
MCUXpresso SDK Documentation
Release 25.12.00

NXP
Dec 18, 2025

Table of contents

1 Middleware 3
1.1 Boot . 3

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource 3
1.1.2 MCUboot . 4

1.2 Connectivity . 5
1.2.1 lwIP . 5

1.3 File System . 6
1.3.1 FatFs . 6

1.4 Motor Control . 8
1.4.1 FreeMASTER . 8

1.5 MultiCore . 46
1.5.1 Multicore SDK . 46

1.6 Multimedia . 144
1.6.1 Xtensa Audio Framework (XAF) . 144

1.7 Wireless . 158
1.7.1 NXP Wireless Framework and Stacks . 159

2 RTOS 205
2.1 FreeRTOS . 205

2.1.1 FreeRTOS kernel . 205
2.1.2 FreeRTOS drivers . 205
2.1.3 backoffalgorithm . 205
2.1.4 corehttp . 205
2.1.5 corejson . 205
2.1.6 coremqtt . 206
2.1.7 corepkcs11 . 206
2.1.8 freertos-plus-tcp . 206

i

ii

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the frdmimxrt1186 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

Middleware

1.1 Boot

1.1.1 MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource

Overview

This repository is a fork of MCUboot (https://github.com/mcu-tools/mcuboot) for MCUXpresso
SDK delivery and it contains the components officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository (mcuxsdk-manifests) for the com-
plete delivery of MCUXpresso SDK.

Documentation

Overall details can be reviewed here: MCUXpresso SDK Online Documentation

Visit MCUboot - Documentation to review details on the contents in this sub-repo.

Setup

Instructions on how to install the MCUXpresso SDK provided from GitHub via west manifest
Getting Started with SDK - Detailed Installation Instructions

Contribution

Contributions are not currently accepted. If the intended contribution is not related to NXP spe-
cific code, consider contributing directly to the upstream MCUboot project. Once this MCUboot
fork is synchronized with the upstream project, such contributions will end up here as well. If
the intended contribution is a bugfix or improvement for NXP porting layer or for code added
or modified by NXP, please open an issue or contact NXP support.

3

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://docs.mcuboot.com/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

NXP Fork

This fork of MCUboot contains specific modifications and enhancements for NXP MCUXpresso
SDK integration.

See changelog for details.

1.1.2 MCUboot

License: Apache 2.0

This is MCUboot version 2.2.0

MCUboot is a secure bootloader for 32-bits microcontrollers. It defines a common infrastructure
for the bootloader and the system flash layout on microcontroller systems, and provides a secure
bootloader that enables easy software upgrade.

MCUboot is not dependent on any specific operating system and hardware and relies on hard-
ware porting layers from the operating system it works with. Currently, MCUboot works with
the following operating systems and SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

RIOT is supported only as a boot target. We will accept any new port contributed by the commu-
nity once it is good enough.

MCUboot How-tos

See the following pages for instructions on using MCUboot with different operating systems and
SoCs:

• Zephyr

• Apache Mynewt

• Apache NuttX

• RIOT

• Mbed OS

• Espressif

• Cypress/Infineon

There are also instructions for the Simulator.

4 Chapter 1. Middleware

https://github.com/mcu-tools/mcuboot/actions?query=workflow:Sim
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Mynewt
https://github.com/mcu-tools/mcuboot/actions?query=workflow:Espressif
https://github.com/mcu-tools/mcuboot/actions?query=workflow:imgtool
https://www.zephyrproject.org/
https://mynewt.apache.org/
https://nuttx.apache.org/
https://www.riot-os.org/
https://os.mbed.com/
https://www.espressif.com/
https://www.cypress.com/

MCUXpresso SDK Documentation, Release 25.12.00

Roadmap

The issues being planned and worked on are tracked using GitHub issues. To give your input,
visit MCUboot GitHub Issues.

Source files

You can find additional documentation on the bootloader in the source files. For more informa-
tion, use the following links:

• boot/bootutil - The core of the bootloader itself.

• boot/boot_serial - Support for serial upgrade within the bootloader itself.

• boot/zephyr - Port of the bootloader to Zephyr.

• boot/mynewt - Bootloader application for Apache Mynewt.

• boot/nuttx - Bootloader application and port of MCUboot interfaces for Apache NuttX.

• boot/mbed - Port of the bootloader to Mbed OS.

• boot/espressif - Bootloader application and MCUboot port for Espressif SoCs.

• boot/cypress - Bootloader application and MCUboot port for Cypress/Infineon SoCs.

• imgtool - A tool to securely sign firmware images for booting by MCUboot.

• sim - A bootloader simulator for testing and regression.

Joining the project

Developers are welcome!

Use the following links to join or see more about the project:

• Our developer mailing list

• Our Discord channel Get your invite

1.2 Connectivity

1.2.1 lwIP

This is the NXP fork of the lwIP networking stack.
• For details about changes and additions made by NXP, see CHANGELOG.

• For details about the NXP porting layer, see The NXP lwIP Port.

• For usage and API of lwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP lwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is lwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

1.2. Connectivity 5

https://github.com/mcu-tools/mcuboot/issues
https://github.com/mcu-tools/mcuboot/tree/main/boot/bootutil
https://github.com/mcu-tools/mcuboot/tree/main/boot/boot_serial
https://github.com/mcu-tools/mcuboot/tree/main/boot/zephyr
https://github.com/mcu-tools/mcuboot/tree/main/boot/mynewt
https://github.com/mcu-tools/mcuboot/tree/main/boot/nuttx
https://github.com/mcu-tools/mcuboot/tree/main/boot/mbed
https://github.com/mcu-tools/mcuboot/tree/main/boot/espressif
https://github.com/mcu-tools/mcuboot/tree/main/boot/cypress
https://github.com/mcu-tools/mcuboot/tree/main/scripts/imgtool.py
https://github.com/mcu-tools/mcuboot/tree/main/sim
https://groups.io/g/MCUBoot
https://discord.com/channels/1106321706588577904/1106322802308550716
https://discord.com/invite/5PpXhvda5p
https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.12.00

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for lwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif_probe_link() which reads those data from
PHY and forwards them into lwIP stack.

In almost all examples this function is called every ETH_LINK_POLLING_INTERVAL_MS
(1500ms) by a function probe_link_cyclic().

By setting ETH_LINK_POLLING_INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif_init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX_TASK_STACK_SIZE macro, its priority by
ETH_RX_TASK_PRIO.

If you want to save memory you can set reception to be done in an interrupt by setting
ETH_DO_RX_IN_SEPARATE_TASK macro to 0.

DisablingRx interruptwhenout of buffers If ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH_MAX_RX_PKTS_AT_ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

• ethernetif_wait_linkup()- Blocks until the link on the passed netif is not up.

• ethernetif_wait_linkup_array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif_wait_ipv4_valid() does this.

1.3 File System

1.3.1 FatFs

6 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content This is MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUXpresso version is extending original content by following hardware specific porting layers:

• mmc_disk

• nand_disk

• ram_disk

• sd_disk

• sdspi_disk

• usb_disk

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15_rev0]
• Upgraded to version 0.15

• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev0]
• Upgraded to version 0.14b

1.3. File System 7

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/
https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.12.00

[R0.14a_rev0]
• Upgraded to version 0.14a

• Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
• Upgraded to version 0.14

• Applied patch ff14_p1.diff and ff14_p2.diff

[R0.13c_rev0]
• Upgraded to version 0.13c

• Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff_13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
• Upgraded to version 0.13b

[R0.13a_rev0]
• Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[R0.12c_rev1]
• Add NAND disk support.

[R0.12c_rev0]
• Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

[R0.12b_rev0]
• Upgraded to version 0.12b.

[R0.11a]
• Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.

• Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

• Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

• Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

• Conditional compilation of physical disk interfaces in diskio.c.

1.4 Motor Control

1.4.1 FreeMASTER

Communication Driver User Guide

8 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

1.4. Motor Control 9

https://www.nxp.com/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

10 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,

1.4. Motor Control 11

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

12 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

1.4. Motor Control 13

MCUXpresso SDK Documentation, Release 25.12.00

MaskedMemoryWrite To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

14 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

1.4. Motor Control 15

MCUXpresso SDK Documentation, Release 25.12.00

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

16 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

1.4. Motor Control 17

MCUXpresso SDK Documentation, Release 25.12.00

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

18 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

1.4. Motor Control 19

MCUXpresso SDK Documentation, Release 25.12.00

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

20 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

1.4. Motor Control 21

MCUXpresso SDK Documentation, Release 25.12.00

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

22 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

1.4. Motor Control 23

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

24 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

1.4. Motor Control 25

MCUXpresso SDK Documentation, Release 25.12.00

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

26 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

1.4. Motor Control 27

MCUXpresso SDK Documentation, Release 25.12.00

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

28 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When

1.4. Motor Control 29

MCUXpresso SDK Documentation, Release 25.12.00

a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

30 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

1.4. Motor Control 31

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

32 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

1.4. Motor Control 33

MCUXpresso SDK Documentation, Release 25.12.00

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

(continues on next page)

34 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

1.4. Motor Control 35

MCUXpresso SDK Documentation, Release 25.12.00

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

36 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

1.4. Motor Control 37

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

38 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

1.4. Motor Control 39

MCUXpresso SDK Documentation, Release 25.12.00

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

40 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

1.4. Motor Control 41

MCUXpresso SDK Documentation, Release 25.12.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

42 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

1.4. Motor Control 43

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

44 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

1.4. Motor Control 45

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

1.5 MultiCore

1.5.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUXpresso SDK to make the software framework for easy development of multicore applica-
tions.

46 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit
(MCSDK) version 25.12.00.
This software package contains components for efficient work with multicore devices as well as
for the
multiprocessor communication.

