00

B sK Import Wizard m] X
1, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2.x_board_MIMXRT1160-EVK' SDK. The advanced opticns ‘ k &
page is disabled when either more than one project has been selected or the selected project references other projects. In these cases the SDK defaults will be used.

. Import projects

Project name prefix: |evkm|mxrt1160 * | Project name suffix:

Use default location

C:\Users\nxf65250\Documents\MCUXpressolDE_11.4.0_6103_ear2\workspace\evkmimzxrt1160 Browse...
Project Type Project Options
C Project C++ Project C Static Library C++ Static Library SDK Debug Console O Semihost () UART @ Example default

Copy sources
Import other files

Examples | M % E D
‘t}'patc filter |
Mame Description Version o

w @] = multicore_examples

[= erpc_matrix_multiply_mu_cm4 The Multicore eRPC Matrix Multiply project is a simple demonstration program that use...
m erpc_matrix_multiply_mu_cm7 : Linked to: erpc_matrix_multiply_mu_cm4; The Multicore eRPC Matrix Multiply project is a simple demonstration program that use...
[= emc_matrix_multiply_mu_rtos_cmé The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration program th...
m erpc_matrix_multiply_mu_rtos_cm7 : Linked to: erpc_matrix_multiply_mu_rte The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration program th...
[= erpc_matrix_multiply_rpmsg_cm4 The Multicore eRPC Matrix Multiply project is a simple demonstration program that use...
m erpc_matrix_multiply_rpmsg_cm7 : Linked to: erpc_matrix_multiply_rpmsg_c The Multicore eRPC Matrix Multiply project is a simple demonstration program that use...
[1 = empc_matrix_multiply_rpmsg_rtos_cm4 The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration program th...
m erpc_matrix_multiply_rpmsg_rtos_cm7 : Linked to: erpc_matrix_multiply_rpm The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration program th...
[= emc_two_way_rpc_rpmsg_rtos_cmé The Multicore eRPC Two Way RPC RTOS project is a simple demonstration program that...
O erpc_two_way_rpc_rpmsg_rtos_cm7 : Linked to: erpc_two_way_rpc_rpmsg_rtc The Multicore eRPC Two Way RPC RTOS project is a simple demonstration program that...
[= freertos_message_buffers_cmd The FreeRTOS Message Buffers multicore project is a simple demonstration program tha...
L= fearos message buffers cnro 4 Ihe FreeRT0S Mezsaae Buffers m ore proje g simple demonstration program tha
& hello_world_cm4 The Multicore Hello World demo application demanstrates how to set up projects for in...
g hello_world_em7: Linked to: hello_world_cmd; The Multicore Hello World demo application demenstrates how te set up projects ferin...

B P L R e T
O multicore_manager_cm7 : Linked to: multicore_manager_cm4; The Multicore Manager example application demonstrates advanced features of the M...
[1 = rpmsg_lite_pingpong_cmd. The Multicore RPMsg-Lite pingpong praject is a simple demonstration program that us...
O rpmsg_lite_pingpong_cm7: Linked to: romsg_lite_pingpong_cmé4; The Multicore RPMsg-Lite pingpong project is a simple demonstration program that us...
m rpmesg_lite_pingpong_rtos_cm4 The Multicore RPMsg-Lite pingpong RTOS project is a simple demonstration program t. v

@ < Back Next » Cancel

3. Now, two projects should be imported into the workspace. To start building the multi-
core application, highlight the hello_ world_c¢m7 project (multicore master project) in the
Project Explorer. Then choose the appropriate build target, Debug or Release, by click-
ing the downward facing arrow next to the hammer icon, as shown in Figure 3. For this
example, select Debug.

@ workspace - Source net found, - MCUXpresso IDE

File Edit Mavigate Search Project Run Analysis FreeRTOS Windom
or-Eele-dioiv] |

[Project Explo... 33 | ¥ 1 Debug (Debug build) = H
2 Releaze (Release build) 0 d)cﬂ

Do

== evkmimxrt1160_hello_world_cmd <Slaves
== evkmimxrt1 160_hello_world_cm7 <Master> <Debug=

Press the Build button to start the multi-core project build. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm7) also
makes the referenced auxiliary core application (cm4) to build.

Note:

When the Release build is requested, it is necessary to change the build configuration of both
the primary and auxiliary core application projects first. To do this, select both projects in the
Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm7) build.

14 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[vesibspace - Saures real Faund - MCUSgiesie D6

Fle [Haigss Sesch Projest Mo drshss FeedlTDS Windaw Help

0O~ PR @iw J FlrneraRige - B0 AN E R - O-W® 5~ TH-e a0
Oy Froject bopan, 50 17 Peripheuiss Begsierr Bpfaits = 1 [T] mand s belio_mordc 38 Gcl0000018 & =

Sl | b Mo ssunos aidablefar " ot helo_saikd 215 0 30000 18
» 1% exhrvirroct] 160_helks weld, e <Slaves <Debune

e T g e

Al tan this sdiaric thown | Breferences...
Showln Ak e W ¢
Shiewin Lisal Tening H

N Capy =20
Pagt "

M Dalrte ielrle
Saurce ¥
lan f

i Impot.

©h Expet.
Build Projecte
Elnan Praject
Arirath F5
Eloan Prejects

oas Linrelstad Broject
Buik Canfigraliars : Sel Autive s 1 Beteag (Deteag bdel) | image it [} Debragger Cone ="
Buik Tarpets > Wanage | 2 Redense [Release bdd) X KEREOE @i
Ireles s e [emo_cmi? [nESarvar Deliag [T+ = 00 duckam) WL | wkmmirrcert 1 160)_hialla_woeld_demo_emiT.aof (Tarminsted Ap0
Boole for evimbanrti16_ello_wield_deso_ced LLnkServer Gebug' started on port 5131 § 137.8.8.1]

Prefiling Tech] Chaan &l

Uy Cuickriad Pasal 1] 15 Variak
Aun B2 ¥ Build Saleched ...

L+
Al MCUKpresso IDE - 4 fusug an ? Hner Session]
e Prajem edmimar B poon .
= Creaie of imgort a praject Ametars fram Local Himtory.
- Fmirch Frfirmratiom B

Parent topic:Run a demo using MCUXpresso IDE

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and
run the multicore application, switch to the primary core application project and perform all
steps as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See Figure 1 to Figure 4
as reference.

Note: On MCUXpresso IDE, the feature to simultaneously debug two cores is only supported by
CMSIS-DAP debugger.

+ Build your project NCACHE_REGION: @ GB 32 KB @.08%
Q Finished building target: evkmimxrtl16@ hello world_cm7.axf
Build
@ & Clean C:/nxp/MCUXpressoIDE_11.4.8_6183_ear2/ide/plugins/com.nxp.mcuxpresso.tools.wi
Performing post-build steps
arm-none-eabi-size "evkmimxrt1168_hello world_cm7.axf"; # arm-none-eabi-objco
a b de hex filename
b3f8 evkmimxrtll6@_hello_world_cm7.axf

+ Debug your project LISRATERA 2.

%5 Debug

+ Miscellaneous

® Debug using Link5erver probes (Ctrl+ Alt+Shift+5)
Attach to a running target using LinkServer (Ctrl+Alt+5)

Program flash action using LinkServer 2 warnings. (took 55.589ms)

Erase flash action using LinkServer

CIES

B3 Edit project settings
B N

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.12.00

3 Probes discovered O >

Connect to target: MIMXRT1166:0000¢
1 probe found, Select the probe to use:

Available attached probes

Supported Probes (tick/untick to enable/disable)
MCUXpresso |DE LinkServer (inc, CMSI5-DAP) probes

Probe search options

Search again

Remember my selection (for this Launch cenfiguration)

@

16 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[workspace - evkmimxrt1160_hello_world_cm7/source/hello_world_cored.c - MCUXpresso IDE
File Edit Source Refactor Navigate Search Project Run Analysis FreeRTOS_Window Help

i~ [®-&-%Biv|mum®ss 3.0 uu@.?».u:o.mz‘a_ﬁf ML BT LT A AE Sl s IR R R R i
B Project Explo... 53 % Peripherals+ 1li Registers A% Faults = O %% Debug &7 El x| g =1
B[87| % v (B evkmimxrt1160_hello_world_cm7 LinkServer Release [C/C++ (NXP Semiconductors) MCU Application]
(25 evkmimxrt1160. hello, world cmd <Slave> <Release> ~ {2 eviemimurt1160_hello_world_cm7.axf [MIMXRT1 16610000 (cortex-m7)]
~ (25 evkmimsxrt1160_hello_world_cm7 <lasters ~ o Thread £11 (Suspended : Breakpaint)
B4 Project References = main() at hello_world_core0.c:82 0x 30002888
@ Project Settings 4 arm-none-eabi-gdb (10.190.20201028)
P Binaries v (B evkmimurt1160_hello_world_cmd LinkServer Release [C/C++ (NXP Semiconductors) MCU Application]
& Includes v & evkmimurt1160_hello_world_cmd.axf [MIMXRT1166x0ccx (cortex-m4)]
£8 CMsIs 4@ Thread #1 1 (Running) (Running)
2 board 4 arm-none-eabi-gdb (10.1.90.20201028)
(= component
(5 device
2 drivers
(5 evkmimxrt1160 [&] main() at hello_world.c:35 0x30002616 [¢] hello_worid_corel.c 53 =8
(5 memgr 73 (void)MCMGR_EarlyInit(); ~
v (2 source 74
[4] hello_world_cored.c 75
[€] semihost_hardfault.c
5 startup @orief Main function
5 utilties int main(void)
8 xip
(& Release /* Initialize MCMGR, install generic event handlers */
& doc (void)MCHGR_Init();

evkmimxit1160_hello_world_cm7 LinkServer Releaselaunch .
/* Init board hardware.*/
BOARD_ConfigMPu();
BOARD_InitPins();
BOARD_BootClockRUN();
BOARD_InitDebugConsole();

/* Print the initial banner from Primary core */
(void)PRINTF("\r\nHello World from the Primary Core!\r\n\n");

() Quickstart Panel 52 (x)=Variables ®g Breakpoints = B8
#ifdef CORE1_IMAGE_COPY_TO_RAM
MCUXpresso IDE - Quickstart Panel /* Calculate size of the image - not required on MCUXpresso IDE. MCUXpresso copies the secondary core
e Project: evkmimurt]160_hello_world_cmd [Release] s D 02 (R Coamy ik ST Sh ey =
e -nefloworld. uint32_t corel_image size; v
~ Create or import a project
® Hew project.. (3 Installed SDKs [Properties [2] Problems [Console 37 (8 Terminal [Imagelnfo [} Debugger Console =g
oy &
@ Import SDK example(s)..] | BRERE® -5
® Import project(s) from file system... evkmimrt]160_hello_world_cmd LinkServer Release [C/C-+ (NXP Semiconductors) MCU Application]

[McUXpresso Semihosting Telnet console for 'evkmimxrt1168_hello_world_cm4 LinkServer Release’ started on port 53312 @ 127.8.0.1]
~ Build your preject
After clicking Resume All Debug sessions, the hello_ world multicore application runs and a ban-
ner is displayed on the terminal. If this is not the case, check your terminal settings and connec-
tions

| COM25:115200baud - Tera Term VT
Eile Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

starting Secondary core. _
The secondary core application has been started.

Note: There are some limitations on MCUXpresso IDE debugging. For details, see Section 8.5
MCUXPresso IDE limitation in MCUXpresso SDK Release Notes for MIMXRT1160-EVK (docu-
ment MCUXSDKMIMXRT116XRN).

Parent topic:Run a demo using MCUXpresso IDE

Run a demo application using IAR

Note:

When erasing flash on IAR, IAR will show all range that can connect to flash. Please only check
address flash connect to practically. Take the evkmimxrt1160 for example:

* M7: 0x30000000-0x3fffffff
* M4: 0x8000000-0x17ffffff

When using IAR download/debug flexspi_ nor related targets, make sure the boot switch is put to
internal flash boot mode SW1[1:4]:0010.

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK. The hello_world demo application targeted for the MIMXRT1160-EVK
hardware platform is used as an example, although these steps can be applied to any example
application in the MCUXpresso SDK.

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.12.00

Build an example application Do the following steps to build the hello_world demo applica-

tion.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_type>/iar

Using the MIMXRT1160-EVK hardware platform as an example, the hello_ world workspace
is located in:

<install_dir>/boards/evkmimxrt1160/demo_apps/hello_world/cm7/iar/hello_world_demo_cm7.eww

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

There are twelve project configurations (build targets) supported across MCUXpresso SDK
projects:

Debug— Compiler optimization is set to low, and debug information is generated for the
executable. The linker file is RAMlinker, where text and data section is put in internal
TCM.

Release— Compiler optimization is set to high, and debug information is not generated.
The linker file is RAM linker, where text and data section is put in internal TCM.

ram__0x1400_debug— Project configuration is same as the debug target. The linker file is
RAM_ 0x1400linker, where text is put in ITCM with offset 0x1400 and data put in DTCM.

ram__0x1400_ release— Project configuration is same as the release target. The linker file
is RAM_ 0x1400 linker, where text is put in ITCM with offset 0x1400 and data put in
DTCM.

sdram_ debug— Project configuration is same as the debug target. The linker file is
SDRAMIinker, where text is put in internal TCM and data put in SDRAM.

sdram_ release— Project configuration is same as the release target. The linker file is
SDRAMIinker, where text is put in internal TCM and data put in SDRAM.

sdram__txt_ debug— Project configuration is same as the debug target. The linker file is
SDRAM.__txtlinker, where text is put in SDRAM and data put in OCRAM.

sdram__txt_ release— Project configuration is same as the release target. The linker file
is SDRAM txtlinker, where text is put in SDRAM and data put in OCRAM.

flexspi__nor__debug— Project configuration is same as the debug target. The linker file is
flexspi_ nor linker, where text is put in flash and data put in TCM.

flexspi_nor_ release— Project configuration is same as the release target. The linker file
is flexspi_ nor linker, where text is put in flash and data put in TCM.

flexspi_nor_ sdram_ release- Project configuration is same as the release target. The
linker file is flexspi_ nor_ sdramlinker, where text is put in flash and data put in SDRAM.

flexspi__nor_sdram__debug— Project configuration is same as the debug target. The linker
file is flexspi_nor_sdramlinker, where text is put in flash and data put in SDRAM. For
some examples need large data memory, only sdram_ debugand sdram_ releasetargets
are supported. For this example, select hello_world- debug.

18

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

: Workspace v 13X
debug W
flexspi_nor_debug
sdram_debug

flexspi_nor_sdram_debug
sdram_t«t_debug

rarn_Ox7400_debug
ieleaze
flexspi_nor_release
sdram_release
flexspi_nor_sdram_releaze
sdram_ksk_release

rarm Ox1400 release

T e
(& il starup .
—= W utilities [

3. To build the demo application, click Make, highlighted in red in Figure 2.

File Edit View Project CMSIS-DAP Tools Window Help

& \ i Y [1 = = :m
NomE = XE3 . DC e Q2. 52< 0> N0 R[elso. . int
Workspace ¥ B X | hello_world.c X
debug =
Files . I
=R Jhello world demo_cm?-deb..| v | | I + Prototypes
= o board O [| L asmssmdadmma b A AR AR AR AR A AR AE AR AR A A AR A A A A A A A AR
[~ W CMSIS
icumponent ® I
{7l Bl device ® r * Code
.-CIDC AAAA A AR A AR A AR A A A A A A A A A A A S A AR A A A A A d AR A A b d A A A Ad AR AAA

Ml drivers @ = s*r
M source ° * @brief Main function

[B startup ® ga _
B utilities ® int main(void)

i = 1 char ch

= 3
W Qutput
/* Init board hardware. */

BOARD ConfigMPU();

BOARD InitPins();
BOARD_BootClockRUN();
BOARD_InitDebugConsole();

4. The build completes without errors.

Parent topic:Run a demo application using IAR

Run an example application To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED
and follow the instructions to install the Windows® operating system serial driver. If run-
ning on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable. Connect the USB cable to J11
and make sure SW1[1:4] is 0010b.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG UART BAUDRATEvariable in the board.hfile)

2. No parity
3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 19

https://os.mbed.com/handbook/Windows-serial-configuration

MCUXpresso SDK Documentation, Release 25.12.00

4. 1stop bit

Category:
El- Session Basic options for your PuTTY session
5 T"" L_ng?'rng Specify the destination you wart to connect to
=~ 1 emina
Senal lins Speed
-~ Keyboard = e R
- Bel COM16 115200
- Features nnection type:
= Window (JRaw () Telnet © Rlogin () SSH | @ Seral
:ﬁea. Load, save or delete a stored session
- aviour
. Translation Saved Sessions
- Selection Debug
- Default
5 Connecton ey
= [seve |
- Rlogin
- S5H
=Sl Close window on ext:
() Mways (Never @ Only on clean exit
ot || Heo | [_Open J[Cance

4. In IAR, click the Download and Debug button to download the application to the target.

Qo< BoOoRNN Re=[0] " &at

* When using CMSIS-DAP to debug cm4 project on IAR, an extra option needs to be spec-
ified in debugger settings. Check and fill in -macro_param enable_core=1 in Debug-

ger -> Extra Options -> Command line options, as shown in Figure 3.

20

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Options for node "hello_world_demo_cmd" *

Category: Factory Settings

General Options
Static Analysis

Runtime Checking
CfC++ Compiler Setup Dowrload Images Muticore Extra Options Plugins

Assembler
Qutput Converter Use command line options

Custom Buid Command line options: (one per line)
Build Actions
Linker —macro_param enable_core=1
Iﬁ
Simulator
CADI
CMSIS DAP
GDEB Server
Ijet
J-Link/1-Trace
TI Stellaris
Mu-Link:
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Caea

* If debugging with JLINK as probe, jlinkscript file is needed.

- When downloading the cm7 project, check Use command line options, as shown
in Figure 4.

Options for node "hello_werld_demo_cm7" =

Category: Factory 5 ettings

General Options
Static Analysis

Runtime Checking
C/C++ Compiler Setup Download Images Mulicore Extra Options Plugins

Assembler
Output Converter I Use command line optiu::-nsl
Custam Build

Build Actions
Linker —link_script_file=5PROJ_DIRS/../evkmimxrt 1160_connect_cm4_cm

Debugger

Simulatar
CADI

CMSIS DAP
GDE Server
I§et
JLink/1-Trace
T1 stellaris
Mu-Link

PE micra
ST-LINK
Third-Party Driver
TI MSP-FET
TI XD5

Command line options: (one per ling)

Cancel

— When downloading the cm4 project, uncheck Use flash loader(s), as shown in Fig-
ure 5, and change the contents of command line options as below:

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.12.00

* Target with SDRAM
--jlink_script_ file=$PROJ_ DIR$/../evkmimxrt1160_ connect_cm4 cmd4side sdram.
—jlinkscript
Other target
--jlink_script_ file=$PROJ__DIR$/../evkmimxrt1160_ connect__cm4_cm4side.jlinkscript
Options for node "helle_world_demo_cméd >
Cateqory:

Factory Settings

General Options
Static Analysis
Runtime Checking

C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler

Output Converter Verify download

Custom Build [| Suppress download

B_uild Actions [Use flash loader(z)
Linker
T e e

Simulatar STOOLKIT_DIRS \config*flashloaderNXP*FlashIMxX]
CADI
CMSIS DAP Edit...
GDB Server
et Perform mass erase before flashing
J4Link/1-Trace
TI Stellaris
Mu-Link

PE micra
STAIMK

! Third-Party Driver I
i TI MSP-FET |
TI XDS

(1] 4 Cancel

5. The application is then downloaded to the target and automatically runs to the main() func-

File Edit View Projedt Debug Disassembly CMSIS-DAP Tools Window Help
R & B . oc < Q%32 PO 0 RB=6GCcO_ NIyl » @ a-_ionmow il
Workspace ¥ B X | hello_world.c x
debug
Files o .
[@hello_world_demo_cm7 - debug v
i board
HE CMSIS
B component
| ol device
W doc
|- W drivers e
-SDUICE * @brief Main function
= .
{*] I starty,
! - utillliez 2 |int main(void)
= {
xip
-_Oulpm char ch;
/* Init board hardware. */
BOARD_ConfigMPU () ;
BOARD_InitPins();
BOARD_BootClockRUN () ¢
BOARD_InitDebugConsole():

6. Run the code by clicking the Go button to start the application.

e T N 'IE"’ a-._

7. The hello_world application is now running and a banner is displayed on the terminal. If

22 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

this is not true, check your terminal settings and connections.

_iojx

hello world.

Note: There are some limitations on MCUXpresso IDE debugging. For details, see Section 8.6 IAR
debug limitation in MCUXpresso SDK Release Notes for MIMXRT1160-EVK (document MCUXSD-
KMIMXRT116XRN).

Parent topic:Run a demo application using IAR

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww
<install_dir>/boards//evkmimxrt1160/multicore_examples/hello_world/cm7/iar/hello_world_cm7.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm4) first, because the primary core application project (cm7) needs to know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, only debug and release RAM targets are
present in the project. When building the primary core project, it is possible to select either
debug/release RAM targets or flexspi_nor_debug/flexspi_nor_release Flash targets. When choosing
Flash targets (preferred) the auxiliary core binary is linked with the primary core image and
stored in the external SPI Flash memory. During the primary core execution the auxiliary core
image is copied from flash into the CM4 RAM and executed.

Parent topic:Run a demo application using IAR

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 — 4
as described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the Download and Debug button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary image are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the main() function.

Run both cores by clicking the Start all cores button to start the multicore application.

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.12.00

ﬂv::>1v|u,ﬂ*

During the primary core code execution, the auxiliary core is released from the reset. The
hello_ world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

. COM21:115200baud - Tera Term VT — O b
File Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Copy Secondary core image to address: Ox20200000, size: 17124
Starting Secondary core.
The secondary core application has been started.

L

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
Stop all cores and Start all cores buttons to stop or run both cores simultaneously.

[#lo ~ o1 - 7 g
Note: On IAR, the feature to simultaneously debug two cores is only supported by CMSIS-DAP
debugger.

Parent topic:Run a demo application using IAR

Run a demo using Keil® MDK/uVision

This section describes the steps required to build, run, and debug example applications provided
in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex® Microcontroller Soft-
ware Interface Standard (CMSIS) device packs must be installed to fully support the device from
a debug perspective. These packs include things such as memory map information, register defi-
nitions and flash programming algorithms. Follow these steps to install the MIMXRT116x CMSIS
pack.

1. Download the MIMXRT1165 and MIMXRT1166 packs.

2. After downloading the DFP, double click to install it. Be patient when the DFP is installed.
It will take approximate 15 minutes for the installation to complete.

Parent topic:Run a demo using Keil® MDK/uVision

Build an example application
1. Open the desired example application workspace in:
<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_ name>.uvmpw. For this specific example, the actual
path is:

<install_dir>/boards/evkmimxrt1160/demo_apps/hello_world/cm7/mdk/hello_world_demo_cm7.uvmpw
2. To build the demo project, select Rebuild, highlighted in red.

24 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

3. The build completes without errors.

&2 ~

Parent topic:Run a demo using Keil® MDK/uVision

‘ Ling‘ hello_world_demo_cm7 1 v 53:\|

Run an example application To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED
serial-configuration and follow the instructions to install the Windows® operating system
serial driver. If running on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number. To determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200

or 9600 baud

rate,

depending on

your

BOARD DEBUG UART BAUDRATEvariable in the board.hfile)
2. No parity
3. 8 data bits

§3% PuTTY Configuration
Category:
=l Session Basic options for your PuTTY session |
g " ngngiﬂg Specify the destination you want to connect to
=
B i Serial line Speed
- Keyboard 2 el
.. Bel COM16 115200
- Features onnection type:
=- Window) Raw Telnet () Rlogin () SSH | @ Seral
g :.;Eea@ce Load, save or delete a stored session
aviour
.- Translation Saved Sessions
Selection Debug
- Colours
Default Settings
= Connection S e —]
- Diata Save
vos
o
Rlogin
|- SSH
Serial Cloge window on ext;
) Always Never @ Only on clean exit
ot |[Heo | Open [Cancel |
4. 1stop bit

board

(reference

4. To debug the application, click load or press the F8 key for flexspi target which need
to download the program to flash memory. Then, click the Start/Stop Debug Ses-

1.2. Getting Started with MCUXpresso SDK Package

25

https://os.mbed.com/handbook/Windows-serial-configuration

MCUXpresso SDK Documentation, Release 25.12.00

sionbutton, highlighted in red in Figure 2. If using J-Linkas the debugger, click Project
option>Debug>Settings>Debug >Port, and select SW.

Note: If debugging with JLINK, device selection window will be popped when you click the
Settings button under the Debug tab. Users need to choose MIMXRT1165/MIMXRT1166
device manually.

Note:

When using jlink in MDK for cm4 projects, it expects one jlinkscript file named JLinkSet-
tings.JLinkScript in the folder where the uVision project files are located. Please refer to
Segger Wiki for more information.

For the ~contents in this JlinkSettings.JLinkScript, use contents in
evkmimxrt1160__connect__cm4_ cmdside.jlinkscript (non-sdram targets) and
evkmimxrt1160_ connect cm4 cmdside sdram.jlinkscript (sdram targets).

KA £0 i mo T 11 700 R st AL e st SO AT 1160t shvermimocrt 11604l s g, swesrd e Tymd el warie_dems, e uvprage - ysian - m] X
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help
Nsdd@| » aal | o=@ | = = i | @ vavla-lec s e-E-| A
s Losp P
i @' | hello_world_demo_cm7 ¢~ J:\| ﬁ % ‘ o @
Project L~ | _1 fslipuart.c v x
=& Workspace 798 (LPUART_FIFO TXEMPT MASE | LPUART FIFO RXEMPT MASE | LPUART FIFO TXOF ! A
=445 hello_world_demo_cm7 debu BOO #endif
- 801 return temp;
+-1d source 802 N
L1 board go3 L
I doc 804 [H/*!
3 utilities B80S * brief Clears status flags with a provided mask.
L 806 =
Lj drlv.ers 807 * This function clears LPUART status flags with a provided mask. Automatically cle:
[device 808 # can't be cleared by this function.
J CMsIS 809 # Flags that can only cleared or set by hardware are:
[3 component/uart 810 x KLPURRT_TxDataRegEmptyFlag, KLPURRT TransmissionCompleceFlag, KLPUART RxDataR:
- tlist: 811 x KLPURRT_ RxRctiveFlag, kKLPURRT NoiseErrorInRxDataRegFlag, KLPUART ParityErrorIl
- compenent/lists 812 | * KLPUART TxFifoEmptyFlag, KLPUART RxFifoEmptyFlag
Ld startup 813 * Note: This API should be called when the Tx/Rx is idle, otherwise it takes no ef:
Ld xip 814 =
815 * param base LPUART peripheral base address.
8le * param mask the status flags to be cleared. The user can use the enumerators in tl
817 # _lpuart_status flag t to do the OR operation and get the mask.
818 * return 0 succeed, others failed.
819 # retwval kStatus_LPUART_ FlagCannotClearManually The flag can't be cleared by this :
820 * it is cleared automatically by hardware.
821 # retwval kStatus_Success Status in the mask are cleared.
822 L */
B23 status_t LPUART ClearStatusFlags (LPURRT_Tvpe ‘*base, uint3Z_t mask)
824 i
4 | ‘ ﬂ 825 uinc32_t temp: v
=] Project] @Ea:l': {}Func.| Dy Temp..| || € >

5. Run the code by clicking Run to start the application, as shown in Figure 3.

ce| (B RSO A VR ¢

Registers - o
IZ]l Run (FS)

Register Start code execution

The hello_world application is now running and a banner is displayed on the terminal, as
shown in Figure 4. If this is not true, check your terminal settings and connections.

26

Chapter 1. MIMXRT1160-EVK

https://wiki.segger.com/Keil_MDK-ARM

MCUXpresso SDK Documentation, Release 25.12.00

#* COM99 - PuTTY
hello world.

Parent topic:Run a demo using Keil® MDK/uVision

Build a multicore example application This section describes the particular steps that need
to be done in order to build and run a dual-core application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
MDK workspaces are located in this folder:

<install_dir>/boards/evkmimxrt1160/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw
<install_dir>/boards//evkmimxrt1160/multicore_examples/hello_world/cm7/mdk/hello_world_cm7.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm4) first, because the primary core application project (cm7) needs to know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, debug and release RAM targets are
present in the project only. When building the primary core project, it is possible to select
flexspi_nor_ debug/flexspi_nor_ release Flash targets. When choosing Flash targets the auxiliary
core binary is linked with the primary core image and stored in the external SPI Flash memory.
During the primary core execution the auxiliary core image is copied from flash into the CM4
RAM and executed.

Parent topic:Run a demo using Keil® MDK/uVision

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 — 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the flash memory. After clicking Run,
the primary core application is executed. During the primary core code execution, the auxiliary
core code is re-allocated from the SPI flash memory to the RAM, and the auxiliary core is released
from the reset. The hello_ world multicore application is now running and a banner is displayed
on the terminal. If this is not true, check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.12.00

8 COMZ1:115200baud - Tera Term VT — [} >
File Edit Setup Control Window KanjiCede Help

Hello World from the Primary Core!

Copy Secondary core image to address: Ox20200000, size: 17124
starting Secondary core.
The secondary core application has been started.

L

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in the
second pVision instance and clicking the Start/Stop Debug Session button. After this, the second
debug session is opened and the auxiliary core application can be debugged.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

=" | ,j| [G .ﬁ| | | ol W | == = JE _-‘_F"'l [# DogConsole_ReadCharal~v| S ﬁ! 0} 'l
SEQ BREU > ORREaE-E-3-0-2-0-|%-
Registers 3 EX Disassembly
Register I‘u"alue 3; _ asm("NOP");: /* delay */
i D DDD0ZRCET C30x20202E72 BFOO HCP
LR DxDDOF4240 Ox20202E74 S300 LDR rd, [sp, #0x00]
| GO0000000 0x20202ETE& 1C40 ADDS rd,ro, $1
LR3 DDDOF4240 Ox20202E7TE 2000 5TR rd, {Sp,;\ijGClCl]
H Ox20202ETA 4502 LDR rl c, %8 = 0x20202E84
R4 000000005 M=20202F T SQRON T.NR 'rflf EI:n' in-\].—nm @
- RB OxD0000000 <
o R 00000000
i R7 (00000000] hello_world_corel.c
~~RR 000NN o L P AR A TR T 0 R A T R T AR P O Y L PO
RS (00000000 36
R10 (00000000 B] A AR AR A A AR AN R A AR AR AR A A AR AR R AN R AR A AR AR AR R AR R AR AR
3 (OO0 33IT Code
R12 (00000000 B3O L a A AR AR A AR AR A AR A AR AR AR AR R E AR AR AR AR AR H AR AR
i R13 (5P) 2001FFES ag /%1
- RI4(LR) (20202ECE QIT @brief Function to create delay for Led blink
:
. BoxPSR (81000000 43 wvoid delay(void)
+ Banked a4 91
* System a5 volatile uwint32 t i = 0;
= Intemal 46 for (i = 0; i < 1000000; ++i)
Mude: Thiegad a7 {
Privilege Privileged B a8 || asm("NOE"): /* delay */
Stack MSP 45 1 -
States 273BE7519 sn |
: Sec 27346675150 51
+- FPL 52 /%!

Parent topic:Run a demo using Keil® MDK/uVision

Run a demo using ARMGCC / VSCODE

This section describes the steps to run an example application from the SDK archive using the
ARMGCC / VSCODE toolchain.

Refer to the running a demo using MCUXpresso VSC section for detailed instructions on setting
up and configuring your project in Visual Studio Code.

Refer to the CLI section for detailed instructions on building and running your project from the
command line.

28 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso config tools

MCUXpresso Config Tools can help configure the processor and generate initialization code for
the on chip peripherals. The tools are able to modify any existing example project, or create a
new configuration for the selected board or processor. The generated code is designed to be used
with MCUXpresso SDK version 2.X.

Table 1 describes the tools included in the MCUXpresso config tools.

3

Config tool Description

(0]

ag

Pins tool For configuration of pin routing and pin electrical properties.
Clock tool For system clock configuration

Peripher- For configuration of other peripherals

Q@ @Oe®

als tools

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device Configures Device Configuration Data (DCD) contained in the program im-

Configura- age thatthe Boot ROM code interprets to setup various on-chip peripherals
tion tool prior the program launch.

MCUXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

» Standalone version available for download from MCUXPRESSO. Recommended for cus-
tomers using IAR Embedded Workbench, Keil MDK puVision, or Arm GCC.

* Online version available on MCUXPRESSO. Recommended to do a quick evaluation of the
processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

1.2. Getting Started with MCUXpresso SDK Package 29

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

Control Panel (3)

| = Device Manager
@ View devices pmd arintacs

| Device Manager
a8 Update devic| yiey and update your hardware's settings and driver s

Pictures (9)

| | Companies.inc

|| hutinc

| | PTPStilllmageTables.inc
| VIDs_PIDs. TXT

| | SCSI_ CDB_RcvCpyRslts.inc
|| SCSL_CDB_SPC.inc

|| hci_command_table.nc
|| RNDIS_OIDuinG

| | CDCRequests.inc

Files (1)

\=| dialog_settings.xml

p' See more results

|DE"."iCE Manager ® | |5hut down | » |

2. Inthe Device Manager, expand the Ports (COM & LPT) section to view the available ports.
Depending on the NXP board you’re using, the COM port can be named differently.

1. OpenSDA — CMSIS-DAP/mbed/DAPLink interface:

4 7F" Ports (COM & LPT)
- L5 mbed Serial Port (COM41)

2. OpenSDA - P&E Micro:

30 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

4 ¥ Ports (COM & LPT)

3. OpenSDA - J-Link:

4 77" Ports (COM & LPT)

4. P&E Micro OSJTAG:

475 Ports (COM & LPT)

5. LPC-Link2:

v B Ports (COM & LPT)
& LPC-Linkll UCom Port (COM16)

6. FTDI UART:

v & Ports (COM & LPT)

& USB Serial Port (COMB)

i USB Serial Port (COM9)

Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with a variety
of factory programmed debug interface configurations. Table 1 lists the hardware platforms
supported by the MCUXpresso SDK, their default debug interface, and any version information
that helps differentiate a specific interface configuration.

Hardware platform

Default interface

OpenSDA details?

EVK-MC56F83000
EVK-MIMXRTS595
EVK-MIMXRT685
FRDM-K22F
FRDM-K28F
FRDM-K32L2A4S
FRDM-K32L2B
FRDM-K32W042
FRDM-K64F
FRDM-K66F
FRDM-K82F
FRDM-KE15Z
FRDM-KE16Z
FRDM-KLO02Z
FRDM-KL03Z
FRDM-KL25Z
FRDM-KL26Z
FRDM-KL27Z
FRDM-KL28Z
FRDM-KL43Z
FRDM-KL46Z
FRDM-KL81Z

P&E Micro OSJTAG
CMSIS-DAP

CMSIS-DAP
CMSIS-DAP/mbed/DAPLink
DAPLink

CMSIS-DAP

CMSIS-DAP

CMSIS-DAP
CMSIS-DAP/mbed/DAPLink
J-Link OpenSDA
CMSIS-DAP

DAPLink
CMSIS-DAP/mbed/DAPLink
P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA

P&E Micro OpenSDA
CMSIS-DAP

N/A

N/A

N/A

OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.1
N/A

OpenSDA v2.0
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.2
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v2.1
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v2.0

continues on next page

1.2. Getting Started with MCUXpresso SDK Package

31

MCUXpresso SDK Documentation, Release 25.12.00

Table 1 - continued from previous page

Hardware platform

Default interface

OpenSDA details?

FRDM-KL82Z
FRDM-KV10Z
FRDM-KV11Z
FRDM-KV31F
FRDM-KW24
FRDM-KW36
FRDM-KW41Z
Hexiwear
HVP-KE18F
HVP-KV46F150M
HVP-KV11Z75M
HVP-KV58F
HVP-KV31F120M
JN5189DK6
LPC54018 IoT Module
LPCXpresso54018
LPCXpresso54102
LPCXpresso54114
LPCXpresso51U68
LPCXpresso54608
LPCXpresso54618
LPCXpresso54628
LPCXpresso54S018M
LPCXpresso55s16
LPCXpresso55s28
LPCXpresso55s69
MAPS-KS22
MIMXRT1160-EVK
MIMXRT1170-EVK
TWR-K21D50M
TWR-K21F120M
TWR-K22F120M
TWR-K24F120M
TWR-K60D100M
TWR-K64D120M
TWR-K64F120M
TWR-K65D180M
TWR-K65D180M
TWR-KV10Z32
TWR-K80F150M
TWR-K81F150M
TWR-KE18F
TWR-KL28Z72M
TWR-KL43Z48M
TWR-KL81Z72M
TWR-KL82Z72M
TWR-KM34Z75M
TWR-KM35Z75M
TWR-KV10Z32
TWR-KV11Z75M
TWR-KV31F120M
TWR-KV46F150M
TWR-KV58F220M
TWR-KW24D512
USB-KW24D512

CMSIS-DAP
CMSIS-DAP
P&E Micro OpenSDA
P&E Micro OpenSDA

CMSIS-DAP/mbed/DAPLink

DAPLink
CMSIS-DAP/DAPLink

CMSIS-DAP/mbed/DAPLink

DAPLink

P&E Micro OpenSDA
CMSIS-DAP
CMSIS-DAP

P&E Micro OpenSDA
CMSIS-DAP

N/A

CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP
CMSIS-DAP

J-Link OpenSDA
CMSIS-DAP
CMSIS-DAP

P&E Micro OSJTAG
P&E Micro OSJTAG
P&E Micro OpenSDA
CMSIS-DAP/mbed
P&E Micro OSJTAG
P&E Micro OpenSDA
P&E Micro OpenSDA
P&E Micro OpenSDA
P&E Micro OpenSDA
P&E Micro OpenSDA
CMSIS-DAP
CMSIS-DAP
DAPLink

P&E Micro OpenSDA
P&E Micro OpenSDA
CMSIS-DAP
CMSIS-DAP

P&E Micro OpenSDA
DAPLink

P&E Micro OpenSDA
P&E Micro OpenSDA
P&E Micro OpenSDA
P&E Micro OpenSDA
CMSIS-DAP

P&E Micro OpenSDA
N/A External probe

OpenSDA v2.0
OpenSDA v2.1
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v2.1
OpenSDA v2.2

OpenSDA v2.1 or greater

OpenSDA v2.0
OpenSDA v2.2
OpenSDA v1
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v1
N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

OpenSDA v2.0
N/A

N/A
N/AOpenSDA v2.0
N/A

OpenSDA v1.0
OpenSDA v2.1
N/A

OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v2.1
OpenSDA v1.0
OpenSDA v2.0
OpenSDA v2.0
OpenSDA v1.0
OpenSDA v2.2
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v1.0
OpenSDA v2.1
OpenSDA v1.0
N/A

continues on next page

32

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Table 1 - continued from previous page
Hardware platform Default interface OpenSDA details?
USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

1 The OpenSDA details is not applicable to LPC.

How to add or remove boot header for XIP targets

The MCUXpresso SDK for i.MX RT1160 provides flexspi_ nor_debug and flexspi_ nor_ release targets
for each example and/or demo which supports XIP (eXecute-In-Place). These two targets add
XIP_BOOT_HEADER to the image by default. Because of this, ROM can boot and run this image
directly on external flash.

Macros for the boot leader:

* The following three macros are added in flexspi_nor targets to support XIP, as described in
Table 1.

A

| XIP_EXTERNAL_FLASH|1: Exclude the code which changes the clock of FLEXSPI.| |0:
Make no changes.| |XIP_BOOT_HEADER_ENABLE |1: Add FLEXSPI configuration block,
image vector table, boot data, and device configuration data (optional) to the image by de-
fault.| |0: Add nothing to the image by default.| | XIP_BOOT_HEADER DCD_ENABLE|1:
Add device configuration data to the image.| |0: Do NOT add device configuration data to
the image. |

 Table 2 shows the different effect on the built image with a different combination of these
macros.

A

XIP_BOOT_HEADER XIP_BOOT_HEADER_DCD_ENABLE=0

XTP_EXTERNA XIP_BOOT _HEADEI] - Can be programmed to gspiflash by IDE and can
run after POR reset if gspiflash is the boot source.

— SDRAM will be initialized. | - Can be programmed to gspiflash by IDE, and can run after
POR reset if gspiflash is the boot source.

— SDRAM will NOT be initialized. | | XIP_BOOT_HEADER_ENABLE=0| - CANNOT run
after POR reset if it is programmed by IDE, even if gspiflash is the boot source. |—|
| XIP_EXTERNAL_FLASH=0| - This image CANNOT complete XIP because when this
macro is set to 1, it excludes the code, which changes the clock for FLEXSPI. |

Where to change the macros for each toolchain in MCUXpresso SDK?
Take hello_world as an example:
* IAR

1.2. Getting Started with MCUXpresso SDK Package 33

MCUXpresso SDK Documentation, Release 25.12.00

Category: Factary 5cttings
General Optiors [Muiti-file Compilatior ' '
Static Analysis Discard Unused Publics
untime Che
MISRA-LC: 1558 Encodings Extra Options
Ssempler Language 1 Laguage 2 Code Optimizations Output
Output Converter List Diagnostics MISRA-C: 2004
Custom Build
Build Actions [lanore standard irclude directories
gnter Additional include directories: (one per line)
e e SPROJ_NIRE/ / / / / /CMSIS Anchde %
L SPROJ_DIRS/../././../. /devices
CADI SPROJ_DIRS/..
CMSIS DAP SPROJ_DIRS/.././.
DB Server SPROJ_DIRS/../../. /../ . /devices/MIMXRT 1062/ drivers v
Ijet/ITAGjet Preinclude file:
IHink/J-Trace |
TI Stellaris
Mu-Link Defined symbols: {one per line)
PE micro DERLG . [Preprocessor outp.t ta file
STAINK KIP_EXTERNAL_FLASH=1 Preserve comments
Third-Party Driver XIP_BOOT _HEADER_ENABLI Generate Hine directives
L3
TIMSP-FET =
TIXDs
oK [Cancel
* MDK

K4 Options for Target *hello_world flexspi_nor_debug’
Device I Target i Dutputl Listingl User M C/C++ {ACE) fhsm I Linker I Jebug I Util'rtiesl

r— Preprocessor Symbols

Defire: | #IP_EXTERNAL_FLASH=1XP_BOOT_HEADER_EMABLE=1XIP_BOOT_HEADER_ DCD_ENABLE=

Undefine:

— Language / Code Generation -

—_—

I Execute-only Code Wamings:]ACEHike Wamings vi Language C:]cB’B VI ‘

Opt

Device I Target i Output i Listing I User I C;"CHi Asm

! Debug] LKiities 1
[Use Memory Layout from Target Dialog ¥/0 Baze: I

[~ Make RW Sections Position Independent R/O Base: i[ﬂ}[}{}m
[~ Make RO Sections Position Independert RAW Base I[W

™ Dont Search Standard Libraries

i ings: !E&‘M
¥ Repart ‘might fai’ Conditions as Emors Rzakie e

Scaglef I £4 0 fdevices/MIMXRT 1062 /Aam /MIMXRT1 DR 2o _flexspi_nor scf _vj 1
e -

: —keep="{ bqat_hdr.con)
Mt -predefine{ DXIP_BOOT_HEADER_ENABLE=1" |

controls

* ARMGCC
Change the configuration in CMakeLists.txt.
SET(CMAKE_C_FLAGS_SDRAM RELEASE
SET(CMAKE C_FLAGS FLEXSPI NOR DEBUG " AKE C_FLAGS FLEXSPI N

SET(CMAKE_C_FLAGS_FLEXSPT_NOR_DEBUG " C_FLAGS FLEXSPI M

SET(CMAKE C FLAGS FLEXSPI NOR DEBUG " AKE C FLAGS FLEXSPI NOR

SET(CMAKE C_FLAGS_FLEXSPI NOR DEBUG "${CMAKE C FLAGS FLEXSPI NOR_DEB

34

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

* MCUX

a Properties for evkmimxrt1160_hello_world_cm7

Setings
Resource
Builders

w CfC++ Build
Build Variables
Environment
Logging & Tool Settings # Build steps
¥

Configuration: |Release [Active]

eitings
w B3 MCU C Compiler
ol Chain Editor I Digle

C/C++ General

Build Artifact Binary Parsers @3 Error Parsers

[1De not search system directories (-nostding)
O Preprocess only (-E}

~ | | Manage Configurations...

Y
@

Defined symbols (-D) & = 8 &
Project Matures 2 Includes Y 3 3 D -
Project References (% Optimizstion CPU_MIMXRTI166DVMEA_cm7
/I i % Debuggin DICDE =
Run/Debug Settings g Wamﬁqg SQ P EERNAL FLASHT
Tesk Tags £ Meming P BOOT HEADER ENABLE=1
Validation (£2 Miscellaneous TACMGR_FANDLE EXCEP TTONS=1
(% Architecture _ SEMIHOST HARDFAULT_DISABLE=1
w 8 MCU Assembler MULTICORE_APP=1
3 General CPU_MIMXRT!166DVMEA
. CR_INTEGER_PRINTF
e} - !
(2 Architecture & Headers MCUXPRESSO
~ B3 MCU Linker " USE_CMSIS
(2 General NDEBUG
(2 Libraries _REDLIB_
(# Miscellaneous _MULTICORE_MASTER
@ Shared Library Settings __MULTICORE_MASTER_SLAVE_M4SLAVE
(2 Architecture
(2 Managed Linker Script Undefined symbols (-U) &
@ Multicore
~ B3 MCU Debugger
(2 Debug
(% Miscellaneous
Restore Defaults Apply

Apply and Close Cancel

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in a multi-repository model. The

SDKis distributed across multiple GitHub repositories and managed using the Zephyr West tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:
* Modular Structure: Multiple repositories for flexibility and scalability.
» Zephyr West Integration: Simplified repository management and synchronization.

* Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

 Scalability: Easily add or update components without impacting the entire SDK.

1.3. Getting Started with MCUXpresso SDK GitHub 35

MCUXpresso SDK Documentation, Release 25.12.00

* Collaboration: Enables distributed development across teams and repositories.
* Version Control: Independent versioning for components ensures better stability.

* Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation
2. Run the installer and select “M CUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

* Visit git-scm.com

* Download for your operating system

* Run installer with default settings

» Important: Make sure “Add Git to PATH” is selected during installation
Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

Python - Scripting Environment What it does: Runs build scripts and SDK tools.
Installation:

¢ Install Python 3.10 or newer from python.org

* Important: Check “Add Python to PATH” during installation

36 Chapter 1. MIMXRT1160-EVK

https://docs.mcuxpresso.nxp.com/mcux-vscode/latest/html/Dependency-Installation.html
https://git-scm.com/
https://www.python.org/downloads/

MCUXpresso SDK Documentation, Release 25.12.00

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.
Recommended version: 3.30.0 or newer
Installation:

* Windows: Download .msi installer from cmake.org/download

* Linux: Use package manager or download from cmake.org

* macO0S: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.
Minimum version: 1.12.1 or newer
Installation:

* Windows: Usually included, or download from ninja-build.org

* Linux: sudo apt install ninja-build or download binary

* macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able
ARM GCC (Recom- Most users, free ARM GNU ARMGCC_DIR
mended) Toolchain
IAR EWARM Professional develop- IAR Systems TAR_DIR
ment
Keil MDK ARM ecosystem ARM Developer MDK DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_DIR

1.3. Getting Started with MCUXpresso SDK GitHub 37

https://cmake.org/download/
https://ninja-build.org/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/
https://developer.arm.com/documentation/109350/v6/Installation
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded

MCUXpresso SDK Documentation, Release 25.12.00

Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR="/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

Check each tool - you should see version numbers
git --version

python --version

west --version

cmake --version

ninja --version

arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

* The tool isn’t in your system PATH

* Solution: Add the installation directory to your PATH environment variable
Python/pip issues:

* Try using python3 and pip3 instead of python and pip

* On Windows, run the Command Prompt as an Administrator
Slow downloads:

* Add timeout option: pip install -U west --default-timeout=1000

* Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:
System Requirements:

* Python 3.8 or later

* Git 2.25 or later

* CMake 3.20 or later

* Build tools for your target platform

Verification Commands:

38 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

python --version # Should show 3.8+

git --version # Should show 2.25+

cmake --version # Should show 3.20-+

west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK from main branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update
This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.
Best for:
» Exploring the complete SDK
* Multi-board development projects

* Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

For specific board development
west update_ board --set board your__board_name

For specific device family development
west update_ board --set device your__device_name

List available repositories before downloading
west update__board --set board your_ board_name --list-repo

Best for:

* Single board development

1.3. Getting Started with MCUXpresso SDK GitHub 39

MCUXpresso SDK Documentation, Release 25.12.00

 Faster setup and reduced disk usage
» Focused development workflows

Examples:

Update only repositories for FRDM-MCXW23 board
west update__board --set board frdmmcxw23

Update only repositories for MCXW23 device family
west update__board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

Verify workspace structure
Is -la
Should show: manifests/ and mcuxsdk/ directories

Test build system
west list__project -p examples/demo__apps/hello_ world
Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

Update only repositories for specific board, e.g., frdmmcxw23
west update__board --set board frdmmcxw23

List available repositories for the board before updating
west update_ board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

Update only repositories for specific device, e.g., MCXW235
west update__board --set device mcxw23

List available repositories for the device family
west update__board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

Use custom configuration file
west update_ board --set custom path/to/custom-config.yml

Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
* Download only components needed for your target board or device

+ Significantly faster initial setup for focused development

40 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

» Typical reduction from 7 GB to 2GB
Optimized Workspace
* Cleaner workspace with relevant components only
* Reduced disk space usage
 Faster repository operations
Flexible Development
» Switch between different board configurations easily
* Maintain separate workspaces for different projects

* Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

Display repository information in console
west update__board --set board frdmmecxw?23 --list-repo

Export repository information to YAML file for reference
west update_ board --set board frdmmcxw?23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

Generate board-specific SDK package

west update_board --set board frdmmecxw23 -o frdmmcexw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:
For Complete SDK Workspace:

Update manifest repository
cd manifests
git pull

Update all component repositories
cd ..
west update

For Targeted Workspace:

Update manifest repository
cd manifests
git pull

Update board-specific repositories
cd ..
west update__board --set board your_ board_ name

1.3. Getting Started with MCUXpresso SDK GitHub 11

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Status Check workspace synchronization status:

Show status of all repositories
west status

Show detailed information about repositories
west list

Troubleshooting Network Issues:

* Use west update --keep-descendants for partial failures

* Configure Git credentials for private repositories

» Check firewall settings for Git protocol access
Permission Issues:

» Ensure write permissions in workspace directory

* Run commands without sudo/administrator privileges

* Verify Git SSH key configuration for authenticated access
Disk Space:

» Full SDK workspace requires approximately 7-8 GB

» Targeted workspace typically requires 1-2 GB

» Use board-specific setup to reduce workspace size
Repository Management Issues:

* Verify board/device names match available configurations

* Check that custom YAML files follow the correct template format

» Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:
1. Review Workspace Structure to understand the layout
2. Build your first project with First Build Guide

3. Explore Development Workflows MCUXPresso VSCode or Development Workflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

Repository Organization Based on the manifest structure, the SDK consists of four main repos-
itory categories:

42 Chapter 1. MIMXRT1160-EVK

https://docs.zephyrproject.org/latest/develop/west/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

* Devices: MCU-specific support packages
* Examples: Demonstration applications and code samples

* Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

* Connectivity: Networking stacks, USB, and communication protocols
* Security: Cryptographic libraries and secure boot components
* Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

» Graphics: Display drivers and UI frameworks

Audio: Audio processing and voice recognition libraries
* Machine Learning: Al inference engines and neural network libraries
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:
* NXP-MCUXpPresso
* NXP
* nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.

1.3. Getting Started with MCUXpresso SDK GitHub 43

https://github.com/nxp-mcuxpresso/
https://github.com/NXP
https://github.com/nxp-zephyr

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization

your-sdk-workspace/
manifests/ # West manifest repository
mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.

SDK Component Layout Based on the actual SDK structure, the main directories include:

Di- Contents Purpose

rec-

tory

arch/ Architecture-specific files ARM CMSIS, build
configurations

cmake Build system modules CMake configura-
tion and build rules

compo Software components Reusable software li-
braries and utilities

devices Device support packages MCU-specific head-

ers, startup code,
linker scripts

drivers Peripheral drivers Hardware abstrac-
tion layer for MCU
peripherals

examp Sample applications Demonstration code
and reference im-
plementations

middle Optional software stacks Networking, graph-
ics, security, and
other libraries

rtos/ Operating system support FreeRTOS integra-
tion
scripts Build and utility scripts West extensions and

development tools
svd Svd files for devices, this is optional because of large size. Cus-
tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

Example Organization Examples follow a two-tier structure separating common code from
board-specific implementations:

Common Example Files

examples/demo__apps/hello_world/

CMakeLists.txt # Build configuration
example.yml # Example metadata
hello_ world.c # Application source code
Kconfig # Configuration options
readme.md # General documentation

44 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Board-Specific Files
examples/_boards/your__board/demo_ apps/hello_ world/

app.h # Board specific application header
example_board_readme.md # Board specific documentation
hardware__init.c # Board specific hardware initialization
pin_mux.c # Pin multiplexing configuration

pin_ mux.h # Pin multiplexing header definitions
hello_world.bin # Pre-built binary for quick testing

hello_ world.mex # MCUZXpresso Config Tools project file
prj.conf # Board specific Kconfig configuration
reconfig.cmake # Board specific cmake configuration overrides

Device Support Structure Device support is organized hierarchically by MCU family:

devices/
MCX/ # MCU portfolio
MCXW/ # MCU family
MCXW235/ # Specific device
MCXW235.h # Device register definitions
drivers/ # Device-specific drivers
gee/ # GNU toolchain files
iar/ # IAR toolchain files

mcuxpresso/ # MCUXpresso IDE files
startup_ MCXW235.c # Startup and vector table
system_ MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories

include:

* Connectivity: USB, TCP/IP, industrial protocols

» Security: Cryptographic libraries, secure boot

* Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

* Graphics: Display drivers, UI frameworks

* Audio: Processing libraries, voice recognition

* Machine Learning: Inference engines, neural networks
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:

* docs/ - Core SDK documentation and build infrastructure
* Component repositories - API documentation and integration guides
* Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

1.3. Getting Started with MCUXpresso SDK GitHub

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/

MCUXpresso SDK Documentation, Release 25.12.00

1. General README: examples/demo__apps/hello_ world /readme.md
* What the example does
* General functionality description

* Common usage information

2. Board-Specific README: examples/ boards/{board name}/demo_apps/hello_world/

example board_readme.md
* Board-specific setup instructions
* Hardware connections required
* Board-specific behavior notes

Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

Development Workflows

Get started with building and running projects:

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* Development board connected via USB

* Build tools installed per Installation Guide

Understanding Board Support Use the west extension to discover available examples for your
board:

west list__project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:

west list__project -p examples/demo__apps/hello_world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_board examples/demo__apps/hello_ world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

46 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Specifying Configuration

Release build
west build -b your_board examples/demo_ apps/hello_ world --config release

Debug build (default)
west build -b your board examples/demo_ apps/hello_world --config debug

Alternative Toolchains

IAR toolchain
west build -b your board examples/demo_ apps/hello_ world --toolchain iar

Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_world --toolchain iar -Dcore__id=cm7 --config
—flexspi_nor_ debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_ world/primary -Dcore__
—id=cm?7 --config flexspi_ nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your_ board examples/demo__apps/hello_ world -p always

Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_ apps/hello_ world --device DEVICE_ PART _NUMBER --config,
—release

Project Configuration

1.3. Getting Started with MCUXpresso SDK GitHub 47

MCUXpresso SDK Documentation, Release 25.12.00

CMake Configuration Only Run configuration without building:

west build -b your_board examples/demo_ apps/hello_ world -Dcore__id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your board examples/demo_apps/hello_ world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list__project -p examples/demo__apps/hello_ world

Next Steps
» Explore other examples in the SDK
* Learn about Command Line Development for advanced options
» Try VS Code Development for integrated development

» Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.

Prerequisites
+ SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)
* Development tools installed per Installation Guide
* Visual Studio Code installed
* MCUXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

48 Chapter 1. MIMXRT1160-EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

File Edit Selection View Go Run Terminal Help

MCUXP CODE

~ QUICKSTART PANEL @ @ [O £
~+ Import Repositary

% import Example from F‘.epu:-a.h.-r_-," Import Local/Remote Repository

g+8 Import Project
13 New Projec
& Application C

pen Online Documentation

» IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you've already obtained the SDK according to setting up the repo. Select your
location and click Import.

= Import Repository X

Import Repository

Location: c\Repos\meuxsdk

Import

Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART
File Edit Selection View Go Run Terminal Help
MCLIX] O FOR V5 CODE

~ QUICKSTART PANEL @ o [O &
~+ Import Repositary

% import Example from F‘.epu:-ah.-r_-," Import Local/Remote Repository

£+8 Import Project
3 New Proje

PANEL ~ IMPORTED REPOSITORIES

1.3. Getting Started with MCUXpresso SDK GitHub 49

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Import Repository X

Import Repository

Location: cA\Repos\mouxsdk

Import

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Import Repository

LOCAL ARCHIVE
Archive: c\nxp\SDK_25_09_00_MCXW23 zip

Name: SDK_25_09_00_MCXW23

Note: Path doesn't exist. Folder(s) will be created.
Location: c\nxp
V| Create Git repository

Import

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL
MCUXPRESS0 FOR W5 CODE

“~ QUICKSTART PANEL
~+ Import Repository

% Import Example from Repository h

8+8 Import Project
T3 MNew Project Wizard

2. Configure project settings:
* MCUXpresso SDK: Select your imported SDK
* Arm GNU Toolchain: Choose toolchain
* Board: Select your target development board

* Template: Choose example category

50 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

» Application: Select specific example (e.g., hello_world)
* App type: Choose between Repository applications or Freestanding applications

3. Click Import

= Import Example from Repository X

Import Example from Repository

Repository: c\Repos)

Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.73) 13.2.1 20231009 ©

Board: FRDM-MCXC444

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the S JART drivers and repeat what user
input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further development.

App type: Freestanding application

Name: frdmmacxc444_hello_world

Location:

Open readme file after project is imported

import

Application Types Repository Applications:
* Located inside the MCUXpresso SDK
* Integrated with SDK workspace
Freestanding Applications:
* Imported to user-defined location

* Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

1.3. Getting Started with MCUXpresso SDK GitHub 51

MCUXpresso SDK Documentation, Release 25.12.00

Build Process
1. Navigate to PROJECTS view
2. Find your project
3. Click the Build Project icon

~ PROJECTS

> frdmmcxc444 hello world M

Build Project

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup

1. Open Serial Monitor from VS Code’s integrated terminal

OUTPUT TERMINAL PORTS JEBUG LE SERIAL MONITOR
—~+ Open an additional monitor
Monitor Mode = Serial iew Mode Text N Port COM40 - MCU-Link VCom Port (COM40) v U Baudrate 115200

-

Lineending CR | D Stait Monitoring = #a & B 0 & &

2. Configure serial settings:
* VCom Port: Select port for your device
* Baud Rate: Set to 115200

Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

~ PROJECTS
> frdmmexc444 hello world M

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:
* Continue: Resume code execution

» Step controls: Navigate through code

52 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

hello_worldc X

frdmmecxc444 _hello_world

main(

ch;

BOARD InitHardware();
PRINTF("hello

while (1)
ch = GETCHAR
PUTCHAR(ch) ;

» Stop: Terminate debug session

Monitor Output Observe application output in the Serial Monitor to verify correct operation.

SERIAL MOMNIT
—+ Open an additional monitor
Monitor Mode View Mode Text ' Port COMA40 - MCU-Link VCom Port (COMA40)

[Istop Monitoring = #a &7 o]

---- Opened the serial port COMA8 ----
hello world.

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

* Example applications

* Board configurations

1.3. Getting Started with MCUXpresso SDK GitHub 53

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.12.00

* Middleware components

* Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
 Verify SDK workspace is properly initialized
* Ensure all required repositories are updated
* Check SDK manifest files are present
Project import failures:
* Confirm board support exists for selected example
* Verify toolchain installation

* Check example compatibility with selected board

Build Problems Build failures:
* Check integrated terminal for error messages
* Verify all dependencies are installed

» Ensure toolchain is properly configured

Debug Issues Debug session fails:
* Verify board connection via USB
* Check debug probe drivers are installed
* Confirm build completed successfully
Serial monitor problems:
* Verify correct VCom port selection
* Check baud rate configuration (115200)

* Ensure board drivers are installed

Integration with Command Line MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

54 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
» Explore additional examples in the SDK
* Review Command Line Development for advanced build options
» Refer MCUXpresso for VS Code Wiki for detailed documentation

» Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* Development tools installed per Installation Guide

» Target board connected via USB

Understanding Board Support Use the west extension to discover available examples for your
board:

west list__project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:

west list_ project -p examples/demo__apps/hello_world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_board examples/demo_ apps/hello_ world

Specifying Build Configuration

Release build
west build -b your_board examples/demo__apps/hello_ world --config release

Debug build with specific toolchain
west build -b your_board examples/demo__apps/hello_ world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_id=cm?7 --config, ,
—flexspi_nor__debug

For multicore projects using sysbuild:

1.3. Getting Started with MCUXpresso SDK GitHub 55

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki

MCUXpresso SDK Documentation, Release 25.12.00

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore examples/hello_world/primary -Dcore
—id=cm?7 --config flexspi_nor_debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore id=cm33 core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_ world -p always

Dry Run See what commands would be executed:

west build -b your_board examples/demo_ apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your board examples/demo_apps/hello_ world --device MK22F12810 --config release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:

56 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Generate [AR project
west build -b evkbmimxrt1170 examples/demo__apps/hello_ world --toolchain iar -Dcore_ id=cm?7 --config, |
—flexspi_nor_ debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup
instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo__apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:
Check ARM GCC

echo SARMGCC_ DIR
arm-none-eabi-gcc --version

Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h

Check Supported Configurations If unsure about supported options for an example:

west list__project -p examples/demo__apps/hello_ world

Best Practices

Project Organization
* Keep custom projects outside the SDK tree
» Use version control for your application code

* Document any SDK modifications

Build Efficiency
* Use -p always for clean builds when troubleshooting
* Leverage --dry-run to understand build processes

* Use specific configs and toolchains to reduce build time

1.3. Getting Started with MCUXpresso SDK GitHub 57

MCUXpresso SDK Documentation, Release 25.12.00

Development Workflow
1. Start with existing examples closest to your requirements
2. Copy and modify rather than building from scratch
3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
» Explore VS Code Development for integrated development experience
» Review Workspace Structure to understand SDK organization

* Refer build system documentation for advanced configurations

Using MCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* MCUZXpresso Config Tools standalone installed (version 25.09 or above)

* MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project__info -b Ipcxpresso55s69 ...mcuxsdk/examples/demo__apps/hello_world/ -Dcore__
—id=cm33_core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

58 Chapter 1. MIMXRT1160-EVK

https://www.nxp.com/doc/GSMCUXCTUG
https://mcuxpresso.nxp.com/mcux-vscode/latest/html/Working-with-MCUXpresso-Config-Tools.html

MCUXpresso SDK Documentation, Release 25.12.00

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: ...mcuxsdk/examples/demo_ apps/
hello_ world/cfg tools/).

Updating the SDK West project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.
This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b Ipcxpressob5s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_id=cm33__core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg _resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and

1.4. Release Notes 539

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUZXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* MCUXpresso IDE, Rev. 25.06.xx

IAR Embedded Workbench for Arm, version is 9.60.4
Keil MDK, version is 5.42

MCUXpresso for VS Code v25.09

GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel- MCU devices

opment

boards

MIMXRT116(MIMXRT1165CVMS5A, MIMXRT1165DVMG6A, MIMXRT1165XVM5A,
EVK MIMXRT1166CVM5A, MIMXRT1166DVM6A, MIMXRT1166XVM5A

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

60 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

MCU Boot MCU Boot (formerly KBOOT) NXP/Freescale proprietary loader

coreHTTP coreHTTP

openvg OpenVG library for devices with graphics acceleration hardware

NXP Wi-Fi The MCUXpresso SDK provides driver for NXP Wi-Fi external modules. The Wi-Fi
driver is integrated with LWIP TCPIP stack and demonstrated with several network applications
(iperf and AWS IoT).

For more information, see Getting Started with NXP based Wireless Modules and i.MX RT Plat-
form Running on RTOS (document: UM11441).

VG-Lite GPU Library VGLite library for devices with VGLite graphics hardware acceleration
engine

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

Simple Open EtherCAT Master Simple Open EtherCAT Master (SOEM) is an open source Ether-
CAT master stack that is used to write custom EtherCAT Master applications. For more informa-
tion on how to use SOEM, see the Getting Started with MCUXpresso SDK for SOEM document.

1.4. Release Notes 61

MCUXpresso SDK Documentation, Release 25.12.00

SDMMC stack The SDMMC software is integrated with MCUXpresso SDK to support
SD/MMC/SDIO standard specification. This also includes a host adapter layer for bare-
metal/RTOS applications.

PNG decoder An ‘embedded-friendly’ PNG image decoding library.

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

Openh264 H.264 Codec Library

Multicore Multicore Software Development Kit

MMCAU The NXP Memory-Mapped Cryptographic Acceleration Unit

MCU Boot Open source MCU Bootloader.

mbedTLS mbedtls SSL/TLS library v3.x

mbedTLS mbedtls SSL/TLS library v2.x

IwIP The IwIP TCP/IP stack is pre-integrated with MCUXpresso SDK and runs on top of the
MCUZXpresso SDK Ethernet driver with Ethernet-capable devices/boards.

For details, see the IwIP TCPIP Stack and MCUXpresso SDK Integration User’s Guide (document
MCUXSDKLWIPUG).

IwlIP is a small independent implementation of the TCP/IP protocol suite.

Maestro Audio Framework for MCU Maestro Audio Framework library for MCU

Voice intelligent technology library Voice Intelligent Technology (VIT) Library provides wake
word and voice command engine for voice control

Audio Voice components Audio Voice components for MCU

62 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

eIQ The package contains several example applications using the eIQ TensorFlow Lite for Mi-
crocontrollers library.

elQ machine learning SDK containing:
* Arm CMSIS-NN library (neural network kernels optimized for Cortex-M cores)
* Inference engines:
— TensorFlow Lite Micro
— DeepView RT

» Example code for TensorFlow Lite Micro, Glow, and DeepView RT

LVGL LVGL Open Source Graphics Library

Ilhttp HTTP parser llhttp

LittleFS LittleFS filesystem stack

JPEG library JPEG library

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with the MCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

emWin The MCUXpresso SDK is pre-integrated with the SEGGER emWin GUI middleware. The
AppWizard provides developers and designers with a flexible tool to create stunning user inter-
face applications, without writing any code.

NAND Flash Management Stack NAND Flash Management Stack

cJSON Ultralightweight JSON parser in ANSI C

NXP PSA CRYPTO DRIVER PSA crypto driver for crypto library integration via driver wrappers

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

1.4. Release Notes 63

MCUXpresso SDK Documentation, Release 25.12.00

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

New Project Wizard compile failure

The following components request the user to manually select other components that they de-

pend upon in order to compile.

These components depend on several other components and the New Project Wizard (NPW) is

not able to decide which one is needed by the user.

Note: xxx means core variants, such as, cmOplus, cm33, cm4, cm33_nodsp.

Components:issdk_mag3110, issdk_host, systick, gpio_kinetis, gpio_lpc, issdk_mpl3115,

sensor_fusion_agmO01, sensor_fusion_agmoO01_lpc,

issdk_mma845x, issdk_mma8491q,

issdk_mma865x, issdk_mma9553, and CMSIS_RTOS2.CMSIS_RTOS2, and components which

include cache driver, such as enet_gqos.

Also for low-level adapter components, currently the different types of the same adapter cannot

be selected at the same time.

For example, if there are two types of timer adapters, gpt_adapter and pit_adapter, only one can

be selected as timer adapter

in one project at a time. Duplicate implementation of the function results in an error.

Note: Most of middleware components have complex dependencies and are not fully supported
in new project wizard. Adding a middleware component may result in compile failure.

CMSIS-PACK svd issue

CMSIS-PACK DFP installation takes a while. When installing cmsis-pack DFP, Keil MDK processes
the MCU SVD file. The large size of SVD file takes considerable time to finish this conversion.
During the installation, the progress appears stalled. However, it finishes after approximately

20 minutes.

64

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

CMSIS PACK new project compile failure

The generated configuration cannot be applied globally. The components, se-
rial_manager_usb_cdc_virtual and serial manager_usb_cdc_virtual xxx (XXX means core
variants like cmOplus, cm33, cm4, and cm33_nodsp) are unsupported for new project wizard of
CMSIS pack and will lead to compile failure if selected while creating new project(s).

MCUXpresso IDE limitation

* Cannot debug cm4 sdram related demos with CMSIS-DAP

MCUXpresso IDE does not support initialization of sdram when debugging.

IAR debug limitation

CM4 flash target demos cannot be debugged on IAR with JLINK.

Extra option required when using CMSIS-DAP to debug

When using CMSIS-DAP to debug CM4 sdram related target in IAR, such as flexspi_nor_sdram
and sdram_txt, an extra option must be specified in the debugger settings.

aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target

The aws_httpscli_corehttp example for evkmimxrt1160 does not work correctly in MCUXpres-
soIDE release target. Use the debug target only in this IDE.

aws_httpscli_corehttp example for evkmimxrt1160 issue in MCUXpressoIDE release target

The aws_httpscli_corehttp example for evkmimxrt1160 does not work correctly in MCUXpres-
soIDE release target. Use the debug target only in this IDE.

The cmsis_lpi2c_edma_b2b_transfer examples don’t work correctly on CM4 core.

Boards cannot transfer data successfully.

Affected toolchains: mcux Affected platforms: evkmimxrt1160, evkbmimxrt1170

Modify dummy cycles value for external gspi flash

More NXP SOCs now support executed code in external flash. Projects require higher QSPI speed.
According to QSPI flash device datasheet descriptions, higher QSPI speed operates stably only
when you pair it with the appropriate dummy cycle value.

Note that some board XIP files directly modify the dummy cycle value in external flash through
ROM using the volatile method. Such modifications may not work with released toolchain ver-
sions. Upgrade the current toolchain to the latest version. NXP also optimizes the corresponding
flashloader.

When users modify dummy cycle value in non-volatile register of external flash, the NXP
flashloader becomes invalid. Users need to create their own flashloader to adapt to the external
flash dummy cycle requirements.

1.4. Release Notes 65

MCUXpresso SDK Documentation, Release 25.12.00

Affected platforms: mimxrt1020-evk, mimxrt1060-evkb, mimxrt1160-evk, mimxrt1170-evkb

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]

¢ Initial version

clock_config

[25.06.00]

 Initial version

pin_mux

[25.06.00]

 Initial version

ACMP

[2.4.0]

* New Feature

— Supported the plateforms which don’t have continuous mode.

[2.3.0]

* Improvements

— Expose CO register FILTER_CNT bitfield and FPR bitfield to the user.

[2.2.0]

* Improvements

— Updated feature macros for roundrobin mode, window mode, filter mode, and 3V do-

main removes.

66

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* New Feature

— Supported the plateforms which don’t have hysteresis mode.

[2.0.6]
* Bug Fixes
— Fixed the wrong comments, the DAC value should range from 0 to 255.
[2.0.5]
* Bug Fixes
— Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
the return value of ACMP_GetInstance() exceeding the array bounds.
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.1, 14.4, 16.4, 17.7.
[2.0.4]
* Bug Fixes
— Avoided changing wic bit in ACMP_SetRoundRobinPreState().
[2.0.3]

* New Features

— Added feature functions for usage of different power domains(1.8 V and 3 V). These
functions are first enabled in ULP1. They are about:

* ACMP_EnableLinkToDAC()
* ACMP_SetDiscreteModeConfig()
* ACMP_GetDefaultDiscreteModeConfig()

[2.0.2]
* Other Changes

— Changed coding style of peripheral base address from “s_acmpBases” to “s_acmpBase”.

[2.0.1]
* Bug Fixes

— Fixed bug regarding the function “ACMP_SetRoundRobinConfig”. It will not continue
execution but returns directly after disabling round robin mode.

1.5. ChangeLog 67

MCUXpresso SDK Documentation, Release 25.12.00

ADC_ETC

[2.3.2]
* Improvements

— Corrected that FSL, FEATURE_ADC_ETC_HAS _NO_TSC1_TRIG should be used instead of
FSL_FEATURE_ADC_ETC_HAS_NO_TSCO_TRIG in some places.

— For ADC_ETC without TSC trigger source, CTRL [bit 30] shall be cleared explicitly.

[2.3.1]
* Improvements

- Change ADC_ETC default DMA Mode to KADC_ETC_TrigDMAWithPulsedSignal.
Generally speaking, DMA transfer requests should only be cleared by DMA
ACK, and the CPU should not clear the request source. If some wusers
use option KADC_ETC TrigDMAWithLatchedSignal, changing the mode to
KkADC_ETC_TrigDMAWithPulsedSignal also meet their requirements.

[2.3.0]
* Improvements

— Added blocking way to implement SW trigger.

[2.2.1]
* Improvements
— Moditied macro “ADC_ETC_DONEZ_ERR _IRQ_TRIGO_DONE2_MASK” to
“ADC_ETC_DONE2_3_ERR_IRQ_TRIGO_DONE2_MASK?” based on the updates of header
file.
[2.2.0]

* Improvements

— Defined two macros to support some devices that do not equipped with TSC trigger.

[2.1.1]
* Bug Fixes
— Fixed the violation of MISRA-2012 rule.
[2.1.0]

* New Features
— Supported independent IRQ enable bit in ADC-ETC chain configuration registers.
— Supported trigger n DONE3 interrupt operations.
* Bug Fixes
— Fixed the violation of MISRA-2012 rules:
* Rule 10.1 10.310.7 15.5 16.1 16.316.4 17.7

68 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* New Features

— Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

ANATOP_AI

[2.0.0]

* initial version.

AOI

[2.0.2]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.0.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.8, 2.2.
[2.0.0]

 Initial version.

ASRC
[2.1.3]
* Bug Fixes
— Fixed function did not match the specified channel pair issue.
[2.1.2]

* Improvements

— Correct feature name in source file by changing FSI._FEATURE_ASRC_PARAMETER_REGISTER_NAME _;
to FSL_ FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASRPM.

— Removed the asrc_clock_source_t from driver header file, as SOC header file will pro-
vide detail definition.

* Bug Fixes

1.5. ChangeLog 69

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the ASRC_SetChannelPairConfig/ASRC_ChannelPairEnable functions missing
functionality when using channel pair B/C.

— Fixed violations of the MISRA C-2012 rules 10.7.

[2.1.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1010.4, 12.2.

[2.1.0]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 14.4, 10.1, 17.7, 11.9, 8.6, 12.2,
11.6.

[2.0.1]
* Improvements

— Added feature macro FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASPRM for
ASRC parameter register.

* Bug Fixes

— Fixed the unused build warning in asrc edma driver.

[2.0.0]

« Initial version.

ASRC EDMA Driver

[2.2.0]
* Bug Fixes

— Fixed the “watermark” and “channel” was defined in struct asrc_p2p_edma_config_t
but never used issue.

[2.1.0]
* Bug Fixes
- Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 14.4, 10.1, 17.7, 11.9, 8.6, 12.2,
11.6.
[2.0.1]

* Improvements

— Added feature macro FSL_FEATURE_ASRC_PARAMETER_REGISTER_NAME_ASPRM for
ASRC parameter register.

* Bug Fixes

— Fixed the unused build warning in asrc edma driver.

70 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

CAAM

[2.4.0]

* Add new APIs for native asymmetric operations (RSA, ECC) instead of only accelerating
mathematical primitives and support for black keys and blobs for both symmetric and
asymmetric operations.

[2.3.2]
* Fix MISRA-2012 issues.

[2.3.1]

* Modified function caam_aes_ccm_check_input_args() to allow payload be empty as is spec-
ified in NIST800-38C Section 5.3..

[2.3.0]
* Add support for SHA HMAC.

[2.2.4]

* Fix issue where the outputSize parameter of CAAM_HASH_Finish() has impact on hash cal-
culation.

[2.2.3]
» Fix DCACHE invalidation in CAAM_HASH_Finish().

[2.2.2]
* Modify RNG to not reseed with each request.

[2.2.1]
* Fixed AES-CCM decrypt failing with TAG length bigger than 8 byte.

[2.2.0]
» Added API for Blob functions and CRC

[2.1.6]

* Improve DCACHE handling. Requires CAAM used and cached memory set in write-trough
mode.

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
* Support EXTENDED data size for all AES, HASH and RNG operations.

* Support multiple De-Initialization/Initialization of CAAM driver within one POR event.

[2.1.4]
» Tix MISRA-2012 issues.

[2.1.3]
» Tix MISRA-2012 issues.

[2.1.2]
* Add data offset feature to provide support for mirrored (high-speed) memory.

[2.1.1]
* Add DCACHE support.

[2.1.0]
* Add return codes check and handling.

[2.0.3]
» Use MACRO instead of numbers in descriptor.

* Correct descriptor size mask.

[2.0.2]

* Add Data and Instruction Synchronization Barrier in caam_input_ring_set_jobs_added() to
make sure that the descriptor will be loaded into CAAM correctly.

[2.0.1]
* Add Job Ring 2 and 3.

[2.0.0]

 Initial version.

CACHE LMEM

[2.1.0]
* Improvements

— Add memory barrier when enabling/disabling cache.

72 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* Improvements

— Added new feature macro to support some device do not support PCCCRIENWRBUF]

bit field.
[2.0.6]
* Bug Fixes
— Fixed doxygen issue.
[2.0.5]

* Improvements

— Updated the cache enable function, don’t enable again when it is already enabled.

[2.0.4]
* Bug Fixes
— Updated full name for Imem driver.

— Fixed doxygen issue.

[2.0.3]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 10.4 and 14.4.

[2.0.2]
* Improvements

— Moved CLCRregister configuration out of the while loop, it’s unnecessary to repeat this

operation.
[2.0.1]
* Bug Fixes
— Fixed the over-4KB-size maintenance issue in invalidate/clean/clean&invalidate by
range APIs.
[2.0.0]

 Initial version.

CACHE ARMv7-M7

[2.0.5]
* Bug Fixes

— Fixed cache operations to handle zero size and overflow in invalidate/clean functions

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
* Bug Fixes
— Fixed doxygen issue.
[2.0.3]

* Improvements

— Deleted redundancy code about calculating cache clean/invalidate size and address
aligns.

[2.0.2]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 10.1, 10.3 and 10.4.

[2.0.1]
* Bug Fixes
— Fixed cache size issue in L2CACHE_GetDefaultConfig APIL

[2.0.0]

« Initial version.

CDOG

[2.1.3]
* Re-design multiple instance IRQs and Clocks
* Add fix for RESTART command errata

[2.1.2]
* Support multiple IRQs
* Fix default CONTROL values

[2.1.1]
* Remove bit CONTROL[CONTROL_CTRL].

[2.1.0]
* Rename CWT to CDOG.

[2.0.2]
* Fix MISRA-2012 issues.

74 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]

* Fix doxygen issues.

[2.0.0]

« Initial version.

CLOCK

[2.2.0]
* New Features
— Added APIs to set/get CLKO1/02.

[2.1.6]
* Bug Fixes

— Fix an issue in CLOCK_InitArmPIl() of wrong bitmask used

[2.1.5]
* Bug Fixes

— Fix clock_pll_post_div_t value.

[2.1.4]
¢ Improvements

— Move s_clockSourceName array to ¢ from header.

[2.1.3]
* Improvements

— Toggle hold_ring_off during arm pll initialization.

[2.1.2]
* Bug Fixes
— Fixed bug in XBARA_CLOCKS macro define.
— Fixed bug in CLOCK_InitSysPI11() function.

[2.1.1]
* Bug Fixes
- Fixed bug in CLOCK_InitArmPIll() function.
— Fixed bug clock root divider set to cut off at 255.

1.5. ChangeLog

75

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* New Features
— Added CLOCK DeinitPfd() function.
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.4.
— Fixed bug in XBARA_CLOCKS macro define.

[2.0.0]

* initial version.

COMMON

[2.6.3]
* Bug Fixes
— Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

[2.6.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts
[2.6.1]
* Improvements
— Support Cortex M23.
[2.6.0]
* Bug Fixes
- Fix CERT-C violations.
[2.5.0]

* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQExX and En-
ableGloballRQEX so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

76 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features
— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platform:s.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

— Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
— Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.
— Fixed SDK_Malloc issue that not allocate memory with required size.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef _ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
— Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
- Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

78 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

- Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

CSI

[2.2.0]
* Improvements

— Update driver to invoke callback whenere there is a full frame received.

[2.1.5]
* Improvements

— Updated for new CSI register and macro names.

[2.1.4]
* Improvements

— Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.1.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.1.2]

* Improvements

— Supported new CSI_Type register naming.

[2.1.1]
* Bug Fixes
— Fixed IAR build warning Pa082.
— Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.3, 10.4, 10.6, 11.6, 14.4, 17.7.
[2.1.0]

* New Features
— Added 16-bit and 24-bit data bus support.
* Bug Fixes:

— Fixed the bug that CSI writes to wrong buffer when empty buffer not submitted in time.

80 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
* Bug Fixes

— Fixed wrong circular queue delta calculation.

— Fixed double buffering capture issue where, when the transfer is ongoing and the
device has empty buffer slot, the function CSI_TransferSubmitEmptyBuffer sets the
empty buffer to CSI device.

[2.0.2]

* New Features

— Added fragment mode support.

[2.0.1]
* Improvements

— Switched DMA output buffer at the first data after each VSYNC. It originally happened
when the DMA transfer was done.

[2.0.0]

 Initial version.

DAC12
[2.1.2]
* Bug Fixes
— Fixed CERT INT31-C issue.
[2.1.1]

* Improvements

— Release peripheral from reset if necessary in init function.

[2.1.0]
* Improvements

— Defined the macro “FSL_FEATURE_HAS_NO_ITRM_REGISTER?” to distinguish different
scenes that ITRM register may not equipped one some devices.

[2.0.1]
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.8, 17.7.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

DCDC

[2.1.2]
* Improvements

— The DCDC_GetInstance() function is only available
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is set to 0.

[2.1.1]
* Bug Fixes
— Fixed Doxygen warnings.
[2.1.0]

* Improvements
— Updated DCDC_BootIntoDCM() function.
— Based on the updates of header file, updated dcdc driver.
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3, rule 10.7, and rule 12.2.

[2.0.0]

 Initial version.

when

DCIC
[2.0.2]
* Bug Fixes
— Fixed the violations of MISRA 2012 advisory rules.
[2.0.1]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules: 10.1, 10.4.
[2.0.0]

¢ Initial version.

82 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

DMAMUX

[2.1.3]
* Improvements

— Wrap DMAMUX_GetInstance into FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL to
avoid build issues.

[2.1.2]
* Bug Fixes
— Add macro FS,. DMAMUX_CHANNEL_NUM to calculat correct DMAMUX channel num-
ber when input EDAM channel number.
[2.1.1]

* Improvements

— Add macro FSL_FEATURE DMAMUX CHANNEL_NEEDS_ENDIAN_CONVERT and
DMAMUX_CHANNEL_ENDIAN_CONVERTnN do channel endian convert.

[2.1.0]
* Improvements

— Modify the type of parameter source from uint32_t to int32_t in the DMA-
MUX_SetSource.

[2.0.5]
* Improvements
— Added feature FSL. FEATURE DMAMUX_CHCFG_REGISTER_WIDTH for the difference

of CHCFG register width.
[2.0.4]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.
[2.0.3]
* Bug Fixes
— Fixed the issue for MISRA-2012 check.
* Fixed rule 10.4 and rule 10.3.
[2.0.2]

* New Features
— Added an always-on enable feature to a DMA channel for ULP1 DMAMUX support.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Bug Fixes
— Fixed the build warning issue by changing the type of parameter source from uint8_t
to uint32_t when setting DMA request source in DMAMUX_SetSourceChange.
[2.0.0]

 Initial version.

EDMA
[2.4.7]
* Bug Fixes
— Fixed coverity MSG issues with CERT INT31-C compliance.
[2.4.6]
* Bug Fixes
— Fixed the EDMA header index retrieval error caused by done bit calculation mistake
issue.
[2.4.5]
* Bug Fixes
— Fixed memory convert would convert NULL as zero address issue.
[2.4.4]
* Bug Fixes
— Fixed comments by replacing STCD with TCD
— Fixed the TCD overwrite issue when submit transfer request in the callback if there is
a active TCD in hardware.
- Fixed violations of MISRA C-2012 rule 10.8,5.6.
[2.4.3]

* Improvements

— Added FSL_FEATURE_MEMORY _HAS ADDRESS OFFSET to convert the address be-
tween system mapped address and dma quick access address.

* Bug Fixes

— Fixed the wrong tcd done count calculated in first TCD interrupt for the non scatter
gather case.

84 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
* Bug Fixes
— Fixed the wrong tcd done count calculated in first TCD interrupt by correct the initial
value of the header.
— Fixed violations of MISRA C-2012 rule 10.3, 10.4.
[2.4.1]
* Bug Fixes
— Added clear CITER and BITER registers in EDMA_AbortTransfer to make sure the TCD
registers in a correct state for next calling of EDMA_SubmitTransfer.
— Removed the clear DONE status for ESG not enabled case to aovid DONE bit cleared
unexpectedly.
[2.4.0]

* Improvements

— Added api EDMA_EnableContinuousChannell.inkMode to support continuous link
mode.

— Added apis EDMA_SetMajorOffsetConfig/EDMA_TcdSetMajorOffsetConfig to support
major loop address offset feature.

— Added api EDMA_EnableChannelMinorLoopMapping for minor loop offset feature.

— Removed the reduntant IRQ Handler in edma driver.

[2.3.2]
* Improvements
— Fixed HIS ccm issue in function EDMA_PrepareTransferConfig.
— Fixed violations of MISRA C-2012 rule 11.6, 10.7, 10.3, 18.1.
* Bug Fixes

— Added ACTIVE & BITER & CITER bitfields to determine the channel status to fixed the
issue of the transfer request cannot submit by function EDMA_SubmitTransfer when
channel is idle.

[2.3.1]
* Improvements
— Added source/destination address alignment check.

— Added driver IRQ handler support for multi DMA instance in one SOC.

[2.3.0]
* Improvements

— Added new api EDMA_PrepareTransferConfig to allow different configurations of
width and offset.

* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4, 10.1.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the Coverity issue regarding out-of-bounds write.

[2.2.0]
¢ Improvements

— Added peripheral-to-peripheral support in EDMA driver.

[2.1.9]
* Bug Fixes
— Fixed MISRA issue: Rule 10.7 and 10.8 in function EDMA_DisableChannellnterrupts
and EDMA_SubmitTransfer.
— Fixed MISRA issue: Rule 10.7 in function EDMA_EnableAsyncRequest.
[2.1.8]
* Bug Fixes
— Fixed incorrect channel preemption base address used in
EDMA_SetChannelPreemptionConfig API which causes incorrect configuration of
the channel preemption register.
[2.1.7]
* Bug Fixes
— Fixed incorrect transfer size setting.
* Added 8 bytes transfer configuration and feature for RT series;
* Added feature to support 16 bytes transfer for Kinetis.
— Fixed the issue that EDMA_HandleIRQ would go to incorrect branch when TCD was not
used and callback function not registered.
[2.1.6]
* Bug Fixes

— Fixed KW3X MISRA Issue.
* Rule 14.4, 10.8, 10.4, 10.7, 10.1, 10.3, 13.5, and 13.2.
* Improvements

— Cleared the IRQ handler wunavailable for specific platform with macro
FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET.

[2.1.5]
* Improvements

— Improved EDMA IRQ handler to support half interrupt feature.

86 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.4]
* Bug Fixes
— Cleared enabled request, status during EDMA_Init for the case that EDMA is halted
before reinitialization.
[2.1.3]
* Bug Fixes
— Added clear DONE bit in IRQ handler to avoid overwrite TCD issue.
— Optimized above solution for the case that transfer request occurs in callback.
[2.1.2]

* Improvements
— Added interface to get next TCD address.

— Added interface to get the unused TCD number.

[2.1.1]
* Improvements

— Added documentation for eDMA data flow when scatter/gather is implemented for the
EDMA_HandleIRQ API.

— Updated and corrected some related comments in the EDMA_HandleIRQ API and
edma_handle_t struct.

[2.1.0]
* Improvements

— Changed the EDMA_GetRemainingBytes APIinto EDMA_GetRemainingMajorLoopCount
due to eDMA IP limitation (see API comments/note for further details).

[2.0.5]
* Improvements
— Added pubweak DriverIRQHandler for K32H844P (16 channels shared).

[2.0.4]
* Improvements
— Added support for SoCs with multiple eDMA instances.
— Added pubweak DriverIRQHandler for KL28T DMA1 and MCIMX7U5_M4.

[2.0.3]
* Bug Fixes

— Fixed the incorrect pubweak IRQHandler name issue, which caused re-definition build
errors when client set his/her own IRQHandler, by changing the 32-channel IRQHan-
dler name to DriverIRQHandler.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
* Bug Fixes
— Fixed incorrect minorLoopBytes type definition in _edma_transfer_config struct, and
defined minorLoopBytes as uint32_t instead of uint16_t.
[2.0.1]
* Bug Fixes
— Fixed the eDMA callback issue (which did not check valid status) in EDMA_HandleIRQ
APL
[2.0.0]

 Initial version.

ELCDIF

[2.1.0]
* New Features

— Added API ELCDIF_SetPixelComponentOrder to support configure pixel component or-

der.
[2.0.7]
* Bug Fixes
— Fixed faulty operation of CTRL1 in ELCDIF_RghModeSetPixelFormat.
[2.0.6]
* Bug Fixes
- Fixed bug in ELCDIF_RgbModeStop that the API shall return until RUN bit is cleared,
so that the RGB mode is properly stopped.
[2.0.5]
* Bug Fixes
— Fixed the violations of MISRA 2012 advisory rules.
[2.0.4]

* Improvements
— Increase outstanding transactions for better performance.

— Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

88 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
* Improvements
— Supported the platforms which don’t have PXP handshake feature.
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.2]
* Bug Fixes
- Fixed violations of the MISRA C-2012 rules 3.1, 8.4, 10.1, 10.6, 10.7, 10.8, 14.4, 17.7
— Removed hardcode delay in function ELCDIF_Reset.
[2.0.1]

* Improvements
— Added the function ELCDIF_RghModeSetPixelFormat.

[2.0.0]

 Initial version.

ENC

[2.2.1]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.2.0]
* New Features

— Supported input filter prescaler.

[2.1.0]
* Improvements

— Supported period measurement function.

[2.0.2]
* Improvements
— Added feature macro for CTRL2[SABIE] and CTRL2[SABIRQ] bits.

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 17.7.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

ENET

[2.11.0]
* New Features

— Added function ENET_Ptp1588JumpTimer which adjusts the ENET PTP 1588 timer by
jumping a relative time difference. Compared to ENET_Ptp1588SetTimer, this function
yields more accurate results when the relative time difference between the PTP clock
and the target clock is known.