What is new
• eRPC CHANGELOG

• RPMsg-Lite CHANGELOG

• MCMgr CHANGELOG

• Supported evaluation boards (multicore examples):

– LPCXpresso55S69

– FRDM-K32L3A6

– MIMXRT1170-EVKB

– MIMXRT1160-EVK

– MIMXRT1180-EVK

– MCX-N5XX-EVK

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– KW47-EVK

– KW47-LOC

– FRDM-MCXW72

– MCX-W72-EVK

– FRDM-IMXRT1186

• Supported evaluation boards (multiprocessor examples):

– LPCXpresso55S36

– FRDM-K22F

– FRDM-K32L2B

– MIMXRT685-EVK

– MIMXRT1170-EVKB

– MIMXRT1180

– FRDM-MCXN236

– FRDM-MCXC242

– FRDM-MCXC444

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– FRDM-IMXRT1186

1.5. MultiCore 47

https://github.com/EmbeddedRPC/erpc/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.12.00/CHANGELOG.md

MCUXpresso SDK Documentation, Release 25.12.00

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location
Multicore SDK location
<MCSDK_dir>

<MCUXpressoSDK_install_dir>/middleware/
multicore/

Documentation <MCSDK_dir>/mcuxsdk-doc/
Embedded Remote Procedure Call
component

<MCSDK_dir>/erpc/

Multicore Manager component <MCSDK_dir>/mcmgr/
RPMsg-Lite <MCSDK_dir>/rpmsg_lite/
Multicore demo applications <MCUXpressoSDK_install_dir>/examples/

multicore_examples/
Multiprocessor demo applications <MCUXpressoSDK_install_dir>/examples/

multiprocessor_examples/

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

• Embedded Remote Procedure Call (eRPC)

• Multicore Manager (MCMGR) - included just in SDK for multicore devices

• Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.
The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in
the <MCUXpressoSDK_install_dir>/examples/multicore_examples subdirectories.

• erpc_matrix_multiply_mu

• erpc_matrix_multiply_mu_rtos

• erpc_matrix_multiply_rpmsg

• erpc_matrix_multiply_rpmsg_rtos

• erpc_two_way_rpc_rpmsg_rtos

• freertos_message_buffers

• hello_world

• multicore_manager

• rpmsg_lite_pingpong

• rpmsg_lite_pingpong_rtos

• rpmsg_lite_pingpong_dsp

• rpmsg_lite_pingpong_tzm

48 Chapter 1. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain

MCUXpresso SDK Documentation, Release 25.12.00

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.
The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in
the <MCUXpressoSDK_install_dir>/examples/multiprocessor_examples subdirectories.

• erpc_client_matrix_multiply_spi

• erpc_server_matrix_multiply_spi

• erpc_client_matrix_multiply_uart

• erpc_server_matrix_multiply_uart

• erpc_server_dac_adc

• erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

1.5. MultiCore 49

MCUXpresso SDK Documentation, Release 25.12.00

All the MCSDK-related files are located in <MCUXpressoSDK_install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.12.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

• Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

• Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

• Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

50 Chapter 1. Middleware

http://www.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

RPC implementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

Main eRPC features:
• Scalable from BareMetal to Linux OS - configurable memory and threading policies.

• Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

• Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:

• Maintains information about all cores in system.

• Secondary/auxiliary cores startup and shutdown.

• Remote core monitoring and event handling.

The MCMGR library is located in the<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:

• Shared memory interprocessor communication.

• Virtio-based messaging bus.

• Application-defined messages sent between endpoints.

1.5. MultiCore 51

MCUXpresso SDK Documentation, Release 25.12.00

• Portable to different environments/platforms.

• Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder
Multicore example
projects

<MCUXpressoSDK_install_dir>/examples/multicore_examples/
<application_name>/

Multiprocessor example
projects

<MCUXpressoSDK_install_dir>/examples/
multiprocessor_examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers
The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism
On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging API.

52 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls
To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

• Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)

• Sensor aggregation/fusion applications

• Encryption algorithms

• Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.2

– RPMsg-Lite v5.3.0

[25.09.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

1.5. MultiCore 53

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.1

– RPMsg-Lite v5.2.1

[25.06.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.0

– RPMsg-Lite v5.2.0

[25.03.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.7

– RPMsg-Lite v5.1.4

[24.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.6

– RPMsg-Lite v5.1.3

[2.16.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.2

[2.15.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.12.0

– eRPC generator (erpcgen) v1.12.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.1

54 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.14.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.11.0

– eRPC generator (erpcgen) v1.11.0

– Multicore Manager (MCMgr) v4.1.4

– RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.13.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.12.0_imx93]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.1

[2.12.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.0

1.5. MultiCore 55

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.1

[2.11.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.0

[2.10.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.1

– eRPC generator (erpcgen) v1.8.1

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.2

[2.9.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.0

– eRPC generator (erpcgen) v1.8.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.1

[2.8.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.4

– eRPC generator (erpcgen) v1.7.4

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.1.0

56 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.3

– eRPC generator (erpcgen) v1.7.3

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.0.0

[2.6.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.2

– eRPC generator (erpcgen) v1.7.2

– Multicore Manager (MCMgr) v4.0.3

– RPMsg-Lite v2.2.0

[2.5.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.1

– eRPC generator (erpcgen) v1.7.1

– Multicore Manager (MCMgr) v4.0.2

– RPMsg-Lite v2.0.2

[2.4.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.0

– eRPC generator (erpcgen) v1.7.0

– Multicore Manager (MCMgr) v4.0.1

– RPMsg-Lite v2.0.1

[2.3.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.6.0

– eRPC generator (erpcgen) v1.6.0

– Multicore Manager (MCMgr) v4.0.0

– RPMsg-Lite v1.2.0

1.5. MultiCore 57

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.5.0

– eRPC generator (erpcgen) v1.5.0

– Multicore Manager (MCMgr) v3.0.0

– RPMsg-Lite v1.2.0

[2.2.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.4.0

– eRPC generator (erpcgen) v1.4.0

– Multicore Manager (MCMgr) v2.0.1

– RPMsg-Lite v1.1.0

[2.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.3.0

– eRPC generator (erpcgen) v1.3.0

[2.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.2.0

– eRPC generator (erpcgen) v1.2.0

– Multicore Manager (MCMgr) v2.0.0

– RPMsg-Lite v1.0.0

[1.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.1.0

– Multicore Manager (MCMgr) v1.1.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev01

[1.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.0.0

– Multicore Manager (MCMgr) v1.0.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

58 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For overview please read RPMSG-Lite VirtIO Overview.

For RPMSG-Lite Design Considerations please read RPMSG-Lite Design Considerations.

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

1.5. MultiCore 59

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://nxp-mcuxpresso.github.io/rpmsg-lite/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static API in RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352
Relative Difference [%] ~52.7% ~77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.

60 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action
in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_cb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

1.5. MultiCore 61

MCUXpresso SDK Documentation, Release 25.12.00

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

• Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

• Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

• Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

• Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

• Read received data directly from the shared memory.

• Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

62 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

1.5. MultiCore 63

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board_name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

• rpmsg_env_bm.c

• rpmsg_env_freertos.c

• rpmsg_env_xos.c

• rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

64 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme

MCUXpresso SDK Documentation, Release 25.12.00

Config-
uration
option

De-
fault
value

Usage

RL_MS_PER_INTERVAL(1) Delay in milliseconds used in non-blocking API functions for polling.
RL_BUFFER_PAYLOAD_SIZE(496) Size of the buffer payload, it must be more than 1 byte, and has to be word

align (including rpmsg header size 16 bytes), if not it will be aligned up
RL_BUFFER_COUNT(2) Number of the buffers, it must be power of two (2, 4, …)
RL_API_HAS_ZEROCOPY(1) Zero-copy API functions enabled/disabled.
RL_USE_STATIC_API(0) Static API functions (no dynamic allocation) enabled/disabled.
RL_USE_DCACHE(0) Memory cache management of shared memory. Use in case of data cache

is enabled for shared memory.
RL_CLEAR_USED_BUFFERS(0) Clearing used buffers before returning back to the pool of free buffers en-

abled/disabled.
RL_USE_MCMGR_IPC_ISR_HANDLER(0) When enabled IPC interrupts are managed by the Multicore Manager (IPC

interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_ENVIRONMENT_CONTEXT(0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some
RAM).

RL_DEBUG_CHECK_BUFFERS(0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by
RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION(0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOW_CUSTOM_SHMEM_CONFIG(0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RL_ASSERTsee
rpmsg_default_config.h

Assert implementation.

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvm project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_clang_format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1]M.Novak,M.Cingel, Lockless SharedMemoryBasedMulticoreCommunicationProtocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.5. MultiCore 65

http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

[v5.3.0]

Added
• RT700 porting layer added support to send rpmsg messages between CM33_0 <-> Hifi1 and

CM33_1 <-> Hifi4 cores.

• Add new platform macro RL_PLATFORM_MAX_ISR_COUNT this will set number of IRQ
count per platform. This macro is then used in environment layers to set isr_table size
where irq handles are registered. It size should match the bit length of VQ_ID so all combi-
nations can fit into table.

• Unit tests updated to improve code coverage, new unit tests added covering static alloca-
tions in rtos environment layers.

Fixed
• virtio.h removed typedef uint8_t boolean and in its place use standard C99 bool type to avoid

potential type conflicts.

• env_acquire_sync_lock() and env_release_sync_lock() synchronization primitives removed

• Kconfig consolidation, when RL_ALLOW_CUSTOM_SHMEM_CONFIG enabled the plat-
form_get_custom_shmem_config() function needs to be implemented in platform layer to
provide custom shared memory configuration for RPMsg-Lite instance.

v5.2.1

Added
• Doc added RPMSG-Lite VirtIO Overview

• Doc added RPSMG-Lite Design Consi derations

• Added frdmimxrt1186 unit testing

Changed
• Remove limitation that RL_BUFFER_SIZE needs to be power of 2. It just has to be more

than 16 bytes, e.g. 16 bytes of rpmsg header and payload size at least 1 byte and word
aligned, if not it will be aligned up.

Fixed
• Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for

imxrt700_m33, imxrt700_hifi4, imxrt700_hifi1 platforms

v5.2.0

Added
• Add MCXL20 porting layer and unit testing

• New utility macro RL_CALCULATE_BUFFER_COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

• RT700 platform add support for MCMGR in DSPs

66 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Change rpmsg_platform.c to support new MCMGR API

• Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

• Refactored repeated buffer count calculation pattern for better code maintainability.

• To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed
• Fixed env_wait_for_link_up function to handle timeout in link state checks for baremetal

and qnx environment, RL_BLOCK mode can be used to wait indefinitely.

• Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST_LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

• Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_config.vring_size
expressions.

• Fixed CERT INT31-C violation in platform_interrupt_disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

• Fixed unsigned integer underflow in rpmsg_lite_alloc_tx_buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

• Fixed CERT-C INT31-C violation in rpmsg_lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

– Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& 0xFFFFU).

– This fix prevents potential data loss when size values exceed 65535.

• Fixed CERT INT31-C violation in env_memset functions by explicitly converting int32_t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

• Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

– rpmsg_env_freertos.c: Added validation before converting int32_t to UBaseType_t.

– rpmsg_env_qnx.c: Fixed format string and added validation before assigning to mqstat
fields.

– rpmsg_env_threadx.c: Added validation to prevent integer overflow and negative val-
ues.

– rpmsg_env_xos.c: Added range checking before casting to uint16_t.

– rpmsg_env_zephyr.c: Added validation before passing values to k_msgq_init.

• Fixed a CERT INT31-C compliance issue in env_get_current_queue_size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

• Fixed CERT INT31-C violation in rpmsg_platform.c where memcmp() return value (signed int)
was compared with unsigned constant without proper type handling.

1.5. MultiCore 67

MCUXpresso SDK Documentation, Release 25.12.00

• Fixed CERT INT31-C violation in rpmsg_platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

• Fixed potential integer overflow in env_sleep_msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

• Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

• Added RL_MAX_BUFFER_COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

• Fixed CERT INT31-C violation in vring_need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
• Add KW43B43 porting layer

Changed
• Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

Added
• Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg_config.h in case of data cache is used.

• Cmake/Kconfig support added.

• Porting layers for imx95, imxrt700, mcmxw71x, mcmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
• Zephyr-related changes.

• Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
• Test suite provided.

• Zephyr support added.

68 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
• RPMsg-Lite: Added aarch64 support.

Changed
• RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.

• Code formatting using LLVM16.

Fixed
• Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added
• Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

Changed
• Improved debug check buffers implementation - instead of checking the pointer fits into

shared memory check the presence in the VirtIO ring descriptors list.

• VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
• Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

• Misra corrections.

v4.0.0 - 20-Jun-2022

Added
• Added support for custom shared memory arrangement per the RPMsg_Lite instance.

• Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
• Adjusted rpmsg_lite_is_link_up() to return RL_TRUE/RL_FALSE.

1.5. MultiCore 69

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21

MCUXpresso SDK Documentation, Release 25.12.00

v3.2.0 - 17-Jan-2022

Added
• Added support for i.MX8 MP multicore platform.

Changed
• Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR

#14.

• Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
• Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added
• Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK

examples, otherwise stdio printf is used).

• Added environment layers for XOS.

• Added support for i.MX RT500, i.MX RT1160 and i.MX RT1170 multicore platforms.

Fixed
• Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
• Updated RL_BUFFER_COUNT documentation (issue #10).

• Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added
• Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-

site side notification sending each time received buffers are consumed and put into the
queue of available buffers.

• Added environment layers for Threadx.

• Added support for i.MX8QM multicore platform.

Changed
• Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

70 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20
https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed (7.4).

• Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

• Correction of rpmsg_lite_instance structure members description.

• Address -Waddress-of-packed-member warnings in GCC9.

Changed
• Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed, incl. data types consolidation.

• Code formatted.

v2.2.0 - 20-Mar-2019

Added
• Added configuration macro RL_DEBUG_CHECK_BUFFERS.

• Several MISRA violations fixed.

• Added environment layers for QNX and Zephyr.

• Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

• Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
• Supporting i.MX6SX and i.MX7D MPU platforms.

• Supporting LPC5411x MCU platform.

• Baremental and FreeRTOS support.

• Support of copy and zero-copy transfer.

• Support of static API (without dynamic allocations).

1.5. MultiCore 71

MCUXpresso SDK Documentation, Release 25.12.00

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview This repository is for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
mcmgr directory.

72 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://nxp-mcuxpresso.github.io/mcux-mcmgr/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

The Multicore Manager provides the following major functions:

• Maintains information about all cores in system.

• Secondary/auxiliary core(s) startup and shutdown.

• Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

Example of MCMGR usage to start secondary core:

#include ”mcmgr.h”

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

(continues on next page)

1.5. MultiCore 73

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass ”1” as startup data,␣
↪→starting synchronously. */

MCMGR_StartCore(kMCMGR_Core1, CORE1_BOOT_ADDRESS, 1, kMCMGR_Start_Synchronous);
.
.
.

/* Stop secondary core execution. */
MCMGR_StopCore(kMCMGR_Core1);

}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

It could also happen that the secondary core application stops running correctly and the primary
core application does not know about that situation. Therefore, it is beneficial to implement a
mechanism for core health monitoring. The test_heartbeat unit test can serve as an example
how to ensure that: secondary core could periodically send heartbeat signals to the primary
core using MCMGR_TriggerEvent() API to indicate that it is alive and functioning properly.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() API. Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)
#define APP_NUMBER_OF_CORES (2)
#define APP_SECONDARY_CORE kMCMGR_Core1

/* Callback function registered via the MCMGR_RegisterEvent() and triggered by MCMGR_TriggerEvent()␣
↪→called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_core_t coreNum, uint16_t eventData, void *context)
{

uint16_t *data = &((uint16_t *)context)[coreNum];

*data = eventData;
}

void main()
{

uint16_t RPMsgRemoteReadyEventData[NUMBER_OF_CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

/* Register the application event before starting the secondary core */
MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void␣

↪→*)RPMsgRemoteReadyEventData);

(continues on next page)

74 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass rpmsg_lite_base address␣

↪→as startup data, starting synchronously. */
MCMGR_StartCore(APP_SECONDARY_CORE, CORE1_BOOT_ADDRESS, (uint32_t)rpmsg_lite_

↪→base, kMCMGR_Start_Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to␣
↪→communicate. */

while(APP_RPMSG_READY_EVENT_DATA != RPMsgRemoteReadyEventData[APP_SECONDARY_
↪→CORE]) {};
.
.
.
}

Code for the secondary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

.

.

.

/* Signal the to other core that we are ready by triggering the event and passing the APP_RPMSG_
↪→READY_EVENT_DATA */

MCMGR_TriggerEvent(kMCMGR_Core0, kMCMGR_RemoteApplicationEvent, APP_RPMSG_
↪→READY_EVENT_DATA);
.
.
.
}

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

1.5. MultiCore 75

MCUXpresso SDK Documentation, Release 25.12.00

76 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[v5.0.2]

Added
• Added gcov options and configs to support mcmgr code coverage

• Added new test_weak_mu_isr testcase for devices with MU peripheral

• Added new test_heartbeat testcase showing heartbeat mechanism between primary and
secondary cores using the MCMGR

v5.0.1

Added
• Added frdmimxrt1186 unit testing

Changed
• [KW43] Rename core#1 reset control register

Fixed
• Added CX flag into CMakeLists.txt to allow c++ build compatibility.

• Fix path to mcmgr headers directory in doxyfile

v5.0.0

Added
• Added MCMGR_BUSY_POLL_COUNT macro to prevent infinite polling loops in MCMGR

operations.

• Implemented timeout mechanism for all polling loops in MCMGR code.

• Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

– MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

– MCMGR_TriggerEvent(mcmgr_event_type_t type, uint16_t eventData, mcmgr_core_t
coreNum)

– MCMGR_TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

– typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

1.5. MultiCore 77

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

When registering the event with function MCMGR_RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

• Updated all porting files to support new MCMGR API.

• Added new platform specific include file mcmgr_platform.h. It will contain common plat-
form specific macros that can be then used in mcmgr and application. e.g. platform core
count MCMGR_CORECOUNT 4.

• Move all header files to new inc directory.

• Added new platform-specific include files inc/platform/<platform_name>/mcmgr_platform.
h.

Added
• Add MCXL20 porting layer and unit testing

v4.1.7

Fixed
• mcmgr_stop_core_internal() function now returns kStatus_MCMGR_NotImplemented status

code instead of kStatus_MCMGR_Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mcxw716, mcxw727.

[v4.1.6]

Added
• Multicore Manager moved to standalone repository.

• Add porting layers for imxrt700, mcmxw727, kw47b42.

• New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added
• Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid

using uninitialized data in their implementations.

[v4.1.4]

Fixed
• Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable

flag is not set in the CR/TCR register.

• Messaging Unit RX and status registers are cleared after the initialization.

78 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[v4.1.3]

Added
• Add porting layers for imxrt1180.

Fixed
• mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-

able flag is not set in the CR/TCR register.

• mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed
• Update mcmgr_stop_core_internal() implementations to set core state to kM-

CMGR_ResetCoreState.

[v4.1.0]

Fixed
• Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
• Documentation updated to describe handshaking in a graphic form.

• Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
• Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed
• Code formatting, removed unused code

[v4.0.0]

1.5. MultiCore 79

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Add new MCMGR_TriggerEventForce() API.

[v3.0.0]

Removed
• Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
• Modified MCMGR_GetStartupData()

Added
• Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()

• Added the ability for remote core monitoring and event handling

[v2.0.1]

Fixed
• Updated to be Misra compliant.

[v2.0.0]

Added
• Support for lpcxpresso54114 board.

[v1.1.0]

Fixed
• Ported to KSDK 2.0.0.

[v1.0.0]

Added
• Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

80 Chapter 1. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

eRPC

• MCUXpresso SDK : mcuxsdk-middleware-erpc

– Overview

– Documentation

– Setup

– Contribution

• eRPC

– About

– Releases

* Edge releases

– Documentation

– Examples

– References

– Directories

– Building and installing

* Requirements

· Windows

· Mac OS X

* Building

· CMake and KConfig

· Make

1.5. MultiCore 81

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

* Installing for Python

– Known issues and limitations

– Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the
internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {

// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void

}

Client side usage:

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* init eRPC client IO service */
initIO_client(client_manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */
deinitIO_client();
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);

(continues on next page)

82 Chapter 1. Middleware

http://thrift.apache.org

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
erpc_transport_tcp_deinit(transport);

}

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* scope for client service */
{

/* init eRPC client IO service */
IO_client client(client_manager);

// Now we can call the remote function to turn on the green LED.
client.set_led(kGreen, true);

}

/* deinit objects */
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

Server side usage:

// Implement the remote function.
void set_led(LEDName whichLed, bool onOrOff) {

// implementation goes here
}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
erpc_service_t service = create_IO_service();

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */
destroy_IO_service(service);
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

// Implement the remote function.
class IO : public IO_interface

(continues on next page)

1.5. MultiCore 83

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{

/* eRPC call definition */
void set_led(LEDName whichLed, bool onOrOff) override {

// implementation goes here
}

}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
IO IOImpl;
IO_service io(&IOImpl);

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, &io);

/* poll for requests */
erpc_status_t err = server.run();

/* deinit objects */
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

A number of transports are supported, and new transport classes are easy to write.