[2.10.1]
* Bug Fixes
— Fixed WAKEUP interrupt not being handled.
[2.10.0]

* New Features

— Added function ENET_Ptp1588GetChannelCaptureValue to read last captured time
from PTP 1588 timer.

[2.9.3]
* Bug Fixes
— Fixed ENET_Ptp1588GetTimer incorrect timestamps when timer wraps occur after
nanosecond capture:
* Now only increments second field when nanosecond value is less than half a sec-
ond
[2.9.2]
* Bug Fixes
— RGMII mode is (temporarily) disabled before selecting between 10/100-Mbit/s and
1000-Mbit/s modes of operation. The bit RGMII_EN of RCR register must not be set
while changing ECR register’s speed bit, otherwise there is a possibility of ENET IP
ending in an incorrect state.
[2.9.1]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rules 8.4, 10.4.

90 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
* Bug Fixes

— Enabled collection of transfer statistics, so the function ENET_GetStatistics does not
always return zeroes.

* New Features

— Added new function ENET_EnableStatistics to enable/disable collection of transfer
statistics.

— Added new function ENET_ResetStatistics to reset transfer statistics.
* Improvements

— Renamed the function ENET ResetHareware to ENET ResetHardware.

[2.8.0]
* New Features

— Added the function to reset hardware on certain devices.

[2.7.1]
* Bug Fixes
— Fixed the issue that free wrong buffer address when one frame stores in multiple
buffers and memory pool is not enough to allocate these buffers to receive one com-
plete frame.
[2.7.0]

* Improvements

— Deleted deprecated zero copy Tx/Rx functions and set callback function which can be
configured in ENET_Init.

— Moved the Rx zero copy buffer allocation to Rx BD initialization function to reduce
unnecessary looping code.

* Bug Fixes

— Fixed the issue that predefined Rx buffers which should not be used when enabling
Rx zero copy are still be handled by cache operation, it causes hardfault on some plat-
forms.

— Fixed the issue that zero-copy Rx function doesn’t check Rx length of 0 in the BD with
EMPTY bit is 0, it may occur in the corner case reported by customer. Not sure how it
turns out, consider it as an ENET IP issue and drop this abnormal BD.

[2.6.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 11.6.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
* Improvements

— Changed ENET1_MACO_Rx_Tx_Done0O_DriverIRQHandler/ENET1_MACO_Rx_Tx_Donel_DriverIRQHan
to ENET1_MACO_Rx_Tx_Donel_DriverIRQHandler/ENET1_MACO_Rx_Tx_Done2_DriverIRQHandler
which represent ring 1 and ring 2.

[2.6.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.7, 11.6, 11.8.
[2.6.0]

* Improvements
— Added MDIO access wrapper APIs for ease of use.
— Fixed the build warning introduced by 64-bit compatibility patch.

[2.5.4]
* Improvements

— Made the driver compatible with 64-bit platforms.

[2.5.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 11.6.
[2.5.2]

* Improvements

— Updated the TXIC/RXIC register handling code according to the new header file.

[2.5.1]
* Bug Fixes

— Fixed document typo.

[2.5.0]
* Bug Fixes
— Fixed the SendFrame/SendFrameZeroCopy functions issue with scattered buffers.
— Updated the formula of MDC calculation.

— Used a feature macro to distinguish the old IP design from the new design, because
old IP design always reads a value zero from ATCR->CAPTURE bit. For old IP, driver
caculates and wait the necessary delay cycles after setting ATCR->CAPTURE then gets
the timestamp value.

* New Features

— Added new zero copy Tx/Rx function.

92 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— New zero copy Tx function combines scattered and contiguous Tx buffer in one API,
it also supports more Tx featrues which buffer descriptor supports but previous Tx
function doesn’t support.

— New zero copy Rx function use dynamic buffer mechanism and simpler interface.
* Improvements

— Corrected the interrupt handler for PTP timestamp IRQ and PTP1588 event IRQ since
platform difference.

— Added missing IRQ handlers for PTP1588 events on some platforms.

— Corrected the max Tx frame length verification, it will not depend on a fixed macro.
The ENET_FRAME_MAX_FRAMELEN is only an default value for driver, application
can configure it. Driver caculates the limitation with the max frame length in register
which may takes extended 4 or 8 bytes VLAN tag if VLAN/SVLAN enables.

— Deleted deprecated Clause 45 read/write legacy APIs.

[2.4.3]
* Improvements
— Aligned the IRQ handler name with header file.

[2.4.2]
* Bug Fixes

— Fixed the MISRA issue of speculative out-of-bounds access.

[2.4.1]
* Bug Fixes

— Fixed the PTP time capture issue.

[2.4.0]
* Improvements

— Exposed API ENET_ReclaimTxDescriptor for user application to relaim tx descriptors
in their application.

— Added counter to record multicast hash conflict in struct _enet_handle, improved the
situation that one multicast group could be left by other conflict multicast address left
operation.

— Improved concurrent usage of relaim and send frame operation.

[2.3.4]
* Bug Fixes

— Fixed the issue that interrupt handler only checks the interrupt event flag but not
checks interrupt mask flag.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.3]
* Bug Fixes
— Fixed the issue that some compilers may choose the memcpy with 4-bit aligned address
limitation due to the type of address pointer is ‘unsigned int *’, the data address doesn’t
have to be 4-bit aligned.
[2.3.2]

* New Features

— Added the feature that ENET driver can be used in the platform which integrates both
10/100M and 1G ENET IP.

— Deleted duplicated code about ARM errata 838869 in first/second level IRQ handler.

[2.3.1]
* Improvements

— Added function pointer checking in IRQ handler to make sure code can be used even
it runs into the interrupt when the second level interupt handler is NULL.

[2.3.0]
* Bug Fixes

— Fixed the issue that clause 45 MDIO read/write API doesn’t check the transmission over
status between two transmissions.

- Fixed violations of the MISRA C-2012 rules 2.2,10.3,10.4,10.7,11.6,11.8,13.5,14.4,15.7,17.7.
* New Features

— Added APIs to support send/receive frame with Zero-Copy.
* Improvements

— Separated the clock configuration from module configuration when init and deinit.

— Added functions to set second level interrupt handler.

— Provided new function to get 1588 timer count without disabling interrupt.

— Improved timestamp controlling, deleted all old timestamp management APIs and data
structures.

— Merged the single/multiple ring(s) APIs, now these APIs can handle both.
— Used base and index to control buffer descriptor, aligned with qos and Ipc enet driver.

[2.2.6]
* Bug Fixes

— Updated MII speed formula referring to the manual.

94 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.5]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.7, 11.6, 11.9, 13.5,
14.4,16.4,17.7,21.15, 3.1, 8.4.

— Changed to use ARRAY_SIZE(s_enetBases) as the array size for s_ ENETHandle, fixed
the hardfault issue for using some ENET instance when ARRAY_SIZE(s_enetBases) is
not same as FSL_FEATURE_SOC_ENET_COUNT.

[2.2.4]

* Improvements

— Added call to Data Synchronization Barrier instruction before activating Tx/Rx buffer
descriptor to ensure previous data update is completed.

— Improved ENET_TransmitIRQHandler to store timestamps for multiple transmit buffer
descriptors.

— Bug Fixes

— Fixed the issue that ENET_Ptp1588GetTimer did not handle the timer wrap situation.

[2.2.3]
* Improvements

— Improved data buffer cache maintenance in the ENET driver.

[2.2.2]
* New Features
— Added APIs for extended multi-ring support.
— Added the AVB configure API for extended AVB feature support.

[2.2.1]
* Improvements

— Changed the input data pointer attribute to const in ENET_SendFrame().

[2.1.1]
* New Features
— Added the extended MDIO IEEE802.3 Clause 45 MDIO format SMI command APIs.
— Added the extended interrupt coalescing feature.
* Improvements

— Combined all storage operations in the ENET_Init to ENET_SetHandler API.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]

* Bug Fixes

— Used direct transmit busy check when doing data transmit.

* Miscellaneous Changes
— Updated IRQ handler work flow.

- Changed the TX/RX interrupt macro from KENET_RxBytelnterrupt to
KENET RxBufferInterrupt, from KENET TxByteInterrupt to KENET_TxBufferInterrupt.

— Deleted unnecessary parameters in ENET handler.

[2.0.0]

 Initial version.

EWM
[2.0.4]
* Bug Fixes
— Fixed CERT INT31-C violations.
[2.0.3]
* Bug Fixes
— Fixed violation of MISRA C-2012 rules: 10.1, 10.3.
[2.0.2]
* Bug Fixes
— Fixed violation of MISRA C-2012 rules: 10.3, 10.4.
[2.0.1]
* Bug Fixes
— Fixed the hard fault in EWM_Deinit.
[2.0.0]

 Initial version.

96

Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

FLEXCAN

[2.14.5]
* Improvements
— Make API FLEXCAN GetFDMailboxOffset public.

— Add API FLEXCAN_ SetMbID and FLEXCAN_ SetFDMbID to configure Message Buffer
ID individually.

* Bug Fixes
— Fixed violations of the CERT INT30-C INT31-C.
— Fixed violations of the CERT ARR30-C.

[2.14.4]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.4, 18.1.

[2.14.3]
* Improvements
— Add unhandled interrupt events check for following API:
* FLEXCAN_ MbHandleIRQ
* FLEXCAN_ EhancedRxFifoHandleIRQ
* Bug Fixes

— Remove FLEXCAN MemoryErrorHandleIRQ on some platform without memory error
interrupt.

— Add conditional compile for CTRL2[ISOCANFDEN] because some platform do not have
this bit.

[2.14.2]
* Improvements
— Add Coverage Justification for uncovered code.
— Adjust API FLEXCAN_ TransferAbortReceive order.

— Update FLEXCAN_ Enable to enter Freeze Mode first when enter Disable mode on some
platform.

— Added while loop timeout for following API:
* FLEXCAN EnterFreezeMode
* FLEXCAN ExitFreezeMode
% FLEXCAN_ Enable
* FLEXCAN Reset
* FLEXCAN_ TransferSendBlocking
* FLEXCAN_ TransferReceiveBlocking
* FLEXCAN_ TransferFDSendBlocking
* FLEXCAN_ TransferFDReceiveBlocking

1.5. ChangeLog 97

MCUXpresso SDK Documentation, Release 25.12.00

* FLEXCAN_ TransferReceiveFifoBlocking
* FLEXCAN_ TransferReceiveEnhancedFifoBlocking
* Bug Fixes

— Remove remote frame feature in CANFD mode because there is no remote frame in
the CANFD format.

— Remove legacy Rx FIFO disabled branch in FLEXCAN_SubHandlerForLegacyRxFIFO
and FLEXCAN SubHandlerForDataTransfered.

[2.14.1]
* Bug Fixes

— Fixed register IMASK2-4 IFLAG2-4 HR_TIME_STAMPn access issue on FlexCAN in-
stances with different number of MBs.

— Fixed bit field MBDSR1-3 access issue on FlexCAN instances with different number of
MBs.

* Improvements
— Unified following API as same parameter and return value type:
* FLEXCAN_ GetMbStatusFlags
* FLEXCAN_ ClearMbStatusFlags
* FLEXCAN_ EnableMblInterrupts
* FLEXCAN_ DisableMblnterrupts
— Add workaround for ERR050443 and ERR052403.

— Update message buffer read process in API FLEXCAN_ ReadRxMb and FLEX-
CAN_ ReadFDRxMb to make critical section as short as possible.

— Simplify API FLEXCAN_ DriverDatalRQHandler implementation by remove parameter
type.

[2.14.0]
* Improvements
— Support external time tick feature.
— Support high resolution timestamp feature.
— Enter Freeze Mode first when enter Disable Mode on some platform.

— Add feature macro for Pretended Networking because some FlexCAN instance do not
have this feature.

— Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

— Add new FlexCAN IRQ Handler FLEXCAN_DriverDatalRQHandler and FLEX-
CAN_DriverEventIRQHandler. Thses IRQ Handlers are used on soc which FlexCAN
interrupts are grouped by specific function and assigned to different vector.

- Update macro FLEXCAN_WAKE_UP_FLAG and FLEXCAN_PNWAKE_UP_FLAG to sim-
plify code.

— Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKMSK SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_NO_SLFWAK_ SUPPORT.

98 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKSRC_SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER.

* Bug Fixes

— Fixed wrong interrupt and status flag helper macro in enumeration _flexcan_flags and
API FLEXCAN_Disablelnterrupts.

— Fixed interrupt flag helper macro typo issue.

— Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_MEMORY_ERROR_INT_FLAG.

— Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_ERROR_AND_STATUS_INT_FLAG.

- Fixed array out-of-bounds access when read enhanced Rx FIFO.

[2.13.1]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.13.0]
* Improvements

— Support payload endianness selection feature.

[2.12.0]
* Improvements
— Support automatic Remote Response feature.

— Add API FLEXCAN_SetRemoteResponseMbConfig() to configure automatic Remote Re-
sponse mailbox.

[2.11.8]
* Improvements

— Synchronize flexcan driver update on s32z platform.

[2.11.7]
* Bug Fixes
— Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compatibility with edma5.

[2.11.6]
* Bug Fixes

— Fixed ERRATA_9595 FLEXCAN_EnterFreezeMode() may result to bus fault on some
platform.

1.5. ChangeLog 99

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.5]
* Bug Fixes
— Fixed flexcan_memset() crash under high optimization compilation.
[2.11.4]

* Improvements
— Update CANFD max bitrate to 10Mbps on MCXNx3x and MCXNx4x.

— Release peripheral from reset if necessary in init function.

[2.11.3]
* Bug Fixes
— Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compile error with DMA3.

[2.11.2]
* Bug Fixes

— Fixed bug that timestamp in flexcan_handle_t not updated when RX overflow happens.

[2.11.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1.

[2.11.0]
* Bug Fixes
— Fixed wrong base address argument in FLEXCAN2 IRQ Handler.
* Improvements

— Add API to determine if the instance supports CAN FD mode at run time.

[2.10.1]
* Bug Fixes
— Fixed HIS CCM issue.
— Fixed RTOS issue by adding protection to read-modify-write operations on interrupt
enable/disable APIL
[2.10.0]

¢ Improvements
— Update driver to make it able to support devices which has more than 64 8bytes MBs.

— Update CAN FD transfer APIs to make them set/get edl bit according to frame content,
which can make them compatible with classic CAN.

100 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.2]
* Bug Fixes

— Fixed the issue that FLEXCAN_CheckUnhandleInterruptEvents() can’t detecting the ex-
ist enhanced RX FIFO interrupt status.

— Fixed the issue that FLEXCAN_ReadPNWakeUpMB() does not return fail even no exist-
ing valid wake-up frame.

— Fixed the issue that FLEXCAN_ReadEnhancedRxFifo() may clear bits other than the
data available bit.

— Fixed violations of the MISRA C-2012 rules 10.4, 10.8.
* Improvements

— Return kStatus_FLEXCAN_RxFifoDisabled instead of kStatus_Fail when read FIFO fail
during IRQ handler.

— Remove unreachable code from timing calculates APIs.

— Update Enhanced Rx FIFO handler to make it deal with underflow/overflow status first.

[2.9.1]
* Bug Fixes

— Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoBlocking() API clearing
Fifo data available flag more than once.

— Fixed the issue that entering FLEXCAN_SubHandlerForEhancedRxFifo() even if En-
hanced Rx fifo interrupts are not enabled.

— Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoEDMA() update handle
even if previous Rx FIFO receive not finished.

— Fixed the issue that FLEXCAN_SetEnhancedRxFifoConfig() not configure the ER-
FCR[NFE] bits to the correct value.

— Fixed the issue that FLEXCAN_ReceiveFifoEDMACallback() can’t differentiate between
Rx fifo and enhanced rx fifo.

— Fixed the issue that FLEXCAN_TransferHandleIRQ() can’t report Legacy Rx FIFO warn-
ing status.

[2.9.0]
* Improvements
* Add public set bit rate API to make driver easier to use.

» Update Legacy Rx FIFO transfer APIs to make it support received multiple frames during
one API call.

* Optimized FLEXCAN_SubHandlerForDataTransfered() API in interrupt handling to reduce
the probability of packet loss.

[2.8.7]
* Improvements
* Initialized the EDMA configuration structure in the FLEXCAN EDMA driver.

1.5. ChangeLog 101

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.6]
* Bug Fixes

» Fix Coverity overrun issues in fsl_flexcan_edma driver.

[2.8.5]
* Improvements

— Make driver aarch64 compatible.

[2.8.4]
* Bug Fixes
— Fixed FlexCan_Errata_6032 to disable all interrupts.
[2.8.3]
* Bug Fixes
— Fixed an issue with the FLEXCAN_EnableInterrupts and FLEXCAN_DisableInterrupts
interrupt enable bits in the CTRL1 register.
[2.8.2]
* Bug Fixes
— Fixed errors in timing calculations and simplify the calculation process.
— Fixed issue of CBT and FDCBT register may write failure.
[2.8.1]
* Bug Fixes
— Fixed the issue of CAN FD three sampling points.
— Added macro to support the devices that no MCR[SUPV] bhit.
— Remove unnecessary clear WMB operations.
[2.8.0]

* Improvements
— Update config configuration.

% Added enableSupervisorMode member to support enable/disable Supervisor
mode.

— Simplified the algorithm in CAN FD improved timing APIs.

[2.7.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.7.

102 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
* Improvements
— Update config configuration.

% Added enablePretendedeNetworking member to support enable/disable Pre-
tended Networking feature.

* Added enableTransceiverDelayMeasure member to support enable/disable
Transceiver Delay MeasurementPretended feature.

* Added bitRate/bitRateFD member to work as baudRate/baudRateFD member
union.

— Rename all “baud” in code or comments to “bit” to align with the CAN spec.
— Added Pretended Networking mode related APIs.

% FLEXCAN_SetPNConfig

% FLEXCAN_GetPNMatchCount

* FLEXCAN_ReadPNWakeUpMB
— Added support for Enhanced Rx FIFO.

— Removed independent memory error interrupt/status APIs and put all interrupt/status
control operation into FLEXCAN_EnableInterrupts/FLEXCAN_DisableInterrupts and
FLEXCAN_GetStatusFlags/FLEXCAN_ClearStatusFlags APIs.

— Update improved timing APIs to make it calculate improved timing according to CiA
doc recommended.

% FLEXCAN_CalculateImprovedTimingValues.
* FLEXCAN_FDCalculateImprovedTimingValues.

— Update FLEXCAN_SetBitRate/FLEXCAN_SetFDBitRate to added the use of enhanced
timing registers.

[2.6.2]
* Improvements

— Add CANFD frame data length enumeration.

[2.6.1]
* Bug Fixes
— Fixed the issue of not fully initializing memory in FLEXCAN_Reset() APIL.
[2.6.0]

* Improvements
— Enable CANFD ISO mode in FLEXCAN_FDInit API.

— Enable the transceiver delay compensation feature when enable FD operation and set
bitrate switch.

— Implementation memory error control in FLEXCAN_Init APL

— Improve FLEXCAN_FDCalculateImprovedTimingValues API to get same value for
FPRESDIV and PRESDIV.

— Added memory error configuration for user.

1.5. ChangeLog 103

MCUXpresso SDK Documentation, Release 25.12.00

* enableMemoryErrorControl
% enableNonCorrectableErrorEnterFreeze

— Added memory error related APIs.
% FLEXCAN_GetMemoryErrorReportStatus
* FLEXCAN_GetMemoryErrorStatusFlags
* FLEXCAN_ClearMemoryErrorStatusFlags
% FLEXCAN_EnableMemoryErrorinterrupts
% FLEXCAN_DisableMemoryErrorInterrupts

* Bug Fixes
— Fixed the issue of sent duff CAN frame after call FLEXCAN_FDInit() API.

[2.5.2]
* Bug Fixes
— Fixed the code error issue and simplified the algorithm in improved timing APIs.

* The bit field in CTRL1 register couldn’t calculate higher ideal SP, we set it as the
lowest one(75%)

- FLEXCAN_CalculateImprovedTimingValues
- FLEXCAN_FDCalculateImprovedTimingValues
— Fixed MISRA-C 2012 Rule 17.7 and 14.4.
* Improvements

— Pass EsrStatus to callback function when kStatus_FLEXCAN_ErrorStatus is comming.

[2.5.1]
* Bug Fixes
— Fixed the non-divisible case in improved timing APIs.
% FLEXCAN_CalculateImprovedTimingValues
% FLEXCAN_FDCalculateImprovedTimingValues

[2.5.0]
* Bug Fixes
— MISRA C-2012 issue check.

* Fixed rules, containing: rule-10.1, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-
11.8, rule-12.2, rule-13.4, rule-14.4, rule-15.5, rule-15.6, rule-15.7, rule-16.4, rule-
17.3, rule-5.8, rule-8.3, rule-8.5.

- Fixed the issue that API FLEXCAN_SetFDRxMbConfig lacks inactive message buff.
— Fixed the issue of Pa082 warning.
— Fixed the issue of dead lock in the function of interruption handler.

— Fixed the issue of Legacy Rx Fifo EDMA transfer data fail in evkmimxrt1060 and evk-
mimxrt1064.

— Fixed the issue of setting CANFD Bit Rate Switch.

104 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the issue of operating unknown pointer risk.

* when used the pointer “handle->mbFrameBuf[mbIdx]” to update the timestamp
in a short-live TX frame, the frame pointer became as unknown, the action of op-
erating it would result in program stack destroyed.

— Added assert to check current CAN clock source affected by other clock gates in current
device.

* In some chips, CAN clock sources could be selected by CCM. But for some clock
sources affected by other clock gates, if user insisted on using that clock source,
they had to open these gates at the same time. However, they should take into
consideration the power consumption issue at system level. In RT10xx chips, CAN
clock source 2 was affected by the clock gate of lpuartl. ERRATA ID: (ERR050235
in CCM).

* Improvements
— Implementation for new FLEXCAN with ECC feature able to exit Freeze mode.
— Optimized the function of interruption handler.
— Added two APIs for FLEXCAN EDMA driver.
% FLEXCAN_PrepareTransfConfiguration
+ FLEXCAN_StartTransferDatafromRxFIFO
— Added new API for FLEXCAN driver.
* FLEXCAN_GetTimeStamp

- For TX non-blocking API, we wrote the frame into mailbox only, so no need to
register TX frame address to the pointer, and the timestamp could be updated
into the new global variable handle->timestamp[mblIdx], the FLEXCAN driver
provided a new API for user to get it by handle and index number after TX
DONE Success.

* FLEXCAN_EnterFreezeMode
% FLEXCAN_ExitFreezeMode
— Added new configuration for user.
* disableSelfReception
* enableListenOnlyMode
— Renamed the two clock source enum macros based on CLKSRC bit field value directly.

* The CLKSRC bit value had no property about Oscillator or Peripheral type in lots
of devices, it acted as two different clock input source only, but the legacy enum
macros name contained such property, that misled user to select incorrect CAN
clock source.

- Created two new enum macros for the FLEXCAN driver.
* KFLEXCAN_CIkSrcO
* KFLEXCAN_ClkSrc1
— Deprecated two legacy enum macros for the FLEXCAN driver.
% KFLEXCAN_ClkSrcOsc
* KFLEXCAN_ClkSrcPeri
— Changed the process flow for Remote request frame response..
* Created a new enum macro for the FLEXCAN driver.
- kStatus_ FLEXCAN_RxRemote

1.5. ChangeLog 105

MCUXpresso SDK Documentation, Release 25.12.00

— Changed the process flow for KFLEXCAN_StateRxRemote state in the interrupt handler.

* Should the TX frame not register to the pointer of frame handle, interrupt handler
would not be able to read the remote response frame from the mail box to ram,
so user should read the frame by manual from mail box after a complete remote
frame transfer.

[2.4.0]
* Bug Fixes
— MISRA C-2012 issue check.

* Fixed rules, containing: rule-12.1, rule-17.7, rule-16.4, rule-11.9, rule-8.4, rule-14.4,
rule-10.8, rule-10.4, rule-10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3,
rule-8.3, rule-12.2 and rule-16.1.

— Fixed the issue that CANFD transfer data fail when bus baudrate is 30Khz.
— Fixed the issue that ERR009595 does not folllow the ERRATA document.
— Fixed code error for ERR006032 work around solution.
— Fixed the Coverity issue of BAD_SHIFT in FLEXCAN.
— Fixed the Repo build warning issue for variable without initial.
* Improvements
— Fixed the run fail issue of FlexCAN RemoteRequest UT Case.
— Implementation all TX and RX transfering Timestamp used in FlexCAN demos.

— Fixed the issue of UT Test Fail for CANFD payload size changed from 64BperMB to
8PerMB.

— Implementation for improved timing API by baud rate.

[2.3.2]
* Improvements
— Implementation for ERR005959.
— Implementation for ERR005829.
— Implementation for ERR0O06032.

[2.3.1]
* Bug Fixes
— Added correct handle when kStatus_FLEXCAN_TxSwitchToRx is comming.
[2.3.0]

* Improvements

— Added self-wakeup support for STOP mode in the interrupt handling.

[2.2.3]
* Bug Fixes
— Fixed the issue of CANFD data phase’s bit rate not set as expected.

106 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
* Improvements

— Added a time stamp feature and enable it in the interrupt_transfer example.

[2.2.1]
* Improvements
— Separated CANFD initialization API.

— In the interrupt handling, fix the issue that the user cannot use the normal CAN API
when with an FD.

[2.2.0]
* Improvements

— Added FSL_FEATURE_FLEXCAN_HAS_SUPPORT_ENGINE_CLK SEL_REMOVE feature
to support SoCs without CAN Engine Clock selection in FlexCAN module.

— Added FlexCAN Serial Clock Operation to support i.MX SoCs.

[2.1.0]
* Bug Fixes
— Corrected the spelling error in the function name FLEXCAN_XXX().

— Moved Freeze Enable/Disable setting from FLEXCAN_Enter/ExitFreezeMode() to FLEX-
CAN_Init().

— Corrected wrong helper macro values.
* Improvements
— Hid FLEXCAN_Reset() from user.

— Used NDEBUG macro to wrap FLEXCAN_IsMbOccupied() function instead of DEBUG
macro.

[2.0.0]

 Initial version.

FLEXCAN_EDMA

[2.12.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 18.1.

1.5. ChangeLog 107

MCUXpresso SDK Documentation, Release 25.12.00

[2.12.0]
* Improvements
— Support high resolution timestamp feature in enhanced Rx FIFO EDMA.

— Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

* Bug Fixes

— Fixed array out-of-bounds access when read enhanced Rx FIFO in EDMA.

[2.11.7]
* Refer FLEXCAN driver change log 2.7.0 to 2.11.7

FLEXIO

[2.3.0]
* Improvements
— Supported platforms which don’t have DOZE mode control.

— Added more pin control functions.

[2.2.3]
* Improvements

— Adapter the FLEXIO driver to platforms which don’t have system level interrupt con-
troller, such as NVIC.

[2.2.2]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.2.1]
* Improvements

— Added doxygen index parameter comment in FLEXIO_SetClockMode.

[2.2.0]
* New Features

— Added new APIs to support FlexIO pin register.

[2.1.0]
* Improvements
— Added API FLEXIO_SetClockMode to set flexio channel counter and source clock.

108 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
* Bug Fixes
— Fixed MISRA 8.4 issues.

[2.0.3]
* Bug Fixes
— Fixed MISRA 10.4 issues.

[2.0.2]
* Improvements

— Split FLEXIO component which combines all flexio/flexio_uart/flexio_i2c/flexio_i2s
drivers into several components: FlexIO component, flexio_uart component,
flexio_i2c_master component, and flexio_i2s component.

* Bug Fixes
— Fixed MISRA issues
% Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.0.1]
* Bug Fixes

- Fixed the dozen mode configuration error in FLEXIO_Init API. For enableInDoze = true,
the configuration should be 0; for enableInDoze = false, the configuration should be 1.

FLEXIO_I2C

[2.6.2]
* Improvements
— Added timeout for while loop in FLEXIO_I2C_MasterTransferBlocking().
* Bug Fixes
— Fixed build issues related to I2C_RETRY_TIMES.

[2.6.1]
* Bug Fixes
— Fixed coverity issues
[2.6.0]

* Improvements

— Supported platforms which don’t have DOZE mode control.

1.5. ChangeLog 109

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
* Improvements

— Split some functions, fixed CCM problem in file fsl_flexio_i2c_master.c.

[2.4.0]
* Improvements

— Added delay of 1 clock cycle in FLEXIO_I2C_MasterTransferRunStateMachine to ensure
that bus would be idle before next transfer if master is nacked.

— Fixed issue that the restart setup time is less than the time in I2C spec by adding delay
of 1 clock cycle before restart signal.

[2.3.0]
* Improvements

— Used 3 timers instead of 2 to support transfer which is more than 14 bytes in single
transfer.

— Improved FLEXIO_I2C_MasterTransferGetCount so that the API can check whether the
transfer is still in progress.

* Bug Fixes
— Fixed MISRA 10.4 issues.

[2.2.0]

* New Features
— Added timeout mechanism when waiting certain state in transfer API.
— Added an API for checking bus pin status.

* Bug Fixes
— Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.
— Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

— Added codes in FLEXIO_I2C_MasterTransferCreateHandle to clear pending NVIC IRQ,
disable internal IRQs before enabling NVIC IRQ.

— Modified code so that during master’s nonblocking transfer the start and slave address
are sent after interrupts being enabled, in order to avoid potential issue of sending the
start and slave address twice.

110 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.7]
* Bug Fixes
— Fixed the issue that FLEXIO_I2C_MasterTransferBlocking did not wait for STOP bit sent.
— Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.
— Fixed the issue that I2C master did not check whether bus was busy before transfer.
[2.1.6]
* Bug Fixes
— Fixed the issue that 12C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed the subaddress.
[2.1.5]

* Improvements

— Unified component full name to FLEXIO I2C Driver.

[2.1.4]
* Bug Fixes
— The following modifications support FlexIO using multiple instances:
* Removed FLEXIO_Reset API in module Init APIs.
* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.
* Updated module Enable APIs to only support enable operation.
[2.1.3]

* Improvements

— Changed the prototype of FLEXIO_I2C_Masterlnit to return kStatus_Success if
initialized successfully or to return kStatus_InvalidArgument if “(srcClock_Hz /
masterConfig->baudRate_Bps) / 2 - 1” exceeds 0XFFU.

[2.1.2]
* Bug Fixes

— Fixed the FLEXIO I2C issue where the master could not receive data from I2C slave in
high baudrate.

— Fixed the FLEXIO I2C issue where the master could not receive NAK when master sent
non-existent addr.

— Fixed the FLEXIO I2C issue where the master could not get transfer count successfully.

— Fixed the FLEXIO I2C issue where the master could not receive data successfully when
sending data first.

— Fixed the Dozen mode configuration error in FLEXIO_I2C_MasterInit API. For en-
ableInDoze = true, the configuration should be 0; for enableInDoze = false, the con-
figuration should be 1.

1.5. ChangeLog 111

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the issue that FLEXIO_I2C_MasterTransferBlocking API
called FLEXIO_I2C_MasterTransferCreateHandle, which lead to the
s_flexioHandle/s_flexiolsr/s_flexioType variable being written. Then,
if calling FLEXIO_I2C_MasterTransferBlocking API multiple times, the
s_flexioHandle/s_flexiolsr/s_flexioType variable would not be written any more
due to it being out of range. This lead to the following situation: NonBlocking transfer
APIs could not work due to the fail of register IRQ.

[2.1.1]
* Bug Fixes
— Implemented the FLEXIO_I2C_MasterTransferBlocking API which is defined in header
file but has no implementation in the C file.
[2.1.0]

* New Features
— Added Transfer prefix in transactional APIs.

— Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S

[2.2.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 12.4.

[2.2.1]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.2.0]
* New Features
— Added timeout mechanism when waiting certain state in transfer API.
* Bug Fixes
— Fixed IAR Pa082 warnings.

— Fixed violations of the MISRA C-2012 rules 10.4, 14.4, 11.8, 11.9, 10.1, 17.7, 11.6, 10.3,
10.7.

[2.1.6]
* Bug Fixes

— Added reset flexio before flexio i2s init to make sure flexio status is normal.

112 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
* Bug Fixes
— Fixed the issue that I2S driver used hard code for bitwidth setting.
[2.1.4]

* Improvements
— Unified component’s full name to FLEXIO 12S (DMA/EDMA) driver.

[2.1.3]
* Bug Fixes
— The following modifications support FLEXIO using multiple instances:
* Removed FLEXIO_Reset API in module Init APIs.
* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.
* Updated module Enable APIs to only support enable operation.
[2.1.2]

* New Features
— Added configure items for all pin polarity and data valid polarity.
— Added default configure for pin polarity and data valid polarity.

[2.1.1]
* Bug Fixes
— Fixed FlexIO I2S RX data read error and eDMA address error.
— Fixed FlexIO I2S slave timer compare setting error.
[2.1.0]

* New Features
— Added Transfer prefix in transactional APIs.

— Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S_EDMA

[2.1.9]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 12.4.

1.5. ChangeLog 113

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.8]
* Improvements
— Applied EDMA ERRATA 51327.

FLEXIO_SPI

[2.4.3]
* Improvements
— Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.4.2]
* Bug Fixes

— Fixed FLEXIO__SPI_ MasterTransferBlocking and FLEXIO__SPI_ MasterTransferNonBlocking
issue in CS continuous mode, the CS might not be continuous.

[2.4.1]
* Bug Fixes

— Fixed coverity issues

[2.4.0]
* Improvements

— Supported platforms which don’t have DOZE mode control.

[2.3.5]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.4]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API

[2.3.3]
* Bugfixes

— Fixed cs-continuous mode.

[2.3.2]
* Improvements
— Changed FLEXIO_SPI_DUMMYDATA to 0x00.

114 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
* Bugfixes
— Fixed IRQ SHIFTBUF overrun issue when one FLEXIO instance used as multiple SPIs.
[2.3.0]

* New Features
— Supported FLEXIO_SPI slave transfer with continuous master CS signal and CPHA=0.
— Supported FLEXIO_SPI master transfer with continuous CS signal.
— Support 32 bit transfer width.
* Bug Fixes
— Fixed wrong timer compare configuration for dma/edma transfer.

— Fixed wrong byte order of rx data if transfer width is 16 bit, since the we use shifter
buffer bit swapped/byte swapped register to read in received data, so the high byte
should be read from the high bits of the register when MSB.

[2.2.1]
* Bug Fixes
— Fixed bug in FLEXIO_SPI_MasterTransferAbortEDMA that when aborting EDMA trans-
fer EDMA_AbortTransfer should be used rather than EDMA_StopTransfer.
[2.2.0]

* Improvements

— Added timeout mechanism when waiting certain states in transfer driver.

* Bug Fixes
— Fixed MISRA 10.4 issues.
— Added codes in FLEXIO_SPI MasterTransferCreateHandle and

FLEXIO_SPI_SlaveTransferCreateHandle to clear pending NVIC IRQ before enabling
NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

[2.1.3]
* Improvements
— Unified component full name to FLEXIO SPI(DMA/EDMA) Driver.
* Bug Fixes
— Fixed MISRA issues
Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.1.2]
* Bug Fixes
— The following modification support FlexIO using multiple instances:
* Removed FLEXIO_Reset API in module Init APISs.

1.5. ChangeLog 115

MCUXpresso SDK Documentation, Release 25.12.00

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.1]
* Bug Fixes
— Fixed bug where FLEXIO SPI transfer data is in 16 bit per frame mode with eDMA.

— Fixed bug when FLEXIO SPI works in eDMA and interrupt mode with 16-bit per frame
and Lsbfirst.

— Fixed the Dozen mode configuration error in FLEXIO_SPI_MasterInit/FLEXIO_SPI_Slavelnit
APL For enableInDoze = true, the configuration should be 0; for enableInDoze = false,
the configuration should be 1.

* Improvements

— Added #ifndef/#endif to allow users to change the default TX value at compile time.

[2.1.0]
* New Features
— Added Transfer prefix in transactional APIs.
— Added transferSize in handle structure to record the transfer size.
* Bug Fixes

— Fixed the error register address return for 16-bit data write in
FLEXIO_SPI_GetTxDataRegisterAddress.

— Provided independent IRQHandler/transfer APIs for Master and slave to fix the bau-
drate limit issue.

FLEXIO_UART

[2.6.4]
* Improvements
— Make UART_RETRY_TIMES configurable by CONFIG_UART RETRY_TIMES.

[2.6.3]
* Bug Fixes

— Fixed coverity issues

[2.6.2]
* Bug Fixes

— Fixed coverity issues

116 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.1]
* Improvements

— Improve baudrate calculation method, to support higher frequency FlexIO clock
source.

[2.6.0]
* Improvements

— Supported platforms which don’t have DOZE mode control.

[2.5.1]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
e Improvements
— Added API FLEXIO_UART FlushShifters to flush UART fifo.

[2.4.0]
* Improvements
— Use separate data for TX and RX in flexio_uart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling FLEXIO_UART_TransferReceiveNonBlocking, the received data count re-
turned by FLEXIO_UART_TransferGetReceiveCount is wrong.

[2.3.0]
* Improvements

— Added check for baud rate’s accuracy that returns kSta-
tus_FLEXIO_UART BaudrateNotSupport when the best achieved baud rate is not
within 3% error of configured baud rate.

* Bug Fixes

— Added codesin FLEXIO_UART _TransferCreateHandle to clear pending NVIC IRQ before
enabling NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

[2.2.0]
* Improvements
— Added timeout mechanism when waiting for certain states in transfer driver.
* Bug Fixes
— Fixed MISRA 10.4 issues.

1.5. ChangeLog 117

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
* Bug Fixes
— Fixed IAR Pa082 warnings.
— Fixed MISRA issues
* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.
[2.1.5]

* Improvements

— Triggered user callback after all the data in ringbuffer were received in
FLEXIO_UART TransferReceiveNonBlocking.

[2.1.4]
* Improvements

— Unified component full name to FLEXIO UART(DMA/EDMA) Driver.

[2.1.3]
* Bug Fixes
— The following modifications support FLEXIO using multiple instances:
% Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer configuration instead of dis-
abling module and clock.

* Updated module Enable APIs to only support enable operation.

[2.1.2]
* Bug Fixes

— Fixed the transfer count calculation issue in FLEXIO_UART_TransferGetReceiveCount,
FLEXIO _UART TransferGetSendCount, FLEXIO UART_TransferGetReceiveCountDMA,
FLEXIO UART TransferGetSendCountDMA, FLEXIO_UART TransferGetReceiveCountEDMA
and FLEXIO_UART TransferGetSendCountEDMA.

— Fixed the Dozen mode configuration error in FLEXIO_UART_Init API. For enableInDoze
=true, the configuration should be 0; for enableInDoze = false, the configuration should
be 1.

— Added code to report errors if the user sets a too-low-baudrate which FLEXIO cannot
reach.

— Disabled FLEXIO_UART receive interrupt instead of all NVICs when reading data from
ring buffer. If ring buffer is used, receive nonblocking will disable all NVIC interrupts
to protect the ring buffer. This had negative effects on other IPs using interrupt.

[2.1.1]
* Bug Fixes

— Changed the API name FLEXIO_UART _StopRingBuffer to
FLEXIO_UART_TransferStopRingBuffer to align with the definition in C file.

118 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* New Features
— Added Transfer prefix in transactional APIs.
— Added txSize/rxSize in handle structure to record the transfer size.
* Bug Fixes

— Added an error handle to handle the situation that data count is zero or data buffer is
NULL.

FLEXIO_UART_EDMA

[2.3.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules.
[2.3.0]

» Refer FLEXIO_UART driver change log to 2.3.0

FLEXRAM

[2.3.0]
* New Features

— Supported platforms which have ECC but no ECC error injection.

[2.2.0]
* New Features

— Supported flexram ECC error injection function.

[2.1.0]
* New Features

— Supported flexram ECC function.

[2.0.7]
* Bug Fixes
— Fixed doxygen issue.
[2.0.6]

* New Features

— Updated bank configuration and TCM size with GPR16/GPR17/GPR18 into SOC level for
different SOC.

1.5. ChangeLog 119

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
* New Features
— Added the magic address feature for OCRAM, DTCM and ITCM.

[2.0.4]
* Bug Fixes
— Fixed FlexRAM driver’s missing extern C around functions in header file.
— Removed magic address feature from driver.
[2.0.3]
* Bug Fixes
— Fixed the issue that TCM size configuration was wrong when TCM bank number was
not a value power of 2.
[2.0.2]
* Bug Fixes
— Updated driver due to Reference Manual update.
[2.0.1]
* Bug Fixes
— Fixed MISRA issue.
[2.0.0]

¢ Initial version.

FLEXSPI

[2.8.1]
* Improvements

— Updated the LUT configuration parameter checking with flexible way to adapt differ-
ent Socs.

[2.8.0]
* Bug Fixes

— Introduced the disableAhbReadResume field in the flexspi_config_t structure to pro-
vide control over the AHBCR[RESUMEDISABLE] register bhit.

— Implemented a workaround for hardware erratum ERR052733 by setting the default
value of disableAhbReadResume to true.

— Fixed issue in FLEXSPI_ TransferHandleIRQ where the transfer completion was incor-
rectly signaled despite pending read/write operations.

120 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

* New Features

— Introduced a new function(FLEXSPI_UpdateAhbBuffersSettings) that allows users to
update the AHB buffer configuration after the FLEXSPI module has been initialized

[2.7.0]
* New Features

— Added new API to support address remapping.

[2.6.4]
¢ Improvements

— Added new macro “FSL_SDK_ENABLE_FLEXSPI_RESET_CONTROL” to support driver
level reset control.

[2.6.3]
* Bug Fixes
— Fixed an issue which cause IPCR1[IPAREN] cleared by mistake.
[2.6.2]
* Bug Fixes
- Wait Bus IDLE before operation of FLEXSPI_SoftwareReset(),
FLEXSPI_TransferBlocking() and FLEXSPI_TransferNonBlocking().
[2.6.1]
* Bug Fixes
— Updated code of reset peripheral.
- Upc.lated FLEXSPI_UpdateLUT() to check if input lut address is not in Flexspi AMBA
region.
— Updated FLEXSPI_Init() to check if input AHB buffer size exceeded maximum AHB size.
[2.6.0]

* New Features
— Added new API to set AHB memory-mapped flash base address.

— Added support of DLLXCR[REFPHASEGAP] bit field, it is recommended to set it as 0x2
if DLL calibration is enabled.

[2.5.1]
* Bugfixes
— Fixed handling of W1C bits in the INTR register
— Removed FIFO resets from FLEXSPI_CheckAndClearError

— FLEXSPI_TransferBlocking is observing IPCMDDONE and then fetches the final status
of the transfer

1.5. ChangeLog 121

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed issue that FLEXSPI2_DriverIRQHandler not defined.

[2.5.0]
¢ Improvements
— Supported word un-aligned access for write/read blocking/non-blocking API functions.
— Fixed dead loop issue in DLL update function when using FRO clock source.
— Fixed violations of the MISRA C-2012 Rule 10.3.

[2.4.0]
* Improvements

— Isolated IP command parallel mode and AHB command parallel mode using feature
MACRO.

— Supported new column address shift feature for external memory.

[2.3.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 14.2.
[2.3.4]
* Bug Fixes
— Updated flexspi_config t structure and FlexSPI Init to support new feature
FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_CONBINATION.
[2.3.3]
* Bug Fixes
— Removed feature FSL_FEATURE_FLEXSPI DQS_DELAY PS for DLL delay setting.
Changed to use feature FSL_FEATURE_FLEXSPI_DQS_DELAY_MIN to set slave delay tar-
get as 0 for DLL enable and clock frequency higher than 100MHz.
[2.3.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 8.4, 8.5,10.1, 10.3, 10.4, 11.6 and 14.4.
[2.3.1]
* Bug Fixes

— Wait for bus to be idle before using it as access to external flash with new setting in
FLEXSPI_SetFlashConfig() APIL

— Fixed the potential buffer overread and Tx FIFO overwrite issue in
FLEXSPI_WriteBlocking.

122 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
* New Features

— Added new API FLEXSPI_UpdateDllValue for users to update DLL value after updating
flexspi root clock.

— Corrected grammatical issues for comments.
— Added support for new feature FSL_FEATURE_FLEXSPI DQS_DELAY_PS in DLL config-

uration.
[2.2.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3 and 10.4.
— Updated _flexspi_command from named enumerator into anonymous enumerator.
[2.2.1]
* Bug Fixes

- Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8, 11.9, 14.4, 15.7, 16.4,
17.7,7.3.

— Fixed IAR build warning Pe167.

— Fixed the potential buffer overwrite and Rx FIFO overread issue in
FLEXSPI_ReadBlocking.

[2.2.0]
* Bug Fixes

- Fixed flag name typos: KFLEXSPI_IpTxFifoWatermarkEmpltyFlag to
KkFLEXSPI_IpTxFifoWatermarkEmptyFlag; KFLEXSPI IpCommandExcutionDoneFlag
to KFLEXSPI_IpCommandExecutionDoneFlag.

— Fixed comments typos such as sequencen->sequence, levle->level.

— Fixed FLSHCR2[ARDSEQID] field clean issue.

— Updated flexspi_config t structure and FlexSPI_Init to support
new feature FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_ATDFEN and
FSL_FEATURE_FLEXSPI_HAS_NO_MCRO_ARDFEN.

— Updated flexspi_flags_t structure to support new feature
FSL_FEATURE_FLEXSPI_HAS_INTEN_AHBBUSERROREN.

[2.1.1]

* Improvements

— Defaulted enable prefetch for AHB RX buffer configuration in
FLEXSPI_GetDefaultConfig, which is align with the reset value in AHBRXBUFxCRO.

— Added software workaround for ERR011377 in FLEXSPI_SetFlashConfig; added some
delay after DLL lock status set to ensure correct data read/write.

1.5. ChangeLog 123

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* New Features

— Added new API FLEXSPI_UpdateRxSampleClock for users to update read sample clock
source after initialization.

— Added reset peripheral operation in FLEXSPI_Init if required.

[2.0.5]
* Bug Fixes
— Fixed FLEXSPI_UpdateLUT cannot do partial update issue.
[2.0.4]
* Bug Fixes
— Reset flash size to zero for all ports in FLEXSPI_Init; fixed the possible out-of-range
flash access with no error reported.
[2.0.3]
* Bug Fixes
— Fixed @ AHB receive buffer size configuration issue. The
FLEXSPI_AHBRXBUFCRO_BUFSZ field should configure 64 bits size, and currently
the AHB receive buffer size is in bytes which means 8-bit, so the correct configuration
should be config->ahbConfig.buffer[i].bufferSize / 8.
[2.0.2]

* New Features
— Supported DQS write mask enable/disable feature during set FLEXSPI configuration.

— Provided new API FLEXSPI_TransferUpdateSizeEDMA for users to update eDMA trans-
fer size(SSIZE/DSIZE) per DMA transfer.

* Bug Fixes
— Fixed invalid operation of FLEXSPI_Init to enable AHB bus Read Access to IP RX FIFO.
— Fixed incorrect operation of FLEXSPI_Init to configure IP TX FIFO watermark.

[2.0.1]
* Bug Fixes

— Fixed the flag clear issue and AHB read Command index configuration issue in
FLEXSPI_SetFlashConfig.

— Updated FLEXSPI_UpdateLUT function to update LUT table from any index instead of
previous command index.

— Added bus idle wait in FLEXSPI_SetFlashConfig and FLEXSPI_UpdateLUT to ensure bus
is idle before any change to FlexSPI controller.

— Updated interrupt API FLEXSPI TransferNonBlocking and interrupt handle flow
FLEXSPI_TransferHandleIRQ.

— Updated eDMA API FLEXSPI_TransferEDMA.

124 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

FLEXSPI EDMA Driver

[2.3.3]
* Bug Fixes

— Fixed FLEXSPI TransferEDMA bug that, the DMA channel not configured correctly
when using KFLEXSPI_Read.

[2.3.2]
* Bug Fixes
— Fixed the bug that internal variable s_edmaPrivateHandle overflows when using
FlexSPI2.
[2.0.2]

* New Features

— Provided new API FLEXSPI_TransferUpdateSizeEDMA for users to update eDMA trans-
fer size(SSIZE/DSIZE) per DMA transfer.

[2.0.0]

 Initial version.

GPC

[2.5.0]
* Improvements

— Set GPC_CM_ConfigCpuModeTransitionStep(), GPC_SP_ConfigSetPointTransitionStep(),
GPC_STBY_ConfigStandbyTransitionStep() as deprecated.

— Added GPC_CM_EnableCpuModeTransitionStep(), GPC_CM_DisableCpuModeTransitionStep().
— Added GPC_SP_EnableSetPointTransitionStep(), GPC_SP_DisableSetPointTransitionStep().

— Added GPC_STBY_EnableStandbyTransitionStep(), GPC_STBY_DisableStandbyTransitionStep().
— Added GPC_STBY_SetPmicOutStepCountMode() to set count mode of PMIC_OUT step.

[2.4.0]
* Improvements

— Deleted cnt_mode and step count of gpc_tran_step_config t structure to aligned with
updates of header file.

1.5. ChangeLog 125

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
* Bug Fixes
— Fixed the violation of MISRA C-2012 rule 5.8.

[2.3.0]
* Bug Fixes
— Fixed wrong offset value of DCDC_UP_CTRL register.
* New Features
— Added GPC_STBY_ForceCoreRequestStandbyMode() function ti force core to enter

standby mode.
[2.2.0]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.8.
— Fixed violations of MISRA C-2012 rule 8.6 by removing the declaration of
GPC_SP_GetResponseCount() function.
[2.1.1]
* Bug Fixes
— Fixed Doxygen warnings.
[2.1.0]

* Improvements

— Removed status related APIs based on the updates of header file.

[2.0.0]

 Initial version.

GPIO

[2.0.7]
* Bug Fixes
— Fixed coverity MSG issues with CERT INT30-C compliance.

[2.0.6]
* Bug Fixes

— Fixed compile warning: ‘GPIO_GetInstance’ defined but not used when macro
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is defined.

126 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
* Bug Fixes
— Fixed MISRA C-2012 issue: rule-17.7.
[2.0.4]

* Improvements
— Updated the GPIO_PinWrite to use atomic operation if possible.
* Bug Fixes
— Fixed GPIO_PortToggle bug with platforms don’t have register DR_TOGGLE.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed rules, containing: rule-10.3, rule-14.4, and rule-15.5.
[2.0.2]
* Bug Fixes
— Fixed the bug of enabling wrong GPIO clock gate in initial API. Since some GPIO in-
stances may not have a clock gate enabled, it checks the clock gate number and makes
sure the clock gate is valid.
[2.0.1]

* Improvements
— API interface changes:

* Refined naming of the API while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The main change is to update
the API with prefix of _PinXXX() and _PortXXX().

[2.0.0]

« Initial version.

GPT
[2.0.6]
* Bug Fixes
— Fix CERT INT30-C issues.
[2.0.5]

* Improvements

— Support workaround for ERR003777. This workaround helps switching the clock
sources.

1.5. ChangeLog 127

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
* Bug Fixes
— Fixed compiler warning when built with FSL._SDK_DISABLE_DRIVER_CLOCK_CONTROL
flag enabled.
[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 5.3 by customizing function parameter.
[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.8, 17.7.
[2.0.0]

« Initial version.

IEE
[2.1.1]

* Fixed MISRA issues.

[2.1.0]
* Add region lock function IEE_LockRegionConfig() and driver clock control.

[2.0.0]

 Initial version.

IEE_APC

[2.0.2]

* Updated to newer version of implementation in HW.

[2.0.1]
* Fixed MISRA issues.

128 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

IOMUXC
[2.0.1]

* Doxygen improvement.

[2.0.0]

* initial version.

KEYMGR
[2.0.2]

» Tix MISRA-2012 issues.

[2.0.1]
* Fix MISRA-2012 issues.

[2.0.0]

« Initial version.

KPP
[2.1.1]
* Bug Fixes
— Fixed coverity MSG issues with CERT INT30-C, CERT ARR30-C compliance.
[2.1.0]

* Improvements
— Optimize rowData debounce method to adapt to multi-key detection

— Modify the KPP_keyPressScanning type to status_t.

[2.0.1]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules:
* Rule 10.310.4 10.6 14.4 17.7

1.5. ChangeLog 129

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

LCDIFv2

[2.3.3]
* Other Changes
— Removed PDI_PARA register operation due to IP change.

[2.3.2]
* Bug Fixes
— Fixed the violations of MISRA 2012 advisory rules.

[2.3.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.4.

[2.3.0]
* New Features:
— Added API to calculate global alpha based on desired blended alpha.

[2.2.3]
* Improvements

— Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.2.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1, 10.2, 10.4, 10.6, 12.2.
[2.2.1]

* Improvements
— Updated for the new LCDIFV2_Type structure.

[2.2.0]
* Bug Fixes
— Fixed LCDIFV2_GetPorterDuffConfig issue that does not set color mode correctly.
* Other Changes

— Removed the store functions.

130 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Bug Fixes
— Fixed the issue that LCDIFV2_SetLut could not access the last index.
[2.1.0]

* New Features:

— Added function to get Porter Duff configuration.

[2.0.1]
* Bug Fixes
— Fixed the issue that register value not reset by LCDIFV2_Deinit and LCDIFV2_Reset.
[2.0.0]

 Initial version.

LPADC

[2.9.5]
* Improvements

— Fix doxygen issue, grouping command should be balanced.

[2.9.4]
* Improvements

— Update LPADC_GetDefaultConfig, change default conversionAverageMode value to:
KLPADC_ConversionAverage128 for 3 bit width. KLPADC_ConversionAverage1024 for
4 bit width.

[2.9.3]
* Improvements

— Add timeout for while loop code.

[2.9.2]
* Improvements
— Fixed CERT-C issues.

[2.9.1]
* Bug Fixes

— Fixed incorrect channel B FIFO selection logic.

1.5. ChangeLog 131

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
* Bug Fixes
— Add code to handle the case where GCC[GAIN_CAL] is a signed number.
— Split LPADC_FinishAutoCalibration function into two functions.
— Improved LPADC driver.
[2.8.4]
* Bug Fixes
— Remove function ‘LPADC_SetOffsetValue’ assert statement, this statement may cause
runtime errors in existing code.
[2.8.3]
* Bug Fixes
— Fixed SDK lIpadc driver examples compile issue, move condition ‘commandld <
ADC_CV_COUNT’ to a more appropriate location.
[2.8.2]
* Bug Fixes
— Fixed the violations of MISRA C-2012 rule 18.1, 10.3, 10.1 and 10.4.
[2.8.1]
* Bug Fixes
— Fixed LPADC sample mode enum name mistake.
[2.8.0]

* Improvements

— Release peripheral from reset if necessary in init function.
* Bug Fixes

— Fixed function LPADC_GetConvResult() issue.

— Fixed function LPADC_SetConvCommandConfig() bugs.

[2.7.2]
* Improvements
— Use feature macros instead of header file macros.
* Bug Fixes
— Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

132 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]

* Improvements
— Corrected descriptions of several functions.
— Improved function LPADC_GetOffsetValue and LPADC_SetOffsetValue.
— Revert changes of feature macros for lpadc.
— Use feature macros instead of header file macros.

* Bug Fixes
— Fixed the violations of MISRA C-2012 rule 10.8.
— Fixed the violations of MISRA C-2012 rule 10.1, 10.3, 10.4 and 14.3.

[2.7.0]
* Improvements
— Added supports of CFG2 register.

— Removed some useless macros.

[2.6.2]
* Bug Fixes
- Fixed the violations of MISRA C-2012 rules.
— Fixed LPADC driver code compile error issue.
[2.6.1]

* Improvements

— Updated the use of macros in the driver code.

[2.6.0]
* Improvements

— Added the API LPADC_SetOffset12BitValue() to configure 12bit ADC conversion offset
trim value manually.

— Added the API LPADC_SetOffset16BitValue() to configure 16bit ADC conversion offset
trim value manually.

— Added API to set offset calibration mode.

— Added configuration of alternate channel.

— Updated auto calibration API and added calibration value conversion API.
* New feature

— Added API LPADC_EnableHardwareTriggerCommandSelection() to enable trigger
commands controlled by ADC_ETC.

— Updated LPADC_DoAutoCalibration() to allow doing something else before the ADC ini-
titialization to be totally complete. Enhance initialization duration time of the ADC.

— Added two new APISs to get/set calibration value.

1.5. ChangeLog 133

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.2]
* Improvements

— Added while loop, LPADC_GetConvResult() will return only when the FIFO will not be

empty.
[2.5.1]
* Bug Fixes
— Fixed some typos in Lpadc driver comments.
[2.5.0]

* Improvements

— Added missing items to enable trigger interrupts.

[2.4.0]
* New features

— Added APIs to get/clear trigger status flags.

[2.3.0]
* Improvements

— Removed LPADC_MeasureTemperature() function for the LPADC supports different
temperature sensor calculation equations.

[2.2.1]
* Improvements

— Optimized LPADC_MeasureTemperature() function to support the specific series with
flash solidified calibration value.

— Clean doxygen warnings.
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3, rule 10.8 and rule 17.7.

[2.2.0]
* New Feature

— Added API LPADC_MeasureTemperature() to get correct temperature from the internal
Sensor.

* Improvements
— Separated lpadc_conversion_resolution_mode_t with related feature macro.
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.3,10.4, 10.6, 10.7 and 17.7.

134 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Improvements
— Updated the gain calibration formula.

— Used feature to segregate the new item KLPADC_TriggerPriorityPreemptSubsequently.

[2.1.0]
* New Features
— Added the API LPADC_SetOffsetValue() to support configure offset trim value manually.
— Added the API LPADC_DoOffsetCalibration() to do offset calibration independently.
* Improvements

— Improved the usage of macros and removed invalid macros.

[2.0.2]
* Improvements

— Added support for platforms with 2 FIFOs and different calibration measures.

[2.0.1]
* Bug Fixes
— Ensured the API LPADC_SetConvCommandConfig configure related registers correctly.
[2.0.0]

« Initial version.

LPI12C
[2.6.3]
* Bug Fixes
— Fixed static analysis identified issues.
[2.6.2]

* Improvements

— Added timeout for while loop in LPI2C_TransferStateMachineSendCommand().

[2.6.1]
* Bug Fixes

— Fixed coverity issues.

1.5. ChangeLog 135

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
* New Feature
— Added common IRQ handler entry LPI2C_DriverIRQHandler.

[2.5.7]
* Improvements

— Added support for separated IRQ handlers.

[2.5.6]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.5]
* Bug Fixes
- Fixed LPI2C_Slavelnit() - allow to disable SDA/SCL glitch filter.

[2.5.4]
* Bug Fixes

— Fixed LPI2C_MasterTransferBlocking() - the return value was sometime affected by call
of LPI2C_MasterStop().

[2.5.3]
* Improvements
— Added handler for LPI2C7 and LPI2CS.

[2.5.2]

* Bug Fixes
— Fixed ERRO051119 to ignore the nak flag when IGNACK=1 in
LPI2C_MasterCheckAndClearError.

[2.5.1]

* Bug Fixes

— Added bus stop incase of bus stall in LPI2C_MasterTransferBlocking.
* Improvements

— Release peripheral from reset if necessary in init function.

[2.5.0]
* New Features
— Added new function LPI2C_SlaveEnableAckStall to enable or disable ACKSTALL.

136 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
* Improvements

— Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

[2.4.0]
* Improvements
— Split some functions, fixed CCM problem in file fsl_lpi2c.c.
* Bug Fixes

— Fixed bug in LPI2C_MasterInit that the MCFGR2’s value set in
LPI2C_MasterSetBaudRate may be overwritten by mistake.

[2.3.2]
* Improvements

— Initialized the EDMA configuration structure in the LPI2C EDMA driver.

[2.3.1]
* Improvements

— Updated LPI2C_GetCyclesForWidth to add the parameter of minimum cycle, because
for master SDA/SCL filter; master bus idle/pin low timeout and slave SDA/SCL filter
configuration, 0 means disabling the feature and cannot be used.

* Bug Fixes

— Fixed bug in LPI2C_SlaveTransferHandleIRQ that when restart detect event happens
the transfer structure should not be cleared.

— Fixed bug in LPI2C_RunTransferStateMachine, that when only slave address is trans-
ferred or there is still data remaining in tx FIFO the last byte’s nack cannot be ignored.

— Fixed bug in slave filter doze enable, that when FILTDZ is set it means disable rather
than enable.

- Fixed bug in the usage of LPI2C_GetCyclesForWidth. First its return value cannot be
used directly to configure the slave FILTSDA, FILTSCL, DATAVD or CLKHOLD, because
the real cycle width for them should be FILTSDA+3, FILTSCL+3, FILTSCL+DATAVD+3
and CLKHOLD+3. Second when cycle period is not affected by the prescaler value,
prescaler value should be passed as 0 rather than 1.

- Fixed wrong default setting for LPI2C slave. If enabling the slave tx SCL stall, then
the default clock hold time should be set to 250ns according to I12C spec for 100kHz
standard mode baudrate.

— Fixed bug that before pushing command to the tx FIFO the FIFO occupation should be
checked first in case FIFO overflow.

[2.3.0]
* New Features
— Supported reading more than 256 bytes of data in one transfer as master.
— Added API LPI2C_GetInstance.

* Bug Fixes

1.5. ChangeLog 137

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed bug in LPI2C_MasterTransferAbortEDMA, LPI2C_MasterTransferAbort and
LPI2C_MasterTransferHandleIRQ that before sending stop signal whether master is
active and whether stop signal has been sent should be checked, to make sure no FIFO
error or bus error will be caused.

— Fixed bug in LPI2C master EDMA transactional layer that the bus error cannot be
caught and returned by user callback, by monitoring bus error events in interrupt
handler.

— Fixed bug in LPI2C_GetCyclesForWidth that the parameter used to calculate clock cycle
should be 2Aprescaler rather than prescaler.

— Fixed bug in LPI2C_MasterInit that timeout value should be configured after baudrate,
since the timeout calculation needs prescaler as parameter which is changed during
baudrate configuration.

— Fixed bug in LPI2C_MasterTransferHandleIRQ and LPI2C_RunTransferStateMachine
that when master writes with no stop signal, need to first make sure no data remains
in the tx FIFO before finishes the transfer.

[2.2.0]
* Bug Fixes
— Fixed issue that the SCL high time, start hold time and stop setup time do not meet 12C
specification, by changing the configuration of data valid delay, setup hold delay, clock
high and low parameters.
— MISRA C-2012 issue fixed.
% Fixed rule 8.4, 13.5,17.7, 20.8.
[2.1.12]
* Bug Fixes
— Fixed MISRA advisory 15.5 issues.
[2.1.11]
* Bug Fixes
— Fixed the bug that, during master non-blocking transfer, after the last byte is
sent/received, the KLPI2C_MasterNackDetectFlag is expected, so master should not
check and clear KLPI2C_MasterNackDetectFlag when remainingBytes is zero, in case
FIFO is emptied when stop command has not been sent yet.
- Fixed the bug that, during non-blocking transfer slave may nack master while master
is busy filling tx FIFO, and NDF may not be handled properly.
[2.1.10]
* Bug Fixes

— MISRA C-2012 issue fixed.
* Fixed rule 10.3, 14.4, 15.5.
— Fixed unaligned access issue in LPI2C_RunTransferStateMachine.

— Fixed uninitialized variable issue in LPI2C_MasterTransferHandleIRQ.

138 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— Used linked TCD to disable tx and enable rx in read operation to fix the issue that for
platform sharing the same DMA request with tx and rx, during LPI2C read operation if
interrupt with higher priority happened exactly after command was sent and before
tx disabled, potentially both tx and rx could trigger dma and cause trouble.

— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 11.6, 11.9, 14.4, 17.7.
— Fixed the waitTimes variable not re-assignment issue for each byte read.
* New Features
— Added the IRQHandler for LPI2C5 and LPI2C6 instances.
* Improvements
— Updated the LPI2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.1.9]
* Bug Fixes

- Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

— Fixed Coverity issue of operands did not affect the result in LPI2C_SlaveReceive and
LPI2C_SlaveSend.

— Removed STOP signal wait when NAK detected.

— Cleared slave repeat start flag before transmission started
in LPI2C_SlaveSend/LPI2C_SlaveReceive. The issue was that
LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the reserved repeat
start flag. This caused the next slave to send a break, and the master was always in
the receive data status, but could not receive data.

[2.1.8]
* Bug Fixes

- Fixed the transfer issue with LPI2C_MasterTransferNonBlocking,
KkLPI2C_TransferNoStopFlag, with the wait transfer done through callback in a
way of not doing a blocking transfer.

— Fixed the issue that STOP signal did not appear in the bus when NAK event occurred.

[2.1.7]
* Bug Fixes

— Cleared the stopflag before transmission started in LPI2C_SlaveSend/LPI2C_SlaveReceive.
The issue was that LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the re-
served stop flag and caused the next slave to send a break, and the master always
stayed in the receive data status but could not receive data.

[2.1.6]
* Bug Fixes

— Fixed driver MISRA build error and C++ build error in LPI2C_MasterSend and
LPI2C_SlaveSend.

— Reset FIFO in LPI2C Master Transfer functions to avoid any byte still remaining in FIFO
during last transfer.

1.5. ChangeLog 139

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the issue that LPI2C_MasterStop did not return the correct NAK status in the bus
for second transfer to the non-existing slave address.

[2.1.5]
* Bug Fixes
— Extended the Driver IRQ handler to support LPI2C4.

— Changed to use ARRAY_SIZE(kLpi2cBases) instead of FEATURE COUNT to decide the
array size for handle pointer array.

[2.1.4]
* Bug Fixes

— Fixed the LPI2C_MasterTransferEDMA receive issue when LPI2C shared same request
source with TX/RX DMA request. Previously, the API used scatter-gather method,
which handled the command transfer first, then the linked TCD which was pre-set with
the receive data transfer. The issue was that the TX DMA request and the RX DMA re-
quest were both enabled, so when the DMA finished the first command TCD transfer
and handled the receive data TCD, the TX DMA request still happened due to empty
TX FIFO. The result was that the RX DMA transfer would start without waiting on the
expected RX DMA request.

— Fixed the issue by enabling IntMajor interrupt for the command TCD and checking if
there was a linked TCD to disable the TX DMA request in LPI2C_MasterEDMACallback
APL.

[2.1.3]
* Improvements

— Added LPI2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

— Added LPI2C_MasterTransferBlocking API.

[2.1.2]
* Bug Fixes

— In LPI2C_SlaveTransferHandleIRQ, reset the slave status to idle when stop flag was
detected.

[2.1.1]
* Bug Fixes

— Disabled the auto-stop feature in eDMA driver. Previously, the auto-stop feature was
enabled at transfer when transferring with stop flag. Since transfer was without stop
flag and the auto-stop feature was enabled, when starting a new transfer with stop
flag, the stop flag would be sent before the new transfer started, causing unsuccesful
sending of the start flag, so the transfer could not start.

— Changed default slave configuration with address stall false.

140 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* Improvements
— APIname changed:
* LPI2C_MasterTransferCreateHandle -> LPI2C_MasterCreateHandle.
* LPI2C_MasterTransferGetCount -> LPI2C_MasterGetTransferCount.
* LPI2C_MasterTransferAbort -> LPI2C_MasterAbortTransfer.
* LPI2C_MasterTransferHandleIRQ -> LPI2C_MasterHandleInterrupt.
* LPI2C_SlaveTransferCreateHandle -> LPI2C_SlaveCreateHandle.
* LPI2C_SlaveTransferGetCount -> LPI2C_SlaveGetTransferCount.
% LPI2C_SlaveTransferAbort -> LPI2C_SlaveAbortTransfer.
* LPI2C_SlaveTransferHandleIRQ -> LPI2C_SlaveHandleInterrupt.

[2.0.0]

 Initial version.

LPI2C_EDMA

[2.4.6]
* Bug Fixes

— Fixed static analysis identified issues.

[2.4.5]
* Improvements

— Added condition to IRQ handler to check whether the interrupt is enabled -
KLPI2C_MasterTxReadyFlag.

[2.4.4]
* Improvements

— Added support for 2KB data transfer

[2.4.3]
* Improvements

— Added support for separated IRQ handlers.

[2.4.2]
* Improvements
— Add EDMA ext API to accommodate more types of EDMA.

1.5. ChangeLog 141

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
» Refer LPI2C driver change log 2.0.0 to 2.4.1

LPSPI
[2.7.4]
* Bug Fixes
— Clear WIDTH bits from the TCR register before writing a new value in LP-
SPI_MasterTransferBlocking().
[2.7.3]

* Improvements
— Added timeout for while loop in LPSPI_MasterTransferWriteAllTxData().
— Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.7.2]
* Bug Fixes

— Fixed coverity issues.

[2.7.1]
* Bug Fixes
— Workaround for errata ERR050607
— Workaround for errata ERR010655

[2.7.0]
* New Feature
— Added common IRQ handler entry LPSPI_DriverIRQHandler.

[2.6.10]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.6.9]
* Bug Fixes
— Fixed reading of TCR register
— Workaround for errata ERR050606

142 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.8]
* Bug Fixes
— Fixed build error when SPI_RETRY_TIMES is defined to non-zero value.
[2.6.7]
* Bug Fixes
- Fixed the txData from void * to const void * in transmit API _lpspi_master_handle and
_lpspi_slave_handle.
[2.6.6]
* Bug Fixes
— Added LPSPI register init in LPSPI_MasterInit incase of LPSPI register exist.
[2.6.5]

* Improvements

— Introduced FSL_FEATURE_LPSPI_HAS_NO_PCSCFG and FSL_FEATURE_LPSPI_HAS_NO_MULTI_WIDTE
for conditional compile.

— Release peripheral from reset if necessary in init function.

[2.6.4]
* Bug Fixes
— Added LPSPI6_DriverIRQHandler for LPSPI6 instance.
[2.6.3]
» Hot Fixes
— Added macro switch in function LPSPI_Enable about ERRATA051472.
[2.6.2]
* Bug Fixes
— Disabled Ipspi before LPSPI_MasterSetBaudRate incase of LPSPI opened.
[2.6.1]
* Bug Fixes
— Fixed return value while -calling LPSPI_WaitTxFifoEmpty in function LP-
SPI_MasterTransferNonBlocking.
[2.6.0]
» Feature

— Added the new feature of multi-IO SPI.

1.5. ChangeLog 143

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.3]
* Bug Fixes
- Fixed 3-wire txmask of handle vaule reentrant issue.
[2.5.2]
* Bug Fixes
— Workaround for errata ERR051588 by clearing FIFO after transmit underrun occurs.
[2.5.1]
* Bug Fixes
— Workaround for errata ERR050456 by resetting the entire module using LP-
SPIn_CR[RST] bit.
[2.5.0]
* Bug Fixes
— Workaround for errata ERR011097 to wait the TX FIFO to go empty when writing TCR
register and TCR[TXMSK] value is 1.
— Added API LPSPI_WaitTxFifoEmpty for wait the txfifo to go empty.
[2.4.7]
* Bug Fixes
— Fixed bug that the SR[REF] would assert if software disabled or enabled the LPSPI mod-
ule in LPSPI_Enable.
[2.4.6]

* Improvements

— Moved the configuration of registers for the 3-wire Ipspi mode to the LPSPI_MasterInit
and LPSPI_Slavelnit function.

[2.4.5]
* Improvements

— Improved LPSPI_MasterTransferBlocking send performance when frame size is 1-byte.

[2.4.4]
* Bug Fixes

— Fixed LPSPI_MasterGetDefaultConfig incorrect default inter-transfer delay calculation.

[2.4.3]
* Bug Fixes

— Fixed bug that the ISR response speed is too slow on some platforms, resulting in the
first transmission of overflow, Set proper RX watermarks to reduce the ISR response
times.

144 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
* Bug Fixes

— Fixed bug that LPSPI_MasterTransferBlocking will modify the parameter txbuff and
rxbuff pointer.

[2.4.1]
* Bug Fixes

— Fixed bug that LPSPI_SlaveTransferNonBlocking can’t detect RX error.

[2.4.0]
* Improvements

— Split some functions, fixed CCM problem in file fsl_lpspi.c.

[2.3.1]
* Improvements
- Initialized the EDMA configuration structure in the LPSPI EDMA driver.
* Bug Fixes

— Fixed bug that function LPSPI_MasterTransferBlocking should return after the trans-
fer complete flag is set to make sure the PCS is re-asserted.

[2.3.0]
* New Features

— Supported the master configuration of sampling the input data using a delayed clock
to improve slave setup time.

[2.2.1]
* Bug Fixes

— Fixed bug in LPSPI_SetPCSContinous when disabling PCS continous mode.

[2.2.0]
* Bug Fixes

— Fixed bug in 3-wire polling and interrupt transfer that the received data is not correct
and the PCS continous mode is not working.

[2.1.0]
¢ Improvements

— Improved LPSPI_SlaveTransferHandleIRQ to fill up TX FIFO instead of write one data
to TX register which improves the slave transmit performance.

— Added new functional APIs LPSPI SelectTransferPCS and LPSPI_SetPCSContinous to
support changing PCS selection and PCS continous mode.

* Bug Fixes

1.5. ChangeLog 145

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed bug in non-blocking and EDMA transfer APIs that kStatus_InvalidArgument is
returned if user configures 3-wire mode and full-duplex transfer at the same time, but
transfer state is already set to KLPSPI_Busy by mistake causing following transfer can
not start.

— Fixed bug when LPSPI slave using EDMA way to transfer, tx should be masked when tx
data is null, otherwise in 3-wire mode which tx/rx use the same pin, the received data
will be interfered.

[2.0.5]
* Improvements
— Added timeout mechanism when waiting certain states in transfer driver.
* Bug Fixes
— Fixed the bug that LPSPI can not transfer large data using EDMA.
— Fixed MISRA 17.7 issues.
— Fixed variable overflow issue introduced by MISRA fix.

- Fixed issue that rxFifoMaxBytes should be calculated according to transfer width
rather than FIFO width.

— Fixed issue that completion flag was not cleared after transfer completed.

[2.0.4]
* Bug Fixes
— Fixed in LPSPI_MasterTransferBlocking that master rxfifo may overflow in stall con-
dition.
— Eliminated IAR Pa082 warnings.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.6, 11.9, 14.2, 14.4, 15.7, 17.7.
[2.0.3]
* Bug Fixes
— Removed LPSPI_Reset from LPSPI_MasterInit and LPSPI_Slavelnit, because this API
may glitch the slave select line. If needed, call this function manually.
[2.0.2]

* New Features

— Added dummy data set up API to allow users to configure the dummy data to be trans-
ferred.

— Enabled the 3-wire mode, SIN and SOUT pins can be configured as input/output pin.

[2.0.1]
* Bug Fixes

— Fixed the bug that the clock source should be divided by the PRESCALE setting in LP-
SPI_MasterSetDelayTimes function.

146 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed the bug that LPSPI_MasterTransferBlocking function would hang in some corner
cases.

» Optimization

— Added #ifndef/#endif to allow user to change the default TX value at compile time.

[2.0.0]

 Initial version.

LPSPI_ EDMA

[2.4.9]
* Improvements

— Removed unused code from LPSPI_SeparateEdmaReadData().

[2.4.8]
* Improvements

— Added timeout for while loop in EDMA_LpspiMasterCallback() and
EDMA_LpspiSlaveCallback().

[2.4.7]
* Bug Fixes
— Add macro LPSPI_ALIGN_TCD_SIZE_MASK to align an address to edma_tcd_t size.
[2.4.6]

* Improvements

— Increased transmit FIFO watermark to ensure whole transmit FIFO will be used during
data transfer.

[2.4.5]
* Bug Fixes
— Fixed reading of TCR register
— Workaround for errata ERR050606
[2.4.4]

* Improvements

— Add EDMA ext API to accommodate more types of EDMA.

[2.4.3]
* Improvements

— Supported 32K bytes transmit in DMA, improve the max datasize in LP-
SPI_MasterTransferEDMALite.

1.5. ChangeLog 147

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
* Improvements

— Added callback status in EDMA_LpspiMasterCallback and EDMA_LpspiSlaveCallback
to check transferDone.

[2.4.1]
* Improvements
— Add the TXMSK wait after TCR setting.

[2.4.0]
* Improvements

— Separated LPSPI_MasterTransferEDMA functions to LP-
SPI_MasterTransferPrepareEDMA and LPSPI_MasterTransferEDMALite to optimize
the process of transfer.

LPUART

[2.10.0]
* New Feature

— Added support to configure RTS watermark.

[2.9.4]
* Improvements

— Merged duplicate code.

[2.9.3]
* Improvements
— Added timeout for while loops in LPUART_Deinit().

[2.9.2]
* Bug Fixes

— Fixed coverity issues.

[2.9.1]
* Bug Fixes

— Fixed coverity issues.

148 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.0]
* New Feature
— Added support for swap TXD and RXD pins.
— Added common IRQ handler entry LPUART DriverIRQHandler.

[2.8.3]
* Improvements

— Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.8.2]
* Bug Fix
— Fixed the bug that LPUART_TransferEnable16Bit controled by wrong feature macro.

[2.8.1]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule-5.3, rule-5.8, rule-10.4, rule-11.3, rule-11.8.

[2.8.0]
* Improvements

— Added support of DATA register for 9bit or 10bit data transmit in write and
read API. Such as: LPUART_WriteBlocking16bit, LPUART ReadBlocking16bit,
LPUART TransferEnable16Bit LPUART_WriteNonBlocking16bit,
LPUART_ReadNonBlocking16bit.

[2.7.7]1
* Bug Fixes

— Fixed the bug that baud rate calculation overflow when srcClock_Hz is 528MHz.

[2.7.6]
* Bug Fixes

— Fixed LPUART_EnableInterrupts and LPUART_DisableInterrupts bug that blocks if the
LPUART address doesn’t support exclusive access.

[2.7.5]
* Improvements

— Release peripheral from reset if necessary in init function.

1.5. ChangeLog 149

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.4]
* Improvements

— Added support for atomic register accessing in LPUART_Enablelnterrupts and
LPUART _DisableInterrupts.

[2.7.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 15.7.

[2.7.2]
* Bug Fix

— Fixed the bug that the OSR calculation error when lupart init and lpuart set baud rate.

[2.7.1]
* Improvements
— Added support for LPUART_BASE_PTRS_NS in security mode in file fsl_lpuart.c.

[2.7.0]
* Improvements

— Split some functions, fixed CCM problem in file fsl_lpuart.c.

[2.6.0]
* Bug Fixes
— Fixed bug that when there are multiple lpuart instance, unable to support different
ISR.
[2.5.3]
* Bug Fixes
— Fixed comments by replacing unused status flags KLPUART_NoiseErrorInRxDataRegFlag
and KLPUART_ParityErrorInRxDataRegFlag with KLPUART_NoiseErrorFlag and
KLPUART _ParityErrorFlag.
[2.5.2]
* Bug Fixes

— Fixed bug that when setting watermark for TX or RX FIFO, the value may exceed the
maximum limit.

* Improvements

— Added check in LPUART_TransferDMAHandleIRQ and
LPUART _TransferEdmaHandleIRQ to ensure if user enables any interrupts other
than transfer complete interrupt, the dma transfer is not terminated by mistake.

150 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
* Improvements
— Use separate data for TX and RX in Ipuart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling LPUART_TransferReceiveNonBlocking, the received data count returned
by LPUART _TransferGetReceiveCount is wrong.

[2.5.0]
* Bug Fixes

— Added missing interrupt enable masks KLPUART MatchlInterruptEnable and
KLPUART_Match2InterruptEnable.

— Fixed bug in LPUART Enablelnterrupts, LPUART _DisableInterrupts and
LPUART_GetEnabledInterrupts that the BAUD[LBKDIE] bit field should be soc
specific.

— Fixed bug in LPUART _TransferHandleIRQ that idle line interrupt should be disabled
when rx data size is zero.

— Deleted unused status flags KLPUART NoiseErrorInRxDataRegFlag and
KLPUART _ParityErrorInRxDataRegFlag, since firstly their function are the same
as KLPUART _NoiseErrorFlag and KLPUART_ParityErrorFlag, secondly to obtain them
one data word must be read out thus interfering with the receiving process.

— Fixed bug in LPUART_GetStatusFlags that the STAT[LBKDIF], STAT[MA1F] and
STAT[MAZ2F] should be soc specific.

— Fixed bug in LPUART _ClearStatusFlags that tx/rx FIFO is reset by mistake when clear-
ing flags.

— Fixed bug in LPUART_TransferHandleIRQ that while clearing idle line flag the other
bits should be masked in case other status hits be cleared by accident.

- Fixed bug of race condition during LPUART transfer using transactional APIs, by dis-
abling and re-enabling the global interrupt before and after critical operations on in-
terrupt enable register.

— Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

* New Features

— Added APIs LPUART_GetRxFifoCount/LPUART_GetTxFifoCount to get rx/tx FIFO data
count.

— Added APIs LPUART SetRxFifoWatermark/LPUART_SetTxFifoWatermark to set rx/tx
FIFO water mark.

[2.4.1]
* Bug Fixes
— Fixed MISRA advisory 17.7 issues.
[2.4.0]

* New Features

— Added APIs to configure 9-bit data mode, set slave address and send address.

1.5. ChangeLog 151

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
* Bug Fixes
— Fixed MISRA advisory 15.5 issues.
[2.3.0]

* Improvements

— Modified LPUART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

— Modified LPUART_TransferGetSendCount so that this API returns the real byte count
that LPUART has sent out rather than the software buffer status.

— Added timeout mechanism when waiting for certain states in transfer driver.

[2.2.8]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule-10.3, rule-14.4, rule-15.5.

— Eliminated Pa082 warnings by assigning volatile variables to local variables and using
local variables instead.

— Fixed MISRA issues.
Fixed rules 10.1, 10.3, 10.4, 10.8, 14.4, 11.6, 17.7.
* Improvements

— Added check for KLPUART TransmissionCompleteFlag in LPUART WriteBlocking,
LPUART_TransferHandleIRQ, LPUART TransferSendDMACallback and
LPUART SendEDMACallback to ensure all the data would be sent out to bus.

— Rounded up the calculated sbr value in LPUART_SetBaudRate and LPUART Init to
achieve more acurate baudrate setting. Changed osr from uint32_t to uint8_t since
osr’s bigest value is 31.

— Modified LPUART_ReadBlocking so that if more than one receiver errors occur, all sta-
tus flags will be cleared and the most severe error status will be returned.

[2.2.7]
* Bug Fixes
— Fixed issue for MISRA-2012 check.

* Fixed rule-12.1, rule-17.7, rule-14.4, rule-13.3, rule-14.4, rule-10.4, rule-10.8, rule-
10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3, rule-13.2, rule-8.3.

[2.2.6]
* Bug Fixes

— Fixed the issue of register’s being in repeated reading status while dealing with the
IRQ routine.

152 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.5]
* Bug Fixes
— Do not set or clear the TIE/RIE bits when using LPUART_EnableTxDMA and
LPUART_EnableRXxDMA.
[2.2.4]

* Improvements
— Added hardware flow control function support.

— Added idle-line-detecting feature in LPUART_TransferNonBlocking function. If an idle
line is detected, a callback is triggered with status kStatus_LPUART_IdleLineDetected
returned. This feature may be useful when the received Bytes is less than the expected
received data size. Before triggering the callback, data in the FIFO (if has FIFO) is read
out, and no interrupt will be disabled, except for that the receive data size reaches 0.

— Enabled the RXFIFO watermark function. With the idle-line-detecting feature enabled,
users can set the watermark value to whatever you want (should be less than the RX
FIFO size). Data is received and a callback will be triggered when data receive ends.

[2.2.3]
* Improvements

— Changed parameter type in LPUART_RTOS_Init struct from rtos_lpuart_config to
lpuart_rtos_config _t.

* Bug Fixes

— Disabled LPUART receive interrupt instead of all NVICs when reading data from ring
buffer. Otherwise when the ring buffer is used, receive nonblocking method will dis-
able all NVICs to protect the ring buffer. This may has a negative effect on other IPs
that are using the interrupt.

[2.2.2]
* Improvements
— Added software reset feature support.
— Added software reset API in LPUART Init.

[2.2.1]
* Improvements
— Added separate RX/TX IRQ number support.

[2.2.0]
* Improvements
— Added support of 7 data bits and MSB.

1.5. ChangeLog 153

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Improvements
— Removed unnecessary check of event flags and assert in LPUART_RTOS_Receive.
— Added code to always wait for RX event flag in LPUART_RTOS_Receive.

[2.1.0]
* Improvements

— Update transactional APIs.

LPUART_EDMA

[2.4.0]
» Refer LPUART driver change log 2.1.0 to 2.4.0

MCM

[2.2.0]
* Improvements

— Support platforms with less features.

[2.1.0]
* Others
— Remove byteID from mcm_lmem_fault_attribute_t for document update.
[2.0.0]

 Initial version.

MECC

[2.1.1]
* Bug fixes:

— Add volatile to variable counter to fix armgcc 13.2.1 -Os optimization issue.

154 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* Bug fixes:

— Removed Ocram1StartAddress, Ocram1EndAddress, Ocram2StartAddress,
Ocram2EndAddress in mecc_config t structure. Use startAddress and endAddress as
instead.

— Removed static function MECC_GetInstance().
* New Features:
— Added new function MECC_GetPendingFlags().

— Added new members: enableReadDataWait, enableReadAddrPipeline, enableWrite-
DataPipeline, enableWriteAddrPipeline in mecc_config_t structure to support pipeline
features.

[2.0.2]
* Bug fixes:
— Fixed MISRA 2012 issue: 10.3, 10.4.

[2.0.1]
* Bug fixes:
— Fixed MISRA 2012 issue: 10.1, 10.3, 10.4, 10.6.

[2.0.0]

 Initial version.

MIPI CSI2RX

[2.0.4]
* Improvements
- Updated for new format MIPI_CSI2RX_Type definition.

[2.0.3]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules: 3.1, 10.3, 10.4, 10.8, 17.7.
[2.0.2]

* Improvements
— Updated to support MIMX8QX CO header file.

1.5. ChangeLog 155

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Improvements
— Updated to support platforms that don’t have dedicated MIPI CSI2RX CSR.
* Bug Fixes

— Fixed the issue that the register bit PRG_RXHS_SETTLE set to wrong value.

[2.0.0]

¢ Initial version.

MIPI_DSI

[2.3.0]
* Bug Fixes

— Fixed typo in member of dsi_transfer_t structure. The sendDscCmd and dscCmd shall
be sendDcsCmd and dcsCmd.

[2.2.5]
* Bug Fixes

— Fixed issue that VACTIVE setting shall equal to the number of active lines (height), no
need to minus 1.

[2.2.4]
* Bug Fixes

— Updated the DPI setting to use float for coefficient value for more accurate calculation.

[2.2.3]
* Bug Fixes
— Fixed the DSI_TransferNonBlocking no interrupt issue.
- Fixed the violations of MISRA 2012 advisory rules.

[2.2.2]
* Bug Fixes
— Fixed the DPI horizontal timing setting issue.
— Fixed MISRA issue

[2.2.1]
* Bug Fixes

— Fixed the bug that runs to hardfault when sending long packet with 4-byte unaligned
address.

156 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
* Improvements

— Supported long package read.

[2.2.0]
* Improvements

— Change parameter MIPI_DSI_Type pointer to const type.

[2.1.0]

¢ Initial version.

MU
[2.3.1]
* Bug Fixes
— Fixed FSL_FEATURE_MU_HAS_RESET_DEASSERT_INT macro use.
[2.3.0]

* New Features

— Added MU_BUSY_POLL_COUNT parameter to prevent infinite polling loops in MU op-
erations.

— Added timeout mechanism to all polling loops in MU driver code.
— Added new function MU_ReceiveMsgTimeout() to include timeout mechanism.
* Improvements
— Updated function signatures to return status codes for better error handling:
* Changed MU_ResetBothSides to return status_t instead of void
* Updated MU_SendMsg to return status_t for timeout indication

* Updated MU_ReceiveMsg to use MU_TIMEOUT_VALUE (OXFFFFFFFF) as a special
return value to indicate timeout

— Enhanced documentation across all functions to clarify timeout behavior and return
values.

[2.2.0]
* New Features
— Added API MU_GetRxStatusFlags.

[2.1.3]
* Improvements

— Release peripheral from reset if necessary in init function.

1.5. ChangeLog 157

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.2]
* Bug Fixes

— Fixed issue that MU_GetInstance() is defined but never used.

[2.1.1]
* Bug Fixes

— Fixed general interrupt comment typo.

[2.1.0]
* Improvements

— Added new enum mu_msg_reg_index_t.

[2.0.7]
* Bug Fixes
— Fixed MU_GetInterruptsPending bug that can not get general interrupt status.
[2.0.6]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 17.7.
[2.0.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 14.4, 15.5.
[2.0.4]

* Improvements

— Improved for the platforms which don’t support reset assert interrupt and get the other
core power mode.

[2.0.3]
* Bug fixes
— MISRA C-2012 issue fixed.
* Fixed rules, containing: rule-10.3, rule-14.4, rule-15.5.
[2.0.2]

* Improvements
— Added support for MIMX8MQX.

158 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Improvements
— Added support for MCIMX7Ux_M4.

[2.0.0]

 Initial version.

NIC301

[2.0.1]
* Bug Fixes.
— Fixed the repeat of offset addition in this file API

[2.0.0]

« Initial version.

OCOTP

[2.1.4]
* Bug fixes

— Fixed the bug that OCOTP_ReadFuseShadowRegisterExt can’t read more than one

word.

[2.1.3]
* Bug fixes
— Fixed MISRA 2012 issue: 8.4, 10.3, 10.4, 14.3.

— Fixed doxygen warning.

[2.1.2]
* Improvements
— Updated for new MIMXRT117X header file.

[2.1.1]
* Improvements

— Updated OCOTP_ReloadShadowRegister to return error status.

— Added functions OCOTP_ReadFuseShadowRegisterExt and
OCOTP_WriteFuseShadowRegisterWithLock.
* Bug fixes
— Fixed MISRA 2012 rule 10.3 issue.
1.5. ChangeLog 159

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Bug Fixes
— Fixed doxygen issues.
[2.0.0]

 Initial version.

OTFAD

[2.1.4]
* Bug fixes
— Fixed MISRA 2012 issue: 10.1.

[2.1.3]
* Bug fixes
— Fixed the error that waiting for both FLEXSPI AHB idle and SEQ idle.

[2.1.2]
* Bug fixes
— Fixed MISRA 2012 issue: 10.4.

[2.1.1]
* Improvements:
— Hided some bits in CR and SR registers for selected platforms.

— Fixed doxygen issues.

[2.1.0]
* Improvements:

— Used boolean type to define 1-bit field concepts.

[2.0.0]

 Initial version.

PDM

[2.9.3]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

160 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.2]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.9.1]
* Bug Fixes

- Fixed the issue that the driver still enters the interrupt after disabling clock.

[2.9.0]
* Improvements

* Added feature FSL_FEATURE_PDM_HAS_DECIMATION_FILTER BYPASS to config
CTRL_2[DEC_BYPASS] field.

* Modify code to make the OSR value is not limited to 16.

[2.8.1]
* Improvements

e Added feature FSL_FEATURE PDM_HAS NO DOZEN to handle nonexistent
CTRL_1[DOZEN] field.