Supported transports can be found in erpc/erpc_c/transport folder. E.g:

• CMSIS UART

• NXP Kinetis SPI and DSPI

• POSIX and Windows serial port

• TCP/IP (mostly for testing)

• NXP RPMsg-Lite / RPMsg TTY

• SPIdev Linux

• USB CDC

• NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

84 Chapter 1. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc

MCUXpresso SDK Documentation, Release 25.12.00

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and
update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in

mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

• erpc (EmbeddedRPC) getting started notes

• ERPC Linux Local Environment Construction and Use

• The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c - Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.

erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.

examples - Several example IDL files.

mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

1.5. MultiCore 85

https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd

MCUXpresso SDK Documentation, Release 25.12.00

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

• CMake (minimal version 3.20.0)

• Generator - Make, Ninja, …

• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Requirements when using Make:

• Make
• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_v14/readme_erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install_dependencies.ps1
* ```

Linux

```bash
./install_dependencies.sh

Mandatory for case, when build for different architecture is needed

• gcc-multilib, g++-multilib

Mac OS X

86 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

./install_dependencies.sh

Building

CMakeandKConfig eRPC use CMake and KConfig to configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc/ execute:

cmake -B ./build # in erpc/build generate cmake project
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:

• erpc: build the liberpc.a static library

• erpcgen: build the erpcgen tool

• erpcsniffer: build the sniffer tool

• test: build the unit tests under the test directory

• all: build all of the above

• install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

1.5. MultiCore 87



MCUXpresso SDK Documentation, Release 25.12.00

Known issues and limitations
• Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully

supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor, Inc.

Copyright 2016-2025 NXP

eRPC Getting Started

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install_dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

88 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.5. MultiCore 89



MCUXpresso SDK Documentation, Release 25.12.00

|

90 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

1.5. MultiCore 91



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

92 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.5. MultiCore 93



MCUXpresso SDK Documentation, Release 25.12.00

|

94 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.5. MultiCore 95



MCUXpresso SDK Documentation, Release 25.12.00

|

96 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

1.5. MultiCore 97



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

98 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 99



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

100 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.5. MultiCore 101



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

102 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 103



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

104 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 105



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

106 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

1.5. MultiCore 107



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

108 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.5. MultiCore 109



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

• The primary core (CM7) runs the eRPC client.

• The secondary core (CM4) runs the eRPC server.

• RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

110 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

|Multicore application source and project files|<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/|
|Multiprocessor application source and project files|<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files|<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/|

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc_matrix_multiply
/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
const int32 matrix_size = 5;
/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
type Matrix = int32[matrix_size][matrix_size];
interface MatrixMultiplyService {
erpcMatrixMultiply(in Matrix matrix1, in Matrix matrix2, out Matrix result_matrix) ->
void
}

Details:

• The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

• The declaration and definition of the constant variable namedmatrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

• The alias name for the two-dimensional array type (Matrix) is declared.

• The interface groupMatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

• As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

1.5. MultiCore 111



MCUXpresso SDK Documentation, Release 25.12.00

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.

2. New data types and constants declarations.

3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPCgenerator tool |Windows OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Windows|
|Linux OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

| |Mac OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac|

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

• The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_file>.erpc

• In the “Matrix multiply” example, the command should look like:

erpcgen erpc_matrix_multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

• “-?”/”—help” – Shows supported commands.

• “-o <filePath>”/”—output<filePath>” – Sets the output directory.

For example,

<path_to_erpcgen>/erpcgen –o <path_to_output>
<path_to_IDL>/<IDL_file_name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:

erpcgen –o

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

In both cases, the following four files are generated into the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

• erpc_matrix_multiply.h

• erpc_matrix_multiply_client.cpp

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service
folder.

For Linux OS users:
• Do not forget to set the permissions for the eRPC generator application.

• Run the application as ./erpcgen… instead of as erpcgen ….

112 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

1.5. MultiCore 113



MCUXpresso SDK Documentation, Release 25.12.00

|

114 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

1.5. MultiCore 115



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

116 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

1.5. MultiCore 117



MCUXpresso SDK Documentation, Release 25.12.00

|

118 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

1.5. MultiCore 119



MCUXpresso SDK Documentation, Release 25.12.00

|

120 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

1.5. MultiCore 121



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

122 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 123



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

124 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

1.5. MultiCore 125



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

126 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 127



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

128 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

1.5. MultiCore 129



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

130 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

1.5. MultiCore 131



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

132 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

1.5. MultiCore 133



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

134 Chapter 1. Middleware

https://github.com/EmbeddedRPC


MCUXpresso SDK Documentation, Release 25.12.00

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed
• Python code of the eRPC infrastructure was updated to match the proper python code style,

add type annotations and improve readability.

1.14.0

Added
• Added Cmake/Kconfig support.

• Made java code jdk11 compliant, GitHub PR #432.

• Added imxrt1186 support into mu transport layer.

• erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
• eRPC: Sources reformatted.

• erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

• erpc: Free the arbitrated client token from client manager, GitHub PR #444.

1.5. MultiCore 135

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

• erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

• erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

• Examples and tests consolidated.

1.13.0

Added
• erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.

• eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).

• eRPC: Add new Zephyr-related examples.

Fixed
• eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.

• eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.

• eRPC,erpcgen: Align switch brackets, GitHub PR #396.

• erpc: Fix zephyr uart transport, GitHub PR #410.

• erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
• eRPC,erpcgen: Remove cstbool library, GitHub PR #403.

1.12.0

Added
• eRPC: Add dynamic/static option for transport init, GitHub PR #361.

• eRPC,erpcgen: Winsock2 support, GitHub PR #365.

• eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

• eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

• eRPC,erpcgen: Add experimental Java support.

Fixed
• eRPC: Fix receive error value for spidev, GitHub PR #363.

• eRPC: UartTransport::init adaptation to changed driver.

• eRPC: Fix typo in assert, GitHub PR #371.

• eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

• eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

136 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.11.0

Fixed
• eRPC: Makefiles update, GitHub PR #301.

• eRPC: Resolving warnings in Python, GitHub PR #325.

• eRPC: Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.

• eRPC: Improved codec function to use reference instead of address, GitHub PR #324.

• eRPC: Fix NULL check for pending client creation, GitHub PR #341.

• eRPC: Replace sprintf with snprintf, GitHub PR #343.

• eRPC: Use MU_SendMsg blocking call in MU transport.

• eRPC: New LPSPI and LPI2C transport layers.

• eRPC: Freeing static objects, GitHub PR #353.

• eRPC: Fixed casting in deinit functions, GitHub PR #354.

• eRPC: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.

• erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

• erpcgen: Add check that string read is not more than max length, GitHub PR #328.

• erpcgen: Move to g++ in pytest, GitHub PR #335.

• erpcgen: Use build=release for make, GitHub PR #334.

• erpcgen: Removed boost dependency, GitHub PR #346.

• erpcgen: Mingw support, GitHub PR #344.

• erpcgen: VS build update, GitHub PR #347.

• erpcgen: Modified name for common types macro scope, GitHub PR #337.

• erpcgen: Fixed memcpy for template, GitHub PR #352.

• eRPC,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.

• eRPC,erpcgen: Remove redundant includes, GitHub PR #338.

• eRPC,erpcgen: Many minor code improvements, GitHub PR #323.

1.10.0

Fixed
• eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added
• eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

1.5. MultiCore 137



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: MUTransport adaptation to new supported SoCs.

• eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

• eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

• eRPC: Endianness agnostic update, GitHub PR #276.

• eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

• eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.

• eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

• eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

• eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

• eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

• eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker, GitHub
PR #266.

• eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

• eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.

• erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.

• erpcgen: Several fixes for tests and CI, GitHub PR #289.

• erpcgen: Refactoring erpcgen code, GitHub PR #302.

• erpcgen: Fixed assigning const value to enum, GitHub PR #309.

• erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

1.9.1

Fixed
• eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

• eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

• eRPC: Improve python detection in make, GitHub PR #225.

• eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

• eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.

• eRPC: Fix making test under Linux, GitHub PR #229.

• eRPC: Assert costumizing, GitHub PR #148.

• eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

• eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

• eRPC: Fix inout cases, GitHub PR #237.

138 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

• eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

• eRPC: MessageBuffer usage improvement, GitHub PR #258.

• eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

• eRPC: Several MISRA violations addressed.

• eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

• eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.

• eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

• erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

• erpcgen: Fix serialization of list/binary types, GitHub PR #240.

• erpcgen: Fix empty list parsing, GitHub PR #72.

• erpcgen: Fix templates for malloc errors, GitHub PR #110.

• erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #249, #250.

• erpcgen: Fix compile error:UniqueIdChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

1.9.0

Added
• eRPC: Allow used LIBUSBSIO device index being specified from the Python command line

argument.

Fixed
• eRPC: Improving template usage, GitHub PR #153.

• eRPC: run_clang_format.py cleanup, GitHub PR #177.

• eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

• eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

• eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.

• eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

• eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APi,
GitHub PR #168, #169.

• erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

1.8.1

Added
• eRPC: New i2c_slave_transport trasnport introduced.

1.5. MultiCore 139



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: Fix misra erpc c, GitHub PR #158.

• eRPC: Allow conditional compilation of message_loggers and pre_post_action.

• eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.

• erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

• erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

• erpcgen: Fix bison file, GitHub PR #156.