[2.8.0]
* Improvements

* Added feature FSL_FEATURE_PDM_HAS_NO_HWVAD to remove the support of hadware
voice activity detector.

* Added feature FSL_FEATURE_PDM_HAS_NO_FILTER BUFFER to remove the support of
FIR_RDY bitfield in STAT register.

[2.7.4]
* Bug Fixes
— Fixed driver can not determine the specific float number of clock divider.
— Fixed PDM_ValidateSrcClockRate calculates PDM channel in wrong method issue.
[2.7.3]

* Improvements

* Added feature FSL_FEATURE_PDM_HAS_NO_VADEF to remove the support of VADEF bit-
field in VADO_STAT register.

[2.7.2]
* Improvements

* Added feature FSL_FEATURE_PDM_HAS_NO_MINIMUM_CLKDIV to decide whether the
minimum clock frequency division is required.

1.5. ChangeLog 161

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 8.4, 10.3, 10.1, 10.4, 14.4
[2.7.0]

* Improvements

— Added api PDM_EnableHwvadInterruptCallback to support handle hwvad IRQ in PDM
driver.

— Corrected the sample rate configuration for non high quality mode.

— Added api PDM_SetChannelGain to support adjust the channel gain.

[2.6.0]
* Improvements
— Added new features FSL_FEATURE_PDM_HAS_STATUS_LOW_FREQ/FSL_FEATURE_PDM_HAS_DC_OUT

[2.5.0]
* Bug Fixes

— Fixed violations of the MISRA C-2012 rules 8.4, 16.5, 10.4, 10.3, 10.1, 11.9, 17.7, 10.6,
14.4,11.8, 11.6.

[2.4.1]
* Bug Fixes
— Fixed MDK 66-D warning in pdm driver.

[2.4.0]
* Improvements

— Added api PDM_TransferSetChannelConfig/PDM_ReadFifo to support read different
width data.

- Added feature FSL_FEATURE_PDM_HAS_RANGE_CTRL and api
PDM_ClearRangeStatus/PDM_GetRangeStatus for range register.

* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 14.4, 10.3, 10.4.

[2.3.0]
* Improvements

— Enabled envelope/energy voice detect mode by adding apis
PDM_SetHwvadInEnvelopeBasedMode/PDM_SetHwvadInEnergyBasedMode.

— Added feature FSL_FEATURE_PDM_CHANNEL _NUM for different SOC.

162 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
* Bug Fixes
- Fixed violation of MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.6, 10.7, 11.3, 11.8, 14.4, 17.7,
18.4.
— Added medium quality mode support in function PDM_SetSampleRateConfig.
[2.2.0]

* Improvements

— Added api PDM_SetSampleRateConfig to improve user experience and marked api
PDM_SetSampleRate as deprecated.

[2.1.1]
* Improvements

* Used new SDMA API SDMA_SetDoneConfig instead of SDMA_EnableSwDone for PDM SDMA
driver.

[2.1.0]
* Improvements

— Added software buffer queue for transactional API.

[2.0.1]
¢ Improvements
— Improved HWVAD feature.
[2.0.0]

 Initial version.

PDM_EDMA

[2.6.5]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

[2.6.4]
* Improvements

— Add handling for runtime change of number of linked transfers

[2.6.3]
* Improvements
— Add EDMA ext API to accommodate more types of EDMA.

1.5. ChangeLog 163

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
* Improvements

— Add macro MCUX_SDK PDM_EDMA_PDM_ENABLE_INTERNAL to let the user decide
whether to enable it when calling PDM_TransferReceiveEDMA.

[2.6.1]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 10.3, 10.4.
[2.6.0]

* Improvements
— Updated api PDM_TransferReceiveEDMA to support channel block interleave transfer.

— Added new api PDM_TransferSetMultiChannellnterleaveType to support channel in-
terleave type configurations.

[2.5.0]
» Refer PDM driver change log 2.1.0 to 2.5.0

PGMC
[2.1.2]
* Bug Fixes
— Fixed bug in PGMC_PPC_TriggerPMICStandbySoftMode() function.
[2.1.1]
* Bug Fixes
— Fixed Doxygen warnings.
[2.1.0]

* Improvements

— Updated PGMC driver based on the updates of header file.

[2.0.0]

 Initial version.

164 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

PIT

[2.2.0]
* Bug Fixes

— According to ERR050763, PIT_LDVAL_STAT register is not reliable in dynamic load
mode, so remove the status check in PIT_SetRtiTimerPeriod which added since 2.1.1.

— Removed not used bit PIT RTI_TCTRL_CHN_MASK.
¢ Improvements
— Added more guide about get RTI load status in PIT_SetRtiTimerPeriod’s API comment.
— Change PIT_RTI_Deinit to inline API.
— Ensure PIT peripheral clock enabled in PIT_RTI_Init.
* New Features
— Added PIT_ClearRtiSyncStatus API to clear the RTI_LDVAL_STAT register.

[2.1.1]
* Bug Fixes
— Enable PIT when using RTI to ensure RTI can work properly in debug mode.
* Improvements

— Added status check in PIT_SetRtiTimerPeriod to ensure the load value is synchronized
into the RTI clock domain.

— Added note for PIT_RTI_Init to remind users wait RTI sync.

[2.1.0]
* New Features

— Support RTI (Real Time Interrupt) timer.

[2.0.5]
* Improvements

— Support workaround for ERR007914. This workaround guarantee the write to MCR
register is not ignored.

[2.0.4]
* Bug Fixes

— Fixed PIT_SetTimerPeriod implementation, the load value trigger should be PIT clock
cycles minus 1.

[2.0.3]
* Bug Fixes

— Clear all status bits for all channels to make sure the status of all TCTRL registers is
clean.

1.5. ChangeLog 165

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
* Bug Fixes
— Fixed MISRA-2012 issues.
* Rule 10.1.
[2.0.1]
* Bug Fixes
— Cleared timer enable bit for all channels in function PIT_Init() to make sure all channels
stay in disable status before setting other configurations.
— Fixed MISRA-2012 rules.
* Rule 14.4, rule 10.4.
[2.0.0]

 Initial version.

PMU
[2.1.2]
* Bug Fixes
— Updated PMU_StaticEnablePlILdo() with disabling LDO currentlimit after LDO is stable
to minimize ARM PLL jitter in cold temperature.
[2.1.1]
* Bug Fixes
— Fixed bugs in FBB configuration.
— Updated delay value from 1us to 100us in PMU_StaticEnablePllL.do() function.
[2.1.0]

* Improvements
— Updated the PMU driver based on the new header file.

— Defined the macro to separate different scenes that some devices may do not support
FBB.

— Fixed Doxygen warnings.
- Fixed violations of MISRA C-2012 rule 14.3.
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 13.1, rule 10.1, rule 10.4, and rule 14.3.

[2.0.0]

 Initial version.

166 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

PUF

[2.2.0]
* Add support for kKPUF_KeySlot4.
* Add new PUF_ClearKey() function, that clears a desired PUF internal HW key register.

[2.1.6]

* Changed wait time in PUF_Init(), when initialization fails it will try PUF_Powercycle() with
shorter time. If this shorter time will also fail, initialization will be tried with worst case
time as before.

[2.1.5]

* Use common SDK delay in puf_wait_usec().

[2.1.4]

* Replace register uint32_t ticksCount with volatile uint32_t ticksCount in puf_wait_usec() to
prevent optimization out delay loop.

[2.1.3]
» Tix MISRA C-2012 issue.

[2.1.2]

» Update: Add automatic big to little endian swap for user (pre-shared) keys destinated to
secret hardware bus (PUF key index 0).

[2.1.1]
* Fix ARMGCC build warning .

[2.1.0]
* Align driver with PUF SRAM controller registers on LPCXpresso55s16.

* Update initizalition logic .

[2.0.3]
* Fix MISRA C-2012 issue.

[2.0.2]
* New feature:
— Add PUF configuration structure and support for PUF SRAM controller.
* Improvements:

- Remove magic constants.

1.5. ChangeLog 167

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Bug Fixes:
— Fixed puf_wait_usec function optimization issue.
[2.0.0]

 Initial version.

PWM

[2.9.1]
* Improvements

— Add new APIPWM__ SetupFaultsExt and PWM__SetupFaultInputFilterExt to support Flex-
PWM which has more than one fault input channels.

— Support fault 4-7 interrupt and its flag.
* Bug Fixes
— Fixed violations of the CERT INT31-C.

[2.9.0]
* Improvements
— Support PWMX channel output for edge aligned PWM.
— Forbid submodule 0 counter initialize with master sync and master reload mode.
— Clarify kPWM _ BusClock meaning.
— Verify pulseCnt within 65535 when update period register.

[2.8.4]
* Improvements

— Support workaround for ERR051989. This function helps realize no phase delay be-
tween submodule 0 and other submodule.

[2.8.3]
* Bug Fixes
— Fixed MISRA C-2012 Rule 15.7

[2.8.2]
* Bug Fixes
— Fixed warning conversion from ‘int’ to ‘uint16_t’ on API PWM_Init.

— Fixed warning unused variable ‘reg’ on API PWM_SetPwmForceOutputToZero.

168 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.1]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.8.0]
* Improvements

— Added API PWM_UpdatePwmPeriodAndDutycycle to update the PWM signal’s period
and dutycycle for a PWM submodule.

— Added API PWM_SetPeriodRegister and PWM_SetDutycycleRegister to merge dupli-
cate code in API PWM_SetupPwm, PWM_UpdatePwmDutycycleHighAccuracy and
PWM_UpdatePwmPeriodAndDutycycle

[2.7.1]
* Improvements
— Supported UPDATE_MASK bit in MASK register.

[2.7.0]
* Improvements
— Supported platforms which don’t have Capture feature with channel A and B.
— Supported platforms which don’t have Submodule 3.
— Added assert function in AP PWM_SetPhaseDelay to prevent wrong argument.

[2.6.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.3.
[2.6.0]

* Improvements

— Added API PWM_SetPhaseDelay to set the phase delay from the master sync signal of
submodule 0.

— Added API PWM._SetFilterSampleCountthe to set number of consecutive samples that
must agree prior to the input filter.

— Added API PWM_SetFilterSamplePeriod to set set the sampling period of the fault pin
input filter.

[2.5.1]
* Bug Fixes
- Fixed MISRA C-2012 rules: 10.1, 10.3, 10.4, 10.6 and 10.8.

— Fixed the issue that PWM_UpdatePwmDutycycle() can’t update duty cycle status value
correct.

1.5. ChangeLog 169

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
* Improvements
— Added API PWM_SetOouputToldle to set pwm channel output to idle.

— Added API PWM_GetPwmChannelState to get the pwm channel output duty cycle
value.

— Added API PWM_SetPwmForceOutputToZero to set the pwm channel output to zero
logic.

— Added API PWM_SetChannelOutput to set the pwm channel output state.
— Added API PWM_SetClockMode to set the value of the clock prescaler.

— Added API PWM_SetupPwmPhaseShift to set PWM which a special phase shift and 50%
duty cycle.

— Added API PWM_SetVALxValue/PWM_GetVALxValue to set/get PWM VALSs registers
values directly.

[2.4.0]
¢ Improvements

— Supported the PWM which can’t work in wait mode.

[2.3.0]
* Improvements
— Add PWM output enable&disbale API for SDK.
* Bug Fixes

— Fixed changing channel B configuration when parameter is kPWM_PWMX and PWMX
configuration is not supported yet.

[2.2.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.3, 10.4.
* Bug Fixes
— Fixed the issue that PWM drivers computed VAL1 improperly.
* Improvements

— Updated calculation accuracy of reloadValue in dutyCycleToReloadValue function.

[2.2.0]
* Improvements

— Added new enumeration and two APIs to support enabling and disabling one or more
PWM output triggers.

- Added a new function to make the most of 16-bit resolution PWM.
— Added one API to support updating fault status of PWM output.

— Added one API to support PWM DMA write request.

— Added three APIs to support PWM DMA capture read request.

170 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

— Added one API to support get default fault config of PWM.
— Added one API to support setting PWM fault disable mapping.

[2.1.0]
* Improvements

— Moved the configuration of fault input filter into a new API to avoid be initialized mul-
tiple times.

* Bug Fixes
— MISRA C-2012 issue fixed.

* Fix rules, containing: rule-10.2, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-14.4,

rule-16.4.
[2.0.1]
* Bug Fixes
— Fixed the issue that PWM submodule may be initialized twice in function
PWM_SetupPwm().
[2.0.0]

 Initial version.

PXP

[2.7.0]
* New Features
— Added the PS_LRC setting for V4.
— Added the PXP_SetPath setting for V4.
— Fixed the code logic, V4 do not support DATA_PATH_CTRL1.

[2.6.1]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.6.0]
* Bug Fixes
— Added missing configuration option for fetch engine background value.

— Fixed bug in PXP_SetStoreEngineConfig that the address increment for store mask is
not linear.

— Added channel aribitration configuration for fetch engine, channel combine for store
engine.

— Fixed wrong method of obtaining the store mask address.

1.5. ChangeLog 171

MCUXpresso SDK Documentation, Release 25.12.00

— Fixed wrong method of configuring flag shift mask/width which can only be written
in word boundary.

- Fixed wrong configurations of block store and pitch in PXP_SetStoreEngineConfig.
— Fixed wrong method of obtaining cfaValue address and calculating word count.

— Fixed the channel word order cannot be updated when configuring the second chan-
nel.

— Fixed bugs in PXP_SetHistogramConfig of wrong method to obtain the store mask ad-
dress and wrong access of 32-bit registers.

[2.5.0]
* New Features
— Added new API PXP_GetPorterDuffConfigExt for flexible Porter-Duff configuration.

— Added enumerations for new AS/PS pixel formats for certain SoCs.

[2.4.1]
* New Features

— Added API PXP_ResetControl to reset the PXP and the control register to initialized
state.

[2.4.0]
* New Features
— Added the API PXP_BuildRect of building a solid rectangle of given pixel value.
— Added the interrupt enable/disable and status mask for V3.
— Added API PXP_EnableProcessEngine to enable/disable process engines for V3.
— Added API PXP_SetHistogramSize to re-configure the histogram size for each update.

— Updated PXP_Wfealnit and PXP_SetWfeaConfig according to header file’s update of
WFE related registers.

— Updated PXP_Wfealnit to support handshake with upstream dither store engine and
added API PXP_WfeaEnableDitherHandshake to enable/disable the feature.

— Added API PXP_GetLutUsage to get the occupied LUT list.

— Updated APIs to support alpha blending enginel.

— Added the API PXP_MemCopy to support all memory size copy.
* Bug Fixes

— Fixed wrong naming for mux16.

— Fixed wrong naming for enumerations in pxp_scanline_burst_t.

- Fixed bug in PXP_GetHistogramMatchResult since there are 2 histograms engines
rather than 1.

— Fixed bug in PXP_SetFetchEngineConfig that the fetch size should not be minus one
coding.

172 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
* New Features

— Added the configuration of fetch engine, store engine, pre-dither engine and histogram
block.

[2.2.2]
* Improvements
— Disable alpha surface (AS) in PXP_Init.

[2.2.1]
* Improvements

— Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.2.0]
* Bug Fixes
— Fixed Porter Duff configuration error.
[2.1.0]

* New Features
— Added Porter Duff support.
— Added APIs PXP_StartMemCopy and PXP_StartPictureCopy.
— Added API PXP_SetProcessSurfaceYUVFormat.

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 3.1, 10.8, 11.6, 12.2.

[2.0.1]
* Bug Fixes

— Fixed the rotate function issue for i.MX 6ULL.

[2.0.0]

 Initial version.

QTMR

[2.3.0]
* Improvements

— Support for platforms which QTMR registers are 32-bit.

1.5. ChangeLog 173

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

[2.2.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

[2.2.0]
* Improvements

— Added API QTMR_SetPwmOutputToldle to set the generated pwm signal to the config-
ured idle value.

— Added API QTMR_GetPwmOutputStatus to return the output status of the generated
pwm signal.

— Added API QTMR_GetPwmChannelStatus to return the channel dutycycle value.

— Added API QTMR_SetPwmClockMode to set clock mode change peripheral clock fre-
quency.

* Bug Fixes

— Fixed the issue that pwm duty cycle could not be 0 and 100.

[2.1.0]
* Bug Fixes
— Fixed the issue QTMR_SetTimerPeriod needs to decrement down count by 1, and added
new APIs to configure the LOAD register, COMP register.
[2.0.2]
* Bug Fixes
— Fixed the issue introduced by previous code correction for improving the output signal
accuracy.
[2.0.1]
* Bug Fixes

— Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 11.5, 11.9.
* Improvements

— Improved the output signal accuracy.

[2.0.0]

¢ Initial version.

174 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

RDC

[2.2.0]
* New Features

— Added APIs to get memory region or peripheral access policy for specific domain.

[2.1.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.6.
[2.1.0]

¢ Improvements

— Enhanced to support memory region larger than 32-bit address.

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3,10.4, 11.3, 11.8, 17.7.
[2.0.1]
* Bug Fixes:
— Added __DSB after new configuration is set to ensure the new configuration takes ef-
fect.
[2.0.0]

 Initial version.

RDC_SEMA42

[2.0.5]
* Bug Fixes
— Fixed CERT INT30-C issues.

[2.0.4]
* Improvements
— Changed to implement RDC_SEMAPHORE_Lock base on RDC_SEMAPHORE_TryLock.

[2.0.3]
* Improvements:

— Supported the RDC_SEMAPHORE_Type structure whose gate registers are defined as
an array.

1.5. ChangeLog 175

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
* Bug Fixes
- Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.8, 14.3, 14.4, 18.1.
[2.0.1]

* Improvements:
— Added support for the platforms that don’t have dedicated RDC_SEMAA42 clock gate.

[2.0.0]

 Initial version.

ROMAPI

[1.1.2]
* New features

— Support new silicon Rev

[1.1.1]
* Improvements

— Update the comments of “clear cache” function.

[1.1.0]
* New features

— Support BO silicon

[1.0.0]

* initial version.

RTWDOG

[2.1.4]
* Bug Fixes
— Fixed CERT INT30-C, INT31-C issue.
— Make API RTWDOG_CountToMesec return 0 if result overflow.

[2.1.3]
* Improvements

— Waited the over status after CS register operation in case next CS operation causes
problem.

176 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.2]
* Bug Fixes

— Fixed doxygen issue.

[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-10.8, rule-11.9, rule-14.4, rule-15.5.

[2.1.0]
* Improvements
— Added an API to enable or disable the window mode.
— Added an API to convert a raw count value to millisecond.

— Used AT_QUICKACCESS_SECTION_CODE macro to decorate RTWDOG_Init, and copied
this function from flash to QUICKACCESS section.

[2.0.1]
* Bug Fixes
— Fixed bug in the RTWDOG_Init; added check for register’s unlock status when config-
uring the RTWDOG in RTWDOG_init.
[2.0.0]

« Initial version.

SAI

[2.4.10]
* Improvements
— Allow enabling/disabling implicit channel configuration.
— Allow NULL FIFO watermark.
* Bug Fixes

— Fix compilation warnings when asserts are disabled

[2.4.9]
* Added Errata ERR051421 workaround.

[2.4.8]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

1.5. ChangeLog 177

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.7]
* Added conditional support for bit clock swap feature
* Added common IRQ handler entry SAI_DriverIRQHandler.

[2.4.6]
* Bug Fixes
— Fixed the IAR build warning.
[2.4.5]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.
[2.4.4]
* Bug Fixes
- Fixed enumeration sai_fifo_combine_t - add RX configuration.
[2.4.3]
* Bug Fixes
— Fixed enumeration sai_fifo_combine_t value configuration issue.
[2.4.2]

* Improvements

— Release peripheral from reset if necessary in init function.

[2.4.1]
* Bug Fixes
— Fixed bitWidth incorrectly assigned issue.
[2.4.0]

* Improvements

— Removed deprecated APIs.

[2.3.8]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.

178 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.7]
* Improvements
— Change feature “FSL,_FEATURE_SAI_FIFO_COUNT” to “FSL_FEATURE_SAI_HAS_FIFO”.

— Added feature “FSL_FEATURE_SAI_FIFO_COUNTn(x)” to align SAI fifo count function
with IP in function

[2.3.6]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 5.6.
[2.3.5]

* Improvements

— Make driver to be aarch64 compatible.

[2.3.4]
* Bug Fixes
— Corrected the fifo combine feature macro used in driver.
[2.3.3]
* Bug Fixes
— Added bit clock polarity configuration when sai act as slave.
— Fixed out of bound access coverity issue.
— Fixed violations of MISRA C-2012 rule 10.3, 10.4.
[2.3.2]
* Bug Fixes
— Corrected the frame sync configuration when sai act as slave.
[2.3.1]
* Bug Fixes
— Corrected the peripheral name in function SAIO_DriverIRQHandler.
— Fixed violations of MISRA C-2012 rule 17.7.
[2.3.0]
* Bug Fixes
— Fixed the build error caused by the SOC has no fifo feature.
[2.2.3]
* Bug Fixes

— Corrected the peripheral name in function SAIO_DriverIRQHandler.

1.5. ChangeLog 179

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]

* Bug Fixes
— Fixed the issue of MISRA 2004 rule 9.3.
— Fixed sign-compare warning.
— Fixed the PA082 build warning.
- Fixed sign-compare warning.
— Fixed violations of MISRA C-2012 rule 10.3,17.7,10.4,8.4,10.7,10.8,14.4,17.7,11.6,10.1,10.6,8.4,14.3,16.4,1¢
— Allow to reset Rx or Tx FIFO pointers only when Rx or Tx is disabled.

* Improvements
— Added 24bit raw audio data width support in sai sdma driver.

— Disabled the interrupt/DMA request in the SAI Init to avoid generates unexpected sai
FIFO requests.

[2.2.1]
¢ Improvements
— Added mclk post divider support in function SAI_SetMasterClockDivider.
— Removed useless configuration code in SAI_RxSetSerialDataConfig.
* Bug Fixes

— Fixed the SAI SDMA driver build issue caused by the wrong structure member name
used in the function SAI_TransferRxSetConfigSDMA/SAI_TransferTxSetConfigSDMA.

— Fixed BAD BIT SHIFT OPERATION issue caused by the
FSL_FEATURE_SAI CHANNEL_COUNTN.

— Applied ERR05144: not set FCONT = 1 when TMR > 0, otherwise the TX may not work.

[2.2.0]
* Improvements
— Added new APIs for parameters collection and simplified user interfaces:
* SAI Init
% SAI_SetMasterClockConfig
* SAI TxSetBitClockRate
* SAI_TxSetSerialDataConfig
* SAI_TxSetFrameSyncConfig
* SAI_TxSetFifoConfig
* SAI_TxSetBitclockConfig
% SAI TxSetConfig
* SAI_TxSetTransferConfig
* SAI RxSetBitClockRate
* SAI_RxSetSerialDataConfig
* SAI_RxSetFrameSyncConfig
% SAI_RxSetFifoConfig

180 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

* SAI_RxSetBitclockConfig

* SAI_RXSetConfig

* SAI_RxSetTransferConfig

* SAI_GetClassicI2SConfig

* SAI_GetLeftJustifiedConfig
* SAI_GetRightJustifiedConfig
* SAI_GetTDMConfig

[2.1.9]
* Improvements
— Improved SAI driver comment for clock polarity.
— Added enumeration for SAI for sample inputs on different edges.

— Changed FSL_FEATURE_SAI_CHANNEL_COUNT to FSL_FEATURE_SAI_CHANNEL_COUNTn(base)
for the difference between the different SAI instances.

* Added new APIs:
— SAI TxSetBitClockDirection
— SAI_RxSetBitClockDirection
— SAI RxSetFrameSyncDirection

— SAI TxSetFrameSyncDirection

[2.1.8]
* Improvements
— Added feature macro test for the sync mode2 and mode 3.

— Added feature macro test for masterClockHz in sai_transfer format t.

[2.1.7]
* Improvements
— Added feature macro test for the mclkSource member in sai_config_t.
— Changed “FSL_FEATURE_SAI5_SAI6_SHARE_IRQ” to “FSL_FEATURE_SAI_SAI5_SAI6_SHARE_IRQ”.
— Added #ifndef #endif check for SAI XFER_QUEUE_SIZE to allow redefinition.
* Bug Fixes

— Fixed build error caused by feature macro test for mclkSource.

[2.1.6]
* Improvements
— Added feature macro test for mclkSourceClockHz check.
— Added bit clock source name for general devices.
* Bug Fixes

— Fixed incorrect channel numbers setting while calling RX/TX set format together.

1.5. ChangeLog 181

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.5]
* Bug Fixes
— Corrected SAI3 driver IRQ handler name.
— Added 1254/5/6 IRQ handler.

— Added base in handler structure to support different instances sharing one IRQ num-
ber.

* New Features
— Updated SAI driver for MCR bit MICS.
— Added 192 KHZ/384 KHZ in the sample rate enumeration.
— Added multi FIFO interrupt/SDMA transfer support for TX/RX.
— Added an API to read/write multi FIFO data in a blocking method.
— Added bclk bypass support when bclk is same with mclk.

[2.1.4]
* New Features

— Added an API to enable/disable auto FIFO error recovery in platforms that support this
feature.

— Added an API to set data packing feature in platforms which support this feature.

[2.1.3]
* New Features

— Added feature to make I2S frame sync length configurable according to bitWidth.

[2.1.2]
* Bug Fixes
— Added 24-bit support for SAI eDMA transfer. All data shall be 32 bits for send/receive,
as eDMA cannot directly handle 3-Byte transfer.
[2.1.1]

* Improvements

— Reduced code size while not using transactional API.

[2.1.0]
* Improvements
— API name changes:
* SAI_GetSendRemainingBytes -> SAI_GetSentCount.
* SAI_GetReceiveRemainingBytes -> SAI_GetReceivedCount.
* All names of transactional APIs were added with “Transfer” prefix.
* All transactional APIs use base and handle as input parameter.

* Unified the parameter names.

182 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

* Bug Fixes
— Fixed WLC bug while reading TCSR/RCSR registers.

— Fixed MOE enable flow issue. = Moved MOE enable after MICS settings in
SAI_TxInit/SAI_RxInit.

[2.0.0]

 Initial version.

SAI_EDMA

[2.7.3]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.7.2]
* Improvements
- Add macros MCUX_SDK_SAI_EDMA_TX_ENABLE_INTERNAL and
MCUX_SDK_SAI EDMA_RX ENABLE_INTERNAL to let the user decide whether to
enable SAI when calling SAI_TransferSendEDMA/SAI_TransferReceiveEDMA.
[2.7.1]

* Improvements
— Add EDMA ext API to accommodate more types of EDMA.

[2.7.0]
* Improvements

— Updated api SAI TransferReceiveEDMA to support voice channel block interleave
transfer.

— Updated api SAI_TransferSendEDMA to support voice channel block interleave trans-
fer.

— Added new api SAI_TransferSetInterleaveType to support channel interleave type con-
figurations.

[2.6.0]
* Improvements

— Removed deprecated APIs.

[2.5.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 20.7.

1.5. ChangeLog 183

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
* Improvements

— Added new api SAI_TransferSendLoopEDMA/SAI_TransferReceiveLoopEDMA to sup-
port loop transfer.

— Added multi sai channel transfer support.

[2.4.0]
e Improvements

— Added new api SAI_TransferGetValidTransferSlotsEDMA which can be used to get
valid transfer slot count in the sai edma transfer queue.

— Deprecated the api SAI_TransferRxSetFormatEDMA and
SAI TransferTxSetFormatEDMA.

* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.3,10.4.

[2.3.2]
 Refer SAI driver change log 2.1.0 to 2.3.2

SEMA4

[2.2.2]
* Improvements

— Updated SEMA4_TryLock function to avoid unsigned integer operations wrap issue.

[2.2.1]
* Bug Fixes
— Fixed violations of the CERT INT31-C, MISRA C-2012 rules 10.3, 10.4.
[2.2.0]

* New Features

— Added SEMA4_BUSY_POLL_COUNT parameter to prevent infinite polling loops in
SEMA4 operations.

— Added timeout mechanism to all polling loops in SEMA4 driver code.
* Improvements

— Updated SEMA4_Lock function to return status_t instead of void for better error han-
dling.

— Enhanced documentation to clarify timeout behavior and return values.

184 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* Improvements

— Changed mask parameter type in SEMA4_EnableGateNotifyInterrupt() and
SEMA4_DisableGateNotifyInterrupt() functions to avoid casting from unsigned
long to unsigned short in the code when modifying the 16bits CPINE register.

[2.0.3]
* Improvements
— Changed to implement SEMA4_Lock base on SEMA4_TryLock.

[2.0.2]
* Improvements:

— Supported the SEMA4_Type structure whose gate registers are defined as an array.

[2.0.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 15.5, 18.1, 18.4.
[2.0.0]

 Initial version.

SEMC
[2.7.1]
* Bug Fixes
— Fixed the wrong write operation to INTR register. The INTR register is a W1C register,
so the right write operation is write directly to it to clear.
[2.7.0]

* Improvements

— Add new autofreshTimes parameter in semc_sdram_config_t.
* Bug Fixes

— Fixed violations of MISRA C-2012 rule 10.4.

[2.6.0]
* Bug Fixes
— Fixed the SEMC SRAM function bug that some configuration options can’t be set.
— Correct legacy SEMC SRAM function feature macros.
* Improvements
— Add new SEMC SRAM function feature macros.

1.5. ChangeLog 185

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
* Bug Fixes
- Fixed violations of the MISRA C-2012 Rule 14.3.
— Fixed SEMC_ConfigureDBI bug that RDX not set correctly.
[2.5.0]
* Bug Fixes
— Fixed definitions of bitfields of BMCRO and BMCR1 - wrong field order and incorrect
semantical naming
— The fix alters the driver API regarding configuration of AXI bus queue reordering
[2.4.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 5.6.
[2.4.2]

* Improvements

— Deleted meaningless parameter in memory size conversion function.

[2.4.1]
* Bug Fixes
— Fixed PSRAM A8 configuration issue, which should be 0x06U for PSRAM while pix mux
bit width is 0x04U, based on different pix mux bit width.
[2.4.0]

* Improvements

— Improved nor and sram timing configuration on sync mode.

[2.3.1]
* Bug Fixes

— Updated refresh timer period(RT) timing setting, which updated into (RT+1)*(Prescaler
period) for SDRAM.

— Supported new DBI control register 2 to configure CSX interval time(CEITV).
— Fixed violations of the MISRA C-2012 Rule 10.8.

— Fixed doxygen warning.

186 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
* New Features

— Limited burst length as 1 according to ERR050577, Auto-refresh command may pos-
sibly fail to be triggered during long time back-to-back write (or read) when SDRAM
controller’s burst length is greater than 1.

— Supported 8 bits column address for SDRAM.

[2.2.1]
* New Features
— Added queue weight control, which can control queue a/b is working or not.

— Updated NAND FLASH configuration API which disables and enables SEMC between
configure control registers.

— Added ONFI parameter Integrity CRC check for SEMC flash component.

[2.2.0]
* New Features
— Supported up to 4 PSRAM CS.
— Added programmable delay line for DQS.
— Added ready/wait feature for SRAM in asynchronous mode.
[2.1.0]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.
— Updated parameter type from uint16_t into uint32_t for send IP command API.
[2.0.4]
* Bug Fixes
— Fixed the SEMC queueA and queueB weight configuration issue.
— Fixed the wrong configuration of DBICR1 register in SEMC_ConfigureDBI.
[2.0.3]
* Bug Fixes
— Added feature macro to control WDS&WDH bit setting for NOR synchronous transfer.
[2.0.2]
* Bug Fixes

— Changed SEMC NAND configuration structure and verify SEMC NAND related APIs.
— Added extended SEMC clock enable.

1.5. ChangeLog 187

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Bug Fixes
— Fixed data size mask configure in SEMC_ConfigureI[PCommand API.
— Updated the command mode in IP command type.
[2.0.0]

 Initial version.

SMARTCARD

[2.3.0]
* New features:
— Added support for USIM

[2.2.2]
* Bug fix:
— Fixed MISRA C-2012 rule 10.4.

[2.2.1]
* Bug fix:
— Fixed IAR warnings Pa082 in smartcard_emvsim
— Fixed MISRA issues
— Fixed rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 14.4, 16.1, 16.3, 16.4, 17.7
[2.2.0]
* New features:
— Updated to use RX/TX FIFO
[2.1.2]

* Provided time delay function which works in microseconds.
* Bug fix:
— Changed event to semaphore in RTOS driver (KPSDK-11634).

— Added check if de-initialized variables are not null iSMARTCARD RTOS_Deinit()
(KPSDK-8788).

— Changed deactivation sequence iSMARTCARD_PHY_TDA8035_Deactivate() to properly
stop the clockPOSCR-35).

— Fixed timing issue with VSELO/1 signals in smartcard TDA803driver (KPSDK-10160)

188 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* New features:
— Added default phy interface selection into smartcard RTOS drivers (KPSDK-9063).
— Replaced smartcard_phy_ncn8025 driver by smartcard_phy_tda8035.
* Bug fix:

- Fixed protocol timers activation sequences in smartcard_emvsim and smart-
card_phy_tda8035 drivers during emvl1 pre-certification tests (KPSDK-9170, KPSDK-
9556).

[2.1.0]

 Initial version.

SNVS_HP

[2.3.2]

* Make SNVS_HP_RTC_Init()/SNVS_HP_RTC_Deinit more transparent. Use function
SNVS_HP_Init()/SNVS_HP_Deinit() instead of copy of this code in SNVS_HP_RTC_XXX()
function.

[2.3.1]
* Fixed problem in SNVS_HP_RTC_Init(), which is clearing hits that should stay intact.

[2.3.0]

* Re-map Security Violation for RT11xx specific violations.

[2.2.0]
* Fixed doxygen issues.
* Add SNVS HP Set locks.

[2.1.4]
» Tix MISRA issues.

[2.1.3]
* Fixed IAR Pa082 warnings.

[2.1.2]
* Fixed problem with initialization of the periodic interrupt frequency.

* Fixed problem with SNVS entering into fail state when HAB enters closed mode.

1.5. ChangeLog 189

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
» Added APIs for HP security violation status flags.

[2.1.0]

* Added APIs for High Assurance Counter (HAC), Zeroizable Master Key (ZMK) and Software
Security Violation.

[2.0.0]

 Initial version.

SNVS_LP

[2.4.6]

* Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC2R
were done wrongly to LPATRC1R.

[2.4.5]

* Fix a bug in SNVS_LP_EnableRxActiveTamper() where assignments to base->LPATRC1R
would overwrite previously set bits.

[2.4.4]

* Make SNVS_LP_SRTC_Init()/SNVS_LP_SRTC_Deinit more transparent. Use function
SNVS_LP_Init()/SNVS_LP_Deinit() instead of copy of this code in SNVS_LP_SRTC_XXX()
function.

[2.4.3]
* Fixed problem in SNVS_LP_SRTC_Init(), which is clearing bits that should stay intact.

[2.4.2]

» Updated driver to match with new device header files.

[2.4.1]
* Fixed MISRA issues.

[2.4.0]
* Fix backward compatibility with version 2.2.x.

[2.3.0]

* Add active pin, clock, voltage and temperature tamper features.

190 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
* Fixed doxygen issues.
* Add Transition SNVS SSM state to Trusted/Non-secure from Check state.

[2.1.2]
» Tix MISRA issues.

[2.1.1]
* Fix IAR Pa082 warning.

[2.1.0]
* Added APIs for Zeroizable Master Key (ZMK) and Monotonic Counter (MC).

[2.0.0]

« Initial version.

SOC_MIPI_CSI2ZRX

[2.0.2]
* Updated for new header file.

[2.0.1]
* Bug Fixes
— Fixed MISRA-C 2012 10.8 issue.
[2.0.0]

* initial version.

SPDIF

[2.0.7]
* Improvements

— Add feature macro FSL_FEATURE_SPDIF HAS NO_SIC_REGISTER to handle nonexis-
tent SIC register.

[2.0.6]
* Bug Fixes

— Fixed the Q/U channel interrupt enabled unexpectly while Q/U transfer pointer is
NULL.

1.5. ChangeLog 191

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.3.
[2.0.4]
* Bug Fixes
— Added udata/qdata buffer address validation in driver IRQ handler to ensure that
NULL pointer dereferences do not occur.
[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.
[2.0.2]
* Bug Fixes
— Corrected operator used for size value assertion in
SPDIF_ReadBlocking/SPDIF_WriteBlocking.
[2.0.1]
* Bug Fixes
— Corrected the feature macro name used to define s_edmaPrivateHandle.
[2.0.0]

* Initial version.

SPDIF DMA Driver

[2.0.8]
* Improvements
— Add EDMA ext API to accommodate more types of EDMA.

[2.0.7]
* Bug Fixes

- Fixed the incompatibility issue with edma4 driver.

[2.0.6]
* Bug Fixes

— Add feature macro to determine whether to wuse the API MEM-
ORY_ConvertMemoryMapAddress to translate TCD addresses for DLAST_SGA.

192 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.3.
[2.0.4]
* Bug Fixes
— Added udata/qdata buffer address validation in driver IRQ handler to ensure that
NULL pointer dereferences do not occur.
[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, and 14.4.
[2.0.2]
* Bug Fixes
— Corrected operator used for size value assertion in
SPDIF_ReadBlocking/SPDIF_WriteBlocking.
[2.0.1]
* Bug Fixes
— Corrected the feature macro name used to define s_edmaPrivateHandle.
[2.0.0]

 Initial version.

SSARC

[2.1.0]
* Improvements

— Updated the structure ssarc_descriptor_config_t, make it more friendly to users.

[2.0.0]

¢ Initial version.

TEMPSENSOR

[2.1.2]
* Bug Fixes

— Fixed the bug of incorrect default value of temperature sensor registers in initializa-
tion state.

1.5. ChangeLog 193

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Improvements

— CTRLO register fields are not needed for customer, they are trim registers for the IP
that are determined during calibration.

[2.1.0]
* Improvements

— Supported directly access to TEMPSENSOR registers.

[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.8.

[2.0.2]
* Bug Fixes

— Fixed bug that FINISH flag not cleared after temperature read out.

[2.0.1]
* Improvements

— Updated temperature calculation formula, to get more accurate result with high or low
temperature..

[2.0.0]

* Initial version.

USDHC

[2.8.8]
* Bug Fixes

— Fixed build issue with armgcc 03.

[2.8.7]
* Bug Fixes

— Disabled CMD error check for standard tuning per RM.

[2.8.6]
* Bug Fixes

— Invalidate cache after blocking read.

194 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.5]
* Improvements
— Enable the driver to be AARCH64 compatible.

[2.8.4]
* Improvements
— Add feature macro FSL_FEATURE_USDHC_HAS_NO_VS18.

[2.8.3]
* Improvements

— Improved api USDHC_EnableAutoTuningForCmdAndData to adapt to new bit field
name for USDHC_VEND_SPEC2 register.

[2.8.2]
* Improvements
— Added feature macro FSL,_FEATURE_USDHC_HAS_NO_VOLTAGE_SELECT.

[2.8.1]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.9.
[2.8.0]

* Improvements

— Fixed the mmc boot transfer failed issue which is caused by the Dma complete inter-
rupt not enabled.

— Marked api USDHC_AdjustDelayForManualTuning as deprecated and added new api
USDHC_SetTuingDelay/USDHC_GetTuningDelayStatus.

— Improved the manual tuning flow accroding to specification.

— Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

— Fixed violations of MISRA C-2012 rule 10.4.

[2.7.0]
* Improvements

— Added api USDHC_TransferScatterGatherADMANonBlocking to support scatter gather
transfer.

— Added feature FSL_FEATURE_USDHC_REGISTER_HOST_CTRL_CAP_HAS_NO_RETUNING_TIME_COUN"
for re-tuning time counter field in HOST_CTRL_CAP register.

* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.9, 10.1, 10.3, 10.4, 8.4.

1.5. ChangeLog 195

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
* Improvements

— Added api USDHC_SetStandardTuningCounter to support adjust tuning counter of
Standard tuning.

[2.5.1]
* Improvements
— Used different status code for command and data interrupt callback.

— Added cache line invalidate for receive buffer in driver IRQ handler to fix CM7 specu-
lative access issue.

[2.5.0]
* Improvements

— Added new api USDHC_SetStrobeDIllOverride for HS400 strobe dll override mode delay
taps configurations.

— Corrected the STROBE DLL configurations sequence.

[2.4.0]
* Improvements
— Added feature macro for read/write burst length.
* Disabled redundant interrupt per different transfer request.

* Disabled interrupt and reset command/data pointer in handle when transfer com-
pletes.

* Bug Fixes

- Fixed violations of MISRA C-2012 rule 11.9, 15.7, 4.7, 16.4, 10.1, 10.3, 10.4, 11.3, 14.4,
10.6,17.7,16.1, 16.3.

— Fixed PA082 build warning.

— Fixed logically dead code Coverity issue.

[2.3.0]
* Improvements
— Added USDHC_SetDataConfig API to support manual tuning.

— Removed the limitaion that source clock must be bigger than the target in function
USDHC_SetSdClock by using source clock frequency as target directly.

— Added peripheral reset in USDHC_Init function.

— Added tuning reset support in function USDHC_Reset function.

[2.2.8]
* Bug Fixes

— Fixed out-of bounds write in function USDHC_ReceiveCommandResponse.

196 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.7]
* Improvements

— Added API USDHC_GetEnabledInterruptStatusFlags and used in US-
DHC_TransferHandleIRQ.

— Removed useless member interruptFlags in usdhc_handle_t.

[2.2.6]
e Improvements
— Added address align check for ADMA descriptor table address.

- Changed USDHC_ADMA1_DESCRIPTOR_MAX_LENGTH_PER_ENTRY to (65536-4096) to
make sure the data address is 4KB align for a transfer which need more than one
ADMA1 descriptor.

[2.2.5]
* Bug Fixes
— Fixed MDK 66-D warning.

[2.2.4]
* Bug Fixes

— Fixed issue that real clock frequency wss mismatched with target clock frequency,
which was caused by an incorrect prescaler calculation.

* New Features

— Added control macro to enable/disable the CLOCK code in current driver.

[2.2.3]
* Bug Fixes
— Fixed issue where AMDA did not disable with DMAEN clear.
* Improvements
- Improved set clock function to check the output frequency range.
— Dynamic set SDCLKFS during DDR enable or disable.

[2.2.2]
* Improvements

— Improved read transfer cache maintain operation, combined clean, and invalidated
them into one function.

[2.2.1]
* Bug Fixes

— Disabled the invalidate cache operation for tuning.

1.5. ChangeLog 197

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
* Improvements

— Improved USDHC to support MMC boot feature.

[2.1.3]
* Bug Fixes
— Fixed MISRA issue.

[2.1.2]
* Bug Fixes
— Fixed Coverity issue.

— Added base address and userData parameter for all callback functions.

[2.1.1]
* Improvements
— Added cache maintain operation.
— Added timeout status check for the DATA transfer which ignore error.
— Added feature macro for SDR50/SDR104 mode.

— Removed useless IRQ handler from different platforms.

[2.1.0]
* Improvements
— Integrated tuning into transfer function.
— Added strobe DLL feature.
— Added enableAutoCommand23 in data structure.

— Removed enable card clock function because the controller would handle the clock
on/off.

[2.0.0]

 Initial version.

WDOG

[2.2.0]
* Bug Fixes

— Fixed the wrong behavior of workMode.enableWait, workMode.enableStop, work-
Mode.enableDebug in configuration structure wdog_config_t. When set the items to
true, WDOG will continues working in those modes.

198 Chapter 1. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, 10.4, 10.6, 10.7 and 11.9.
— Fixed the issue of the inseparable process interrupted by other interrupt source.
* WDOG_Init
WDOG_Refresh
[2.1.0]

* New Features

— Added new API “WDOG_TriggerSystemSoftwareReset()” to allow users to reset the sys-
tem by software.

— Added new API “WDOG_TriggerSoftwareSignal()” to allow users to trigger a WDOG_B
signal by software.

— Removed the parameter “softwareAssertion” and “softwareResetSignal” out of the
wdog_config_t structure.

— Added new parameter “enableTimeOutAssert” to the wdog_config_t structure. With
this parameter enabled, when the WDOG timeout occurs, a WDOG_B signal will be
asserted. This signal can be routed to external pin of the chip. Note that WDOG_B
signal remains asserted until a power-on reset (POR) occurs.

[2.0.1]
* New Features

— Added control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

XBARA

[2.0.6]
* Bug Fixes

— Fixed typo in kXBARA_RequestInterruptEnalbe item.

[2.0.5]
* Bug Fixes
— Fixed IAR build warning Pa082.

- Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 12.1, 18.1,
20.7.

1.5. ChangeLog 199

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
* Improvements

— Optimized XBARA_SetOutputSignalConfig.

[2.0.3]
* Bug Fixes
— Corrected configuration for function XBAR_SetOutputSignalConfig.
[2.0.2]

* Other Changes

— Changed array clock name.

[2.0.1]
* Bug Fixes
- Fixed wic bits for XBARA_SetOutputSignalConfig function.
[2.0.0]

« Initial version.

XBARB

[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 12.2, 10.7

[2.0.1]
* Bug Fixes
— Corrected XBARB_SetSignalsConnection function.
* Other Changes

— Changed array clock name.

[2.0.0]

 Initial version.

XECC

[2.0.0]

 Initial version.

200 Chapter 1

. MIMXRT1160-EVK

MCUXpresso SDK Documentation, Release 25.12.00

XRDC2
[2.0.3]
* Bug Fixes
— Fixed the bug that domain access policy is set to the incorrect domain ID.
[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.8, 12.2, 14.1.
[2.0.1]

¢ Improvements

— Updated for new header file.

[2.0.0]

 Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MIMXRT1166_drivers

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 VG-Lite GPU Library

VGLite Graphics Driver

1.7.2 Multicore

Multicore SDK

1.7.3 MCU Boot

mcuboot_opensource

1.6. Driver API Reference Manual 201

MCUXpresso SDK Documentation, Release 25.12.00

1.7.4 Audio Voice components

Audio Voice Components

1.7.5 Maestro Audio Framework for MCU

Maestro Audio Framework

1.7.6 eIQ
eiq
1.7.7 FreeMASTER

freemaster

1.7.8 AWS IoT

aws_iot

1.7.9 NXP Wi-Fi

Wi-Fi, Bluetooth, 802.15.4

1.7.10 FreeRTOS

FreeRTOS

1.7.11 1IwIP

lwIP

1.7.12 File systemFatfs

FatFs

202

Chapter 1. MIMXRT1160-EVK

Chapter 2

MIMXRT1176

2.1 ACMP: Analog Comparator Driver

void ACMP_ Init(CMP_Type *base, const acmp_config_t *config)
Initializes the ACMP.

The default configuration can be got by calling ACMP_GetDefaultConfig().
Parameters
* base — ACMP peripheral base address.
* config — Pointer to ACMP configuration structure.
void ACMP_ Deinit(CMP_Type *base)
Deinitializes the ACMP.
Parameters
* base — ACMP peripheral base address.

void ACMP__GetDefaultConfig(acmp_config_t *config)
Gets the default configuration for ACMP.

This function initializes the user configuration structure to default value. The default value
are:

Example:

config->enableHighSpeed = false;
config->enablelnvertOutput = false;
config->useUnfilteredOutput = false;
config->enablePinOut = false;
config->enableHysteresisBothDirections = false;
config->hysteresisMode = kACMP __hysteresisMode0;

Parameters
* config — Pointer to ACMP configuration structure.

void ACMP_ Enable(CMP_Type *base, bool enable)
Enables or disables the ACMP.

Parameters
* base — ACMP peripheral base address.
* enable — True to enable the ACMP.

203

MCUXpresso SDK Documentation, Release 25.12.00

void ACMP__EnableLinkToDAC(CMP_Type *base, bool enable)
Enables the link from CMP to DAC enable.

When this bit is set, the DAC enable/disable is controlled by the bit CMP_CO[EN] instead of
CMP_C1[DACEN].

Parameters
* base — ACMP peripheral base address.
* enable — Enable the feature or not.

void ACMP_ SetChannelConfig(CMP_Type *base, const acmp_channel_config_t *config)
Sets the channel configuration.

Note that the plus/minus mux’s setting is only valid when the positive/negative port’s input
isn’t from DAC but from channel mux.

Example:

acmp__channel config_t configStruct = {0};
configStruct.positivePortInput = kKACMP_ PortInputFromDAC;
configStruct.negativePortInput = kACMP_ PortInputFromMux;

configStruct. minusMuxInput = 1U;
ACMP__SetChannelConfig(CMPO, &configStruct);

Parameters
* base — ACMP peripheral base address.
* config — Pointer to channel configuration structure.

void ACMP_ EnableDMA(CMP_Type *base, bool enable)
Enables or disables DMA.

Parameters
* base — ACMP peripheral base address.
* enable — True to enable DMA.

void ACMP__ SetFilterConfig(CMP_Type *base, const acmp_filter_config_t *config)
Configures the filter.

The filter can be enabled when the filter count is bigger than 1, the filter period is greater
than 0 and the sample clock is from divided bus clock or the filter is bigger than 1 and the
sample clock is from external clock. Detailed usage can be got from the reference manual.

Example:

acmp_ filter__config_t configStruct = {0};
configStruct filterCount = 5U;
configStruct.filterPeriod = 200U;
configStruct.enableSample = false;

ACMP _ SetFilterConfig(CMPO, &configStruct);

Parameters
* base — ACMP peripheral base address.
* config — Pointer to filter configuration structure.

void ACMP__SetDACConfig(CMP_Type *base, const acmp_dac_config_t *config)
Configures the internal DAC.

Example:

204 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

acmp_ dac__config_t configStruct = {0};
configStruct.referenceVoltageSource = kKACMP__ VrefSourceVinl;
configStruct. DACValue = 20U;

configStruct.enableOutput = false;

configStruct.workMode = kKACMP__ DACWorkLowSpeedMode;
ACMP__SetDACConfig(CMPO0, &configStruct);

Parameters
* base — ACMP peripheral base address.

* config — Pointer to DAC configuration structure. “NULL” is for disabling the
feature.

void ACMP__ EnableInterrupts(CMP_Type *base, uint32_t mask)
Enables interrupts.

Parameters
* base — ACMP peripheral base address.
» mask — Interrupts mask. See “_acmp_interrupt_enable”.

void ACMP_ DisableInterrupts(CMP_Type *base, uint32_t mask)
Disables interrupts.

Parameters
* base — ACMP peripheral base address.
» mask — Interrupts mask. See “_acmp_interrupt_enable”.

uint32_t ACMP_ GetStatusFlags(CMP_Type *base)
Gets status flags.

Parameters
* base — ACMP peripheral base address.

Returns
Status flags asserted mask. See “_acmp_status_flags”.

void ACMP__ClearStatusFlags(CMP_Type *base, uint32_t mask)
Clears status flags.

Parameters
* base — ACMP peripheral base address.
» mask — Status flags mask. See “_acmp_status_flags”.

void ACMP__ SetDiscreteModeConfig(CMP_Type *base, const acmp_discrete_mode_config t
*config)

Configure the discrete mode.
Configure the discrete mode when supporting 3V domain with 1.8V core.
Parameters
* base — ACMP peripheral base address.

* config - Pointer to configuration structure. See
“acmp_discrete_mode_config t”.

void ACMP__GetDefaultDiscreteModeConfig(acmp_discrete_mode_config t *config)
Get the default configuration for discrete mode setting.

Parameters

2.1. ACMP: Analog Comparator Driver 205

MCUXpresso SDK Documentation, Release 25.12.00

* config — Pointer to configuration structure to be restored with the setting
values.

FSL_ACMP_DRIVER_VERSION
ACMP driver version 2.4.0.

enum _ acmp_ interrupt_ enable
Interrupt enable/disable mask.
Values:
enumerator kACMP_ OutputRisingInterruptEnable
Enable the interrupt when comparator outputs rising.

enumerator kACMP_ OutputFallingInterruptEnable
Enable the interrupt when comparator outputs falling.

enum _acmp_ status_ flags
Status flag mask.

Values:
enumerator kACMP_ OutputRisingEventFlag
Rising-edge on compare output has occurred.

enumerator kACMP_ OutputFallingEventFlag
Falling-edge on compare output has occurred.
enumerator kACMP__OutputAssertEventFlag
Return the current value of the analog comparator output.
enum _acmp_ offset__mode

Comparator hard block offset control.

If OFFSET level is 1, then there is no hysteresis in the case of positive port input crossing
negative port input in the positive direction (or negative port input crossing positive port
input in the negative direction). Hysteresis still exists for positive port input crossing neg-
ative port input in the falling direction. If OFFSET level is 0, then the hysteresis selected by
acmp_hysteresis_mode_t is valid for both directions.

Values:
enumerator kKACMP_ OffsetLevel0
The comparator hard block output has level 0 offset internally.

enumerator kKACMP_ OffsetLevell
The comparator hard block output has level 1 offset internally.

enum _acmp_ hysteresis__mode
Comparator hard block hysteresis control.
See chip data sheet to get the actual hysteresis value with each level.
Values:

enumerator kACMP__ HysteresisLevel0

Offset is level 0 and Hysteresis is level 0.
enumerator kACMP__ HysteresisLevell

Offset is level 0 and Hysteresis is level 1.
enumerator kACMP__HysteresisLevel2

Offset is level 0 and Hysteresis is level 2.

206 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kACMP__ HysteresisLevel3
Offset is level 0 and Hysteresis is level 3.

enum _acmp_ reference_voltage source
CMP Voltage Reference source.
Values:
enumerator kACMP_ VrefSourceVinl
Vin1 is selected as resistor ladder network supply reference Vin.
enumerator kACMP_ VrefSourceVin2
Vin2 is selected as resistor ladder network supply reference Vin.
enum _acmp_ port_input
Port input source.
Values:
enumerator kACMP_ PortInputFromDAC
Port input from the 8-bit DAC output.
enumerator kACMP_ PortInputFromMux
Port input from the analog 8-1 mux.
enum _acmp_ dac_ work mode
Internal DAC’s work mode.
Values:
enumerator kACMP__ DACWorkLowSpeedMode
DAC is selected to work in low speed and low power mode.
enumerator kACMP__DACWorkHighSpeedMode
DAC is selected to work in high speed high power mode.
typedef enum _acmp_offset_mode acmp_ offset__mode_t
Comparator hard block offset control.

If OFFSET level is 1, then there is no hysteresis in the case of positive port input crossing
negative port input in the positive direction (or negative port input crossing positive port
input in the negative direction). Hysteresis still exists for positive port input crossing neg-
ative port input in the falling direction. If OFFSET level is 0, then the hysteresis selected by
acmp_hysteresis_mode_t is valid for both directions.

typedef enum _acmp_hysteresis_mode acmp__hysteresis__mode__t

Comparator hard block hysteresis control.
See chip data sheet to get the actual hysteresis value with each level.

typedef enum _acmp_reference_voltage_source acmp_ reference voltage source t
CMP Voltage Reference source.

typedef enum _acmp_port_input acmp_ port_input_ t
Port input source.

typedef enum _acmp_dac_work_mode acmp_dac_work mode_ t
Internal DAC’s work mode.

typedef struct _acmp_config acmp_ config_t
Configuration for ACMP.

2.1. ACMP: Analog Comparator Driver 207

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _acmp_channel_config acmp_ channel__config_t
Configuration for channel.

The comparator’s port can be input from channel mux or DAC. If port input is from channel
mugx, detailed channel number for the mux should be configured.

typedef struct _acmp_filter_config acmp_ filter config
Configuration for filter.

typedef struct _acmp_dac_config acmp_ dac_ config_t
Configuration for DAC.

typedef struct _acmp_discrete_mode_config acmp__discrete_mode__config_t
Configuration for discrete mode.

CMP__C0_CFx_MASK
The mask of status flags cleared by writing 1.

struct _acmp_ config
#include <fsl_acmp.h> Configuration for ACMP.

Public Members
acmp_offset_mode_t offsetMode
Offset mode.

acmp_hysteresis_mode_t hysteresisMode
Hysteresis mode.

bool enableHighSpeed
Enable High Speed (HS) comparison mode.

bool enableInvertOutput
Enable inverted comparator output.

bool useUnfilteredOutput
Set compare output(COUT) to equal COUTA(true) or COUT(false).

bool enablePinOut
The comparator output is available on the associated pin.

struct _acmp_ channel config
#include <fsl_acmp.h> Configuration for channel.

The comparator’s port can be input from channel mux or DAC. If port input is from channel
mux, detailed channel number for the mux should be configured.

Public Members
acmp_port_input_t positivePortInput

Input source of the comparator’s positive port.
uint32_t plusMuxInput

Plus mux input channel(0~7).
acmp_port_input_t negativePortInput

Input source of the comparator’s negative port.

uint32_t minusMuxInput
Minus mux input channel(0~7).

208 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

struct _acmp_ filter_ config
#include <fsl_acmp.h> Configuration for filter.

Public Members

uint32_t filterCount
Filter Sample Count. Available range is 1-7, 0 would cause the filter disabled.

uint32_t filterPeriod
Filter Sample Period. The divider to bus clock. Available range is 0-255.

struct _acmp_ dac_ config
#include <fsl_acmp.h> Configuration for DAC.

Public Members
acmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.

uint32_t DACValue
Value for DAC Output Voltage. Available range is 0-255.

bool enableOutput
Enable the DAC output.

struct _acmp_ discrete_ mode_ config
#include <fsl_acmp.h> Configuration for discrete mode.

Public Members

bool enablePositiveChannelDiscreteMode
Positive Channel Continuous Mode Enable. By default, the continuous mode is used.

bool enableNegativeChannelDiscreteMode
Negative Channel Continuous Mode Enable. By default, the continuous mode is used.

2.2 ADC_ETC: ADC External Trigger Control

void ADC_ETC_Init(ADC_ETC_Type *base, const adc_etc_config_t *config)
Initialize the ADC_ETC module.

Parameters
* base — ADC_ETC peripheral base address.
* config — Pointer to “adc_etc_config_t” structure.

void ADC_ETC_ Deinit(ADC_ETC_Type *base)
De-Initialize the ADC_ETC module.

Parameters
* base — ADC_ETC peripheral base address.

2.2. ADC_ETC: ADC External Trigger Control 209

MCUXpresso SDK Documentation, Release 25.12.00

void ADC_ETC_ GetDefaultConfig(adc_etc_config_t *config)

Gets an available pre-defined settings for the ADC_ETC’s configuration. This function ini-
tializes the ADC_ETC’s configuration structure with available settings. The default values
are:

config->enableTSCBypass = true;
config->enableTSCOTrigger = false;
config->enableTSC1Trigger = false;
config->TSCO0triggerPriority = 0U;
config->TSCltriggerPriority = 0U;
config->clockPreDivider = 0U;
config->XBARtriggerMask = 0U;

Parameters
* config — Pointer to “adc_etc_config_t” structure.

void ADC_ETC_ SetTriggerConfig(ADC_ETC_Type *base, uint32_t triggerGroup, const
adc_etc_trigger_config_t *config)

Set the external XBAR trigger configuration.
Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index.
* config — Pointer to “adc_etc_trigger_config t” structure.

void ADC__ETC_ SetTriggerChainConfig(ADC_ETC_Type *base, uint32_t triggerGroup, uint32_t
chainGroup, const adc_etc_trigger_chain_config_t
*config)

Set the external XBAR trigger chain configuration. For example, if triggerGroup is set to OU
and chainGroup is set to 1U, which means Trigger0 source’s chain1 would be configurated.

Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index. Available number is 0~7.
* chainGroup — Trigger chain group index. Available number is 0~7.
* config — Pointer to “adc_etc_trigger_chain_config_t” structure.

uint32_t ADC__ETC_ GetInterruptStatusFlags(ADC_ETC_Type *base,
adc_etc_external_trigger_source_t sourcelndex)

Gets the interrupt status flags of external XBAR and TSC triggers.
Parameters
* base — ADC_ETC peripheral base address.
* sourcelndex — trigger source index.

Returns
Status flags mask of trigger. Refer to “_adc_etc_status_flag_mask”.

void ADC_ETC_ ClearInterruptStatusFlags(ADC_ETC_Type *base,
adc_etc_external_trigger_source_t sourcelndex,
uint32_t mask)

Clears the ADC_ETC’s interrupt status falgs.
Parameters
* base — ADC_ETC peripheral base address.

210 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* sourcelndex — trigger source index.
* mask — Status flags mask of trigger. Refer to “_adc_etc_status_flag_mask”.

static inline void ADC_ETC_ EnableDMA(ADC_ETC_Type *base, uint32_t triggerGroup)
Enable the DMA corresponding to each trigger source.

Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index. Available number is 0~7.

static inline void ADC_ETC_ DisableDMA(ADC_ETC_Type *base, uint32_t triggerGroup)
Disable the DMA corresponding to each trigger sources.

Parameters
* base — ADC_ETC peripheral base address.

* triggerGroup — Trigger group index. Available number is 0~7.
static inline uint32_t ADC_ETC_ GetDMAStatusFlags(ADC_ETC_Type *base)
Get the DMA request status falgs. Only external XBAR sources support DMA request.
Parameters
* base — ADC_ETC peripheral base address.

Returns

Mask of external XBAR tirgger’s DMA request asserted flags. Available range
is trigger0:0x01 to trigger7:0x80.

static inline void ADC_ ETC_ ClearDMAStatusFlags(ADC_ETC_Type *base, uint32_t mask)
Clear the DMA request status falgs. Only external XBAR sources support DMA request.
Parameters
* base — ADC_ETC peripheral base address.

» mask — Mask of external XBAR tirgger’s DMA request asserted flags. Avail-
able range is trigger0:0x01 to trigger7:0x80.

static inline void ADC_ETC_ DoSoftwareReset(ADC_ETC_Type *base, bool enable)
When enable, all logical will be reset.

Parameters
* base — ADC_ETC peripheral base address.
* enable — Enable/Disable the software reset.

static inline void ADC_ETC_ DoSoftwareTrigger(ADC_ETC_Type *base, uint32_t triggerGroup)

Do software trigger corresponding to each XBAR trigger sources. Each XBAR trigger sources
can be configured as HW or SW trigger mode. In hardware trigger mode, trigger source is
from XBAR. In software mode, trigger source is from software tigger. TSC trigger sources
can only work in hardware trigger mode.

Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index. Available number is 0~7.

static inline void ADC_ETC_ DoSoftwareTriggerBlocking(ADC_ETC_Type *base, uint32_t
triggerGroup)

Do software trigger corresponding to each XBAR trigger sources.

2.2. ADC_ETC: ADC External Trigger Control 211

MCUXpresso SDK Documentation, Release 25.12.00

Note: This function provides a workaround implementation for ERR052412 by using
blocking way to implement SW trigger.

Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index. Available number is 0~7.

uint32_t ADC_ETC_ GetADCConversionValue(ADC_ETC_Type *base, uint32_t triggerGroup,
uint32_t chainGroup)

Get ADC conversion result from external XBAR sources. For example, if triggerGroup is set
to OU and chainGroup is set to 1U, which means the API would return TriggerO source’s
chainl conversion result.

Parameters
* base — ADC_ETC peripheral base address.
* triggerGroup — Trigger group index. Available number is 0~7.
* chainGroup — Trigger chain group index. Available number is 0~7.

Returns
ADC conversion result value.

enum _adc_etc_status_flag mask
ADC_ETC customized status flags mask.

Values:
enumerator kADC_ETC_ Done0OStatusFlagMask

enumerator kADC__ETC_ DonelStatusFlagMask
enumerator kADC_ ETC_ Done2StatusFlagMask
enumerator kADC__ETC_ Done3StatusFlagMask
enumerator kADC_ETC_ ErrorStatusFlagMask

enum _ adc_etc_external trigger source
External triggers sources.

Values:

enumerator kADC_ETC_ Trg0TriggerSource
enumerator kADC_ETC_ TrglTriggerSource
enumerator kADC_ETC_ Trg2TriggerSource
enumerator kADC__ETC_ Trg3TriggerSource
enumerator kADC_ETC_ Trgd4TriggerSource
enumerator kADC_ETC_ TrgbTriggerSource
enumerator kADC_ ETC_ Trg6TriggerSource
enumerator kADC_ETC_ Trg7TriggerSource
enumerator kADC_ETC_TSC0TriggerSource

enumerator kADC_ETC_ TSC1TriggerSource

212 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _ adc_ etc_interrupt_ enable
Interrupt enable/disable mask.

Values:

enumerator kADC__ETC_ DoneOInterruptEnable

enumerator kKADC__ETC_ DonellnterruptEnable

enumerator kADC__ETC_ Done2InterruptEnable

enumerator kADC__ETC_ Done3InterruptEnable
enum adc_ etc_dma_mode_selection

DMA mode selection.

Values:

enumerator kADC_ ETC_ TrigDMAWithLatchedSignal

enumerator kADC_ETC_ TrigDMAWithPulsedSignal
typedef enum _adc_etc_external_trigger_source adc_etc_external trigger source_t

External triggers sources.

typedef enum _adc_etc_interrupt_enable adc_etc_interrupt_enable_t
Interrupt enable/disable mask.

typedef enum _adc_etc_dma_mode_selection adc_etc_ dma_mode_ selection_ t
DMA mode selection.

typedef struct _adc_etc_config adc_etc_config t
ADC_ETC configuration.

typedef struct _adc_etc_trigger_chain_config adc_etc_trigger_ chain_ config_t
ADC_ETC trigger chain configuration.

typedef struct _adc_etc_trigger_config adc_ etc_ trigger config t
ADC_ETC trigger configuration.

FSL ADC_ETC_DRIVER_VERSION
ADC_ETC driver version.

Version 2.3.2.

ADC_ETC_DMA_CTRL_TRGn_ REQ_MASK
The mask of status flags cleared by writing 1.

struct _adc_etc_ config
#include <fsl_adc_etc.h> ADC_ETC configuration.

struct _adc_etc_trigger chain_ config
#include <fsl_adc_etc.h> ADC_ETC trigger chain configuration.

struct _adc_etc_ trigger config
#include <fsl_adc_etc.h> ADC_ETC trigger configuration.

2.3 Anatop_ai

2.3. Anatop_ai 213

MCUXpresso SDK Documentation, Release 25.12.00

enum _ anatop_ ai_ itf
Anatop AI ITF enumeration.

Values:

enumerator kAI Itf Ldo
LDO ITFE.

enumerator kAT Itf 1g
1G PLL ITE.

enumerator kAI Itf Audio
Audio PLL ITF.

enumerator kAI Itf Video
Video PLL ITF.

enumerator kAI Itf 400m
400M OSC ITFE.

enumerator kAI_Itf Temp
Temperature Sensor ITF.

enumerator kAI_Itf Bandgap
Bandgap ITE.

enum _ anatop_ ai_reg
The enumeration of ANATOP Al Register.

Values:

enumerator kAI PHY LDO CTRLO
PHY LDO CTRLO Register.

enumerator kAI PHY LDO_ CTRLO SET
PHY LDO CTRLO Set Register.

enumerator kAI PHY LDO CTRLO CLR
PHY LDO CTRLO CIr Register.

enumerator kAI PHY LDO CTRLO TOG
PHY LDO CTRLO TOG Register.

enumerator kAl _PHY LDO_STATO
PHY LDO STATO Register.

enumerator kAI PHY LDO_ STATO SET
PHY LDO STATO Set Register.

enumerator kAI PHY LDO_ STATO0 CLR
PHY LDO STATO Clr Register.

enumerator kAI PHY LDO_STAT0 TOG
PHY LDO STATO Tog Register.

enumerator kAT BANDGAP_CTRLO
BANDGAP CTRLO Register.

enumerator kAI BANDGAP STATO
BANDGAP STATO Register.

enumerator kAI RCOSC400M_CTRLO
RC OSC 400M CTRLO Register.

214

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI RCOSC400M_CTRLO_SET
RC OSC 400M CTRLO SET Register.

enumerator kAI RCOSC400M_CTRLO_CLR
RC OSC 400M CTRLO CLR Register.

enumerator kAI RCOSC400M__CTRLO_TOG
RC OSC 400M CTRLO TOG Register.
enumerator kAI RCOSC400M_ CTRL1
RC OSC 400M CTRL1 Register.
enumerator kAI RCOSC400M_CTRL1 SET
RC OSC 400M CTRL1 SET Register.
enumerator kAI RCOSC400M_CTRL1 CLR
RC OSC 400M CTRL1 CLR Register.
enumerator kAI RCOSC400M__CTRL1 TOG
RC OSC 400M CTRL1 TOG Register.
enumerator kAI RCOSC400M__CTRL2
RC OSC 400M CTRL2 Register.
enumerator kAI RCOSC400M__CTRL2 SET
RC OSC 400M CTRL2 SET Register.
enumerator kAI RCOSC400M__CTRL2 CLR
RC OSC 400M CTRL2 CLR Register.
enumerator kAI RCOSC400M__CTRL2 TOG
RC OSC 400M CTRL2 TOG Register.
enumerator kAI RCOSC400M__CTRL3
RC OSC 400M CTRL3 Register.
enumerator kAI RCOSC400M__CTRL3_SET
RC OSC 400M CTRL3 SET Register.
enumerator kAI RCOSC400M_CTRL3 CLR
RC OSC 400M CTRL3 CLR Register.
enumerator kAI RCOSC400M_CTRL3 TOG
RC OSC 400M CTRL3 TOG Register.
enumerator kAI RCOSC400M__STATO
RC OSC 400M STATO Register.
enumerator kAI RCOSC400M__STATO SET
RC OSC 400M STATO SET Register.
enumerator kAI RCOSC400M__ STAT0 CLR
RC OSC 400M STATO CLR Register.
enumerator kAI RCOSC400M__STAT0 TOG
RC OSC 400M STATO TOG Register.
enumerator kAI RCOSC400M__STAT1
RC OSC 400M STAT1 Register.

enumerator kAI RCOSC400M_STAT1 SET
RC OSC 400M STAT1 SET Register.

2.3. Anatop_ai

215

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI RCOSC400M__STAT1 CLR
RC OSC 400M STAT1 CLR Register.

enumerator kAI RCOSC400M_STAT1 TOG
RC OSC 400M STAT1 TOG Register.

enumerator kAI RCOSC400M_STAT2
RC OSC 400M STAT2 Register.

enumerator kAI RCOSC400M__STAT2 SET
RC OSC 400M STAT2 SET Register.

enumerator kAI RCOSC400M__STAT2 CLR
RC OSC 400M STAT2 CLR Register.

enumerator kAI RCOSC400M_STAT2 TOG
RC OSC 400M STAT2 TOG Register.

enumerator kAI PLL1G_CTRLO
1G PLL CTRLO Register.

enumerator kAI PLL1G_ CTRLO_ SET
1G PLL CTRLO SET Register.

enumerator kAI_PLL1G_CTRLO_CLR
1G PLL CTRLO CLR Register.
enumerator kAI_PLL1G_CTRL1
1G PLL CTRL1 Register.

enumerator kAI PLL1G_CTRL1 SET
1G PLL CTRL1 SET Register.

enumerator kAI_ PLL1G_CTRL1_CLR
1G PLL CTRL1 CLR Register.
enumerator kAI_PLL1G_CTRL2
1G PLL CTRL2 Register.

enumerator kAI PLL1G_ CTRL2 SET
1G PLL CTRL2 SET Register.

enumerator kAI PLL1G_ CTRL2 CLR
1G PLL CTRL2 CLR Register.

enumerator kAI PLL1G_CTRL3
1G PLL CTRL3 Register.

enumerator kAI PLL1G_ CTRL3 SET
1G PLL CTRL3 SET Register.

enumerator kAI PLL1G CTRL3 CLR
1G PLL CTRL3 CLR Register.

enumerator kAI PLLAUDIO_CTRLO
AUDIO PLL CTRLO Register.

enumerator kAI PLLAUDIO CTRLO_SET
AUDIO PLL CTRLO SET Register.

enumerator kAI PLLAUDIO CTRL0O CLR
AUDIO PLL CTRLO CLR Register.

216

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kAI PLLAUDIO CTRL1
AUDIO PLL CTRL1 Register.

enumerator kAI PLLAUDIO CTRL1 SET
AUDIO PLL CTRL1 SET Register.

enumerator kAI PLLAUDIO CTRL1 CLR
AUDIO PLL CTRL1 CLR Register.

enumerator kAI PLLAUDIO CTRL2
AUDIO PLL CTRL2 Register.

enumerator kAI PLLAUDIO CTRL2 SET
AUDIO PLL CTRL2 SET Register.

enumerator kAI PLLAUDIO CTRL2 CLR
AUDIO PLL CTRL2 CLR Register.

enumerator kAI PLLAUDIO CTRL3
AUDIO PLL CTRL3 Register.

enumerator kAI PLLAUDIO CTRL3 SET
AUDIO PLL CTRL3 SET Register.

enumerator kAI PLLAUDIO CTRL3 CLR
AUDIO PLL CTRL3 CLR Register.

enumerator kAI PLLVIDEO_ CTRLO
VIDEO PLL CTRLO Register.

enumerator kAI PLLVIDEO_ CTRL0O_SET
VIDEO PLL CTRLO SET Register.

enumerator kAI PLLVIDEO_ CTRLO_ CLR
VIDEO PLL CTRLO CLR Register.

enumerator kAI PLLVIDEO CTRL1
VIDEO PLL CTRL1 Register.

enumerator kAI PLLVIDEO CTRL1 SET
VIDEO PLL CTRL1 SET Register.

enumerator kAI PLLVIDEO CTRL1 CLR
VIDEO PLL CTRL1 CLR Register.

enumerator kAI PLLVIDEO_ CTRL2
VIDEO PLL CTRL2 Register.

enumerator kAI PLLVIDEO CTRL2 SET
VIDEO PLL CTRL2 SET Register.

enumerator kAI PLLVIDEO CTRL2 CLR
VIDEO PLL CTRL2 CLR Register.

enumerator kAI PLLVIDEO_ CTRL3
VIDEO PLL CTRL3 Register.

enumerator kAI PLLVIDEO_ CTRL3_SET
VIDEO PLL CTRL3 SET Register.

enumerator kAI PLLVIDEO_ CTRL3_ CLR
VIDEO PLL CTRL3 CLR Register.

2.3. Anatop_ai

217

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _anatop_ai_itf anatop_ai_itf t
Anatop AI ITF enumeration.

typedef enum _anatop_ai reg anatop_ai_reg_t
The enumeration of ANATOP AI Register.

FSL__ANATOP_AI DRIVER_VERSION
Anatop Al driver version 1.0.0.

AI_PHY_LDO_CTRLO_LINREG_EN(X)
Al PHY LDO_CTRLO_LINREG_ EN_MASK
Al PHY LDO_CTRLO_LINREG EN SHIFT

AI_PHY_LDO_CTRL0O_PWRUPLOAD_ DIS(X)

LINREG_EN - LinReg master enable LinReg master enable. Setting this bit will enable the
regular

Al PHY LDO_CTRLO_PWRUPLOAD_DIS MASK
Al PHY LDO_CTRLO_PWRUPLOAD_ DIS SHIFT

AI_PHY_LDO_CTRLO_LIMIT EN(X)

LINREG_PWRUPLOAD_DIS - LinReg power-up load disable 0b0..Internal pull-down enabled
Ob1l.Internal pull-down disabled

Al _PHY LDO_CTRLO_LIMIT EN_MASK
Al_PHY_LDO_CTRLO_LIMIT_EN_SHIFT

AI_PHY_LDO_CTRLO_OUTPUT_TRG(X)

LINREG_LIMIT_EN - LinReg current limit enable LinReg current-limit enable. Setting this
bit will enable the current-limiter in the regulator

Al_PHY_ LDO_CTRLO_OUTPUT_ TRG_MASK
ATl_PHY_LDO_CTRLO_OUTPUT_TRG_SHIFT

Al_PHY_LDO_CTRLO_PHY_ ISO_B(X)

LINREG_OUTPUT_TRG - LinReg output voltage target setting 0b00000..Set output voltage to
X.XV 0b10000..Set output voltage to 1.0V 0b11111..Set output voltage to X.XV

Al_PHY_LDO_CTRLO_PHY_ISO_B_MASK
Al_PHY_LDO_CTRLO_PHY_ISO_B_SHIFT

Al _BANDGAP_CTRL0O_REFTOP_PWD(X)
Al_BANDGAP_CTRLO_REFTOP_PWD_MASK
Al_BANDGAP_CTRLO_REFTOP_PWD_SHIFT

AI_BANDGAP_CTRL0O_REFTOP_LINREGREF_PWD(X)

REFTOP_PWD - This bit fully powers down the bandgap module. Setting this bit high will
disable reference output currents and voltages from the bandgap and will affect function-
ality and validity of the voltage detectors.

Al BANDGAP_CTRLO_REFTOP_LINREGREF PWD_MASK

Al BANDGAP_CTRLO_REFTOP_LINREGREF_ PWD_SHIFT

218 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Al _BANDGAP_CTRL0O_REFTOP_PWDVBGUP(X)

REFOP_LINREGREF_PWD - This bit powers down only the voltage reference output section
of the bandgap. Setting this bit high will affect functionality and validity of the voltage
detectors.

Al_BANDGAP_CTRLO_REFTOP_PWDVBGUP_MASK
ATl_BANDGAP_CTRLO_REFTOP_PWDVBGUP_ SHIFT

AI_BANDGAP_CTRLO_REFTOP_LOWPOWER(X)

REFTOP_PWDVBGUP - This bit powers down the VBGUP detector of the bandgap without
affecting any additional functionality.

Al BANDGAP_ CTRLO_REFTOP_ LOWPOWER_ MASK
Al BANDGAP_ CTRLO_REFTOP_ LOWPOWER_SHIFT

Al BANDGAP_CTRLO_REFTOP_SELFBIASOFF(X)

REFTOP_LOWPOWER - This bit enables the low-power operation of the bandgap by cutting
the bias currents in half to the main amplifiers. This will save power but could affect the
accuracy of the output voltages and currents.

AI_BANDGAP_CTRLO_REFTOP_SELFBIASOFF_MASK
AT_BANDGAP_CTRLO_REFTOP_SELFBIASOFF_SHIFT

AI BANDGAP_CTRLO_REFTOP_VBGADJ(X)

REFTOP_SELFBIASOFF - Control bit to disable the self-bias circuit in the bandgap. The self-
bias circuit is used by the bandgap during startup. This bit should be set high after the
bandgap has stabilized and is necessary for best noise performance of modules using the
outputs of the bandgap. It is expected that this control bit be set low any time that either
the bandgap is fully powered-down or the 1.8V supply is removed.

Al BANDGAP_ CTRLO_REFTOP_VBGADJ MASK
Al BANDGAP_CTRLO_REFTOP_VBGADJ_ SHIFT

AI_BANDGAP_CTRL0O_REFTOP_IBZTCADJ(X)

REFTOP_VBGAD] - These bits allow the output VBG voltage of the bandgap to be trimmed
000 : nominal 001 : +10mV 010 : +20mV 011 : +30mV 100 : -10mV 101 : -20mV 110 : -30mV
111 : -40mV

Al _BANDGAP_CTRLO_REFTOP_IBZTCADJ MASK
Al _BANDGAP_CTRLO_REFTOP_IBZTCADJ SHIFT
AL_RCOSC400M_ CTRLO_REF_CLK_DIV(x)
AL_RCOSC400M_CTRLO_REF_CLK_DIV_MASK
AL_RCOSC400M_CTRLO_REF _CLK_DIV_SHIFT

Al PLL1G_CTRLO_HOLD_RING OFF(x)

Al PLL1G_CTRLO HOLD_ RING OFF_MASK

Al _PLL1G_CTRLO_HOLD_RING_OFF_SHIFT

Al _PLL1G_CTRLO_POWER_UP(x)

Al _PLL1G_CTRLO_POWER_UP_MASK

Al _PLL1G_CTRLO_POWER_UP_SHIFT

2.3. Anatop_ai 219

MCUXpresso SDK Documentation, Release 25.12.00

Al PLL1G_CTRLO_ENABLE(X)

Al PLL1G_CTRL0O ENABLE MASK

Al PLL1G_CTRLO_ENABLE_SHIFT

Al _PLL1G_CTRLO_BYPASS(X)

Al PLL1G_CTRLO_BYPASS MASK

Al PLL1G_CTRLO_BYPASS_SHIFT

Al PLL1G_CTRLO_PLL REG_EN(X)

Al PLLIG_CTRLO_PLL REG_EN_MASK

Al PLL1G_CTRLO_PLL_REG_EN_SHIFT

Al _PLLAUDIO_CTRLO_HOLD_ RING_OFF(x)
AI_PLLAUDIO_CTRLO_HOLD_RING_OFF_MASK
Al _PLLAUDIO_CTRLO_HOLD_ RING_OFF_SHIFT
Al _PLLAUDIO_CTRL0O_POWER_UP(X)

Al _PLLAUDIO_CTRL0O_POWER_UP_MASK

Al _PLLAUDIO_CTRLO_POWER_UP_SHIFT

Al _PLLAUDIO_CTRLO_ENABLE(X)

Al _PLLAUDIO_CTRLO_ENABLE_MASK

AI PLLAUDIO CTRLO_ENABLE SHIFT

Al _PLLAUDIO_CTRLO_BYPASS(X)

Al PLLAUDIO_CTRLO_BYPASS MASK

Al _PLLAUDIO_CTRLO_BYPASS_SHIFT

Al _PLLAUDIO_CTRLO_PLL_REG_EN(X)

Al _PLLAUDIO_CTRLO_PLL REG_EN_MASK

Al PLLAUDIO_CTRLO_PLL REG_EN_SHIFT

Al _PLLVIDEO_CTRLO_HOLD_ RING_OFF(x)

Al _PLLVIDEO_CTRLO_HOLD_RING_OFF_MASK
Al _PLLVIDEO_CTRL0_HOLD_RING_OFF_SHIFT
Al _PLLVIDEO_CTRL0O_POWER_UP(x)

Al _PLLVIDEO_CTRL0O_POWER_UP_MASK

Al PLLVIDEO_CTRLO_POWER_UP_SHIFT

Al PLLVIDEO_ CTRLO_ ENABLE(X)

Al _PLLVIDEO_CTRLO_ENABLE_MASK

Al _PLLVIDEO_CTRL0O_ENABLE_SHIFT

220

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Al _PLLVIDEO_CTRLO_BYPASS(X)

Al _PLLVIDEO CTRLO_BYPASS_ MASK

AL PLLVIDEO_CTRLO_BYPASS_SHIFT

Al PLLVIDEO_ CTRLO_PLL REG_EN(x)

AL PLLVIDEO CTRLO PLL REG EN MASK
Al PLLVIDEO CTRLO PLL REG EN_SHIFT
AL _PHY LDO_STAT0 LINREG_ STAT(X)

AL PHY LDO_STATO0 LINREG_ STAT MASK

AL PHY LDO_STATO0 LINREG STAT SHIFT

AL BANDGAP_ STATO REFTOP VBGUP(X)

AL BANDGAP_ STAT0 REFTOP VBGUP MASK
Al BANDGAP STAT0 REFTOP VBGUP SHIFT
AI_RCOSC400M_ STAT0 CLKIM_ERR(X)
AI_RCOSC400M_STAT0_ CLKIM_ERR_MASK
AI_RCOSC400M_STAT0_CLKIM_ERR_SHIFT
AI_RCOSC400M_CTRL1_HYST_MINUS(X)
AI_RCOSC400M_CTRL1_HYST MINUS_MASK
AI_RCOSC400M_CTRL1_HYST MINUS_SHIFT
AI_RCOSC400M_ CTRL1_HYST PLUS(X)
AI_RCOSC400M_CTRL1_HYST PLUS_MASK
AI_RCOSC400M_CTRL1_HYST_PLUS_SHIFT
AI_RCOSC400M_CTRL1_TARGET_COUNT(x)
AI_RCOSC400M_CTRL1_TARGET_COUNT_MASK
AL_RCOSC400M_CTRL1_TARGET COUNT_SHIFT
AI_RCOSC400M_CTRL2_ TUNE_BYP(X)

AL _RCOSC400M_CTRL2 TUNE_BYP_MASK

AL RCOSC400M_CTRL2 TUNE_BYP_ SHIFT
AI_RCOSC400M_CTRL2 TUNE_EN(X)
AI_RCOSC400M_CTRL2_TUNE_EN_MASK
AL_RCOSC400M_CTRL2_TUNE_EN_SHIFT

Al RCOSC400M_CTRL2 TUNE_START(X)
AI_RCOSC400M_ CTRL2_TUNE_START MASK

AI RCOSC400M_CTRL2_ TUNE_ START SHIFT

2.3. Anatop_ai

221

MCUXpresso SDK Documentation, Release 25.12.00

AI_RCOSC400M_CTRL2_OSC_TUNE_VAL(X)
AI_RCOSC400M_CTRL2 OSC_TUNE_VAL MASK
AI__RCOSC400M_CTRL2_OSC_TUNE_VAL_SHIFT
AI_RCOSC400M_CTRL3_CLR_ERR(X)

AL _RCOSC400M_CTRL3_CLR_ERR_MASK

AL _RCOSC400M_CTRL3_CLR_ERR_SHIFT

AL _RCOSC400M_CTRL3 _EN_1M_CLK(X)
AI__RCOSC400M_CTRL3_EN_1M_CLK_MASK
AI_RCOSC400M_CTRL3_EN_IM_CLK_SHIFT
AI_RCOSC400M_CTRL3_MUX_1M_CLK(x)
AL_RCOSC400M_CTRL3_MUX_1M_CLK_MASK

AL _RCOSC400M_CTRL3_MUX_1M_CLK_SHIFT
AI__RCOSC400M_CTRL3_COUNT IM_CLK(X)
AI_RCOSC400M_CTRL3_COUNT_IM_CLK_MASK
AI_RCOSC400M_CTRL3_COUNT 1M _CLK_SHIFT
AI_RCOSC400M_STAT1_CURR_COUNT_VAL(X)
AI_RCOSC400M_STAT1 CURR_COUNT VAL MASK
AL _RCOSC400M_STAT1 CURR_COUNT VAL SHIFT
AI__RCOSC400M_STAT2 CURR_OSC_TUNE_VAL(X)
AI_RCOSC400M_STAT2 CURR_OSC_TUNE_ VAL MASK
AI_RCOSC400M_STAT2 CURR_OSC_TUNE_VAL_SHIFT

2.4 AOI: Crosshar AND/OR/INVERT Driver

void AOI_Init(AOI_Type *base)
Initializes an AOI instance for operation.

This function un-gates the AOI clock.
Parameters
* base — AOI peripheral address.

void AOI_Deinit(AOI_Type *base)
Deinitializes an AOI instance for operation.

This function shutdowns AOI module.
Parameters

* base — AOI peripheral address.

222

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void AOI_GetEventLogicConfig(AOI_Type *base, aoi_event_t event, aoi_event_config t *config)
Gets the Boolean evaluation associated.

This function returns the Boolean evaluation associated.

Example:

aoi__event_ config t demoEventLogicStruct;

AOI_GetEventLogicConfig(AOI, kAOI__Event0, &demoEventLogicStruct);

Parameters
* base — AOI peripheral address.
* event — Index of the event which will be set of type aoi_event_t.
* config — Selected input configuration .

void AOI_SetEventLogicConfig(AOI_Type *base, aoi_event_t event, const aoi_event_config t
*eventConfig)

Configures an AOI event.

This function configures an AOI event according to the aoiEventConfig structure. This func-
tion configures all inputs (A, B, C, and D) of all product terms (0, 1, 2, and 3) of a desired
event.

Example:

aoi_event_ config t demoEventLogicStruct;

demoEventLogicStruct. PTOAC = kAOI_ InvInputSignal;
demoEventLogicStruct. PTOBC = kAOI_InputSignal;
demoEventLogicStruct. PTOCC = kAOI_ LogicOne;
demoEventLogicStruct. PTODC = kAOI__LogicOne;

demoEventLogicStruct. PT1AC = kAOI__LogicZero;
demoEventLogicStruct. PT1BC = kAOI LogicOne;
demoEventLogicStruct. PT1CC = kAOI_LogicOne;
demoEventLogicStruct. PT1DC = kAOI_LogicOne;

demoEventLogicStruct. PT2AC = kAOI_LogicZero;
demoEventLogicStruct. PT2BC = kAOI _LogicOne;
demoEventLogicStruct. PT2CC = kAOI_LogicOne;
demoEventLogicStruct. PT2DC = kAOI_ LogicOne;

demoEventLogicStruct. PT3AC = kAOI_LogicZero;
demoEventLogicStruct. PT3BC = kAOI _LogicOne;
demoEventLogicStruct. PT3CC = kAOI _LogicOne;
demoEventLogicStruct. PT3DC = kAOI__LogicOne;

AOI_SetEventLogicConfig(AOI, kAOI Event0, demoEventLogicStruct);

Parameters
* base — AOI peripheral address.
* event — Event which will be configured of type aoi_event_t.

* eventConfig — Pointer to type aoi_event_config_t structure. The user is re-
sponsible for filling out the members of this structure and passing the
pointer to this function.

FSL_AOI DRIVER_VERSION
Version 2.0.2.

2.4. AOI: Crossbar AND/OR/INVERT Driver 223

MCUXpresso SDK Documentation, Release 25.12.00

enum _ aoi_input_ config
AOI input configurations.

The selection item represents the Boolean evaluations.
Values:

enumerator kAOI_ LogicZero
Forces the input to logical zero.
enumerator kAOI_ InputSignal
Passes the input signal.
enumerator kAOI_ InvInputSignal
Inverts the input signal.
enumerator kAOI_LogicOne
Forces the input to logical one.

enum aoi_event

AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and
3) and the four signal inputs (A, B, C, and D).

Values:

enumerator kAOI Event0
Event 0 index

enumerator kAOI Eventl
Event 1 index

enumerator kAOI Event2
Event 2 index

enumerator kAOI_ Event3
Event 3 index
typedef enum _aoi_input_config aoi_input_ config_t
AOI input configurations.
The selection item represents the Boolean evaluations.

typedef enum _aoi_event aoi_event_t

AOI event indexes, where an event is the collection of the four product terms (0, 1, 2, and
3) and the four signal inputs (A, B, C, and D).

typedef struct _aoi_event_config aoi_event_ config_t
AOI event configuration structure.

Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to
make whole event configuration.

AOI
AOI peripheral address

struct _aoi_event_ config
#include <fsl_aoi.h> AOI event configuration structure.

Defines structure _aoi_event_config and use the AOI_SetEventLogicConfig() function to
make whole event configuration.

224 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
aoi_input_config_t PTOAC
Product term 0 input A
aoi_input_config t PTOBC
Product term O input B
aoi_input_config_t PTOCC
Product term 0 input C
aoi_input_config t PTODC
Product term 0 input D
aoi_input_config t PT1AC
Product term 1 input A
aoi_input_config t PT1BC
Product term 1 input B
aoi_input_config t PT1CC
Product term 1 input C
aoi_input_config t PT1DC
Product term 1 input D
aoi_input_config t PT2AC
Product term 2 input A
aoi_input_config t PT2BC
Product term 2 input B
aoi_input_config t PT2CC
Product term 2 input C
aoi_input_config t PT2DC
Product term 2 input D
aoi_input_config t PT3AC
Product term 3 input A
aoi_input_config t PT3BC
Product term 3 input B
aoi_input_config t PT3CC
Product term 3 input C

aoi_input_config t PT3DC
Product term 3 input D

2.5 ASRC: Asynchronous sample rate converter

2.6 ASRC Driver

uint32_t ASRC_ GetInstance(ASRC_Type *base)
Get instance number of the ASRC peripheral.

Parameters

* base — ASRC base pointer.

2.5. ASRC: Asynchronous sample rate converter

225

MCUXpresso SDK Documentation, Release 25.12.00

void ASRC_ Init(ASRC_Type *base, uint32_t asrcPeripheralClock_Hz)
brief Initializes the asrc peripheral.

This API gates the asrc clock. The asrc module can’t operate unless ASRC_Init is called to
enable the clock.

param base asrc base pointer. param asrcPeripheralClock_Hz peripheral clock of ASRC.
void ASRC_ Deinit(ASRC_Type *base)
De-initializes the ASRC peripheral.

This API gates the ASRC clock and disable ASRC module. The ASRC module can’t operate
unless ASRC_Init

Parameters
* base — ASRC base pointer.

void ASRC_ SoftwareReset(ASRC_Type *base)
Do software reset .

This software reset bit is self-clear bit, it will generate a software reset signal inside ASRC.
After 9 cycles of the ASRC processing clock, this reset process will stop and this bit will
cleared automatically.

Parameters
* base — ASRC base pointer

status_t ASRC_ SetChannelPairConfig(ASRC_Type *base, asrc_channel pair_t channelPair,
asrc_channel_pair_config_t *config, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure channel pair.
Parameters
* base — ASRC base pointer.
* channelPair — index of channel pair, reference _asrc_channel_pair.
* config — ASRC channel pair configuration pointer.
* inputSampleRate — input audio data sample rate.
* outputSampleRate — output audio data sample rate.

uint32_t ASRC_ GetOutSamplesSize(ASRC_Type *base, asrc_channel pair_t channelPair, uint32_t
inSampleRate, uint32_t outSampleRate, uint32_t
inSamplesize)

Get output sample buffer size.

Note: This API is depends on the ASRC output configuration, should be called after the
ASRC_SetChannelPairConfig.

Parameters
* base —asrc base pointer.
* channelPair — ASRC channel pair number.
* inSampleRate — input sample rate.
* outSampleRate — output sample rate.

* inSamplesize — input samples size.

226 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Return values
output — buffer size in byte.

uint32_t ASRC_ MapSamplesWidth(ASRC_Type *base, asrc_channel pair_t channelPair, uint32_t
*InWidth, uint32_t *outWidth)

Map register sample width to real sample width.

Note: This API is depends on the ASRC configuration, should be called after the
ASRC_SetChannelPairConfig.

Parameters
* base — asrc base pointer.
* channelPair — asrc channel pair index.
* inWidth — ASRC channel pair number.
* outWidth — input sample rate.

Return values
input — sample mask value.

uint32_t ASRC_GetRemainFifoSamples(ASRC_Type *base, asrc_channel pair_t channelPair,
uint32_t *buffer, uint32_t outSampleWidth, uint32_t
remainSamples)

Get left samples in fifo.
Parameters
* base — asrc base pointer.
* channelPair — ASRC channel pair number.
* buffer — input sample numbers.
* outSampleWidth — output sample width.
* remainSamples — output sample rate.

Return values
remain — samples number.

static inline void ASRC_ ModuleEnable(ASRC_Type *base, bool enable)
ASRC module enable.

Parameters
* base — ASRC base pointer.
* enable — true is enable, false is disable

static inline void ASRC_ ChannelPairEnable(ASRC_Type *base, asrc_channel pair_t channelPair,
bool enable)

ASRC enable channel pair.
Parameters
* base — ASRC base pointer.

* channelPair - channel pair mask value, reference
_asrc_channel_pair_mask.

* enable — true is enable, false is disable.

2.6. ASRC Driver 227

MCUXpresso SDK Documentation, Release 25.12.00

static inline void ASRC_ Enablelnterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt enable This function enable the ASRC interrupt with the provided mask.

Parameters
* base — ASRC peripheral base address.
» mask — The interrupts to enable. Logical OR of _asrc_interrupt_mask.

static inline void ASRC_ Disablelnterrupt(ASRC_Type *base, uint32_t mask)
ASRC interrupt disable This function disable the ASRC interrupt with the provided mask.

Parameters
* base — ASRC peripheral base address.
» mask — The interrupts to disable. Logical OR of _asrc_interrupt_mask.

static inline uint32_t ASRC_ GetStatus(ASRC_Type *base)
Gets the ASRC status flag state.

Parameters
* base — ASRC base pointer

Returns
ASRC Tx status flag value. Use the Status Mask to get the status value needed.

static inline bool ASRC_ GetChannelPairInitialStatus(ASRC_Type *base, asrc_channel pair._t
channel)

Gets the ASRC channel pair initialization state.
Parameters
* base — ASRC base pointer
* channel — ASRC channel pair.

Returns
ASRC Tx status flag value. Use the Status Mask to get the status value needed.

static inline uint32_t ASRC_ GetChannelPairFifoStatus(ASRC_Type *base, asrc_channel pair_t
channelPair)

Gets the ASRC channel A fifo a status flag state.
Parameters
* base — ASRC base pointer
* channelPair — ASRC channel pair.

Returns
ASRC channel pair a fifo status flag value. Use the Status Mask to get the status
value needed.

static inline void ASRC_ ChannelPairWriteData(ASRC_Type *base, asrc_channel pair._t
channelPair, uint32_t data)

Writes data into ASRC channel pair FIFO. Note: ASRC fifo width is 24bit.
Parameters
* base — ASRC base pointer.
* channelPair — ASRC channel pair.

* data — Data needs to be written.

228 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ASRC_ ChannelPairReadData(ASRC_Type *base, asrc_channel _pair_t
channe]Pair)

Read data from ASRC channel pair FIFO. Note: ASRC fifo width is 24bit.
Parameters
* base — ASRC base pointer.
* channelPair — ASRC channel pair.

Return values
value — read from fifo.

static inline uint32_t ASRC_ GetInputDataRegisterAddress(ASRC_Type *base, asrc_channel pair._t
channelPair)

Get input data fifo address. Note: ASRC fifo width is 24bit.
Parameters
* base — ASRC base pointer.
* channelPair — ASRC channel pair.

static inline uint32_t ASRC_ GetOutputDataRegister Address(ASRC_Type *base,
asrc_channel_pair_t channelPair)

Get output data fifo address. Note: ASRC fifo width is 24bit.
Parameters
* base — ASRC base pointer.
* channelPair — ASRC channel pair.

status_t ASRC_ SetldealRatioConfig(ASRC_Type *base, asrc_channel_pair_t channelPair, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure ideal ratio. The ideal ratio should be used when input clock source is not
avalible.

Parameters
* base — ASRC base pointer.
* channelPair — ASRC channel pair.
* inputSampleRate — input audio data sample rate.
* outputSampleRate — output audio data sample rate.

status_t ASRC_ TransferSetChannelPairConfig(ASRC_Type *base, asrc_handle_t *handle,
asrc_channel _pair_config_t *config, uint32_t
inputSampleRate, uint32_t outputSampleRate)

ASRC configure channel pair.
Parameters
* base — ASRC base pointer.
* handle — ASRC transactional handle pointer.
* config — ASRC channel pair configuration pointer.
* inputSampleRate — input audio data sample rate.
* outputSampleRate — output audio data sample rate.

void ASRC_ TransferCreateHandle(ASRC_Type *base, asrc_handle_t *handle, asrc_channel_pair._t
channelPair, asrc_transfer_callback_t inCallback,
asrc_transfer_callback_t outCallback, void *userData)

2.6. ASRC Driver 229

MCUXpresso SDK Documentation, Release 25.12.00

Initializes the ASRC handle.

This function initializes the handle for the ASRC transactional APIs. Call this function once
to get the handle initialized.

Parameters
* base — ASRC base pointer
* handle — ASRC handle pointer.
* channelPair — ASRC channel pair.
* inCallback — Pointer to the user callback function.
* outCallback — Pointer to the user callback function.
* userData — User parameter passed to the callback function

status_t ASRC_ TransferNonBlocking(ASRC_Type *base, asrc_handle_t *handle, asrc_transfer._t
*xfer)

Performs an interrupt non-blocking convert on asrc.

Note: This API returns immediately after the transfer initiates, application should check
the wait and check the callback status.

Parameters
* base —asrc base pointer.

* handle — Pointer to the asrc_handle t structure which stores the transfer
state.

» xfer — Pointer to the ASRC_transfer_t structure.

Return values
* kStatus_ Success — Successfully started the data receive.
e kStatus_ ASRCBusy — Previous receive still not finished.

status_t ASRC_ TransferBlocking(ASRC_Type *base, asrc_channel pair_t channelPair,
asrc_transfer_t *xfer)

Performs an blocking convert on asrc.

Note: This API returns immediately after the convert finished.

Parameters
* base — asrc base pointer.
* channelPair — channel pair index.
» xfer — Pointer to the ASRC_transfer_t structure.

Return values
kStatus_ Success — Successfully started the data receive.

status_t ASRC_ TransferGetConverted Count(ASRC_Type *base, asrc_handle_t *handle, size_t
*count)

Get converted byte count.
Parameters

* base — ASRC base pointer.

230 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* handle — Pointer to the asrc_handle_t structure which stores the transfer
state.

* count — Bytes count sent.
Return values
* kStatus_ Success — Succeed get the transfer count.

* kStatus_ ASRCIdle — There is not a non-blocking transaction currently in
progress.

void ASRC_ TransferAbortConvert(ASRC_Type *base, asrc_handle_t *handle)
Aborts the current convert.

Note: This API can be called any time when an interrupt non-blocking transfer initiates to
abort the transfer early.

Parameters
* base — ASRC base pointer.

* handle — Pointer to the asrc_handle t structure which stores the transfer
state.

void ASRC_ TransferTerminateConvert(ASRC_Type *base, asrc_handle_t *handle)
Terminate all ASRC convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortConvert.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.

void ASRC_ TransferHandleIRQ(ASRC_Type *base, asrc_handle_t *handle)
ASRC convert interrupt handler.

Parameters
* base — ASRC base pointer.
* handle — Pointer to the asrc_handle_t structure.

FSL ASRC DRIVER VERSION
Version 2.1.3

ASRC return status .

Values:

enumerator kStatus_ ASRClIdle
ASRC is idle.

enumerator kStatus_ ASRCInldle
ASRC in is idle.

enumerator kStatus_ ASRCOutldle
ASRC out is idle.

enumerator kStatus_ ASRCBusy
ASRC is busy.

2.6. ASRC Driver 231

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_ ASRCInvalidArgument
ASRC invalid argument.

enumerator kStatus_ ASRCClockConfigureFailed
ASRC clock configure failed

enumerator kStatus_ ASRCChannelPairConfigureFailed
ASRC clock configure failed

enumerator kStatus_ ASRCConvertError
ASRC clock configure failed

enumerator kStatus_ ASRCNotSupport
ASRC not support

enumerator kStatus_ ASRCQueueFull
ASRC queue is full

enumerator kStatus_ ASRCOutQueueldle
ASRC out queue is idle

enumerator kStatus_ ASRCInQueueldle
ASRC in queue is idle

enum _ asrc_ channel pair

ASRC channel pair mask.

Values:

enumerator kASRC ChannelPairA
channel pair A value

enumerator kASRC__ChannelPairB
channel pair B value

enumerator kASRC ChannelPairC
channel pair C value

ASRC support sample rate .

Values:

enumerator kASRC SampleRate 8000HZ
asrc sample rate 8KHZ

enumerator kASRC_ SampleRate_11025HZ
asrc sample rate 11.025KHZ

enumerator kASRC_ SampleRate_ 12000HZ
asrc sample rate 12KHZ

enumerator kASRC SampleRate 16000HZ
asrc sample rate 16KHZ

enumerator kASRC_ SampleRate_ 22050HZ
asrc sample rate 22.05KHZ

enumerator kASRC_ SampleRate_24000HZ
asrc sample rate 24KHZ

enumerator kASRC SampleRate 30000HZ
asrc sample rate 30KHZ

232

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC _SampleRate 32000HZ
asrc sample rate 32KHZ

enumerator kASRC _SampleRate 44100HZ
asrc sample rate 44.1KHZ

enumerator kASRC _SampleRate 48000HZ
asrc sample rate 48KHZ

enumerator kASRC _SampleRate 64000HZ
asrc sample rate 64KHZ

enumerator kASRC SampleRate 88200HZ
asrc sample rate 88.2KHZ

enumerator kASRC SampleRate 96000HZ
asrc sample rate 96KHZ

enumerator kASRC _SampleRate 128000HZ
asrc sample rate 128KHZ

enumerator kASRC _SampleRate 176400HZ
asrc sample rate 176.4KHZ

enumerator kKASRC__SampleRate_ 192000HZ
asrc sample rate 192KHZ

The ASRC interrupt enable flag .
Values:

enumerator kASRC__FPInWaitStatelnterruptEnable
FP in wait state mask

enumerator kASRC OverLoadInterruptMask
overload interrupt mask

enumerator kASRC DataOutputClnterruptMask
data output c interrupt mask

enumerator kASRC_ DataOutputBInterruptMask
data output b interrupt mask

enumerator kASRC DataOutputAlnterruptMask
data output a interrupt mask

enumerator kASRC DatalnputClnterruptMask
data input c interrupt mask

enumerator kASRC_ DatalnputBInterruptMask
data input b interrupt mask

enumerator kASRC_ Datalnput AlnterruptMask
data input a interrupt mask

The ASRC interrupt status.
Values:

enumerator kASRC StatusDSLCounterReady
DSL counter

2.6. ASRC Driver 233

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC__StatusTaskQueueOverLoad
task queue overload

enumerator kASRC__StatusPairCOutputOverLoad
pair c output overload

enumerator kASRC__StatusPairBOutputOverLoad
pair b output overload

enumerator kASRC__StatusPairAOutputOverLoad
pair a output overload

enumerator kASRC _StatusPairCInputOverLoad
pair c input overload

enumerator kASRC _StatusPairBInputOverLoad
pair b input overload

enumerator kASRC _StatusPairAInputOverLoad
pair a input overload

enumerator kASRC _StatusPairCOutputOverflow
pair c output overflow

enumerator kASRC__StatusPairBOutputOverflow
pair b output overflow

enumerator kKASRC__StatusPairAOutputOverflow
pair a output overflow

enumerator kASRC _StatusPairCInputUnderflow
pair c input underflow

enumerator kKASRC __StatusPairBInputUnderflow
pair b input under flow

enumerator kASRC _StatusPairAlnputUnderflow
pair a input underflow

enumerator kASRC StatusFPInWaitState
FP in wait state

enumerator kASRC StatusOverloadError
overload error

enumerator kASRC__StatusInputError
input error status

enumerator kASRC _StatusOutputError
Output error status

enumerator kASRC__StatusPairCOutputReady
pair c output ready

enumerator kASRC __StatusPairBOutputReady
pair b output ready

enumerator kASRC__StatusPairAOutputReady
pair a output ready

enumerator kASRC__StatusPairCInputReady
pair c input ready

234

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC__StatusPairBInputReady
pair b input ready

enumerator kASRC__StatusPairAInputReady
pair a input ready

enumerator kASRC__StatusPairAlInterrupt
pair A interrupt

enumerator kASRC _StatusPairBInterrupt
pair B interrupt

enumerator kASRC _StatusPairClInterrupt
pair C interrupt

ASRC channel pair status .
Values:

enumerator kASRC__OutputFifoNearFull
channel pair output fifo near full

enumerator kASRC_InputFifoNearEmpty
channel pair input fifo near empty

enum _asrc_ratio
ASRC ideal ratio.
Values:

enumerator kASRC RatioNotUsed
ideal ratio not used

enumerator kASRC RatioUselnternalMeasured
ideal ratio use internal measure ratio, can be used for real time streaming audio

enumerator kASRC RatioUseldealRatio

ideal ratio use manual configure ratio, can be used for the non-real time streaming
audio

enum _asrc_audio channel
Number of channels in audio data.

Values:

enumerator kASRC ChannelsNumberl
channel numberis 1

enumerator kASRC ChannelsNumber2
channel number is 2

enumerator kASRC ChannelsNumber3
channel number is 3

enumerator kASRC ChannelsNumber4
channel number is 4

enumerator kASRC ChannelsNumber5
channel number is 5

enumerator kASRC ChannelsNumber6
channel number is 6

2.6. ASRC Driver 235

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kASRC ChannelsNumber7
channel number is 7

enumerator kASRC ChannelsNumber8
channel number is 8
enumerator kASRC ChannelsNumber9
channel number is 9
enumerator kASRC ChannelsNumberl0
channel number is 10
enum _asrc_data_width
data width
Values:
enumerator kASRC_ DataWidth24Bit
data width 24bit
enumerator kASRC_ DataWidth16Bit
data width 16bit
enumerator kASRC_ DataWidth8Bit
data width 8bit
enum _ asrc_ data_ align
data alignment
Values:
enumerator kASRC DataAlignMSB
data alignment MSB
enumerator kASRC DataAlignL.SB
data alignment LSB
enum _ asrc_ sign_ extension
sign extension
Values:
enumerator kASRC__NoSignExtension
no sign extension
enumerator kASRC__SignExtension
sign extension
typedef enum _asrc_channel_pair asrc_ channel_pair_t
ASRC channel pair mask.

typedef enum _asrc_ratio asrc_ratio_t
ASRC ideal ratio.

typedef enum _asrc_audio_channel asrc_audio_channel_t
Number of channels in audio data.

typedef enum _asrc_data_width asrc_ data_ width_t
data width

typedef enum _asrc_data_align asrc_data_ align_t
data alignment

236 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _asrc_sign_extension asrc_sign__extension_t
sign extension

typedef struct _asrc_channel_pair_config asrc_ channel_pair__config_t
asrc channel pair configuation

typedef struct _asrc_transfer asrc_ transfer_t
SAI transfer structure.

typedef struct _asrc_handle asrc_handle_t
asrc handler

typedef void (*asrc_ transfer callback t)(ASRC_Type *base, asrc_handle_t *handle, status_t
status, void *userData)

ASRC transfer callback prototype.

typedef struct _asrc_in_handle asrc_in_handle_t
asrc in handler

typedef struct _asrc_out_handle asrc_ out_ handle_t
output handler

ASRC_XFER_QUEUE_SIZE
ASRC transfer queue size, user can refine it according to use case.

FSL_ASRC_CHANNEL_ PAIR_ COUNT
ASRC channel pair count.

FSL__ASRC_CHANNEL_PAIR_FIFO_DEPTH
ASRC FIFO depth.

ASRC_ASRCTR_AT MASK(index)
ASRC register access macro.

ASRC ASRCTR_RATIO MASK(index)

ASRC_ASRCTR_ RATIO(ratio, index)
ASRC_ASRIER_INPUT_INTERRUPT_ MASK(index)
ASRC_ASRIER_OUTPUTPUT_INTERRUPT_ MASK(index)
ASRC__ASRCNCR. CHANNEL_COUNTER. MASK(index)
ASRC_ASRCNCR__CHANNEL__COUNTER(counter, index)
ASRC_ASRCFG_PRE MODE MASK(index)
ASRC_ASRCFG_PRE_MODE(mode, index)
ASRC_ASRCFG_POST MODE MASK(index)
ASRC_ASRCFG_POST_MODE(mode, index)
ASRC_ASRCFG_INIT DONE_ MASK(index)
ASRC_ASRCSR_INPUT_CLOCK_SOURCE_MASK(index)
ASRC _ASRCSR_INPUT CLOCK_SOURCE(source, index)
ASRC_ASRCSR_OUTPUT_CLOCK_ SOURCE_ MASK(index)
ASRC_ASRCSR_OUTPUT_CLOCK_SOURCE(source, index)

2.6. ASRC Driver 237

MCUXpresso SDK Documentation, Release 25.12.00

ASRC_ASRCDR_INPUT_PRESCALER_MASK(index)
ASRC_ASRCDR_INPUT PRESCALER(prescaler, index)
ASRC_ASRCDR,_INPUT_DIVIDER_MASK(index)
ASRC_ASRCDR,_INPUT_DIVIDER(divider, index)
ASRC_ASRCDR_OUTPUT PRESCALER_MASK(index)

ASRC _ASRCDR_OUTPUT_ PRESCALER(prescaler, index)
ASRC_ASRCDR_OUTPUT_DIVIDER,_MASK(index)
ASRC_ASRCDR_OUTPUT_DIVIDER(divider, index)

ASCR_ASRCDR_ OUTPUT_CLOCK_DIVIDER_PRESCALER(value, index)
ASCR__ASRCDR_INPUT_CLOCK_ DIVIDER_ PRESCALER(value, index)
ASRC IDEAL RATIO_ HIGH(base, index)

ASRC IDEAL RATIO LOW(base, index)

ASRC_ASRMCR(base, index)

ASRC__ASRMCRI1(base, index)

ASRC__ASRDI(base, index)

ASRC_ ASRDO(base, index)

ASRC_ASRDI_ADDR(base, index)

ASRC_ASRDO_ADDR(base, index)

ASRC_ASRFST ADDR(base, index)
ASRC_GET_CHANNEL_COUNTER(base, index)

struct _asrc_ channel pair_config
#include <fsl_asrc.h> asrc channel pair configuation

Public Members
asrc_audio_channel_t audioDataChannels
audio data channel numbers

asrc_clock_source_t inClockSource

input clock source, reference the clock source definition in SOC header file
uint32_t inSourceClock Hz

input source clock frequency
asrc_clock_source_t outClockSource

output clock source, reference the clock source definition in SOC header file
uint32_t outSourceClock Hz

output source clock frequency

asrc_ratio_t sampleRateRatio
sample rate ratio type

238 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

asrc_data_width_t inDataWidth
input data width

asrc_data_align_t inDataAlign
input data alignment
asrc_data_width_t outDataWidth
output data width
asrc_data_align_t outDataAlign
output data alignment
asrc_sign_extension_t outSignExtension
output extension
uint8_t outFifoThreshold
output fifo threshold
uint8_t inFifoThreshold
input fifo threshold
bool bufStallWhenFifoEmptyFull
stall Pair A conversion in case of Buffer near empty full condition

struct asrc_ transfer
#include <fsl_asrc.h> SAI transfer structure.

Public Members
void *inData
Data address to convert.

size_t inDataSize
input data size.

void *outData
Data address to store converted data

size_t outDataSize
output data size.

struct asrc_in handle
#include <fsl_asrc.h> asrc in handler

Public Members
asrc_transfer_callback_t callback

Callback function called at convert complete
uint32_t sampleWidth

data width

uint32_t sampleMask
data mask

uint32_t fifoThreshold
fifo threshold

uint8_t *asrcQueue[(4U)]
Transfer queue storing queued transfer

2.6. ASRC Driver

239

MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSamples[(4U)]
Data bytes need to convert

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

struct asrc_out_handle
#include <fsl_asrc.h> output handler

Public Members
asrc_transfer_callback_t callback
Callback function called at convert complete

uint32_t sampleWidth
data width

uint32_t fifoThreshold
fifo threshold

uint8_t *asrcQueue[(4U)]
Transfer queue storing queued transfer

size_t transferSamples[(4U)]
Data bytes need to convert

volatile uint8_t queueUser
Index for user to queue transfer

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

struct _asrc__handle
#include <fsl_asrc.h> ASRC handle structure.

Public Members
ASRC_Type *base
base address

uint32_t state
Transfer status

void *userData
Callback parameter passed to callback function
asrc_audio_channel_t audioDataChannels
audio channel number
asrc_channel_pair_t channelPair
channel pair mask
asrc_in_handle_t in
asrc input handler

asrc_out_handle_t out
asrc output handler

240 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

2.7 ASRC EDMA Driver

void ASRC_TransferInCreateHandleEDMA (ASRC_Type *base, asrc_edma_handle_t *handle,

asrc_channel pair_t channelPair,
asrc_edma_callback _t callback, edma_handle_t
*inDmaHandle, const asrc_p2p_edma_config t
*periphConfig, void *userData)

Initializes the ASRC IN eDMA handle.

This function initializes the ASRC DMA handle, which can be used for other ASRC transac-
tional APIs. Usually, for a specified ASRC channel pair, call this API once to get the initialized

handle.

Parameters

base — ASRC base pointer.

channelPair — ASRC channel pair

handle - ASRC eDMA handle pointer.
callback — Pointer to user callback function.
inDmaHandle — DMA handler for ASRC in.
periphConfig — peripheral configuration.

userData — User parameter passed to the callback function.

void ASRC_ TransferOutCreateHandleEDMA (ASRC_Type *base, asrc_edma_handle_t *handle,

asrc_channel_pair_t channelPair,
asrc_edma_callback_t callback, edma_handle_t
*outDmaHandle, const asrc_p2p_edma_config t
*periphConfig, void *userData)

Initializes the ASRC OUT eDMA handle.

This function initializes the ASRC DMA handle, which can be used for other ASRC transac-
tional APIs. Usually, for a specified ASRC channel pair, call this API once to get the initialized

handle.

Parameters

base — ASRC base pointer.

channelPair — ASRC channel pair

handle - ASRC eDMA handle pointer.
callback — Pointer to user callback function.
outDmaHandle - DMA handler for ASRC out.
periphConfig — peripheral configuration.

userData — User parameter passed to the callback function.

status_t ASRC_ TransferSetChannelPairConfigEDMA (ASRC_Type *base, asrc_edma_handle_t

*handle, asrc_channel_pair_config t
*asrcConfig, uint32_t inSampleRate,
uint32_t outSampleRate)

Configures the ASRC P2P channel pair.

Parameters

base — ASRC base pointer.
handle - ASRC eDMA handle pointer.

asrcConfig — asrc configurations.

2.7. ASRC EDMA Driver 241

MCUXpresso SDK Documentation, Release 25.12.00

* inSampleRate — ASRC input sample rate.
* outSampleRate — ASRC output sample rate.

uint32_t ASRC_ GetOutSamplesSizeEDMA (ASRC_Type *base, asrc_edma_handle_t *handle,
uint32_t inSampleRate, uint32_t outSampleRate,
uint32_t inSamplesize)

Get output sample buffer size can be transferred by edma.

Note: This API is depends on the ASRC output configuration, should be called after the
ASRC_TransferSetChannelPairConfigEDMA.

Parameters
* base — asrc base pointer.
* handle — ASRC channel pair edma handle.
* inSampleRate — input sample rate.
* outSampleRate — output sample rate.
* inSamplesize — input sampleS size.

Return values
output — buffer size in byte.

status_t ASRC_ TransferEDMA (ASRC_Type *base, asrc_edma_handle_t *handle, asrc_transfer_t
*xfer)

Performs a non-blocking ASRC m2m convert using EDMA.

Note: This interface returns immediately after the transfer initiates.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.
* xfer — Pointer to the DMA transfer structure.
Return values
* kStatus_ Success — Start a ASRC eDMA send successfully.
* kStatus_ InvalidArgument — The input argument is invalid.
¢ kStatus_ ASRCQueueFull - ASRC EDMA driver queue is full.

void ASRC_ TransferlnAbortEDMA (ASRC_Type *base, asrc_edma_handle_t *handle)
Aborts a ASRC IN transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
ASRC_TransferTerminalP2PEDMA.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.

242 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void ASRC_ TransferOutAbortEDMA (ASRC_Type *base, asrc_edma_handle_t *handle)
Aborts a ASRC OUT transfer using eDMA.

This function only aborts the current transfer slots, the other transfer slots’ informa-
tion still kept in the handler. If users want to terminate all transfer slots, just call
ASRC_TransferTerminal P2PEDMA.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.

void ASRC_ TransferInTerminalEDMA (ASRC_Type *base, asrc_edma_handle_t *handle)
Terminate In ASRC Convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortPP2PEDMA.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.

void ASRC_ TransferOutTerminalEDMA (ASRC_Type *base, asrc_edma_handle_t *handle)
Terminate Out ASRC Convert.

This function will clear all transfer slots buffered in the asrc queue. If users only want to
abort the current transfer slot, please call ASRC_TransferAbortPP2PEDMA.

Parameters
* base — ASRC base pointer.
* handle — ASRC eDMA handle pointer.
FSL__ASRC_EDMA_DRIVER_VERSION
Version 2.2.0
typedef struct _asrc_edma_handle asrc_edma_ handle_t
typedef void (*asrc_edma_ callback_t)(ASRC_Type *base, asrc_edma_handle_t *handle, status_t
status, void *userData)
ASRC eDMA transfer callback function for finish and error.
typedef void (*asrc_ start_ peripheral t)(bool start)
ASRC trigger peripheral function pointer.
typedef struct _asrc_p2p_edma_config asrc_p2p_ edma_ config_t
destination peripheral configuration
typedef struct _asrc_in_edma_handle asrc_in_edma_handle_t
@ brief asrc in edma handler
typedef struct _asrc_out_edma_handle asrc_out_edma_handle_t
@ brief asrc out edma handler
ASRC_XFER_IN_QUEUE_SIZE
ASRC IN edma QUEUE size.

<
ASRC_XFER_OUT_QUEUE_SIZE

struct _asrc_ p2p_edma_ config
#include <fsl_asrc_edma.h> destination peripheral configuration

2.7. ASRC EDMA Driver 243

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
asrc_start_peripheral_t startPeripheral
trigger peripheral start

struct asrc in edma handle
#include <fsl_asrc_edma.h> @ brief asrc in edma handler

Public Members

edma_handle_t *inDmaHandle
DMA handler for ASRC in

uint8_t tcd[(4U + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA send.

uint32_t sampleWidth
input data width
uint32_t fifoThreshold
ASRC input fifo threshold
uint32_t *asrcQueue[4U]
Transfer queue storing queued transfer.
size_t transferSize[4U]
Data bytes need to transfer
volatile uint8_t queueUser
Index for user to queue transfer.
volatile uint8_t queueDriver
Index for driver to get the transfer data and size
uint32_t state
Internal state for ASRC eDMA transfer
const asrc_p2p_edma_config_t *peripheralConfig
peripheral configuration pointer

struct _asrc_out_edma_handle
#include <fsl_asrc_edma.h> @ brief asrc out edma handler

Public Members

edma_handle_t *outDmaHandle
DMA handler for ASRC out

uint8_t tcd[(((4U) * 2U) + 1U) * sizeof(edma_tcd_t)]
TCD pool for eDMA send.

uint32_t sampleWidth
output data width

uint32_t fifoThreshold
ASRC output fifo threshold

uint32_t *asrcQueue[((4U) * 2U)]
Transfer queue storing queued transfer.

244 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

size_t transferSize[((4U) * 2U)]
Data bytes need to transfer

volatile uint8_t queueUser
Index for user to queue transfer.

volatile uint8_t queueDriver
Index for driver to get the transfer data and size

uint32_t state
Internal state for ASRC eDMA transfer

const asrc_p2p_edma_config_t *peripheralConfig
peripheral configuration pointer

struct asrc _edma_handle
#include <fsl_asrc_edma.h> ASRC DMA transfer handle.

Public Members
asrc_in_edma_handle_t in
asrc in handler

asrc_out_edma_handle_t out
asrc out handler

asrc_channel_pair_t channelPair
channel pair

void *userData
User callback parameter

asrc_edma_callback _t callback
Callback for users while transfer finish or error occurs

2.8 CAAM: Cryptographic Acceleration and Assurance Module

FSL CAAM_ DRIVER_ VERSION
CAAM driver version.

Current version: 2.4.0
Change log:
* Version 2.0.0
— Initial version

* Version 2.0.1

— Add Job Ring 2 and 3.
* Version 2.0.2
- Add Data and Instruction Synchronization Barrier in

caam_input_ring_set_jobs_added() to make sure that the descriptor will be
loaded into CAAM correctly.

* Version 2.0.3
— Use MACRO instead of numbers in descriptor.

— Correct descriptor size mask.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 245

MCUXpresso SDK Documentation, Release 25.12.00

Version 2.1.0
— Add return codes check and handling.
Version 2.1.1
— Add DCACHE support.
Version 2.1.2
- Add data offset feature to provide support for mirrored (high-speed) memory.
Version 2.1.3
- Fix MISRA-2012 issues.
Version 2.1.4
- Fix MISRA-2012 issues.
Version 2.1.5
— Support EXTENDED data size for all AES, HASH and RNG operations.

— Support multiple De-Initialization/Initialization of CAAM driver within one POR
event.

Version 2.1.6

- Improve DCACHE handling. Requires CAAM used and cached memory set in write-
trough mode.

Version 2.2.0
— Added API for Blob functions and CRC
Version 2.2.1
— Fixed AES-CCM decrypt failing with TAG length bigger than 8 byte.
Version 2.2.2
— Modify RNG to not reseed with each request.
Version 2.2.3
— Fix DCACHE invalidation in CAAM_HASH_Finish().
Version 2.2.4

— Fix issue where the outputSize parameter of CAAM_HASH_Finish() has impact on
hash calculation.

Version 2.3.0
— Add support for SHA HMAC.
Version 2.3.1

— Modified function caam_aes_ccm_check_input_args() to allow payload be empty as
is specified in NIST800-38C Section 5.3.

Version 2.3.2
— Fix MISRA-2012 issues.
Version 2.4.0

— Add new APIs for native asymmetric operations (RSA, ECC) instead of only accel-
erating mathematical primitives and support for black keys and blobs for both
symmetric and asymmetric operations.

246

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

CAAM status return codes.

Values:

enumerator kStatus_ CAAM__Again
Non-blocking function shall be called again.

enumerator kStatus_ CAAM_DataOverflow
Input data too big.

enum _caam_ job_ring t

CAAM job ring selection.

Values:

enumerator kCAAM_ JobRing0
CAAM Job ring 0

enumerator kCAAM_ JobRingl
CAAM Jobring 1

enumerator kCAAM_ JobRing2
CAAM Job ring 2

enumerator kCAAM_ JobRing3
CAAM Job ring 3

enum caam_wait__mode
CAAM driver wait mechanism.
Values:

enumerator kCAAM_ Blocking
CAAM_Wait blocking mode

enumerator kCAAM_ Nonblocking
CAAM Wait non-blocking mode

enum _ caam_ rng_sample_mode
CAAM RNG sample mode. Used by caam_config_t.
Values:
enumerator kCAAM__RNG__SampleModeVonNeumann
Use von Neumann data in both Entropy shifter and Statistical Checker.
enumerator kCAAM__RNG__ SampleModeRaw
Use raw data into both Entropy shifter and Statistical Checker.
enumerator kCAAM_RNG__SampleModeVonNeumannRaw
Use von Neumann data in Entropy shifter. Use raw data into Statistical Checker.

enum _caam_ rng ring osc_ div
CAAM RNG ring oscillator divide. Used by caam_config_t.
Values:
enumerator kCAAM_RNG_ RingOscDiv0
Ring oscillator with no divide

enumerator kCAAM_RNG_ RingOscDiv2
Ring oscillator divided-by-2.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 247

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_RNG_ RingOscDiv4
Ring oscillator divided-by-4.
enumerator kCAAM_RNG_ RingOscDiv8
Ring oscillator divided-by-8.
enum _ caam_ priblob
CAAM Private Blob. Used by caam_config_t.
Values:

enumerator kCAAM _PrivSecureBootBlobs
Private secure boot software blobs.

enumerator kCAAM_ PrivProvisioningBlobsTypel
Private Provisioning Type 1 blobs.

enumerator kCAAM__ PrivProvisioningBlobsType2
Private Provisioning Type 2 blobs.

enumerator kCAAM_ NormalOperationBlobs
Normal operation blobs.

enum _ caam_ ext_ key_ xfr_source

CAAM External Key Transfer command SRC (The source from which the key will be ob-

tained)

Values:

enumerator kCAAM_ ExtKeyXfr KeyRegisterClassl

The Class 1 Key Register is the source.

enumerator kCAAM_ ExtKeyXfr_KeyRegisterClass2

The Class 2 Key Register is the source.

enumerator kCAAM_ ExtKeyXfr_PkhaRamE
The PKHA E RAM is the source.

enum caam_ecc_ecdsel
Values:

enumerator kCAAM_ECDSEL_P_ 192
enumerator kCAAM_ECDSEL_P_ 224
enumerator kCAAM_ECDSEL_P_ 256
enumerator kCAAM_ECDSEL_P_ 384
enumerator kCAAM__ECDSEL_P_ 521
enumerator kCAAM__ECDSEL_ brainpoolP160r1
enumerator kCAAM__ECDSEL_ brainpoolP160t1
enumerator kCAAM_ECDSEL_ brainpoolP192r1
enumerator kCAAM_ECDSEL_ brainpoolP192t1
enumerator kCAAM__ECDSEL_ brainpoolP224r1
enumerator kCAAM__ECDSEL_ brainpoolP224t1

enumerator kCAAM__ECDSEL_ brainpoolP256r1

248

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM__ECDSEL_ brainpoolP256t1
enumerator kCAAM__ECDSEL_ brainpoolP320r1
enumerator kCAAM_ECDSEL_ brainpoolP320t1
enumerator kCAAM_ECDSEL_ brainpoolP384rl
enumerator kCAAM_ECDSEL_ brainpoolP384t1
enumerator kCAAM__ECDSEL_ brainpoolP512r1
enumerator kCAAM_ECDSEL_ brainpoolP512t1
enumerator kCAAM_ECDSEL_ primel92v2
enumerator kCAAM_ECDSEL_ primel92v3
enumerator kCAAM_ ECDSEL_ prime239v1
enumerator kCAAM_ECDSEL_ prime239v2
enumerator kCAAM_ECDSEL_ prime239v3
enumerator kCAAM__ECDSEL_ secp112rl
enumerator kCAAM_ECDSEL_ wtls8
enumerator kCAAM_ ECDSEL_ wtls9
enumerator kCAAM__ECDSEL_ secp160k1
enumerator kCAAM__ECDSEL_ secpl160rl
enumerator kCAAM_ECDSEL_ secp160r2
enumerator kCAAM__ECDSEL_ secp192k1
enumerator kCAAM_ECDSEL_ secp224k1l
enumerator kCAAM_ECDSEL_ secp256k1
enumerator kCAAM__ECDSEL_B_ 163
enumerator kCAAM__ECDSEL_B_ 233
enumerator kCAAM_ECDSEL_B_ 283
enumerator kCAAM_ECDSEL_B_ 409
enumerator kCAAM_ECDSEL_B_ 571
enumerator kCAAM_ECDSEL_K_ 163
enumerator kCAAM__ECDSEL_K_ 233
enumerator kCAAM__ECDSEL_K_ 283
enumerator kCAAM_ECDSEL_K_ 409
enumerator kCAAM_ECDSEL_K_571
enumerator kCAAM_ ECDSEL_ wtlsl

enumerator kCAAM_ECDSEL_ sect113rl

2.8. CAAM: Cryptographic Acceleration and Assurance Module 249

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM__ECDSEL_ ¢2pnb163v1
enumerator kCAAM_ECDSEL_ ¢2pnb163v2
enumerator kCAAM_ECDSEL_ ¢2pnb163v3
enumerator kCAAM__ECDSEL_ sect163rl
enumerator kCAAM__ECDSEL_ sect193r1
enumerator kCAAM__ECDSEL_ sect193r2
enumerator kCAAM_ECDSEL_ sect239k1
typedef struct _caam_job_callback caam_ job_ callback_t

CAAM callback function.
typedef enum _caam_job_ring t caam__job_ring_t
CAAM job ring selection.

typedef struct _caam_handle_t caam_handle_t
CAAM handle Specifies jobRing and optionally the user callback function. The user callback
functions is invoked only if jobRing interrupt has been enabled by the user. By default the
jobRing interrupt is disabled (default job complete test is polling CAAM output ring).
typedef enum _caam_wait_mode caam_ wait_mode_t
CAAM driver wait mechanism.

typedef uint32_t caam_ desc_aes_ecb_ t[64]

Memory buffer to hold CAAM descriptor for AESA ECB job.
typedef uint32_t caam_ desc_aes_chc_ t[64]

Memory buffer to hold CAAM descriptor for AESA CBC job.
typedef uint32_t caam_ desc_aes_ctr_ t[64]

Memory buffer to hold CAAM descriptor for AESA CTR job.
typedef uint32_t caam_ desc_aes ccm_ t[64]

Memory buffer to hold CAAM descriptor for AESA CCM job.
typedef uint32_t caam_ desc_aes gem_ t[64]

Memory buffer to hold CAAM descriptor for AESA GCM job.
typedef uint32_t caam_ desc_hash_ t[64]

Memory buffer to hold CAAM descriptor for MDHA job or AESA CMAC job.
typedef uint32_t caam_ desc_ rng_ t[64]

Memory buffer to hold CAAM descriptor for RNG jobs.
typedef uint32_t caam_ desc_ cipher_des_ t[64]

Memory buffer to hold CAAM descriptor for DESA jobs.
typedef uint32_t caam_ desc_ pkha_ t[64]

Memory buffer to hold CAAM descriptor for PKHA jobs.
typedef uint32_t caam_ desc_ pkha_ecc_ t[64]

Memory buffer to hold CAAM descriptor for PKHA ECC jobs.
typedef uint32_t caam_ desc_key_ black_ t[64]

Memory buffer to hold CAAM descriptor for performing key blackening jobs.

typedef uint32_t caam_ desc_gen_enc_ blob_ t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

250 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

typedef uint32_t caam_ desc_ gen_ dep_ blob_ t[64]
typedef uint32_t caam_ desc_rsa_ t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

typedef uint32_t caam_ desc_ecc_ t[64]
Memory buffer to hold CAAM descriptor for performing generating dek blob jobs.

typedef struct _caam_job_ring interface caam__job_ring_ interface_t
typedef enum _caam_rng_sample_mode caam_rng_sample_mode_t
CAAM RNG sample mode. Used by caam_config_t.

typedef enum _caam_rng ring _osc_div caam_rng_ring_osc_div_t
CAAM RNG ring oscillator divide. Used by caam_config_t.

typedef enum _caam_priblob caam_ priblob_ t
CAAM Private Blob. Used by caam_config_t.

typedef struct _caam_config caam_ config_t
CAAM configuration structure.

typedef enum _caam_ext_key_xfr_source caam_ext_key_ xfr_source_t

CAAM External Key Transfer command SRC (The source from which the key will be ob-
tained)

typedef enum _caam_ecc_ecdsel caam__ecc_ecdsel_t
status_t CAAM_ Init(CAAM_Type *base, const caam_config_t *config)
Initializes the CAAM driver.
This function initializes the CAAM driver, including CAAM’s internal RNG.
Parameters
* base — CAAM peripheral base address
* config — Pointer to configuration structure.

Returns
kStatus_Success the CAAM Init has completed with zero termination status
word

Returns
kStatus_Fail the CAAM Init has completed with non-zero termination status
word
status_t CAAM_ Deinit(CAAM_Type *base)
Deinitializes the CAAM driver. This function deinitializes the CAAM driver.

Parameters
* base — CAAM peripheral base address

Returns
kStatus_Success the CAAM Deinit has completed with zero termination status
word

Returns
kStatus_Fail the CAAM Deinit has completed with non-zero termination status
word

2.8. CAAM: Cryptographic Acceleration and Assurance Module 251

MCUXpresso SDK Documentation, Release 25.12.00

void CAAM_ GetDefaultConfig(caam_config_t *config)

Gets the default configuration structure.

This function initializes the CAAM configuration structure to a default

value. The default values are as follows. caamConfig->rngSampleMode
= kCAAM_RNG_SampleModeVonNeumann; caamConfig->rngRingOscDiv =
kCAAM_RNG_RingOscDiv4;

Parameters

* config — [out] Pointer to configuration structure.

status_t CAAM_ Wait(CAAM_Type *base, caam_handle_t *handle, uint32_t *descriptor,

caam_wait_mode_t mode)
Wait for a CAAM job to complete.

This function polls CAAM output ring for a specific job.

The CAAM job ring is specified by the jobRing field in the caam_handle_t structure. The job
to be waited is specified by it’s descriptor address.

This function has two modes, determined by the mode argument. In blocking mode, the
function polls the specified jobRing until the descriptor is available in the CAAM output job
ring. In non-blocking mode, it polls the output ring once and returns status immediately.

The function can be called from multiple threads or interrupt service routines, as inter-
nally it uses global critical section (global interrupt disable enable) to protect it’s operation
against concurrent accesses. The global interrupt is disabled only when the descriptor is
found in the output ring, for a very short time, to remove the descriptor from the output
ring safely.

Parameters
* base — CAAM peripheral base address
* handle — Data structure with CAAM jobRing used for this request
* descriptor —

* mode — Blocking and non-blocking mode. Zero is blocking. Non-zero is
non-blocking.

Returns
kStatus_Success the CAAM job has completed with zero job termination status
word

Returns
kStatus_Fail the CAAM job has completed with non-zero job termination status
word

Returns
kStatus_Again In non-blocking mode, the job is not ready in the CAAM Output
Ring

status_t CAAM_ ExternalKeyTransfer(CAAM_Type *base, caam_handle_t *handle,

caam_ext_key_xfr_source_t keySource, size_t keySize)
External Key Transfer.

This function loads the given key source to an CAAM external destination via a private
interface, such as Inline Encryption Engine IEE Private Key bus.

The CAAM job ring is specified by the jobRing field in the caam_handle_t structure.
This function is blocking.
Parameters

* base — CAAM peripheral base address

252

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* handle — Data structure with CAAM jobRing used for this request.
* keySource — The source from which the key will be obtained.
* keySize — Size of the key in bytes.

Returns
kStatus_Success the CAAM job has completed with zero job termination status
word

Returns
kStatus_Fail the CAAM job has completed with non-zero job termination status
word
struct _ caam__job_ callback
#include <fsl_caam.h> CAAM callback function.

Public Members

void (*JobCompleted)(void *userData)
CAAM Job complete callback

struct caam_handle t

#include <fsl_caam.h> CAAM handle Specifies jobRing and optionally the user callback func-
tion. The user callback functions is invoked only if jobRing interrupt has been enabled by
the user. By default the jobRing interrupt is disabled (default job complete test is polling
CAAM output ring).

Public Members
caam_job_callback_t callback
Callback function

void *userData
Parameter for CAAM job complete callback

struct _caam_ job_ ring interface
#include <fsl_caam.h>

struct _caam_ config
#include <fsl_caam.h> CAAM configuration structure.

Public Members
caam_rng_sample_mode_t rngSampleMode
RTMCTL Sample Mode.
caam_rng ring_osc_div_t rngRingOscDiv
RTMCTL Oscillator Divide.
bool scfgrLockTrngProgramMode
SCFGR Lock TRNG Program Mode.
bool scfgrEnableRandomDataBuffer
SCFGR Enable random data buffer.

bool scfgrRandomRngStateHandleO
SCFGR Random Number Generator State Handle 0.

2.8. CAAM: Cryptographic Acceleration and Assurance Module 253

MCUXpresso SDK Documentation, Release 25.12.00

bool scfgrRandomDpaResistance
SCFGR Random Differential Power Analysis Resistance.

caam_priblob_t scfgrPriblob
SCFGR Private Blob.

2.9 CAAM AES driver

status_t CAAM__AES_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t *key,
size_t keySize)

Encrypts AES using the ECB block mode.
Encrypts AES using the ECB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from encrypt operation

status_t CAAM__AES_ DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t *key,
size_t keySize)

Decrypts AES using ECB block mode.
Decrypts AES using ECB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key.
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from decrypt operation

status_t CAAM__AES_EncryptEcbExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t *key, size_t keySize, caam_key_type_t
blackKeyType)

Encrypts AES using the ECB block mode using black key.
Encrypts AES using the ECB block mode.

254 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* blackKeyType — Type of black key

Returns
Status from encrypt operation

status_t CAAM__AES_ DecryptEcbExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t *key, size_t keySize, caam_key_type_t
blackKeyType)

Decrypts AES using ECB block mode using black key.
Decrypts AES using ECB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key.
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* blackKeyType — Type of black key

Returns
Status from decrypt operation

status_t CAAM__AES_EncryptCbce(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[16], const uint8_t *key, size_t keySize)

Encrypts AES using CBC block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.
* key — Input key to use for encryption

* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

2.9. CAAM AES driver 255

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from encrypt operation

status_t CAAM_AES_ DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[16], const uint8_t *key, size_t keySize)

Decrypts AES using CBC block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.
* key — Input key to use for decryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from decrypt operation

status_t CAAM__AES_EncryptCbcExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *plaintext, uint8_t *ciphertext, size_t size,
const uint8_t iv[16], const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Encrypts AES using CBC block mode using black key.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* blackKeyType — Type of black key

Returns
Status from encrypt operation

status_t CAAM__AES_DecryptChcExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *ciphertext, uint8_t *plaintext, size_t size,
const uint8_t iv[16], const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Decrypts AES using CBC block mode using black key.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt

256 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* plaintext — [out] Output plain text

* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.

* key — Input key to use for decryption

* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

* blackKeyType — Type of black key

Returns
Status from decrypt operation

status_t CAAM__AES_ CryptCtr(CAAM_Type *base, caam_handle_t *handle, const uint8_t *input,
uint8_t *output, size_t size, uint8_t counter[16], const uint8_t
*key, size_t keySize, uint8_t counterlast[16], size_t *szLeft)

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* input — Input data for CTR block mode
* output — [out] Output data for CTR block mode
* size — Size of input and output data in bytes
* counter — [inout] Input counter (updates on return)
* key — Input key to use for forward AES cipher
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

* counterlast — [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

* szLeft — [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

Returns
Status from encrypt operation

status_t CAAM__AES_CryptCtrExtended(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *input, uint8_t *output, size_t size, uint8_t
counter[16], const uint8_t *key, size_t keySize, uint8_t
counterlast[16], size_t *szLeft, caam_key_type_t
blackKeyType)

Encrypts or decrypts AES using CTR block mode using black key.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the
output argument is plain text.

Parameters

* base — CAAM peripheral base address

2.9. CAAM AES driver 257

MCUXpresso SDK Documentation, Release 25.12.00

handle — Handle used for this request. Specifies jobRing.
input — Input data for CTR block mode

output — [out] Output data for CTR block mode

size — Size of input and output data in bytes

counter — [inout] Input counter (updates on return)

key — Input key to use for forward AES cipher

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

counterlast — [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

szLeft — [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

blackKeyType — Type of black key

Returns
Status from encrypt operation

status_t CAAM__AES_EncryptTagCem(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t *tag, size_t tagSize)

Encrypts AES and tags using CCM block mode.

Encrypts AES and optionally tags using CCM block mode.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes. Zero means authentication
only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

key — Input key to use for encryption
keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — [out] Generated output tag. Set to NULL to skip tag processing.

tagSize — Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

Returns
Status from encrypt operation

status_t CAAM__AES_DecryptTagCem(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const uint8_t *tag, size_t
tagSize)

258

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Decrypts AES and authenticates using CCM block mode.

Decrypts AES and optionally authenticates using CCM block mode.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text.

size — Size of input and output data in bytes. Zero means authentication
data only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

key — Input key to use for decryption
keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — Received tag. Set to NULL to skip tag processing.

tagSize — Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

Returns
Status from decrypt operation

status_t CAAM__AES_EncryptTagCemExtended(CAAM_Type *base, caam_handle_t *handle,

const uint8_t *plaintext, uint8_t *ciphertext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Encrypts AES and tags using CCM block mode using black key.

Encrypts AES and optionally tags using CCM block mode.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes. Zero means authentication
only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

key — Input key to use for encryption

2.9. CAAM AES driver 259

MCUXpresso SDK Documentation, Release 25.12.00

* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* tag — [out] Generated output tag. Set to NULL to skip tag processing.

* tagSize — Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

* blackKeyType — Type of black key

Returns
Status from encrypt operation

status_t CAAM__AES_ DecryptTagCemExtended(CAAM_Type *base, caam_handle_t *handle,
const uint8_t *ciphertext, uint8_t *plaintext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, const uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using CCM block mode using black key.
Decrypts AES and optionally authenticates using CCM block mode.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text.

* size — Size of input and output data in bytes. Zero means authentication
data only.

* iv—Nonce
* ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* aad — Input additional authentication data. Can be NULL if aadSize is zero.

* aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

* key — Input key to use for decryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* tag — Received tag. Set to NULL to skip tag processing.

* tagSize — Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

* blackKeyType — Type of black key

Returns
Status from decrypt operation

status_t CAAM__AES_ EncryptTagGem(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
*iv, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t *tag, size_t tagSize)

Encrypts AES and tags using GCM block mode.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field.

Parameters

* base — CAAM peripheral base address

260 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

handle — Handle used for this request. Specifies jobRing.
plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes

iv — Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — [out] Output hash tag. Set to NULL to skip tag processing.

tagSize — Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

Returns
Status from encrypt operation

status_t CAAM__AES_ DecryptTagGem(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
*1v, size_t ivSize, const uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const uint8_t *tag, size_t
tagSize)

Decrypts AES and authenticates using GCM block mode.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.

ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text.

size — Size of input and output data in bytes

iv — Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

tag — Input hash tag to compare. Set to NULL to skip tag processing.
tagSize — Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

Returns
Status from decrypt operation

2.9. CAAM AES driver 261

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM__AES_ EncryptTagGemExtended(CAAM_Type *base, caam_handle_t *handle,

const uint8_t *plaintext, uint8_t *ciphertext,
size_t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Encrypts AES and tags using GCM block mode using black key.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Uses black key.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text.
* size — Size of input and output data in bytes
* iv—Input initial vector
* ivSize — Size of the IV
* aad — Input additional authentication data
* aadSize — Input size in bytes of AAD
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* tag — [out] Output hash tag. Set to NULL to skip tag processing.

* tagSize — Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

* blackenKeyType — Type of black key

Returns
Status from encrypt operation

status_t CAAM__AES_ DecryptTagGemExtended(CAAM_Type *base, caam_handle_t *handle,

const uint8_t *ciphertext, uint8_t *plaintext,
size t size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t *key,
size_t keySize, const uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using GCM block mode using black key.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Uses
black key.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text.
* size — Size of input and output data in bytes

* iv —Input initial vector

262

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* ivSize — Size of the IV

* aad — Input additional authentication data

* aadSize — Input size in bytes of AAD

* key — Input key to use for encryption

* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

* tag — Input hash tag to compare. Set to NULL to skip tag processing.

* tagSize — Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.
* blackenKeyType — Type of black key

Returns
Status from decrypt operation

CAAM_AES_BLOCK_ SIZE
AES block size in bytes

2.10 CAAM Key Blankening driver

size_t CAAM_ BLACK_ KeyBlackenSize(caam_fifost_type_t fifostType, size_t dataSize)
Return size of blacken key based on encryption type and data to encrypt size.

Parameters
o fifostType — Type of AES-CBC or AEC-CCM to encrypt plaintext
* dataSize — Size of data to be encrypted

Returns
size_t Size of blacken key.

status_t CAAM__BLACK __GetKeyBlacken(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *data, size_t dataSize, caam_fifost_type_t
fifostType, uint8_t *blackdata)

Construct a black key.

This function constructs a job descriptor capable of performing a key blackening operation
on a plaintext secure memory resident object.

Parameters
* base — CAAM peripheral base address
* handle — jobRing used for this request
* data — Pointer address uses to pointed the plaintext.
* dataSize — Size of the buffer pointed by the data parameter
* fifostType — Type of AES-CBC or AEC-CCM to encrypt plaintext
* blackdata — [out] Pointer address uses to pointed the black key

Returns
Status of the request

2.11 CAAM Blob driver

2.10. CAAM Key Blankening driver 263

MCUXpresso SDK Documentation, Release 25.12.00

enum _ caam__ fifost_ type
CAAM FIFOST types.

Values:

enumerator kCAAM__FIFOST_Type_Ecb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_FIFOST_ Type Ecb Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_FIFOST_Type_Ccm__Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_ FIFOST_Type_Ccm_ Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _ caam_ desc_ type
CAAM descriptor types.

Values:

enumerator kCAAM_ Descriptor_ Type_ Ecb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_ Descriptor_ Type_Ecb_ Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kKCAAM_ Descriptor_ Type Ccm_ Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_ Descriptor_ Type_ Cem_ Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _ caam_ key_ type
CAAM Kkey types.

Values:
enumerator kCAAM_Key_Type_ None
enumerator kCAAM_ Key_ Type_ FEcb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Key_ Type Ecb_Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_Key_ Type Ccm_ Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_ Key_ Type_ Ccm_ Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_ ecc_encryption_type
CAAM ecc encryption types.

Values:
enumerator kCAAM_ Ecc_ Encryption_ Type_None
enumerator kCAAM_ Ecc_ Encryption_ Type_ Ecb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_ Ecc_ Encryption_ Type_Ccm_ Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

264 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _ caam_ rsa_ key_ type
CAAM rsa key encryption types.

Values:
enumerator kCAAM_Rsa_Key_Type_None
enumerator kCAAM_Rsa_Key_ Type_ Ecb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_Rsa_Key_ Type_ Ccm_ Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enum _ caam_ rsa_ encryption_ type
CAAM rsa encryption types.

Values:
enumerator kCAAM_ Rsa_ Encryption_ Type_ None
enumerator kCAAM_ Rsa_ Encryption_ Type_ Ecb_ Jkek
Key Register, encrypted using AES-ECB with the job descriptor key encryption key.

enumerator kCAAM_ Rsa_ Encryption_ Type_ Ecb_ Tkek
Key Register, encrypted using AES-ECB with the trusted descriptor key encryption key.

enumerator kCAAM_ Rsa_ Encryption_ Type_ Ccm_ Jkek
Key Register, encrypted using AES-CCM with the job descriptor key encryption key.

enumerator kCAAM_ Rsa_ Encryption_ Type_ Ccm_ Tkek
Key register, encrypted using AES-CCM with the trusted descriptor key encryption key.

enum _caam_ rsa_ format_ type
Values:

enumerator kCAAM_Rsa_Format_ Type_None
No formatting

enumerator kCAAM_ Rsa_ Format_ Type PKCS1
EME-PKCS1-v1_5 encryption decoding function

typedef enum _caam_fifost_type caam_ fifost_ type t
CAAM FIFOST types.

typedef enum _caam_desc_type caam_ desc_type_t
CAAM descriptor types.

typedef enum _caam_key_type caam_ key_type t
CAAM key types.

typedef enum _caam_ecc_encryption_type caam_ ecc_ encryption_ type_t
CAAM ecc encryption types.

typedef enum _caam_rsa_key_type caam_rsa_key type t
CAAM rsa key encryption types.

typedef enum _caam_rsa_encryption_type caam_ rsa_ encryption_ type_t
CAAM rsa encryption types.

typedef enum _caam_rsa_format_type caam_rsa_format_type_t

2.11. CAAM Blob driver 265

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_ RedBlob_ Encapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t *data,
size_t dataSize, uint8_t *blob_data)

Construct a encrypted Red Blob.

This function constructs a job descriptor capable of performing a encrypted blob operation
on a plaintext object.

Parameters

* base — CAAM peripheral base address

* handle — Handle used for this request. Specifies jobRing.

* keyModifier — Address of the random key modifier generated by RNG

* keyModifierSize — Size of keyModifier buffer in bytes

* data — Data adress

* dataSize — Size of the buffer pointed by the data parameter
blob__data — [out] Output blob data adress

Returns
Status of the request

status_t CAAM_ RedBlob_ Decapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t
*blob_data, uint8_t *data, size_t dataSize)

Decrypt red blob.
This function constructs a job descriptor capable of performing decrypting red blob .
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* keyModifier — Address of the random key modifier generated by RNG
» keyModifierSize — Size of keyModifier buffer in bytes
* blob_data — Address of blob data
* data — [out] Output data adress.
» dataSize — Size of the buffer pointed by the data parameter in bytes

Returns
Status of the request

status_t CAAM_ BlackBlob_ Encapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t *data,
size_t dataSize, uint8_t *blob_data, caam_desc_type_t
blackKeyType)

Construct a encrypted Black Blob.

This function constructs a job descriptor capable of performing a encrypted blob operation
on a plaintext object.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* keyModifier — Address of the random key modifier generated by RNG
*» keyModifierSize — Size of keyModifier buffer in bytes

266 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* data — Data adress

* dataSize — Size of the buffer pointed by the data parameter

* blob_ data — [out] Output blob data adress

* blackKeyType—Type of black key see enum caam_desc_type_t for more info

Returns
Status of the request

status_t CAAM_ BlackBlob_Decapsule(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*keyModifier, size_t keyModifierSize, const uint8_t
*blob_data, uint8_t *data, size_t dataSize,
caam_desc_type_t blackKeyType)

Construct a decrypted black blob.
This function constructs a job descriptor capable of performing decrypting black blob.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* keyModifier — Address of the random key modifier generated by RNG
» keyModifierSize — Size of keyModifier buffer in bytes
* blob_data — Address of blob data
* data — [out] Output data adress.
* dataSize — Size of the buffer pointed by the data parameter in bytes
* blackKeyType—Type of black key see enum caam_desc_type_t for more info

Returns
Status of the request

2.12 CAAM CRC driver

status_t CAAM__CRC_ Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,
caam_crc_algo_t algo, const uint8_t *polynomial, size_t
polynomialSize, caam_aai_crc_alg_t mode)

Initialize CRC context.

This function initializes the CRC context. polynomial shall be supplied if the underlaying
algoritm is KCAAM_CrcCUSTPOLY. polynomial shall be NULL if the underlaying algoritm is
kCAAM_CrcIEEE or KCAAM_CrciSCSI.

This functions is used to initialize the context for CAAM_CRC API
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
* ctx — [out] Output crc context
* algo — Underlaying algorithm to use for CRC computation

* polynomial — CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or KCAAM_CrciSCSI)

* polynomialSize — Size of polynomial in bytes (Ou if underlaying algorithm is
kCAAM_CrcIEEE or KCAAM_CrciSCSI)

2.12. CAAM CRC driver 267

MCUXpresso SDK Documentation, Release 25.12.00

* mode — Specify how CRC engine manipulates its input and output data

Returns
Status of initialization

status_t CAAM__CRC_ Update(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
Add data to current CRC.

Add data to current CRC. This can be called repeatedly. The functions blocks. If it returns
kStatus_Success, the running CRC has been updated (CAAM has processed the input data),
so the memory at input pointer can be released back to system. The context is updated with
the running CRC and with all necessary information to support possible context switch.

Parameters
* ctx — [inout] CRC context
* input — Input data
* inputSize — Size of input data in bytes

Returns
Status of the crc update operation

status_t CAAM__CRC_ Finish(caam_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize CRC.

Outputs the final CRC (computed by CAAM_CRC_Update()) and erases the context.
Parameters
* ctx — [inout] Input crc context
* output — [out] Output crc data

* outputSize — [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the crc finish operation

status_t CAAM__ CRC(CAAM_Type *base, caam_handle_t *handle, caam_crc_algo_t algo,
caam_aai_crc_alg t mode, const uint8_t *input, size_t inputSize, const
uint8_t *polynomial, size_t polynomialSize, uint8_t *output, size_t
*outputSize)

Create CRC on given data.
Perform CRC in one function call.

Polynomial shall be supplied if underlaying algorithm is kCAAM_CrcCUSTPOLY. Polynomial
shall be NULL if underlaying algorithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI.

The function is blocking.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request.
* algo — Underlaying algorithm to use for crc computation.
» mode — Specify how CRC engine manipulates its input and output data.
* input — Input data
* inputSize — Size of input data in bytes

* polynomial — CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or KCAAM_CrciSCSI)

268 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

polynomialSize — Size of input polynomial in bytes (0U if underlaying algo-
rithm is KCAAM_CrcIEEE or kCAAM_CrciSCSI)

output — [out] Output crc data

outputSize — [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the one call crc operation.

status_t CAAM__CRC_ NonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_hash_t descriptor, caam_crc_algo_t algo,
caam_aai_crc_alg_t mode, const uint8_t *input, size_t

inputSize, const uint8_t *polynomial, size_t polynomialSize,

uint8_t *output, size_t *outputSize)

Create CRC on given data.

Perform CRC in one function call.

Polynomial shall be supplied if underlaying algorithm is kCAAM_CrcCUSTPOLY. Polynomial
shall be NULL if underlaying algorithm is kCAAM_CrcIEEE or kCAAM_CrciSCSI.

The function is non-blocking. The request is scheduled at CAAM.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request.

descriptor — [out] Memory for the CAAM descriptor.

algo — Underlaying algorithm to use for crc computation.

mode — Specify how CRC engine manipulates its input and output data.
input — Input data

inputSize — Size of input data in bytes

polynomial — CRC polynomial (NULL if underlaying algorithm is
kCAAM_CrcIEEE or KCAAM_CrciSCSI)

polynomialSize — Size of input polynomial in bytes (0U if underlaying algo-
rithm is KCAAM_CrcIEEE or kCAAM_CrciSCSI)

output — [out] Output crc data

outputSize — [out] Output parameter storing the size of the output crc in
bytes

Returns
Status of the one call crc operation.

2.13 CAAM DES driver

status_t CAAM_DES_ EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key([8U])

Encrypts DES using ECB block mode.

Encrypts DES using ECB block mode.

Parameters

* base — CAAM peripheral base address

2.13. CAAM DES driver

269

MCUXpresso SDK Documentation, Release 25.12.00

* handle — Handle used for this request. Specifies jobRing.

* plaintext — Input plaintext to encrypt

* ciphertext — [out] Output ciphertext

* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* key — Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_ DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key[8U])

Decrypts DES using ECB block mode.
Decrypts DES using ECB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* key — Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_ EncryptCbce(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using CBC block mode.
Encrypts DES using CBC block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Ouput ciphertext
* size — Size of input and output data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* key — Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_ DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using CBC block mode.
Decrypts DES using CBC block mode.

Parameters

270 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* base — CAAM peripheral base address

* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt

* plaintext — [out] Output plaintext

* size — Size of input data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* key — Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_ EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using CFB block mode.
Encrypts DES using CFB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* size — Size of input data in bytes
* iv—Input initial block.
* key — Input key to use for encryption
* ciphertext — [out] Output ciphertext

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES_ DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using CFB block mode.
Decrypts DES using CFB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes
* iv — Input initial block.
* key — Input key to use for decryption

Returns
Status from encrypt/decrypt operation

2.13. CAAM DES driver 271

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES_ EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Encrypts DES using OFB block mode.
Encrypts DES using OFB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

* key — Input key to use for encryption

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES_ DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key[8U])

Decrypts DES using OFB block mode.
Decrypts DES using OFB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.

* iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

* key — Input key to use for decryption

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES2_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U])

Encrypts triple DES using ECB block mode with two keys.
Encrypts triple DES using ECB block mode with two keys.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.

272 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_ DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U])

Decrypts triple DES using ECB block mode with two keys.
Decrypts triple DES using ECB block mode with two keys.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES2_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using CBC block mode with two keys.
Encrypts triple DES using CBC block mode with two keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_ DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using CBC block mode with two keys.
Decrypts triple DES using CBC block mode with two keys.
Parameters

* base — CAAM peripheral base address

2.13. CAAM DES driver 273

MCUXpresso SDK Documentation, Release 25.12.00

handle — Handle used for this request. Specifies jobRing.
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key1 — First input key for key bundle
key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using CFB block mode with two keys.

Encrypts triple DES using CFB block mode with two keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_ DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using CFB block mode with two keys.

Decrypts triple DES using CFB block mode with two keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

274

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES2_ EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using OFB block mode with two keys.
Encrypts triple DES using OFB block mode with two keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES2_DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using OFB block mode with two keys.
Decrypts triple DES using OFB block mode with two keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV bhe
unique for each execution of the mode under the given key.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES3_EncryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using ECB block mode with three keys.
Encrypts triple DES using ECB block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.

* plaintext — Input plaintext to encrypt

2.13. CAAM DES driver 275

MCUXpresso SDK Documentation, Release 25.12.00

* ciphertext — [out] Output ciphertext

* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* keyl — First input key for key bundle

* key2 — Second input key for key bundle

* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_ DecryptEcb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
key1[8U], const uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using ECB block mode with three keys.
Decrypts triple DES using ECB block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES3_EncryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using CBC block mode with three keys.
Encrypts triple DES using CBC block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

276 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_ DecryptCbc(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Decrypts triple DES using CBC block mode with three keys.
Decrypts triple DES using CBC block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_ EncryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Encrypts triple DES using CFB block mode with three keys.
Encrypts triple DES using CFB block mode with three keys.
Parameters

* base — CAAM peripheral base address

* handle — Handle used for this request. Specifies jobRing.

* plaintext — Input plaintext to encrypt

* ciphertext — [out] Output ciphertext

* size — Size of input and ouput data in bytes

* iv—Input initial block.

* keyl — First input key for key bundle

* key2 — Second input key for key bundle

* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_ DecryptCfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Decrypts triple DES using CFB block mode with three keys.
Decrypts triple DES using CFB block mode with three keys.

2.13. CAAM DES driver 277

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input data in bytes
* iv—Input initial block.
* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM__DES3_EncryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const uint8_t
iv[8], const uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using OFB block mode with three keys.
Encrypts triple DES using OFB block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

status_t CAAM_DES3_DecryptOfb(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const uint8_t iv[8],
const uint8_t key1[8U], const uint8_t key2[8U], const uint8_t
key3[8U])

Decrypts triple DES using OFB block mode with three keys.
Decrypts triple DES using OFB block mode with three keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext

278 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from encrypt/decrypt operation

CAAM_DES_KEY_SIZE

CAAM DES key size - 64 bits.
CAAM_DES 1V_SIZE

CAAM DES IV size - 8 bytes.

CAAM_BLACKEN_ECB_ SIZE(X)
CAAM blacken key size for ECB encryption.

CAAM_BLACKEN_CCM_SIZE(x)
CAAM blacken key size for CCM encryption.

CAAM_DSA_PUBLIC_KEY_LENGTH(domain)
CAAM DSA public key length for EC domain.

CAAM_ECC_PUBLIC_KEY_LENGTH(domain)
CAAM ECC public key length for EC domain.
CAAM_ECC_PRIVATE_KEY_LENGTH(domain)
CAAM ECC private key length for EC domain.
CAAM__ECC_SECOND_SIGN_BUFFER_ SIZE(domain)
CAAM blacken key size for ECB encryption.

The second part of key size and buffer length needed for compution may differ.

2.14 Caam _driver _ecc

size_t CAAM__ECC__ PrivateKeySize(caam_ecc_encryption_type_t encryptKeyType,
caam_ecc_ecdsel_t ecdsel)

Return size of private key based on encryption type and ecliptic curve domain.
Parameters
* encryptKeyType — Type of key encryption.
* ecdsel — Elliptic curve domain selection

Returns
size_t Size of private key.

status_t CAAM__ECC_KeyPair(CAAM_Type *base, caam_handle_t *handle, caam_ecc_ecdsel t
ecdsel, caam_ecc_encryption_type_t encryptKeyType, uint8_t
*privKey, uint8_t *pubKey)

Generates public and private key for ECC.

The buffer size of privKey can be determined using CAAM_ECC_PRIVATE_KEY_LENGTH.
The buffer size of pubKey can be determined using CAAM_ECC_PUBLIC_KEY_LENGTH. For
encrypted privKey, the buffer size can be determined using CAAM_BLACKEN_ECB_SIZE or
CAAM_BLACKEN_CCM_SIZE macros.

2.14. Caam_driver_ecc 279

MCUXpresso SDK Documentation, Release 25.12.00

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
ecdsel — Elliptic curve domain selection

encryptKeyType — Type of key encryption

privKey — [out] Private key

pubKey — [out] Public key

Returns
Operation status.

status_t CAAM_ECC_Sign(CAAM_Type *base, caam_handle_t *handle, const uint8_t *privKey,

const uint8_t *data, size_t dataSize, caam_ecc_ecdsel_t ecdsel,
caam_ecc_encryption_type_t encryptKeyType, uint8_t *signFirst,
uint8_t *signSecond)

Generates signature using ECC.

The buffer size of signFirst can be determined using CAAM_ECC_PRIVATE_KEY_LENGTH.
! The buffer size of signSecond can be determined using

CAAM_ECC_

SECOND_SIGN_BUFFER _SIZE.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
privKey — Private key

data — Hashed data

dataSize — Hashed data length

ecdsel — Elliptic curve domain selection

encryptKeyType — Type of key encryption

signFirst — [out] First part of the signature

signSecond — [out] Second part of the signature

Returns
Operation status.

status_t CAAM__ECC_ VerifyPublicKey(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*pubKey, const uint8_t *data, size_t dataSize, const
uint8_t *signFirst, const uint8_t *signSecond,
caam_ecc_ecdsel_t ecdsel, uint8_t *tmp)

Verify ECC signature using public key.
The buffer size of tmp can be determined using CAAM_ECC_PUBLIC_KEY_LENGTH.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
pubKey — Public key

data — Hashed data

dataSize — Hashed data length

signFirst — First part of the signature

280

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* signSecond — Second part of the signature
* ecdsel — Elliptic curve domain selection
* tmp — [inout] Temporary storage for intermediate results

Returns
Operation status.

status_t CAAM__ECC_ VerifyPrivateKey(CAAM_Type *base, caam_handle_t *handle, const
uint8_t *privKey, const uint8_t *data, size_t dataSize,
const uint8_t *signFirst, const uint8_t *signSecond,
caam_ecc_ecdsel_t ecdsel, caam_ecc_encryption_type_t

encryptKeyType)
Verify ECC signature using private key.

Faster that verifying using public key.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* privKey — Private key
* data — Hashed data
* dataSize — Hashed data length
* signFirst — First part of the signature
* signSecond — Second part of the signature
* ecdsel — Elliptic curve domain selection
* encryptKeyType — Type of key encryption

Returns
Operation status.

2.15 CAAM HASH driver

enum _ caam__hash_algo_t
Supported cryptographic block cipher functions for HASH creation.

Values:

enumerator kCAAM_XcbcMac
XCBC-MAC (AES engine)
enumerator kCAAM_ Cmac
CMAC (AES engine)
enumerator kCAAM_ Shal
SHA_1 (MDHA engine)
enumerator kCAAM_ Sha224
SHA_224 (MDHA engine)
enumerator kCAAM_ Sha256
SHA_256 (MDHA engine)

enumerator kCAAM Sha384
SHA_384 (MDHA engine)

2.15. CAAM HASH driver 281

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_Shab512
SHA_512 (MDHA engine)

enumerator kCAAM_HmacShal
HMAC_SHA_1 (MDHA engine)
enumerator kCAAM_HmacSha224
HMAC_SHA_224 (MDHA engine)
enumerator kCAAM_HmacSha256
HMAC_SHA_256 (MDHA engine)
enumerator kCAAM HmacSha384
HMAC_SHA_384 (MDHA engine)

enumerator kCAAM HmacShab12
HMAC_SHA_512 (MDHA engine)

typedef enum _caam_hash_algo_t caam_hash_algo_t

Supported cryptographic block cipher functions for HASH creation.

typedef uint32_t caam_ hash_ctx t[83]

Storage type used to save hash context.

status_t CAAM__HASH_ Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,

caam_hash_algo_t algo, const uint8_t *key, size_t keySize)
Initialize HASH context.

This function initializes the HASH. Key shall be supplied if the underlaying algoritm is AES
XCBC-MAC or CMAC. Key shall be NULL if the underlaying algoritm is SHA.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

This functions is used to initialize the context for both blocking and non-blocking
CAAM_HASH API. For blocking CAAM HASH API, the HASH context contains all informa-
tion required for context switch, such as running hash or MAC. For non-blocking CAAM
HASH API, the HASH context is used to hold SGT. Therefore, the HASH context cannot be
shared between blocking and non-blocking HASH API. With one HASH context, either use
only blocking HASH API or only non-blocking HASH API.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
* ctx — [out] Output hash context
* algo — Underlaying algorithm to use for hash computation.
* key — Input key (NULL if underlaying algorithm is SHA)
* keySize — Size of input key in bytes

Returns
Status of initialization

status_t CAAM_HASH_ Update(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)

Add data to current HASH.

Add data to current HASH. This can be called repeatedly with an arbitrary amount of data
to be hashed. The functions blocks. If it returns kStatus_Success, the running hash or mac
has been updated (CAAM has processed the input data), so the memory at input pointer can
be released back to system. The context is updated with the running hash or mac and with
all necessary information to support possible context switch.

282

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* ctx — [inout] HASH context
* input — Input data
* inputSize — Size of input data in bytes

Returns
Status of the hash update operation

status_t CAAM_HASH_ Finish(caam_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
Finalize hashing.

Outputs the final hash (computed by CAAM_HASH_Update()) and erases the context.
Parameters
* ctx — [inout] Input hash context
* output — [out] Output hash data

* outputSize — [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the hash finish operation

status_t CAAM__HASH(CAAM_Type *base, caam_handle_t *handle, caam_hash_algo_t algo,
const uint8_t *input, size_t inputSize, const uint8_t *key, size_t keySize,
uint8_t *output, size_t *outputSize)

Create HASH on given data.
Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC. Key shall be
NULL if the underlaying algoritm is SHA.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

The function is blocking.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request.
* algo — Underlaying algorithm to use for hash computation.
* input — Input data
* inputSize — Size of input data in bytes
* key — Input key (NULL if underlaying algorithm is SHA)
* keySize — Size of input key in bytes
* output — [out] Output hash data

* outputSize — [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

CAAM SHA BLOCK SIZE
CAAM HASH Context size.

up to SHA-512 block size

2.15. CAAM HASH driver 283

MCUXpresso SDK Documentation, Release 25.12.00

CAAM_HASH BLOCK_SIZE

CAAM hash block size

CAAM_HASH CTX_ SIZE

CAAM HASH Context size.

2.16 Caam_driver hmac

status_t CAAM__HMAC_ Init(CAAM_Type *base, caam_handle_t *handle, caam_hash_ctx_t *ctx,

caam_hash_algo_t algo, const uint8_t *key, size_t keySize)
Initialize HMAC context.
This function initializes the HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

This functions is used to initialize the context for both blocking and non-blocking
CAAM_HMAC APL

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
¢ ctx — [out] Output HMAC context
* algo — Underlaying algorithm to use for HMAC computation.
* key — Input key
* keySize — Size of input key in bytes

Returns
Status of initialization

status_t CAAM__HMAC(CAAM_Type *base, caam_handle_t *handle, caam_hash_algo_t algo,

const uint8_t *input, size_t inputSize, const uint8_t *key, size_t keySize,
uint8_t *output, size_t *outputSize)

Create Message Authentication Code (MAC) on given data.
Perform the full keyed XCBC-MAC/CMAC, or HMAC-SHA in one function call.
Key shall be supplied if the underlaying algoritm is AES XCBC-MAC, CMAC, or SHA HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For HMAC, the key can have any size.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
* algo — Underlaying algorithm to use for MAC computation.
* input — Input data

* inputSize — Size of input data in bytes

key — Input key

keySize — Size of input key in bytes

output — [out] Output MAC data

284

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* outputSize — [out] Output parameter storing the size of the output MAC in

bytes

Returns
Status of the one call hash operation.

2.17 CAAM PKHA driver

enum _caam_ pkha_ timing_t
Use of timing equalized version of a PKHA function.
Values:
enumerator kCAAM__PKHA_ NoTimingEqualized
Normal version of a PKHA operation
enumerator kCAAM__PKHA_ TimingEqualized
Timing-equalized version of a PKHA operation
enum _caam_ pkha f2m_t
Integer vs binary polynomial arithmetic selection.
Values:
enumerator kCAAM_PKHA_ IntegerArith
Use integer arithmetic
enumerator kCAAM_PKHA _F2mArith
Use binary polynomial arithmetic
enum _caam_ pkha_montgomery_form_t
Montgomery or normal PKHA input format.
Values:
enumerator kCAAM__PKHA_ NormalValue
PKHA number is normal integer

enumerator kCAAM__PKHA_ MontgomeryFormat
PKHA number is in montgomery format

typedef struct _caam_pkha_ecc_point_t caam_ pkha_ ecc_point_ t

PKHA ECC point structure
typedef enum _caam_pkha_timing t caam_ pkha_ timing_t
Use of timing equalized version of a PKHA function.
typedef enum _caam_pkha_f2m_t caam_ pkha_ f2m_ t
Integer vs binary polynomial arithmetic selection.

typedef enum _caam_pkha_montgomery_form_t caam_ pkha_montgomery_form_ t
Montgomery or normal PKHA input format.

int CAAM_PKHA_ CompareBigNum(const uint8_t *a, size_t sizeA, const uint8_t *b, size_t sizeB)

status_t CAAM_PKHA_ NormalToMontgomery(CAAM_Type *base, caam_handle_t *handle, const

uint8_t *N, size_t sizeN, uint8_t *A, size_t *sizeA,
uint8_t *B, size_t *sizeB, uint8_t *R2, size_t
*sizeR2, caam_pkha_timing t equalTime,
caam_pkha_f2m_t arithType)

2.17. CAAM PKHA driver

285

MCUXpresso SDK Documentation, Release 25.12.00

Converts from integer to Montgomery format.

This function computes R2 mod N and optionally converts A or B into Montgomery format

of A or B.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
N — modulus

sizeN — size of N in bytes

A - [inout] The first input in non-Montgomery format. Output Mont-
gomery format of the first input.

sizeA — [inout] pointer to size variable. On input it holds size of input A in
bytes. On output it holds size of Montgomery format of A in bytes.

B - [inout] Second input in non-Montgomery format. Output Montgomery
format of the second input.

sizeB — [inout] pointer to size variable. On input it holds size of input B in
bytes. On output it holds size of Montgomery format of B in bytes.

R2 - [out] Output Montgomery factor R2 mod N.

sizeR2 — [out] pointer to size variable. On output it holds size of Mont-
gomery factor R2 mod N in bytes.

equalTime — Run the function time equalized or no timing equalization.

arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ MontgomeryToNormal(CAAM_Type *base, caam_handle_t *handle, const

uint8_t *N, size_t sizeN, uint8_t *A, size_t *sizeA,
uint8_t *B, size_t *sizeB, caam_pkha_timing t
equalTime, caam_pkha_f2m_t arithType)

Converts from Montgomery format to int.

This function converts Montgomery format of A or B into int A or B.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
N — modulus.

sizeN — size of N modulus in bytes.

A - [inout] Input first number in Montgomery format. Output is non-
Montgomery format.

sizeA — [inout] pointer to size variable. On input it holds size of the input
A in bytes. On output it holds size of non-Montgomery A in bytes.

B - [inout] Input first number in Montgomery format. Output is non-
Montgomery format.

sizeB — [inout] pointer to size variable. On input it holds size of the input
B in bytes. On output it holds size of non-Montgomery B in bytes.

equalTime — Run the function time equalized or no timing equalization.

286

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModAdd(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,

size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType)

Performs modular addition - (A + B) mod N.

This function performs modular addition of (A + B) mod N, with either integer or binary
polynomial (F2m) inputs. In the F2m form, this function is equivalent to a bitwise XOR and
it is functionally the same as subtraction.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
A —first addend (integer or binary polynomial)

sizeA — Size of A in bytes

B - second addend (integer or binary polynomial)

sizeB — Size of B in bytes

N — modulus.

sizeN — Size of N in bytes.

result — [out] Output array to store result of operation
resultSize — [out] Output size of operation in bytes

arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ ModSub1(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,

size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize)

Performs modular subtraction - (A - B) mod N.

This function performs modular subtraction of (A - B) mod N with integer inputs.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
A - first addend (integer or binary polynomial)

sizeA — Size of A in bytes

B - second addend (integer or binary polynomial)

sizeB — Size of B in bytes

N - modulus

sizeN — Size of N in bytes

result — [out] Output array to store result of operation

resultSize — [out] Output size of operation in bytes

2.17. CAAM PKHA driver 287

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Operation status.

status_t CAAM_PKHA_ModSub2(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize)

Performs modular subtraction - (B - A) mod N.
This function performs modular subtraction of (B - A) mod N, with integer inputs.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
» A —first addend (integer or binary polynomial)
* sizeA — Size of A in bytes
* B -second addend (integer or binary polynomial)
* sizeB — Size of B in bytes
* N -modulus
* sizeN — Size of N in bytes
* result — [out] Output array to store result of operation
» resultSize — [out] Output size of operation in bytes

Returns
Operation status.

status_t CAAM_PKHA_ModMul(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size t sizeA, const uint8_t *B, size_t sizeB, const uint8_t *N,
size t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType, caam_pkha_montgomery_form_t
montln, caam_pkha_montgomery_form_t montOut,
caam_pkha_timing_t equalTime)

Performs modular multiplication - (A X B) mod N.

This function performs modular multiplication with either integer or binary polynomial
(F2m) inputs. It can optionally specify whether inputs and/or outputs will be in Mont-
gomery form or not.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
» A —first addend (integer or binary polynomial)
* sizeA — Size of A in bytes
* B -second addend (integer or binary polynomial)
* sizeB — Size of B in bytes
* N - modulus.
* sizeN — Size of N in bytes
* result — [out] Output array to store result of operation
* resultSize — [out] Output size of operation in bytes
¢ arithType — Type of arithmetic to perform (integer or F2m)

* montIn — Format of inputs

288 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

montOut — Format of output

equalTime — Run the function time equalized or no timing equalization.
This argument is ignored for F2m modular multiplication.

Returns
Operation status.

status_t CAAM_PKHA_ ModExp(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,

size_t sizeA, const uint8_t *N, size_t sizeN, const uint8_t *E,
size_t sizeE, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType, caam_pkha_montgomery_form_t
montln, caam_pkha_timing_t equalTime)

Performs modular exponentiation - (AAE) mod N.

This function performs modular exponentiation with either integer or binary polynomial
(F2m) inputs.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
A —first addend (integer or binary polynomial)

sizeA — Size of A in bytes

N - modulus

sizeN — Size of N in bytes

E - exponent

sizeE — Size of E in bytes

result — [out] Output array to store result of operation
resultSize — [out] Output size of operation in bytes
montIn — Format of A input (normal or Montgomery)
arithType — Type of arithmetic to perform (integer or F2m)

equalTime — Run the function time equalized or no timing equalization.

Returns
Operation status.

status_t CAAM_PKHA_ModRed(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,

size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result,
size_t *resultSize, caam_pkha _f2m_t arithType)

Performs modular reduction - (A) mod N.

This function performs modular reduction with either integer or binary polynomial (F2m)

inputs.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
A —first addend (integer or binary polynomial)

sizeA — Size of A in bytes

N — modulus

sizeN — Size of N in bytes

result — [out] Output array to store result of operation

2.17. CAAM PKHA driver 289

MCUXpresso SDK Documentation, Release 25.12.00

* resultSize — [out] Output size of operation in bytes
* arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ ModInv(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result, size_t
*resultSize, caam_pkha_f2m_t arithType)

Performs modular inversion - (A”A-1) mod N.

This function performs modular inversion with either integer or binary polynomial (F2m)
inputs.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* A -first addend (integer or binary polynomial)
* sizeA — Size of A in bytes
* N -modulus
* sizeN — Size of N in bytes
* result — [out] Output array to store result of operation
* resultSize — [out] Output size of operation in bytes
* arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ ModR2(CAAM_Type *base, caam_handle_t *handle, const uint8_t *N,
size_t sizeN, uint8_t *result, size_t *resultSize,
caam_pkha_f2m_t arithType)

Computes integer Montgomery factor R*2 mod N.

This function computes a constant to assist in converting operands into the Montgomery
residue system representation.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* N -modulus
* sizeN — Size of N in bytes
* result — [out] Output array to store result of operation
* resultSize — [out] Output size of operation in bytes
* arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM_PKHA_ModGed(CAAM_Type *base, caam_handle_t *handle, const uint8_t *A,
size_t sizeA, const uint8_t *N, size_t sizeN, uint8_t *result,
size_t *resultSize, caam_pkha_f2m_t arithType)

Calculates the greatest common divisor - GCD (A, N).

290 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

This function calculates the greatest common divisor of two inputs with either integer or
binary polynomial (F2m) inputs.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
» A - first value (must be smaller than or equal to N)
* sizeA — Size of A in bytes
* N -second value (must be non-zero)
* sizeN — Size of N in bytes
* result — [out] Output array to store result of operation
* resultSize — [out] Output size of operation in bytes
* arithType — Type of arithmetic to perform (integer or F2m)

Returns
Operation status.

status_t CAAM__PKHA_ PrimalityTest(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*A, size_t sizeA, const uint8_t *B, size_t sizeB, const
uint8_t *N, size_t sizeN, bool *res)

Executes Miller-Rabin primality test.
This function calculates whether or not a candidate prime number is likely to be a prime.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* A -initial random seed
* sizeA — Size of A in bytes
* B —number of trial runs
* sizeB — Size of B in bytes
* N - candidate prime integer
* sizeN - Size of N in bytes
* res — [out] True if the value is likely prime or false otherwise

Returns
Operation status.

status_t CAAM_PKHA_ECC_PointAdd(CAAM_Type *base, caam_handle_t *handle, const
caam_pkha_ecc_point_t *A, const
caam_pkha_ecc_point_t *B, const uint8_t *N, const
uint8_t *R2modN, const uint8_t *aCurveParam, const
uint8_t *bCurveParam, size_t size, caam_pkha_f2m_t
arithType, caam_pkha_ecc_point_t *result)

Adds elliptic curve points - A + B.

This function performs ECC point addition over a prime field (Fp) or binary field (F2m)
using affine coordinates.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.

2.17. CAAM PKHA driver 291

MCUXpresso SDK Documentation, Release 25.12.00

A - Left-hand point
B - Right-hand point
N — Prime modulus of the field

R2modN - NULL (the function computes R2ZmodN internally) or pointer to
pre-computed R2modN (obtained from CAAM_PKHA_ModR2() function).

aCurveParam — A parameter from curve equation
bCurveParam — B parameter from curve equation (constant)
size — Size in bytes of curve points and parameters
arithType — Type of arithmetic to perform (integer or F2m)

result — [out] Result point

Returns
Operation status.

status_t CAAM_PKHA__ECC_ PointDouble(CAAM_Type *base, caam_handle_t *handle, const

caam_pkha_ecc_point_t *B, const uint8_t *N, const
uint8_t *aCurveParam, const uint8_t *bCurveParam,
size_t size, caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)

Doubles elliptic curve points - B + B.

This function performs ECC point doubling over a prime field (Fp) or binary field (F2m)
using affine coordinates.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.

B - Point to double

N - Prime modulus of the field

aCurveParam — A parameter from curve equation
bCurveParam — B parameter from curve equation (constant)
size — Size in bytes of curve points and parameters
arithType — Type of arithmetic to perform (integer or F2m)

result — [out] Result point

Returns
Operation status.

status_t CAAM_PKHA_ECC_ PointMul(CAAM_Type *base, caam_handle_t *handle, const

caam_pkha_ecc_point_t *A, const uint8_t *E, size_t sizeE,
const uint8_t *N, const uint8_t *R2modN, const uint8_t
*aCurveParam, const uint8_t *bCurveParam, size_t size,
caam_pkha_timing_t equalTime, caam_pkha_f2m_t
arithType, caam_pkha_ecc_point_t *result)

Multiplies an elliptic curve point by a scalar - E x (A0, A1).

This function performs ECC point multiplication to multiply an ECC point by a scalar integer
multiplier over a prime field (Fp) or a binary field (F2m).

Parameters

base — CAAM peripheral base address
handle — Handle used for this request. Specifies jobRing.

292

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

A —Point as multiplicand
E — Scalar multiple
sizeE — The size of E, in bytes

N - Modulus, a prime number for the Fp field or Irreducible polynomial
for F2m field.