1.8.0

Added
• eRPC: Support win32 thread, GitHub PR #108.

• eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

• eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.

• eRPC: Introduced new USB CDC transport.

• eRPC: Introduced new Linux spidev-based transport.

• eRPC: Added formatting extension for VSC, GitHub PR #134.

• erpcgen: Introduce ustring type for unsigned char and force cast to char*, GitHub PR #125.

Fixed
• eRPC: Update makefile.

• eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.

• eRPC: Extend error msg for python server service handle function, GitHub PR #132.

• eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

• eRPC: SPI transport update to allow usage without handshaking GPIO.

• eRPC: Native _WIN32 erpc serial transport and threading.

• eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

• eRPC: Update of matrix_multiply.py example: Add –serial and –baud argument, GitHub PR
#137.

• eRPC: Update of .clang-format, GitHub PR #140.

• eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

• eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

• eRPC, erpcgen: Core re-formatted using Clang version 10.

• erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

• erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

140 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

• erpcgen: Python generator improvements, GitHub PR #100, #118.

• erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.7.4

Added
• eRPC: Support MU transport unit testing.

• eRPC: Adding mbed os support.

Fixed
• eRPC: Unit test code updated to handle service add and remove operations.

• eRPC: Several MISRA issues in rpmsg-based transports addressed.

• eRPC: Fixed Linux/TCP acceptance tests in release target.

• eRPC: Minor documentation updates, code formatting.

• erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed
• eRPC: Improved the test_callbacks logic to be more understandable and to allow requested

callback execution on the server side.

• eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

• eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

• erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added
• eRPC: Add missing doxygen comments for transports.

Fixed
• eRPC: Improved support of const types.

• eRPC: Fixed Mac build.

• eRPC: Fixed serializing python list.

• eRPC: Documentation update.

1.5. MultiCore 141



MCUXpresso SDK Documentation, Release 25.12.00

1.7.1

Fixed
• eRPC: Fixed semaphore in static message buffer factory.

• erpcgen: Fixed MU received error flag.

• erpcgen: Fixed tcp transport.

1.7.0

Added
• eRPC: List names are based on their types. Names are more deterministic.

• eRPC: Service objects are as a default created as global static objects.

• eRPC: Added missing doxygen comments.

• eRPC: Added support for 64bit numbers.

• eRPC: Added support of program language specific annotations.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Generating crc value is optional.

• eRPC: Fixed CMSIS Uart driver. Removed dependency on KSDK.

• eRPC: Forbid users use reserved words.

• eRPC: Removed outByref for function parameters.

• eRPC: Optimized code style of callback functions.

1.6.0

Added
• eRPC: Added @nullable support for scalar types.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Improved eRPC nested calls.

• eRPC: Improved eRPC list length variable serialization.

1.5.0

142 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Added
• eRPC: Added support for unions type non-wrapped by structure.

• eRPC: Added callbacks support.

• eRPC: Added support @external annotation for functions.

• eRPC: Added support @name annotation.

• eRPC: Added Messaging Unit transport layer.

• eRPC: Added RPMSG Lite RTOS TTY transport layer.

• eRPC: Added version verification and IDL version verification between eRPC code and eRPC
generated shim code.

• eRPC: Added support of shared memory pointer.

• eRPC: Added annotation to forbid generating const keyword for function parameters.

• eRPC: Added python matrix multiply example.

• eRPC: Added nested call support.

• eRPC: Added struct member “byref” option support.

• eRPC: Added support of forward declarations of structures

• eRPC: Added Python RPMsg Multiendpoint kernel module support

• eRPC: Added eRPC sniffer tool

1.4.0

Added
• eRPC: New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

Fixed
• eRPC: win_flex_bison.zip for windows updated.

• eRPC: Use one codec (instead of inCodec outCodec).

[1.3.0]

Added
• eRPC: New annotation types introduced (@length, @max_length, …).

• eRPC: Support for running both erpc client and erpc server on one side.

• eRPC: New transport layers for (LP)UART, (D)SPI.

• eRPC: Error handling support.

[1.2.0]

Added
• eRPC source directory organization changed.

• Many eRPC improvements.

1.5. MultiCore 143



MCUXpresso SDK Documentation, Release 25.12.00

[1.1.0]

Added
• Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added
• Initial Release

1.6 Multimedia

1.6.1 Xtensa Audio Framework (XAF)

Xtensa Audio Framework (XAF) Examples

Overview The Xtensa Audio Framework (XAF) is designed to accelerate the development of
audio processing applications for the HiFi family of DSP cores. The multicore version of XAF
described in these examples is designed to work with subsystems having single or multiple DSPs,
enabling sophisticated audio processing capabilities in embedded systems.

Each demo showcases a dual-core architecture:

• cm33/ - The ARM application for the Cortex-M33 core, which provides the user interface
and system control

• dsp/ - The DSP application that performs audio processing using the XAF middleware li-
brary

When an application is started, a shell interface is displayed on the terminal that executes from
the ARM core. Users can control the application through shell commands, which are relayed
via RPMsg-Lite IPC to the DSP core where they are processed and responses are returned. This
architecture demonstrates efficient partitioning of workloads - with user interface and control
tasks handled by the ARM core while computationally intensive audio processing is offloaded to
the specialized DSP core.

For more information about XAF and detailed documentation on the API and available com-
ponents, please refer to the Cadence XAF documentation (/middleware/cadence/multicore-
xaf/xa_af_hostless/doc).

Availability Note Important: These XAF examples are not included in the standard MCUX-
presso SDK repository. They are available as part of the MCUXpresso SDK Builder package on
the NXP website. To access these examples, please visit MCUXpresso SDK Builder and create a
customized SDK package that includes the XAF examples for your target platform.

Included Examples

XAF Playback Example The dsp_xaf_playback application demonstrates audio file decoding
and playback capabilities using the DSP core and Xtensa Audio Framework, supporting various
audio codecs while handling operations through a shell interface on the ARM core that commu-
nicates with DSP processing.

144 Chapter 1. Middleware

https://mcuxpresso.nxp.com/


MCUXpresso SDK Documentation, Release 25.12.00

XAF Record Example The dsp_xaf_record example captures audio from digital microphones
(DMIC), processes it on the DSP core using voice enhancement algorithms, performs voice recog-
nition (VIT), and outputs the detected wake words and voice commands to the console, enabling
hands-free voice control applications.

XAF USB Example The XAF USB example demonstrates DSP-powered USB audio processing in
two configurations: USB speaker and USB microphone. The application uses shell commands to
switch between modes, with the ARM core handling USB communication while the DSP processes
audio.

XAF Playback Example

Table of Content
• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Example Configuration

• Running the Demo

• Known Issues

Overview The dsp_xaf_playback application demonstrates audio processing using the DSP
core, the Xtensa Audio Framework (XAF) middleware library, and selected Xtensa audio codecs.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow the use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Limitations:
• MP3encoder, G.711, G.722, BSAC,DAB+, DAB/MP2, DRM: Provided only as linked libraries

but are not enabled in the example.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface, SD card operations, and communicates with
the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The typical audio processing pipeline includes:

• File source component (reads from SD card)

• Decoder component (decodes compressed audio)

• Renderer component (outputs to audio hardware)

When the file playback command is issued, the ARM core reads the file from SD card and sends
data to the DSP, which processes it and outputs to the audio hardware.

1.6. Multimedia 145



MCUXpresso SDK Documentation, Release 25.12.00

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board

– MIMXRT700-EVK board

• Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

• SD card with audio files (for file playback feature)

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK:

– Set the hardware jumpers (Tower system/base module) to default settings.

– Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector (J4).

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4, J50, J51, J52

• MIMXRT700-EVK - J29

2. Connect a micro USB cable between the PC host and the debug USB port on the development
board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

146 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

3. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Download the program for CM33 core to the target board.

5. Launch the debugger in your IDE to begin running the demo.

6. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

Example Configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

• MIMXRT700-EVK Decoder Configuration:
RT700 has limited RAM on Cortex-M33 core 1 which limits the available decoders. Only SBC
decoder is enabled by default. In order to enable a different decoder/encoder, it is necessary
to define the appropriate define on project level. Use one of the following define from the
list of the supported decoders on the HiFi1 core:

– XA_AAC_DECODER

– XA_MP3_DECODER

– XA_SBC_DECODER

– XA_VORBIS_DECODER

– XA_OPUS_DECODER

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

1.6. Multimedia 147



MCUXpresso SDK Documentation, Release 25.12.00

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

When the demo runs successfully, the terminal will display the following output (example from
MIMXRT700-EVK):

******************************
DSP audio framework demo start
******************************

[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33_Main] DSP image copied to DSP TCM
[CM33_Main][APP_SDCARD_Task] start
[CM33_Main][APP_DSP_IPC_Task] start
[CM33_Main][APP_Shell_Task] start

Copyright 2024 NXP

Type help to see the command list. Similar description will be displayed on serial console (Ifmulti-
channel playbackmode is enabled, the description is slightly different. Available encoders/decoders
may differ - refer to the table.):

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”file”: Perform audio file decode and playback from SD card
USAGE: file [list|stop|<audio_file>]
list List audio files on SD card available for playback
<audio_file> Select file from SD card and start playback

”decoder”: Perform decode on DSP and play to speaker.
USAGE: decoder [aac|mp3|opus|sbc|vorbis_ogg|vorbis_raw]
aac: Decode aac data
mp3: Decode mp3 data
opus: Decode opus data
sbc: Decode sbc data
vorbis_ogg: Decode OGG VORBIS data
vorbis_raw: Decode raw VORBIS data

”encoder”: Encode PCM data on DSP and compare with reference data.
(continues on next page)

148 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
USAGE: encoder [opus|sbc]
opus: Encode pcm data using opus encoder
sbc: Encode pcm data using sbc encoder

”src” Perform sample rate conversion on DSP

”gain”: Perform PCM gain adjustment on DSP

Xtensa IDE log when command is playing a file (mp3/aac/vorbis/… ):

File playback start, initial buffer size: 16384
[DSP Codec] Audio Device Ready
[DSP Codec] Decoder component started
[DSP Codec] Setting decode playback format:
Decoder : mp3_dec
Sample rate: 16000
Bit Width : 16
Channels : 2