R2modN — NULL (the function computes R2modN internally) or pointer to
pre-computed R2modN (obtained from CAAM_PKHA_ModR2() function).

aCurveParam — A parameter from curve equation

bCurveParam — B parameter from curve equation (C parameter for opera-
tion over F2m).

size — Size in bytes of curve points and parameters
equalTime — Run the function time equalized or no timing equalization.
arithType — Type of arithmetic to perform (integer or F2m)

result — [out] Result point

Returns
Operation status.

struct _ caam_ pkha_ecc_ point_t
#include <fsl_caam.h> PKHA ECC point structure

Public Members

uint8_t *X

X coordinate (affine)

uint8_t *Y

Y coordinate (affine)

2.18 CAAM RNG driver

enum _ caam_ rng_state_handle
CAAM RNG state handle.

Values:

enumerator kCAAM_ RngStateHandle0
CAAM RNG state handle 0

enumerator kCAAM_ RngStateHandlel
CAAM RNG state handle 1

enum _caam_ rng_random_ type
Type of random data to generate.

Values:

enumerator kCAAM_ RngDataAny
CAAM RNG any random data bytes

enumerator kCAAM_ RngDataOddParity
CAAM RNG odd parity random data bytes

2.18. CAAM RNG driver 293

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAAM_ RngDataNonZero
CAAM RNG non zero random data bytes

typedef enum _caam_rng state_handle caam_rng_state_handle_t
CAAM RNG state handle.

typedef enum _caam_rng random_type caam_rng_random__type_t
Type of random data to generate.

typedef uint32_t caam_ rng_ generic256_ t[256 / sizeof(uint32_t)]
256-bit value used as optional additional entropy input

typedef struct _caam_rng_user_config caam_rng_config t
CAAM RNG configuration.

status_t CAAM_RNG__GetDefaultConfig(caam_rng_config_t *config)
Initializes user configuration structure to default.

This function initializes the configure structure to default value. the default value are:

config->autoReseedInterval = 0;
config->personalString = NULL;

Parameters
* config — User configuration structure.

Returns
status of the request

status_t CAAM__RNG_ Init(CAAM_Type *base, caam_handle_t *handle, caam_rng_state_handle_t
stateHandle, const caam_rng_config_t *config)

Instantiate the CAAM RNG state handle.

This function instantiates CAAM RNG state handle. The function is blocking and returns
after CAAM has processed the request.

Parameters
* base — CAAM peripheral base address
* handle - CAAM jobRing used for this request
* stateHandle — RNG state handle to instantiate
* config — Pointer to configuration structure.

Returns
Status of the request

status_t CAAM__RNG_ Deinit(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle)

Uninstantiate the CAAM RNG state handle.

This function uninstantiates CAAM RNG state handle. The function is blocking and returns
after CAAM has processed the request.

Parameters
* base — CAAM peripheral base address
* handle — jobRing used for this request.
* stateHandle — RNG state handle to uninstantiate

Returns
Status of the request

294 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM__RNG__GenerateSecureKey(CAAM_Type *base, caam_handle_t *handle,
caam_rng_generic256_t additionalEntropy)

Generate Secure Key.

This function generates random data writes it to Secure Key registers. The function is block-
ing and returns after CAAM has processed the request. RNG state handle 0 is always used.

Parameters
* base — CAAM peripheral base address
* handle — jobRing used for this request
* additionalEntropy — NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

status_t CAAM_RNG_ Reseed(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle, caam_rng generic256_t
additionalEntropy)

Reseed the CAAM RNG state handle.

This function reseeds the CAAM RNG state handle. For a state handle in nondeterministic
mode, the DRNG is seeded with 384 bits of entropy from the TRNG and an optional 256-bit
additional input from the descriptor via the Class 1 Context Register.

The function is blocking and returns after CAAM has processed the request.
Parameters
* base — CAAM peripheral base address
* handle — jobRing used for this request
* stateHandle — RNG state handle to reseed
* additionalEntropy — NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

status_t CAAM_RNG_ GetRandomData(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle, uint8_t *data,
size_t dataSize, caam_rng _random_type_t dataType,
caam_rng_generic256_t additionalEntropy)

Get random data.
This function gets random data from CAAM RNG.

The function is blocking and returns after CAAM has generated the requested data or an
error occurred.

Parameters
* base — CAAM peripheral base address
* handle — jobRing used for this request
* stateHandle — RNG state handle used to generate random data
* data — [out] Pointer address used to store random data
* dataSize — Size of the buffer pointed by the data parameter
* dataType — Type of random data to be generated
* additionalEntropy — NULL or Pointer to optional 256-bit additional entropy.

Returns
Status of the request

2.18. CAAM RNG driver 295

MCUXpresso SDK Documentation, Release 25.12.00

struct _caam_ rng user_ config
#include <fsl_caam.h> CAAM RNG configuration.

Public Members

uint32_t autoReseedInterval

Automatic reseed internal. If set to zero, CAAM RNG will use hardware default interval
0f 10.000.000 generate requests.

caam_rng_generic256_t *personalString
NULL or pointer to optional personalization string

2.19 Caam_driver rsa

size_t CAAM_ RSA_ PrivateExponentSize(caam_rsa_key_type_t prvKeyType, uint32_t
privExponentSize)

Return size for private key buffer based on encryption type and ecliptic curve domain.
Parameters
* prvKeyType — Type of private key

* privExponentSize — Expected length of private exponent without encryption
padding.

Returns
size_t Size for private key buffer.

status_t CAAM_RSA_KeyPair(CAAM_Type *base, caam_handle_t *handle, const uint8_t
*primeP, const uint8_t *primeQ, uint32_t primesSize, const
uint8_t *pubExponent, uint32_t pubExponentSize,
caam_rsa_key_type_t prvKeyType, uint8_t *modulus, uint32_t
modulusSize, uint8_t *privExponent, size_t *privExponentSize)

Generates RSA key.

Generates modulus N and private exponent D give prime numbers P and Q and public ex-
ponent E. Public key is {E,N}. Private key is {D,N}.

! privExponentSize value may differ for different P abd Q with same bhit length. For en-
crypted privExponent, the buffer size can be determined using CAAM_BLACKEN_ECB_SIZE
or CAAM_BLACKEN_CCM_SIZE macros.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
 primeP — Prime number P
* primeQ — Prime number Q

¢ primesSize — Byte length of primeP or primeQ (primeP and primeQ must
have the same byte length)

* pubExponent — Public exponent E

* pubExponentSize — Byte length of pubExponent

» prvKeyType — Type of private key

* modulus — [out] Buffer for calculated modulus N

* modulusSize — Byte length of modulus buffer

296 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

privExponent — [out] Buffer for calculated private exponent D

privExponentSize — [out] Byte length of calculated private exponent.

Returns
Operation status.

status_t CAAM_RSA_ Encrypt(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*plainText, uint32_t plainTextSize, const uint8_t *modulus,
uint32_t modulusSize, const uint8_t *pubExponent, uint32_t
pubExponentSize, caam_rsa_encryption_type_t dataOutType,
caam_rsa_format_type_t format, uint8_t *cipherText)

Performs the RSA public key primitive.

Performs the RSA public key primitive which can be used when encrypting a secret or ver-
ifying a signature.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
plainText — Input data

plainTextize — Byte length of the input data

modulus — Modulus N

modulusSize — Byte length of modulus

pubExponent — Public exponent E

pubExponentSize — Byte length of pubExponent
dataOutType — Type of encryption of output data
cipherText — [out] Buffer for RSA encrypted data

Returns
Operation status

status_t CAAM_RSA_ Decrypt(CAAM_Type *base, caam_handle_t *handle, const uint8_t

*cipherText, const uint8_t *modulus, uint32_t modulusSize,
const uint8_t *privExponent, uint32_t privExponentSize,
caam_rsa_encryption_type_t prvKeyType,
caam_rsa_encryption_type_t dataOutType,
caam_rsa_format_type_t format, uint8_t *plainText, size_t
*rsaDecSize)

Performs the RSA private key primitive.

Performs the RSA private key primitive which can be used when decrypting a secret or
creating a siganture.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
cipherText — Input data

modulus — Moulus N

modulusSize — Byte length of modulus

privExponent — Private exponent D

privExponentSize — Byte length of privExponent
prvKeyType — Type of private key encryption

2.19. Caam_driver _rsa 297

MCUXpresso SDK Documentation, Release 25.12.00

¢ dataOutType — Type of encryption of output data
* plainText — [out] Buffer for RSA encrypted data
* rsaDecSize — [out] Returned output size

Returns
Operation status

2.20 CAAM Blocking APIs
2.21 CAAM Non-blocking APIs

2.22 CAAM Non-blocking AES driver

status_t CAAM__AES_ EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ecb_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t *key, size_t keySize)

Encrypts AES using the ECB block mode.
Puts AES ECB encrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* descriptor — [out] Memory for the CAAM descriptor.
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM__AES_ DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ech_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t *key, size_t keySize)

Decrypts AES using ECB block mode.
Puts AES ECB decrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] Memory for the CAAM descriptor.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.

298 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* key — Input Kkey.
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM__AES_ EncryptEcbNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ecb_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *key, size_t keySize,
caam_key_type_t blackKeyType)

Encrypts AES using the ECB block mode using black key.
Puts AES ECB encrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* plaintext — Input plain text to encrypt
* descriptor — [out] Memory for the CAAM descriptor.
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* blackKeyType — Type of black key

Returns
Status from job descriptor push

status_t CAAM__AES_DecryptEcbNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_ecb_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *key, size_t keySize,
caam_key_type_t blackKeyType)

Decrypts AES using ECB block mode using black key.
Puts AES ECB decrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
¢ descriptor — [out] Memory for the CAAM descriptor.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* key — Input key.
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* blackKeyType — Type of black key

2.22. CAAM Non-blocking AES driver 299

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from job descriptor push

status_t CAAM__AES EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_cbhc_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t keySize)

Encrypts AES using CBC block mode.
Puts AES CBC encrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
¢ descriptor — [out] Memory for the CAAM descriptor.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.
* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM__AES_ DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_chc_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t keySize)

Decrypts AES using CBC block mode.
Puts AES CBC decrypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] Memory for the CAAM descriptor.
* ciphertext — Input cipher text to decrypt
* plaintext — [out] Output plain text
* size — Size of input and output data in bytes. Must be multiple of 16 bytes.
* iv—Input initial vector to combine with the first input block.
* key — Input key to use for decryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

Returns
Status from job descriptor push

status_t CAAM__AES_ EncryptCbcNonBlockingExtended(CAAM_Type *base, caam_handle_t
*handle, caam_desc_aes_cbc_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

300 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Encrypts AES using CBC block mode using black key.

Puts AES CBC encrypt descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.

descriptor — [out] Memory for the CAAM descriptor.

plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text

size — Size of input and output data in bytes. Must be multiple of 16 bytes.
iv — Input initial vector to combine with the first input block.

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
blackKeyType — Type of black key

Returns
Status from job descriptor push

status_t CAAM__AES_DecryptChbcNonBlockingExtended(CAAM_Type *base, caam_handle_t

*handle, caam_desc_aes_cbc_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, const uint8_t *key, size_t
keySize, caam_key_type_t blackKeyType)

Decrypts AES using CBC block mode using black key.

Puts AES CBC decrypt descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.

descriptor — [out] Memory for the CAAM descriptor.

ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text

size — Size of input and output data in bytes. Must be multiple of 16 bytes.
iv — Input initial vector to combine with the first input block.

key — Input key to use for decryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
blackKeyType — Type of black key

Returns
Status from job descriptor push

status_t CAAM__AES_ CryptCtrNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_aes_ctr_t descriptor, const uint8_t
*Input, uint8_t *output, size_t size, uint8_t *counter,
const uint8_t *key, size_t keySize, uint8_t
*counterlast, size_t *szLeft)

2.22. CAAM Non-blocking AES driver 301

MCUXpresso SDK Documentation, Release 25.12.00

Encrypts or decrypts AES using CTR block mode.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the

output argument is plain text.
Puts AES CTR crypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] Memory for the CAAM descriptor.
* input — Input data for CTR block mode
* output — [out] Output data for CTR block mode
* size — Size of input and output data in bytes
* counter — [inout] Input counter (updates on return)
* key — Input key to use for forward AES cipher
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

* counterlast — [out] Output cipher of last counter, for chained CTR calls.

NULL can be passed if chained calls are not used.

¢ szLeft — [out] Output number of bytes in left unused in counterlast block.

NULL can be passed if chained calls are not used.

Returns
Status from job descriptor push

status_t CAAM__AES_ CryptCtrNonBlockingExtended(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ctr_t descriptor, const
uint8_t *input, uint8_t *output, size_t size,
uint8_t *counter, const uint8_t *key, size_t
keySize, uint8_t *counterlast, size_t *szLeft,
caam_key_type_t blackKeyType)

Encrypts or decrypts AES using CTR block mode using black key.

Encrypts or decrypts AES using CTR block mode. AES CTR mode uses only forward AES
cipher and same algorithm for encryption and decryption. The only difference between
encryption and decryption is that, for encryption, the input argument is plain text and the
output argument is cipher text. For decryption, the input argument is cipher text and the

output argument is plain text.
Puts AES CTR crypt descriptor to CAAM input job ring.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] Memory for the CAAM descriptor.
* input — Input data for CTR block mode
* output — [out] Output data for CTR block mode
* size — Size of input and output data in bytes

* counter — [inout] Input counter (updates on return)

302

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* key — Input key to use for forward AES cipher
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

* counterlast — [out] Output cipher of last counter, for chained CTR calls.
NULL can be passed if chained calls are not used.

* szLeft — [out] Output number of bytes in left unused in counterlast block.
NULL can be passed if chained calls are not used.

* blackKeyType — Type of black key

Returns
Status from job descriptor push

status_t CAAM__AES_EncryptTagCemNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor, const
uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*Kkey, size_t keySize, uint8_t *tag, size_t
tagSize)

Encrypts AES and tags using CCM block mode.
Puts AES CCM encrypt and tag descriptor to CAAM input job ring.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
¢ descriptor — [out] Memory for the CAAM descriptor.
* plaintext — Input plain text to encrypt
* ciphertext — [out] Output cipher text.

* size — Size of input and output data in bytes. Zero means authentication
only.

* iv—Nonce
* ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* aad — Input additional authentication data. Can be NULL if aadSize is zero.

* aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

* key — Input key to use for encryption
* keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
* tag — [out] Generated output tag. Set to NULL to skip tag processing.

* tagSize — Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

Returns
Status from job descriptor push

status_t CAAM__AES_ DecryptTagCemNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor, const
uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*Kkey, size_t keySize, const uint8_t *tag, size_t
tagSize)

2.22. CAAM Non-blocking AES driver 303

MCUXpresso SDK Documentation, Release 25.12.00

Decrypts AES and authenticates using CCM block mode.

Puts AES CCM decrypt and check tag descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.
ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text.

size — Size of input and output data in bytes. Zero means authentication
data only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

key — Input key to use for decryption
keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — Received tag. Set to NULL to skip tag processing.

tagSize — Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

Returns
Status from job descriptor push

status_t CAAM__AES_ EncryptTagCcmNonBlockingExtended(CAAM_Type *base, caam_handle_t

*handle, caam_desc_aes_ccm_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t
*tag, size_t tagSize, caam_key_type_t
blackKeyType)

Encrypts AES and tags using CCM block mode using black key.

Puts AES CCM encrypt and tag descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.
plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes. Zero means authentication
only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.

304

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication skipped).

key — Input key to use for encryption
keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — [out] Generated output tag. Set to NULL to skip tag processing.

tagSize — Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12,
14, or 16.

blackKeyType — Type of black key

Returns
Status from job descriptor push

status_t CAAM__AES_ DecryptTagCemNonBlockingExtended(CAAM_Type *base, caam_handle_t

*handle, caam_desc_aes ccm t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const
uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using CCM block mode using black key.

Puts AES CCM decrypt and check tag descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.
ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text.

size — Size of input and output data in bytes. Zero means authentication
data only.

iv—Nonce
ivSize — Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
aad — Input additional authentication data. Can be NULL if aadSize is zero.

aadSize — Input size in bytes of AAD. Zero means data mode only (authen-
tication data skipped).

key — Input key to use for decryption
keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — Received tag. Set to NULL to skip tag processing.

tagSize — Input size of the received tag to compare with the computed tag,
in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.

blackKeyType — Type of black key

Returns
Status from job descriptor push

2.22. CAAM Non-blocking AES driver 305

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM__AES_ EncryptTagGemNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_aes_gcm_t descriptor, const
uint8_t *plaintext, uint8_t *ciphertext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*Kkey, size_t keySize, uint8_t *tag, size_t
tagSize)

Encrypts AES and tags using GCM block mode.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Puts AES GCM encrypt and tag descriptor
to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.

plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes

iv — Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — [out] Output hash tag. Set to NULL to skip tag processing.

tagSize — Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

Returns
Status from job descriptor push

status_t CAAM__AES_DecryptTagGemNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_aes_gcm_t descriptor, const
uint8_t *ciphertext, uint8_t *plaintext, size_t
size, const uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const uint8_t
*key, size_t keySize, const uint8_t *tag, size_t
tagSize)

Decrypts AES and authenticates using GCM block mode.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Puts
AES GCM decrypt and check tag descriptor to CAAM input job ring.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.
ciphertext — Input cipher text to decrypt

306

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

plaintext — [out] Output plain text.

size — Size of input and output data in bytes

iv — Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

tag — Input hash tag to compare. Set to NULL to skip tag processing.
tagSize — Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.

Returns
Status from job descriptor push

status_t CAAM__AES_EncryptTagGemNonBlockingExtended(CAAM_Type *base, caam_handle_t

*handle, caam_desc_aes_gcm_t
descriptor, const uint8_t *plaintext,
uint8_t *ciphertext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, uint8_t
*tag, size_t tagSize, caam_key_type_t
blackKeyType)

Encrypts AES and tags using GCM block mode using black key.

Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the
GHASH is calculated and output in the ‘tag’ field. Puts AES GCM encrypt and tag descriptor
to CAAM input job ring. Uses black key.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] Memory for the CAAM descriptor.

plaintext — Input plain text to encrypt

ciphertext — [out] Output cipher text.

size — Size of input and output data in bytes

iv — Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.
tag — [out] Output hash tag. Set to NULL to skip tag processing.

tagSize — Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15
or 16.

blackenKeyType — Type of black key

2.22. CAAM Non-blocking AES driver 307

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from job descriptor push

status_t CAAM__AES DecryptTagGemNonBlockingExtended(CAAM_Type *base, caam_handle_t

*handle, caam_desc_aes_gcm_t
descriptor, const uint8_t *ciphertext,
uint8_t *plaintext, size_t size, const
uint8_t *iv, size_t ivSize, const
uint8_t *aad, size_t aadSize, const
uint8_t *key, size_t keySize, const
uint8_t *tag, size_t tagSize,
caam_key_type_t blackKeyType)

Decrypts AES and authenticates using GCM block mode using black key.

Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL,
only the GHASH is calculated and compared with the received GHASH in ‘tag’ field. Puts
AES GCM decrypt and check tag descriptor to CAAM input job ring. Uses black key.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.

descriptor — [out] Memory for the CAAM descriptor.

ciphertext — Input cipher text to decrypt

plaintext — [out] Output plain text.

size — Size of input and output data in bytes

iv - Input initial vector

ivSize — Size of the IV

aad — Input additional authentication data

aadSize — Input size in bytes of AAD

key — Input key to use for encryption

keySize — Size of the input key, in bytes. Must be 16, 24, or 32.

tag — Input hash tag to compare. Set to NULL to skip tag processing.
tagSize — Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.
blackenKeyType — Type of black key

Returns
Status from job descriptor push

2.23 CAAM Non-blocking DES driver

status_t CAAM_DES_ EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key[8U])

Encrypts DES using ECB block mode.

Encrypts DES using ECB block mode.

Parameters

base — CAAM peripheral base address

308

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

handle — Handle used for this request. Specifies jobRing.

descriptor — [out] memory for CAAM commands

plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes. Must be multiple of 8 bytes.

key — Input key to use for encryption

Returns
Status from descriptor push

status_t CAAM_DES_ DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key[8U])

Decrypts DES using ECB block mode.

Decrypts DES using ECB block mode.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.

descriptor — [out] memory for CAAM commands

ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes. Must be multiple of 8 bytes.
key — Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using CBC block mode.

Encrypts DES using CBC block mode.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Ouput ciphertext

size — Size of input and output data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key — Input key to use for encryption

Returns
Status from descriptor push

2.23. CAAM Non-blocking DES driver 309

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES_ DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using CBC block mode.
Decrypts DES using CBC block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] memory for CAAM commands
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input data in bytes

* iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

* key — Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_ EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using CFB block mode.
Encrypts DES using CFB block mode.
Parameters

* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] memory for CAAM commands
* plaintext — Input plaintext to encrypt
* size — Size of input data in bytes
* iv —Input initial block.
* key — Input key to use for encryption
* ciphertext — [out] Output ciphertext

Returns
Status from descriptor push

status_t CAAM_DES_ DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using CFB block mode.
Decrypts DES using CFB block mode.
Parameters

* base — CAAM peripheral base address

310 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial block.

key — Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM_DES_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Encrypts DES using OFB block mode.

Encrypts DES using OFB block mode.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

key — Input key to use for encryption

Returns
Status from descriptor push

status_t CAAM_DES DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key[8U])

Decrypts DES using OFB block mode.

Decrypts DES using OFB block mode.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.

descriptor — [out] memory for CAAM commands

ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes. Must be multiple of 8 bytes.

iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

2.23. CAAM Non-blocking DES driver 311

MCUXpresso SDK Documentation, Release 25.12.00

* key — Input key to use for decryption

Returns
Status from descriptor push

status_t CAAM__DES2_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U])

Encrypts triple DES using ECB block mode with two keys.
Encrypts triple DES using ECB block mode with two keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] memory for CAAM commands
* plaintext — Input plaintext to encrypt
* ciphertext — [out] Output ciphertext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_ DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U])

Decrypts triple DES using ECB block mode with two keys.
Decrypts triple DES using ECB block mode with two keys.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request. Specifies jobRing.
* descriptor — [out] memory for CAAM commands
* ciphertext — Input ciphertext to decrypt
* plaintext — [out] Output plaintext
* size — Size of input and output data in bytes. Must be multiple of 8 bytes.
* keyl — First input key for key bundle
* key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])
Encrypts triple DES using CBC block mode with two keys.

Encrypts triple DES using CBC block mode with two keys.

312 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key1 — First input key for key bundle
key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2 DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using CBC block mode with two keys.

Decrypts triple DES using CBC block mode with two keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key1 — First input key for key bundle
key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM__DES2_EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Encrypts triple DES using CFB block mode with two keys.

Encrypts triple DES using CFB block mode with two keys.

Parameters

base — CAAM peripheral base address
handle - Handle used for this request. Specifies jobRing.

2.23. CAAM Non-blocking DES driver 313

MCUXpresso SDK Documentation, Release 25.12.00

descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_ DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using CFB block mode with two keys.

Decrypts triple DES using CFB block mode with two keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Encrypts triple DES using OFB block mode with two keys.

Encrypts triple DES using OFB block mode with two keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

314

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

key1 — First input key for key bundle
key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES2_DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U])

Decrypts triple DES using OFB block mode with two keys.

Decrypts triple DES using OFB block mode with two keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

key1 — First input key for key bundle
key2 — Second input key for key bundle

Returns
Status from descriptor push

status_t CAAM__DES3_EncryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Encrypts triple DES using ECB block mode with three keys.

Encrypts triple DES using ECB block mode with three keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.

descriptor — [out] memory for CAAM commands

plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes. Must be multiple of 8 bytes.
key1 — First input key for key bundle

key2 — Second input key for key bundle

key3 — Third input key for key bundle

2.23. CAAM Non-blocking DES driver 315

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Status from descriptor push

status_t CAAM_DES3_DecryptEcbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t key1[8U], const uint8_t key2[8U], const
uint8_t key3[8U])

Decrypts triple DES using ECB block mode with three keys.

Decrypts triple DES using ECB block mode with three keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.

descriptor — [out] memory for CAAM commands

ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes. Must be multiple of 8 bytes.
key1 — First input key for key bundle

key2 — Second input key for key bundle

key3 — Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_ EncryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using CBC block mode with three keys.

Encrypts triple DES using CBC block mode with three keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key1 — First input key for key bundle
key2 — Second input key for key bundle
key3 — Third input key for key bundle

Returns
Status from descriptor push

316

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_ DecryptCbcNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using CBC block mode with three keys.

Decrypts triple DES using CBC block mode with three keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input and output data in bytes

iv — Input initial vector to combine with the first plaintext block. The iv
does not need to be secret, but it must be unpredictable.

key1 — First input key for key bundle
key2 — Second input key for key bundle
key3 — Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using CFB block mode with three keys.

Encrypts triple DES using CFB block mode with three keys.

Parameters

base — CAAM peripheral base address

handle - Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and ouput data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

key3 — Third input key for key bundle

Returns
Status from descriptor push

2.23. CAAM Non-blocking DES driver 317

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_ DecryptCfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using CFB block mode with three keys.

Decrypts triple DES using CFB block mode with three keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
ciphertext — Input ciphertext to decrypt

plaintext — [out] Output plaintext

size — Size of input data in bytes

iv — Input initial block.

key1 — First input key for key bundle

key2 — Second input key for key bundle

key3 — Third input key for key bundle

Returns
Status from descriptor push

status_t CAAM_DES3_EncryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,

caam_desc_cipher_des_t descriptor, const uint8_t
*plaintext, uint8_t *ciphertext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Encrypts triple DES using OFB block mode with three keys.

Encrypts triple DES using OFB block mode with three keys.

Parameters

base — CAAM peripheral base address

handle — Handle used for this request. Specifies jobRing.
descriptor — [out] memory for CAAM commands
plaintext — Input plaintext to encrypt

ciphertext — [out] Output ciphertext

size — Size of input and output data in bytes

iv — Input unique input vector. The OFB mode requires that the IV be
unique for each execution of the mode under the given key.

key1 — First input key for key bundle
key2 — Second input key for key bundle
key3 — Third input key for key bundle

Returns
Status from descriptor push

318

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM_DES3_ DecryptOfbNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_cipher_des_t descriptor, const uint8_t
*ciphertext, uint8_t *plaintext, size_t size, const
uint8_t iv[8], const uint8_t key1[8U], const
uint8_t key2[8U], const uint8_t key3[8U])

Decrypts triple DES using OFB block mode with three keys.
Decrypts triple DES using OFB block mode with three keys.
Parameters

* base — CAAM peripheral base address

* handle — Handle used for this request. Specifies jobRing.

* descriptor — [out] memory for CAAM commands

* ciphertext — Input ciphertext to decrypt

* plaintext — [out] Output plaintext

* size — Size of input and output data in bytes

* iv — Input unique input vector. The OFB mode requires that the IV bhe
unique for each execution of the mode under the given key.

* keyl — First input key for key bundle
* key2 — Second input key for key bundle
* key3 — Third input key for key bundle

Returns
Status from descriptor push

2.24 CAAM Non-blocking HASH driver

status_t CAAM__HASH_ UpdateNonBlocking(caam_hash_ctx_t *ctx, const uint8_t *input, size_t
inputSize)
Add input address and size to input data table.
Add data input pointer to a table maintained internally in the context. Each call of this
function creates one entry in the table. The entry consists of the input pointer and in-
putSize. All entries created by one or multiple calls of this function can be processed
in one call to CAAM_HASH_FinishNonBlocking() function. Individual entries can point to

non-continuous data in the memory. The processing will occur in the order in which the
CAAM_HASH_UpdateNonBlocking() have been called.

Memory pointers will be later accessed by CAAM (at time of
CAAM_HASH FinishNonBlocking()), so the memory must stay valid until
CAAM_HASH_FinishNonBlocking() has been called and CAAM completes the process-
ing.

Parameters
* ctx — [inout] HASH context
* input — Input data
* inputSize — Size of input data in bytes

Returns
Status of the hash update operation

2.24. CAAM Non-blocking HASH driver 319

MCUXpresso SDK Documentation, Release 25.12.00

status_t CAAM__HASH_ FinishNonBlocking(caam_hash_ctx_t *ctx, caam_desc_hash_t descriptor,
uint8_t *output, size_t *outputSize)

Finalize hashing.

The actual algorithm is computed with all input data, the memory pointers are accessed by
CAAM after the function returns. The input data chunks have been specified by prior calls
to CAAM_HASH_UpdateNonBlocking(). The function schedules the request at CAAM, then
returns. After a while, when the CAAM completes processing of the input data chunks, the
result is written to the output[] array, outputSize is written and the context is cleared.

Parameters
¢ ctx — [inout] Input hash context
* descriptor — [out] Memory for the CAAM descriptor.
* output — [out] Output hash data

* outputSize — [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the hash finish operation

status_t CAAM__HASH_NonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_hash_t descriptor, caam_hash_algo_t algo, const
uint8_t *input, size_t inputSize, const uint8_t *key, size_t
keySize, uint8_t *output, size_t *outputSize)

Create HASH on given data.
Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.

Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC. Key shall be
NULL if the underlaying algoritm is SHA.

For XCBC-MAGC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For MDHA the key length argument is ignored.

The function is non-blocking. The request is scheduled at CAAM.
Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
* descriptor — [out] Memory for the CAAM descriptor.
* algo — Underlaying algorithm to use for hash computation.
* input — Input data
* inputSize — Size of input data in bytes
* key — Input key (NULL if underlaying algorithm is SHA)
* keySize — Size of input key in bytes
* output — [out] Output hash data

* outputSize — [out] Output parameter storing the size of the output hash in
bytes

Returns
Status of the one call hash operation.

320 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

2.25 Caam_nonblocking driver_hmac

status_t CAAM_HMAC_ NonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_desc_hash_t descriptor, caam_hash_algo_t algo,
const uint8_t *input, size_t inputSize, const uint8_t *key,
size_t keySize, uint8_t *output, size_t *outputSize)

Create Message Authentication Code (MAC) on given data.
Perform the full keyed XCBC-MAC/CMAC, or HMAC-SHA in one function call.
Key shall be supplied if the underlaying algoritm is AES XCBC-MAC, CMAC, or SHA HMAC.

For XCBC-MAC, the key length must be 16. For CMAC, the key length can be the AES key
lengths supported by AES engine. For HMAC, the key can have any size, however the func-
tion will block if the supplied key is bigger than the block size of the underlying hashing
algorithm (e.g. >64 bytes for SHA256).

The function is not blocking with the exception of supplying large key sizes. In that case the
function will block until the large key is hashed down with the supplied hashing algorithm
(as per FIPS 198-1), after which operation is resumed to calling non-blocking HMAC.

Parameters
* base — CAAM peripheral base address
* handle — Handle used for this request.
* descriptor — [out] Memory for the CAAM descriptor.
* algo — Underlaying algorithm to use for MAC computation.
* input — Input data
* inputSize — Size of input data in bytes
* key — Input key
* keySize — Size of input key in bytes
* output — [out] Output MAC data

* outputSize — [out] Output parameter storing the size of the output MAC in
bytes

Returns
Status of the one call hash operation.

2.26 CAAM Non-blocking RNG driver

status_t CAAM_RNG_ GetRandomDataNonBlocking(CAAM_Type *base, caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
caam_desc_rng_t descriptor, void *data,
size_t dataSize, caam_rng _random_type_t
dataType, caam_rng_generic256_t
additionalEntropy)

Request random data.

This function schedules the request for random data from CAAM RNG. Memory at memory
pointers will be accessed by CAAM shortly after this function returns, according to actual
CAAM schedule.

Parameters

* base — CAAM peripheral base address

2.25. Caam_nonblocking_driver_hmac 321

MCUXpresso SDK Documentation, Release 25.12.00

handle - RNG handle used for this request

* stateHandle — RNG state handle used to generate random data

* descriptor — [out] memory for CAAM commands

* data — [out] Pointer address used to store random data

* dataSize — Size of the buffer pointed by the data parameter, in bytes.

¢ dataType — Type of random data to be generated.

* additionalEntropy — NULL or Pointer to optional 256-bit additional entropy.

Returns
status of the request

2.27 CACHE: ARMV7-M7 CACHE Memory Controller

static inline void L1ICACHE_ EnableICache(void)
Enables cortex-m7 L1 instruction cache.

static inline void LICACHE_ DisableICache(void)
Disables cortex-m7 L1 instruction cache.

static inline void LICACHE _ InvalidateICache(void)
Invalidate cortex-m7 L1 instruction cache.

void LICACHE_ InvalidatelCacheByRange(uint32_t address, uint32_t size_byte)
Invalidate cortex-m7 L1 instruction cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 I-cache line size if startAddr is not aligned. For the size_byte, ap-
plication should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
* address — The start address of the memory to be invalidated.
* size_byte — The memory size.
static inline void L1CACHE_ EnableDCache(void)
Enables cortex-m7 L1 data cache.
static inline void L1CACHE_ DisableDCache(void)
Disables cortex-m7 L1 data cache.
static inline void L1CACHE_ InvalidateDCache(void)
Invalidates cortex-m7 L1 data cache.
static inline void L1CACHE_ CleanDCache(void)
Cleans cortex-m7 L1 data cache.

static inline void L1CACHE_ CleanInvalidateDCache(void)
Cleans and Invalidates cortex-m7 L1 data cache.

322 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline void L1CACHE_ InvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
* address — The start address of the memory to be invalidated.
* size_ byte — The memory size.

static inline void L1ICACHE_ CleanDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
* address — The start address of the memory to be cleaned.
* size_byte — The memory size.

static inline void L1CACHE_ CleanInvalidateDCacheByRange(uint32_t address, uint32_t
size_byte)

Cleans and Invalidates cortex-m7 L1 data cache by range.

Note: The start address and size_byte should be 32-
byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned. The startAddr here will be
forced to align to L1 D-cache line size if startAddr is not aligned. For the size_byte,
application should make sure the alignment or make sure the right operation order if the
size_byte is not aligned.

Parameters
¢ address — The start address of the memory to be clean and invalidated.
* size_byte — The memory size.

void ICACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all instruction caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

2.27. CACHE: ARMV7-M7 CACHE Memory Controller 323

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated.

void DCACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated.

void DCACHE_ CleanByRange(uint32_t address, uint32_t size_byte)
Cleans all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size byte — size of the memory to be cleaned.

void DCACHE_ CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates all data caches by range.

Both cortex-m7 L1 cache line and L2 PL310 cache line length is 32-byte.

Note: address and size should be aligned to cache line size 32-Byte due to the cache oper-
ation unit is one cache line. The startAddr here will be forced to align to the cache line size
if startAddr is not aligned. For the size_byte, application should make sure the alignment
or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_ byte — size of the memory to be cleaned and invalidated.

FSL CACHE_ DRIVER_VERSION
cache driver version 2.0.4.

324 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

2.28 CACHE: LMEM CACHE Memory Controller

void LICACHE_ EnableCodeCache(void)
Enables the processor code bus cache.

void L1ICACHE_ DisableCodeCache(void)
Disables the processor code bus cache.

void L1ICACHE_ InvalidateCodeCache(void)
Invalidates the processor code bus cache.

void LICACHE_ InvalidateCodeCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates processor code bus cache by range.

Note: Address and size should be aligned to “L1CODCACHE_LINESIZE_BYTE”. The star-
tAddr here will be forced to align to LICODEBUSCACHE_LINESIZE_BYTE if startAddr is not
aligned. For the size_byte, application should make sure the alignment or make sure the
right operation order if the size_byte is not aligned.

Parameters
* address — The physical address of cache.
* size_byte — size of the memory to be invalidated.

void L1ICACHE_ CleanCodeCache(void)
Cleans the processor code bus cache.

void L1CACHE_ CleanCodeCacheByRange(uint32_t address, uint32_t size_byte)
Cleans processor code bus cache by range.

Note: Address and size should be aligned to “L1CODEBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1CODEBUSCACHE_LINESIZE_BYTE if startAddr is
not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address of cache.
* size_ byte — size of the memory to be cleaned.

void LICACHE CleanInvalidateCodeCache(void)
Cleans and invalidates the processor code bus cache.

void L1CACHE_ CleanInvalidateCodeCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and invalidate processor code bus cache by range.

Note: Address and size should be aligned to “L1CODEBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1CODEBUSCACHE_LINESIZE_BYTE if startAddr is
not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
¢ address — The physical address of cache.

* size_byte — size of the memory to be Cleaned and Invalidated.

2.28. CACHE: LMEM CACHE Memory Controller 325

MCUXpresso SDK Documentation, Release 25.12.00

static inline void L1CACHE_ EnableCodeCacheWriteBuffer(bool enable)
Enables/disables the processor code bus write buffer.
Parameters

* enable — The enable or disable flag. true - enable the code bus write buffer.
false - disable the code bus write buffer.

void LICACHE_ EnableSystemCache(void)
Enables the processor system bus cache.

void LICACHE_ DisableSystemCache(void)
Disables the processor system bus cache.

void LICACHE_ InvalidateSystemCache(void)
Invalidates the processor system bus cache.

void LICACHE_ InvalidateSystemCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates processor system bus cache by range.

Note: Address and size should be aligned to “L1SYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1ISYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
¢ address — The physical address of cache.
* size_byte — size of the memory to be invalidated.

void L1ICACHE_ CleanSystemCache(void)
Cleans the processor system bus cache.

void L1ICACHE_ CleanSystemCacheByRange(uint32_t address, uint32_t size_byte)
Cleans processor system bus cache by range.

Note: Address and size should be aligned to “LISYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1SYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

Parameters
¢ address — The physical address of cache.
* size_ byte — size of the memory to be cleaned.

void L1ICACHE_ CleanInvalidateSystemCache(void)
Cleans and invalidates the processor system bus cache.

void LICACHE_ CleanInvalidateSystemCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates processor system bus cache by range.

Note: Address and size should be aligned to “LI1SYSTEMBUSCACHE_LINESIZE_BYTE”. The
startAddr here will be forced to align to L1SYSTEMBUSCACHE_LINESIZE_BYTE if startAddr
is not aligned. For the size_byte, application should make sure the alignment or make sure
the right operation order if the size_byte is not aligned.

326 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* address — The physical address of cache.
* size_byte — size of the memory to be Clean and Invalidated.

static inline void LICACHE EnableSystemCacheWriteBuffer(bool enable)
Enables/disables the processor system bus write buffer.

Parameters

* enable — The enable or disable flag. true - enable the code bus write buffer.
false - disable the code bus write buffer.

void LICACHE_ InvalidateICacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m4 L1 instrument cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1ICACHE_LINESIZE_BYTE) aligned.

Parameters
* address — The start address of the memory to be invalidated.
* size_ byte — The memory size.

static inline void L1ICACHE_ InvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Invalidates cortex-m4 L1 data cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters
* address — The start address of the memory to be invalidated.
* size_ byte — The memory size.

void LICACHE_ CleanDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans cortex-m4 L1 data cache by range.

Note: The start address and size_byte should Dbe 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters
* address — The start address of the memory to be cleaned.
* size_byte — The memory size.

void L1ICACHE_ CleanInvalidateDCacheByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates cortex-m4 L1 data cache by range.

Note: The start address and size_byte should be 16-
Byte(FSL_FEATURE_L1DCACHE_LINESIZE_BYTE) aligned.

Parameters

¢ address — The start address of the memory to be clean and invalidated.

2.28. CACHE: LMEM CACHE Memory Controller 327

MCUXpresso SDK Documentation, Release 25.12.00

* size_ byte — The memory size.

static inline void ICACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates instruction cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1ICACHE_LINESIZE_BYTE. The startAddr here will be forced to align to the
cache line size if startAddr is not aligned. For the size_byte, application should make sure
the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated.

static inline void DCACHE_ InvalidateByRange(uint32_t address, uint32_t size_byte)
Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be invalidated.

static inline void DCACHE_ CleanByRange(uint32_t address, uint32_t size_byte)
Clean data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.
* size_byte — size of the memory to be cleaned.

static inline void DCACHE_ CleanInvalidateByRange(uint32_t address, uint32_t size_byte)
Cleans and Invalidates data cache by range.

Note: Address and size should be aligned to 16-Byte due to the cache operation unit
FSL_FEATURE_L1DCACHE_LINESIZE_BYTE. The startAddr here will be forced to align to
the cache line size if startAddr is not aligned. For the size_byte, application should make
sure the alignment or make sure the right operation order if the size_byte is not aligned.

Parameters
* address — The physical address.

* size_byte — size of the memory to be Cleaned and Invalidated.

328 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

FSL CACHE_ DRIVER_VERSION
cache driver version.

L1CODEBUSCACHE_LINESIZE_BYTE

code bus cache line size is equal to system bus line size, so the unified I/D cache line size
equals too.

The code bus CACHE line size is 16B = 128b.

L1ISYSTEMBUSCACHE_LINESIZE BYTE
The system bus CACHE line size is 16B = 128h.

2.29 CDOG

status_t CDOG_ Init(CDOG_Type *base, cdog _config t *conf)
Initialize CDOG.

This function initializes CDOG block and setting.
Parameters
* base — CDOG peripheral base address
* conf — CDOG configuration structure

Returns
Status of the init operation

void CDOG_ Deinit(CDOG_Type *base)
Deinitialize CDOG.

This function deinitializes CDOG secure counter.
Parameters
* base — CDOG peripheral base address

void CDOG __GetDefaultConfig(cdog config t *conf)
Sets the default configuration of CDOG.

This function initialize CDOG config structure to default values.
Parameters
* conf — CDOG configuration structure

void CDOG__Stop(CDOG_Type *base, uint32_t stop)
Stops secure counter and instruction timer.

This function stops instruction timer and secure counter. This also change state od CDOG
to IDLE.

Parameters
* base — CDOG peripheral base address
* stop—expected value which will be compared with value of secure counter

void CDOG _ Start(CDOG_Type *base, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in RELOAD and START registers for instruction timer and secure
counter

Parameters

* base — CDOG peripheral base address

2.29. CDOG 329

MCUXpresso SDK Documentation, Release 25.12.00

* reload — reload value
* start — start value

void CDOG__ Check(CDOG_Type *base, uint32_t check)
Checks secure counter.

This function compares stop value in handler with secure counter value by writting to
RELOAD refister.

Parameters
* base — CDOG peripheral base address
* check — expected (stop) value

void CDOG__Set(CDOG_Type *base, uint32_t stop, uint32_t reload, uint32_t start)
Sets secure counter and instruction timer values.

This function sets value in STOP, RELOAD and START registers for instruction timer and
secure counter.

Parameters
* base — CDOG peripheral base address
* stop —expected value which will be compared with value of secure counter
* reload — reload value for instruction timer
* start — start value for secure timer

void CDOG__Add(CDOG_Type *base, uint32_t add)
Add value to secure counter.

This function add specified value to secure counter.
Parameters
* base — CDOG peripheral base address.
* add — Value to be added.

void CDOG__Add1(CDOG_Type *base)
Add 1 to secure counter.

This function add 1 to secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__Add16(CDOG_Type *base)
Add 16 to secure counter.

This function add 16 to secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG__Add256(CDOG_Type *base)
Add 256 to secure counter.

This function add 256 to secure counter.
Parameters

* base — CDOG peripheral base address.

330 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void CDOG__Sub(CDOG_Type *base, uint32_t sub)
brief Substract value to secure counter

This function substract specified value to secure counter.
param base CDOG peripheral base address. param sub Value to be substracted.

void CDOG__Sub1(CDOG_Type *base)
Substract 1 from secure counter.

This function substract specified 1 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG_ Sub16(CDOG_Type *base)
Substract 16 from secure counter.

This function substract specified 16 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG_ Sub256(CDOG_Type *base)
Substract 256 from secure counter.

This function substract specified 256 from secure counter.
Parameters
* base — CDOG peripheral base address.

void CDOG_ WritePersistent(CDOG_Type *base, uint32_t value)
Set the CDOG persistent word.

Parameters
* base — CDOG peripheral base address.
* value — The value to be written.

uint32_t CDOG_ ReadPersistent(CDOG_Type *base)
Get the CDOG persistent word.

Parameters
* base — CDOG peripheral base address.

Returns
The persistent word.

FSL CDOG_DRIVER VERSION
Defines CDOG driver version 2.1.3.

Change log:
* Version 2.1.3
— Re-design multiple instance IRQs and Clocks
— Add fix for RESTART command errata
* Version 2.1.2
— Support multiple IRQs
— Fix default CONTROL values

* Version 2.1.1

2.29. CDOG 331

MCUXpresso SDK Documentation, Release 25.12.00

- Remove bit CONTROL[CONTROL_CTRL]
* Version 2.1.0
— Rename CWT to CDOG
* Version 2.0.2
— Fix MISRA-2012 issues
Version 2.0.1
- Fix doxygen issues
Version 2.0.0

— initial version

enum __ cdog_debug_ Action_ ctrl_enum
Values:

enumerator kCDOG__DebugHaltCtrl_Run
enumerator kCDOG_ DebugHaltCtrl__Pause

enum __ cdog_irq pause_ctrl_enum
Values:

enumerator kCDOG__IrqPauseCtrl_Run
enumerator kCDOG_ IrqPauseCtrl_Pause

enum _ cdog_fault_ ctrl enum
Values:

enumerator kCDOG FaultCtrl EnableReset
enumerator kCDOG_ FaultCtrl Enablelnterrupt
enumerator kCDOG_ FaultCtrl NoAction

enum code lock ctrl enum
Values:

enumerator kCDOG_ LockCtrl Lock
enumerator kCDOG__LockCtrl__Unlock
typedef uint32_t secure_ counter_t
SC_ADD(add)
SC_ADD1
SC_ADD16
SC_ADD256
SC_SUB(sub)
SC_SUB1
SC_SUBI16
SC_SUB256
SC_CHECK(val)

struct cdog_ config_t
#include <fsl_cdog.h>

332 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

2.30 Clock Driver

enum _ clock_Ipcg
Clock LPCG index.

Values:

enumerator kCLOCK_ M7
Clock LPCG M7.

enumerator kCLOCK M4
Clock LPCG M4.

enumerator kCLOCK_Sim M7
Clock LPCG SIM M7.

enumerator kCLOCK_Sim M
Clock LPCG SIM M4.

enumerator kCLOCK__Sim_ Disp
Clock LPCG SIM DISP.

enumerator kCLOCK__Sim_ Per
Clock LPCG SIM PER.

enumerator kCLOCK__Sim_ Lpsr
Clock LPCG SIM LPSR.

enumerator kCLOCK__ Anadig
Clock LPCG Anadig.

enumerator kCLOCK_Dcdc
Clock LPCG DCDC.

enumerator kCLOCK Src
Clock LPCG SRC.

enumerator kCLOCK_Ccm
Clock LPCG CCM.

enumerator kCLOCK__ Gpc
Clock LPCG GPC.

enumerator kCLOCK _Ssarc
Clock LPCG SSARC.

enumerator kCLOCK_Sim_ R
Clock LPCG SIM_R.

enumerator kCLOCK_ Wdogl
Clock LPCG WDOGTI.

enumerator kCLOCK_ Wdog2
Clock LPCG WDOG2.

enumerator kCLOCK__Wdog3
Clock LPCG WDOGS3.

enumerator kCLOCK__Wdog4
Clock LPCG WDOG4.

enumerator kCLOCK__Ewm0
Clock LPCG EWMO.

2.30. Clock Driver

333

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK _Sema
Clock LPCG SEMA.

enumerator kCLOCK_Mu_ A
Clock LPCG MU_A.

enumerator kCLOCK_Mu_B
Clock LPCG MU_B.

enumerator kCLOCK Edma
Clock LPCG EDMA.

enumerator kCLOCK__Edma_ Lpsr
Clock LPCG EDMA_LPSR.

enumerator kCLOCK__Romcp
Clock LPCG ROMCP.

enumerator kCLOCK_Ocram
Clock LPCG OCRAM.

enumerator kCLOCK Flexram
Clock LPCG FLEXRAM.

enumerator kCLOCK_Lmem
Clock LPCG Lmem.

enumerator kCLOCK_ Flexspil
Clock LPCG Flexspil.

enumerator kCLOCK_ Flexspi2
Clock LPCG Flexspi2.

enumerator kCLOCK_ Rdc
Clock LPCG RDC.

enumerator kCLOCK_ M7 Xrdc
Clock LPCG M7 XRDC.

enumerator kCLOCK_ M4 Xrdc
Clock LPCG M4 XRDC.

enumerator kCLOCK _Semc
Clock LPCG SEMC.

enumerator kCLOCK_Xecc
Clock LPCG XECC.

enumerator kCLOCK _Iee
Clock LPCG IEE.

enumerator kCLOCK__ Key_ Manager
Clock LPCG KEY_MANAGER.
enumerator kCLOCK_ Puf
Clock LPCG PUFL.

enumerator kCLOCK__ Ocotp
Clock LPCG OSOTP.

enumerator kCLOCK_ Snvs_ Hp
Clock LPCG SNVS_HP.

334

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ Snvs
Clock LPCG SNVS.

enumerator kCLOCK _Caam
Clock LPCG Caam.

enumerator kCLOCK_ Jtag Mux
Clock LPCG JTAG_MUX.

enumerator kCLOCK _Cstrace
Clock LPCG CSTRACE.

enumerator kCLOCK_Xbarl
Clock LPCG XBARI1.

enumerator kCLOCK_Xbar2
Clock LPCG XBAR2.

enumerator kCLOCK_Xbar3
Clock LPCG XBARS3.

enumerator kCLOCK_Aoil
Clock LPCG AOI1.

enumerator kCLOCK_Aoi2
Clock LPCG AOI2.

enumerator kCLOCK_ Adc_Etc
Clock LPCG ADC_ETC.
enumerator kCLOCK_Tomuxc
Clock LPCG IOMUXC.
enumerator kCLOCK__Iomuxc_ Lpsr
Clock LPCG IOMUXC_LPSR.
enumerator kCLOCK__ Gpio
Clock LPCG GPIO.

enumerator kCLOCK_ Kpp
Clock LPCG KPP.

enumerator kCLOCK_Flexiol
Clock LPCG FLEXIO1.

enumerator kCLOCK _Flexio2
Clock LPCG FLEXIOZ2.

enumerator kCLOCK _ Lpadcl
Clock LPCG LPADCI.

enumerator kCLOCK__Lpadc2
Clock LPCG LPADC2.

enumerator kCLOCK_Dac
Clock LPCG DAC.

enumerator kCLOCK__Acmpl
Clock LPCG ACMP1.

enumerator kCLOCK__Acmp2
Clock LPCG ACMP2.

2.30. Clock Driver

335

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__Acmp3
Clock LPCG ACMP3.

enumerator kCLOCK__Acmp4
Clock LPCG ACMP4.

enumerator kCLOCK_Pitl
Clock LPCG PIT1.

enumerator kCLOCK_ Pit2
Clock LPCG PIT2.

enumerator kCLOCK_ Gptl
Clock LPCG GPT1.

enumerator kCLOCK__Gpt2
Clock LPCG GPT?2.

enumerator kCLOCK__Gpt3
Clock LPCG GPTS.

enumerator kCLOCK__Gpt4
Clock LPCG GPT4.

enumerator kCLOCK__Gptb
Clock LPCG GPT5.

enumerator kCLOCK__Gpt6
Clock LPCG GPT6.

enumerator kCLOCK__Qtimerl
Clock LPCG QTIMERI1.

enumerator kCLOCK_ Qtimer2
Clock LPCG QTIMER?2.

enumerator kCLOCK__ Qtimer3
Clock LPCG QTIMERS.

enumerator kCLOCK_ Qtimer4
Clock LPCG QTIMERA4.
enumerator kCLOCK__ Encl
Clock LPCG Encl.
enumerator kCLOCK__Enc2
Clock LPCG Enc2.
enumerator kCLOCK__Enc3
Clock LPCG Encs3.
enumerator kCLOCK_ Enc4
Clock LPCG Enc4.
enumerator kCLOCK__Hrtimer
Clock LPCG Hrtimer.
enumerator kCLOCK__Pwml
Clock LPCG PWM1.

enumerator kCLOCK_ Pwm?2
Clock LPCG PWM2.

336

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ Pwm3
Clock LPCG PWMS3.

enumerator kCLOCK_ Pwm4
Clock LPCG PWMA4.

enumerator kCLOCK_Canl
Clock LPCG CANT1.

enumerator kCLOCK_Can2
Clock LPCG CANZ2.

enumerator kCLOCK_Can3
Clock LPCG CANS3.

enumerator kCLOCK_ Lpuartl
Clock LPCG LPUART1.

enumerator kCLOCK__Lpuart2
Clock LPCG LPUART2.

enumerator kCLOCK_ Lpuart3
Clock LPCG LPUART3.

enumerator kCLOCK_ Lpuart4
Clock LPCG LPUART4.

enumerator kCLOCK__ Lpuartb
Clock LPCG LPUARTS.

enumerator kCLOCK__ Lpuart6
Clock LPCG LPUARTS.

enumerator kCLOCK__Lpuart?
Clock LPCG LPUART7.

enumerator kCLOCK__ Lpuart8
Clock LPCG LPUARTS.

enumerator kCLOCK__Lpuart9
Clock LPCG LPUART9.

enumerator kCLOCK__Lpuart10
Clock LPCG LPUART10.

enumerator kCLOCK_ Lpuart11
Clock LPCG LPUART11.

enumerator kCLOCK_ Lpuart12
Clock LPCG LPUART12.

enumerator kCLOCK_ Lpi2cl
Clock LPCG LPI2C1.

enumerator kCLOCK_ Lpi2c2
Clock LPCG LPI2C2.

enumerator kCLOCK_ Lpi2c3
Clock LPCG LPI2C3.

enumerator kCLOCK_ Lpi2c4
Clock LPCG LPI2C4.

2.30. Clock Driver 337

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ Lpi2ch
Clock LPCG LPI2C5.

enumerator kCLOCK__Lpi2c6
Clock LPCG LPI2CS.

enumerator kCLOCK_ Lpspil
Clock LPCG LPSPI1.

enumerator kCLOCK_ Lpspi2
Clock LPCG LPSPI2.

enumerator kCLOCK__ Lpspi3
Clock LPCG LPSPI3.

enumerator kCLOCK_ Lpspi4
Clock LPCG LPSPI4.

enumerator kCLOCK__Lpspib
Clock LPCG LPSPI5.

enumerator kCLOCK__Lpspi6
Clock LPCG LPSPI6.

enumerator kCLOCK__Sim1
Clock LPCG SIM1.

enumerator kCLOCK__Sim?2
Clock LPCG SIM2.

enumerator kCLOCK_ Enet
Clock LPCG ENET.

enumerator kCLOCK__Enet_ 1g

Clock LPCG ENET 1G.

enumerator kCLOCK__Enet_ Qos

Clock LPCG ENET QOS.

enumerator kCLOCK_Usb
Clock LPCG USB.

enumerator kCLOCK__ Cdog
Clock LPCG CDOG.

enumerator kCLOCK_Usdhecl
Clock LPCG USDHC1.

enumerator kCLOCK_Usdhc2
Clock LPCG USDHC2.

enumerator kCLOCK_Asrc
Clock LPCG ASRC.

enumerator kCLOCK_ Mgs
Clock LPCG MQS.

enumerator kCLOCK_Pdm
Clock LPCG PDM.

enumerator kCLOCK_ Spdif
Clock LPCG SPDIF.

338

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ Sail
Clock LPCG SAI1.

enumerator kCLOCK _Sai2
Clock LPCG SAI2.

enumerator kCLOCK _Sai3
Clock LPCG SAI3.

enumerator kCLOCK _Sai4
Clock LPCG SAI4.

enumerator kCLOCK_ Pxp
Clock LPCG PXP.

enumerator kCLOCK__Gpu2d
Clock LPCG GPU2D.

enumerator kCLOCK Lecdif
Clock LPCG LCDIF.

enumerator kCLOCK Lecdifv2
Clock LPCG LCDIFV2.

enumerator kCLOCK__Mipi_ Dsi
Clock LPCG MIPI DSI.

enumerator kCLOCK_ Mipi_ Csi
Clock LPCG MIPI CSI.

enumerator kCLOCK_Csi
Clock LPCG CSI.

enumerator kCLOCK_ Dcic_ Mipi
Clock LPCG DCIC MIPI.

enumerator kCLOCK_Dcic_Led
Clock LPCG DCIC LCD.

enumerator kCLOCK Video Mux
Clock LPCG VIDEO MUX.

enumerator kCLOCK_ Uniq_Edt_1
Clock LPCG Uniq_Edt_I.

enumerator kCLOCK_ IpInvalid
Invalid value.

enum _clock name
Clock name.

Values:

enumerator kCLOCK_OscRcl16M
16MHz RC Oscillator.

enumerator kCLOCK_ OscRc48M
48MHz RC Oscillator.

enumerator kCLOCK__OscRc48MDiv2
48MHz RC Oscillator Div2.

2.30. Clock Driver 339

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_OscRc400M
400MHz RC Oscillator.

enumerator kCLOCK_Osc24M
24MHz Oscillator.

enumerator kCLOCK_Osc24MOut
48MHz Oscillator Out.

enumerator kCLOCK__ArmPIl
ARM PLL.

enumerator kCLOCK _ArmPIlIOut
ARM PLL Out.

enumerator kCLOCK__SysP112
SYS PLL2.

enumerator kCLOCK_SysPlI20ut
SYS PLL2 OUT.

enumerator kCLOCK__SysP112Pfd0
SYS PLL2 PFDO.

enumerator kCLOCK_SysPl12Pfd1
SYS PLL2 PFD1.

enumerator kCLOCK__SysP112P{d2
SYS PLL2 PFD2.

enumerator kCLOCK__SysP112Pfd3
SYS PLL2 PFD3.

enumerator kCLOCK__ SysPl113
SYS PLL3.

enumerator kCLOCK__SysPlI30ut
SYS PLL3 OUT.

enumerator kCLOCK__SysPlI3Div2
SYS PLL3 DIV2

enumerator kCLOCK__SysP113Pfd0
SYS PLL3 PFDO.

enumerator kCLOCK_ SysPl13Pfd1
SYS PLL3 PED1

enumerator kCLOCK__SysPlI3P{d2
SYS PLL3 PFD2

enumerator kCLOCK_ SysP113Pfd3
SYS PLL3 PFD3

enumerator kCLOCK_ SysPll1
SYS PLL1.

enumerator kCLOCK_ SysPll10ut
SYS PLL1 OUT.

enumerator kCLOCK__SysPI1l1Div2
SYS PLL1 DIV2.

340

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__SysPIl1Div5
SYS PLL1 DIVS.

enumerator kCLOCK__AudioPll
SYS AUDIO PLL.

enumerator kCLOCK _AudioPllOut
SYS AUDIO PLL OUT.

enumerator kCLOCK_ VideoPll
SYS VIDEO PLL.

enumerator kCLOCK_VideoPllOut
SYS VIDEO PLL OUT.

enumerator kCLOCK_ CpuClk
SYS CPU CLK.

enumerator kCLOCK__CoreSysClk
SYS CORE SYS CLK.

enum _clock root
Root clock index.

Values:

enumerator kCLOCK_ Root M7
CLOCK Root M7.

enumerator kCLOCK_ Root M4
CLOCK Root M4.

enumerator kCLOCK_ Root Bus
CLOCK Root Bus.

enumerator kCLOCK__Root_ Bus_Lpsr
CLOCK Root Bus Lpsr.

enumerator kCLOCK_ Root_Semc
CLOCK Root Semc.

enumerator kCLOCK__Root_ Cssys
CLOCK Root Cssys.

enumerator kCLOCK_Root_ Cstrace
CLOCK Root Cstrace.

enumerator kCLOCK__Root_ M4 Systick
CLOCK Root M4 Systick.

enumerator kCLOCK__ Root_ M7 _Systick
CLOCK Root M7 Systick.

enumerator kCLOCK_Root_ Adcl
CLOCK Root Adc1.

enumerator kCLOCK_Root_Adc2
CLOCK Root Adc2.

enumerator kCLOCK__Root_ Acmp
CLOCK Root Acmp.

2.30. Clock Driver 341

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_ Flexiol
CLOCK Root Flexiol.

enumerator kCLOCK_Root_ Flexio2
CLOCK Root Flexio2.

enumerator kCLOCK_ Root_ Gptl
CLOCK Root Gptl.

enumerator kCLOCK__Root_ Gpt2
CLOCK Root Gpt2.

enumerator kCLOCK__Root_ Gpt3
CLOCK Root Gpt3.

enumerator kCLOCK__Root_ Gpt4
CLOCK Root Gpt4.

enumerator kCLOCK__Root_ Gptb
CLOCK Root Gpt5.

enumerator kCLOCK__Root_ Gpt6
CLOCK Root Gpt6.

enumerator kCLOCK_ Root_ Flexspil
CLOCK Root Flexspil.

enumerator kCLOCK__Root_ Flexspi2
CLOCK Root Flexspi2.

enumerator kCLOCK__Root_ Canl
CLOCK Root Canl.

enumerator kCLOCK_ Root_ Can2
CLOCK Root Can2.

enumerator kCLOCK_ Root_ Can3
CLOCK Root Can3.

enumerator kCLOCK__Root_ Lpuartl
CLOCK Root Lpuartl.
enumerator kCLOCK__Root_ Lpuart2
CLOCK Root Lpuart2.
enumerator kCLOCK__Root_ Lpuart3
CLOCK Root Lpuart3.
enumerator kCLOCK_Root_ Lpuart4
CLOCK Root Lpuart4.
enumerator kCLOCK__Root_ Lpuartb
CLOCK Root Lpuart5.
enumerator kCLOCK__Root_ Lpuart6
CLOCK Root Lpuart6.
enumerator kCLOCK__Root_ Lpuart7
CLOCK Root Lpuart7.

enumerator kCLOCK__Root_ Lpuart8
CLOCK Root Lpuart8.

342

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__Root_ Lpuart9
CLOCK Root Lpuart9.

enumerator kCLOCK_ Root_ Lpuart10
CLOCK Root Lpuart10.

enumerator kCLOCK_ Root_ Lpuart11
CLOCK Root Lpuart11.

enumerator kCLOCK__Root_ Lpuart12
CLOCK Root Lpuart12.
enumerator kCLOCK__Root_ Lpi2cl
CLOCK Root Lpi2cl.
enumerator kCLOCK__Root_ Lpi2c2
CLOCK Root Lpi2c2.
enumerator kCLOCK__Root_ Lpi2c3
CLOCK Root Lpi2c3.
enumerator kCLOCK__Root_ Lpi2c4
CLOCK Root Lpi2c4.
enumerator kCLOCK__Root_ Lpi2ch
CLOCK Root Lpi2c5.
enumerator kCLOCK__Root_ Lpi2c6
CLOCK Root Lpi2c6.
enumerator kCLOCK__Root_ Lpspil
CLOCK Root Lpspil.
enumerator kCLOCK__Root_ Lpspi2
CLOCK Root Lpspi2.
enumerator kCLOCK__Root_ Lpspi3
CLOCK Root Lpspi3.
enumerator kCLOCK__Root_ Lpspi4
CLOCK Root Lpspi4.
enumerator kCLOCK__Root_ Lpspib
CLOCK Root Lpspi5.
enumerator kCLOCK__Root_ Lpspi6
CLOCK Root Lpspi6.
enumerator kCLOCK_Root_ Emv1
CLOCK Root Emv1.

enumerator kCLOCK_ Root_ Emv?2
CLOCK Root Emv?2.

enumerator kCLOCK Root_Enetl
CLOCK Root Enetl.

enumerator kCLOCK_ Root_Enet2
CLOCK Root Enet2.

enumerator kCLOCK__Root_ Enet_ Qos
CLOCK Root Enet Qos.

2.30. Clock Driver 343

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Root_Enet 25m
CLOCK Root Enet 25M.

enumerator kCLOCK_ Root_Enet Timerl

CLOCK Root Enet Timer1.

enumerator kCLOCK_Root_ Enet Timer2

CLOCK Root Enet Timer?2.

enumerator kCLOCK_Root_ Enet Timer3

CLOCK Root Enet Timers3.

enumerator kCLOCK_ Root_ Usdhcl
CLOCK Root Usdhc1.

enumerator kCLOCK _Root_ Usdhc2
CLOCK Root Usdhc2.

enumerator kCLOCK_Root_ Asrc
CLOCK Root Asrec.

enumerator kCLOCK__Root_ Mqgs
CLOCK Root Mgs.

enumerator kCLOCK__Root_ Mic
CLOCK Root MIC.

enumerator kCLOCK_ Root_ Spdif
CLOCK Root Spdif

enumerator kCLOCK__Root_ Sail
CLOCK Root Sail.

enumerator kCLOCK _Root_ Sai2
CLOCK Root Sai2.

enumerator kCLOCK _Root_ Sai3
CLOCK Root Sai3.

enumerator kCLOCK _ Root_ Sai4
CLOCK Root Sai4.

enumerator kCLOCK Root_ Ge355
CLOCK Root Gc355.

enumerator kCLOCK Root_ Ledif
CLOCK Root Lcdif.

enumerator kCLOCK__Root_ Ledifv2
CLOCK Root Lcdifv2.

enumerator kCLOCK_ Root_ Mipi_ Ref
CLOCK Root Mipi Ref.

enumerator kCLOCK__Root_ Mipi_ Esc
CLOCK Root Mipi Esc.

enumerator kCLOCK__Root_ Csi2
CLOCK Root Csi2.

enumerator kCLOCK_ Root_Csi2 Esc
CLOCK Root Csi2 Esc.

344

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ Root_ Csi2 Ui
CLOCK Root Csi2 Ui.

enumerator kCLOCK_Root_ Csi
CLOCK Root Csi.

enumerator kCLOCK_Root_ Ckol
CLOCK Root CKol.

enumerator kCLOCK_Root_ Cko2
CLOCK Root CKo2.

enum _clock root mux_source
The enumerator of clock roots’ clock source mux value.

Values:

enumerator kCLOCK_ M7 _ClockRoot MuxOscRc48MDiv2
M7 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ M7 _ClockRoot MuxOsc24MOut
M7 mux from MuxOsc24MOut.

enumerator kCLOCK_ M7 _ClockRoot_MuxOscRc400M
M7 mux from MuxOscRc400M.

enumerator kCLOCK_ M7 _ClockRoot MuxOscRcl16M
M7 mux from MuxOscRc16M.

enumerator kCLOCK_ M7 _ ClockRoot_ MuxArmPllIOut
M7 mux from MuxArmPIllOut.

enumerator kCLOCK_M7_ ClockRoot_ MuxSysPllI10ut
M7 mux from MuxSysPII10ut.

enumerator kCLOCK_M7_ ClockRoot_ MuxSysPlI30ut
M7 mux from MuxSysPII30ut.

enumerator kCLOCK M7 _ ClockRoot MuxVideoPllOut
M7 mux from MuxVideoPllOut.

enumerator kCLOCK M4 ClockRoot MuxOscRc48MDiv2
M4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ M4 ClockRoot_ MuxOsc24MOut
M4 mux from MuxOsc24MOut.

enumerator kCLOCK_ M4 ClockRoot MuxOscRc400M
M4 mux from MuxOscRc400M.

enumerator kCLOCK_ M4 ClockRoot MuxOscRcl16M
M4 mux from MuxOscRc16M.

enumerator kCLOCK__M4_ClockRoot_ MuxSysP1l13P{fd3
M4 mux from MuxSysPII3Pfd3.

enumerator kCLOCK__M4_ClockRoot_ MuxSysP1130ut
M4 mux from MuxSysPIlI30ut.

enumerator kCLOCK__M4_ClockRoot_ MuxSysP1120ut
M4 mux from MuxSysPlI20ut.

2.30. Clock Driver

345

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__M4_ ClockRoot_ MuxSysPIll1Div5
M4 mux from MuxSysPI11Div5.

enumerator kCLOCK_BUS ClockRoot MuxOscRc48MDiv2
BUS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_BUS ClockRoot MuxOsc24MOut
BUS mux from MuxOsc24MOut.

enumerator kCLOCK_BUS ClockRoot MuxOscRc400M
BUS mux from MuxOscRc400M.

enumerator kCLOCK_ BUS ClockRoot MuxOscRc16M
BUS mux from MuxOscRc16M.

enumerator kCLOCK__BUS_ ClockRoot_ MuxSysP1130ut
BUS mux from MuxSysPl130ut.

enumerator kCLOCK__BUS_ ClockRoot_ MuxSysPll1Div5
BUS mux from MuxSysPIl11Div5.

enumerator kCLOCK__BUS_ ClockRoot_ MuxSysP1120ut
BUS mux from MuxSysPl120ut.

enumerator kCLOCK__BUS_ ClockRoot_ MuxSysP112P{d3
BUS mux from MuxSysP112Pfd3.

enumerator kCLOCK BUS LPSR,_ClockRoot MuxOscRc48MDiv2
BUS_LPSR mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ BUS LPSR, ClockRoot MuxOsc24MOut
BUS_LPSR mux from MuxOsc24MOut.

enumerator kCLOCK_ BUS LPSR,_ ClockRoot MuxOscRc400M
BUS_LPSR mux from MuxOscRc400M.

enumerator kCLOCK BUS LPSR_ClockRoot_ MuxOscRcl16M
BUS_LPSR mux from MuxOscRc16M.

enumerator kCLOCK__BUS_ LPSR,_ClockRoot_ MuxSysP113P{d3
BUS_LPSR mux from MuxSysPI13Pfd3.

enumerator kCLOCK_BUS_LPSR_ ClockRoot_ MuxSysPl130ut
BUS_LPSR mux from MuxSysPIl130ut.

enumerator kCLOCK_BUS_LPSR_ ClockRoot_ MuxSysP1120ut
BUS_LPSR mux from MuxSysPl120ut.

enumerator kCLOCK_BUS_LPSR_ ClockRoot_ MuxSysPll1Div5
BUS_LPSR mux from MuxSysPI11Div5.

enumerator kCLOCK_ SEMC _ClockRoot_ MuxOscRc48MDiv2
SEMC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ SEMC _ClockRoot_ MuxOsc24MOut
SEMC mux from MuxOsc24MOut.

enumerator kCLOCK_ SEMC _ClockRoot_ MuxOscRc400M
SEMC mux from MuxOscRc400M.

enumerator kCLOCK_SEMC _ClockRoot_ MuxOscRc16M
SEMC mux from MuxOscRc16M.

346

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_SEMC_ ClockRoot_ MuxSysPIll1Div5
SEMC mux from MuxSysPll1Div5.

enumerator kCLOCK__SEMC__ClockRoot_ MuxSysP1120ut
SEMC mux from MuxSysPl120ut.

enumerator kCLOCK_SEMC__ ClockRoot_ MuxSysPIlI2Pfd1
SEMC mux from MuxSysPl12Pfd1.

enumerator kCLOCK__SEMC_ ClockRoot_ MuxSysPl13P{d0
SEMC mux from MuxSysP113Pfd0.

enumerator kCLOCK__CSSYS_ ClockRoot_ MuxOscRc48MDiv2
CSSYS mux from MuxOscRc48MDiv2.

enumerator kCLOCK CSSYS_ ClockRoot MuxOsc24MOut
CSSYS mux from MuxOsc24MOut.

enumerator kCLOCK CSSYS ClockRoot_ MuxOscRc400M
CSSYS mux from MuxOscRc400M.

enumerator kCLOCK CSSYS_ ClockRoot MuxOscRc16M
CSSYS mux from MuxOscRc16M.

enumerator kCLOCK__CSSYS_ ClockRoot_ MuxSysP113Div2
CSSYS mux from MuxSysPl13Div2.
enumerator kCLOCK__CSSYS_ ClockRoot_ MuxSysPIll1Div5
CSSYS mux from MuxSysPl11Div5.
enumerator kCLOCK__CSSYS_ ClockRoot_ MuxSysP1120ut
CSSYS mux from MuxSysPl120ut.
enumerator kCLOCK__CSSYS_ ClockRoot_ MuxSysP112Pfd3
CSSYS mux from MuxSysPl12Pfd3.
enumerator kCLOCK CSTRACE_ ClockRoot_ MuxOscRc48MDiv2
CSTRACE mux from MuxOscRc48MDiv2.

enumerator kCLOCK CSTRACE_ClockRoot_ MuxOsc24MOut
CSTRACE mux from MuxOsc24MOut.

enumerator kCLOCK CSTRACE_ClockRoot_ MuxOscRc400M
CSTRACE mux from MuxOscRc400M.

enumerator kCLOCK CSTRACE_ClockRoot_ MuxOscRcl16M
CSTRACE mux from MuxOscRc16M.

enumerator kCLOCK__CSTRACE_ ClockRoot_ MuxSysP113Div2
CSTRACE mux from MuxSysP1l13Div2.

enumerator kCLOCK__CSTRACE_ ClockRoot_ MuxSysPll1Div5
CSTRACE mux from MuxSysPll1Div5.

enumerator kCLOCK__CSTRACE_ ClockRoot_ MuxSysP1l12P{d1
CSTRACE mux from MuxSysPl12Pfd1.

enumerator kCLOCK__CSTRACE_ ClockRoot_ MuxSysP1120ut
CSTRACE mux from MuxSysPl120ut.

enumerator kCLOCK_ M4 SYSTICK ClockRoot MuxOscRc48MDiv2
M4_SYSTICK mux from MuxOscRc48MDiv2.

2.30. Clock Driver 347

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ M4 SYSTICK ClockRoot MuxOsc24MOut
M4_SYSTICK mux from MuxOsc24MOut.

enumerator kCLOCK__M4 SYSTICK__ClockRoot_ MuxOscRc400M
M4_SYSTICK mux from MuxOscRc400M.

enumerator kCLOCK_ M4 SYSTICK__ ClockRoot_ MuxOscRc16M
M4_SYSTICK mux from MuxOscRc16M.

enumerator kCLOCK_M4_SYSTICK__ClockRoot_ MuxSysP113P{d3
M4_SYSTICK mux from MuxSysPII3Pfd3.

enumerator kCLOCK_M4_SYSTICK__ClockRoot_ MuxSysP1130ut
M4_SYSTICK mux from MuxSysPIlI30ut.

enumerator kCLOCK__M4_SYSTICK__ClockRoot_ MuxSysPl12Pfd0
M4_SYSTICK mux from MuxSysPII2P{dO0.

enumerator kCLOCK_M4 SYSTICK _ClockRoot_ MuxSysP111Div5
M4_SYSTICK mux from MuxSysPII1Div5.

enumerator kCLOCK_ M7 SYSTICK ClockRoot MuxOscRc48MDiv2
M7_SYSTICK mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ M7 SYSTICK ClockRoot MuxOsc24MOut
M7_SYSTICK mux from MuxOsc24MOut.

enumerator kCLOCK_ M7 SYSTICK ClockRoot MuxOscRc400M
M7_SYSTICK mux from MuxOscRc400M.

enumerator kCLOCK M7 SYSTICK ClockRoot MuxOscRcl6M
M7_SYSTICK mux from MuxOscRc16M.

enumerator kCLOCK_M7_SYSTICK__ClockRoot_ MuxSysP1120ut
M7_SYSTICK mux from MuxSysPlI20ut.

enumerator kCLOCK__M7_SYSTICK__ ClockRoot_ MuxSysPl13Div2
M7_SYSTICK mux from MuxSysPl13Div2.

enumerator kCLOCK_M7_SYSTICK__ClockRoot_ MuxSysP111Div5
M7_SYSTICK mux from MuxSysPII1Div5.

enumerator kCLOCK__M7_SYSTICK__ ClockRoot_ MuxSysPl12Pfd0
M7_SYSTICK mux from MuxSysPII2P{dO0.

enumerator kCLOCK ADC1 _ClockRoot MuxOscRc48MDiv2
ADC1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK ADC1_ClockRoot MuxOsc24MOut
ADC1 mux from MuxOsc24MOut.

enumerator kCLOCK ADC1 _ClockRoot MuxOscRc400M
ADC1 mux from MuxOscRc400M.

enumerator kCLOCK_ ADC1_ClockRoot_ MuxOscRcl16M
ADC1 mux from MuxOscRc16M.

enumerator kCLOCK__ADC1_ ClockRoot_ MuxSysPl13Div2
ADC1 mux from MuxSysPlI3Div2.

enumerator kCLOCK__ADC1_ ClockRoot_ MuxSysPll1Div5
ADC1 mux from MuxSysPll1Div5.

348 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__ADC1_ ClockRoot_ MuxSysP1120ut
ADC1 mux from MuxSysPll20ut.

enumerator kCLOCK__ADC1_ ClockRoot_ MuxSysP112P{d3
ADC1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ADC2 ClockRoot MuxOscRc48MDiv2
ADC2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ ADC2 ClockRoot MuxOsc24MOut
ADC2 mux from MuxOsc24MOut.

enumerator kCLOCK_ ADC2 ClockRoot MuxOscRc400M
ADC2 mux from MuxOscRc400M.

enumerator kCLOCK ADC2 ClockRoot MuxOscRcl16M
ADC2 mux from MuxOscRc16M.

enumerator kCLOCK__ADC2_ ClockRoot_ MuxSysPl13Div2
ADC2 mux from MuxSysPlI3Div2.

enumerator kCLOCK__ADC2_ ClockRoot_ MuxSysP111Div5
ADC2 mux from MuxSysPll1Div5.

enumerator kCLOCK__ADC2_ ClockRoot_ MuxSysP1120ut
ADC2 mux from MuxSysPll20ut.

enumerator kCLOCK__ADC2_ ClockRoot_ MuxSysPl12Pfd3
ADC2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK _ACMP_ClockRoot_ MuxOscRc48MDiv2
ACMP mux from MuxOscRc48MDiv2.

enumerator kCLOCK ACMP_ClockRoot_ MuxOsc24MOut
ACMP mux from MuxOsc24MOut.

enumerator kCLOCK ACMP_ClockRoot_ MuxOscRc400M
ACMP mux from MuxOscRc400M.

enumerator kCLOCK _ACMP_ ClockRoot_ MuxOscRc16M
ACMP mux from MuxOscRc16M.

enumerator kCLOCK__ACMP_ ClockRoot_ MuxSysP1130ut
ACMP mux from MuxSysPII30ut.

enumerator kCLOCK__ACMP__ClockRoot_ MuxSysPll1Div5
ACMP mux from MuxSysPII1Div5.

enumerator kCLOCK ACMP_ClockRoot_ MuxAudioPllOut
ACMP mux from MuxAudioPllOut.

enumerator kCLOCK__ACMP__ClockRoot_ MuxSysPI112Pfd3
ACMP mux from MuxSysPIlI2Pfd3.

enumerator kCLOCK FLEXIO1 ClockRoot_ MuxOscRc48MDiv2
FLEXIO1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK FLEXIO1 ClockRoot_MuxOsc24MOut
FLEXIO1 mux from MuxOsc24MOut.

enumerator kCLOCK FLEXIO1 ClockRoot_ MuxOscRc400M
FLEXIO1 mux from MuxOscRc400M.

2.30. Clock Driver 349

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ FLEXIO1 ClockRoot MuxOscRcl16M
FLEXIO1 mux from MuxOscRc16M.

enumerator kCLOCK__FLEXIO1_ ClockRoot_ MuxSysPIl13Div2
FLEXIO1 mux from MuxSysPlI3Div2.

enumerator kCLOCK__FLEXIO1_ ClockRoot_ MuxSysPIll1Div5
FLEXIO1 mux from MuxSysPll1Div5.

enumerator kCLOCK__FLEXIO1_ ClockRoot_ MuxSysP1120ut
FLEXIO1 mux from MuxSysPll20ut.

enumerator kCLOCK__FLEXIO1_ ClockRoot_ MuxSysPl12Pfd3
FLEXIO1 mux from MuxSysPlI12Pfd3.

enumerator kCLOCK__FLEXIO2_ ClockRoot_ MuxOscRc48MDiv2
FLEXIO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK FLEXIO2 ClockRoot_ MuxOsc24MOut
FLEXIO2 mux from MuxOsc24MOut.

enumerator kCLOCK FLEXIO2 ClockRoot_ MuxOscRc400M
FLEXIO2 mux from MuxOscRc400M.

enumerator kCLOCK FLEXIO2 ClockRoot MuxOscRcl6M
FLEXIO2 mux from MuxOscRc16M.

enumerator kCLOCK__FLEXIO2_ ClockRoot_ MuxSysPl13Div2
FLEXIO2 mux from MuxSysPlI3Div2.

enumerator kCLOCK__FLEXIO2_ ClockRoot_ MuxSysPIll1Div5
FLEXIO2 mux from MuxSysPll1Div5.

enumerator kCLOCK__FLEXIO2_ ClockRoot_ MuxSysP1120ut
FLEXIO2 mux from MuxSysPll20ut.

enumerator kCLOCK__FLEXIO2_ ClockRoot_ MuxSysPl12Pfd3
FLEXIO2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK GPT1 ClockRoot MuxOscRc48MDiv2
GPT1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GPT1 ClockRoot_ MuxOsc24MOut
GPT1 mux from MuxOsc24MOut.

enumerator kCLOCK GPT1 ClockRoot_ MuxOscRc400M
GPT1 mux from MuxOscRc400M.

enumerator kCLOCK GPT1 ClockRoot_ MuxOscRcl16M
GPT1 mux from MuxOscRc16M.

enumerator kCLOCK__GPT1_ ClockRoot_ MuxSysP113Div2
GPT1 mux from MuxSysPl13Div2.

enumerator kCLOCK__GPT1_ ClockRoot_ MuxSysPll1Div5
GPT1 mux from MuxSysPI11Div5.

enumerator kCLOCK__GPT1_ ClockRoot_ MuxSysP113Pfd2
GPT1 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__GPT1_ ClockRoot_ MuxSysP113Pfd3
GPT1 mux from MuxSysPl13Pfd3.

350 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ GPT2_ ClockRoot._ MuxOscRc483MDiv2
GPT2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_GPT2 ClockRoot MuxOsc24MOut
GPT2 mux from MuxOsc24MOut.

enumerator kCLOCK_GPT2 ClockRoot MuxOscRc400M
GPT2 mux from MuxOscRc400M.

enumerator kCLOCK_GPT2 ClockRoot MuxOscRcl16M
GPT2 mux from MuxOscRc16M.

enumerator kCLOCK__GPT2_ ClockRoot_ MuxSysPlI3Div2
GPT2 mux from MuxSysPl13Div2.

enumerator kCLOCK__GPT2_ ClockRoot_ MuxSysPll1Div5
GPT2 mux from MuxSysPI11Div5.

enumerator kCLOCK GPT2 ClockRoot_ MuxAudioPllOut
GPT2 mux from MuxAudioPllOut.

enumerator kCLOCK GPT2 ClockRoot_ MuxVideoPllOut
GPT2 mux from MuxVideoPllOut.

enumerator kCLOCK GPT3_ClockRoot_ MuxOscRc48MDiv2
GPT3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GPT3_ClockRoot_ MuxOsc24MOut
GPT3 mux from MuxOsc24MOut.

enumerator kCLOCK_ GPT3_ClockRoot_ MuxOscRc400M
GPT3 mux from MuxOscRc400M.

enumerator kCLOCK GPT3_ClockRoot_ MuxOscRcl16M
GPT3 mux from MuxOscRc16M.

enumerator kCLOCK__GPT3_ ClockRoot_ MuxSysP113Div2
GPT3 mux from MuxSysPl13Div2.

enumerator kCLOCK__GPT3_ ClockRoot_ MuxSysPll1Div5
GPT3 mux from MuxSysPI11Div5.

enumerator kCLOCK GPT3_ClockRoot MuxAudioPlIOut
GPT3 mux from MuxAudioPllOut.

enumerator kCLOCK GPT3_ClockRoot_ MuxVideoPllOut
GPT3 mux from MuxVideoPllOut.

enumerator kCLOCK GPT4 ClockRoot MuxOscRc48MDiv2
GPT4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GPT4 ClockRoot_ MuxOsc24MOut
GPT4 mux from MuxOsc24MOut.

enumerator kCLOCK _GPT4 ClockRoot_ MuxOscRc400M
GPT4 mux from MuxOscRc400M.

enumerator kCLOCK_ GPT4 ClockRoot_ MuxOscRcl16M
GPT4 mux from MuxOscRc16M.

enumerator kCLOCK__GPT4_ ClockRoot_ MuxSysP113Div2
GPT4 mux from MuxSysPl13Div2.

2.30. Clock Driver 351

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__GPT4_ ClockRoot_ MuxSysPll1Div5
GPT4 mux from MuxSysPI11Div5.

enumerator kCLOCK__GPT4_ ClockRoot_ MuxSysPl13Pfd2
GPT4 mux from MuxSysPI13Pfd2.

enumerator kCLOCK__GPT4_ ClockRoot_ MuxSysPl13Pfd3
GPT4 mux from MuxSysPI13Pfd3.

enumerator kCLOCK__GPT5_ ClockRoot_ MuxOscRc48MDiv2
GPT5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GPT5 ClockRoot MuxOsc24MOut
GPT5 mux from MuxOsc24MOut.

enumerator kCLOCK_ GPT5 ClockRoot MuxOscRc400M
GPT5 mux from MuxOscRc400M.

enumerator kCLOCK GPT5_ ClockRoot_ MuxOscRcl16M
GPT5 mux from MuxOscRc16M.

enumerator kCLOCK__GPT5_ ClockRoot_ MuxSysP113Div2
GPT5 mux from MuxSysPl13Div2.

enumerator kCLOCK__GPT5_ ClockRoot_ MuxSysPll1Div5
GPT5 mux from MuxSysPI11Div5.

enumerator kCLOCK__GPT5_ ClockRoot_ MuxSysP113Pfd2
GPT5 mux from MuxSysPI13Pfd2.

enumerator kCLOCK__GPT5_ ClockRoot_ MuxSysP113Pfd3
GPT5 mux from MuxSysPI13Pfd3.

enumerator kCLOCK GPT6_ClockRoot_ MuxOscRc48MDiv2
GPT6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GPT6_ClockRoot_ MuxOsc24MOut
GPT6 mux from MuxOsc24MOut.

enumerator kCLOCK GPT6_ ClockRoot_ MuxOscRc400M
GPT6 mux from MuxOscRc400M.

enumerator kCLOCK GPT6_ClockRoot_ MuxOscRc16M
GPT6 mux from MuxOscRc16M.

enumerator kCLOCK__GPT6_ ClockRoot_ MuxSysP113Div2
GPT6 mux from MuxSysPl13Div2.
enumerator kCLOCK__GPT6_ ClockRoot_ MuxSysPll1Div5
GPT6 mux from MuxSysPI11Div5.
enumerator kCLOCK__GPT6_ ClockRoot_ MuxSysP113Pfd2
GPT6 mux from MuxSysPl13Pfd2.
enumerator kCLOCK__GPT6_ ClockRoot_ MuxSysP113Pfd3
GPT6 mux from MuxSysPI13Pfd3.
enumerator kCLOCK FLEXSPI1 ClockRoot MuxOscRc48MDiv2
FLEXSPI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK FLEXSPI1 ClockRoot MuxOsc24MOut
FLEXSPI1 mux from MuxOsc24MOut.

352

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ FLEXSPI1 ClockRoot MuxOscRc400M
FLEXSPI1 mux from MuxOscRc400M.

enumerator kCLOCK_FLEXSPI1 ClockRoot MuxOscRcl16M
FLEXSPI1 mux from MuxOscRc16M.

enumerator kCLOCK__FLEXSPI1_ClockRoot_ MuxSysPIl13Pfd0
FLEXSPI1 mux from MuxSysPl13P{dO0.

enumerator kCLOCK__FLEXSPI1_ClockRoot_ MuxSysP1120ut
FLEXSPI1 mux from MuxSysPll20ut.

enumerator kCLOCK__FLEXSPI1_ ClockRoot_ MuxSysPl12Pfd2
FLEXSPI1 mux from MuxSysPl12P{fd2.

enumerator kCLOCK_FLEXSPI1 ClockRoot_ MuxSysP1130ut
FLEXSPI1 mux from MuxSysPll30ut.

enumerator kCLOCK FLEXSPI2 ClockRoot MuxOscRc48MDiv2
FLEXSPI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK FLEXSPI2 ClockRoot MuxOsc24MOut
FLEXSPI2 mux from MuxOsc24MOut.

enumerator kCLOCK FLEXSPI2 ClockRoot MuxOscRc400M
FLEXSPI2 mux from MuxOscRc400M.

enumerator kCLOCK FLEXSPI2 ClockRoot. MuxOscRcl16M
FLEXSPI2 mux from MuxOscRc16M.

enumerator kCLOCK__FLEXSPI2_ ClockRoot_ MuxSysP113Pfd0
FLEXSPI2 mux from MuxSysPl13P{dO0.

enumerator kCLOCK__FLEXSPI2_ClockRoot_ MuxSysPl120ut
FLEXSPI2 mux from MuxSysPll20ut.

enumerator kCLOCK__FLEXSPI2_ ClockRoot_ MuxSysPl12Pfd2
FLEXSPI2 mux from MuxSysPl12Pfd2.

enumerator kCLOCK__FLEXSPI2 ClockRoot_ MuxSysPl130ut
FLEXSPI2 mux from MuxSysPll30ut.

enumerator kCLOCK CAN1 ClockRoot MuxOscRc48MDiv2
CAN1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK CAN1_ ClockRoot MuxOsc24MOut
CAN1 mux from MuxOsc24MOut.

enumerator kCLOCK CAN1_ ClockRoot MuxOscRc400M
CAN1 mux from MuxOscRc400M.

enumerator kCLOCK_ CAN1_ ClockRoot MuxOscRcl16M
CAN1 mux from MuxOscRc16M.

enumerator kCLOCK__CAN1_ ClockRoot_ MuxSysPIlI3Div2
CAN1 mux from MuxSysPlI3Div2.

enumerator kCLOCK__CAN1_ ClockRoot_ MuxSysPII1Div5
CAN1 mux from MuxSysPll1Div5.

enumerator kCLOCK__CAN1_ ClockRoot_ MuxSysP1120ut
CAN1 mux from MuxSysPl120ut.

2.30. Clock Driver 353

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__CAN1_ ClockRoot_ MuxSysP112P{d3
CAN1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_CAN2 ClockRoot MuxOscRc48MDiv2
CAN2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CAN2 ClockRoot MuxOsc24MOut
CAN2 mux from MuxOsc24MOut.

enumerator kCLOCK_CAN2 ClockRoot MuxOscRc400M
CAN2 mux from MuxOscRc400M.

enumerator kCLOCK CAN2 ClockRoot MuxOscRc16M
CAN2 mux from MuxOscRc16M.

enumerator kCLOCK__CAN2_ ClockRoot_ MuxSysPIlI3Div2
CAN2 mux from MuxSysPlI3Div2.

enumerator kCLOCK__CAN2_ ClockRoot_ MuxSysPII1Div5
CAN2 mux from MuxSysPll1Div5.

enumerator kCLOCK__CAN2_ ClockRoot_ MuxSysP1120ut
CAN2 mux from MuxSysPl120ut.

enumerator kCLOCK__CAN2_ ClockRoot_ MuxSysPl12Pfd3
CAN2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK CAN3 ClockRoot MuxOscRc48MDiv2
CAN3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK CAN3_ ClockRoot MuxOsc24MOut
CAN3 mux from MuxOsc24MOut.

enumerator kCLOCK CAN3_ClockRoot_ MuxOscRc400M
CAN3 mux from MuxOscRc400M.

enumerator kCLOCK CAN3 ClockRoot MuxOscRcl16M
CAN3 mux from MuxOscRc16M.

enumerator kCLOCK__CAN3__ClockRoot_ MuxSysPl13Pfd3
CAN3 mux from MuxSysPl13Pfd3.
enumerator kCLOCK__CAN3_ ClockRoot_ MuxSysP1130ut
CAN3 mux from MuxSysPl130ut.
enumerator kCLOCK__CAN3__ClockRoot_ MuxSysPl12Pfd3
CAN3 mux from MuxSysPl12Pfd3.
enumerator kCLOCK__CAN3_ ClockRoot_ MuxSysPII1Div5
CAN3 mux from MuxSysPll1Div5.
enumerator kCLOCK_ LPUART1 ClockRoot_MuxOscRc48MDiv2
LPUART1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUART1 ClockRoot_MuxOsc24MOut
LPUART1 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART1 ClockRoot_ MuxOscRc400M
LPUART1 mux from MuxOscRc400M.

enumerator kCLOCK LPUART1 ClockRoot_MuxOscRcl16M
LPUART1 mux from MuxOscRc16M.

354

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__LPUART1_ ClockRoot_ MuxSysPl13Div2
LPUART1 mux from MuxSysPl13Div2.

enumerator kCLOCK_LPUART1_ ClockRoot_ MuxSysPll1Div5
LPUART1 mux from MuxSysPl11Div5.

enumerator kCLOCK__LPUART1_ ClockRoot_ MuxSysP1120ut
LPUART1 mux from MuxSysP1l120ut.

enumerator kCLOCK__LPUART1_ ClockRoot_ MuxSysP112P{d3
LPUART1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPUART2_ ClockRoot_ MuxOscRc48MDiv2
LPUART2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUART2 ClockRoot MuxOsc24MOut
LPUART2 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART2 ClockRoot_ MuxOscRc400M
LPUART2 mux from MuxOscRc400M.

enumerator kCLOCK LPUART2 ClockRoot_ MuxOscRcl16M
LPUART2 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART2_ ClockRoot_ MuxSysP113Div2
LPUART2 mux from MuxSysPl13Div2.

enumerator kCLOCK_LPUART2_ ClockRoot_ MuxSysPll1Div5
LPUART2 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART2_ ClockRoot_ MuxSysP1120ut
LPUART2 mux from MuxSysP1l120ut.

enumerator kCLOCK__LPUART2_ ClockRoot_ MuxSysP112P{d3
LPUART2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK LPUART3 ClockRoot_ MuxOscRc48MDiv2
LPUART3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUART3 ClockRoot_ MuxOsc24MOut
LPUART3 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART3 ClockRoot_ MuxOscRc400M
LPUART3 mux from MuxOscRc400M.

enumerator kCLOCK LPUART3 ClockRoot MuxOscRc16M
LPUART3 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART3_ ClockRoot_ MuxSysPlI3Div2
LPUART3 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPUART3_ ClockRoot_ MuxSysPll1Div5
LPUART3 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPUART3_ ClockRoot_ MuxSysP1120ut
LPUART3 mux from MuxSysPl120ut.

enumerator kCLOCK__LPUART3_ ClockRoot_ MuxSysP112P{d3
LPUART3 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_LPUART4 ClockRoot_MuxOscRc48MDiv2
LPUART4 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 355

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART4 ClockRoot MuxOsc24MOut
LPUART4 mux from MuxOsc24MOut.

enumerator kCLOCK_ LPUART4 ClockRoot MuxOscRc400M
LPUART4 mux from MuxOscRc400M.

enumerator kCLOCK_ LPUART4 ClockRoot MuxOscRcl6M
LPUART4 mux from MuxOscRc16M.

enumerator kCLOCK_LPUART4_ ClockRoot_ MuxSysPl13Div2
LPUART4 mux from MuxSysPl13Div2.

enumerator kCLOCK_LPUART4_ ClockRoot_ MuxSysPll1Div5
LPUART4 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUART4_ ClockRoot_ MuxSysP1120ut
LPUART4 mux from MuxSysP1l120ut.

enumerator kCLOCK__LPUART4_ ClockRoot_ MuxSysP112P{d3
LPUART4 mux from MuxSysP112Pfd3.

enumerator kCLOCK_ LPUARTS5 ClockRoot_ MuxOscRc48MDiv2
LPUARTS5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUARTS5 ClockRoot_ MuxOsc24MOut
LPUART5 mux from MuxOsc24MOut.

enumerator kCLOCK LPUARTS5 ClockRoot_ MuxOscRc400M
LPUART5 mux from MuxOscRc400M.

enumerator kCLOCK LPUARTS5 ClockRoot_ MuxOscRc16M
LPUART5 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART5_ ClockRoot_ MuxSysPl13Div2
LPUARTS5 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPUART5_ ClockRoot_ MuxSysPll1Div5
LPUARTS5 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUARTS5_ ClockRoot_ MuxSysP1120ut
LPUARTS5 mux from MuxSysP1l120ut.

enumerator kCLOCK__LPUART5_ ClockRoot_ MuxSysP112P{d3
LPUARTS5 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ LPUART6 ClockRoot_ MuxOscRc48MDiv2
LPUART6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUART6 ClockRoot_ MuxOsc24MOut
LPUART6 mux from MuxOsc24MOut.

enumerator kCLOCK LPUARTG6 _ClockRoot_ MuxOscRc400M
LPUART6 mux from MuxOscRc400M.

enumerator kCLOCK LPUARTG6 ClockRoot_ MuxOscRcl16M
LPUART6 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART6_ ClockRoot_ MuxSysPlI3Div2
LPUART6 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPUART6_ ClockRoot_ MuxSysPll1Div5
LPUART6 mux from MuxSysPll1Div5.

356

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART6_ ClockRoot_ MuxSysP1120ut
LPUART6 mux from MuxSysP1l120ut.

enumerator kCLOCK_LPUART6_ ClockRoot_ MuxSysP112P{d3
LPUART6 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ LPUART7 ClockRoot MuxOscRc48MDiv2
LPUART7 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_LPUART7 ClockRoot MuxOsc24MOut
LPUART7 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART7 ClockRoot MuxOscRc400M
LPUART7 mux from MuxOscRc400M.

enumerator kCLOCK_ LPUART7 ClockRoot MuxOscRcl6M
LPUART7 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART?7_ ClockRoot_ MuxSysPl13Div2
LPUART7 mux from MuxSysPl13Div2.

enumerator kCLOCK_LPUART7_ClockRoot_ MuxSysPll1Div5
LPUART7 mux from MuxSysPl11Div5.

enumerator kCLOCK__LPUART7_ ClockRoot_ MuxSysP1120ut
LPUART7 mux from MuxSysPl120ut.

enumerator kCLOCK__LPUART7_ ClockRoot_ MuxSysP112P{d3
LPUART7 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ LPUARTS8 ClockRoot_ MuxOscRc48MDiv2
LPUART8 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUARTS8 ClockRoot_ MuxOsc24MOut
LPUARTS8 mux from MuxOsc24MOut.

enumerator kCLOCK LPUARTS8 ClockRoot_ MuxOscRc400M
LPUARTS8 mux from MuxOscRc400M.

enumerator kCLOCK LPUARTS8 ClockRoot MuxOscRcl16M
LPUARTS8 mux from MuxOscRc16M.

enumerator kCLOCK__LPUARTS8_ ClockRoot_ MuxSysPlI3Div2
LPUART8 mux from MuxSysPl13Div2.

enumerator kCLOCK_LPUARTS_ClockRoot_ MuxSysPll1Div5
LPUART8 mux from MuxSysPll1Div5.

enumerator kCLOCK_LPUARTS_ClockRoot_ MuxSysP1120ut
LPUART8 mux from MuxSysPl120ut.

enumerator kCLOCK__LPUARTS8_ ClockRoot_ MuxSysP112P{d3
LPUART8 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_LPUART9 ClockRoot_MuxOscRc48MDiv2
LPUART9 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ LPUART9 ClockRoot_ MuxOsc24MOut
LPUART9 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART9 ClockRoot_ MuxOscRc400M
LPUART9 mux from MuxOscRc400M.

2.30. Clock Driver 357

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPUART9 ClockRoot MuxOscRcl6M
LPUART9 mux from MuxOscRc16M.

enumerator kCLOCK_LPUARTY9_ ClockRoot_ MuxSysP1l13Div2
LPUART9 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPUARTY9_ ClockRoot_ MuxSysPll1Div5
LPUART9 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPUARTY9_ ClockRoot_ MuxSysP1120ut
LPUART9 mux from MuxSysP1l120ut.

enumerator kCLOCK__LPUART9_ ClockRoot_ MuxSysP112P{d3
LPUART9 mux from MuxSysP112Pfd3.

enumerator kCLOCK__LPUART10_ ClockRoot_ MuxOscRc48MDiv2
LPUART10 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ LPUART10 ClockRoot MuxOsc24MOQOut
LPUART10 mux from MuxOsc24MOut.

enumerator kCLOCK_ LPUART10 ClockRoot MuxOscRc400M
LPUART10 mux from MuxOscRc400M.

enumerator kCLOCK LPUART10 ClockRoot MuxOscRc16M
LPUART10 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART10_ ClockRoot_ MuxSysPl13Div2
LPUART10 mux from MuxSysPlI3Div2.

enumerator kCLOCK__LPUART10_ ClockRoot_ MuxSysPll1Div5
LPUART10 mux from MuxSysPIlI1Div5.

enumerator kCLOCK__LPUART10_ ClockRoot_ MuxSysPlI20ut
LPUART10 mux from MuxSysPl120ut.

enumerator kCLOCK__LPUART10_ ClockRoot_ MuxSysPl12Pfd3
LPUART10 mux from MuxSysPl12Pfd3.

enumerator kCLOCK LPUARTI11 ClockRoot_ MuxOscRc48MDiv2
LPUART11 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPUART11 ClockRoot_ MuxOsc24MOQOut
LPUART11 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART11 ClockRoot MuxOscRc400M
LPUART11 mux from MuxOscRc400M.

enumerator kCLOCK LPUARTI11 ClockRoot MuxOscRc16M
LPUART11 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART11_ ClockRoot_ MuxSysPl13Pfd3
LPUART11 mux from MuxSysPI13Pfd3.

enumerator kCLOCK_LPUART11_ ClockRoot_ MuxSysPlI30ut
LPUART11 mux from MuxSysPIl130ut.

enumerator kCLOCK__LPUART11_ ClockRoot_ MuxSysPl12Pfd3
LPUART11 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPUART11_ ClockRoot_ MuxSysPll1Div5
LPUART11 mux from MuxSysPI11Div5.

358

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ LPUART12 ClockRoot MuxOscRc48MDiv2
LPUART12 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ LPUART12 ClockRoot MuxOsc24MOut
LPUART12 mux from MuxOsc24MOut.

enumerator kCLOCK LPUART12 ClockRoot MuxOscRc400M
LPUART12 mux from MuxOscRc400M.

enumerator kCLOCK LPUART12 ClockRoot MuxOscRcl16M
LPUART12 mux from MuxOscRc16M.

enumerator kCLOCK__LPUART12_ ClockRoot_ MuxSysPl13P{fd3
LPUART12 mux from MuxSysPl13Pfd3.

enumerator kCLOCK_LPUART12_ClockRoot_ MuxSysPII30ut
LPUART12 mux from MuxSysPIl130ut.

enumerator kCLOCK__LPUART12_ ClockRoot_ MuxSysPl12Pfd3
LPUART12 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_LPUART12_ ClockRoot_MuxSysPll1Div5
LPUART12 mux from MuxSysPIlI1Div5.

enumerator kCLOCK LPI2C1 ClockRoot_ MuxOscRc48MDiv2
LPI2C1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPI2C1_ClockRoot_ MuxOsc24MOut
LPI2C1 mux from MuxOsc24MOut.

enumerator kCLOCK_ LPI2C1 ClockRoot_ MuxOscRc400M
LPI2C1 mux from MuxOscRc400M.

enumerator kCLOCK LPI2C1 ClockRoot_ MuxOscRcl16M
LPI2C1 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C1_ ClockRoot_ MuxSysPl13Div2
LPI2C1 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPI2C1_ ClockRoot_ MuxSysPll1Div5
LPI2C1 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPI2C1_ ClockRoot_ MuxSysP1120ut
LPI2C1 mux from MuxSysPl120ut.

enumerator kCLOCK__LPI2C1_ ClockRoot_ MuxSysP112Pfd3
LPI2C1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK LPI2C2 ClockRoot_MuxOscRc48MDiv2
LPI2C2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK _ LPI2C2_ClockRoot_ MuxOsc24MOut
LPI2C2 mux from MuxOsc24MOut.

enumerator kCLOCK_LPI2C2_ClockRoot_ MuxOscRc400M
LPI2C2 mux from MuxOscRc400M.

enumerator kCLOCK_ LPI2C2_ ClockRoot_ MuxOscRcl16M
LPI2C2 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C2_ ClockRoot_ MuxSysPl13Div2
LPI2C2 mux from MuxSysPll13Div2.

2.30. Clock Driver 359

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__LPI2C2_ ClockRoot_ MuxSysPll1Div5
LPI2C2 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPI2C2_ ClockRoot_ MuxSysP1120ut
LPI2C2 mux from MuxSysPl120ut.

enumerator kCLOCK__LPI2C2_ ClockRoot_ MuxSysP112P{d3
LPI2C2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPI2C3__ClockRoot_ MuxOscRc48MDiv2
LPI2C3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPI2C3 ClockRoot MuxOsc24MOut
LPI2C3 mux from MuxOsc24MOut.

enumerator kCLOCK LPI2C3 ClockRoot MuxOscRc400M
LPI2C3 mux from MuxOscRc400M.

enumerator kCLOCK_ LPI2C3_ClockRoot_ MuxOscRc16M
LPI2C3 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C3__ClockRoot_ MuxSysPl13Div2
LPI2C3 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPI2C3_ ClockRoot_ MuxSysPll1Div5
LPI2C3 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPI2C3_ ClockRoot_ MuxSysP1120ut
LPI2C3 mux from MuxSysPl120ut.

enumerator kCLOCK__LPI2C3__ClockRoot_ MuxSysP112Pfd3
LPI2C3 mux from MuxSysPl12Pfd3.

enumerator kCLOCK LPI2C4 ClockRoot_ MuxOscRc48MDiv2
LPI2C4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPI2C4 ClockRoot_ MuxOsc24MOut
LPI2C4 mux from MuxOsc24MOut.

enumerator kCLOCK LPI2C4 ClockRoot_ MuxOscRc400M
LPI2C4 mux from MuxOscRc400M.

enumerator kCLOCK LPI2C4 ClockRoot_ MuxOscRcl16M
LPI2C4 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C4_ ClockRoot_ MuxSysPl13Div2
LPI2C4 mux from MuxSysPl13Div2.

enumerator kCLOCK__LPI2C4_ ClockRoot_ MuxSysPll1Div5
LPI2C4 mux from MuxSysPll1Div5.

enumerator kCLOCK__LPI2C4_ ClockRoot_ MuxSysP1120ut
LPI2C4 mux from MuxSysPll20ut.

enumerator kCLOCK__LPI2C4_ ClockRoot_ MuxSysP112Pfd3
LPI2C4 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ LPI2C5 ClockRoot_ MuxOscRc48MDiv2
LPI2C5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK _LPI2C5 ClockRoot_ MuxOsc24MOut
LPI2C5 mux from MuxOsc24MOut.

360

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_LPI2C5 ClockRoot MuxOscRc400M
LPI2C5 mux from MuxOscRc400M.

enumerator kCLOCK _LPI2C5 ClockRoot MuxOscRcl16M
LPI2C5 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C5_ ClockRoot_ MuxSysP113P{d3
LPI2C5 mux from MuxSysPl13Pfd3.

enumerator kCLOCK__LPI2C5_ ClockRoot_ MuxSysP1130ut
LPI2C5 mux from MuxSysPl130ut.

enumerator kCLOCK__LPI2C5_ ClockRoot_ MuxSysP112Pfd3
LPI2C5 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPI2C5_ ClockRoot_ MuxSysPll1Div5
LPI2C5 mux from MuxSysP1ll11Div5.

enumerator kCLOCK__LPI2C6__ClockRoot_ MuxOscRc48MDiv2
LPI2C6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPI2C6_ClockRoot_ MuxOsc24MOut
LPI2C6 mux from MuxOsc24MOut.

enumerator kCLOCK LPI2C6_ClockRoot_ MuxOscRc400M
LPI2C6 mux from MuxOscRc400M.

enumerator kCLOCK LPI2C6_ClockRoot_ MuxOscRcl16M
LPI2C6 mux from MuxOscRc16M.

enumerator kCLOCK__LPI2C6__ClockRoot_ MuxSysP1lI13Pfd3
LPI2C6 mux from MuxSysPl13Pfd3.

enumerator kCLOCK__LPI2C6_ ClockRoot_ MuxSysP1130ut
LPI2C6 mux from MuxSysPl130ut.

enumerator kCLOCK__ LPI2C6__ClockRoot_ MuxSysP112Pfd3
LPI2C6 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPI2C6_ ClockRoot_ MuxSysPll1Div5
LPI2C6 mux from MuxSysPll1Div5.

enumerator kCLOCK LPSPI1 ClockRoot MuxOscRc48MDiv2
LPSPI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPSPI1 ClockRoot_ MuxOsc24MOut
LPSPI1 mux from MuxOsc24MOut.

enumerator kCLOCK LPSPI1 ClockRoot MuxOscRc400M
LPSPI1 mux from MuxOscRc400M.

enumerator kCLOCK LPSPI1_ClockRoot MuxOscRc16M
LPSPI1 mux from MuxOscRc16M.

enumerator kCLOCK__LPSPI1_ ClockRoot_ MuxSysPl13Pfd2
LPSPI1 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI1_ ClockRoot_ MuxSysPll1Div5
LPSPI1 mux from MuxSysPI11Div5.

enumerator kCLOCK__LPSPI1_ ClockRoot_ MuxSysPl120ut
LPSPI1 mux from MuxSysPlI20ut.

2.30. Clock Driver 361

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__LPSPI1_ ClockRoot_ MuxSysPl12Pfd3
LPSPI1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_LPSPI2 ClockRoot MuxOscRc483MDiv2
LPSPI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ LPSPI2 ClockRoot MuxOsc24MOut
LPSPI2 mux from MuxOsc24MOut.

enumerator kCLOCK_LPSPI2 ClockRoot MuxOscRc400M
LPSPI2 mux from MuxOscRc400M.

enumerator kCLOCK LPSPI2 ClockRoot MuxOscRc16M
LPSPI2 mux from MuxOscRc16M.

enumerator kCLOCK__LPSPI2_ ClockRoot_ MuxSysPl13Pfd2
LPSPI2 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI2_ ClockRoot_ MuxSysPll1Div5
LPSPI2 mux from MuxSysPIl1Div5.

enumerator kCLOCK__LPSPI2_ ClockRoot_ MuxSysPl120ut
LPSPI2 mux from MuxSysPlI20ut.

enumerator kCLOCK__LPSPI2_ ClockRoot_ MuxSysPl12Pfd3
LPSPI2 mux from MuxSysP1l12Pfd3.

enumerator kCLOCK LPSPI3 ClockRoot MuxOscRc48MDiv2
LPSPI3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPSPI3 ClockRoot_ MuxOsc24MOut
LPSPI3 mux from MuxOsc24MOut.

enumerator kCLOCK LPSPI3 ClockRoot MuxOscRc400M
LPSPI3 mux from MuxOscRc400M.

enumerator kCLOCK LPSPI3 ClockRoot MuxOscRc16M
LPSPI3 mux from MuxOscRc16M.

enumerator kCLOCK__LPSPI3_ ClockRoot_ MuxSysPl13Pfd2
LPSPI3 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI3_ ClockRoot_ MuxSysPll1Div5
LPSPI3 mux from MuxSysPI11Div5.

enumerator kCLOCK__LPSPI3_ ClockRoot_ MuxSysPl120ut
LPSPI3 mux from MuxSysPlI20ut.

enumerator kCLOCK__LPSPI3_ ClockRoot_ MuxSysPl12Pfd3
LPSPI3 mux from MuxSysPl12Pfd3.

enumerator kCLOCK LPSPI4 ClockRoot_ MuxOscRc48MDiv2
LPSPI4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPSPI4 ClockRoot_ MuxOsc24MOut
LPSPI4 mux from MuxOsc24MOut.

enumerator kCLOCK_ LPSPI4 ClockRoot MuxOscRc400M
LPSPI4 mux from MuxOscRc400M.

enumerator kCLOCK_ LPSPI4 ClockRoot MuxOscRcl16M
LPSPI4 mux from MuxOscRc16M.

362

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__LPSPI4_ ClockRoot_ MuxSysPl13Pfd2
LPSPI4 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI4_ ClockRoot_ MuxSysPll1Div5
LPSPI4 mux from MuxSysPI11Div5.

enumerator kCLOCK__LPSPI4_ ClockRoot_ MuxSysPl120ut
LPSPI4 mux from MuxSysPlI20ut.

enumerator kCLOCK__LPSPI4_ ClockRoot_ MuxSysPl12Pfd3
LPSPI4 mux from MuxSysPl12Pfd3.

enumerator kCLOCK__LPSPI5_ ClockRoot_ MuxOscRc48MDiv2
LPSPI5 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPSPI5 ClockRoot MuxOsc24MOut
LPSPI5 mux from MuxOsc24MOut.

enumerator kCLOCK_ LPSPI5 ClockRoot MuxOscRc400M
LPSPI5 mux from MuxOscRc400M.

enumerator kCLOCK LPSPI5 ClockRoot MuxOscRcl16M
LPSPI5 mux from MuxOscRc16M.

enumerator kCLOCK__LPSPI5_ ClockRoot_ MuxSysPl13Pfd3
LPSPI5 mux from MuxSysP113Pfd3.

enumerator kCLOCK__LPSPI5_ ClockRoot_ MuxSysPl130ut
LPSPI5 mux from MuxSysPl130ut.

enumerator kCLOCK__LPSPI5_ ClockRoot_ MuxSysPl13Pfd2
LPSPI5 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI5_ ClockRoot_ MuxSysPll1Div5
LPSPI5 mux from MuxSysPI11Div5.

enumerator kCLOCK LPSPI6 ClockRoot MuxOscRc48MDiv2
LPSPI6 mux from MuxOscRc48MDiv2.

enumerator kCLOCK LPSPI6 ClockRoot_ MuxOsc24MOut
LPSPI6 mux from MuxOsc24MOut.

enumerator kCLOCK LPSPI6 ClockRoot MuxOscRc400M
LPSPI6 mux from MuxOscRc400M.

enumerator kCLOCK LPSPI6 ClockRoot MuxOscRcl16M
LPSPI6 mux from MuxOscRc16M.

enumerator kCLOCK__LPSPI6_ ClockRoot_ MuxSysPl13Pfd3
LPSPI6 mux from MuxSysP113Pfd3.

enumerator kCLOCK__LPSPI6_ ClockRoot_ MuxSysP1130ut
LPSPI6 mux from MuxSysPlI30ut.

enumerator kCLOCK__LPSPI6_ ClockRoot_ MuxSysPl13Pfd2
LPSPI6 mux from MuxSysPl13Pfd2.

enumerator kCLOCK__LPSPI6_ ClockRoot_ MuxSysPll1Div5
LPSPI6 mux from MuxSysPI11Div5.

enumerator kCLOCK EMV1 _ ClockRoot MuxOscRc48MDiv2
EMV1 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 363

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ EMV1_ ClockRoot MuxOsc24MOut
EMV1 mux from MuxOsc24MOut.

enumerator kCLOCK_EMV1_ ClockRoot MuxOscRc400M
EMV1 mux from MuxOscRc400M.

enumerator kCLOCK_ EMV1_ ClockRoot MuxOscRecl16M
EMV1 mux from MuxOscRc16M.

enumerator kCLOCK_EMV1_ ClockRoot_ MuxSysPl13Div2
EMV1 mux from MuxSysPl13Div2.

enumerator kCLOCK_EMV1_ ClockRoot_ MuxSysPll1Div5
EMV1 mux from MuxSysPI11Div5.

enumerator kCLOCK_EMV1_ ClockRoot_ MuxSysP1120ut
EMV1 mux from MuxSysPlI20ut.

enumerator kCLOCK_EMV1_ ClockRoot_ MuxSysPIlI2Pfd3
EMV1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK EMV2 ClockRoot MuxOscRc48MDiv2
EMV2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK EMV2 ClockRoot MuxOsc24MOut
EMV2 mux from MuxOsc24MOut.

enumerator kCLOCK_ EMV2_ ClockRoot_ MuxOscRc400M
EMV2 mux from MuxOscRc400M.

enumerator kCLOCK_ EMV2_ ClockRoot MuxOscRc16M
EMV2 mux from MuxOscRc16M.

enumerator kCLOCK_EMV2_ ClockRoot_ MuxSysP1I3Div2
EMV2 mux from MuxSysPIl13Div2.

enumerator kCLOCK_EMV2_ ClockRoot_ MuxSysPll1Div5
EMV2 mux from MuxSysPI11Div5.

enumerator kCLOCK_EMV2_ ClockRoot_ MuxSysP1120ut
EMV2 mux from MuxSysPlI20ut.

enumerator kCLOCK__EMV2_ ClockRoot_ MuxSysPl12Pfd3
EMV2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK ENET1 ClockRoot MuxOscRc48MDiv2
ENET1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK ENET1 ClockRoot MuxOsc24MOut
ENET1 mux from MuxOsc24MOut.

enumerator kCLOCK ENET1 ClockRoot MuxOscRc400M
ENET1 mux from MuxOscRc400M.

enumerator kCLOCK_ ENET1 ClockRoot MuxOscRcl16M
ENET1 mux from MuxOscRc16M.

enumerator kCLOCK__ENET1_ ClockRoot_ MuxSysPll1Div2
ENET1 mux from MuxSysPll1Div2.

enumerator kCLOCK_ ENET1 ClockRoot MuxAudioPllOut
ENET1 mux from MuxAudioPllOut.

364

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__ENET1_ ClockRoot_ MuxSysPIll1Div5
ENET1 mux from MuxSysPlI1Div5.

enumerator kCLOCK__ENET1_ ClockRoot_ MuxSysPl12Pfd1
ENET1 mux from MuxSysPIlI2Pfd1.

enumerator kCLOCK ENET2 ClockRoot MuxOscRc48MDiv2
ENET2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ ENET2 ClockRoot MuxOsc24MOut
ENET2 mux from MuxOsc24MOut.

enumerator kCLOCK ENET2 ClockRoot MuxOscRc400M
ENET2 mux from MuxOscRc400M.

enumerator kCLOCK ENET2 ClockRoot MuxOscRc16M
ENET2 mux from MuxOscRc16M.

enumerator kCLOCK__ENET2_ ClockRoot_ MuxSysP111Div2
ENET2 mux from MuxSysPll1Div2.

enumerator kCLOCK ENET2 ClockRoot MuxAudioPllOut
ENET2 mux from MuxAudioPllOut.

enumerator kCLOCK__ENET2_ ClockRoot_ MuxSysPll1Div5
ENET2 mux from MuxSysPlI1Div5.

enumerator kCLOCK__ENET2_ ClockRoot_ MuxSysPIlI2Pfd1
ENET2 mux from MuxSysPIlI2Pfd1.

enumerator kCLOCK__ENET__QOS_ ClockRoot_ MuxOscRc48MDiv2
ENET_QOS mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ENET _QOS_ ClockRoot_ MuxOsc24MOut
ENET_QOS mux from Mux0Osc24MOut.

enumerator kCLOCK_ENET_QOS_ ClockRoot_ MuxOscRc400M
ENET_QOS mux from MuxOscRc400M.

enumerator kCLOCK_ENET_QOS_ ClockRoot_ MuxOscRcl16M
ENET_QOS mux from MuxOscRc16M.

enumerator kCLOCK_ENET__QOS_ ClockRoot_ MuxSysPll1Div2
ENET_QOS mux from MuxSysPI11Div2.

enumerator kCLOCK_ENET_QOS_ ClockRoot_ MuxAudioPllOut
ENET_QOS mux from MuxAudioPllOut.

enumerator kCLOCK_ENET__QOS_ ClockRoot_ MuxSysPll1Div5
ENET_QOS mux from MuxSysPI11Div5.

enumerator kCLOCK__ENET__QOS_ ClockRoot_ MuxSysPIlI2Pfd1
ENET_QOS mux from MuxSysPl12Pfd1.

enumerator kCLOCK_ _ENET 25M ClockRoot MuxOscRc48MDiv2
ENET_25M mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ ENET 25M ClockRoot MuxOsc24MOut
ENET_25M mux from MuxOsc24MOut.

enumerator kCLOCK_ENET 25M ClockRoot MuxOscRc400M
ENET_25M mux from MuxOscRc400M.

2.30. Clock Driver 365

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ ENET 25M ClockRoot MuxOscRcl16M
ENET_25M mux from MuxOscRc16M.

enumerator kCLOCK_ENET_25M_ ClockRoot_ MuxSysP111Div2
ENET_25M mux from MuxSysPll11Div2.

enumerator kCLOCK_ENET_25M_ ClockRoot_ MuxAudioPllOut
ENET_25M mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_25M_ ClockRoot_ MuxSysPll1Div5
ENET_25M mux from MuxSysPll11Div5.

enumerator kCLOCK__ENET_25M_ ClockRoot_ MuxSysPIlI2Pfd1
ENET_25M mux from MuxSysPl12Pfd1.

enumerator kCLOCK ENET TIMERI1 ClockRoot MuxOscRc48MDiv2
ENET_TIMER1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK ENET TIMERI1 ClockRoot MuxOsc24MOut
ENET_TIMER1 mux from MuxOsc24MOut.

enumerator kCLOCK_ ENET TIMERI1 ClockRoot MuxOscRc400M
ENET_TIMER1 mux from MuxOscRc400M.

enumerator kCLOCK ENET TIMER1 ClockRoot MuxOscRcl16M
ENET_TIMER1 mux from MuxOscRc16M.

enumerator kCLOCK_ENET_TIMERI1_ ClockRoot_ MuxSysPll1Div2
ENET_TIMER1 mux from MuxSysPll1Div2.

enumerator kCLOCK ENET TIMERI1 ClockRoot MuxAudioPllOut
ENET_TIMER1 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMERI1_ ClockRoot_ MuxSysPIll1Div5
ENET_TIMER1 mux from MuxSysPll1Div5.

enumerator kCLOCK__ENET_TIMERI1_ ClockRoot_ MuxSysPIlI2Pfd1
ENET_TIMER1 mux from MuxSysPl12Pfd1.

enumerator kCLOCK ENET TIMER2 ClockRoot MuxOscRc48MDiv2
ENET_TIMER2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK ENET TIMER2 ClockRoot MuxOsc24MOut
ENET_TIMER2 mux from MuxOsc24MOut.

enumerator kCLOCK ENET TIMER2 ClockRoot MuxOscRc400M
ENET_TIMER2 mux from MuxOscRc400M.

enumerator kCLOCK ENET TIMER2 ClockRoot MuxOscRcl16M
ENET_TIMER2 mux from MuxOscRc16M.

enumerator kCLOCK__ENET_TIMER2_ ClockRoot_ MuxSysPIll1Div2
ENET_TIMER2 mux from MuxSysPll1Div2.

enumerator kCLOCK _ENET TIMER2 ClockRoot MuxAudioPllOut
ENET_TIMER2 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMER2_ ClockRoot_ MuxSysPIll1Div5
ENET_TIMER2 mux from MuxSysPll1Div5.

enumerator kCLOCK_ENET_TIMER2_ ClockRoot_ MuxSysPIlI2Pfd1
ENET_TIMER2 mux from MuxSysPl12Pfd1.

366 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ ENET TIMER3 ClockRoot MuxOscRc48MDiv2
ENET_TIMER3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK ENET TIMER3 ClockRoot MuxOsc24MOut
ENET_TIMER3 mux from MuxOsc24MOut.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_ MuxOscRc400M
ENET_TIMER3 mux from MuxOscRc400M.

enumerator kCLOCK_ENET_TIMER3_ClockRoot_ MuxOscRc16M
ENET_TIMER3 mux from MuxOscRc16M.

enumerator kCLOCK_ENET_ TIMERS3_ ClockRoot_ MuxSysPIll1Div2
ENET_TIMER3 mux from MuxSysPll1Div2.

enumerator kCLOCK ENET TIMER3 ClockRoot MuxAudioPllOut
ENET_TIMER3 mux from MuxAudioPllOut.

enumerator kCLOCK_ENET_TIMERS3_ ClockRoot_ MuxSysPIll1Div5
ENET_TIMER3 mux from MuxSysPll1Div5.

enumerator kCLOCK__ENET_TIMERS3_ ClockRoot_ MuxSysP112P{d1
ENET_TIMER3 mux from MuxSysPl12Pfd1.

enumerator kCLOCK_ USDHC1 ClockRoot MuxOscRc48MDiv2
USDHC1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ USDHC1 ClockRoot MuxOsc24MOut
USDHC1 mux from MuxOsc24MOut.

enumerator kCLOCK_ USDHC1 ClockRoot MuxOscRc400M
USDHC1 mux from MuxOscRc400M.

enumerator kCLOCK_ USDHC1 ClockRoot_ MuxOscRcl16M
USDHC1 mux from MuxOscRc16M.

enumerator kCLOCK__USDHC1__ClockRoot_ MuxSysP112Pfd2
USDHC1 mux from MuxSysPIlI2Pfd2.

enumerator kCLOCK__USDHC1__ClockRoot_ MuxSysP112Pfd0
USDHC1 mux from MuxSysPIlI2PfdO0.

enumerator kCLOCK__USDHCI1_ ClockRoot_ MuxSysPll1Div5
USDHC1 mux from MuxSysPlI1Div5.

enumerator kCLOCK__USDHC1_ ClockRoot_ MuxArmPIllOut
USDHC1 mux from MuxArmPllOut.

enumerator kCLOCK_ USDHC2 ClockRoot MuxOscRc48MDiv2
USDHC2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ USDHC2 ClockRoot MuxOsc24MOut
USDHC2 mux from MuxOsc24MOut.

enumerator kCLOCK_ USDHC2 ClockRoot MuxOscRc400M
USDHC2 mux from MuxOscRc400M.

enumerator kCLOCK_ USDHC2 ClockRoot_ MuxOscRcl16M
USDHC2 mux from MuxOscRc16M.

enumerator kCLOCK__USDHC2_ ClockRoot_ MuxSysP112Pfd2
USDHC2 mux from MuxSysPl12Pfd2.

2.30. Clock Driver 367

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__USDHC2_ ClockRoot_ MuxSysP112Pfd0
USDHC2 mux from MuxSysPIlI2PfdO0.

enumerator kCLOCK_USDHC2_ ClockRoot_ MuxSysPll1Div5
USDHC2 mux from MuxSysPll1Div5.

enumerator kCLOCK_USDHC2_ ClockRoot_ MuxArmPIlIOut
USDHC2 mux from MuxArmPIllOut.

enumerator kCLOCK_ASRC ClockRoot MuxOscRc48MDiv2
ASRC mux from MuxOscRc48MDiv2.

enumerator kCLOCK ASRC ClockRoot MuxOsc24MOut
ASRC mux from MuxOsc24MOut.

enumerator kCLOCK_ ASRC ClockRoot MuxOscRc400M
ASRC mux from MuxOscRc400M.

enumerator kCLOCK_ ASRC_ClockRoot MuxOscRcl16M
ASRC mux from MuxOscRc16M.

enumerator kCLOCK__ASRC_ ClockRoot_ MuxSysP111Div5
ASRC mux from MuxSysPll1Div5.

enumerator kCLOCK__ASRC_ ClockRoot_ MuxSysPl13Div2
ASRC mux from MuxSysPlI3Div2.

enumerator kCLOCK ASRC_ClockRoot MuxAudioPllOut
ASRC mux from MuxAudioPllOut.

enumerator kCLOCK__ASRC__ClockRoot_ MuxSysPl12Pfd3
ASRC mux from MuxSysPl12Pfd3.

enumerator kCLOCK__MQS_ ClockRoot_ MuxOscRc48MDiv2
MQS mux from MuxOscRc48MDiv2.

enumerator kCLOCK__MQS ClockRoot_ MuxOsc24MOut
MQS mux from MuxOsc24MOut.

enumerator kCLOCK__MQS ClockRoot_ MuxOscRc400M
MQS mux from MuxOscRc400M.

enumerator kCLOCK__MQS _ClockRoot_ MuxOscRcl16M
MQS mux from MuxOscRc16M.

enumerator kCLOCK_MQS_ClockRoot_ MuxSysPI11Div5
MQS mux from MuxSysPll1Div5.

enumerator kCLOCK__MQS_ ClockRoot_ MuxSysPlI3Div2
MQS mux from MuxSysPll13Div2.

enumerator kCLOCK__MQS_ ClockRoot_ MuxAudioPl1Out
MQS mux from MuxAudioPllOut.

enumerator kCLOCK__MQS_ ClockRoot_ MuxSysPl12Pfd3
MQS mux from MuxSysPl12Pfd3.

enumerator kCLOCK_MIC ClockRoot_ MuxOscRc48MDiv2
MIC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ MIC ClockRoot_ MuxOsc24MOQOut
MIC mux from MuxOsc24MOut.

368

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_MIC_ClockRoot_ MuxOscRc400M
MIC mux from MuxOscRc400M.

enumerator kCLOCK_MIC_ClockRoot_ MuxOscRcl16M
MIC mux from MuxOscRc16M.

enumerator kCLOCK_MIC_ ClockRoot_ MuxSysP113P{d3
MIC mux from MuxSysPl13Pfd3.
enumerator kCLOCK__MIC__ ClockRoot_ MuxSysP1130ut
MIC mux from MuxSysPl130ut.
enumerator kCLOCK__MIC_ ClockRoot_ MuxAudioPllIOut
MIC mux from MuxAudioPllOut.
enumerator kCLOCK__MIC_ ClockRoot_ MuxSysPl11Div5
MIC mux from MuxSysP1ll1Div5.
enumerator kCLOCK__SPDIF __ ClockRoot_ MuxOscRc48MDiv2
SPDIF mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ SPDIF ClockRoot MuxOsc24MOut
SPDIF mux from MuxOsc24MOut.

enumerator kCLOCK_ SPDIF ClockRoot. MuxOscRc400M
SPDIF mux from MuxOscRc400M.

enumerator kCLOCK_SPDIF ClockRoot_ MuxOscRc16M
SPDIF mux from MuxOscRc16M.

enumerator kCLOCK SPDIF ClockRoot MuxAudioPllOut
SPDIF mux from MuxAudioPllOut.

enumerator kCLOCK__SPDIF__ ClockRoot_ MuxSysP1130ut
SPDIF mux from MuxSysPll30ut.

enumerator kCLOCK__SPDIF__ClockRoot_ MuxSysPl13P{fd2
SPDIF mux from MuxSysPl13Pfd2.

enumerator kCLOCK__SPDIF__ClockRoot_ MuxSysPl12Pfd3
SPDIF mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ SAI1 ClockRoot_ MuxOscRc48MDiv2
SAI1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ SAI1 ClockRoot MuxOsc24MOQOut
SAI1 mux from MuxOsc24MOut.

enumerator kCLOCK SAI1 ClockRoot MuxOscRc400M
SAI1 mux from MuxOscRc400M.

enumerator kCLOCK_SAI1 ClockRoot_ MuxOscRcl16M
SAI1 mux from MuxOscRc16M.

enumerator kCLOCK_SAI1 ClockRoot_MuxAudioPllOut
SAI1 mux from MuxAudioPllOut.

enumerator kCLOCK__SAI1_ ClockRoot_ MuxSysPl13Pfd2
SAI1 mux from MuxSysPlI3P{fd2.

enumerator kCLOCK__SAI1_ ClockRoot_ MuxSysPIl1Div5
SAI1 mux from MuxSysPI11Div5.

2.30. Clock Driver 369

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__SAIl1_ ClockRoot_ MuxSysP112P{d3
SAI1 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_SAI2 ClockRoot MuxOscRc48MDiv2
SAI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI2 ClockRoot MuxOsc24MOut
SAI2 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI2 ClockRoot MuxOscRc400M
SAI2 mux from MuxOscRc400M.

enumerator kCLOCK _SAI2 ClockRoot MuxOscRcl16M
SAI2 mux from MuxOscRc16M.

enumerator kCLOCK_ SAI2 ClockRoot MuxAudioPllOut
SAI2 mux from MuxAudioPllOut.

enumerator kCLOCK__SAI2_ ClockRoot_ MuxSysPl13Pfd2
SAI2 mux from MuxSysPlI3P{fd2.

enumerator kCLOCK__SAI2 ClockRoot_ MuxSysPII1Div5
SAI2 mux from MuxSysPlI1Div5.

enumerator kCLOCK__SAI2_ ClockRoot_ MuxSysP112Pfd3
SAI2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK _SAI3 ClockRoot_ MuxOscRc48MDiv2
SAI3 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ SAI3 ClockRoot MuxOsc24MOQOut
SAI3 mux from MuxOsc24MOut.

enumerator kCLOCK_ SAI3 ClockRoot MuxOscRc400M
SAI3 mux from MuxOscRc400M.

enumerator kCLOCK_ SAI3 ClockRoot_ MuxOscRcl16M
SAI3 mux from MuxOscRc16M.

enumerator kCLOCK_ SAI3 ClockRoot MuxAudioPllOut
SAI3 mux from MuxAudioPllOut.

enumerator kCLOCK__SAI3_ ClockRoot_ MuxSysPl13Pfd2
SAI3 mux from MuxSysPlI3P{fd2.

enumerator kCLOCK__SAI3_ ClockRoot_ MuxSysPII1Div5
SAI3 mux from MuxSysPlI1Div5.

enumerator kCLOCK__SAI3_ ClockRoot_ MuxSysPl12Pfd3
SAI3 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_SAI4 ClockRoot_ MuxOscRc48MDiv2
SAI4 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_SAI4 ClockRoot_ MuxOsc24MOQOut
SAI4 mux from MuxOsc24MOut.

enumerator kCLOCK_SAI4 ClockRoot MuxOscRc400M
SAI4 mux from MuxOscRc400M.

enumerator kCLOCK_SAI4 ClockRoot_ MuxOscRcl16M
SAI4 mux from MuxOscRc16M.

370

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__SAI4 ClockRoot_ MuxSysP113P{d3
SAI4 mux from MuxSysPl13Pfd3.

enumerator kCLOCK__SAI4 ClockRoot_ MuxSysP1130ut
SAI4 mux from MuxSysPll30ut.

enumerator kCLOCK_SAI4 ClockRoot MuxAudioPllOut
SAI4 mux from MuxAudioPllOut.

enumerator kCLOCK__SAI4_ClockRoot_ MuxSysPIl1Div5
SAI4 mux from MuxSysPlI1Div5.

enumerator kCLOCK_ GC355 ClockRoot MuxOscRc48MDiv2
GC355 mux from MuxOscRc48MDiv2.

enumerator kCLOCK GC355 ClockRoot MuxOsc24MOut
GC355 mux from MuxOsc24MOut.

enumerator kCLOCK GC355 ClockRoot MuxOscRc400M
GC355 mux from MuxOscRc400M.

enumerator kCLOCK_ GC355 ClockRoot MuxOscRcl16M
GC355 mux from MuxOscRc16M.

enumerator kCLOCK__GC355_ ClockRoot_ MuxSysP1120ut
GC355 mux from MuxSysPl120ut.

enumerator kCLOCK__GC355__ClockRoot_ MuxSysPl12Pfd1
GC355 mux from MuxSysPl12Pfd1.

enumerator kCLOCK__GC355_ ClockRoot_ MuxSysP1130ut
GC355 mux from MuxSysPl130ut.

enumerator kCLOCK_ GC355 ClockRoot MuxVideoPllOut
GC355 mux from MuxVideoPllOut.

enumerator kCLOCK LCDIF ClockRoot_ MuxOscRc48MDiv2
LCDIF mux from MuxOscRc48MDiv2.

enumerator kCLOCK LCDIF ClockRoot_ MuxOsc24MOut
LCDIF mux from MuxOsc24MOut.

enumerator kCLOCK LCDIF ClockRoot_ MuxOscRc400M
LCDIF mux from MuxOscRc400M.

enumerator kCLOCK LCDIF ClockRoot_ MuxOscRcl16M
LCDIF mux from MuxOscRc16M.

enumerator kCLOCK__LCDIF_ ClockRoot_ MuxSysP1120ut
LCDIF mux from MuxSysPl120ut.

enumerator kCLOCK__LCDIF_ClockRoot_ MuxSysPl12Pfd2
LCDIF mux from MuxSysPl12Pfd2.

enumerator kCLOCK__LCDIF__ClockRoot_ MuxSysPl13Pfd0
LCDIF mux from MuxSysPl13Pfd0.

enumerator kCLOCK_ LCDIF ClockRoot_ MuxVideoPllOut
LCDIF mux from MuxVideoPllOut.

enumerator kCLOCK LCDIFV2_ ClockRoot MuxOscRc48MDiv2
LCDIFV2 mux from MuxOscRc48MDiv2.

2.30. Clock Driver 371

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ LCDIFV2 ClockRoot MuxOsc24MOut
LCDIFV2 mux from MuxOsc24MOut.

enumerator kCLOCK_ LCDIFV2_ ClockRoot MuxOscRc400M
LCDIFV2 mux from MuxOscRc400M.

enumerator kCLOCK_ LCDIFV2_ ClockRoot MuxOscRcl16M
LCDIFV2 mux from MuxOscRc16M.

enumerator kCLOCK__LCDIFV2_ ClockRoot_ MuxSysP1120ut
LCDIFV2 mux from MuxSysPll20ut.

enumerator kCLOCK__LCDIFV2_ ClockRoot_ MuxSysP112Pfd2
LCDIFV2 mux from MuxSysPl12Pfd2.

enumerator kCLOCK__LCDIFV2_ ClockRoot_ MuxSysP113Pfd0
LCDIFV2 mux from MuxSysPlI13P{dO0.

enumerator kCLOCK LCDIFV2 ClockRoot MuxVideoPllOut
LCDIFV2 mux from MuxVideoPllOut.

enumerator kCLOCK_ MIPI REF ClockRoot MuxOscRc48MDiv2
MIPI_REF mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MIPI REF ClockRoot MuxOsc24MOut
MIPI_REF mux from MuxOsc24MOut.

enumerator kCLOCK_ MIPI REF ClockRoot MuxOscRc400M
MIPI_REF mux from MuxOscRc400M.

enumerator kCLOCK_ MIPI REF ClockRoot MuxOscRcl6M
MIPI_REF mux from MuxOscRc16M.

enumerator kCLOCK__MIPI_REF_ClockRoot_ MuxSysP1120ut
MIPI_REF mux from MuxSysPlI20ut.

enumerator kCLOCK__MIPI_REF_ ClockRoot_ MuxSysP112P{d0
MIPI_REF mux from MuxSysPl12Pfd0.

enumerator kCLOCK__MIPI_REF_ ClockRoot_ MuxSysP113P{d0
MIPI_REF mux from MuxSysP113Pfd0.

enumerator kCLOCK MIPI REF ClockRoot MuxVideoPllOut
MIPI_REF mux from MuxVideoPllOut.

enumerator kCLOCK MIPI ESC ClockRoot_ MuxOscRc48MDiv2
MIPI_ESC mux from MuxOscRc48MDiv2.

enumerator kCLOCK_MIPI ESC ClockRoot MuxOsc24MOut
MIPI_ESC mux from MuxOsc24MOut.

enumerator kCLOCK_MIPI ESC_ClockRoot_ MuxOscRc400M
MIPI_ESC mux from MuxOscRc400M.

enumerator kCLOCK_MIPI ESC ClockRoot_MuxOscRcl16M
MIPI_ESC mux from MuxOscRc16M.

enumerator kCLOCK__MIPI__ESC_ ClockRoot_ MuxSysP1120ut
MIPI_ESC mux from MuxSysPl120ut.

enumerator kCLOCK__MIPI__ESC_ ClockRoot_ MuxSysPl12Pfd0
MIPI_ESC mux from MuxSysPl2PfdO0.

372 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__MIPI_ESC_ ClockRoot_ MuxSysP113P{d0
MIPI_ESC mux from MuxSysPI13Pfd0.

enumerator kCLOCK_MIPI ESC ClockRoot MuxVideoPllOut
MIPI_ESC mux from MuxVideoPllOut.

enumerator kCLOCK _CSI2 ClockRoot MuxOscRc48MDiv2
CSI2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK _CSI2 ClockRoot MuxOsc24MOut
CSI2 mux from MuxOsc24MOut.

enumerator kCLOCK _CSI2 ClockRoot MuxOscRc400M
CSI2 mux from MuxOscRc400M.

enumerator kCLOCK CSI2 ClockRoot MuxOscRcl16M
CSI2 mux from MuxOscRc16M.

enumerator kCLOCK__CSI2_ ClockRoot_ MuxSysP112P{d2
CSI2 mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CSI2_ ClockRoot_ MuxSysP1I30ut
CSI2 mux from MuxSysPl130ut.

enumerator kCLOCK__CSI2_ ClockRoot_ MuxSysP112Pfd0
CSI2 mux from MuxSysPl12Pfd0.

enumerator kCLOCK_ CSI2 ClockRoot. MuxVideoPllOut
CSI2 mux from MuxVideoPllOut.

enumerator kCLOCK CSI2 ESC ClockRoot_ MuxOscRc48MDiv2
CSI2_ESC mux from MuxOscRc48MDiv2.

enumerator kCLOCK CSI2 ESC ClockRoot_ MuxOsc24MOut
CSI2_ESC mux from MuxOsc24MOut.

enumerator kCLOCK CSI2 ESC ClockRoot_ MuxOscRc400M
CSI2_ESC mux from MuxOscRc400M.

enumerator kCLOCK CSI2 ESC ClockRoot_ MuxOscRc16M
CSI2_ESC mux from MuxOscRc16M.

enumerator kCLOCK__CSI2_ESC_ ClockRoot_ MuxSysPl12Pfd2
CSI2_ESC mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CSI2_ESC_ ClockRoot_ MuxSysP1130ut
CSI2_ESC mux from MuxSysPll30ut.

enumerator kCLOCK__CSI2_ESC_ ClockRoot_ MuxSysPI112P{d0
CSI2_ESC mux from MuxSysPl12Pfd0.

enumerator kCLOCK _CSI2 ESC ClockRoot_ MuxVideoPllOut
CSI2_ESC mux from MuxVideoPllOut.

enumerator kCLOCK_ CSI2_ UI ClockRoot_ MuxOscRc48MDiv2
CSI2_UI mux from MuxOscRc48MDiv2.

enumerator kCLOCK_ CSI2 UI ClockRoot MuxOsc24MOut
CSI2_UI mux from MuxOsc24MOut.

enumerator kCLOCK_ CSI2 UI ClockRoot_ MuxOscRc400M
CSI2_UI mux from MuxOscRc400M.

2.30. Clock Driver 373

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CSI2 UI ClockRoot MuxOscRcl16M
CSI2_UI mux from MuxOscRc16M.

enumerator kCLOCK__CSI2_UI_ClockRoot_ MuxSysPIlI2P{fd2
CSI2_UI mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CSI2_UI_ClockRoot_ MuxSysPIlI30ut
CSI2_UI mux from MuxSysPl130ut.

enumerator kCLOCK__CSI2_UI_ClockRoot_ MuxSysPIlI2P{fd0
CSI2_UI mux from MuxSysPl12Pfd0.

enumerator kCLOCK_CSI2 UI ClockRoot_ MuxVideoPllOut
CSI2_UI mux from MuxVideoPllOut.

enumerator kCLOCK__CSI_ ClockRoot_ MuxOscRc48MDiv2
CSI mux from MuxOscRc48MDiv2.

enumerator kCLOCK _CSIClockRoot MuxOsc24MOut
CSI mux from MuxOsc24MOut.

enumerator kCLOCK CSI_ClockRoot_ MuxOscRc400M
CSI mux from MuxOscRc400M.

enumerator kCLOCK_ CSI_ClockRoot_ MuxOscRc16M
CSI mux from MuxOscRc16M.

enumerator kCLOCK__CSI_ ClockRoot_ MuxSysPlI2Pfd2
CSI mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CSI_ ClockRoot_ MuxSysP1130ut
CSI mux from MuxSysPll30ut.

enumerator kCLOCK__CSI_ ClockRoot_ MuxSysP113Pfd1
CSI mux from MuxSysPl13Pfd1.

enumerator kCLOCK CSI ClockRoot MuxVideoPllOut
CSI mux from MuxVideoPllOut.

enumerator kCLOCK CKO1 ClockRoot_ MuxOscRc48MDiv2
CKO1 mux from MuxOscRc48MDiv2.

enumerator kCLOCK CKO1 ClockRoot_ MuxOsc24MOut
CKO1 mux from MuxOsc24MOut.

enumerator kCLOCK CKO1 ClockRoot_ MuxOscRc400M
CKO1 mux from MuxOscRc400M.

enumerator kCLOCK CKO1 ClockRoot MuxOscRc16M
CKO1 mux from MuxOscRc16M.

enumerator kCLOCK__CKO1_ ClockRoot_ MuxSysPI112Pfd2
CKO1 mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CKO1_ ClockRoot_ MuxSysP1120ut
CKO1 mux from MuxSysPl120ut.

enumerator kCLOCK__CKO1_ ClockRoot_ MuxSysP113P{d1
CKO1 mux from MuxSysPl13Pfd1.

enumerator kCLOCK__CKO1_ ClockRoot_ MuxSysPll1Div5
CKO1 mux from MuxSysPll1Div5.

374

Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_CKO2_ ClockRoot. MuxOscRc483MDiv2
CKO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK_CKO2 ClockRoot MuxOsc24MOut
CKO2 mux from MuxOsc24MOut.

enumerator kCLOCK_ CKO2 ClockRoot MuxOscRc400M
CKO2 mux from MuxOscRc400M.

enumerator kCLOCK_ CKO2 ClockRoot MuxOscRecl16M
CKO2 mux from MuxOscRc16M.

enumerator kCLOCK__CKO2_ ClockRoot_ MuxSysPI112P{d3
CKO2 mux from MuxSysPl12Pfd3.

enumerator kCLOCK_ CKO2 ClockRoot MuxOscRc48M
CKO2 mux from MuxOscRc48M.

enumerator kCLOCK__CKO2_ ClockRoot_ MuxSysP113P{d1
CKO2 mux from MuxSysPl13Pfd1.

enumerator kCLOCK_ CKO2 ClockRoot_ MuxAudioPllOut
CKO2 mux from MuxAudioPllOut.

enum _ clock group
Clock group enumeration.

Values:

enumerator kCLOCK__Group_ FlexRAM
FlexRAM clock group.

enumerator kCLOCK_ Group_ MipiDsi
Mipi Dsi clock group.

enumerator kCLOCK_ Group_ Last
Last clock group.

enum _clock osc
OSC 24M sorce select.

Values:

enumerator kCLOCK _RcOsc
On chip OSC.

enumerator kCLOCK_XtalOsc
24M Xtal OSC

enum _ clock gate_value
Clock gate value.

Values:

enumerator kCLOCK_Off
Clock is off.

enumerator kCLOCK_On
Clock is on

enum clock mode t
System clock mode.

Values:

2.30. Clock Driver

375

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ModeRun
Remain in run mode.

enumerator kCLOCK_ ModeWait
Transfer to wait mode.

enumerator kCLOCK_ ModeStop
Transfer to stop mode.

enum _clock usb_src
USB clock source definition.

Values:

enumerator kCLOCK Usb480M
Use 480M.

enumerator kCLOCK_UsbSrcUnused
Used when the function does not care the clock source.

enum _ clock_usb_ phy_src
Source of the USB HS PHY.
Values:

enumerator kCLOCK__ Usbphy480M
Use 480M.

enum _ clock_pll_clk_src
PLL clock source, bypass cloco source also.

Values:

enumerator kCLOCK PIlIClkSrc24M
P11 clock source 24M

enumerator kCLOCK_PlISrcCIkPN
P11 clock source CLK1_P and CLK1_N

enum _ clock pll_post_ div
PLL post divider enumeration.
Values:
enumerator kCLOCK__PllPostDiv2
Divide by 2.
enumerator kCLOCK__PllPostDiv4
Divide by 4.
enumerator kCLOCK PllIPostDiv8
Divide by 8.
enumerator kCLOCK_ PllPostDiv1l
Divide by 1.
enum _ clock outputl_ selection
The enumerater of clock outputl’s clock source.
Values:

enumerator kCLOCK__CKO10OutputMuxOscRc48MDiv2
CKO1 mux from MuxOscRc48MDiv2.

376 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK__CKO1OutputMuxOsc24MOut
CKO1 mux from MuxOsc24MOut.

enumerator kCLOCK__CKO1OutputMuxOscRc400M
CKO1 mux from MuxOscRc400M.

enumerator kCLOCK__CKO10utputMuxOscRc16M
CKO1 mux from MuxOscRc16M.

enumerator kCLOCK__CKO1OutputMuxSysP112P{d2
CKO1 mux from MuxSysPl12Pfd2.

enumerator kCLOCK__CKO1OutputMuxSysP1120ut
CKO1 mux from MuxSysPl120ut.

enumerator kkCLOCK__ CKO1OutputMuxSysP1I3Pfd1
CKO1 mux from MuxSysP113Pfd1.

enumerator kCLOCK__CKO10OutputMuxSysP111Div5
CKO1 mux from MuxSysPII1Div5.

enum _ clock output2_ selection
The enumerater of clock output2’s clock source.

Values:

enumerator kCLOCK__CKO20utputOscRc48MDiv2
CKO2 mux from MuxOscRc48MDiv2.

enumerator kCLOCK__CKO20utputOsc24MOut
CKO2 mux from MuxOsc24MOut.

enumerator kCLOCK__CKO20utputOscRc400M
CKO2 mux from MuxOscRc400M.

enumerator kCLOCK__CKO20utputOscRc16M
CKO2 mux from MuxOscRc16M.

enumerator kCLOCK__ CKO20utputSysP112P{d3
CKO2 mux from MuxSysP112Pfd3.

enumerator kCLOCK__CKO20utputMuxOscRc48M
CKO2 mux from MuxOscRc48M.

enumerator kCLOCK__ CKO20utputMuxSysP1l13Pfd1
CKO2 mux from MuxSysPl13Pfd1.

enumerator kCLOCK__CKO20utputMuxAudioPllOut
CKO2 mux from MuxAudioPllOut.

enum _ clock_pll
PLL name.

Values:

enumerator kCLOCK__PllIArm
ARM PLL.

enumerator kCLOCK_ PlISysl
SYS1 PLL, it has a dedicated frequency of 1GHz.

enumerator kCLOCK_ PlISys2
SYS2 PLL, it has a dedicated frequency of 528MHz.

2.30. Clock Driver 377

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ PllSys3
SYS3 PLL, it has a dedicated frequency of 480MHz.

enumerator kCLOCK_ PllAudio
Audio PLL.
enumerator kCLOCK_ PllVideo
Video PLL.
enumerator kCLOCK__ PllInvalid
Invalid value.
enum _ clock_pfd
PLL PFD name.
Values:
enumerator kCLOCK_ Pfd0
PLL PFDO
enumerator kCLOCK_ Pfd1
PLL PFD1
enumerator kCLOCK_ Pfd2
PLL PFD2
enumerator kCLOCK_ Pfd3
PLL PFD3
enum _ clock control mode
The enumeration of control mode.
Values:
enumerator kCLOCK _SoftwareMode
Software control mode.
enumerator kCLOCK__ GpcMode
GPC control mode.
enum _ clock 24MOsc_mode
The enumeration of 24MHz crystal oscillator mode.
Values:
enumerator kCLOCK_ 24MOscHighGainMode
24MHz crystal oscillator work as high gain mode.
enumerator kCLOCK_ 24MOscBypassMode
24MHz crystal oscillator work as bypass mode.
enumerator kCLOCK_ 24MOscLowPowerMode
24MHz crystal oscillator work as low power mode.
enum _clock 16MOsc_source
The enumeration of 16MHz RC oscillator clock source.
Values:
enumerator kCLOCK__16MOscSourceFrom16MOsc
Source from 16MHz RC oscialltor.

enumerator kCLOCK__16MOscSourceFrom24MOQOsc
Source from 24MHz crystal oscillator.

378 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _clock 1MHzOut_behavior

The enumeration of 1MHz output clock behavior, including disabling 1IMHz output, en-
abling locked 1MHz clock output, and enabling free-running 1MHz clock output.

Values:

enumerator kCLOCK__1MHzOutDisable
Disable 1MHz output clock.

enumerator kCLOCK 1MHzOutEnableLocked1Mhz
Enable 1MHz output clock, and select locked 1MHz to output.

enumerator kCLOCK__1MHzOutEnableFreeRunning1Mhz
Enable 1MHZ output clock, and select free-running 1MHz to output.

enum _ clock level
The clock dependence level.

Values:

enumerator kCLOCK_ Level0
Not needed in any mode.

enumerator kCLOCK__ Levell
Needed in RUN mode.
enumerator kCLOCK_Level2
Needed in RUN and WAIT mode.
enumerator kCLOCK_Level3
Needed in RUN, WAIT and STOP mode.
enumerator kCLOCK Leveld
Always on in any mode.
typedef enum _clock_Ipcg clock lpcg_t
Clock LPCG index.
typedef enum _clock_name clock_name_t
Clock name.

typedef enum _clock_root clock_root_t
Root clock index.

typedef enum _clock_root_mux_source clock_root_mux_source__t
The enumerator of clock roots’ clock source mux value.

typedef enum _clock_group clock_group_t
Clock group enumeration.

typedef struct _clock_group_config clock_group_ config t
The structure used to configure clock group.

typedef enum _clock_osc clock_osc_t
OSC 24M sorce select.

typedef enum _clock_gate_value clock gate_value_t
Clock gate value.

typedef enum _clock_mode_t clock__mode_t
System clock mode.

typedef enum _clock_usb_src clock usb_src_t
USB clock source definition.

2.30. Clock Driver 379

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _clock_usb_phy_src clock_usb_phy_src_t
Source of the USB HS PHY.

typedef enum _clock_pll_post_div clock_pll_post_div_t
PLL post divider enumeration.

typedef enum _clock_outputl_selection clock_outputl_selection_t
The enumerater of clock output1’s clock source.

typedef enum _clock_output2_selection clock_output2_ selection_t
The enumerater of clock output2’s clock source.

typedef struct _clock_arm_pll_config clock_arm_ pll_config t
PLL configuration for ARM.

The output clock frequency is:
Fout=Fin*loopDivider /(2 * postDivider).
Fin is always 24MHz.

typedef struct _clock_usbh_pll_config clock_usb_pll_config_t
PLL configuration for USB.

typedef struct _clock_pllL ss_config clock_pll_ss_config_t
Spread specturm configure PIlL

typedef struct _clock_sys_pll2_config clock_sys_pll2_config_t
PLL configure for Sys P112.

typedef struct _clock_sys_plll_config clock_sys_plll_config_t
PLL configure for Sys Pll1.

typedef struct _clock_audio_pll_config clock_av_pll_config_t
PLL configuration for AUDIO and VIDEO.

typedef struct _clock_audio_pll_config clock_audio_pll_config_t
typedef struct _clock_audio_pll_config clock_video_pll_config_t
typedef struct _clock_audio_pll_gpc_config clock_audio_pll_gpc_config_t
PLL configuration fro AUDIO PLL, SYSTEM PLL1 and VIDEO PLL.
typedef struct _clock_audio_pll_gpc_config clock_video_pll_gpc_config_t
typedef struct _clock_audio_pll gpc_config clock_sys_plll__gpc_config_t
typedef struct _clock_enet_pll_config clock enet_pll_config_t
PLL configuration for ENET.

typedef struct _clock_root_config t clock_root_ config t
Clock root configuration.

typedef struct _clock_root_setpoint_config t clock_root_ setpoint_ config_t
Clock root configuration in SetPoint Mode.

typedef enum _clock_pll clock pll_t
PLL name.

typedef enum _clock_pfd clock pfd_t
PLL PFD name.

typedef enum _clock_control_mode clock_ control _mode_t
The enumeration of control mode.

380 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _clock_24MOsc_mode clock_24MOsc_mode_t
The enumeration of 24MHz crystal oscillator mode.

typedef enum _clock_16MOsc_source clock_16MOsc_source__t
The enumeration of 16 MHz RC oscillator clock source.

typedef enum _clock_1MHzOut_behavior clock_ 1MHzOut_ behavior__t

The enumeration of 1MHz output clock behavior, including disabling 1IMHz output, en-
abling locked 1MHz clock output, and enabling free-running 1MHz clock output.

typedef enum _clock_level clock_level t
The clock dependence level.

const clock_name_t s_ clockSourceName[][8]
static inline void CLOCK_ SetRootClockMux(clock_root_t root, uint8_t src)
Set CCM Root Clock MUX node to certain value.
Parameters
* root — Which root clock node to set, see clock_root_t.

* src — Clock mux value to set, different mux has different value range. See
clock_root_mux_source_t.

static inline uint32_t CLOCK_ GetRootClockMux(clock_root_t root)
Get CCM Root Clock MUX value.

Parameters
* root — Which root clock node to get, see clock_root_t.

Returns
Clock mux value.

static inline clock_name_t CLOCK__GetRootClockSource(clock_root_t root, uint32_t src)
Get CCM Root Clock Source.

Parameters
* root — Which root clock node to get, see clock_root_t.
* src — Clock mux value to get, see clock_root_mux_source_t.

Returns
Clock source

static inline void CLOCK _ SetRootClockDiv(clock_root_t root, uint32_t div)
Set CCM Root Clock DIV certain value.

Parameters
* root — Which root clock to set, see clock_root_t.

¢ div — Clock div value to set range is 1-256, different divider has different
value range.

static inline uint32_t CLOCK_ GetRootClockDiv(clock_root_t root)
Get CCM DIV node value.

Parameters
* root — Which root clock node to get, see clock_root_t.

Returns
divider set for this root

2.30. Clock Driver 381

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_ PowerOffRootClock(clock_root_t root)
Power Off Root Clock.

Parameters
* root — Which root clock node to set, see clock_root_t.

static inline void CLOCK__PowerOnRootClock(clock_root_t root)
Power On Root Clock.

Parameters
* root — Which root clock node to set, see clock_root_t.

static inline void CLOCK_SetRootClock(clock_root_t root, const clock_root_config t *config)
Configure Root Clock.

Parameters
* root — Which root clock node to set, see clock_root_t.
* config — root clock config, see clock_root_config_t

static inline void CLOCK_ ControlGate(clock_Ipcg t name, clock_gate_value_t value)
Control the clock gate for specific IP.

Note: This API will not have any effect when this clock is in CPULPM or SetPoint Mode

Parameters
* name — Which clock to enable, see clock_lpcg_t.
* value — Clock gate value to set, see clock_gate_value_t.

static inline void CLOCK__EnableClock(clock_lpcg t name)
Enable the clock for specific IP.

Parameters
* name — Which clock to enable, see clock_Ipcg_t.

static inline void CLOCK_ DisableClock(clock_Ipcg_t name)
Disable the clock for specific IP.

Parameters
* name — Which clock to disable, see clock_lpcg_t.

void CLOCK_SetGroupConfig(clock_group_t group, const clock_group_config t *config)
Set the clock group configuration.

Parameters
 group — Which group to configure, see clock_group_t.
* config — Configuration to set.

uint32_t CLOCK_ GetFreq(clock_name_t name)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t.

Parameters

* name — Clock names defined in clock_name t

382 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Clock frequency value in hertz

static inline uint32_t CLOCK__ GetRootClockFreq(clock_root_t root)
Gets the clock frequency for a specific root clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_root_t.

Parameters
* root — Clock names defined in clock_root_t

Returns
Clock frequency value in hertz

static inline uint32_t CLOCK_ GetM7Freq(void)
Get the CCM CPU/core/system frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline uint32_t CLOCK__ GetM4Freq(void)
Get the CCM CPU/core/system frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline bool CLOCK IsPlIBypassed(clock_pll_t pll)
Check if PLL is bypassed.

Parameters
* pll - PLL control name (see clock_pll_t enumeration)

Returns
PLL bypass status.

* true: The PLL is bypassed.
« false: The PLL is not bypassed.

static inline bool CLOCK__IsPllEnabled(clock_pll_t pll)
Check if PLL is enabled.

Parameters
* pll- PLL control name (see clock_pll_t enumeration)

Returns
PLL bypass status.

* true: The PLL is enabled.
» false: The PLL is not enabled.

FSL CLOCK_DRIVER_VERSION
CLOCK driver version.

SDK__DEVICE_MAXIMUM_ CPU_CLOCK_FREQUENCY

CCSR_OFFSET
CCM registers offset.

CBCDR,_ OFFSET
CBCMR_ OFFSET

2.30. Clock Driver 383

MCUXpresso SDK Documentation, Release 25.12.00

CSCMR1_OFFSET
CSCMR2_OFFSET
CSCDR1_OFFSET
CDCDR_ OFFSET

CSCDR2_OFFSET
CSCDR3_OFFSET
CACRR_OFFSET

CS1CDR_OFFSET
CS2CDR__ OFFSET

ARM_PLL_OFFSET
CCM Analog registers offset.

PLL_SYS_OFFSET
PLL_USB1_OFFSET
PLL_AUDIO_OFFSET
PLL_VIDEO_OFFSET
PLL_ENET_OFFSET
PLL_USB2_OFFSET

CCM_ TUPLE(reg, shift, mask, busyShift)
CCM_TUPLE_REG(base, tuple)
CCM_TUPLE_ SHIFT(tuple)
CCM_TUPLE_ MASK(tuple)
CCM_TUPLE_BUSY_SHIFT(tuple)
CCM__BUSY_ WAIT

CCM__ANALOG_TUPLE(reg, shift)
CCM ANALOG tuple macros to map corresponding registers and bit fields.

CCM_ANALOG_TUPLE_SHIFT(tuple)
CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off)
CCM_ANALOG_TUPLE_REG(base, tuple)

SYS_PLL1_FREQ
SYS_PLL_FREQ frequency in Hz.

SYS PLL2 MFI
SYS PLL2 FREQ
SYS PLL3 MFI

SYS_PLL3_FREQ

384 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

XTAL FREQ

LPADC_CLOCKS
Clock gate name array for ADC.

ADC_ETC_CLOCKS

Clock gate name array for ADC.
AOI CLOCKS

Clock gate name array for AOL
DCDC_CLOCKS

Clock gate name array for DCDC.

Clock ip name array for DCDC.
DCDC_ CLOCKS

Clock gate name array for DCDC.

Clock ip name array for DCDC.
SRC_CLOCKS

Clock gate name array for SRC.
GPC_CLOCKS

Clock gate name array for GPC.
SSARC_CLOCKS

Clock gate name array for SSARC.

WDOG__CLOCKS

Clock gate name array for WDOG.

EWM_CLOCKS
Clock gate name array for EWM.

SEMA__ CLOCKS

Clock gate name array for Sema.
MU_CLOCKS

Clock gate name array for MU.
EDMA__CLOCKS

Clock gate name array for EDMA.

FLEXRAM CLOCKS

Clock gate name array for FLEXRAM.

LMEM__ CLOCKS
Clock gate name array for LMEM.

FLEXSPI CLOCKS

Clock gate name array for FLEXSPI.

RDC_CLOCKS
Clock gate name array for RDC.

SEMC_ CLOCKS
Clock ip name array for SEMC.

XECC_CLOCKS
Clock ip name array for XECC.

2.30. Clock Driver

385

MCUXpresso SDK Documentation, Release 25.12.00

IEE_CLOCKS
Clock ip name array for IEE.

KEYMANAGER_ CLOCKS

Clock ip name array for KEY_MANAGER.

PUF_CLOCKS
Clock ip name array for PUF.

OCOTP__CLOCKS

Clock ip name array for OCOTP.
CAAM__CLOCKS

Clock ip name array for CAAM.
XBAR_CLOCKS

Clock ip name array for XBAR.
IOMUXC_CLOCKS

Clock ip name array for IOMUXC.
GPIO_CLOCKS

Clock ip name array for GPIO.
KPP__CLOCKS

Clock ip name array for KPP.
FLEXIO__CLOCKS

Clock ip name array for FLEXIO.
DAC_CLOCKS

Clock ip name array for DAC.
CMP_CLOCKS

Clock ip name array for CMP.
PIT_CLOCKS

Clock ip name array for PIT.
GPT_CLOCKS

Clock ip name array for GPT.
TMR_ CLOCKS

Clock ip name array for QTIMER.
ENC_CLOCKS

Clock ip name array for ENC.
PWM_ CLOCKS

Clock ip name array for PWM.
FLEXCAN__ CLOCKS

Clock ip name array for FLEXCAN.
LPUART__CLOCKS

Clock ip name array for LPUART.
LPI2C__CLOCKS

Clock ip name array for LPI2C.

LPSPI_CLOCKS
Clock ip name array for LPSPI.

386

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

EMVSIM__CLOCKS
Clock ip name array for EMVSIM.

ENET_CLOCKS
Clock ip name array for ENET.

ENETQOS_CLOCKS
Clock ip name array for ENET_QOS.

USB_ CLOCKS

Clock ip name array for USB.
CDOG_CLOCKS

Clock ip name array for CDOG.
USDHC CLOCKS

Clock ip name array for USDHC.
ASRC_CLOCKS

Clock ip name array for ASRC.
MQS__CLOCKS

Clock ip name array for MQS.
PDM__CLOCKS

Clock ip name array for PDM.
SPDIF__CLOCKS

Clock ip name array for SPDIF.
SAT_CLOCKS

Clock ip name array for SAIL
PXP__CLOCKS

Clock ip name array for PXP.
GPU2D__CLOCKS

Clock ip name array for GPU2d.
LCDIF__CLOCKS

Clock ip name array for LCDIF.
LCDIFV2_CLOCKS

Clock ip name array for LCDIFV2.
MIPI_DSI_HOST_CLOCKS

Clock ip name array for MIPI_DSI.
MIPI__CSI2RX__CLOCKS

Clock ip name array for MIPI_CSI.
CSI_CLOCKS

Clock ip name array for CSI.
DCIC_CLOCKS

Clock ip name array for DCIC.
DMAMUX__ CLOCKS

Clock ip name array for DMAMUX_CLOCKS.

XBARA_ CLOCKS
Clock ip name array for XBARA.

2.30. Clock Driver 387

MCUXpresso SDK Documentation, Release 25.12.00

XBARB__CLOCKS
Clock ip name array for XBARB.

CCM_OBS_M7_CLK_ROOT
CCM_OBS_M4 CLK_ROOT
CCM_OBS_BUS CLK ROOT
CCM_OBS_BUS LPSR CLK ROOT
CCM_OBS_SEMC CLK ROOT
CCM_OBS_CSSYS_CLK_ROOT
CCM_OBS_CSTRACE_CLK_ROOT
CCM_OBS_M4 SYSTICK CLK_ ROOT
CCM_OBS_M7 SYSTICK CLK ROOT
CCM_OBS_ADC1_ CLK ROOT
CCM_OBS_ADC2_CLK_ROOT
CCM_OBS_ACMP_CLK_ROOT
CCM__OBS_FLEXIO1 CLK_ROOT
CCM__OBS_FLEXIO2 CLK_ROOT
CCM_OBS_GPT1 CLK ROOT
CCM_OBS_GPT2 CLK ROOT
CCM_OBS_GPT3 CLK_ ROOT
CCM_OBS_GPT4 CLK_ ROOT
CCM_OBS_GPT5_CLK_ROOT
CCM_OBS_GPT6_CLK_ROOT
CCM_OBS_FLEXSPI1 CLK ROOT
CCM_OBS_FLEXSPI2 CLK ROOT
CCM_OBS_CAN1_CLK ROOT
CCM_OBS_CAN2_CLK_ROOT
CCM_OBS_CAN3_CLK_ROOT
CCM_OBS_LPUART1 CLK ROOT
CCM__OBS_LPUART2_ CLK_ ROOT
CCM_OBS_LPUART3 CLK ROOT
CCM_OBS_LPUART4 CLK_ROOT
CCM_OBS_LPUART5_CLK_ROOT
CCM_OBS_LPUART6 CLK_ ROOT

388

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_LPUART7_CLK_ROOT
CCM_OBS_LPUART8 CLK ROOT
CCM_OBS_LPUART9 CLK_ ROOT
CCM__OBS_LPUART10_ CLK_ ROOT
CCM_OBS_LPUART11 CLK ROOT
CCM_OBS_LPUART12 CLK_ROOT
CCM_OBS_LPI2C1_CLK_ ROOT
CCM_OBS_LPI2C2_CLK_ROOT
CCM_OBS_LPI2C3_CLK ROOT
CCM_OBS_LPI2C4 CLK ROOT
CCM_OBS_LPI2C5 CLK_ ROOT
CCM_OBS_LPI2C6_CLK_ ROOT
CCM_OBS_LPSPI1_CLK_ ROOT
CCM_OBS_LPSPI2_ CLK ROOT
CCM_OBS_LPSPI3 CLK ROOT
CCM_OBS_LPSPI4 CLK ROOT
CCM_OBS_LPSPI5_ CLK_ ROOT
CCM_OBS_LPSPI6_ CLK_ROOT
CCM_OBS_EMV1 CLK_ ROOT
CCM_OBS_EMV2 CLK ROOT
CCM_OBS_ENET1 CLK ROOT
CCM_OBS_ENET2 CLK ROOT
CCM_OBS_ENET QOS_CLK ROOT
CCM_OBS_ENET_25M_CLK_ROOT
CCM_OBS_ENET TIMER1 CLK_ ROOT
CCM_OBS_ENET TIMER2 CLK ROOT
CCM_OBS_ENET TIMER3 CLK ROOT
CCM_OBS_USDHC1 CLK ROOT
CCM_OBS_USDHC2 CLK_ROOT
CCM_OBS_ASRC_CLK_ROOT
CCM_OBS_MQS_CLK ROOT
CCM_OBS_MIC CLK ROOT

CCM_OBS_SPDIF CLK ROOT

2.30. Clock Driver 389

MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_SAI1_CLK_ROOT
CCM_OBS_SAI2 CLK ROOT
CCM_OBS_SAI3 CLK ROOT
CCM_OBS_SAI4 CLK ROOT
CCM_OBS_GC355 CLK_ ROOT
CCM_OBS_LCDIF_CLK_ROOT
CCM_OBS_LCDIFV2_CLK_ ROOT
CCM_OBS_MIPI REF CLK_ ROOT
CCM_OBS_MIPI ESC_CLK ROOT
CCM_OBS_CSI2. CLK ROOT
CCM_OBS_CSI2_ ESC_CLK_ROOT
CCM_OBS_CSI2_UI CLK ROOT
CCM_OBS_CSI_CLK_ROOT
CCM_OBS_CCM_CKO1_ CLK ROOT
CCM_OBS_CCM_CKO2 CLK ROOT
CCM_OBS_CM7_CORE_STCLKEN
CCM_OBS_CCM_FLEXRAM CLK_ ROOT
CCM_OBS_MIPI DSI TXESC
CCM_OBS_MIPI_DSI_RXESC
CCM_OBS_0OSC_RC_16M
CCM_OBS_OSC_RC_48M
CCM_OBS_OSC_RC_48M_DIV2
CCM_OBS_OSC_RC_400M
CCM_OBS_O0OSC_24M_OUT
CCM_OBS_ARM_ PLL OUT
CCM_OBS_SYS PLL2 OUT
CCM_OBS_SYS PLL2 PFDO
CCM_OBS_SYS PLL2 PFD1
CCM_OBS_SYS_PLL2_ PFD2
CCM_OBS_SYS_PLL2 PFD3
CCM_OBS_SYS PLL3 OUT
CCM_OBS_SYS PLL3 DIV2

CCM_OBS_SYS PLL3 PFDO

390

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

CCM_OBS_SYS_PLL3_PFD1
CCM_OBS_SYS_PLL3_PFD2
CCM_OBS_SYS_PLL3_PFD3
CCM_OBS_SYS_PLL1_OUT
CCM_OBS_SYS_PLL1_DIV2
CCM_OBS_SYS_PLL1_DIV5
CCM_OBS_PLL_AUDIO_OUT
CCM_OBS_PLL_VIDEO_OUT
CCM_OBS_DIV
clock ip name_t
CLOCK _GetCpuClkFreq
CLOCK__GetCoreSysClkFreq
For compatible with other platforms without CCM.
PLL_PFD_COUNT
static inline uint32_t CLOCK _GetRtcFreq(void)
Gets the RTC clock frequency.

Returns
Clock frequency; If the clock is invalid, returns 0.

static inline void CLOCK_ OSC_ SetOsc48MControlMode(clock_control_mode_t controlMode)
Set the control mode of 48MHz RC oscillator.

Parameters

* controlMode - The control mode to be set, please refer to
clock_control_mode_t.

static inline void CLOCK OSC_ EnableOsc48M(bool enable)
Enable/disable 48MHz RC oscillator.

Parameters
* enable — Used to enable or disable the 48MHz RC oscillator.
— true Enable the 48MHz RC oscillator.
— false Dissable the 48MHz RC oscillator.

static inline void CLOCK__OSC_ SetOsc48MDiv2ControlMode(clock_control_mode_t controlMode)
Set the control mode of the 24MHz clock sourced from 48MHz RC oscillator.

Parameters

* controlMode — The control mode to be set, please refer to
clock_control_mode_t.

static inline void CLOCK OSC_ EnableOsc48MDiv2(bool enable)
Enable/disable the 24MHz clock sourced from 48MHz RC oscillator.

Note: The 48MHz RC oscillator must be enabled before enabling this 24MHz clock.

2.30. Clock Driver 391

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* enable — Used to enable/disable the 24MHz clock sourced from 48MHz RC
oscillator.

— true Enable the 24MHz clock sourced from 48MHz.
— false Disable the 24MHz clock sourced from 48MHz.

static inline void CLOCK__OSC_ SetOsc24MControlMode(clock_control_mode_t controlMode)
Set the control mode of 24MHz crystal oscillator.

Parameters

* controlMode — The control mode to be set, please refer to
clock_control_mode_t.

void CLOCK__OSC__EnableOsc24M(void)
Enable OSC 24Mhz.

This function enables OSC 24Mhz.

static inline void CLOCK__OSC_ GateOsc24M(bool enableGate)
Gate/ungate the 24MHz crystal oscillator output.

Note: Gating the 24MHz crystal oscillator can save power.

Parameters
* enableGate — Used to gate/ungate the 24MHz crystal oscillator.
— true Gate the 24MHz crystal oscillator to save power.
- false Ungate the 24MHz crystal oscillator.

void CLOCK__OSC_ SetOsc24MWorkMode(clock_24MOsc_mode_t workMode)

Set the work mode of 24MHz crystal oscillator, the available modes are high gian mode, low
power mode, and bypass mode.

Parameters

» workMode — The work mode of 24MHz crystal oscillator, please refer to
clock_24MOsc_mode_t for details.

static inline void CLOCK__ OSC_ SetOscRc400MControlMode(clock_control_mode_t controlMode)
Set the control mode of 400MHz RC oscillator.

Parameters

* controlMode — The control mode to be set, please refer to
clock_control_mode_t.

void CLOCK__OSC_ EnableOscRc400M(void)
Enable OSC RC 400Mhz.

This function enables OSC RC 400Mhz.

static inline void CLOCK__ OSC_ GateOscRc400M (bool enableGate)
Gate/ungate 400MHz RC oscillator.

Parameters
* enableGate — Used to gate/ungate 400MHz RC oscillator.
— true Gate the 400MHz RC oscillator.
- false Ungate the 400MHz RC oscillator.

392 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK__OSC_ TrimOscRc400M(bool enable, bool bypass, uint16_t trim)
Trims OSC RC 400MHz.

Parameters
* enable — Used to enable trim function.
* bypass — Bypass the trim function.
* trim — Trim value.

void CLOCK__OSC__SetOscRc400MRefClkDiv(uint8_t divValue)
Set the divide value for ref clk to generate slow clock.

Note: slow_clk =ref clk/ (divValue + 1), and the recommand divide value is 24.

Parameters
* divValue — The divide value to be set, the available range is 0~63.

void CLOCK_OSC_ SetOscRc400MFastClkCount(uint16_t targetCount)
Set the target count for the fast clock.

Parameters

* targetCount — The desired target for the fast clock, should be the number
of clock cycles of the fast_clk per divided ref clk.

void CLOCK__OSC__SetOscRc400MHysteresisValue(uint8_t negHysteresis, uint8_t posHysteresis)
Set the negative and positive hysteresis value for the tuned clock.

Note: The hysteresis value should be set after the clock is tuned.

Parameters

* negHysteresis—The negative hysteresis value for the turned clock, this value
in number of clock cycles of the fast clock

* posHysteresis — The positive hysteresis value for the turned clock, this value
in number of clock cycles of the fast clock

void CLOCK__OSC_ BypassOscRc400M TuneLogic(bool enableBypass)
Bypass/un-bypass the tune logic.

Parameters
* enableBypass — Used to control whether to bypass the turn logic.

— true Bypass the tune logic and use the programmed oscillator frequency
to run the oscillator. Function CLOCK_OSC_SetOscRc400MTuneValue()
can be used to set oscillator frequency.

— false Use the output of tune logic to run the oscillator.

void CLOCK__OSC_ EnableOscRc400MTuneLogic(bool enable)
Start/Stop the tune logic.

Parameters
* enable — Used to start or stop the tune logic.
- true Start tuning

— false Stop tuning and reset the tuning logic.

2.30. Clock Driver 393

MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK__OSC_ FreezeOscRc400MTuneValue(bool enableFreeze)
Freeze/Unfreeze the tuning value.

Parameters
* enableFreeze — Used to control whether to freeze the tune value.

— true Freeze the tune at the current tuned value and the oscillator runs
at tje frozen tune value.

- false Unfreezes and continues the tune operation.

void CLOCK _OSC_ SetOscRc400MTuneValue(uint8_t tuneValue)
Set the 400MHz RC oscillator tune value when the tune logic is disabled.

Parameters
* tuneValue — The tune value to determine the frequency of Oscillator.

void CLOCK__OSC_ Set1MHzOutputBehavior(clock_1MHzOut_behavior._t behavior)

Set the behavior of the 1MHz output clock, such as disable the 1MHz clock output, enable
the free-running 1MHz clock output, enable the locked 1MHz clock output.

Note: The 1MHz clock is divided from 400M RC Oscillator.

Parameters

* behavior — The behavior of 1MHz output clock, please refer to
clock_1MHzOut_behavior_t for details.

void CLOCK_OSC_ SetLocked1MHzCount(uint16_t count)
Set the count for the locked 1MHz clock out.
Parameters

* count — Used to set the desired target for the locked 1MHz clock out, the
value in number of clock cycles of the fast clock per divided ref clk.

bool CLOCK__0OSC_ CheckLocked1MHzErrorFlag(void)
Check the error flag for locked 1MHz clock out.

Returns
The error flag for locked 1MHz clock out.

* true The count value has been reached within one diviced ref clock period
« false No effect.

void CLOCK__OSC_ ClearLocked1MHzErrorFlag(void)
Clear the error flag for locked 1MHz clock out.

uint16_t CLOCK__OSC_ GetCurrentOscRc400MFastClockCount(void)
Get current count for the fast clock during the tune process.

Returns
The current count for the fast clock.

uint8_t CLOCK__OSC__ GetCurrentOscRe400MTuneValue(void)
Get current tune value used by oscillator during tune process.

Returns
The current tune value.

394 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_ OSC_ SetOsc16MControlMode(clock_control_mode_t controlMode)
Set the control mode of 16MHz crystal oscillator.

Parameters

* controlMode — The control mode to be set, please refer to
clock_control_mode_t.

void CLOCK__OSC_ SetOsc16MConfig(clock_16MOsc_source_t source, bool enablePowerSave,
bool enableClockOut)

Configure the 16MHz oscillator.
Parameters

* source — Used to select the source for 16MHz RC oscillator; please refer to
clock_16MOsc_source_t.

* enablePowerSave — Enable/disable power save mode function at 16MHz OSC.
— true Enable power save mode function at 16MHz osc.
— false Disable power save mode function at 16MHz osc.
* enableClockOut — Enable/Disable clock output for 16MHz RCOSC.
— true Enable clock output for 16MHz RCOSC.
- false Disable clock output for 16MHz RCOSC.

void CLOCK_InitArmPll(const clock_arm_pll_config t *config)
Initialize the ARM PLL.

This function initialize the ARM PLL with specific settings
Parameters
* config — configuration to set to PLL.

status_t CLOCK__CalcArmPlIFreq(clock_arm_pll config t *config, uint32_t freqInMhz)
Calculate corresponding config values per given frequency.

This function calculates config valudes per given frequency for Arm PLL
Parameters
* config - pll config structure
* freqInMhz — target frequency

status_t CLOCK__InitArmPlIWithFreq(uint32_t freqInMhz)
Initializes the Arm PLL with Specific Frequency (in Mhz).

This function initializes the Arm PLL with specific frequency
Parameters
* freqInMhz — target frequency

void CLOCK_ DeinitArmPll(void)
De-initialize the ARM PLL.

void CLOCK__CalcPliSpreadSpectrum(uint32_t factor, uint32_t range, uint32_t mod,
clock_pll_ss_config t *ss)

Calculate spread spectrum step and stop.

This function calculate spread spectrum step and stop according to given parameters. For
integer PLL (syspll2) the factor is mfd, while for other fractional PLLs (audio/video/syspll1),
the factor is denominator.

Parameters

2.30. Clock Driver 395

MCUXpresso SDK Documentation, Release 25.12.00

» factor — factor to calculate step/stop

* range — spread spectrum range

* mod — spread spectrum modulation frequency
* ss — calculated spread spectrum values

void CLOCK_ InitSysPll1(const clock_sys_pll1_config t *config)
Initialize the System PLL1.

This function initializes the System PLL1 with specific settings
Parameters
* config — Configuration to set to PLL1.

void CLOCK_ DeinitSysPl11(void)
De-initialize the System PLL1.

void CLOCK__GPC_ SetSysPll10utputFreq(const clock_sys_plll_gpc_config_t *config)
Set System PLL1 output frequency in GPC mode.

Parameters
* config — Pointer to System PLL1 configure structure.

void CLOCK_InitSysPlI12(const clock_sys_pll2_config_t *config)
Initialize the System PLL2.

This function initializes the System PLL2 with specific settings
Parameters

* config — Configuration to configure spread spectrum. This parameter can
be NULL, if no need to enabled spread spectrum

void CLOCK_ DeinitSysPl12(void)
De-initialize the System PLL2.

bool CLOCK_ IsSysPlI2PfdEnabled(clock_pfd_t pfd)
Check if Sys PLL2 PFD is enabled.

Note: Only useful in software control mode.

Parameters
e pfd — PFD control name

Returns
PFD bypass status.

* true: power on.
« false: power off.

void CLOCK_ InitSysP113(void)
Initialize the System PLL3.

This function initializes the System PLL3 with specific settings

void CLOCK _DeinitSysPl13(void)
De-initialize the System PLL3.