[DSP Codec] Renderer component started
[DSP Codec] Connected XA_DECODER -> XA_RENDERER
[DSP_ProcessThread] start
[DSP_BufferThread] start

Xtensa IDE log when decoder command starts playback successfully:

[DSP_Main] Input buffer addr: 0x20020000, buffer size: 94276
[DSP Codec] Audio Device Ready
[DSP Codec] Decoder created
[DSP Codec] Decoder component started
[DSP Codec] Renderer component created
[DSP Codec] Connected XA_DECODER -> XA_RENDERER
[DSP_ProcessThread] start
[DSP_ProcessThread] Execution complete - exiting
[DSP_ProcessThread] exiting
[DSP Codec] Audio device closed

[CM33 CMD] [APP_DSP_IPC_Task] response from DSP, cmd: 0, error: 0
[CM33 CMD] Decode complete

MIMXRT685-AUD-EVK Multi-channel Support: The MIMXRT685-AUD-EVK board supports
multi-channel audio. When selecting audio files for playback, you can specify the number of
channels:

```
file [list|stop|<audio_file> [<nchannel>]]
<nchannel> Select the number of channels (2 or 8 can be selected).
NOTE: Selected audio file must meet the following parameters:

- Sample rate: 96 kHz
- Width: 32 bit

```

Xtensa IDE log when command is playing a PCM file:

```
[DSP_FILE_REN] Audio Device Ready
[DSP_FILE_REN] post-proc/pcm_gain component started
[DSP_FILE_REN] post-proc/client_proxy component started
[DSP_FILE_REN] Connected post-proc/pcm_gain -> post-proc/client_proxy
[DSP_FILE_REN] renderer component started

(continues on next page)

1.6. Multimedia 149

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
[DSP_FILE_REN] Connected post-proc/client_proxy -> renderer
[DSP_BufferThread] start
[DSP_ProcessThread] start
[DSP_CleanupThread] start3
```

Known Issues
1. The “file stop” command doesn’t stop the playback for some small files (with low sample

rate).

2. MIMXRT700-EVK: Has limited RAM on Cortex-M33 core 1 which limits the available de-
coders.

XAF Record Example

Table of Content
• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Example Configuration

• Running the Demo

• Known Issues

Overview The dsp_xaf_record application demonstrates audio processing using the DSP core,
the Xtensa Audio Framework (XAF) middleware library, with a focus on audio recording, pro-
cessing and voice recognition (VIT - Voice Intelligent Technology).

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications or Example configuration sections be-
fore running the demo.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface and communicates with the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The typical audio processing pipeline includes:

• Audio source component - DMIC audio

• VIT component (perform voice recognition)

• Renderer component (playback on codec)

The application demonstrates recording from digital microphones (DMIC), processing the audio
with voice enhancement algorithms, performing voice recognition, and prints back in console
detected WakeWord and list of commands.

150 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board

– MIMXRT700-EVK board

• Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK

1. Set the hardware jumpers (Tower system/base module) to default settings.

2. Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector.

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4, J50 for third channel when using 3 microphones

• MIMXRT700-EVK - J29

2. Connect a micro USB cable between the PC host and the debug USB port on the development
board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

3. Open a serial terminal with the following settings:

1.6. Multimedia 151



MCUXpresso SDK Documentation, Release 25.12.00

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Download the program for CM33 core to the target board.

5. Launch the debugger in your IDE to begin running the demo.

6. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

Example Configuration The example can be configured by user. Before configuration, please
check the table to see if the feature is supported on the development board.

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

152 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Running on CM33 When the demo runs successfully, the CM33 terminal will display the fol-
lowing output (example from MIMXRT700-EVK):

******************************
DSP audio framework demo start
******************************

[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33 Main] DSP image copied to DSP TCM
[CM33 Main][APP_DSP_IPC_Task] start
[CM33 Main][APP_Shell_Task] start

Copyright 2024 NXP

>>

Type help to see the command list. Similar description will be displayed on serial console (exam-
ple from MIMXRT700-EVK):

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”record_dmic”: Record DMIC audio , perform voice recognition (VIT) and playback on codec
USAGE: record_dmic [language]
For voice recognition say supported WakeWord and in 3s frame supported command.
If selected model contains strings, then WakeWord and list of commands will be printed in console.
NOTE: this command does not return to the shell

After running the “record_dmic en” command, similar output will be printed

[CM33 CMD] Setting VIT language to en
[DSP_Main] Number of channels 1, sampling rate 16000, PCM width 32
[CM33 CMD] [APP_DSP_IPC_Task] response from DSP, cmd: 13, error: 0
[DSP Record] Audio Device Ready
[CM33 CMD] DSP DMIC Recording started
[CM33 CMD] To see VIT functionality say wakeword and command
[DSP VIT] VIT Model info
[DSP VIT] VIT Model Release = 0x40a00
[DSP VIT] Language supported : English
[DSP VIT] Number of WakeWords supported : 2
[DSP VIT] Number of Commands supported : 12
[DSP VIT] VIT_Model integrating WakeWord and Voice Commands strings : YES
[DSP VIT] WakeWords supported :
[DSP VIT] 'HEY NXP'
[DSP VIT] 'HEY TV'
[DSP VIT] Voice commands supported :
[DSP VIT] 'MUTE'
[DSP VIT] 'NEXT'
[DSP VIT] 'SKIP'
[DSP VIT] 'PAIR DEVICE'
[DSP VIT] 'PAUSE'
[DSP VIT] 'STOP'

(continues on next page)

1.6. Multimedia 153



MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
[DSP VIT] 'POWER OFF'
[DSP VIT] 'POWER ON'
[DSP VIT] 'PLAY MUSIC'
[DSP VIT] 'PLAY GAME'
[DSP VIT] 'WATCH CARTOON'
[DSP VIT] 'WATCH MOVIE'
[DSP Record] connected CAPTURER -> GAIN_0
[DSP Record] connected XA_GAIN_0 -> XA_VIT_PRE_PROC_0
[DSP Record] connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0
[DSP VIT] - WakeWord detected 1 HEY NXP
[DSP VIT] - Voice Command detected 6 STOP

Xtensa IDE log of successful start of command:

Number of channels 1, sampling rate 16000, PCM width 16
Audio Device Ready
connected CAPTURER -> GAIN_0
connected CAPTURER -> XA_VIT_PRE_PROC_0
connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0

Running on DSP Debug configuration: When the demo runs successfully, the terminal will
display the following:

Cadence Xtensa Audio Framework
Library Name : Audio Framework (Hostless)
Library Version : 3.2
API Version : 3.0

[DSP_Main] start
[DSP_Main] established RPMsg link
Number of channels 1, sampling rate 16000, PCM width 16

connected CAPTURER -> GAIN_0
connected XA_GAIN_0 -> XA_VIT_PRE_PROC_0
connected XA_VIT_PRE_PROC_0 -> XA_RENDERER_0

Known Issues There are limited features in release SRAM target because of memory limita-
tions. To enable/disable components, set appropriate preprocessor define in project settings to
0/1 (e.g. XA_VIT_PRE_PROC etc.). Debug and flash targets have full functionality enabled.

XAF USB Example

Table of Content
• Overview

• Functionality

• Hardware Requirements

• Hardware Modifications

• Preparation

• Running the Demo

• Known Issues

154 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Overview The dsp_xaf_usb_demo application demonstrates audio processing using the DSP
core, the Xtensa Audio Framework (XAF) middleware library.

As shown in the table below, the application is supported on several development boards and
each development board may have certain limitations, some development boards may also re-
quire hardware modifications or allow to use of an audio expansion board. Therefore, please
check the supported features and Hardware modifications section before running the demo.

Functionality The application includes the following main components:

1. ARM Core (CM33) - Handles user interface, and communicates with the DSP core

2. DSP Core - Processes audio data using the Xtensa Audio Framework (XAF)

The XAF USB example demonstrates DSP-powered USB audio processing in two configurations:
USB speaker and USB microphone. The application uses shell commands to switch between
modes, with the ARM core handling USB communication while the DSP processes audio.

• USB Speaker Mode (USB2.0 � Line out): Receives audio from a USB host, processes it on the
DSP, and outputs through the headphone jack, making the device function as a USB speaker
for your computer.

• USB Microphone Mode (DMIC � USB2.0): Captures audio from the onboard digital micro-
phones, processes it on the DSP, and streams it to a USB host as a standard audio input
device.

Hardware Requirements
• Development board (one of the following):

– EVK-MIMXRT595 board

– EVK-MIMXRT685 board

– MIMXRT685-AUD-EVK board

– MIMXRT700-EVK board

• 2x Micro USB cable

• JTAG/SWD debugger

• Headphones with 3.5 mm stereo jack

• Personal Computer

Hardware Modifications Some development boards need some hardware modifications to
run the application.

• EVK-MIMXRT595:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

Note: The I3C Pin configuration in pin_mux.c is verified for default 1.8V, for 3.3V, need to
manually configure slew rate to slow mode for I3C-SCL/SDA.

• EVK-MIMXRT685:

To enable the example audio using WM8904 codec, connect pins as follows:

– JP7-1 <–> JP8-2

• MIMXRT685-AUD-EVK

– Set the hardware jumpers (Tower system/base module) to default settings.

1.6. Multimedia 155



MCUXpresso SDK Documentation, Release 25.12.00

– Set hardware jumpers JP2 2<–>3, JP44 1<–>2 and JP45 1<–>2.

• MIMXRT700-EVK:

Set the hardware jumpers to default settings.

Preparation
1. Connect headphones to Audio HP / Line-Out connector.

• EVK-MIMXRT595 - J4

• EVK-MIMXRT685 - J4

• MIMXRT685-AUD-EVK - J4

• MIMXRT700-EVK - J29

2. Connect the first micro USB cable between the PC host and the debug USB port on the de-
velopment board.

• EVK-MIMXRT595 - J40

• EVK-MIMXRT685 - J5

• MIMXRT685-AUD-EVK - J5

• MIMXRT700-EVK - J54

3. Connect the second micro USB cable between the PC host and the USB port on the develop-
ment board.

• EVK-MIMXRT595 - J38

• EVK-MIMXRT685 - J7

• MIMXRT685-AUD-EVK - J7

• MIMXRT700-EVK - J40

4. Open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

5. Download the program for CM33 core to the target board.

6. Launch the debugger in your IDE to begin running the demo.

7. If building release configuration, start the xt-ocd daemon and download the program for
DSP core to the target board. If building debug configuration, launch the Xtensa IDE or
xt-gdb debugger to begin running the demo.

Notes:

• DSP image can only be debugged using J-Link debugger. See the document ‘Getting Started
with Xplorer’ for your particular board for more information.

156 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Running the Demo The ARM application will power and clock the DSP, so it must be loaded
prior to loading the DSP application. The DSP application can be built by the following tools:
Xtensa Xplorer or Xtensa C Compiler. Application for Cortex-M33 can be built by the other
toolchains listed in MCUXpresso SDK Release Notes.

The release configurations of the demo will combine both applications into one ARM image.
With this, the ARM core will load and start the DSP application on startup. Pre-compiled DSP
binary images are provided under dsp/binary/ directory. If you make changes to the DSP ap-
plication in release configuration, rebuild ARM application after building the DSP application.
If you plan to use MCUXpresso IDE for cm33 you will have to make sure that the preprocessor
symbol DSP_IMAGE_COPY_TO_RAM, found in IDE project settings, is defined to the value 1 when
building release configuration.

The debug configurations will build two separate applications that need to be loaded indepen-
dently. DSP application can be built by the following tools: Xtensa Xplorer or Xtensa C Compiler.
Required tool versions can be found in MCUXpresso SDK Release Notes for the board. Applica-
tion for cm33 can be built by the other toolchains listed there. If you plan to use MCUXpresso IDE
for cm33 you will have to make sure that the preprocessor symbol DSP_IMAGE_COPY_TO_RAM,
found in IDE project settings, is defined to the value 0 when building debug configuration. The
ARM application will power and clock the DSP, so it must be loaded prior to loading the DSP
application.

In order to debug both the Cortex-M33 and DSP side of the application, please follow the instruc-
tions:

1. It is necessary to run the Cortex-M33 side first and stop the application before the DSP_Start
function

2. Run the xt-ocd daemon with proper settings

3. Download and debug the DSP application

In order to get TRACE debug output from the XAF it is necessary to define XF_TRACE 1 in the
project settings. It is possible to save the TRACE output into RAM using DUMP_TRACE_TO_BUF 1
define on project level. Please see the initialization of the TRACE function in the xaf_main_dsp.c
file. For more details see XAF documentation.

Running on CM33 When the demo runs successfully, the CM33 terminal will display the fol-
lowing output (example from MIMXRT700-EVK):

******************************
DSP audio framework demo start
******************************

[CM33 Main] Configure codec

[DSP_Main] Cadence Xtensa Audio Framework
[DSP_Main] Library Name : Audio Framework (Hostless)
[DSP_Main] Library Version : 3.5
[DSP_Main] API Version : 3.2

[DSP_Main] start
[DSP_Main] established RPMsg link
[CM33 Main] DSP image copied to DSP TCM
[CM33 Main][APP_DSP_IPC_Task] start
[CM33 Main][APP_Shell_Task] start

Copyright 2024 NXP

>>

Type help to see the command list. Similar description will be displayed on serial console (exam-
ple from MIMXRT700-EVK):

1.6. Multimedia 157



MCUXpresso SDK Documentation, Release 25.12.00

”help”: List all the registered commands

”exit”: Exit program

”version”: Query DSP for component versions

”usb_speaker”: Perform usb speaker device and playback on DSP
USAGE: usb_speaker [start|stop]
start Start usb speaker device and playback on DSP
stop Stop usb speaker device and playback on DSP

”usb_mic”: Record DMIC audio and playback on usb microphone audio device
USAGE: usb_mic [start|stop]
start Start record and playback on usb microphone audio device
stop Stop record and playback on usb microphone audio device

When usb_speaker command starts playback successfully, the terminal will display following
output:

[APP_DSP_IPC_Task] response from DSP, cmd: 21, error: 0
DSP USB playback start
>>

Xtensa IDE log when command is playing a file:

USB speaker start, initial buffer size: 960
[DSP_USB_SPEAKER] Audio Device Ready
[DSP_USB_SPEAKER] post-proc/pcm_gain component started
[DSP_USB_SPEAKER] post-proc/client_proxy component started
[DSP_USB_SPEAKER] Connected post-proc/pcm_gain -> post-proc/client_proxy
[DSP_USB_SPEAKER] renderer component started
[DSP_USB_SPEAKER] Connected post-proc/client_proxy -> renderer
[DSP_ProcessThread] start
[DSP_BufferThread] start
[DSP_CleanupThread] start

The USB device on your host will be enumerated as XAF USB DEMO.

Xtensa IDE will not show any additional log entry.

Running the demo DSP Debug configuration: When the demo runs successfully, the terminal
will display the following:

Cadence Xtensa Audio Framework
Library Name : Audio Framework (Hostless)
Library Version : 2.6p1
API Version : 2.0

[DSP_Main] start
[DSP_Main] established RPMsg link

Known Issues
• When starting the “usb_speaker” after the “usb_mic” command, the sound output may be

distorted. Please power cycle the board.

1.7 Wireless

158 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.7.1 NXP Wireless Framework and Stacks

Wi-Fi, Bluetooth, 802.15.4

Application notes
• Link AN12918-Wi-Fi-Tx-Power-Table-and-Channel-Scan-Management-for-i.MX-RT-SDK.pdf

• Link TN00066-WFA-Derivative-Certification-Process.pdf

User manuals
• Link UM11441-Getting-Started-with-NXP-based-Wireless-Modules-and-i.MX-RT-

Platforms.pdf

• UM11442-NXP-Wi-Fi-and-Bluetooth-Demo-Applications-for-i.MX-RT-Platforms.pdf

• Link UM11443-NXP-Wi-Fi-and-Bluetooth-Debug-Feature-Configuration-Guide-for-i.MX-RT-
Platforms.pdf

• Link UM11567-WFA-Certification-Guide-for-NXP-based-Wireless-Modules-on-i.MX-RT-
Platform-Running-RTOS.pdf

Release notes

Wireless SoC features and release notes for FreeRTOS

About this document This document provides information about the supported features, re-
lease versions, fixed and/or known issues, performance of the Wi-Fi, Bluetooth/802.15.4 radios,
including the coexistence.

The SDK release version 25.12.00 has been tested for the wireless SoCs listed in Supported prod-
ucts.

Supported products
• 88W8987

• IW416

• IW6111

• IW6122

• AW6113

• RW610

• RW612

Parent topic:About this document

[1]: The support of IW611 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [2]: The sup-
port of IW612 is enabled in i.MX RT1170 EVKB and i.MX RT1060 EVKC. [3]: AW611 module sup-
port is available only in i.MX RT1180 EVKA

Features

Wi-Fi radio

1.7. Wireless 159

https://www.nxp.com/docs/en/application-note/AN12918.pdf
https://www.nxp.com/docs/en/application-note/TN00066.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11441.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11443.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf
https://www.nxp.com/docs/en/user-manual/UM11567.pdf


MCUXpresso SDK Documentation, Release 25.12.00

Client mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) TX and RX support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) 4k TX and RX support Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) 1x1 20 MHz and 40 MHz Y N Y N N Y
802.11n - High throughput HT Beamformee (explicit) Y Y Y N N Y
802.11ac - Very high throughput 2.4 GHz band supported channel bandwidth: 20MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac - Very high throughput 5 GHz band supported channel bandwidth: 80 MHz Y N Y N N Y
802.11ac - Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac - Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) - 1x1 Y N Y N N Y
802.11ac - Very high throughput MU-MIMO Beamformee (Explicit and Implicit) Y N Y Y Y Y
802.11ac - Very high throughput RTS/CTS with BW signaling N N N N N N
802.11ac - Very high throughput Operation mode notification Y N Y N N Y
802.11ac - Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac - Very high throughput TX VHT MCS rate adaptation Y N Y Y Y Y
802.11ac - Very high throughput Low density parity check (LDPC) Y N Y N N Y
802.11ax - High efficiency 2.4 GHz band supported channel bandwidth: 20MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 20 MHz N N Y Y Y Y
802.11ax - High efficiency 5 GHz band supported channel bandwidth: 40 MHz N N Y N N Y
802.11ax - High efficiency 5 GHz band supported channel bandwidths: 80 MHz N N Y N N Y
802.11ax - High efficiency OFDMA (UL/DL, 106 RU) N N Y Y Y Y
802.11ax - High efficiency OFDMA (UL/DL, 484 RU) N N Y N N Y
802.11ax - High efficiency 1024 QAM N N Y N N Y
802.11ax - High efficiency Target wake time (TWT) N N Y Y Y Y
802.11ax - High efficiency 256 QAM modulation – MCS8 and MCS9 N N Y Y Y Y
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 2.4 GHz N N Y N N Y
802.11ax - High efficiency 1024 QAM modulation – MCS10 and MCS11, 5 GHz N N Y N N Y
802.11ax - High efficiency DCM N N Y N N Y
802.11ax - High efficiency DCM N N Y Y N Y
802.11ax - High efficiency ER (extended range) N N Y Y Y Y
802.11ax - High efficiency SU Beamforming N N Y Y Y Y
802.11ax - High efficiency OMI (operating mode indication) N N Y Y Y Y
802.11a/b/g features 802.11b/g data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features 802.11a data rates up to 54 Mbit/s Y Y Y Y Y Y
802.11a/b/g features TX rate adaptation (BG) Y Y Y Y Y Y
802.11a/b/g features Fragmentation/defragmentation N N N Y Y N
802.11a/b/g features ERP protection, slot time, preamble Y Y Y Y Y Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)3 Y Y Y Y Y Y
802.11i security Opensource WPA Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | WPA Supplicant Y Y Y Y Y Y