396 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

bool CLOCK_ IsSysPlI3PfdEnabled(clock_pfd_t pfd)
Check if Sys PLL3 PFD is enabled.

Note: Only useful in software control mode.

Parameters
* pfd — PFD control name

Returns
PFD bypass status.

* true: power on.
« false: power off.

void CLOCK _SetPliBypass(clock_pll_t pll, bool bypass)
PLL bypass setting.

Parameters
* pll- PLL control name (see clock_pll_t enumeration)
* bypass — Bypass the PLL.
— true: Bypass the PLL.
— false:Not bypass the PLL.

status_t CLOCK__CalcAvPlIFreq(clock_av_pll config_t *config, uint32_t freqInMhz)
Calculate corresponding config values per given frequency.

This function calculates config valudes per given frequency for Audio/Video PLL.
Parameters
* config — pll config structure
* freqInMhz — target frequency

status_t CLOCK_ InitAudioPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange,
uint32_t ssMod)

Initializes the Audio PLL with Specific Frequency (in Mhz).
This function initializes the Audio PLL with specific frequency
Parameters
* freqInMhz — target frequency
* ssEnable — enable spread spectrum or not
* ssRange — range spread spectrum range
* ssMod — spread spectrum modulation frequency

void CLOCK_InitAudioPll(const clock_audio_pll_config t *config)
Initializes the Audio PLL.

This function initializes the Audio PLL with specific settings
Parameters
* config — Configuration to set to PLL.

void CLOCK _ DeinitAudioPll(void)
De-initialize the Audio PLL.

2.30. Clock Driver

MCUXpresso SDK Documentation, Release 25.12.00

void CLOCK__GPC_SetAudioPllOutputFreq(const clock_audio_pll_gpc_config t *config)
Set Audio PLL output frequency in GPC mode.

Parameters
* config — Pointer to clock_audio_pll_gpc_config_t structure.

status_t CLOCK _ InitVideoPllWithFreq(uint32_t freqInMhz, bool ssEnable, uint32_t ssRange,
uint32_t ssMod)

Initializes the Video PLL with Specific Frequency (in Mhz).
This function initializes the Video PLL with specific frequency
Parameters
* freqInMhz — target frequency
* ssEnable — enable spread spectrum or not
* ssRange — range spread spectrum range
* ssMod — spread spectrum modulation frequency

void CLOCK InitVideoPll(const clock_video_pll_config t *config)
Initialize the video PLL.

This function configures the Video PLL with specific settings
Parameters
* config — configuration to set to PLL.

void CLOCK_ DeinitVideoPll(void)
De-initialize the Video PLL.

void CLOCK__GPC_SetVideoPllOutputFreq(const clock_video_pll gpc_config_t *config)
Set Video PLL output frequency in GPC mode.

Parameters
* config — Pointer to Vidoe PLL configure structure.

uint32_t CLOCK_ GetPllFreq(clock_pll_t pll)
Get current PLL output frequency.

This function get current output frequency of specific PLL
Parameters
¢ pll - pll name to get frequency.

Returns
The PLL output frequency in hertz.

void CLOCK_InitPfd(clock_pll t pll, clock_pfd_t pfd, uint8_t frac)
Initialize PLL PFD.

This function initializes the System PLL PFD. During new value setting, the clock output is
disabled to prevent glitch.

Note: Itis recommended that PFD settings are kept between 12-35.

Parameters
* pll—- Which PLL of targeting PFD to be operated.
* pfd — Which PFD clock to enable.

398 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

» frac — The PFD FRAC value.

void CLOCK_ DeinitPfd(clock_pll_t pll, clock_pfd_t pfd)
De-initialize selected PLL PFD.

Parameters
* pll—- Which PLL of targeting PFD to be operated.
* pfd — Which PFD clock to enable.

uint32_t CLOCK__GetPfdFreq(clock_pll t pll, clock_pfd_t pfd)
Get current PFD output frequency.

This function get current output frequency of specific System PLL PFD
Parameters
* pll—- Which PLL of targeting PFD to be operated.
 pfd — pfd name to get frequency.

Returns
The PFD output frequency in hertz.

uint32_t CLOCK_ GetFreqFromObs(uint32_t obsSigIndex, uint32_t obsIndex)
bool CLOCK__EnableUsbhs0Clock(clock_ush_src_t src, uint32_t freq)
Enable USB HS clock.

This function only enables the access to USB HS prepheral, upper layer should first call the
CLOCK_EnableUsbhsOPhyPllClock to enable the PHY clock to use USB HS.

Parameters

* stc — USB HS does not care about the clock source, here must be
kCLOCK _UsbSrcUnused.

* freq — USB HS does not care about the clock source, so this parameter is
ignored.

Return values
* true — The clock is set successfully.
* false — The clock source is invalid to get proper USB HS clock.

bool CLOCK_ EnableUsbhs1Clock(clock_ush_src_t src, uint32_t freq)
Enable USB HS clock.

This function only enables the access to USB HS prepheral, upper layer should first call the
CLOCK_EnableUsbhsOPhyPlIClock to enable the PHY clock to use USB HS.

Parameters

* stc — USB HS does not care about the clock source, here must be
kCLOCK_UsbSrcUnused.

* freq — USB HS does not care about the clock source, so this parameter is
ignored.

Return values
* true — The clock is set successfully.
* false — The clock source is invalid to get proper USB HS clock.

bool CLOCK__EnableUsbhsOPhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
Enable USB HS PHY PLL clock.

This function enables the internal 480MHz USB PHY PLL clock.

2.30. Clock Driver 399

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
» src— USB HS PHY PLL clock source.
* freq — The frequency specified by src.
Return values
* true — The clock is set successfully.
* false — The clock source is invalid to get proper USB HS clock.

void CLOCK__DisableUsbhs0PhyPllClock(void)
Disable USB HS PHY PLL clock.

This function disables USB HS PHY PLL clock.

bool CLOCK__EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
Enable USB HS PHY PLL clock.

This function enables the internal 480MHz USB PHY PLL clock.
Parameters
» src— USB HS PHY PLL clock source.
* freq — The frequency specified by src.
Return values
* true — The clock is set successfully.
* false — The clock source is invalid to get proper USB HS clock.

void CLOCK DisableUsbhs1PhyPllClock(void)
Disable USB HS PHY PLL clock.

This function disables USB HS PHY PLL clock.

static inline void CLOCK OSCPLL_ LockControlMode(clock_name_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
* name — Clock source name, see clock_name_t.

static inline void CLOCK_OSCPLL_ LockWhiteList(clock_name_t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
* name — Clock source name, see clock_name t.

static inline void CLOCK OSCPLL_ SetWhiteList(clock_name_t name, uint8_t domainld)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

400 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* name — Clock source name, see clock_name_t.
* domainld — Domains that on the whitelist can change this clock.

static inline bool CLOCK__OSCPLL_ IsSetPointImplemented(clock_name_t name)
Check whether this clock implement SetPoint control scheme.

Parameters
* name — Clock source name, see clock_name t.

Returns
Clock source SetPoint implement status.

* true: SetPoint is implemented.
« false: SetPoint is not implemented.

static inline void CLOCK__OSCPLL_ ControlByUnassignedMode(clock_name_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bhit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock source name, see clock_name _t.

void CLOCK__OSCPLL_ ControlBySetPointMode(clock_name_t name, uint16_t spValue, uint16_t
stbyValue)

Set this clock works in SetPoint control Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock source name, see clock_name_t.

* spValue — Bit0~Bit15 hold value for Setpoint 0~16 respectively. A bitfield
value of 0 implies clock will be shutdown in this Setpoint. A bitfield value
of 1 implies clock will be turn on in this Setpoint.

* stbyValue —Bit0O~Bit15 hold value for Setpoint 0~16 standby. A bitfield value
of 0 implies clock will be shutdown during standby. A bitfield value of 1
represent clock will keep Setpoint setting during standby.

void CLOCK__OSCPLL_ ControlByCpuLowPowerMode(clock_name_t name, uint8_t domainld,
clock_level tlevel0, clock_level tlevell)

Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock source name, see clock_name _t.

* domainld — Domains that on the whitelist can change this clock.

2.30. Clock Driver 401

MCUXpresso SDK Documentation, Release 25.12.00

¢ levell (level0,) — Depend level of this clock.

static inline void CLOCK__OSCPLL_ SetCurrentClockLevel(clock_name_t name, clock_level t
level)

Set clock depend level for current accessing domain.

Note: This setting only take effects in CPU Low Power Mode.

Parameters
* name — Clock source name, see clock_name_t.
* level - Depend level of this clock.

static inline void CLOCK_ OSCPLL_ ControlByDomainMode(clock_name_t name, uint8_t
domainId)

Set this clock works in Domain Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock source name, see clock_name_t.
* domainld — Domains that on the whitelist can change this clock.

static inline void CLOCK_ROOT_ LockControlMode(clock_root_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
* name — Clock root name, see clock_root_t.

static inline void CLOCK_ROOT_ LockWhiteList(clock_root_t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
* name — Clock root name, see clock_root_t.

static inline void CLOCK_ROOT_ SetWhiteList(clock_root_t name, uint8_t domainld)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

Parameters

* name — Clock root name, see clock_root_t.

402 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* domainld — Domains that on the whitelist can change this clock.

static inline bool CLOCK _ROOT _ IsSetPointImplemented(clock_root_t name)
Check whether this clock implement SetPoint control scheme.

Parameters
* name — Clock root name, see clock_root_t.

Returns
Clock root SetPoint implement status.

* true: SetPoint is implemented.
« false: SetPoint is not implemented.

static inline void CLOCK_ROOT__ControlByUnassignedMode(clock_root_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock root name, see clock_root_t.

static inline void CLOCK__ROOT__ConfigSetPoint(clock_root_t name, uint16_t spIndex, const
clock_root_setpoint_config_t *config)

Configure one SetPoint for this clock.

Note: SetPoint value could only be changed in Unassigend Mode.

Parameters
* name — Which clock root to set, see clock_root_t.
* spIndex — Which SetPoint of this clock root to set.
* config — SetPoint config, see clock_root_setpoint_config_t

static inline void CLOCK__ROOT__ EnableSetPointControl(clock_root_t name)
Enable SetPoint control for this clock root.

Note: When LOCK_MODE bhit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock root name, see clock_root_t.

void CLOCK_ROOT_ControlBySetPointMode(clock_root_t name, const
clock_root_setpoint_config t *spTable)

Set this clock works in SetPoint controlled Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters

2.30. Clock Driver 403

MCUXpresso SDK Documentation, Release 25.12.00

* name — Clock root name, see clock_root_t.

* spTable — Point to the array that stores clock root settings for each setpoint.
Note that the pointed array must have 16 elements.

static inline void CLOCK_ROOT__ControlByDomainMode(clock_root_t name, uint8_t domainld)
Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE hit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock root name, see clock_root_t.
* domainld — Domains that on the whitelist can change this clock.

static inline void CLOCK_LPCG_ LockControlMode(clock_Ipcg_t name)
Lock low power and access control mode for this clock.

Note: When this bit is set, bits 16-20 can not be changed until next system reset.

Parameters
* name — Clock gate name, see clock_lpcg_t.

static inline void CLOCK_LPCG_ LockWhiteList(clock_lpcg _t name)
Lock the value of Domain ID white list for this clock.

Note: Once locked, this bit and domain ID white list can not be changed until next system
reset.

Parameters
* name — Clock gate name, see clock_lpcg_t.

static inline void CLOCK_LPCG_ SetWhiteList(clock_Ipcg_t name, uint8_t domainlId)
Set domain ID that can change this clock.

Note: If LOCK_LIST bit is set, domain ID white list can not be changed until next system
reset.

Parameters
» name — Clock gate name, see clock_lpcg_t.
* domainld — Domains that on the whitelist can change this clock.

static inline bool CLOCK LPCG_ IsSetPointImplemented(clock_Ipcg t name)
Check whether this clock implement SetPoint control scheme.

Parameters
* name — Clock gate name, see clock_lpcg_t.

Returns
Clock gate SetPoint implement status.

* true: SetPoint is implemented.

404 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

» false: SetPoint is not implemented.

static inline void CLOCK__LPCG__ControlByUnassignedMode(clock_lpcg_t name)
Set this clock works in Unassigned Mode.

Note: When LOCK_MODE bhit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock gate name, see clock_lpcg_t.

void CLOCK__LPCG_ ControlBySetPointMode(clock_Ipcg_t name, uint16_t spValue, uint16_t
stbyValue)

Set this clock works in SetPoint control Mode.

Note: When LOCK_MODE hit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock gate name, see clock_lpcg_t.

* spValue — Bit0~Bit15 hold value for Setpoint 0~16 respectively. A bitfield
value of 0 implies clock will be shutdown in this Setpoint. A bitfield value
of 1 implies clock will be turn on in this Setpoint.

* stbyValue —Bit0O~Bit15 hold value for Setpoint 0~16 standby. A bitfield value
of 0 implies clock will be shutdown during standby. A bitfield value of 1
represent clock will keep Setpoint setting during standby.

void CLOCK__LPCG_ ControlByCpuLowPowerMode(clock_lpcg_t name, uint8_t domainld,
clock_level tlevel0, clock_level tlevell)

Set this clock works in CPU Low Power Mode.

Note: When LOCK_MODE hit is set, control mode can not be changed until next system
reset.

Parameters
» name — Clock gate name, see clock_lpcg_t.
* domainld — Domains that on the whitelist can change this clock.
* levell (level0,) - Depend level of this clock.

static inline void CLOCK__LPCG_ SetCurrentClockLevel(clock_Ipcg_t name, clock_level t level)
Set clock depend level for current accessing domain.

Note: This setting only take effects in CPU Low Power Mode.

Parameters
» name — Clock gate name, see clock_lpcg_t.

* level - Depend level of this clock.

2.30. Clock Driver 405

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_LPCG__ControlByDomainMode(clock_lpcg _t name, uint8_t domainld)
Set this clock works in Domain Mode.

Note: When LOCK_MODE bit is set, control mode can not be changed until next system
reset.

Parameters
* name — Clock gate name, see clock_lpcg_t.
* domainld — Domains that on the whitelist can change this clock.

static inline void CLOCK_SetClockOutputl(clock_outputl_selection _t selection, uint32_t
divider)

Set the clock source and the divider of the clock outputl.

param selection The clock source to be output, please refer to clock_outputl_selection_t.
param divider The divider of the output clock signal.

static inline void CLOCK _SetClockOutput2(clock_output2_selection_t selection, uint32_t
divider)

Set the clock source and the divider of the clock output2.

param selection The clock source to be output, please refer to clock_output2_selection_t.
param divider The divider of the output clock signal.

static inline uint32_t CLOCK__GetClockOutCLKO1Freq(void)
Get the frequency of clock outputl clock signal.

Returns
The frequency of clock outputl clock signal.

static inline uint32_t CLOCK __GetClockOutClkO2Freq(void)
Get the frequency of clock output2 clock signal.

Returns
The frequency of clock output2 clock signal.

bool clockOff

Turn off the clock.
uint16_t resetDiv

resetDiv + 1 should be common multiple of all dividers, valid range 0 ~ 255.
uint8_t div0

Divide root clock by div0 + 1, valid range: 0 ~ 15.
clock_pll_post_div_t postDivider

Post divider.
uint32_t loopDivider

PLL loop divider. Valid range: 104-208.
uint8_t loopDivider

PLL loop divider. 0 - Fout=Fref*20; 1 - Fout=Fref*22
uint8_t src

Pll clock source, reference _clock_pll_clk_src

uint16_t stop
Spread spectrum stop value to get frequency change.

406 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

uint16_t step
Spread spectrum step value to get frequency change step.

uint32_t mfd

Denominator of spread spectrum
clock_pll_ss_config t *ss

Spread spectrum parameter; it can be NULL, if ssEnable is set to false
bool ssEnable

Enable spread spectrum flag

bool pllDiv2En
Enable Sys PII1 divide-by-2 clock or not.

bool pliDiv5En
Enable Sys PII1 divide-by-5 clock or not.
clock_pll_ss_config t *ss
Spread spectrum parameter; it can be NULL, if ssEnable is set to false
bool ssEnable
Enable spread spectrum flag
uint8_t loopDivider
PLL loop divider. Valid range for DIV_SELECT divider value: 27~54.
uint8_t postDivider
Divider after the PLL, 0x0=divided by 1, 0x1=divided by 2, 0x2=divided by 4, 0x3=divided
by 8, 0x4=divided by 16, 0x5=divided by 32.
uint32_t numerator
30 bit numerator of fractional loop divider.
uint32_t denominator
30 bit denominator of fractional loop divider
clock_pll_ss_config t *ss
Spread spectrum parameter; it can be NULL, if ssEnable is set to false
bool ssEnable
Enable spread spectrum flag
uint8_t loopDivider
PLL loop divider.

uint32_t numerator
30 bit numerator of fractional loop divider.

uint32_t denominator
30 bit denominator of fractional loop divider
clock_pll_ss_config t *ss
Spread spectrum parameter; it can be NULL, if ssEnable is set to false

bool ssEnable
Enable spread spectrum flag

bool enableClkOutput
Power on and enable PLL clock output for ENETO (ref_enetpll0).

bool enableClkOutput25M
Power on and enable PLL clock output for ENET2 (ref_enetpll2).

2.30. Clock Driver 407

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t loopDivider

Controls the frequency of the ENETO reference clock. b00 25MHz b01 50MHz b10 100MHz
(not 50% duty cycle) b11 125MHz

uint8_t src
Pll clock source, reference _clock_pll_clk_src
bool enableClkOutputl
Power on and enable PLL clock output for ENET1 (ref_enetpll1).

uint8_t loopDividerl

Controls the frequency of the ENET1 reference clock. b00 25MHz b01 50MHz b10 100MHz
(not 50% duty cycle) b11 125MHz

bool clockOff

uint8_t mux

See clock_root_mux_source_t for details.
uint8_t div

it’s the actual divider
uint8_t grade

Indicate speed grade for each SetPoint
bool clockOff

uint8_t mux
See clock_root_mux_source_t for details.
uint8_t div
it’s the actual divider
FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.
When set to 0, peripheral drivers will enable clock in initialize function and disable clock in

de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _ clock group_ config
#include <fsl_clock.h> The structure used to configure clock group.

struct _ clock_arm_ pll_ config
#include <fsl_clock.h> PLL configuration for ARM.

The output clock frequency is:
Fout=Fin*loopDivider /(2 * postDivider).
Fin is always 24MHz.

struct _ clock_usb_ pll_config
#include <fsl_clock.h> PLL configuration for USB.

struct _ clock_ pll_ss_ config
#include <fsl_clock.h> Spread specturm configure Pll.

408 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

struct _ clock_sys_pll2_ config
#include <fsl_clock.h> PLL configure for Sys PII2.

struct _ clock_sys_ plll_ config
#include <fsl_clock.h> PLL configure for Sys PII1.

struct _ clock_audio_ pll_config
#include <fsl_clock.h> PLL configuration for AUDIO and VIDEO.

struct _ clock_audio_pll_gpc_ config
#include <fsl_clock.h> PLL configuration fro AUDIO PLL, SYSTEM PLL1 and VIDEO PLL.

struct _ clock_enet_ pll_config
#include <fsl_clock.h> PLL configuration for ENET.

struct _ clock_root_ config t
#include <fsl_clock.h> Clock root configuration.

struct _ clock_root_ setpoint_ config t
#include <fsl_clock.h> Clock root configuration in SetPoint Mode.

2.31 MIPI CSI2 RX: MIPI CSI2 RX Driver

FSL_CSI2RX_ DRIVER_VERSION
CSI2RX driver version.

enum _csi2rx_data_ lane

CSI2RX data lanes.

Values:

enumerator kCSI2RX DataLane0
Data lane 0.

enumerator kCSI2RX_DatalLanel
Data lane 1.

enumerator kCSI2RX _DataLane2
Data lane 2.

enumerator kCSI2RX DataLane3
Data lane 3.

enum _ csi2rx_ payload

CSI2RX payload type.

Values:

enumerator kCSI2RX_PayloadGroupONull
NULL.

enumerator kCSI2RX__ Payload GroupOBlank
Blank.

enumerator kCSI2RX_ PayloadGroupOEmbedded
Embedded.

enumerator kCSI2RX_ PayloadGroup0YUV420_ 8Bit
Legacy YUV420 8 bit.

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 409

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI2RX_ PayloadGroup0YUV422_ 8Bit
YUV422 8 hit.

enumerator kCSI2RX_ PayloadGroup0YUV422_ 10Bit

YUV422 10 bit.

enumerator kCSI2RX_ PayloadGroupORGB444
RGB444.

enumerator kCSI2RX_ PayloadGroupORGB555
RGB555.

enumerator kCSI2RX_PayloadGroupORGB565
RGB565.

enumerator kCSI2RX_PayloadGroupORGB666
RGB666.

enumerator kCSI2RX _PayloadGroupORGBS888
RGB88S.

enumerator kCSI2RX _PayloadGroupORaw6
Raw 6.

enumerator kCSI2RX_PayloadGroupORaw7
Raw 7.

enumerator kCSI2RX_ PayloadGroupORaw8
Raw 8.

enumerator kCSI2RX_ PayloadGroupORaw10
Raw 10.

enumerator kCSI2RX_ PayloadGroupORaw12
Raw 12.

enumerator kCSI2RX_ PayloadGroupORaw14
Raw 14.

enumerator kCSI2RX_PayloadGrouplUserDefined1
User defined 8-bit data type 1, 0x30.
enumerator kCSI2RX_PayloadGrouplUserDefined2
User defined 8-bit data type 2, 0x31.
enumerator kCSI2RX_PayloadGrouplUserDefined3
User defined 8-bit data type 3, 0x32.
enumerator kCSI2RX__ PayloadGrouplUserDefined4
User defined 8-bit data type 4, 0x33.
enumerator kCSI2RX_ PayloadGrouplUserDefined5
User defined 8-bit data type 5, 0x34.
enumerator kCSI2RX_ PayloadGrouplUserDefined6
User defined 8-bit data type 6, 0x35.
enumerator kCSI2RX_ PayloadGrouplUserDefined7
User defined 8-bit data type 7, 0x36.

enumerator kCSI2RX_ PayloadGrouplUserDefined8
User defined 8-bit data type 8, 0x37.

410

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _ csi2rx_ bit_error
MIPI CSI2RX bit errors.

Values:

enumerator kCSI2RX BitErrorEccTwoBit
ECC two bit error has occurred.

enumerator kCSI2RX BitErrorEccOneBit
ECC one bit error has occurred.

enum _ csi2rx_ ppi_ error
MIPI CSI2ZRX PPI error types.

Values:

enumerator kCSI2RX_PpiErrorSotHs
CSI2ZRX DPHY PPI error ErrSotHS.

enumerator kCSI2RX_ PpiErrorSotSyncHs
CSI2RX DPHY PPI error ErrSotSync_HS.

enumerator kCSI2RX_ PpiErrorEsc
CSI2RX DPHY PPI error ErrEsc.

enumerator kCSI2RX_ PpiErrorSyncEsc
CSI2RX DPHY PPI error ErrSyncEsc.

enumerator kCSI2RX_ PpiErrorControl
CSI2RX DPHY PPI error ErrControl.

enum _ csi2rx_ interrupt
MIPI CSI2ZRX interrupt.

Values:

enumerator kCSI2RX_ InterruptCrcError
enumerator kCSI2RX _InterruptEccOneBitError
enumerator kCSI2RX_ InterruptEccTwoBitError
enumerator kCSI2RX_ InterruptUlpsStatusChange
enumerator kCSI2RX_ InterruptErrorSotHs
enumerator kCSI2RX_ InterruptErrorSotSyncHs
enumerator kCSI2RX_InterruptErrorEsc
enumerator kCSI2RX_ InterruptErrorSyncEsc
enumerator kCSI2RX_ InterruptErrorControl

enum _ csi2rx_ ulps_ status
MIPI CSI2RX D-PHY ULPS state.
Values:

enumerator kCSI2RX ClockLaneUlps
Clock lane is in ULPS state.

enumerator kCSI2RX_DataLaneQUlps
Data lane 0 is in ULPS state.

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 411

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI2RX_DataLanel Ulps
Data lane 1 is in ULPS state.

enumerator kCSI2RX_DataLane2Ulps
Data lane 2 is in ULPS state.

enumerator kCSI2RX_DataLane3Ulps
Data lane 3 is in ULPS state.

enumerator kCSI2RX ClockLaneMark
Clock lane is in mark state.

enumerator kCSI2RX DataLaneOMark
Data lane 0 is in mark state.

enumerator kCSI2RX DataLanelMark
Data lane 1 is in mark state.

enumerator kCSI2RX DataLane2Mark
Data lane 2 is in mark state.

enumerator kCSI2RX DataLane3Mark
Data lane 3 is in mark state.

typedef struct _csi2rx_config csi2rx_ config t
CSI2RX configuration.

typedef enum _csi2rx_ppi_error csi2rx_ppi_error_t
MIPI CSI2ZRX PPI error types.

void CSI2RX_ Init(MIPI_CSI2RX_Type *base, const csi2rx_config_t *config)
Enables and configures the CSI2RX peripheral module.

Parameters
* base — CSI2RX peripheral address.
* config — CSI2RX module configuration structure.

void CSI2RX_ Deinit(MIPI_CSI2ZRX_Type *base)
Disables the CSI2RX peripheral module.

Parameters
* base — CSI2RX peripheral address.

static inline uint32_t CSI2RX_ GetBitError(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX bit error status.

This function gets the RX bit error status, the return value could be compared with
_csi2rx_bit_error. If one bit ECC error detected, the return value could be passed to the
function CSI2RX_GetEccBitErrorPosition to get the position of the ECC error bit.

Example:

uint32_t bitError;
uint32_t bitErrorPosition;

bitError = CSI2RX__GetBitError(MIPI__CSI2RX);
if (kCSI2RX_ BitErrorEccTwoBit & bitError)
{

Two bits error;

else if (kCSI2RX_ BitErrorEccOneBit & bitError)
(continues on next page)

412 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

{

One bits error;
bitErrorPosition = CSI2RX GetEccBitErrorPosition(bitError);

}

Parameters
* base — CSI2ZRX peripheral address.

Returns
The RX bit error status.

static inline uint32_t CSI2RX_ GetEccBitErrorPosition(uint32_t bitError)
Get ECC one bit error bit position.

If CSI2RX_GetBitError detects ECC one bit error, this function could extract the error bit
position from the return value of CSI2RX_GetBitError.

Parameters
* bitError — The bit error returned by CSI2RX_GetBitError.

Returns
The position of error bit.

static inline uint32_t CSI2RX_ GetUlpsStatus(MIPI_CSI2RX_Type *base)
Gets the MIPI CSI2RX D-PHY ULPS status.

Example to check whether data lane 0 is in ULPS status.

uint32_t status = CSI2RX__ GetUlpsStatus(MIPI_CSI2RX);
if (kCSI2RX_ DataLaneOUlps & status)

Data lane 0 is in ULPS status.

}

Parameters
* base — CSI2RX peripheral address.

Returns
The MIPI CSI2RX D-PHY ULPS status, it is OR’ed value or _csi2rx_ulps_status.

static inline uint32_t CSI2RX_ GetPpiErrorDataLanes(MIPI_CSI2RX_Type *base,
csi2rx_ppi_error_t errorType)

Gets the MIPI CSI2RX D-PHY PPI error lanes.

This function checks the PPI error occurred on which data lanes, the returned value is OR’ed
value of csi2rx_ppi_error_t. For example, if the ErrSotHS is detected, to check the ErrSotHS
occurred on which data lanes, use like this:

uint32_t errorDatalLanes = CSI2RX__GetPpiErrorDataLanes(MIPI__CSI2RX, kCSI2RX__
—PpiErrorSotHs);

if (kCSI2RX_DataLane0 & errorDataLanes)

ErrSotHS occurred on data lane 0.

}

if (kCSI2RX DatalLanel & errorDataLanes)

ErrSotHS occurred on data lane 1.

}

2.31. MIPI CSI2 RX: MIPI CSI2 RX Driver 413

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — CSI2ZRX peripheral address.
¢ errorType — What kind of error to check.

Returns
The data lane mask that error errorType occurred.

static inline void CSI2RX_ EnableInterrupts(MIPI_CSI2ZRX_Type *base, uint32_t mask)
Enable the MIPI CSI2RX interrupts.

This function enables the MIPI CSI2RX interrupts. The interrupts to enable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to enable one bit and two bit ECC error
interrupts, use like this:

CSI2RX__EnableInterrupts(MIPI__CSI2RX, kCSI2RX_ InterruptEccOneBitError | kCSI2RX__
< InterruptEccTwoBitError);

Parameters
* base — CSI2RX peripheral address.
» mask — OR’ed value of _csi2rx_interrupt.

static inline void CSI2RX_DisableInterrupts(MIPI_CSI2RX_Type *base, uint32_t mask)
Disable the MIPI CSI2RX interrupts.

This function disables the MIPI CSI2RX interrupts. The interrupts to disable are passed in as
an OR’ed value of _csi2rx_interrupt. For example, to disable one bit and two bit ECC error
interrupts, use like this:

CSI2RX_ DisableInterrupts(MIPI__CSI2RX, kCSI2RX_ InterruptEccOneBitError | kCSI2RX__
< InterruptEccTwoBitError);

Parameters
* base — CSI2RX peripheral address.
» mask — OR’ed value of _csi2rx_interrupt.

static inline uint32_t CSI2RX__GetInterruptStatus(MIPI_CSI2RX_Type *base)
Get the MIPI CSI2RX interrupt status.

This function returns the MIPI CSI2RX interrupts status as an OR’ed value of
_csi2rx_interrupt.

Parameters
* base — CSI2RX peripheral address.

Returns
OR’ed value of _csi2rx_interrupt.

CSI2RX_REG_CFG_NUM_LANES(base)
CSI2RX_REG_CFG_DISABLE DATA_LANES(base)
CSI2RX_REG_BIT_ERR(base)
CSI2RX_REG_TRQ_STATUS(base)
CSI2RX_REG_TRQ_MASK (base)

CSI2RX_REG_ULPS_ STATUS(base)

414 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

CSI2RX_REG_PPI_ERRSOT__HS(base)
CSI2RX_REG_PPI_ERRSOTSYNC_HS(base)
CSI2RX_REG_PPI_ERRESC(base)
CSI2RX_REG_PPI_ERRSYNCESC(base)
CSI2RX_REG_PPI_ERRCONTROL(base)
CSI2RX_REG_CFG_DISABLE_PAYLOAD_ 0(base)
CSI2RX_REG_CFG_DISABLE_PAYLOAD_ 1(base)
CSI2RX_REG_CFG_IGNORE_VC(base)
CSI2RX_REG_CFG_VID_VC(base)

CSI2RX_ REG_CFG_VID_P_FIFO SEND LEVEL(base)
CSI2RX_REG_CFG_VID_VSYNC(base)
CSI2RX_REG_CFG_VID_HSYNC_FP(base)
CSI2RX_REG_CFG_VID HSYNC(base)
CSI2RX_REG_CFG_VID HSYNC_BP(base)
MIPI_CSI2RX__CSI2RX_ CFG_NUM_LANES_csi2rx_cfg num_lanes MASK
MIPI_CSI2RX__CSI2RX_IRQ_MASK_ csi2rx_irq mask MASK

struct _ csi2rx_ config
#include <fsl_mipi_csi2rx.h> CSI2RX configuration.

Public Members

uint8_t laneNum
Number of active lanes used for receiving data.

uint8_t tHsSettle EscClk

Number of rx_clk_esc clock periods for T_HS_SETTLE. The T_HS_SETTLE should be in

the range of 85ns + 6UI to 145ns + 10UL.

2.32 CSI: CMOS Sensor Interface

status_t CSI_Init(CSI_Type *base, const csi_config t *config)
Initialize the CSI.

This function enables the CSI peripheral clock, and resets the CSI registers.

Parameters

* base — CSI peripheral base address.

* config — Pointer to the configuration structure.
Return values

* kStatus_ Success — Initialize successfully.

* kStatus_ InvalidArgument — Initialize failed because of invalid argument.

2.32. CSI: CMOS Sensor Interface

415

MCUXpresso SDK Documentation, Release 25.12.00

void CSI_ Deinit(CSI_Type *base)
De-initialize the CSI.

This function disables the CSI peripheral clock.
Parameters
* base — CSI peripheral base address.

void CSI_Reset(CSI_Type *base)
Reset the CSI.

This function resets the CSI peripheral registers to default status.
Parameters
* base — CSI peripheral base address.

void CSI_ GetDefaultConfig(csi_config_t *config)
Get the default configuration for to initialize the CSIL

The default configuration value is:

config->width = 320U;

config->height = 240U;

config->polarityFlags = kCSI_ HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
config->bytesPerPixel = 2U;

config->linePitch_ Bytes = 320U * 2U;

config->workMode = kCSI__GatedClockMode;

config->dataBus = kCSI_ DataBus8Bit;

config->useExtVsync = true;

Parameters
* config — Pointer to the CSI configuration.

void CSI_ ClearFifo(CSI_Type *base, csi_fifo_t fifo)
Clear the CSI FIFO.

This function clears the CSI FIFO.
Parameters
* base — CSI peripheral base address.
* fifo — The FIFO to clear.

void CSI_ ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo)
Reflash the CSI FIFO DMA.

This function reflashes the CSI FIFO DMA.

For RXFIFO, there are two frame buffers. When the CSI module started, it saves the frames
to frame buffer 0 then frame buffer 1, the two buffers will be written by turns. After reflash
DMA using this function, the CSI is reset to save frame to buffer 0.

Parameters
* base — CSI peripheral base address.
¢ fifo — The FIFO DMA to reflash.

void CSI_ EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable)
Enable or disable the CSI FIFO DMA request.

Parameters
* base — CSI peripheral base address.
* fifo — The FIFO DMA reques to enable or disable.

416 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* enable — True to enable, false to disable.

static inline void CSI_ Start(CSI_Type *base)
Start to receive data.

Parameters
* base — CSI peripheral base address.

static inline void CSI_ Stop(CSI_Type *base)
Stop to receiving data.

Parameters
* base — CSI peripheral base address.

void CSI_ SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr)
Set the RX frame buffer address.

Parameters
* base — CSI peripheral base address.
* index — Buffer index.
* addr — Frame buffer address to set.

void CSI_ EnableInterrupts(CSI_Type *base, uint32_t mask)
Enables CSI interrupt requests.

Parameters
* base — CSI peripheral base address.

* mask - The interrupts to enable, pass in as ORed value of
_csi_interrupt_enable.

void CSI_ DisableInterrupts(CSI_Type *base, uint32_t mask)
Disable CSI interrupt requests.

Parameters
* base — CSI peripheral base address.

* mask — The interrupts to disable, pass in as ORed value of
_csi_interrupt_enable.

static inline uint32_t CSI_ GetStatusFlags(CSI_Type *base)
Gets the CSI status flags.

Parameters
* base — CSI peripheral base address.

Returns
status flag, it is OR’ed value of _csi_flags.

static inline void CSI_ ClearStatusFlags(CSI_Type *base, uint32_t statusMask)
Clears the CSI status flag.

The flags to clear are passed in as OR’ed value of _csi_flags. The following flags are cleared
automatically by hardware:

* kCSI_RxFifoFullFlag,
* kCSI_StatFifoFullFlag,
* kCSI_FieldOPresentFlag,

2.32. CSI: CMOS Sensor Interface 417

MCUXpresso SDK Documentation, Release 25.12.00

* kCSI_Field1PresentFlag,
* kCSI_RxFifoDataReadyFlag,

Parameters
* base — CSI peripheral base address.
* statusMask — The status flags mask, OR’ed value of _csi_flags.

status_t CSI_ TransferCreateHandle(CSI_Type *base, csi_handle_t *handle, csi_transfer_callback_t
callback, void *userData)

Initializes the CSI handle.

This function initializes CSI handle, it should be called before any other CSI transactional
functions.

Parameters
* base — CSI peripheral base address.
* handle — Pointer to the handle structure.
* callback — Callback function for CSI transfer.
* userData — Callback function parameter.

Return values
kStatus_ Success — Handle created successfully.

status_t CSI__TransferStart(CSI_Type *base, csi_handle_t *handle)
Start the transfer using transactional functions.

When the empty frame buffers have been submit to CSI driver using function
CSI_TransferSubmitEmptyBuffer, user could call this function to start the transfer. The in-
coming frame will be saved to the empty frame buffer, and user could be optionally notified
through callback function.

Parameters

* base — CSI peripheral base address.

* handle — Pointer to the handle structure.
Return values

* kStatus_ Success — Started successfully.

* kStatus_ CSI_NoEmptyBuffer — Could not start because no empty frame
buffer in queue.

status_t CSI_ TransferStop(CSI_Type *base, csi_handle_t *handle)
Stop the transfer using transactional functions.

The driver does not clean the full frame buffers in queue. In other words, after call-
ing this function, user still could get the full frame buffers in queue using function
CSI_TransferGetFullBuffer.

Parameters
* base — CSI peripheral base address.
* handle — Pointer to the handle structure.

Return values
kStatus_ Success — Stoped successfully.

418 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

status_t CSI__TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t
frameBuffer)

Submit empty frame buffer to queue.

This function could be called before CSI_TransferStart or after CSI_TransferStart. If there
is no room in queue to store the empty frame buffer, this function returns error.

Parameters

* base — CSI peripheral base address.

* handle — Pointer to the handle structure.

* frameBuffer - Empty frame buffer to submit.
Return values

* kStatus_ Success — Started successfully.

e kStatus CSI QueueFull — Could not submit because there is no room in
queue.

status_t CSI_ TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer)
Get one full frame buffer from queue.

After the transfer started using function CSI_TransferStart, the incoming frames will be
saved to the empty frame buffers in queue. This function gets the full-filled frame buffer
from the queue. If there is no full frame buffer in queue, this function returns error.

Parameters
* base — CSI peripheral base address.
* handle — Pointer to the handle structure.
* frameBuffer — Full frame buffer.
Return values
* kStatus_ Success — Started successfully.
* kStatus_ CSI__NoFullBuffer — There is no full frame buffer in queue.

void CSI_ TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle)
CSIIRQ handle function.

This function handles the CSI IRQ request to work with CSI driver transactional APIs.
Parameters
* base — CSI peripheral base address.
* handle — CSI handle pointer.
FSL_CSI_DRIVER_ VERSION

Error codes for the CSI driver.
Values:

enumerator kStatus_ CSI_ NoEmptyBuffer
No empty frame buffer in queue to load to CSI.

enumerator kStatus CSI_NoFullBuffer
No full frame buffer in queue to read out.

enumerator kStatus_ CSI_ QueueFull
Queue is full, no room to save new empty buffer.

2.32. CSI: CMOS Sensor Interface 419

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_ CSI_FrameDone
New frame received and saved to queue.

enum _csi_work mode
CSI work mode.

The CCIR656 interlace mode is not supported currently.
Values:

enumerator kCSI_ GatedClockMode
HSYNC, VSYNC, and PIXCLK signals are used.

enumerator kCSI_ NonGatedClockMode
VSYNC, and PIXCLK signals are used.

enumerator kCSI_ CCIR656ProgressiveMode
CCIR656 progressive mode.

enum csi_data_bus
CSI data bus witdh.

Values:

enumerator kCSI_ DataBus8Bit
8-bit data bus.

enumerator kCSIDataBus16Bit
16-bit data bus.

enumerator kCSI DataBus24Bit
24-bit data bus.

enum _csi_ polarity_flags
CSI signal polarity.

Values:

enumerator kCSI__HsyncActiveLow
HSYNC is active low.

enumerator kCSI__HsyncActiveHigh
HSYNC is active high.

enumerator kCSI_ DatalLatchOnRisingEdge
Pixel data latched at rising edge of pixel clock.

enumerator kCSI_ DataLatchOnFallingEdge
Pixel data latched at falling edge of pixel clock.

enumerator kCSI_ VsyncActiveHigh
VSYNC is active high.

enumerator kCSI_ VsyncActiveLow
VSYNC is active low.

enum _csi_fifo
The CSI FIFO, used for FIFO operation.

Values:

enumerator kCSI_RxFifo
RXFIFO.

420 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI_StatFifo
STAT FIFO.

enumerator kCSI_AllFifo
Both RXFIFO and STAT FIFO.

enum _ csi_ interrupt__enable
CSI feature interrupt source.

Values:

enumerator kCSI_EndOfFramelnterruptEnable
End of frame interrupt enable.

enumerator kCSI_ ChangeOfFieldInterruptEnable
Change of field interrupt enable.

enumerator kCSI__StatFifoOverrunlnterruptEnable
STAT FIFO overrun interrupt enable.

enumerator kCSI_ RxFifoOverrunInterruptEnable
RXFIFO overrun interrupt enable.

enumerator kCSI__StatFifoDmaDonelnterruptEnable
STAT FIFO DMA done interrupt enable.

enumerator kCSI__StatFifoFulllnterruptEnable
STAT FIFO full interrupt enable.

enumerator kCSI_ RxBufferlDmaDonelnterrupt Enable
RX frame buffer 1 DMA transfer done.

enumerator kCSI_ RxBuffer0DmaDonelnterrupt Enable
RX frame buffer 0 DMA transfer done.

enumerator kCSI_ RxFifoFulllnterruptEnable
RXFIFO full interrupt enable.

enumerator kCSI__StartOfFramelnterruptEnable
Start of frame (SOF) interrupt enable.

enumerator kCSI_ EccErrorInterruptEnable
ECC error detection interrupt enable.

enumerator kCSI_ AhbResErrorInterruptEnable
AHB response Error interrupt enable.

enumerator kCSI_ BaseAddrChangeErrorInterruptEnable
The DMA output buffer base address changes before DMA completed.

enumerator kCSI_ FieldODonelnterruptEnable
Field 0 done interrupt enable.

enumerator kCSI_Field1DonelnterruptEnable
Field 1 done interrupt enable.

enum _ csi_ flags
CSI status flags.

The following status register flags can be cleared:
* kCSI_EccErrorFlag
* kKCSI_AhbResErrorFlag

2.32. CSI: CMOS Sensor Interface 421

MCUXpresso SDK Documentation, Release 25.12.00

kCSI_ChangeOfFieldFlag
kCSI_StartOfFrameFlag
kCSI_EndOfFrameFlag
kCSI_RxBuffer1DmaDoneFlag
kCSI_RxBuffer0DmaDoneFlag
kCSI_StatFifoDmaDoneFlag
kCSI_StatFifoOverrunFlag
kCSI_RxFifoOverrunFlag
kCSI_FieldODoneFlag
kCSI_Field1DoneFlag

* kCSI_BaseAddrChangeErrorFlag

Values:

enumerator kCSI_ RxFifoDataReadyFlag
RXFIFO data ready.

enumerator kCSI__EccErrorFlag
ECC error detected.

enumerator kCSI__ AhbResErrorFlag
Hresponse (AHB bus response) Error.

enumerator kCSI__ ChangeOfFieldFlag
Change of field.

enumerator kCSI_ FieldOPresentFlag
Field 0 present in CCIR mode.

enumerator kCSI_ Field1PresentFlag
Field 1 present in CCIR mode.

enumerator kCSI_StartOfFrameFlag
Start of frame (SOF) detected.

enumerator kCSI__EndOfFrameFlag
End of frame (EOF) detected.

enumerator kCSI_ RxFifoFullFlag

RXFIFO full (Number of data reaches trigger level).

enumerator kCSI_ RxBufferlDmaDoneFlag
RX frame buffer 1 DMA transfer done.

enumerator kCSI_ RxBuffer0DmaDoneFlag
RX frame buffer 0 DMA transfer done.

enumerator kCSI_StatFifoFullFlag
STAT FIFO full (Reach trigger level).

enumerator kCSI_StatFifoDmaDoneFlag
STAT FIFO DMA transfer done.

enumerator kCSI_StatFifoOverrunFlag
STAT FIFO overrun.

422

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCSI_ RxFifoOverrunFlag
RXFIFO overrun.

enumerator kCSI_ Field0DoneFlag
Field O transfer done.

enumerator kCSI_ Field1DoneFlag
Field 1 transfer done.

enumerator kCSI_ BaseAddrChangeErrorFlag
The DMA output buffer base address changes before DMA completed.

typedef enum _csi_ work_mode csi_ work mode_t
CSI work mode.

The CCIR656 interlace mode is not supported currently.

typedef enum _csi_data_bus csi_data_bus_t
CSI data bus witdh.

typedef struct _csi_config csi_ config_t
Configuration to initialize the CSI module.

typedef enum _csi_fifo csi_ fifo_t
The CSI FIFO, used for FIFO operation.

typedef struct _csi_handle csi_handle_t

typedef void (*csi_ transfer callback t)(CSI_Type *base, csi_handle_t *handle, status_t status,
void *userData)

CSI transfer callback function.

When a new frame is received and saved to the frame buffer queue, the callback is called
and the pass the status kStatus_CSI_FrameDone to upper layer.

CSI_REG_ CR1(base)
CSI_REG__CR2(base)
CSI_REG_ CR3(base)
CSI_REG__CR18(base)
CSI_REG_SR(base)
CSI_REG_DMASA_FBIl(base)
CSI_REG_DMASA_FB2(base)
CSI_REG_IMAG_PARA(base)
CSI_REG_FBUF_PARA(base)

CSI_DRIVER_QUEUE_SIZE
Size of the frame buffer queue used in CSI transactional function.

CSI_DRIVER_FRAG_MODE
Enable fragment capture function or not.

CSI_CR1_INT EN_MASK
CSI_CR3_INT_EN_MASK
CSI_CR18 INT_ EN_ MASK

struct _ csi_ config
#include <fsl_csi.h> Configuration to initialize the CSI module.

2.32. CSI: CMOS Sensor Interface 423

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
uint16_t width
Pixels of the input frame.

uint16_t height
Lines of the input frame.

uint32_t polarityFlags
Timing signal polarity flags, OR’ed value of _csi_polarity_flags.

uint8_t bytesPerPixel
Bytes per pixel, valid values are:

» 2: Used for RGB565, YUV422, and so on.
* 4: Used for XRGB8888, XYUV444, and so on.

uint16_t linePitch_ Bytes
Frame buffer line pitch, must be 8-byte aligned.

csi_work_mode_t workMode
CSI work mode.

csi_data_bus_t dataBus
Data bus width.

bool useExtVsync

In CCIR656 progressive mode, set true to use external VSYNC signal, set false to use
internal VSYNC signal decoded from SOF.

struct buf _queue_ t
#include <fsl_csi.h>

struct csi handle
#include <fsl_csi.h> CSI handle structure.

Please see the user guide for the details of the CSI driver queue mechanism.

Public Members
volatile uint8_t activeBufferNum
How many frame buffers are in progress currently.

volatile uint8_t dmaDoneBufferIdx
Index of the current full-filled framebuffer.

volatile bool transferStarted
User has called CSI_TransferStart to start frame receiving.

csi_transfer_callback_t callback
Callback function.

void *userData
CSI callback function parameter.

2.33 DAC12: 12-bit Digital-to-Analog Converter Driver

424 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void DAC12_ GetHardwareInfo(DAC_Type *base, dac12_hardware_info_t *info)
Get hardware information about this module.

Parameters
* base — DAC12 peripheral base address.
* info — Pointer to info structure, see to dac12_hardware_info _t.

void DAC12_Init(DAC_Type *base, const dac12_config t *config)
Initialize the DAC12 module.

Parameters
* base — DAC12 peripheral base address.
* config — Pointer to configuration structure, see to dac12_config_t.

void DAC12_GetDefaultConfig(dac12_config_t *config)
Initializes the DAC12 user configuration structure.

This function initializes the user configuration structure to a default value. The default
values are:

config->fifoWatermarkLevel = 0U;

config->fifoWorkMode = kDAC12_FIFODisabled;
config->referenceVoltageSource = kDAC12_ ReferenceVoltageSourceAlt1;
config->fifoTriggerMode = kDAC12_ FIFOTriggerByHardwareMode;
config->referenceCurrentSource = kDAC12_ReferenceCurrentSourceAlt0;
config->speedMode = kDAC12_ SpeedLowMode;

config->speedMode = false;

config->currentReferencelnternal TrimValue = 0x4;

Parameters
* config — Pointer to the configuration structure. See “dac12_config_t”.

void DAC12_ Deinit(DAC_Type *base)
De-initialize the DAC12 module.

Parameters
* base — DAC12 peripheral base address.

static inline void DAC12_ Enable(DAC_Type *base, bool enable)
Enable the DAC12’s converter or not.

Parameters
* base — DAC12 peripheral base address.
* enable — Enable the DAC12’s converter or not.

static inline void DAC12_ ResetConfig(DAC_Type *base)
Reset all internal logic and registers.

Parameters
* base — DAC12 peripheral base address.

static inline void DAC12_ ResetFIFO(DAC_Type *base)
Reset the FIFO pointers.

FIFO pointers should only be reset when the DAC12 is disabled. This function can be used
to configure both pointers to the same address to reset the FIFO as empty.

Parameters

* base — DAC12 peripheral base address.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver 425

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t DAC12_ GetStatusFlags(DAC_Type *base)
Get status flags.

Parameters
* base — DAC12 peripheral base address.

Returns
Mask of current status flags. See to _dac12_status_flags.

static inline void DAC12_ ClearStatusFlags(DAC_Type *base, uint32_t flags)
Clear status flags.

Note: Not all the flags can be cleared by this API. Several flags need special condition to
clear them according to target chip’s reference manual document.

Parameters
* base — DAC12 peripheral base address.
* flags — Mask of status flags to be cleared. See to _dac12_status_flags.

static inline void DAC12_ EnableInterrupts(DAC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
* base — DAC12 peripheral base address.

* mask — Mask value of interrupts to be enabled. See to
_dac12_interrupt_enable.

static inline void DAC12_ DisableInterrupts(DAC_Type *base, uint32_t mask)
Disable interrupts.
Parameters
* base — DAC12 peripheral base address.

* mask - Mask value of interrupts to be disabled. See to
_dac12_interrupt_enable.
static inline void DAC12_ EnableDMA (DAC_Type *base, bool enable)
Enable DMA or not.
When DMA is enabled, the DMA request will be generated by original interrupts. The in-
terrupts will not be presented on this module at the same time.
static inline void DAC12_ SetData(DAC_Type *base, uint32_t value)
Set data into the entry of FIFO buffer.
When the DAC FIFO is disabled, and the one entry buffer is enabled, the DAC converts the
data in the buffer to analog output voltage. Any write to the DATA register will replace the
data in the buffer and push data to analog conversion without trigger support. When the

DAC FIFO is enabled. Writing data would increase the write pointer of FIFO. Also, the data
would be restored into the FIFO buffer.

Parameters
* base — DAC12 peripheral base address.
* value — Setting value into FIFO buffer.

static inline void DAC12 DoSoftwareTrigger(DAC_Type *base)
Do trigger the FIFO by software.
When the DAC FIFO is enabled, and software trigger is used. Doing trigger would increase

the read pointer, and the data in the entry pointed by read pointer would be converted as
new output.

426 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — DAC12 peripheral base address.

static inline uint32_t DAC12_ GetFIFOReadPointer(DAC_Type *base)
Get the current read pointer of FIFO.

Parameters
* base — DAC12 peripheral base address.

Returns
Read pointer index of FIFO buffer.

static inline uint32_t DAC12_ GetFIFOWritePointer(DAC_Type *base)
Get the current write pointer of FIFO.

Parameters
* base — DAC12 peripheral base address.

Returns
Write pointer index of FIFO buffer

FSL DAC12_ DRIVER_VERSION
DAC12 driver version 2.1.2.

enum _ dacl2_status_ flags
DAC12 flags.

Values:

enumerator kDAC12_ OverflowFlag

FIFO overflow status flag, which indicates that more data has been written into FIFO

than it can hold.
enumerator kDAC12_ UnderflowFlag

FIFO underflow status flag, which means that there is a new trigger after the FIFO is

nearly empty.

enumerator kDAC12_ WatermarkFlag

FIFO wartermark status flag, which indicates the remaining FIFO data is less than the

watermark setting.

enumerator kDAC12_ NearlyEmptyFlag

FIFO nearly empty flag, which means there is only one data remaining in FIFO.

enumerator kDAC12_ FullFlag

FIFO full status flag, which means that the FIFO read pointer equals the write pointer,

as the write pointer increase.

enum _ dacl2_interrupt_ enable
DAC12 interrupts.

Values:

enumerator kDAC12_UnderOrOverflowInterruptEnable
Underflow and overflow interrupt enable.

enumerator kDAC12_ WatermarkInterruptEnable
Watermark interrupt enable.

enumerator kDAC12_ NearlyEmptyInterruptEnable
Nearly empty interrupt enable.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver

427

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDAC12_ FulllnterruptEnable
Full interrupt enable.
enum dacl2 fifo size info
DAC12 FIFO size information provided by hardware.
Values:
enumerator kDAC12 FIFOSize2
FIFO depth is 2.
enumerator kDAC12_ FIFOSize4
FIFO depth is 4.

enumerator kDAC12 FIFOSize8
FIFO depth is 8.

enumerator kDAC12 FIFOSizel6
FIFO depth is 16.

enumerator kDAC12 FIFOSize32
FIFO depth is 32.

enumerator kDAC12 FIFOSize64
FIFO depth is 64.

enumerator kDAC12 FIFOSizel28
FIFO depth is 128.

enumerator kDAC12 FIFOSize256
FIFO depth is 256.

enum dacl2 fifo work mode
DAC12 FIFO work mode.

Values:

enumerator kDAC12_ FIFODisabled
FIFO disabled and only one level buffer is enabled. Any data written from this buffer
goes to conversion.

enumerator kDAC12 FIFOWorkAsNormalMode
Data will first read from FIFO to buffer then go to conversion.

enumerator kDAC12_FIFOWorkAsSwingMode

In Swing mode, the FIFO must be set up to be full. In Swing back mode, a trigger
changes the read pointer to make it swing between the FIFO Full and Nearly Empty
state. That is, the trigger increases the read pointer till FIFO is nearly empty and de-
creases the read pointer till the FIFO is full.

enum _dacl2 reference voltage source
DAC12 reference voltage source.

Values:

enumerator kDAC12_ ReferenceVoltageSourceAlt1
The DAC selects DACREF_1 as the reference voltage.

enumerator kDAC12_ ReferenceVoltageSourceAlt2
The DAC selects DACREF_2 as the reference voltage.

enum _dacl2_fifo_ trigger mode
DAC12 FIFO trigger mode.

Values:

428 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDAC12_FIFOTriggerByHardwareMode
Buffer would be triggered by hardware.

enumerator kDAC12_FIFOTriggerBySoftwareMode
Buffer would be triggered by software.

enum _dacl2 reference current_source
DAC internal reference current source.
Analog module needs reference current to keep working . Such reference current can
generated by IP itself, or by on-chip PMC’s “reference part”. If no current reference
be selected, analog module can’t working normally ,even when other register can still

be assigned, DAC would waste current but no function. To make the DAC work, either
kDAC12_ReferenceCurrentSourceAltx should be selected.

Values:

enumerator kDAC12 ReferenceCurrentSourceDisabled
None of reference current source is enabled.

enumerator kDAC12 ReferenceCurrentSourceAlt0
Use the internal reference current generated by the module itself.

enumerator kDAC12 ReferenceCurrentSourceAltl
Use the ZTC(Zero Temperature Coefficient) reference current generated by on-chip
power management module.

enumerator kDAC12 ReferenceCurrentSourceAlt2
Use the PTAT(Proportional To Absolution Temperature) reference current generated
by power management module.

enum _ dacl2_speed_mode
DAC analog buffer speed mode for conversion.

Values:

enumerator kDAC12_ SpeedLowMode
Low speed mode.

enumerator kDAC12_ SpeedMiddleMode
Middle speed mode.

enumerator kDAC12_ SpeedHighMode
High speed mode.

typedef enum _dac12_fifo_size_info dac12_fifo_size_info_t
DAC12 FIFO size information provided by hardware.

typedef enum _dac12_fifo work_mode dacl12_fifo_ work_mode_t
DAC12 FIFO work mode.

typedef enum _dac12_reference_voltage_source dacl12_reference_ voltage_source_t
DAC12 reference voltage source.

typedef enum _dac12_fifo_trigger_mode dacl12_ fifo_trigger_ mode_t
DAC12 FIFO trigger mode.

typedef enum _dac12_reference_current_source dac12_reference_ current_source_t
DAC internal reference current source.

Analog module needs reference current to keep working . Such reference current can
generated by IP itself, or by on-chip PMC’s “reference part”. If no current reference
be selected, analog module can’t working normally ,even when other register can still
be assigned, DAC would waste current but no function. To make the DAC work, either
kDAC12_ReferenceCurrentSourceAltx should be selected.

2.33. DAC12: 12-bit Digital-to-Analog Converter Driver 429

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _dac12_speed_mode dacl12_speed__mode_t
DAC analog buffer speed mode for conversion.

typedef struct _dac12_hardware_info dac12_hardware_info_t
DAC12 hardware information.

DAC12. CR_WI1C_FLAGS MASK
Define “write 1 to clear” flags.

DAC12 CR_ALL FLAGS MASK
Define all the flag bits in DACx_CR register.

struct dacl2 hardware info
#include <fsl_dac12.h> DAC12 hardware information.

Public Members
dac12_fifo_size_info_t fifoSizelnfo
The number of words in this device’s DAC buffer.

struct dacl12_ config_t
#include <fsl_dac12.h> DAC12 module configuration.

Actually, the most fields are for FIFO buffer.

Public Members
uint32_t fifoWatermarkLevel
FIFO’s watermark, the max value can be the hardware FIFO size.

dac12_fifo_work_mode_t fifoWorkMode
FIFI’s work mode about pointers.

dac12_reference_voltage_source_t referenceVoltageSource
Select the reference voltage source.

dac12_reference_current_source_t referenceCurrentSource
Select the trigger mode for FIFO. Select the reference current source.

dac12_speed_mode_t speedMode
Select the speed mode for conversion.

bool enableAnalogBuffer
Enable analog buffer for high drive.

2.34 Dcdc_soc

void DCDC_ Init(DCDC_Type *base, const dcdc_config t *config)
Initializes the basic resource of DCDC module, such as control mode, etc.

Parameters
* base — DCDC peripheral base address.

* config — Pointer to the dcdc_config_t structure.

430 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void DCDC_ Deinit(DCDC_Type *base)
De-initializes the DCDC module.

Parameters
* base — DCDC peripheral base address.

void DCDC_ GetDefaultConfig(dcdc_config_t *config)
Gets the default setting for DCDC, such as control mode, etc.

This function initializes the user configuration structure to a default value. The default

values are:

config->controlMode = kDCDC__StaticControl;
config->trimInputMode = kDCDC_ SampleTrimInput;
config->enableDcdcTimeout = false;

config->enableSwitchingConverterOutput = false;

Parameters
* config — Pointer to configuration structure. See to dcdc_config_t.

static inline void DCDC__EnterLowPowerModeViaStandbyRequest(DCDC_Type *base, bool enable)
Makes the DCDC enter into low power mode for GPC standby request or not.

Parameters
* base — DCDC peripheral base address.
* enable — Used to control the behavior.
— true Makes DCDC enter into low power mode for GPC standby mode.

static inline void DCDC__ EnterLowPowerMode(DCDC_Type *base, bool enable)

Makes DCDC enter into low power mode or not, before entering low power mode must
disable stepping for VDD1P8 and VDD1PO.

Parameters
* base — DCDC peripheral base address.
* enable — Used to control the behavior.
- true Makes DCDC enter into low power mode.

static inline void DCDC__EnterStandbyMode(DCDC_Type *base, bool enable)
Makes DCDC enter into standby mode or not.

Parameters
* base — DCDC peripheral base address.
* enable — Used to control the behavior.
— true Makes DCDC enter into standby mode.

static inline void DCDC_ SetVDD1P0StandbyModeTarget Voltage(DCDC_Type *base,
dcdc_standby_mode_1P0_target _vol t
targetVoltage)

Sets the target value(ranges from 0.625V to 1.4V) of VDD1P0 in standby mode, 25mV each
step.

Parameters
* base — DCDC peripheral base address.

* targetVoltage — The target value of VDD1P0O in standby mode, see
dcdc_standby_mode_1P0_target_vol_t.

2.34. Dcdc_soc 431

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t DCDC_ GetVDD1P0StandbyModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1PO in standby mode, the result takes “mV” as the unit.

Parameters
* base — DCDC peripheral base address.

Returns
The VDD1PO0’s voltage value in standby mode and the unit is “mV”.

static inline void DCDC__SetVDD1P8StandbyModeTargetVoltage(DCDC_Type *base,
dcdc_standby_mode_1P8_target_vol t
targetVoltage)

Sets the target value(ranges from 1.525V to 2.3V) of VDD1P8 in standby mode, 25mV each
step.

Parameters
* base — DCDC peripheral base address.

* targetVoltage — The target value of VDD1P8 in standby mode, see
dcdc_standby_mode_1P8_target_vol _t.

static inline uint16_t DCDC_ GetVDD1P8StandbyModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P8 in standby mode, the result takes “mV” as the unit.

Parameters
* base — DCDC peripheral base address.

Returns
The VDD1P8’s voltage value in standby mode and the unit is “mV”.

static inline void DCDC_ SetVDD1P0BuckModeTargetVoltage(DCDC_Type *base,
dcdc_buck_mode_1P0_target_vol t
targetVoltage)

Sets the target value(ranges from 0.6V to 1.375V) of VDD1P0 in buck mode, 25mV each step.
Parameters
* base — DCDC peripheral base address.

* targetVoltage — The target value of VDD1PO in buck mode, see
dcdc_buck_mode_1P0_target_vol_t.

static inline uint16_t DCDC_ GetVDD1P0BuckModeTarget Voltage(DCDC_Type *base)
Gets the target value of VDD1PO in buck mode, the result takes “mV” as the unit.

Parameters
* base — DCDC peripheral base address.

Returns
The VDD1PO0’s voltage value in buck mode and the unit is “mV”.

static inline void DCDC_ SetVDD1P8BuckModeTarget Voltage(DCDC_Type *base,
dcdc_buck mode_1P8 target_vol t
targetVoltage)

Sets the target value(ranges from 1.5V to 2.275V) of VDD1P8 in buck mode, 25mV each step.
Parameters
* base — DCDC peripheral base address.

* targetVoltage — The target value of VDD1P8 in buck mode, see
dcdc_buck_mode_1P8_target_vol_t.

432 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t DCDC_ GetVDD1P8BuckModeTargetVoltage(DCDC_Type *base)
Gets the target value of VDD1P8 in buck mode, the result takes “mV” as the unit.

Parameters
* base — DCDC peripheral base address.

Returns
The VDD1P8’s voltage value in buck mode and the unit is “mV”.

static inline void DCDC__EnableVDD1P0Target VoltageStepping(DCDC_Type *base, bool enable)

Enables/Disables stepping for VDD1PO, before entering low power modes the stepping for
VDD1P0 must be disabled.

Parameters
* base — DCDC peripheral base address.
* enable — Used to control the behavior.
— true Enables stepping for VDD1PO.
- false Disables stepping for VDD1PO.

static inline void DCDC_ EnableVDD1P8TargetVoltageStepping(DCDC_Type *base, bool enable)

Enables/Disables stepping for VDD1P8, before entering low power modes the stepping for
VDD1P8 must be disabled.

Parameters
* base — DCDC peripheral base address.
* enable — Used to control the behavior.
— true Enables stepping for VDD1P8.
— false Disables stepping for VDD1P8.

void DCDC_ GetDefaultDetectionConfig(dcdc_detection_config t *config)
Gets the default setting for detection configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableXtalokDetection = false;
config->powerDownOver VoltageVdd1P8Detection = true;
config->powerDownOver VoltageVdd1P0Detection = true;
config->powerDownLow VoltageDetection = false;
config->powerDownOverCurrentDetection = true;
config->powerDownPeakCurrentDetection = true;

config->powerDownZeroCrossDetection = true;

config->OverCurrentThreshold = kDCDC__OverCurrentThreshold Alt0;

config->PeakCurrent Threshold = kDCDC__PeakCurrent Threshold Alt0;
Parameters

* config — Pointer to configuration structure. See to dcdc_detection_config_t.

void DCDC_SetDetectionConfig(DCDC_Type *base, const dcdc_detection_config t *config)
Configures the DCDC detection.

Parameters
* base — DCDC peripheral base address.

* config — Pointer to configuration structure. See to dcdc_detection_config_t.

2.34. Dcdc_soc 433

MCUXpresso SDK Documentation, Release 25.12.00

static inline void DCDC__EnableOutputRangeComparator(DCDC_Type *base, bool enable)
Enables/Disables the output range comparator.

The output range comparator is disabled by default.
Parameters
* base — DCDC peripheral base address.
* enable — Enable the feature or not.
— true Enable the output range comparator.
— false Disable the output range comparator.

void DCDC_ SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
Configures the DCDC clock source.

Parameters
* base — DCDC peripheral base address.
* clockSource — Clock source for DCDC. See to dcdc_clock_source_t.

void DCDC_ GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
Gets the default setting for low power configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableAdjustHystereticValue = false;

Parameters

* config - Pointer to configuration structure. See to
dcdc_low_power_config_t.

void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power._config_t *config)
Configures the DCDC low power.
Parameters
* base — DCDC peripheral base address.

* config - Pointer to configuration structure. See to
dcdc_low_power_config t.
static inline void DCDC__SetBandgapVoltageTrimValue(DCDC_Type *base, uint32_t trimValue)
Sets the bangap trim value(0~31) to trim bandgap voltage.

Parameters
* base — DCDC peripheral base address.
* trimValue — The bangap trim value. Available range is 0U-31U.

void DCDC_ GetDefaultLoopControlConfig(dcdc_loop_control_config t *config)
Gets the default setting for loop control configuration.

The default configuration are set according to responding registers’ setting when powered
on. They are:

config->enableCommonHysteresis = false;
config->enableCommonThresholdDetection = false;
config->enableInvertHysteresisSign = false;
config->enableRCThresholdDetection = false;
config->enableRCScaleCircuit = 0U;
config->complementFeedForwardStep = 0U;
(continues on next page)

434 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

config->controlParameterMagnitude = 2U;
config- >integralProportionalRatio = 2U;

Parameters

* config - Pointer to configuration structure. See to
dcdc_loop_control_config t.

void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
Configures the DCDC loop control.

Parameters
* base — DCDC peripheral base address.

* config - Pointer to configuration structure. See to
dcdc_loop_control_config t.

void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power._config_t *config)
Configures for the min power.

Parameters
* base — DCDC peripheral base address.

* config - Pointer to configuration structure. See to
dcdc_min_power_config_t.

static inline void DCDC__SetLPComparatorBiasValue(DCDC_Type *base,
dcdc_comparator_current_bias_t biasValue)

Sets the current bias of low power comparator.
Parameters
* base — DCDC peripheral base address.

* biasValue — The current bias of low power comparator. Refer to
dcdc_comparator_current_bias_t.

void DCDC_ SetInternalRegulatorConfig(DCDC_Type *base, const
dcdc_internal_regulator_config_t *config)

Configures the DCDC internal regulator.
Parameters
* base — DCDC peripheral base address.

* config - Pointer to configuration structure. See to
dcdc_internal_regulator_config t.

static inline void DCDC__EnableAdjustDelay(DCDC_Type *base, bool enable)
Adjusts delay to reduce ground noise.

Parameters
* base — DCDC peripheral base address.
* enable — Enable the feature or not.

static inline void DCDC__EnableImproveTransition(DCDC_Type *base, bool enable)
Enables/Disables to improve the transition from heavy load to light load.

Note: Itisvalid while zero cross detection is enabled. If ouput exceeds the threshold, DCDC
would return CCM from DCM.

2.34. Dcdc_soc 435

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — DCDC peripheral base address.
* enable — Enable the feature or not.

void DCDC_ SetPointInit(DCDC_Type *base, const dcdc_setpoint_config_t *config)
Initializes DCDC module when the control mode selected as setpoint mode.

Note: The function should be invoked in the initial step to config the DCDC via setpoint
control mode.

Parameters
* base — DCDC peripheral base address.
* config — The pointer to the structure dcdc_setpoint_config_t.

static inline void DCDC__SetPointDeinit(DCDC_Type *base, uint32_t setpointMap)
Disable DCDC module when the control mode selected as setpoint mode.

Parameters
* base — DCDC peripheral base address.

* setpointMap — The map of the setpoint to disable the DCDC module, Should
be the OR’ed value of _dcdc_setpoint_map.

static inline uint32_t DCDC__ GetStatusFlags(DCDC_Type *base)
Get DCDC status flags.

Parameters
* base — peripheral base address.

Returns
Mask of asserted status flags. See to _dcdc_status_flags.

void DCDC_ BootIntoDCM(DCDC_Type *base)
Boots DCDC into DCM(discontinous conduction mode).

pwd__zcd=0x0;

DM__CTRL = 1'bl;

pwd__cmp_ offset=0x0;
dcdc_loopctrl _en_ recscale=0x3 or 0x5;
DCM__set_ ctrl=1'b1;

Parameters
* base — DCDC peripheral base address.

void DCDC_ BootIntoCCM(DCDC_Type *base)
Boots DCDC into CCM(continous conduction mode).

pwd__zcd=0x1;
pwd__cmp_ offset=0x0;
dedc_loopctrl_en_ rescale=0x3;

Parameters

* base — DCDC peripheral base address.

436 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _ dcdc_status_ flags
The enumeration of DCDC status flags.

Values:

enumerator kDCDC_ AlreadySettledStatusFlag
Indicate DCDC status. 1’b1: DCDC already settled 1’b0: DCDC is settling.

enum _ dcdc_setpoint_ map
System setpoints enumeration.

Values:

enumerator kDCDC SetPoint0
Set point 0.

enumerator kDCDC _SetPoint1
Set point 1.

enumerator kDCDC__SetPoint2
Set point 2.

enumerator kDCDC SetPoint3
Set point 3.

enumerator kDCDC__SetPoint4
Set point 4.

enumerator kDCDC SetPoint5
Set point 5.

enumerator kDCDC_ SetPoint6
Set point 6.

enumerator kDCDC__ SetPoint7
Set point 7.

enumerator kDCDC SetPoint8
Set point 8.

enumerator kDCDC__SetPoint9
Set point 9.

enumerator kDCDC _SetPoint10
Set point 10.

enumerator kDCDC_ SetPoint11
Set point 11.

enumerator kDCDC _SetPoint12
Set point 12.

enumerator kDCDC SetPoint13
Set point 13.

enumerator kDCDC__SetPoint14
Set point 14.

enumerator kDCDC_SetPointl5
Set point 15.

enum _dcdc_control mode
DCDC control mode, including setpoint control mode and static control mode.

Values:

2.34. Dcdc_soc 437

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC _StaticControl
Static control.

enumerator kDCDC__SetPointControl
Controlled by GPC set points.

enum _ dcdc_ trim__input_ mode
DCDC trim input mode, including sample trim input and hold trim input.
Values:

enumerator kDCDC_ SampleTrimInput

Sample trim input.
enumerator kDCDC_ HoldTrimInput

Hold trim input.

enum _ dcdc_standby__mode_ 1P0__target_ vol

The enumeration VDD1PO0’s target voltage value in standby mode.
Values:
enumerator kDCDC_ 1P0StbyTargetOP625V

In standby mode, the target voltage value of VDD1PO0 is 0.625V.
enumerator kDCDC_ 1P0StbyTargetOP65V

In standby mode, the target voltage value of VDD1PO0 is 0.65V.
enumerator kDCDC_ 1P0StbyTargetOP675V

In standby mode, the target voltage value of VDD1PO0 is 0.675V.
enumerator kDCDC_ 1P0StbyTargetOP7V

In standby mode, the target voltage value of VDD1PO0 is 0.7V.
enumerator kDCDC_ 1P0StbyTargetOP725V

In standby mode, the target voltage value of VDD1PO0 is 0.725V.
enumerator kDCDC_ 1P0StbyTargetOP75V

In standby mode, the target voltage value of VDD1PO0 is 0.75V.
enumerator kDCDC_ 1P0StbyTargetOP775V

In standby mode, the target voltage value of VDD1PO0 is 0.775V.
enumerator kDCDC_ 1P0StbyTargetOP8V

In standby mode, the target voltage value of VDD1PO0 is 0.8V.
enumerator kDCDC_ 1P0StbyTargetOP825V

In standby mode, the target voltage value of VDD1PO0 is 0.825V.
enumerator kDCDC_ 1P0StbyTargetOP85V

In standby mode, the target voltage value of VDD1PO is 0.85V.
enumerator kDCDC_ 1P0StbyTargetOP875V

In standby mode, the target voltage value of VDD1PO0 is 0.875V.
enumerator kDCDC_ 1P0StbyTargetOP9V

In standby mode, the target voltage value of VDD1PO0 is 0.9V.
enumerator kDCDC_ 1P0StbyTargetOP925V

In standby mode, the target voltage value of VDD1PO0 is 0.925V.

enumerator kDCDC__ 1P0StbyTargetOP95V
In standby mode, the target voltage value of VDD1PO0 is 0.95V.

438 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_ 1P0StbyTargetOP975V
In standby mode, the target voltage value of VDD1PO0 is 0.975V.

enumerator kDCDC__1P0StbyTarget1POV

In standby mode, the target voltage value of VDD1PO0 is 1.0V.
enumerator kDCDC_ 1P0StbyTarget1P025V

In standby mode, the target voltage value of VDD1PO0 is 1.025V.
enumerator kDCDC__1P0StbyTarget1P05V

In standby mode, the target voltage value of VDD1PO0 is 1.05V.
enumerator kDCDC_ 1P0StbyTarget1P075V

In standby mode, the target voltage value of VDD1PO0 is 1.075V.
enumerator kDCDC__1P0StbyTarget1P1V

In standby mode, the target voltage value of VDD1PO0 is 1.1V.
enumerator kDCDC_ 1P0StbyTarget1P125V

In standby mode, the target voltage value of VDD1PO0 is 1.125V.
enumerator kDCDC__1P0StbyTarget1P15V

In standby mode, the target voltage value of VDD1PO0 is 1.15V.
enumerator kDCDC__1P0StbyTarget1P175V

In standby mode, the target voltage value of VDD1PO0 is 1.175V.
enumerator kDCDC__1P0StbyTarget1P2V

In standby mode, the target voltage value of VDD1PO0 is 1.2V.
enumerator kDCDC_ 1P0StbyTarget1P225V

In standby mode, the target voltage value of VDD1PO0 is 1.225V.
enumerator kDCDC__1P0StbyTarget1P25V

In standby mode, the target voltage value of VDD1PO0 is 1.25V.
enumerator kDCDC__1P0StbyTarget1P275V

In standby mode, the target voltage value of VDD1PO0 is 1.275V.
enumerator kDCDC__1P0StbyTarget1P3V

In standby mode, the target voltage value of VDD1PO0 is 1.3V.
enumerator kDCDC__1P0StbyTarget1P325V

In standby mode, the target voltage value of VDD1PO0 is 1.325V.
enumerator kDCDC__1P0StbyTarget1P35V

In standby mode, the target voltage value of VDD1PO0 is 1.35V.
enumerator kDCDC_ 1P0StbyTarget1P375V

In standby mode, the target voltage value of VDD1PO0 is 1.375V.
enumerator kDCDC__1P0StbyTarget1P4V

In standby mode, The target voltage value of VDD1PO is 1.4V

enum _ dcdc_standby__mode_ 1P8 target_ vol

The enumeration VDD1P8’s target voltage value in standby mode.
Values:

enumerator kDCDC_ 1P8StbyTarget1P525V
In standby mode, the target voltage value of VDD1P8 is 1.525V.

2.34. Dcdc_soc 439

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC__ 1P8StbyTarget1P55V
In standby mode, the target voltage value of VDD1P8 is 1.55V.

enumerator kDCDC_ 1P8StbyTarget1P575V

In standby mode, the target voltage value of VDD1P8 is 1.575V.
enumerator kDCDC__1P8StbyTarget1P6V

In standby mode, the target voltage value of VDD1P8 is 1.6V.
enumerator kDCDC_ 1P8StbyTarget1P625V

In standby mode, the target voltage value of VDD1P8 is 1.625V.
enumerator kDCDC__ 1P8StbyTarget1P65V

In standby mode, the target voltage value of VDD1P8 is 1.65V.
enumerator kDCDC__ 1P8StbyTarget1P675V

In standby mode, the target voltage value of VDD1P8 is 1.675V.
enumerator kDCDC__ 1P8StbyTarget1P7V

In standby mode, the target voltage value of VDD1P8 is 1.7V.
enumerator kDCDC__ 1P8StbyTarget1P725V

In standby mode, the target voltage value of VDD1P8 is 1.725V.
enumerator kDCDC__1P8StbyTarget1P75V

In standby mode, the target voltage value of VDD1P8 is 1.75V.
enumerator kDCDC__ 1P8StbyTarget1P775V

In standby mode, the target voltage value of VDD1P8 is 1.775V.
enumerator kDCDC__1P8StbyTarget1P8V

In standby mode, the target voltage value of VDD1P8 is 1.8V.
enumerator kDCDC__1P8StbyTarget1P825V

In standby mode, the target voltage value of VDD1P8 is 1.825V.
enumerator kDCDC__1P8StbyTarget1P85V

In standby mode, the target voltage value of VDD1P8 is 1.85V.
enumerator kDCDC__ 1P8StbyTarget1P875V

In standby mode, the target voltage value of VDD1P8 is 1.875V.
enumerator kDCDC__1P8StbyTarget1P9V

In standby mode, the target voltage value of VDD1P8 is 1.9V.
enumerator kDCDC__ 1P8StbyTarget1P925V

In standby mode, the target voltage value of VDD1P8 is 1.925V.
enumerator kDCDC__1P8StbyTarget1P95V

In standby mode, the target voltage value of VDD1P8 is 1.95V.
enumerator kDCDC_ 1P8StbyTarget1P975V

In standby mode, the target voltage value of VDD1P8 is 1.975V.
enumerator kDCDC__1P8StbyTarget2P0V

In standby mode, the target voltage value of VDD1P8 is 2.0V.
enumerator kDCDC_ 1P8StbyTarget2P025V

In standby mode, the target voltage value of VDD1P8 is 2.025V.

enumerator kDCDC_ 1P8StbyTarget2P05V
In standby mode, the target voltage value of VDD1P8 is 2.05V.

440 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_ 1P8StbyTarget2P075V
In standby mode, the target voltage value of VDD1P8 is 2.075V.

enumerator kDCDC__1P8StbyTarget2P1V

In standby mode, the target voltage value of VDD1P8 is 2.1V.
enumerator kDCDC_ 1P8StbyTarget2P125V

In standby mode, the target voltage value of VDD1P8 is 2.125V.
enumerator kDCDC__1P8StbyTarget2P15V

In standby mode, the target voltage value of VDD1P8 is 2.15V.
enumerator kDCDC__ 1P8StbyTarget2P175V

In standby mode, the target voltage value of VDD1P8 is 2.175V.
enumerator kDCDC__1P8StbyTarget2P2V

In standby mode, the target voltage value of VDD1P8 is 2.2V.
enumerator kDCDC_ 1P8StbyTarget2P225V

In standby mode, the target voltage value of VDD1P8 is 2.225V.
enumerator kDCDC__1P8StbyTarget2P25V

In standby mode, the target voltage value of VDD1P8 is 2.25V.
enumerator kDCDC__1P8StbyTarget2P275V

In standby mode, the target voltage value of VDD1P8 is 2.275V.
enumerator kDCDC__1P8StbyTarget2P3V

In standby mode, the target voltage value is 2.3V.

enum _ dcdc_buck mode_ 1P0_ target_ vol

The enumeration VDD1P0’s target voltage value in buck mode.
Values:
enumerator kDCDC_ 1POBuckTargetOP6V

In buck mode, the target voltage value of VDD1PO is 0.6V.
enumerator kDCDC_ 1POBuckTarget0P625V

In buck mode, the target voltage value of VDD1PO is 0.625V.
enumerator kDCDC_ 1P0BuckTargetOP65V

In buck mode, the target voltage value of VDD1PO0 is 0.65V.
enumerator kDCDC_ 1POBuckTargetOP675V

In buck mode, the target voltage value of VDD1PO0 is 0.675V.
enumerator kDCDC_ 1POBuckTargetOP7V

In buck mode, the target voltage value of VDD1P0 is 0.7V.
enumerator kDCDC_ 1POBuckTargetOP725V

In buck mode, the target voltage value of VDD1PO0 is 0.725V.
enumerator kDCDC_ 1P0BuckTargetOP75V

In buck mode, the target voltage value of VDD1PO0 is 0.75V.
enumerator kDCDC_ 1POBuckTargetOP775V

In buck mode, the target voltage value of VDD1PO0 is 0.775V.

enumerator kDCDC_ 1POBuckTargetOP8V
In buck mode, the target voltage value of VDD1PO is 0.8V.

2.34. Dcdc_soc 441

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_ 1P0BuckTarget0P825V
In buck mode, the target voltage value of VDD1PO is 0.825V.

enumerator kDCDC_ 1P0OBuckTargetOP85V

In buck mode, the target voltage value of VDD1PO is 0.85V.
enumerator kDCDC_ 1P0BuckTargetOP875V

In buck mode, the target voltage value of VDD1PO is 0.875V.
enumerator kDCDC_ 1POBuckTargetOP9V

In buck mode, the target voltage value of VDD1P0 is 0.9V.
enumerator kDCDC__ 1P0BuckTarget0P925V

In buck mode, the target voltage value of VDD1PO is 0.925V.
enumerator kDCDC_ 1P0BuckTargetOP95V

In buck mode, the target voltage value of VDD1PO is 0.95V.
enumerator kDCDC__ 1P0BuckTargetOP975V

In buck mode, the target voltage value of VDD1PO is 0.975V.
enumerator kDCDC__1P0BuckTarget1POV

In buck mode, the target voltage value of VDD1P0 is 1.0V.
enumerator kDCDC__1P0BuckTarget1P025V

In buck mode, the target voltage value of VDD1P0 is 1.025V.
enumerator kDCDC_ 1P0OBuckTarget1P05V

In buck mode, the target voltage value of VDD1PO is 1.05V.
enumerator kDCDC__1P0BuckTarget1P075V

In buck mode, the target voltage value of VDD1P0 is 1.075V.
enumerator kDCDC__ 1POBuckTarget1P1V

In buck mode, the target voltage value of VDD1P0 is 1.1V.
enumerator kDCDC_ 1P0BuckTarget1P125V

In buck mode, the target voltage value of VDD1P0 is 1.125V.
enumerator kDCDC_ 1PO0BuckTarget1P15V

In buck mode, the target voltage value of VDD1PO is 1.15V.
enumerator kDCDC__1P0OBuckTarget1P175V

In buck mode, the target voltage value of VDD1PO0 is 1.175V.
enumerator kDCDC__ 1POBuckTarget1P2V

In buck mode, the target voltage value of VDD1P0 is 1.2V.
enumerator kDCDC_ 1P0BuckTarget1P225V

In buck mode, the target voltage value of VDD1P0 is 1.225V.
enumerator kDCDC_ 1P0BuckTarget1P25V

In buck mode, the target voltage value of VDD1PO is 1.25V.
enumerator kDCDC_ 1POBuckTarget1P275V

In buck mode, the target voltage value of VDD1PO0 is 1.275V.
enumerator kDCDC_ 1POBuckTarget1P3V

In buck mode, the target voltage value of VDD1P0 is 1.3V.

enumerator kDCDC_ 1P0BuckTarget1P325V
In buck mode, the target voltage value of VDD1P0 is 1.325V.

442

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_ 1POBuckTarget1P35V
In buck mode, the target voltage value of VDD1P0 is 1.35V.

enumerator kDCDC_ 1P0OBuckTarget1P375V
In buck mode, the target voltage value of VDD1P0 is 1.375V.

enum _ dcdc_buck mode_1P8_ target_ vol

The enumeration VDD1P8'’s target voltage value in buck mode.
Values:

enumerator kDCDC__ 1P8BuckTarget1P5V

In buck mode, the target voltage value of VDD1P0 is 1.5V.
enumerator kDCDC_ 1P8BuckTarget1P525V

In buck mode, the target voltage value of VDD1P0 is 1.525V.
enumerator kDCDC_ 1P8BuckTarget1P55V

In buck mode, the target voltage value of VDD1PO0 is 1.55V.

enumerator kDCDC_ 1P8BuckTarget1P575V
In buck mode, the target voltage value of VDD1PO0 is 1.575V.

enumerator kDCDC_ 1P8BuckTarget1P6V
In buck mode, the target voltage value of VDD1P0 is 1.6V.

enumerator kDCDC_ 1P8BuckTarget1P625V
In buck mode, the target voltage value of VDD1PO0 is 1.625V.

enumerator kDCDC_ 1P8BuckTarget1P65V
In buck mode, the target voltage value of VDD1PO0 is 1.65V.

enumerator kDCDC_ 1P8BuckTarget1P675V
In buck mode, the target voltage value of VDD1PO0 is 1.675V.

enumerator kDCDC_ 1P8BuckTarget1P7V
In buck mode, the target voltage value of VDD1P0 is 1.7V.

enumerator kDCDC_ 1P8BuckTarget1P725V
In buck mode, the target voltage value of VDD1P0 is 1.725V.

enumerator kDCDC_ 1P8BuckTarget1P75V
In buck mode, the target voltage value of VDD1PO0 is 1.75V.

enumerator kDCDC_ 1P8BuckTarget1P775V
In buck mode, the target voltage value of VDD1P0 is 1.775V.

enumerator kDCDC_ 1P8BuckTarget1P8V
In buck mode, the target voltage value of VDD1P0 is 1.8V.

enumerator kDCDC_ 1P8BuckTarget1P825V
In buck mode, the target voltage value of VDD1PO0 is 1.825V.

enumerator kDCDC_ 1P8BuckTarget1P85V
In buck mode, the target voltage value of VDD1PO0 is 1.85V.

enumerator kDCDC_ 1P8BuckTarget1P875V
In buck mode, the target voltage value of VDD1PO0 is 1.875V.

enumerator kDCDC_ 1P8BuckTarget1P9V
In buck mode, the target voltage value of VDD1P0 is 1.9V.

2.34. Dcdc_soc

443

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCDC_ 1P8BuckTarget1P925V
In buck mode, the target voltage value of VDD1P0 is 1.925V.

enumerator kDCDC_ 1P8BuckTarget1P95V

In buck mode, the target voltage value of VDD1P0 is 1.95V.
enumerator kDCDC__ 1P8BuckTarget1P975V

In buck mode, the target voltage value of VDD1P0 is 1.975V.
enumerator kDCDC__ 1P8BuckTarget2P0V

In buck mode, the target voltage value of VDD1P0 is 2.0V.
enumerator kDCDC__1P8BuckTarget2P025V

In buck mode, the target voltage value of VDD1PO is 2.025V.
enumerator kDCDC_ 1P8BuckTarget2P05V

In buck mode, the target voltage value of VDD1PO is 2.05V.
enumerator kDCDC__1P8BuckTarget2P075V

In buck mode, the target voltage value of VDD1PO is 2.075V.
enumerator kDCDC_ 1P8BuckTarget2P1V

In buck mode, the target voltage value of VDD1P0 is 2.1V.
enumerator kDCDC_ 1P8BuckTarget2P125V

In buck mode, the target voltage value of VDD1P0 is 2.125V.
enumerator kDCDC_ 1P8BuckTarget2P15V

In buck mode, the target voltage value of VDD1PO is 2.15V.
enumerator kDCDC__1P8BuckTarget2P175V

In buck mode, the target voltage value of VDD1PO is 2.175V.
enumerator kDCDC__1P8BuckTarget2P2V

In buck mode, the target voltage value of VDD1P0 is 2.2V.
enumerator kDCDC_ 1P8BuckTarget2P225V

In buck mode, the target voltage value of VDD1PO is 2.225V.
enumerator kDCDC_ 1P8BuckTarget2P25V

In buck mode, the target voltage value of VDD1PO is 2.25V.

enumerator kDCDC__1P8BuckTarget2P275V
In buck mode, the target voltage value of VDD1PO is 2.275V.

enum _ dcdc_comparator_current_ bias

The current bias of low power comparator.
Values:

enumerator kDCDC__ComparatorCurrentBias50nA
The current bias of low power comparator is 50nA.

enumerator kDCDC__ComparatorCurrentBias100nA
The current bias of low power comparator is 100nA.

enumerator kDCDC__ComparatorCurrentBias200nA
The current bias of low power comparator is 200nA.

enumerator kDCDC__ComparatorCurrentBias400nA
The current bias of low power comparator is 400nA.

444

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enum _ dcdc_ peak_current_ threshold
The threshold if peak current detection.

Values:
enumerator kDCDC_ PeakCurrentRunMode250mALPModelP5A
Over peak current threshold in low power mode is 250mA, in run mode is 1.5A
enumerator kDCDC PeakCurrentRunMode200mALPModelP5A
Over peak current threshold in low power mode is 200mA, in run mode is 1.5A
enumerator kDCDC _PeakCurrentRunMode250mALPMode2A
Over peak current threshold in low power mode is 250mA, in run mode is 2A
enumerator kDCDC _PeakCurrentRunMode200mALPMode2A
Over peak current threshold in low power mode is 200mA, in run mode is 2A
enum _dcdc_clock source
Oscillator clock option.
Values:
enumerator kDCDC_ ClockAutoSwitch
Automatic clock switch from internal oscillator to external clock.
enumerator kDCDC__ ClockInternalOsc
Use internal oscillator.
enumerator kDCDC__ ClockExternalOsc
Use external 24M crystal oscillator.
enum _ dcdc_ voltage output_ sel
Voltage output option.
Values:
enumerator kDCDC_ VoltageOutput1P8
1.8V output.
enumerator kDCDC_ VoltageOutput1P0
1.0V output.
typedef enum _dcdc_control_mode dcdc__control_mode_t
DCDC control mode, including setpoint control mode and static control mode.
typedef enum _dcdc_trim_input_mode dcdc_trim__input_mode__t
DCDC trim input mode, including sample trim input and hold trim input.
typedef enum _dcdc_standby_mode_1P0_target_vol dedc_standby__mode_1P0_target_vol_t
The enumeration VDD1P0’s target voltage value in standby mode.
typedef enum _dcdc_standby_mode_1P8_target vol dcdc_standby_mode_ 1P8 target_vol t
The enumeration VDD1P8'’s target voltage value in standby mode.
typedef enum _dcdc_buck mode_1P0_target_vol dcdc_ buck_mode_1P0_target vol t
The enumeration VDD1P0’s target voltage value in buck mode.
typedef enum _dcdc_buck mode_1P8 target_vol dcdc_buck_mode_1P8 target vol t
The enumeration VDD1P8'’s target voltage value in buck mode.

typedef enum _dcdc_comparator_current_bias dcdc_ comparator current_ bias t
The current bias of low power comparator.

2.34. Dcdc_soc 445

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _dcdc_peak_current_threshold dcdc_peak_ current_ threshold_ t
The threshold if peak current detection.

typedef enum _dcdc_clock_source dcdc__clock__source_t
Oscillator clock option.
typedef enum _dcdc_voltage_output_sel dcdc_ voltage_output_sel_t
Voltage output option.
typedef struct _dcdc_config dedc_ config_ t
Configuration for DCDC.
typedef struct _dcdc_min_power_config dedc_ min_ power_ config_t
Configuration for min power setting.
typedef struct _dcdc_detection_config dcdc_ detection_ config t
Configuration for DCDC detection.
typedef struct _dcdc_loop_control_config dcdc_loop_ control config_t
Configuration for the loop control.
typedef struct _dcdc_internal regulator_config dcdc_ internal regulator config_t
Configuration for DCDC internal regulator.
typedef struct _dcdc_low_power_config dedc_low_power_ config_t
Configuration for DCDC low power.
typedef struct _dcdc_setpoint_config dcdc_setpoint_ config t
DCDC configuration in set point mode.
FSL__DCDC_DRIVER,_ VERSION
DCDC driver version.
Version 2.1.2.
STANDBY__MODE_VDD1P0_TARGET_VOLTAGE
The array of VDD1PO target voltage in standby mode.
STANDBY_MODE_VDDI1P8 TARGET_VOLTAGE
The array of VDD1P8 target voltage in standby mode.
BUCK_MODE_VDD1P0_TARGET_ VOLTAGE
The array of VDD1PO target voltage in buck mode.
BUCK_MODE_VDD1P8_TARGET_ VOLTAGE
The array of VDD1P8 target voltage in buck mode.

struct _ dcdc_ config
#include <fsl_dcdc.h> Configuration for DCDC.

Public Members
dcdc_control_mode_t controlMode
DCDC control mode.

dcdc_trim_input_mode_t trimInputMode
Hold trim input.

bool enableDcdcTimeout
Enable internal count for DCDC_OK timeout.

446 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

bool enableSwitchingConverterOutput
Enable the VDDIO switching converter output.

struct _dcdc_min_ power__config
#include <fsl_dcdc.h> Configuration for min power setting.

Public Members
bool enableUseHalfFreqForContinuous
Set DCDC clock to half frequency for the continuous mode.

struct _ dcdc_ detection_ config
#include <fsl_dcdc.h> Configuration for DCDC detection.

Public Members

bool enableXtalokDetection
Enable xtalok detection circuit.

bool powerDownOverVoltageVdd1P8Detection
Power down over-voltage detection comparator for VDD1P8.
bool powerDownOverVoltageVdd1P0Detection
Power down over-voltage detection comparator for VDD1PO.
bool powerDownLow VoltageDetection
Power down low-voltage detection comparator.
bool powerDownOverCurrentDetection
Power down over-current detection.
bool powerDownPeakCurrentDetection
Power down peak-current detection.
bool powerDownZeroCrossDetection
Power down the zero cross detection function for discontinuous conductor mode.
dcdc_peak_current_threshold_t PeakCurrentThreshold
The threshold of peak current detection.
struct _ dcdc_loop_ control_config
#include <fsl_dcdc.h> Configuration for the loop control.

Public Members

bool enableCommonHysteresis
Enable hysteresis in switching converter common mode analog comparators. This fea-
ture will improve transient supply ripple and efficiency.

bool enableCommonThresholdDetection
Increase the threshold detection for common mode analog comparator.

bool enableDifferentialHysteresis
Enable hysteresis in switching converter differential mode analog comparators. This
feature will improve transient supply ripple and efficiency.

bool enableDifferential ThresholdDetection
Increase the threshold detection for differential mode analog comparators.

2.34. Dcdc_soc 447

MCUXpresso SDK Documentation, Release 25.12.00

bool enableInvertHysteresisSign
Invert the sign of the hysteresis in DC-DC analog comparators.

bool enableRCThresholdDetection
Increase the threshold detection for RC scale circuit.

uint32_t enableRCScaleCircuit

Available range is 0~7. Enable analog circuit of DC-DC converter to respond faster
under transient load conditions.

uint32_t complementFeedForwardStep

Available range is 0~7. Two’s complement feed forward step in duty cycle in the switch-
ing DC-DC converter. Each time this field makes a transition from 0x0, the loop filter
of the DC-DC converter is stepped once by a value proportional to the change. This can
be used to force a certain control loop behavior, such as improving response under
known heavy load transients.

uint32_t controlParameterMagnitude
Available range is 0~15. Magnitude of proportional control parameter in the switching
DC-DC converter control loop.

uint32_t integralProportionalRatio

Available range is 0~3.Ratio of integral control parameter to proportional control pa-
rameter in the switching DC-DC converter, and can be used to optimize efficiency and
loop response.

struct _ dcdc_internal regulator_ config

#include <fsl_dcdc.h> Configuration for DCDC internal regulator.

Public Members

uint32_t feedbackPoint
Available range is 0~3. Select the feedback point of the internal regulator.

struct _dcdc_low_ power_ config

#include <fsl_dcdc.h> Configuration for DCDC low power.

Public Members

bool enableAdjustHystereticValue
Adjust hysteretic value in low power from 12.5mV to 25mV.

struct _ dcdc_ setpoint__config

#include <fsl_dcdc.h> DCDC configuration in set point mode.

Public Members

uint32_t enableDCDCMap
The setpoint map that enable the DCDC module. Should be the OR’ed value of
_dcdc_setpoint_map.

uint32_t enableDigLogicMap
The setpoint map that enable the DCDC dig logic. Should be the OR’ed value of
_dcdc_setpoint_map.

uint32_t lowpowerMap

The setpoint map that enable the DCDC Low powermode. Should be the OR’ed value
of _dcdc_setpoint_map.

448

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t standbyMap
The setpoint map that enable the DCDC standby mode. Should be the OR’ed value of
_dcdc_setpoint_map.
uint32_t standbyLowpowerMap
The setpoint map that enable the DCDC low power mode, when the related setpoint is
in standby mode. Please refer to _dcdc_setpoint_map.
dcdc_buck_mode_1P8_target_vol_t *buckVDD1P8TargetVoltage

Point to the array that store the target voltage level of VDD1P8 in buck mode, please
refer to dcdc_buck_mode_1P8_target_vol_t. Note that the pointed array must have 16
elements.

dcdc_buck_mode_1P0_target_vol t *buckVDD1P0TargetVoltage

Point to the array that store the target voltage level of VDD1P0 in buck mode, please
refer to dcdc_buck_mode_1P0_target_vol_t. Note that the pointed array must have 16
elements.

dcdc_standby_mode_1P8_target_vol t *standbyVDD1P8Target Voltage

Point to the array that store the target voltage level of VDD1P8 in standby mode, please
refer to dcdc_standby_mode_1P8_target_vol_t. Note that the pointed array must have
16 elements.

dcdc_standby_mode_1P0_target_vol_t *standbyVDD1P0Target Voltage

Point to the array that store the target voltage level of VDD1P0 in standby mode, please
refer to dcdc_standby_mode_1P0_target_vol_t. Note that the pointed array must have
16 elements.

2.35 DCIC

void DCIC_ Init(DCIC_Type *base, const dcic_config_t *config)
Initializes the DCIC.

This function resets DCIC registers to default value, then set the configurations. This func-
tion does not start the DCIC to work, application should call DCIC_DisableRegion to config-
ure regions, then call DCIC_Enable to start the DCIC to work.

Parameters
* base — DCIC peripheral base address.
* config — Pointer to the configuration.

void DCIC_ Deinit(DCIC_Type *base)
Deinitialize the DCIC.

Disable the DCIC functions.
Parameters
* base — DCIC peripheral base address.

void DCIC_ GetDefaultConfig(dcic_config t *config)
Get the default configuration to initialize DCIC.

The default configuration is:

config->polarityFlags = kDCIC_ VsyncActiveLow | kDCIC_ HsyncActiveLow |

kDCIC_ DataEnableActiveLow | kDCIC_DriveDataOnFallingClkEdge;
config->enableExternalSignal = false;
config->enablelnterrupts = 0;

2.35. DCIC 449

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* config — Pointer to the configuration.

static inline void DCIC_ Enable(DCIC_Type *base, bool enable)
Enable or disable the DCIC module.

Parameters
* base — DCIC peripheral base address.
* enable — Use true to enable, false to disable.

static inline uint32_t DCIC__ GetStatusFlags(DCIC_Type *base)
Get status flags.

The flag kDCIC_ErrorInterruptStatus is asserted if any region mismatch flag asserted.
base DCIC peripheral base address.

Returns
Masks of asserted status flags, _DCIC_status_flags.

static inline void DCIC__ClearStatusFlags(DCIC_Type *base, uint32_t mask)
Clear status flags.

The flag kDCIC_ErrorInterruptStatus should be cleared by clearing all asserted region mis-
match flags.

base DCIC peripheral base address.
mask Mask of status values that would be cleared, _DCIC_status_{flags.

static inline void DCIC_ LockInterruptEnabledStatus(DCIC_Type *base)
Lock the interrupt enabled status.

Once this function is called, the interrupt enabled status could not be changed until reset.
Parameters
* base — DCIC peripheral base address.

static inline void DCIC_ EnableInterrupts(DCIC_Type *base, uint32_t mask)
Enable interrupts.

Parameters
* base — DCIC peripheral base address.

* mask — Mask of interrupt events that would be enabled. See to
“_dcic_interrupt_enable_t”.

static inline void DCIC__DisableInterrupts(DCIC_Type *base, uint32_t mask)
Disable interrupts.
Parameters
* base — DCIC peripheral base address.

* mask — Mask of interrupt events that would be disabled. See to
“_dcic_interrupt_enable_t”.

void DCIC_ EnableRegion(DCIC_Type *base, uint8_t regionldx, const dcic_region_config t
*config)
Enable the region of interest (ROI) with configuration.
Enable the ROIwith configuration. To change the configuration except reference CRC value,

the region should be disabled first by DCIC_DisableRegion, then call this function again.
The reference CRC value could be changed by DCIC_SetRegionRefCrc without disabling the

450 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

region. If the configuration is locked, only the reference CRC value could be changed, the
region size and position, enable status could not be changed until reset.

Parameters
* base — DCIC peripheral base address.
* regionldx — Region index, from 0 to (DCIC_REGION_COUNT - 1).
* config — Pointer to the configuration.

static inline void DCIC_ DisableRegion(DCIC_Type *base, uint8_t regionIdx)
Disable the region of interest (ROI).

Parameters
* base — DCIC peripheral base address.
* regionldx — Region index, from 0 to (DCIC_REGION_COUNT - 1).

static inline void DCIC_ SetRegionRefCrc(DCIC_Type *base, uint8_t regionldx, uint32_t crc)
Set the reference CRC of interest (ROI).

Parameters
* base — DCIC peripheral base address.
* regionldx — Region index, from 0 to (DCIC_REGION_COUNT - 1).
* crc — The reference CRC value.

static inline uint32_t DCIC__GetRegionCalculatedCrc(DCIC_Type *base, uint8_t regionldx)
Get the DCIC calculated CRC.

Parameters
* base — DCIC peripheral base address.
* regionldx — Region index, from 0 to (DCIC_REGION_COUNT - 1).

Returns
The calculated CRC value.

static inline void DCIC _EnableMismatchExternalSignal(DCIC_Type *base, bool enable)
Enable or disable output the mismatch external signal.

The mismatch status can be output to external pins. If enabled:
« If kDCIC_ErrorInterruptStatus asserted, the output signal frequency is DCIC clock / 16.

« If KDCIC_ErrorInterruptStatus not asserted, the output signal frequency is DCIC clock
/ 4.

* If integrity check is disabled, the signal is idle.

Parameters
* base — DCIC peripheral base address.
* enable — Use true to enable, false to disable.
enum _DCIC_ polarity_flags
DCIC display signal polarity flags .
Values:

enumerator kDCIC_ VsyncActiveHigh
VSYNC active high.

2.35. DCIC 451

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCIC__HsyncActiveHigh
HSYNC active high.

enumerator kDCIC__DataEnableActiveHigh
Data enable line active high.
enumerator kDCIC_ DriveDataOnFallingClkEdge
Output data on rising clock edge, capture data on falling clock edge.

enumerator kDCIC__ VsyncActiveLow
VSYNC active low.

enumerator kDCIC__HsyncActiveLow
HSYNC active low.

enumerator kDCIC DataEnableActiveLow
Data enable line active low.

enumerator kDCIC__ DriveDataOnRisingClkEdge
Output data on falling clock edge, capture data on rising clock edge.

enum _DCIC_ status_flags
Status flags. .

Values:

enumerator kDCIC__FunctionallnterruptStatus
Asserted when match results ready.

enumerator kDCIC_ ErrorInterruptStatus
Asserted when there is a signature mismatch.

enumerator kDCIC_ Region0MismatchStatus
Region 0 CRC32 value mismatch.

enumerator kDCIC_Region1MismatchStatus
Region 1 CRC32 value mismatch.

enumerator kDCIC_ Region2MismatchStatus
Region 2 CRC32 value mismatch.

enumerator kDCIC_ Region3MismatchStatus
Region 3 CRC32 value mismatch.

enumerator kDCIC__Region4MismatchStatus
Region 4 CRC32 value mismatch.

enumerator kDCIC__Region5MismatchStatus
Region 5 CRC32 value mismatch.

enumerator kDCIC__Region6MismatchStatus
Region 6 CRC32 value mismatch.

enumerator kDCIC__Region7MismatchStatus
Region 7 CRC32 value mismatch.

enumerator kDCIC__Region8MismatchStatus
Region 8 CRC32 value mismatch.

enumerator kDCIC__Region9MismatchStatus
Region 9 CRC32 value mismatch.

452 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDCIC__Region10MismatchStatus
Region 10 CRC32 value mismatch.

enumerator kDCIC__Regionl1MismatchStatus
Region 11 CRC32 value mismatch.
enumerator kDCIC__Regionl12MismatchStatus
Region 12 CRC32 value mismatch.
enumerator kDCIC__Regionl3MismatchStatus
Region 13 CRC32 value mismatch.
enumerator kDCIC__Region14MismatchStatus
Region 14 CRC32 value mismatch.
enumerator kDCIC__Regionl5MismatchStatus
Region 15 CRC32 value mismatch.
enum _ dcic_ interrupt_ enable
Interrupts. .
Values:
enumerator kDCIC__ FunctionallnterruptEnable
Interrupt when match results ready.
enumerator kDCIC__ErrorInterruptEnable
Interrupt when there is a signature mismatch.
typedef struct _dcic_config dcic_ config_t
DCIC configuration.
typedef struct _dcic_region_config dcic_ region_ config_t
Region of interest (ROI) configuration.
DCIC_REGION__COUNT

FSL DCIC DRIVER_VERSION
DCIC driver version.

DCIC_CRC32_POLYNOMIAL

CRC32 calculation polynomial.
DCIC_CRC32_INIT_VALUE

CRC32 calculation initialize value.

DCICiREGIONiMISMATCHisTATUS(region)
ROI CRC32 value mismatch status.

struct _ dcic_ config
#include <fsl_dcic.h> DCIC configuration.

Public Members

bool enableExternalSignal
Enable the mismatch external signal. When enabled, the mismatch status could be
monitored from the extern pin.

uint8_t polarityFlags
Display signal polarity, logical OR’ed of _DCIC_polarity_flags.

2.35. DCIC 453

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t enablelnterrupts
Interrupts to enable, should be OR’ed of _dcic_interrupt_enable.

struct _ dcic_ region_ config
#include <fsl_dcic.h> Region of interest (ROI) configuration.

Public Members
bool lock
Lock the region configuration except reference CRC32 value setting.

uint16_t upperLeftX
X of upper left corner. Range: 0 to 2A13-1.

uint16_t upperLeftY
Y of upper left corner. Range: 0 to 2A12-1.

uint16_t lowerRightX
X of lower right corner. Range: 0 to 2A13-1.

uint16_t lowerRightY
Y of lower right corner. Range: 0 to 2A12-1.

uint32_t refCrc
Reference CRC32 value.

2.36 DCIC: Display Content Integrity Checker

2.37 DMAMUX: Direct Memory Access Multiplexer Driver

void DMAMUX_Init(DMAMUX_Type *base)
Initializes the DMAMUX peripheral.

This function ungates the DMAMUX clock.
Parameters
* base - DMAMUX peripheral base address.

void DMAMUX_ Deinit(DMAMUZX_Type *base)
Deinitializes the DMAMUX peripheral.

This function gates the DMAMUX clock.
Parameters
* base - DMAMUX peripheral base address.

static inline void DMAMUX EnableChannel(DMAMUX _Type *base, uint32_t channel)
Enables the DMAMUX channel.

This function enables the DMAMUX channel.
Parameters
* base —- DMAMUX peripheral base address.
¢ channel - DMAMUX channel number.

454 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline void DMAMUZX_ DisableChannel(DMAMUX_Type *base, uint32_t channel)
Disables the DMAMUX channel.

This function disables the DMAMUX channel.

Note: The user must disable the DMAMUX channel before configuring it.

Parameters
* base - DMAMUX peripheral base address.
* channel - DMAMUX channel number.

static inline void DMAMUX _ SetSource(DMAMUX_Type *base, uint32_t channel, int32_t source)
Configures the DMAMUX channel source.

Parameters
* base - DMAMUX peripheral base address.
* channel - DMAMUX channel number.

* source — Channel source, which is used to trigger the DMA transfer.User
need to use the dma_request_source_t type as the input parameter.

static inline void DMAMUX_ EnablePeriod Trigger(DMAMUX_Type *base, uint32_t channel)
Enables the DMAMUX period trigger.

This function enables the DMAMUZX period trigger feature.
Parameters
* base - DMAMUX peripheral base address.
* channel - DMAMUX channel number.

static inline void DMAMUX _ DisablePeriod Trigger(DMAMUX_Type *base, uint32_t channel)
Disables the DMAMUX period trigger.

This function disables the DMAMUX period trigger.
Parameters
* base - DMAMUX peripheral base address.
e channel - DMAMUX channel number.

static inline void DMAMUX_EnableAlwaysOn(DMAMUX_Type *base, uint32_t channel, bool
enable)

Enables the DMA channel to be always ON.
This function enables the DMAMUX channel always ON feature.
Parameters
* base - DMAMUX peripheral base address.
* channel - DMAMUX channel number.

* enable — Switcher of the always ON feature. “true” means enabled, “false”
means disabled.

FSL DMAMUX DRIVER_ VERSION
DMAMUZX driver version 2.1.1.

DMAMUXfCHANNELiENDIANiCONVERTn(Channel)
Macro used for dmamux channel endian convert.

2.37. DMAMUX: Direct Memory Access Multiplexer Driver 455

MCUXpresso SDK Documentation, Release 25.12.00

2.38 eDMA: Enhanced Direct Memory Access (eDMA) Con-
troller Driver

void EDMA_ Init(DMA_Type *base, const edma_config_t *config)
Initializes the eDMA peripheral.

This function ungates the eDMA clock and configures the eDMA peripheral according to the
configuration structure. All emda enabled request will be cleared in this function.

Note: This function enables the minor loop map feature.

Parameters
* base — eDMA peripheral base address.
* config — A pointer to the configuration structure, see “edma_config_t”.
void EDMA_ Deinit(DMA_Type *base)
Deinitializes the eDMA peripheral.
This function gates the eDMA clock.
Parameters
* base — eDMA peripheral base address.

void EDMA_ InstallTCD(DMA_Type *base, uint32_t channel, edma_tcd_t *tcd)
Push content of TCD structure into hardware TCD register.

Parameters
* base —- EDMA peripheral base address.
* channel - EDMA channel number.
* tcd — Point to TCD structure.

void EDMA GetDefaultConfig(edma_config t *config)
Gets the eDMA default configuration structure.
This function sets the configuration structure to default values. The default configuration
is set to the following values.

config.enableContinuousLinkMode = false;
config.enableHaltOnError = true;
config.enableRoundRobinArbitration = false;
config.enableDebugMode = false;

Parameters
* config — A pointer to the eDMA configuration structure.

static inline void EDMA_ EnableContinuousChannelLinkMode(DMA_Type *base, bool enable)
Enable/Disable continuous channel link mode.

Note: Do not use continuous link mode with a channel linking to itself if there is only
one minor loop iteration per service request, for example, if the channel’s NBYTES value
is the same as either the source or destination size. The same data transfer profile can
be achieved by simply increasing the NBYTES value, which provides more efficient, faster
processing.

456 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — EDMA peripheral base address.
* enable — true is enable, false is disable.

static inline void EDMA_ EnableMinorLoopMapping(DMA_Type *base, bool enable)
Enable/Disable minor loop mapping.

The TCDn.word2 is redefined to include individual enable fields, an offset field, and the
NBYTES field.

Parameters
* base — EDMA peripheral base address.
* enable — true is enable, false is disable.

void EDMA_ ResetChannel(DMA_Type *base, uint32_t channel)
Sets all TCD registers to default values.

This function sets TCD registers for this channel to default values.

Note: This function must not be called while the channel transfer is ongoing or it causes
unpredictable results.

Note: This function enables the auto stop request feature.

Parameters
* base — eDMA peripheral base address.
* channel - eDMA channel number.

void EDMA_ SetTransferConfig(DMA_Type *base, uint32_t channel, const edma_transfer_config t
*config, edma_tcd_t *nextTcd)

Configures the eDMA transfer attribute.

This function configures the transfer attribute, including source address, destination ad-
dress, transfer size, address offset, and so on. It also configures the scatter gather feature
if the user supplies the TCD address. Example:

edma_ transfer t config;
edma_ ted_t ted;
config.srcAddr = ..;
config.destAddr = .;

EDMA_ SetTransferConfig(DMAOQ, channel, &config, &sted);

Note: If nextTcd is not NULL, it means scatter gather feature is enabled and DREQ bit is
cleared in the previous transfer configuration, which is set in the eDMA_ResetChannel.

Parameters
* base — eDMA peripheral base address.
* channel - eDMA channel number.
* config — Pointer to eDMA transfer configuration structure.

* nextTed — Point to TCD structure. It can be NULL if users do not want to
enable scatter/gather feature.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 457

MCUXpresso SDK Documentation, Release 25.12.00

void EDMA_SetMinorOffsetConfig(DMA_Type *base, uint32_t channel, const
edma_minor_offset_config_t *config)

Configures the eDMA minor offset feature.

The minor offset means that the signed-extended value is added to the source address or
destination address after each minor loop.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.
* config — A pointer to the minor offset configuration structure.

void EDMA_ SetChannelPreemptionConfig(DMA_Type *base, uint32_t channel, const
edma_channel_Preemption_config_t *config)

Configures the eDMA channel preemption feature.
This function configures the channel preemption attribute and the priority of the channel.
Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number
* config — A pointer to the channel preemption configuration structure.

void EDMA_SetChannelLink(DMA_Type *base, uint32_t channel, edma_channel_link_type_t
linkType, uint32_t linkedChannel)

Sets the channel link for the eDMA transfer.

This function configures either the minor link or the major link mode. The minor link
means that the channel link is triggered every time CITER decreases by 1. The major link
means that the channel link is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters

* base — eDMA peripheral base address.

* channel — eDMA channel number.

¢ linkType — A channel link type, which can be one of the following:
— KEDMA_LinkNone
— KEDMA_MinorLink
— kEDMA_MajorLink

¢ linkedChannel — The linked channel number.

void EDMA_ SetBandWidth(DMA_Type *base, uint32_t channel, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA transfer.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after
the completion of each read/write access to control the bus request bandwidth seen by the
crosshar switch.

Parameters

* base — eDMA peripheral base address.

458 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* channel — eDMA channel number.

* bandWidth — A bandwidth setting, which can be one of the following:
- kEDMABandwidthStallNone
— kEDMABandwidthStall4Cycle
— KEDMABandwidthStall8Cycle

void EDMA_SetModulo(DMA_Type *base, uint32_t channel, edma_modulo_t srcModulo,
edma_modulo_t destModulo)

Sets the source modulo and the destination modulo for the eDMA transfer.

This function defines a specific address range specified to be the value after (SADDR +
SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides
the ability to implement a circular data queue easily.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.
* srcModulo — A source modulo value.
* destModulo — A destination modulo value.

static inline void EDMA_ EnableAsyncRequest(DMA_Type *base, uint32_t channel, bool enable)
Enables an async request for the eDMA transfer.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.
* enable — The command to enable (true) or disable (false).

static inline void EDMA_ EnableAutoStopRequest(DMA_Type *base, uint32_t channel, bool
enable)

Enables an auto stop request for the eDMA transfer.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware
channel request.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.
* enable — The command to enable (true) or disable (false).

void EDMA_ EnableChannellnterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Enables the interrupt source for the eDMA transfer.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.

* mask — The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_ DisableChannelInterrupts(DMA_Type *base, uint32_t channel, uint32_t mask)
Disables the interrupt source for the eDMA transfer.

Parameters

* base — eDMA peripheral base address.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 459

MCUXpresso SDK Documentation, Release 25.12.00

* channel — eDMA channel number.

* mask — The mask of the interrupt source to be set. Use the defined
edma_interrupt_enable_t type.

void EDMA__SetMajorOffsetConfig(DMA_Type *base, uint32_t channel, int32_t sourceOffset,

int32_t destOffset)
Configures the eDMA channel TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count
Parameters
* base — eDMA peripheral base address.
* channel — edma channel number.

* sourceOffset — source address offset will be applied to source address after
major loop done.

* destOffset — destination address offset will be applied to source address af-
ter major loop done.

void EDMA_ TedReset(edma_tcd_t *tcd)

Sets all fields to default values for the TCD structure.

This function sets all fields for this TCD structure to default value.

Note: This function enables the auto stop request feature.

Parameters

* tcd — Pointer to the TCD structure.

void EDMA_ TedSetTransferConfig(edma_tcd_t *tcd, const edma_transfer_config_t *config,

edma_tcd_t *nextTcd)
Configures the eDMA TCD transfer attribute.

The TCD is a transfer control descriptor. The content of the TCD is the same as the hardware
TCD registers. The TCD is used in the scatter-gather mode. This function configures the
TCD transfer attribute, including source address, destination address, transfer size, address
offset, and so on. It also configures the scatter gather feature if the user supplies the next
TCD address. Example:

edma,__ transfer_t config = {
}
edma_ tcd_t tcd ___ aligned(32);

edma_tcd_t nextTed aligned(32);
EDMA_ TcdSetTransferConfig(&ted, &config, &nextTed);

Note: TCD address should be 32 bytes aligned or it causes an eDMA error.

Note: If the nextTcd is not NULL, the scatter gather feature is enabled and DREQ bit is
cleared in the previous transfer configuration, which is set in the EDMA_TcdReset.

Parameters
* tcd — Pointer to the TCD structure.

* config — Pointer to eDMA transfer configuration structure.

460

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* nextTcd — Pointer to the next TCD structure. It can be NULL if users do not
want to enable scatter/gather feature.

void EDMA_ TedSetMinorOffsetConfig(edma_tcd_t *tcd, const edma_minor_offset_config t
*config)

Configures the eDMA TCD minor offset feature.

A minor offset is a signed-extended value added to the source address or a destination ad-
dress after each minor loop.

Parameters
* tcd — A point to the TCD structure.
* config — A pointer to the minor offset configuration structure.

void EDMA_ TedSetChannelLink(edma_tcd_t *tcd, edma_channel_link_type_t linkType, uint32_t
linkedChannel)

Sets the channel link for the eDMA TCD.
This function configures either a minor link or a major link. The minor link means the

channel link is triggered every time CITER decreases by 1. The major link means that the
channel link is triggered when the CITER is exhausted.

Note: Users should ensure that DONE flag is cleared before calling this interface, or the
configuration is invalid.

Parameters
* tcd — Point to the TCD structure.
* linkType — Channel link type, it can be one of:
— KEDMA_LinkNone
— KEDMA_MinorLink
— kKEDMA_MajorLink
* linkedChannel — The linked channel number.

static inline void EDMA_ TedSetBandWidth(edma_tcd_t *tcd, edma_bandwidth_t bandWidth)
Sets the bandwidth for the eDMA TCD.

Because the eDMA processes the minor loop, it continuously generates read/write se-
quences until the minor count is exhausted. The bandwidth forces the eDMA to stall after
the completion of each read/write access to control the bus request bandwidth seen by the
crossbar switch.

Parameters
* tcd — A pointer to the TCD structure.
* bandWidth — A bandwidth setting, which can be one of the following:
- kEDMABandwidthStallNone
- kEDMABandwidthStall4Cycle
- kEDMABandwidthStall8Cycle

void EDMA_ TedSetModulo(edma_tcd_t *tcd, edma_modulo_t srcModulo, edma_modulo_t
destModulo)

Sets the source modulo and the destination modulo for the eDMA TCD.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 461

MCUXpresso SDK Documentation, Release 25.12.00

This function defines a specific address range specified to be the value after (SADDR +
SOFF)/(DADDR + DOFF) calculation is performed or the original register value. It provides
the ability to implement a circular data queue easily.

Parameters
* tcd — A pointer to the TCD structure.
* srcModulo — A source modulo value.
* destModulo — A destination modulo value.

static inline void EDMA_ TedEnableAutoStopRequest(edma_tcd_t *tcd, bool enable)
Sets the auto stop request for the eDMA TCD.

If enabling the auto stop request, the eDMA hardware automatically disables the hardware
channel request.

Parameters
* tcd — A pointer to the TCD structure.
* enable — The command to enable (true) or disable (false).

void EDMA_ TedEnableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Enables the interrupt source for the eDMA TCD.

Parameters
* tcd — Point to the TCD structure.

» mask — The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_ TedDisableInterrupts(edma_tcd_t *tcd, uint32_t mask)
Disables the interrupt source for the eDMA TCD.

Parameters
* tcd — Point to the TCD structure.

» mask — The mask of interrupt source to be set. Users need to use the defined
edma_interrupt_enable_t type.

void EDMA_ TedSetMajorOffsetConfig(edma_ted_t *ted, int32_t sourceOffset, int32_t destOffset)
Configures the eDMA TCD major offset feature.

Adjustment value added to the source address at the completion of the major iteration count
Parameters
* tcd — A point to the TCD structure.

* sourceOffset — source address offset wiil be applied to source address after
major loop done.

* destOffset — destination address offset will be applied to source address af-
ter major loop done.

static inline void EDMA_ EnableChannelRequest(DMA_Type *base, uint32_t channel)
Enables the eDMA hardware channel request.

This function enables the hardware channel request.
Parameters
* base — eDMA peripheral base address.

* channel — eDMA channel number.

462 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline void EDMA_ DisableChannelRequest(DMA_Type *base, uint32_t channel)
Disables the eDMA hardware channel request.

This function disables the hardware channel request.
Parameters
* base — eDMA peripheral base address.
* channel - eDMA channel number.

static inline void EDMA_ TriggerChannelStart(DMA_Type *base, uint32_t channel)
Starts the eDMA transfer by using the software trigger.

This function starts a minor loop transfer.
Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.

uint32_t EDMA_ GetRemainingMajorLoopCount(DMA_Type *base, uint32_t channel)
Gets the remaining major loop count from the eDMA current channel TCD.

This function checks the TCD (Task Control Descriptor) status for a specified eDMA channel
and returns the number of major loop count that has not finished.

Note: 1. This function can only be used to get unfinished major loop count of transfer
without the next TCD, or it might be inaccuracy.

a. The unfinished/remaining transfer bytes cannot be obtained directly from registers
while the channel is running. Because to calculate the remaining bytes, the initial
NBYTES configured in DMA_TCDn_NBYTES_MLNO register is needed while the eDMA
IP does not support getting it while a channel is active. In another word, the NBYTES
value reading is always the actual (decrementing) NBYTES value the dma_engine is
working with while a channel is running. Consequently, to get the remaining transfer
bytes, a software-saved initial value of NBYTES (for example copied before enabling
the channel) is needed. The formula to calculate it is shown below: RemainingBytes =
RemainingMajorLoopCount * NBYTES(initially configured)

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.

Returns
Major loop count which has not been transferred yet for the current TCD.

static inline uint32_t EDMA__ GetErrorStatusFlags(DMA_Type *base)
Gets the eDMA channel error status flags.

Parameters
* base — eDMA peripheral base address.

Returns
The mask of error status flags. Users need to use the _edma_error_status_flags
type to decode the return variables.

uint32_t EDMA_ GetChannelStatusFlags(DMA_Type *base, uint32_t channel)
Gets the eDMA channel status flags.

Parameters

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 463

MCUXpresso SDK Documentation, Release 25.12.00

* base — eDMA peripheral base address.
* channel — eDMA channel number.

Returns
The mask of channel status flags. Users need to wuse the
_edma_channel_status_flags type to decode the return variables.

void EDMA_ ClearChannelStatusFlags(DMA_Type *base, uint32_t channel, uint32_t mask)
Clears the eDMA channel status flags.

Parameters
* base — eDMA peripheral base address.
* channel — eDMA channel number.

* mask — The mask of channel status to be cleared. Users need to use the
defined _edma_channel_status_flags type.

void EDMA_ CreateHandle(edma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the eDMA handle.

This function is called if using the transactional API for eDMA. This function initializes the
internal state of the eDMA handle.

Parameters

* handle — eDMA handle pointer. The eDMA handle stores callback function
and parameters.

* base — eDMA peripheral base address.
* channel — eDMA channel number.

void EDMA_ InstallTCDMemory(edma_handle_t *handle, edma_tcd_t *tcdPool, uint32_t tcdSize)
Installs the TCDs memory pool into the eDMA handle.

This function is called after the EDMA_CreateHandle to use scatter/gather feature. This
function shall only be used while users need to use scatter gather mode. Scatter gather
mode enables EDMA to load a new transfer control block (tcd) in hardware, and automati-
cally reconfigure that DMA channel for a new transfer. Users need to prepare tcd memory
and also configure tcds using interface EDMA_SubmitTransfer.

Parameters
* handle — eDMA handle pointer.
* tcdPool - A memory pool to store TCDs. It must be 32 bytes aligned.
* tcdSize — The number of TCD slots.

void EDMA _ SetCallback(edma_handle_t *handle, edma_callback callback, void *userData)
Installs a callback function for the eDMA transfer.

This callback is called in the eDMA IRQ handler. Use the callback to do something after
the current major loop transfer completes. This function will be called every time one tcd
finished transfer.

Parameters
* handle — eDMA handle pointer.
* callback — eDMA callback function pointer.

 userData — A parameter for the callback function.

464 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void EDMA_ PrepareTransferConfig(edma_transfer_config_t *config, void *srcAddr, uint32_t
srcWidth, int16_t srcOffset, void *destAddr, uint32_t
destWidth, int16_t destOffset, uint32_t bytesEachRequest,
uint32_t transferBytes)

Prepares the eDMA transfer structure configurations.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC
is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error
(SAE).

Parameters
* config — The user configuration structure of type edma_transfer_t.
* srcAddr — eDMA transfer source address.
* srcWidth — eDMA transfer source address width(bytes).
* srcOffset — source address offset.
* destAddr — eDMA transfer destination address.
* destWidth — eDMA transfer destination address width(bytes).
* destOffset — destination address offset.
* bytesEachRequest — eDMA transfer bytes per channel request.
* transferBytes — eDMA transfer bytes to be transferred.

void EDMA_ PrepareTransfer(edma_transfer_config_t *config, void *srcAddr, uint32_t srcWidth,
void *destAddr, uint32_t destWidth, uint32_t bytesEachRequest,
uint32_t transferBytes, edma_transfer_type_t transferType)

Prepares the eDMA transfer structure.

This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC
is 4 bytes, the source address must be 4 bytes aligned, or it results in source address error
(SAE).

Parameters
* config — The user configuration structure of type edma_transfer_t.
* srcAddr — eDMA transfer source address.
* srcWidth — eDMA transfer source address width(bytes).
* destAddr — eDMA transfer destination address.
* destWidth — eDMA transfer destination address width(bytes).
* bytesEachRequest — eDMA transfer bytes per channel request.
* transferBytes — eDMA transfer bytes to be transferred.
* transferType — eDMA transfer type.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 465

MCUXpresso SDK Documentation, Release 25.12.00

status_t EDMA_ SubmitTransfer(edma_handle_t *handle, const edma_transfer._config_t *config)
Submits the eDMA transfer request.

This function submits the eDMA transfer request according to the transfer configuration
structure. In scatter gather mode, call this function will add a configured tcd to the circular
list of tcd pool. The tcd pools is setup by call function EDMA_InstallTCDMemory before.

Parameters
* handle — eDMA handle pointer.
* config — Pointer to eDMA transfer configuration structure.
Return values
* kStatus_ EDMA_ Success — It means submit transfer request succeed.

* kStatus. EDMA_ QueueFull — It means TCD queue is full. Submit transfer
request is not allowed.

* kStatus_ EDMA_ Busy — It means the given channel is busy, need to submit
request later.

void EDMA _ StartTransfer(edma_handle_t *handle)
eDMA starts transfer.

This function enables the channel request. Users can call this function after submitting the
transfer request or before submitting the transfer request.

Parameters
* handle — eDMA handle pointer.

void EDMA_ StopTransfer(edma_handle_t *handle)
eDMA stops transfer.

This function disables the channel request to pause the transfer. Users can call
EDMA_StartTransfer() again to resume the transfer.

Parameters
* handle — eDMA handle pointer.

void EDMA_ AbortTransfer(edma_handle_t *handle)
eDMA aborts transfer.

This function disables the channel request and clear transfer status bits. Users can submit
another transfer after calling this API.

Parameters
* handle - DMA handle pointer.

static inline uint32_t EDMA_GetUnusedTCDNumber(edma_handle_t *handle)
Get unused TCD slot number.

This function gets current tcd index which is run. If the TCD pool pointer is NULL, it will
return 0.

Parameters
* handle - DMA handle pointer.

Returns
The unused tcd slot number.

static inline uint32_t EDMA_ GetNextTCDAddress(edma_handle_t *handle)
Get the next tcd address.

This function gets the next tcd address. If this is last TCD, return 0.

466 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* handle - DMA handle pointer.

Returns
The next TCD address.
void EDMA_ HandleIRQ(edma_handle_t *handle)
eDMA IRQ handler for the current major loop transfer completion.

This function clears the channel major interrupt flag and calls the callback function if it is
not NULL.

Note: For the case using TCD queue, when the major iteration count is exhausted, additional
operations are performed. These include the final address adjustments and reloading of
the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this
time, as does a possible fetch of a new TCD from memory using the scatter/gather address
pointer included in the descriptor (if scatter/gather is enabled).

For instance, when the time interrupt of TCD[0] happens, the TCD[1] has already been
loaded into the eDMA engine. As sga and sga_index are calculated based on the DLAST_SGA
bitfield lies in the TCD_CSR register; the sga_index in this case should be 2 (DLAST_SGA of
TCD[1] stores the address of TCD[2]). Thus, the “tcdUsed” updated should be (tcdUsed - 2U)
which indicates the number of TCDs can be loaded in the memory pool (because TCD[O0]
and TCD[1] have been loaded into the eDMA engine at this point already.).

For the last two continuous ISRs in a scatter/gather process, they both load the last TCD (The
last ISR does not load a new TCD) from the memory pool to the eDMA engine when major
loop completes. Therefore, ensure that the header and tcdUsed updated are identical for
them. tcdUsed are both 0 in this case as no TCD to be loaded.

See the “eDMA basic data flow” in the eDMA Functional description section of the Reference
Manual for further details.

Parameters
* handle — eDMA handle pointer.

FSL _EDMA_ DRIVER_ VERSION
eDMA driver version

Version 2.4.7.

enum edma_transfer size
eDMA transfer configuration

Values:

enumerator kEDMA_ TransferSizel Bytes

Source/Destination data transfer size is 1 byte every time
enumerator kEDMA_ TransferSize2Bytes

Source/Destination data transfer size is 2 bytes every time
enumerator kEDMA_ TransferSize4Bytes

Source/Destination data transfer size is 4 bytes every time
enumerator kEDMA_ TransferSize8Bytes

Source/Destination data transfer size is 8 bytes every time
enumerator kEDMA_ TransferSizel6Bytes

Source/Destination data transfer size is 16 bytes every time

enumerator kEDMA_ TransferSize32Bytes
Source/Destination data transfer size is 32 bytes every time

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 467

MCUXpresso SDK Documentation, Release 25.12.00

enum edma_modulo
eDMA modulo configuration
Values:
enumerator kEDMA_ ModuloDisable
Disable modulo
enumerator kEDMA_Modulo2bytes
Circular buffer size is 2 bytes.
enumerator kEDMA_Modulo4bytes
Circular buffer size is 4 bytes.
enumerator kEDMA_Modulo8bytes
Circular buffer size is 8 bytes.
enumerator kEDMA_Modulol6bytes
Circular buffer size is 16 bytes.
enumerator kEDMA_Modulo32bytes
Circular buffer size is 32 bytes.
enumerator kEDMA_Modulo64bytes
Circular buffer size is 64 bytes.
enumerator kEDMA_ Modulo128bytes
Circular buffer size is 128 bytes.
enumerator kEDMA_ Modulo256bytes
Circular buffer size is 256 bytes.
enumerator kEDMA_ Modulo512bytes
Circular buffer size is 512 bytes.
enumerator kEDMA_ Modulo1Kbytes
Circular buffer size is 1 K bytes.
enumerator kEDMA_ Modulo2Kbytes
Circular buffer size is 2 K bytes.
enumerator kEDMA_ Modulo4Kbytes
Circular buffer size is 4 K bytes.
enumerator kEDMA_ Modulo8Kbytes
Circular buffer size is 8 K bytes.
enumerator kEDMA_ Modulo16Kbytes
Circular buffer size is 16 K bytes.
enumerator kEDMA_ Modulo32Kbytes
Circular buffer size is 32 K bytes.
enumerator kEDMA_ Modulo64Kbytes
Circular buffer size is 64 K bytes.
enumerator kEDMA_Modulo128Kbytes
Circular buffer size is 128 K bytes.

enumerator kEDMA_Modulo256Kbytes
Circular buffer size is 256 K bytes.

468 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_Modulo512Kbytes
Circular buffer size is 512 K bytes.

enumerator kEDMA_ModulolMbytes
Circular buffer size is 1 M bytes.

enumerator kEDMA_Modulo2Mbytes
Circular buffer size is 2 M bytes.

enumerator kEDMA_Modulo4Mbytes
Circular buffer size is 4 M bytes.

enumerator kEDMA_Modulo8Mbytes
Circular buffer size is 8 M bytes.

enumerator kEDMA_Modulo16Mbytes
Circular buffer size is 16 M bytes.

enumerator kEDMA_Modulo32Mbytes
Circular buffer size is 32 M bytes.

enumerator kEDMA_Modulo64Mbytes
Circular buffer size is 64 M bytes.

enumerator kEDMA_Modulo128Mbytes
Circular buffer size is 128 M bytes.

enumerator kEDMA_Modulo256Mbytes
Circular buffer size is 256 M bytes.

enumerator kEDMA_Modulo512Mbytes
Circular buffer size is 512 M bytes.

enumerator kEDMA_ModulolGbytes
Circular buffer size is 1 G bytes.

enumerator kEDMA_Modulo2Gbytes
Circular buffer size is 2 G bytes.

enum edma_bandwidth

Bandwidth control.

Values:

enumerator kEDMA_ BandwidthStallNone
No eDMA engine stalls.

enumerator kEDMA_ BandwidthStall4Cycle
eDMA engine stalls for 4 cycles after each read/write.

enumerator kEDMA_ BandwidthStall8Cycle
eDMA engine stalls for 8 cycles after each read/write.

enum _ edma_ channel link type

Channel link type.

Values:

enumerator kEDMA_ LinkNone
No channel link

enumerator kEDMA MinorLink
Channel link after each minor loop

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver

469

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_MajorLink
Channel link while major loop count exhausted

_edma_channel_status_flags eDMA channel status flags.
Values:

enumerator kEDMA_ DoneFlag
DONE flag, set while transfer finished, CITER value exhausted

enumerator kEDMA_ ErrorFlag
eDMA error flag, an error occurred in a transfer

enumerator kEDMA_ InterruptFlag
eDMA interrupt flag, set while an interrupt occurred of this channel

_edma_error_status_flags eDMA channel error status flags.
Values:

enumerator kEDMA_ DestinationBusErrorFlag
Bus error on destination address

enumerator kEDMA_ SourceBusErrorFlag
Bus error on the source address

enumerator kEDMA_ ScatterGatherErrorFlag
Error on the Scatter/Gather address, not 32byte aligned.

enumerator kEDMA_NbytesErrorFlag
NBYTES/CITER configuration error

enumerator kEDMA_ DestinationOffsetErrorFlag
Destination offset not aligned with destination size

enumerator kEDMA_ DestinationAddressErrorFlag
Destination address not aligned with destination size

enumerator kEDMA_ SourceOffsetErrorFlag
Source offset not aligned with source size

enumerator kEDMA_ SourceAddressErrorFlag
Source address not aligned with source size

enumerator kEDMA_ ErrorChannelFlag
Error channel number of the cancelled channel number

enumerator kEDMA_ ChannelPriorityErrorFlag
Channel priority is not unique.

enumerator kEDMA_ TransferCanceledFlag
Transfer cancelled

enumerator kEDMA_ ValidFlag
No error occurred, this bit is 0. Otherwise, it is 1.

enum _ edma_ interrupt_ enable
eDMA interrupt source

Values:

470 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEDMA_ ErrorInterruptEnable
Enable interrupt while channel error occurs.

enumerator kEDMA_MajorInterruptEnable
Enable interrupt while major count exhausted.

enumerator kEDMA_HalfInterruptEnable
Enable interrupt while major count to half value.

enum _edma_ transfer_type
eDMA transfer type

Values:

enumerator kEDMA_MemoryToMemory
Transfer from memory to memory

enumerator kEDMA_ PeripheralToMemory
Transfer from peripheral to memory

enumerator kEDMA__MemoryToPeripheral
Transfer from memory to peripheral

enumerator kEDMA_ Peripheral ToPeripheral
Transfer from Peripheral to peripheral

_edma_transfer status eDMA transfer status
Values:

enumerator kStatus. EDMA_QueueFull
TCD queue is full.

enumerator kStatus. EDMA_ Busy
Channel is busy and can’t handle the transfer request.

typedef enum _edma_transfer_size edma_ transfer_ size_t
eDMA transfer configuration

typedef enum _edma _modulo edma_ modulo_t
eDMA modulo configuration

typedef enum _edma_bandwidth edma_ bandwidth_ t
Bandwidth control.

typedef enum _edma_channel _link_type edma_ channel_link_type_t
Channel link type.

typedef enum _edma_interrupt_enable edma,__interrupt_ enable_t
eDMA interrupt source

typedef enum _edma_transfer_type edma_ transfer_ type_t
eDMA transfer type

typedef struct _edma_config edma_ config_t
eDMA global configuration structure.

typedef struct _edma_transfer_config edma_ transfer config_t
eDMA transfer configuration

This structure configures the source/destination transfer attribute.

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver

471

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _edma_channel Preemption_config edma_ channel Preemption_ config_t
eDMA channel priority configuration

typedef struct _edma_minor._offset_config edma_ minor_ offset__config_t
eDMA minor offset configuration

typedef struct _edma_tcd edma_ ted_t
eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used
to configure the scatter/gather feature as a next hardware TCD.

typedef void (*edma_ callback)(struct _edma_handle *handle, void *userData, bool transferDone,
uint32_t tcds)

Define callback function for eDMA.

This callback function is called in the EDMA interrupt handle. In normal mode, run into
callback function means the transfer users need is done. In scatter gather mode, run into
callback function means a transfer control block (tcd) is finished. Not all transfer finished,
users can get the finished tcd numbers using interface EDMA_GetUnusedTCDNumber.

Param handle
EDMA handle pointer; users shall not touch the values inside.

Param userData
The callback user parameter pointer. Users can use this parameter to involve
things users need to change in EDMA callback function.

Param transferDone
If the current loaded transfer done. In normal mode it means if all transfer
done. In scatter gather mode, this parameter shows is the current transfer
block in EDMA register is done. As the load of core is different, it will be dif-
ferent if the new tcd loaded into EDMA registers while this callback called. If
true, it always means new tcd still not loaded into registers, while false means
new tcd already loaded into registers.

Param tcds
How many tcds are done from the last callback. This parameter only used in
scatter gather mode. It tells user how many tcds are finished between the last
callback and this.
typedef struct _edma_handle edma_handle_t
eDMA transfer handle structure

DMA_DCHPRI_INDEX(channel)
Compute the offset unit from DCHPRI3.

struct _edma, config
#include <fsl_edma.h> eDMA global configuration structure.

Public Members

bool enableContinuousLinkMode

Enable (true) continuous link mode. Upon minor loop completion, the channel acti-
vates again if that channel has a minor loop channel link enabled and the link channel
is itself.

bool enableHaltOnError

Enable (true) transfer halt on error. Any error causes the HALT bit to set. Subsequently,
all service requests are ignored until the HALT bit is cleared.

472 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

bool enableRoundRobinArbitration

Enable (true) round robin channel arbitration method or fixed priority arbitration is
used for channel selection

bool enableDebugMode

Enable(true) eDMA debug mode. When in debug mode, the eDMA stalls the start of a
new channel. Executing channels are allowed to complete.

struct _edma,_ transfer_config
#include <fsl_edma.h> eDMA transfer configuration

This structure configures the source/destination transfer attribute.

Public Members

uint32_t srcAddr
Source data address.
uint32_t destAddr
Destination data address.
edma_transfer_size_t srcTransferSize
Source data transfer size.
edma_transfer_size_t destTransferSize
Destination data transfer size.
int16_t srcOffset

Sign-extended offset applied to the current source address to form the next-state value
as each source read is completed.

int16_t destOffset

Sign-extended offset applied to the current destination address to form the next-state
value as each destination write is completed.

uint32_t minorLoopBytes
Bytes to transfer in a minor loop

uint32_t majorLoopCounts
Major loop iteration count.

struct _edma_ channel Preemption_ config
#include <fsl_edma.h> eDMA channel priority configuration

Public Members
bool enableChannelPreemption
If true: a channel can be suspended by other channel with higher priority
bool enablePreemptAbility
If true: a channel can suspend other channel with low priority
uint8_t channelPriority
Channel priority
struct _edma_ minor_ offset_ config
#include <fsl_edma.h> eDMA minor offset configuration

2.38. eDMA: Enhanced Direct Memory Access (eDMA) Controller Driver 473

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
bool enableSrcMinorOffset
Enable(true) or Disable(false) source minor loop offset.
bool enableDestMinorOffset
Enable(true) or Disable(false) destination minor loop offset.
uint32_t minorOffset
Offset for a minor loop mapping.
struct edma_ted
#include <fsl_edma.h> eDMA TCD.

This structure is same as TCD register which is described in reference manual, and is used
to configure the scatter/gather feature as a next hardware TCD.

Public Members

IO uint32 t SADDR
SADDR register, used to save source address

IO uintl6_t SOFF
SOFF register, save offset bytes every transfer
IO uintl6_t ATTR
ATTR register, source/destination transfer size and modulo
IO uint32_t NBYTES
Nbytes register, minor loop length in bytes
IO uint32 t SLAST
SLAST register
IO uint32 t DADDR
DADDR register, used for destination address
IO uintl6_t DOFF
DOFF register, used for destination offset
IO uintl6_t CITER
CITER register, current minor loop numbers, for unfinished minor loop.
IO uint32 t DLAST SGA
DLASTSGA register, next tcd address used in scatter-gather mode
IO uintl6_t CSR
CSR register, for TCD control status
IO uint16_t BITER
BITER register, begin minor loop count.

struct edma_handle
#include <fsl_edma.h> eDMA transfer handle structure

Public Members

edma_callback callback
Callback function for major count exhausted.

474 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

void *userData
Callback function parameter.

DMA_Type *base
eDMA peripheral base address.

edma_tcd_t *tcdPool
Pointer to memory stored TCDs.

uint8_t channel
eDMA channel number.

volatile int8_t header
The first TCD index. Should point to the next TCD to be loaded into the eDMA engine.

volatile int8_t tail
The last TCD index. Should point to the next TCD to be stored into the memory pool.

volatile int8 t tcdUsed
The number of used TCD slots. Should reflect the number of TCDs can be used/loaded
in the memory.

volatile int8_t tcdSize
The total number of TCD slots in the queue.

uint8_t flags
The status of the current channel.

2.39 eLCDIF: Enhanced LCD Interface

void ELCDIF_RgbModelnit(LCDIF_Type *base, const elcdif rgb_mode_config_t *config)
Initializes the eLCDIF to work in RGB mode (DOTCLK mode).

This function ungates the eL.CDIF clock and configures the eL.CDIF peripheral according to
the configuration structure.

Parameters
* base — eLCDIF peripheral base address.
* config — Pointer to the configuration structure.

void ELCDIF_ RgbModeGetDefaultConfig(elcdif rgb_mode_config_t *config)
Gets the eLCDIF default configuration structure for RGB (DOTCLK) mode.

This function sets the configuration structure to default values. The default configuration
is set to the following values.

config->panelWidth = 480U;

config->panelHeight = 272U;

config->hsw = 41;

config->hfp = 4;

config->hbp = §;

config->vsw = 10;

config->vip = 4;

config->vbp = 2;

config->polarityFlags = kELCDIF_ VsyncActiveLow |
KELCDIF_ HsyncActiveLow |
kELCDIF_ DataEnableActiveLow |
KELCDIF_DriveDataOnFallingClkEdge;

config->bufferAddr = 0U;

(continues on next page)

2.39. eLCDIF: Enhanced LCD Interface 475

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

config->pixelFormat = kKELCDIF _PixelFormatRGB888;
config->dataBus = kKELCDIF__DataBus24Bit;

Parameters
* config — Pointer to the eLCDIF configuration structure.

void ELCDIF_ Deinit(LCDIF_Type *base)
Deinitializes the eLCDIF peripheral.

Parameters
* base — eLCDIF peripheral base address.

void ELCDIF_RgbModeSetPixelFormat(LCDIF_Type *base, elcdif pixel format_t pixelFormat)
Set the pixel format in RGB (DOTCLK) mode.

Parameters
* base — eLCDIF peripheral base address.
¢ pixelFormat — The pixel format.

static inline void ELCDIF_RgbModeStart(LCDIF_Type *base)
Start to display in RGB (DOTCLK) mode.

Parameters
* base — eLCDIF peripheral base address.

void ELCDIF_RgbModeStop(LCDIF_Type *base)
Stop display in RGB (DOTCLK) mode and wait until finished.

Parameters
* base — eLCDIF peripheral base address.

static inline void ELCDIF_ SetNextBufferAddr(LCDIF_Type *base, uint32_t bufferAddr)
Set the next frame buffer address to display.

Parameters
* base — eLCDIF peripheral base address.
* bufferAddr — The frame buffer address to set.

void ELCDIF_Reset(LCDIF_Type *base)
Reset the eLCDIF peripheral.

Parameters
* base — eLCDIF peripheral base address.

void ELCDIF_SetPixelComponentOrder(LCDIF_Type *base, elcdif pixel component_order_t
order)

Set the order of the RGB components of each pixel in lines.
Parameters
* base — eLCDIF peripheral base address.

¢ order — The pixel component order

476 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t ELCDIF__GetCrcValue(const LCDIF_Type *base)
Get the CRC value of the frame sent out.

When a frame is sent complete (the interrupt KELCDIF_CurFrameDone assert), this function
can be used to get the CRC value of the frame sent.

Note: The CRC value is dependent on the LCD_DATABUS_WIDTH.

Parameters
* base — eLCDIF peripheral base address.

Returns
The CRC value.

static inline uint32_t ELCDIF__GetBusMasterErrorAddr(const LCDIF_Type *base)
Get the bus master error virtual address.

When bus master error occurs (the interrupt KELCDIF_BusMasterError assert), this func-
tion can get the virtual address at which the AXI master received an error response from
the slave.

Parameters
* base — eLCDIF peripheral base address.

Returns
The error virtual address.

static inline uint32_t ELCDIF _GetStatus(const LCDIF_Type *base)
Get the eLCDIF status.

The status flags are returned as a mask value, application could check the corresponding
bit. Example:

uint32_t statusFlags;
statusFlags = ELCDIF _GetStatus(LCDIF);

if (kELCDIF_LFifoFull & statusFlags)
{
}
if (kELCDIF_TxFifoEmpty & statusFlags)
{
}
Parameters

* base — eLCDIF peripheral base address.

Returns
The mask value of status flags, it is OR’ed value of _elcdif_status_flags.

static inline uint32_t ELCDIF _GetLFifoCount(const LCDIF_Type *base)
Get current count in Latency buffer (LFIFO).

Parameters
* base — eLCDIF peripheral base address.

Returns
The LFIFO current count

2.39. eLCDIF: Enhanced LCD Interface 477

MCUXpresso SDK Documentation, Release 25.12.00

static inline void ELCDIF_ EnableInterrupts(LCDIF_Type *base, uint32_t mask)
Enables eLCDIF interrupt requests.

Parameters
* base — eLCDIF peripheral base address.
* mask — interrupt source, OR’ed value of _elcdif_interrupt_enable.

static inline void ELCDIF_ DisableInterrupts(LCDIF_Type *base, uint32_t mask)
Disables eLCDIF interrupt requests.

Parameters
* base — eLCDIF peripheral base address.
* mask — interrupt source, OR’ed value of _elcdif_interrupt_enable.

static inline uint32_t ELCDIF__GetInterruptStatus(const LCDIF_Type *base)
Get eLCDIF interrupt peding status.

Parameters
* base — eLCDIF peripheral base address.

Returns
Interrupt pending status, OR’ed value of _elcdif_interrupt_flags.

static inline void ELCDIF_ ClearInterruptStatus(LCDIF_Type *base, uint32_t mask)
Clear eLCDIF interrupt peding status.

Parameters
* base — eLCDIF peripheral base address.
* mask — of the flags to clear, OR’ed value of _elcdif_interrupt_flags.

static inline void ELCDIF__EnableLut(LCDIF_Type *base, bool enable)
Enable or disable the LUT.

Parameters
* base — eLCDIF peripheral base address.
* enable — True to enable, false to disable.

status_t ELCDIF_UpdateLut(LCDIF_Type *base, elcdif lut_t lut, uint16_t startIndex, const
uint32_t *lutData, uint16_t count)

Load the LUT value.

This function loads the LUT value to the specific LUT memory, user can specify the start
entry index.

Parameters
* base — eLCDIF peripheral base address.
* lut — Which LUT to load.
* startIndex — The start index of the LUT entry to update.
* lutData — The LUT data to load.
* count — Count of lutData.
Return values
* kStatus_ Success — Initialization success.

* kStatus_ InvalidArgument — Wrong argument.

478 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

FSL ELCDIF DRIVER_ VERSION
eLCDIF driver version

enum _ elcdif _polarity_flags
eLCDIF signal polarity flags

Values:

enumerator kKELCDIF__VsyncActiveLow
VSYNC active low.

enumerator kELCDIF__HsyncActiveLow
HSYNC active low.

enumerator kELCDIF DataEnableActiveLow
Data enable line active low.

enumerator kELCDIF_ DriveDataOnFallingClkEdge

Drive data on falling clock edge, capture data on rising clock edge.

enumerator kELCDIF_ VsyncActiveHigh
VSYNC active high.

enumerator kELCDIF__HsyncActiveHigh
HSYNC active high.

enumerator kELCDIF_ DataEnableActiveHigh
Data enable line active high.

enumerator kELCDIF_ DriveDataOnRisingClkEdge

Drive data on falling clock edge, capture data on rising clock edge.

enum _ elcdif interrupt_enable
The eLCDIF interrupts to enable.

Values:

enumerator kELCDIF _BusMasterErrorInterruptEnable
Bus master error interrupt.

enumerator kELCDIF__TxFifoOverflowInterruptEnable
TXFIFO overflow interrupt.

enumerator kKELCDIF _TxFifoUnderflowInterruptEnable
TXFIFO underflow interrupt.

enumerator kKELCDIF__CurFrameDonelnterruptEnable
Interrupt when hardware enters vertical blanking state.

enumerator kELCDIF__VsyncEdgelnterruptEnable
Interrupt when hardware encounters VSYNC edge.

enum _ elcdif interrupt_ flags

The eL.CDIF interrupt status flags.

Values:

enumerator kELCDIF BusMasterError
Bus master error interrupt.

enumerator kELCDIF TxFifoOverflow
TXFIFO overflow interrupt.

2.39. eLCDIF: Enhanced LCD Interface

479

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF _TxFifoUnderflow
TXFIFO underflow interrupt.

enumerator kELCDIF _CurFrameDone
Interrupt when hardware enters vertical blanking state.

enumerator kELCDIF_ VsyncEdge
Interrupt when hardware encounters VSYNC edge.

enum _ elcdif _status_flags
eLCDIF status flags

Values:

enumerator kELCDIF LFifoFull
LFIFO full.

enumerator kELCDIF_ LFifoEmpty
LFIFO empty.

enumerator kELCDIF _TxFifoFull
TXFIFO full.

enumerator kELCDIF_ TxFifoEmpty
TXFIFO empty.
enum _ elcdif pixel format

The pixel format.

This enumerator should be defined together with the array s_pixelFormatReg. To support
new pixel format, enhance this enumerator and s_pixelFormatReg.

Values:

enumerator kELCDIF_ PixelFormatRAWS
RAW 8 bit, four data use 32 bits.

enumerator kELCDIF_PixelFormatRGB565
RGB565, two pixel use 32 bits.

enumerator kELCDIF_PixelFormatRGB666

RGB666 unpacked, one pixel uses 32 bits, high byte unused, upper 2 bits of other bytes
unused.

enumerator kELCDIF__PixelFormatXRGB8888
XRGB8888 unpacked, one pixel uses 32 bits, high byte unused.

enumerator kELCDIF PixelFormatRGB888
RGB888 packed, one pixel uses 24 bits.

enum _ eledif led data_ bus
The LCD data bus type.

Values:

enumerator kELCDIF_DataBus8Bit
8-bit data bus.

enumerator kELCDIF DataBus16Bit
16-bit data bus, support RGB565.

enumerator kELCDIF DataBus18Bit
18-bit data bus, support RGB666.

480 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF _DataBus24Bit
24-bit data bus, support RGB888.

enum _ elcdif _as_pixel format
eLCDIF alpha surface pixel format.
Values:
enumerator kELCDIF AsPixelFormat ARGB8888
32-bit pixels with alpha.
enumerator kELCDIF AsPixelFormatRGB888
32-bit pixels without alpha (unpacked 24-bit format)
enumerator kELCDIF__AsPixelFormatARGB1555
16-bit pixels with alpha.
enumerator kELCDIF AsPixelFormatARGB4444
16-bit pixels with alpha.
enumerator kELCDIF__AsPixelFormatRGB555
16-bit pixels without alpha.
enumerator kELCDIF__AsPixelFormatRGB444
16-bit pixels without alpha.
enumerator kELCDIF__AsPixelFormatRGB565
16-bit pixels without alpha.
enum _ elcdif alpha_mode
eLCDIF alpha mode during blending.
Values:
enumerator kELCDIF__AlphaEmbedded
The alpha surface pixel alpha value will be used for blend.
enumerator kELCDIF__AlphaOverride
The user defined alpha value will be used for blend directly.

enumerator kKELCDIF__AlphaMultiply

The alpha surface pixel alpha value scaled the user defined alpha value will be used
for blend, for example, pixel alpha set set to 200, user defined alpha set to 100, then
the reault alpha is 200 * 100 / 255.

enumerator kKELCDIF _AlphaRop
Raster operation.

enum _ eledif rop mode
eLCDIF ROP mode during blending.

Explanation:
* AS: Alpha surface
* PS: Process surface
* nAS: Alpha surface NOT value
* nPS: Process surface NOT value
Values:

enumerator kKELCDIF _RopMaskAs
AS AND PS.

2.39. eLCDIF: Enhanced LCD Interface 481

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF__RopMaskNotAs
nAS AND PS.

enumerator kELCDIF__RopMaskAsNot
AS AND nPS.

enumerator kELCDIF__RopMergeAs
AS OR PS.

enumerator kELCDIF__RopMergeNotAs
nAS OR PS.

enumerator kKELCDIF__RopMergeAsNot
AS OR nPS.

enumerator kELCDIF__RopNotCopyAs
nAS.

enumerator kELCDIF_RopNot
nPS.

enumerator kKELCDIF__RopNotMaskAs
AS NAND PS.

enumerator kELCDIF__RopNotMergeAs
AS NOR PS.

enumerator kELCDIF__RopXorAs
AS XOR PS.

enumerator kELCDIF__RopNotXorAs
AS XNOR PS.

enum _ eledif lut

eLCDIF LUT

The Lookup Table (LUT) is used to expand the 8 bits pixel to 24 bits pixel before output to

external displayer.

There are two 256x24 bits LUT memory in LCDIF, the LSB of frame buffer address determins

which memory to use.
Values:

enumerator kELCDIF_Lut0
LUT 0.

enumerator kELCDIF _Lutl
LUT 1.

enum _ elcdif pixel component_ order

eLCDIF pixel component order.

Values:

enumerator kELCDIF_PixelComponentOrderRGB

Input order RGB.

enumerator kKELCDIF _PixelComponentOrderRBG

Input order RBG.

enumerator kKELCDIF_PixelComponentOrderGBR

Input order GBR.

482

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kELCDIF_ PixelComponentOrderGRB
Input order GRB.

enumerator kKELCDIF__PixelComponentOrderBRG
Input order BRG.

enumerator KELCDIF _PixelComponentOrderBGR
Input order BGR.

typedef enum _elcdif pixel format elcdif pixel format_t
The pixel format.

This enumerator should be defined together with the array s_pixelFormatReg. To support
new pixel format, enhance this enumerator and s_pixelFormatReg.

typedef enum _elcdif lcd_data_bus elcdif lecd data_bus_t
The LCD data bus type.

typedef struct _elcdif pixel format_reg elcdif pixel format_ reg t
The register value when using different pixel format.

These register bits control the pixel format:
¢ CTRL[DATA_FORMAT_24_BIT]
* CTRL[DATA_FORMAT 18_BIT]
* CTRL[DATA_FORMAT _16_BIT]
* CTRL[WORD_LENGTH]
* CTRL1[BYTE_PACKING_FORMAT]

typedef struct _elcdif rgb_mode_config eledif rgb_mode_ config_t
eLCDIF configure structure for RGB mode (DOTCLK mode).

typedef enum _elcdif as_pixel format elcdif as pixel format_t
eLCDIF alpha surface pixel format.

typedef struct _elcdif as_buffer_config elcdif _as_buffer_config_t
eLCDIF alpha surface buffer configuration.

typedef enum _elcdif alpha mode elcdif alpha_mode_ t
eLCDIF alpha mode during blending.

typedef enum _elcdif rop_mode elcdif rop_mode_t
eLCDIF ROP mode during blending.

Explanation:
* AS: Alpha surface
* PS: Process surface
* nAS: Alpha surface NOT value
* nPS: Process surface NOT value

typedef struct _elcdif as_blend_config elcdif as_blend_config t
eLCDIF alpha surface blending configuration.

typedef enum _elcdif lut elcdif lut_t
eL.CDIF LUT

The Lookup Table (LUT) is used to expand the 8 hits pixel to 24 bits pixel before output to
external displayer.

There are two 256x24 bits LUT memory in LCDIF, the LSB of frame buffer address determins
which memory to use.

2.39. eLCDIF: Enhanced LCD Interface 483

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _elcdif pixel component_order elcdif_pixel _component_order_t
eLCDIF pixel component order.

ELCDIF_CTRL1_IRQ_MASK

ELCDIF _CTRL1 IRQ_EN_ MASK

ELCDIF _AS CTRL_IRQ_MASK

ELCDIF_AS CTRL_IRQ_EN_ MASK
FSL_FEATURE_LCDIF_HAS PXP_ HANDSHAKE
ELCDIF_ADDR_ CPU_2_IP(addr)

ELCDIF_LUT_ ENTRY_ NUM

struct _elcdif pixel format_reg
#include <fsl_elcdif-h> The register value when using different pixel format.
These register bits control the pixel format:
* CTRL[DATA_FORMAT_24_BIT]
CTRL[DATA_FORMAT _18 BIT]
CTRL[DATA_FORMAT _16_BIT]
CTRL[WORD_LENGTH]
CTRL1[BYTE_PACKING_FORMAT]

Public Members
uint32_t regCtrl
Value of register CTRL.

uint32_t regCtrll
Value of register CTRL1.

struct _ elcdif rgh_mode_ config
#include <fsl_elcdif-h> eLCDIF configure structure for RGB mode (DOTCLK mode).

Public Members
uint16_t panelWidth

Display panel width, pixels per line.
uint16_t panelHeight

Display panel height, how many lines per panel.
uint8_t hsw

HSYNC pulse width.
uint8_t hip

Horizontal front porch.
uint8_t hbp

Horizontal back porch.

uint8_t vsw
VSYNC pulse width.

484 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t vip
Vrtical front porch.

uint8_t vbp
Vertical back porch.
uint32_t polarityFlags
OR’ed value of _elcdif_polarity_flags, used to contol the signal polarity.

uint32_t bufferAddr
Frame buffer address.

elcdif pixel format_t pixelFormat
Pixel format.

elcdif lcd_data_bus_t dataBus
LCD data bus.

struct _elcdif as_buffer config
#include <fsl_elcdif.h> eLCDIF alpha surface buffer configuration.

Public Members
uint32_t bufferAddr
Buffer address.

elcdif as_pixel format_t pixelFormat
Pixel format.

struct _elcdif as_blend_ config
#include <fsl_elcdif.h> eL.CDIF alpha surface blending configuration.

Public Members

uint8_t alpha

User defined alpha value, only used when alphaMode is KELCDIF_AlphaOverride or
KELCDIF_AlphaRop.

bool invertAlpha
Set true to invert the alpha.

elcdif alpha_mode_t alphaMode
Alpha mode.

elcdif rop_mode_t ropMode
ROP mode, only valid when alphaMode is KELCDIF_AlphaRop.

2.40 ENC: Quadrature Encoder/Decoder

void ENC_ Init(ENC_Type *base, const enc_config_t *config)
Initialization for the ENC module.

This function is to make the initialization for the ENC module. It should be called firstly
before any operation to the ENC with the operations like:

* Enable the clock for ENC module.
* Configure the ENC’s working attributes.

2.40. ENC: Quadrature Encoder/Decoder 485

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — ENC peripheral base address.
* config — Pointer to configuration structure. See to “enc_config_t”.

void ENC_ Deinit(ENC_Type *base)
De-initialization for the ENC module.

This function is to make the de-initialization for the ENC module. It could be called when
ENC is no longer used with the operations like:

* Disable the clock for ENC module.

Parameters
* base — ENC peripheral base address.

void ENC_ GetDefaultConfig(enc_config t *config)
Get an available pre-defined settings for ENC’s configuration.

This function initializes the ENC configuration structure with an available settings, the de-
fault value are:

config->enableReverseDirection = false;
config->decoderWorkMode = kENC_ Decoder WorkAsNormalMode;
config->HOMETriggerMode = kENC__HOMETriggerDisabled;
config->INDEXTriggerMode = kENC__INDEXTriggerDisabled;
config->enableTRIGGERClearPositionCounter = false;
config->enableTRIGGERClearHoldPositionCounter = false;
config->enableWatchdog = false;
config->watchdogTimeoutValue = 0U;
config->filterCount = 0U;
config->filterSamplePeriod = 0U;
config->positionMatchMode = kENC__
—POSMATCHOnPositionCounterEqualToComapreValue;
config->positionCompareValue = OxFFFFFFFFU;
config->revolutionCountCondition = kENC_ RevolutionCountOnINDEXPulse;
config->enableModuloCountMode = false;
config->positionModulusValue = 0U;
config->positionInitial Value = 0U;
config->prescaler Value = kENC_ ClockDivl;
config->enablePeriodMeasurementFunction = true;

Parameters

* config — Pointer to a variable of configuration structure. See to
“enc_config_t”.

void ENC_ DoSoftwareLoadInitialPositionValue(ENC_Type *base)
Load the initial position value to position counter.

This function is to transfer the initial position value (UINIT and LINIT) contents to position
counter (UPOS and LPOS), so that to provide the consistent operation the position counter
registers.

Parameters
* base — ENC peripheral base address.

void ENC_ SetSelfTestConfig(ENC_Type *base, const enc_self test_config_t *config)
Enable and configure the self test function.

This function is to enable and configuration the self test function. It controls and sets the
frequency of a quadrature signal generator. It provides a quadrature test signal to the in-

486 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

puts of the quadrature decoder module. It is a factory test feature; however, it may be
useful to customers’ software development and testing.

Parameters
* base — ENC peripheral base address.

* config — Pointer to configuration structure. See to “enc_self test_config t”.
Pass “NULL” to disable.

void ENC_ EnableWatchdog(ENC_Type *base, bool enable)
Enable watchdog for ENC module.

Parameters
* base — ENC peripheral base address
* enable — Enables or disables the watchdog

void ENC_ SetInitialPositionValue(ENC_Type *base, uint32_t value)
Set initial position value for ENC module.

Parameters
* base — ENC peripheral base address
* value — Positive initial value

uint32_t ENC__GetStatusFlags(ENC_Type *base)
Get the status flags.

Parameters
* base — ENC peripheral base address.

Returns
Mask value of status flags. For available mask, see to “_enc_status_flags”.

void ENC_ ClearStatusFlags(ENC_Type *base, uint32_t mask)
Clear the status flags.

Parameters
* base — ENC peripheral base address.

» mask — Mask value of status flags to be cleared. For available mask, see to
“_enc_status_flags”.

static inline uint16_t ENC_ GetSignalStatusFlags(ENC_Type *base)
Get the signals’ real-time status.

Parameters
* base — ENC peripheral base address.

Returns
Mask value of signals’ real-time status. For available mask, see to
“_enc_signal_status_flags”

void ENC_ EnableInterrupts(ENC_Type *base, uint32_t mask)
Enable the interrupts.

Parameters
* base — ENC peripheral base address.

» mask — Mask value of interrupts to be enabled. For available mask, see to
“_enc_interrupt_enable”.

2.40. ENC: Quadrature Encoder/Decoder 487

MCUXpresso SDK Documentation, Release 25.12.00

void ENC_ DisableInterrupts(ENC_Type *base, uint32_t mask)
Disable the interrupts.

Parameters
* base — ENC peripheral base address.

» mask — Mask value of interrupts to be disabled. For available mask, see to
“_enc_interrupt_enable”.

uint32_t ENC_ GetEnabledInterrupts(ENC_Type *base)
Get the enabled interrupts’ flags.

Parameters
* base — ENC peripheral base address.

Returns
Mask value of enabled interrupts.

uint32_t ENC GetPositionValue(ENC_Type *base)
Get the current position counter’s value.

Parameters
* base — ENC peripheral base address.

Returns
Current position counter’s value.

uint32_t ENC_ GetHoldPositionValue(ENC_Type *base)
Get the hold position counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
* base — ENC peripheral base address.

Returns
Hold position counter’s value.

static inline uint16_t ENC_ GetPositionDifferenceValue(ENC_Type *base)
Get the position difference counter’s value.

Parameters
* base — ENC peripheral base address.

Returns
The position difference counter’s value.

static inline uint16_t ENC_ GetHoldPositionDifferenceValue(ENC_Type *base)
Get the hold position difference counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
* base — ENC peripheral base address.

Returns
Hold position difference counter’s value.

488 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint16_t ENC_ GetRevolutionValue(ENC_Type *base)
Get the position revolution counter’s value.

Parameters
* base — ENC peripheral base address.

Returns
The position revolution counter’s value.

static inline uint16_t ENC_ GetHoldRevolutionValue(ENC_Type *base)
Get the hold position revolution counter’s value.

When any of the counter registers is read, the contents of each counter register is written
to the corresponding hold register. Taking a snapshot of the counters’ values provides a
consistent view of a system position and a velocity to be attained.

Parameters
* base — ENC peripheral base address.

Returns
Hold position revolution counter’s value.

static inline uint16_t ENC_ GetLastEdgeTimeValue(ENC_Type *base)
Get the last edge time value.

Parameters
* base — ENC peripheral base address.

Returns
The last edge time hold value.

static inline uint16_t ENC_ GetHoldLastEdgeTimeValue(ENC_Type *base)
Get the last edge time hold value.

Parameters
* base — ENC peripheral base address.

Returns
The last edge time hold value.

static inline uint16_t ENC_ GetPositionDifferencePeriod Value(ENC_Type *base)
Get the position difference period value.

Parameters
* base — ENC peripheral base address.

Returns
The position difference period hold value.

static inline uint16_t ENC_ GetPositionDifferencePeriod BufferValue(ENC_Type *base)
Get the position difference period buffer value.

Parameters
* base — ENC peripheral base address.

Returns
The position difference period hold value.

static inline uint16_t ENC_ GetHoldPositionDifferencePeriodValue(ENC_Type *base)
Get the position difference period hold value.

Parameters

* base — ENC peripheral base address.

2.40. ENC: Quadrature Encoder/Decoder 489

MCUXpresso SDK Documentation, Release 25.12.00

Returns
The position difference period hold value.

enum _enc_interrupt_ enable
Interrupt enable/disable mask.

Values:

enumerator kENC__ HOMETransitionInterruptEnable
HOME interrupt enable.

enumerator kKENC_ INDEXPulselnterruptEnable
INDEX pulse interrupt enable.

enumerator kKENC_ WatchdogTimeoutInterruptEnable
Watchdog timeout interrupt enable.

enumerator kENC_ PositionComparelnerruptEnable
Position compare interrupt enable.

enumerator kENC_ PositionRollOverInterruptEnable
Roll-over interrupt enable.

enumerator kENC_ PositionRollUnderInterrupt Enable
Roll-under interrupt enable.

enum _enc_status_flags
Status flag mask.

These flags indicate the counter’s events.
Values:

enumerator kENC__HOMETransitionFlag
HOME signal transition interrupt request.

enumerator kENC_ INDEXPulseFlag
INDEX Pulse Interrupt Request.

enumerator kENC_ WatchdogTimeoutFlag
Watchdog timeout interrupt request.

enumerator kENC_ PositionCompareFlag
Position compare interrupt request.

enumerator kENC_ PositionRollOverFlag
Roll-over interrupt request.

enumerator kENC_ PositionRollUnderFlag
Roll-under interrupt request.

enumerator kENC_ LastCountDirectionFlag
Last count was in the up direction, or the down direction.

enum _ enc_signal_status_ flags
Signal status flag mask.

These flags indicate the counter’s signal.
Values:

enumerator kENC_RawHOMEStatusFlag
Raw HOME input.

490 Chapter 2

. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC__ RawINDEXStatusFlag
Raw INDEX input.

enumerator kENC__RawPHBStatusFlag
Raw PHASEB input.
enumerator kENC__RawPHAEXStatusFlag
Raw PHASEA input.
enumerator kENC_ Filtered HOMEStatusFlag
The filtered version of HOME input.
enumerator kENC_ FilteredINDEXStatusFlag
The filtered version of INDEX input.
enumerator kKENC_ FilteredPHBStatusFlag
The filtered version of PHASEB input.
enumerator kENC_ Filtered PHAStatusFlag
The filtered version of PHASEA input.
enum _ enc__home_ trigger mode
Define HOME signal’s trigger mode.
The ENC would count the trigger from HOME signal line.
Values:
enumerator kENC__HOMETriggerDisabled
HOME signal’s trigger is disabled.
enumerator kENC__HOMETriggerOnRisingEdge
Use positive going edge-to-trigger initialization of position counters.
enumerator kKENC__HOMETriggerOnFallingEdge
Use negative going edge-to-trigger initialization of position counters.
enum _enc_index_ trigger mode
Define INDEX signal’s trigger mode.
The ENC would count the trigger from INDEX signal line.
Values:
enumerator kENC_ INDEXTriggerDisabled
INDEX signal’s trigger is disabled.
enumerator kENC_ INDEXTriggerOnRisingEdge
Use positive going edge-to-trigger initialization of position counters.
enumerator kENC_ INDEXTriggerOnFallingEdge
Use negative going edge-to-trigger initialization of position counters.
enum enc_decoder work mode

Define type for decoder work mode.

The normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
When in signal phase count mode, a positive transition of the PHASEA input generates a
count signal while the PHASEB input and the reverse direction control the counter direc-
tion. If the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB =
1 means counting down. Otherwise, the direction is reversed.

Values:

2.40. ENC: Quadrature Encoder/Decoder 491

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC DecoderWorkAsNormalMode
Use standard quadrature decoder with PHASEA and PHASEB.

enumerator kENC_ DecoderWorkAsSignalPhaseCountMode
PHASEA input generates a count signal while PHASEB input control the direction.

enum _ enc_ position_ match__mode
Define type for the condition of POSMATCH pulses.

Values:

enumerator kKENC__POSMATCHOnPositionCounterEqualToComapreValue

POSMATCH pulses when a match occurs between the position counters (POS) and the
compare value (COMP).

enumerator kENC_ POSMATCHOnReadingAnyPositionCounter
POSMATCH pulses when any position counter register is read.

enum _enc_revolution count_condition

Define type for determining how the revolution counter (REV) is incre-
mented/decremented.

Values:

enumerator kENC RevolutionCountOnINDEXPulse
Use INDEX pulse to increment/decrement revolution counter.

enumerator kENC _RevolutionCountOnRollOverModulus
Use modulus counting roll-over/under to increment/decrement revolution counter.

enum enc_self test direction
Define type for direction of self test generated signal.

Values:

enumerator kENC SelfTestDirectionPositive
Self test generates the signal in positive direction.

enumerator kENC_ SelfTestDirectionNegative
Self test generates the signal in negative direction.

enum _ enc_ prescaler
Define prescaler value for clock in CTRLS.

The clock is prescaled by a value of 2APRSC which means that the prescaler logic can divide
the clock by a minimum of 1 and a maximum of 32,768.

Values:

enumerator kENC_ ClockDiv1
enumerator kENC_ ClockDiv2
enumerator kENC_ ClockDiv4
enumerator kENC__ClockDiv8
enumerator kENC_ ClockDiv16
enumerator kENC_ ClockDiv32
enumerator kENC_ ClockDiv64

enumerator kENC ClockDiv128

492 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kENC__ ClockDiv256
enumerator kENC _ClockDiv512
enumerator kENC_ ClockDiv1024
enumerator kENC_ ClockDiv2048
enumerator kENC__ ClockDiv4096
enumerator kENC ClockDiv8192
enumerator kENC_ ClockDiv16384
enumerator kENC_ ClockDiv32768

enum _enc_filter prescaler
Define input filter prescaler value.

The input filter prescaler value is to prescale the IPBus clock. (Frequency of FILT clock) =
(Frequency of IPBus clock) / 2AFILT_PRSC.

Values:

enumerator kENC FilterPrescalerDiv1
Input filter prescaler is 1.

enumerator kENC FilterPrescalerDiv2
Input filter prescaler is 2.

enumerator kENC FilterPrescalerDiv4
Input filter prescaler is 4.

enumerator kENC _FilterPrescalerDiv8
Input filter prescaler is 8.

enumerator kENC FilterPrescalerDiv16
Input filter prescaler is 16.

enumerator kENC FilterPrescalerDiv32
Input filter prescaler is 32.

enumerator kENC_FilterPrescalerDiv64
Input filter prescaler is 64.

enumerator kENC_FilterPrescalerDiv128
Input filter prescaler is 128.

typedef enum _enc_home_trigger_mode enc_home_ trigger_ mode_ t
Define HOME signal’s trigger mode.

The ENC would count the trigger from HOME signal line.

typedef enum _enc_index_trigger_mode enc__index_ trigger mode_t
Define INDEX signal’s trigger mode.

The ENC would count the trigger from INDEX signal line.

typedef enum _enc_decoder_work_mode enc_ decoder_work_mode_t
Define type for decoder work mode.

The normal work mode uses the standard quadrature decoder with PHASEA and PHASEB.
When in signal phase count mode, a positive transition of the PHASEA input generates a
count signal while the PHASEB input and the reverse direction control the counter direc-
tion. If the reverse direction is not enabled, PHASEB = 0 means counting up and PHASEB =
1 means counting down. Otherwise, the direction is reversed.

2.40. ENC: Quadrature Encoder/Decoder 493

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _enc_position_match_mode enc__position_match__mode_t
Define type for the condition of POSMATCH pulses.

typedef enum _enc_revolution_count_condition enc_revolution__count_ condition_ t

Define type for determining how the revolution counter (REV) 1is incre-
mented/decremented.

typedef enum _enc_self test_direction enc_ self test_direction_t
Define type for direction of self test generated signal.
typedef enum _enc_prescaler enc_ prescaler _t
Define prescaler value for clock in CTRL3.

The clock is prescaled by a value of 2APRSC which means that the prescaler logic can divide
the clock by a minimum of 1 and a maximum of 32,768.

typedef enum _enc_filter_prescaler enc_ filter prescaler t
Define input filter prescaler value.

The input filter prescaler value is to prescale the IPBus clock. (Frequency of FILT clock) =
(Frequency of IPBus clock) / 2AFILT_PRSC.

typedef struct _enc_config enc_ config_t
Define user configuration structure for ENC module.
typedef struct _enc_self test_config enc_ self test config t
Define configuration structure for self test module.

The self test module provides a quadrature test signal to the inputs of the quadrature de-
coder module. This is a factory test feature. It is also useful to customers’ software devel-
opment and testing.

FSL_ENC_DRIVER_VERSION

struct _enc_ config
#include <fsl_enc.h> Define user configuration structure for ENC module.

Public Members

bool enableReverseDirection
Enable reverse direction counting.

enc_decoder_work_mode_t decoderWorkMode
Enable signal phase count mode.

enc_home_trigger_mode_t HOMETriggerMode

Enable HOME to initialize position counters.
enc_index_trigger_mode_t INDEXTriggerMode

Enable INDEX to initialize position counters.
bool enableTRIGGERClearPositionCounter

Clear POSD, REV, UPOS and LPOS on rising edge of TRIGGER, or not.
bool enableTRIGGERClearHoldPositionCounter

Enable update of hold registers on rising edge of TRIGGER, or not.

bool enableWatchdog
Enable the watchdog to detect if the target is moving or not.

494 Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

uint16_t watchdogTimeoutValue
Watchdog timeout count value. It stores the timeout count for the quadrature decoder
module watchdog timer. This field is only available when “enableWatchdog” = true.
The available value is a 16-bit unsigned number.

enc_filter_prescaler._t filterPrescaler
Input filter prescaler.

uint16_t filterCount

Input Filter Sample Count. This value should be chosen to reduce the probability of
noisy samples causing an incorrect transition to be recognized. The value represent
the number of consecutive samples that must agree prior to the input filter accepting
an input transition. A value of 0x0 represents 3 samples. A value of 0x7 represents 10
samples. The Available range is 0 - 7.

uintl16_t filterSamplePeriod

Input Filter Sample Period. This value should be set such that the sampling period is

larger than the period of the expected noise. This value represents the sampling period

(in IPBus clock cycles) of the decoder input signals. The available range is 0 - 255.
enc_position_match_mode_t positionMatchMode

The condition of POSMATCH pulses.

uint32_t positionCompareValue
Position compare value. The available value is a 32-bit number.
enc_revolution_count_condition_t revolutionCountCondition

Revolution Counter Modulus Enable.

bool enableModuloCountMode
Enable Modulo Counting.

uint32_t positionModulusValue
Position modulus value. This value would be available only when “enableModulo-
CountMode” = true. The available value is a 32-bit number.

uint32_t positionInitialValue
Position initial value. The available value is a 32-bit number.

bool enablePeriodMeasurementFunction
Enable period measurement function.

enc_prescaler._t prescalerValue
The value of prescaler.

struct _enc_self test_ config
#include <fsl_enc.h> Define configuration structure for self test module.

The self test module provides a quadrature test signal to the inputs of the quadrature de-
coder module. This is a factory test feature. It is also useful to customers’ software devel-
opment and testing.

Public Members

enc_self test_direction_t signalDirection
Direction of self test generated signal.

uint16_t signalCount
Hold the number of quadrature advances to generate. The available range is 0 - 255.

2.40. ENC: Quadrature Encoder/Decoder 495

MCUXpresso SDK Documentation, Release 25.12.00

uint16_t signalPeriod

Hold the period of quadrature phase in IPBus clock cycles. The available range is O -
31.

2.41 ENET: Ethernet MAC Driver

void ENET_GetDefaultConfig(enet_config_t *config)

Gets the ENET default configuration structure.

The purpose of this API is to get the default ENET MAC controller configure structure for
ENET _Init(). User may use the initialized structure unchanged in ENET_Init(), or modify
some fields of the structure before calling ENET_Init(). Example:

enet_ config_ t config;

ENET _ GetDefaultConfig(&config);

Parameters

* config — The ENET mac controller configuration structure pointer.

status_t ENET__Up(ENET_Type *base, enet_handle_t *handle, const enet_config t *config, const

enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)
Initializes the ENET module.

This function initializes the module with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Up().

Parameters
* base — ENET peripheral base address.
* handle — ENET handler pointer.

* config — ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

* bufferConfig — ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

* macAddr - ENET mac address of Ethernet device. This MAC address should
be provided.

* srcClock Hz - The internal module clock source for MII clock.
Return values

* kStatus Success — Succeed to initialize the ethernet driver.

496

Chapter 2. MIMXRT1176

MCUXpresso SDK Documentation, Release 25.12.00

* kStatus_ ENET_InitMemoryFail — Init fails since buffer memory is not
enough.

status_t ENET_Init(ENET_Type *base, enet_handle_t *handle, const enet_config_t *config, const
enet_buffer_config_t *bufferConfig, uint8_t *macAddr, uint32_t srcClock_Hz)

Initializes the ENET module.

This function ungates the module clock and initializes it with the ENET configuration.

Note: ENET has two buffer descriptors legacy buffer descriptors and enhanced
IEEE 1588 buffer descriptors. The legacy descriptor is used by default. To use
the IEEE 1588 feature, use the enhanced IEEE 1588 buffer descriptor by defining
“ENET_ENHANCEDBUFFERDESCRIPTOR_MODE” and calling ENET_Ptp1588Configure() to
configure the 1588 feature and related buffers after calling ENET_Init().

Parameters
* base — ENET peripheral base address.
* handle — ENET handler pointer.

* config — ENET mac configuration structure pointer. The “enet_config_t”
type mac configuration return from ENET_GetDefaultConfig can be used
directly. It is also possible to verify the Mac configuration using other
methods.

* bufferConfig — ENET buffer configuration structure pointer. The buffer
configuration should be prepared for ENET Initialization. It is the start
address of “ringNum” enet_buffer_config structures. To support added
multi-ring features in some soc and compatible with the previous enet
driver version. For single ring supported, this bufferConfig is a buffer
configure structure pointer;, for multi-ring supported and used case, this
bufferConfig pointer should be a buffer configure structure array pointer.

* macAddr - ENET mac address of Ethernet device. This MAC address should
be provided.

» srcClock Hz — The internal module clock source for MII clock.
Return values
* kStatus Success — Succeed to initialize the ethernet driver.

* kStatus_ ENET_InitMemoryFail — Init fails since buffer memory is not
enough.

void ENET_Down(ENET_Type *base)
Stops the ENET module.

This function disables the ENET module.
Parameters
* base — ENET peripheral base address.

void ENET_ Deinit(ENET_Type *base)
Deinitializes the ENET module.

This function gates the module clock, clears ENET interrupts, and disables the ENET mod-
ule.

Parameters

* base — ENET peripheral base address.

2.41. ENET: Ethernet MAC