continues on next page

160 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | WPA Supplicant Y Y Y Y Y Y
802.11i security 802.1x EAP Authentication Methods3 | WPA Supplicant Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode3 | WPA Supplicant N N N Y Y N
802.11i security WPA3-Enterprise3 (Suite-B) |National Security Algorithm (CSNA) | WPA Supplicant Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | WPA Supplicant Y Y Y Y Y Y
802.11i security Embedded Supplicant Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y
802.11i security Wi-Fi Roaming Y Y Y Y Y Y
802.11i security WPA3 Enterprise3 Y Y Y YY Y
Power save mode Deep sleep Y Y Y Y Y Y
Power save mode IEEE power save Y Y Y Y Y Y
Power save mode Host sleep/WoWLAN (inband)3 N N N Y Y N
Power save mode Host sleep/WoWLAN (outband)3 Y Y Y N N Y
Power save mode U-APSD Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF require and capable Y Y Y Y Y Y
802.11w - PMF (protected management frames) Unicast management frames - Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - PMF (protected management frames) Broadcast management frames - Encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - PMF (protected management frames) SA query request/response Y Y Y Y Y Y
802.11w - PMF (protected management frames) PMF support using embedded supplicant Y Y Y Y Y Y
DPP functionality Wi-Fi easy connect3 Y Y Y Y Y Y
General features Embedded supplicant Y Y Y Y Y Y
General features Host sleep packet filtering N N Y Y Y Y
General features Host-based supplicant Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EDMAC - EU adaptivity support (ETSI certification) Y Y Y Y Y Y
General features External coexistence N N N N N N
General features IPv6 NS offload N N Y Y Y Y
General features FIPS Y Y Y Y Y Y
General features TKIP1 N N N N N Y
General features RF test mode Y Y Y Y Y Y
General features 802.11k Y Y Y Y Y Y
General features 802.11v Y Y Y Y Y Y
General features DFS radar detection in peripheral mode (follow AP)5 Y Y Y Y Y Y
General features Embedded roaming based on RSSI threshold beacon loss Y Y Y Y Y Y
General features ARP offload N N Y Y Y Y
General features Cloud keep alive Y Y Y N N Y
General features UNII-4 channel support N N Y Y Y Y
General features ClockSync using TSF N N Y N N Y
General features Auto reconnect Y Y N N N N
General features CSI (channel state information)3 Y N Y Y Y Y
General features Ambient Motion Index (AMI)3 N N Y Y Y Y
General features Independent reset (in-band)3 Y Y Y Y Y Y
General features Independent reset (out-band)3 Y Y Y N N Y
General features Wi-Fi agile multiband N N Y Y Y Y
General features Network co-processor (NCP) mode N N N Y4 N N
General features 802.11mc - WLS (Wi-Fi location service)3 N N Y N N Y
General features 802.11az3 N N Y N N Y

Parent topic:Wi-Fi radio

[1] As per Wi-Fi specification, connecting in TKIP security in non 802.11n mode is allowed.

[2] Support available in host-base supplicant.

1.7. Wireless 161



MCUXpresso SDK Documentation, Release 25.12.00

[3] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

[4] Read more about NCP feature in References. [5] To enable the feature, CONFIG_ECSA = 1 must
be defined in wifi_config.h (does not apply to RW610 and RW612).

AP mode
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11n - High throughput 2.4 GHz band operation supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 2.4 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 20 MHz Y Y Y Y Y Y
802.11n - High throughput 5 GHz band supported channel bandwidth: 40 MHz Y Y Y N N Y
802.11n - High throughput Short/long guard interval (400 ns/800 ns) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 72 Mbit/s (MCS 0 to MCS 7) Y Y Y Y Y Y
802.11n - High throughput Data rates up to 150 Mbit/s (MCS 0 to MCS 7) Y Y Y N N Y
802.11n - High throughput 1 spatial stream (1x1) Y Y Y Y Y Y
802.11n - High throughput HT protection mechanisms Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC protocol data unit (AMPDU) Rx support Y Y Y Y Y Y
802.11n - High throughput Aggregated MAC service data unit (AMSDU) -4k RX support Y Y Y Y Y Y
802.11n - High throughput Max client support (up to 8 devices) Y Y Y Y Y Y
802.11n - High throughput TX MCS rate adaptation (BGN) Y Y Y Y Y Y
802.11n - High throughput RX low density parity check (LDPC) Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 20 MHz Y N Y Y Y Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 40 MHz Y N Y N N Y
802.11ac – Very high throughput 5 GHz band supported channel bandwidth: 80MHz Y N Y N N Y
802.11ac – Very high throughput Short/long guard interval (400ns/800ns) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 86.7 Mbps (MCS0 to MCS 8) Y N Y Y Y Y
802.11ac – Very high throughput Data rates up to 433.3 Mbps (MCS 0 to MCS 9) Y N Y Y N Y
802.11ac – Very high throughput Single user- Aggregated MAC protocol data unit (SU-AMPDU) aggregation Y N Y Y Y Y
802.11ac – Very high throughput RTS/CTS with BW signaling N N Y N N Y
802.11ac – Very high throughput Backward compatibility with non-VHT devices Y N Y Y Y Y
802.11ac – Very high throughput TX VHT MCS rate adaptation Y N N Y Y N
802.11ac – Very high throughput MU-MIMO Beamformee (explicit and implicit) Y N Y Y Y Y
802.11ac – Very high throughput Operation mode notification Y N Y N N Y
802.11ax – High efficiency 2.4 GHz band operation (20 MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 2.4 GHz band operation (40 MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (20MHz channel bandwidth) N N Y Y Y Y
802.11ax – High efficiency 5 GHz band operation (40MHz channel bandwidth) N N Y N N Y
802.11ax – High efficiency 5 GHz band operation (80 MHz channel bandwidth) N N Y N N Y
802.11d 802.11d - Regulatory domain/operating class/country info Y Y Y Y Y Y
802.11e -QoS EDCA [enhanced distributed channel access] / WMM (wireless multi-media)1 Y Y Y Y Y Y
802.11i security Hostapd Support Y Y Y Y Y Y
802.11i security WPA2-PSK AES | hostapd Y Y Y Y Y Y
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Hostapd Y Y Y Y Y Y
802.11i security WPA2+WPA3 PSK Mixed Mode (WPA3 Transition Mode) | Hostapd Y Y Y Y Y Y
802.11i security Wi-Fi Enhanced Open - OWE (Opportunistic Wireless Encryption) | Hostapd Y Y Y N N Y
802.11i security 802.1x EAP Authentication Methods | Hostapd Y Y Y Y Y Y
802.11i security WPA2-Enterprise Mixed Mode1 | Hostapd N N N Y Y N
802.11i security WPA3-Enterprise (Suite-B)1 |National Security Algorithm (CSNA) | Hostapd Y N Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Hostapd Y Y Y Y Y Y
802.11i security Embedded Authenticator Y Y Y Y Y Y
802.11i security WPA2-PSK AES | Embedded Supplicant Y Y Y Y Y Y
802.11i security WPA+WPA2 PSK Mixed Mode | Embedded Supplicant N N N Y Y N
802.11i security WPA3-SAE (Simultaneous Authentication of Equals) | Embedded Supplicant Y Y Y Y Y Y
802.11i security 802.11w - PMF (Protected Management Frames) | Embedded Supplicant Y Y Y Y Y Y

continues on next page

162 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 2 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
802.11y Extended channel switch announcement (ECSA) Y Y Y Y Y Y
802.11w - protected management frames (PMF) PMF require and capable Y Y Y Y Y Y
802.11w - protected management frames (PMF) Unicast management frames -Encryption/decryption - using CCMP Y Y Y Y Y Y
802.11w - protected management frames (PMF) Broadcast management frames -encryption/decryption - using BIP Y Y Y Y Y Y
802.11w - protected management frames (PMF) SA query request/response Y Y Y Y Y Y
General features Embedded authenticator Y Y Y Y Y Y
General features Embedded MLME Y Y Y Y Y Y
General features EU adaptivity support Y Y Y Y Y Y
General features Automatic channel selection (ACS) Y Y Y Y Y Y
General features External coexistence (software interface) N N N N N N
General features Independent reset (in-band)1 Y Y Y Y Y Y
General features Network co-processor (NCP) mode2 N N N Y N N
General features Vendor specific IE (custom IE) Y Y Y Y Y Y
General features Hidden SSID (broadcast SSID disabled) Y Y Y Y Y Y
General features MAC address filter N N N Y Y N
General features Multiple external STA support Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory. [2] Read more about NCP feature in
References.

AP-STA mode

Features Sub features 88W8987IW416IW611/IW612RW610/RW612IW610AW611
Simultaneous AP-STA oper-
ation (same channel)

AP-STA func-
tionality

Y Y Y Y Y Y

SAD Software an-
tenna diver-
sity1

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature.

Parent topic:Features

Wi-Fi Generic features

Fea-
tures

Sub features 88W8987IW416 IW611/IW612RW610/RW612IW610 AW611

Generic Firmware download (paral-
lel)1

Y Y Y N N Y

Generic Secure boot N N Y Y Y Y
Generic Kconfig memory optimizer3 Y Y Y Y Y Y
Generic Firmware Compression2 N Y N N N N
Generic u-AP intra-BSS Y N Y Y Y Y
Generic Net Monitor Mode N N N Y Y N
Generic Net Monitor Mode with packet

transmission
N N N Y Y N

Generic In-Channel Net Monitor mode N N N N N N

1.7. Wireless 163



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for the
macro to enable the feature and the impact on the memory when enabling the feature. [2] The
feature is used to compress the Wi-Fi Bluetooth firmware and optimize the flashing of the host
[3] Refer to 10.

Wi-Fi direct/P2P

Features Sub features 88W89873IW4162IW611/IW6123RW610/RW6123IW6103AW6113
P2P basic func-
tionality1

P2P Auto GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GO Y Y Y Y Y Y

P2P basic func-
tionality1

P2P GC Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Persistent
Group

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Invitation Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Device Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P Provision Dis-
covery

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GO + STA

Y Y Y Y Y Y

P2P basic func-
tionality1

P2P simultaneous
GC + uAP

Y Y Y Y Y Y

Parent topic:Wi-Fi radio

[1] Feature not enabled by default in the SDK. Refer to Feature enable and memory impact for
the macro to enable the feature and the impact on the memory when enabling the feature. [2]
This is an experimental software release for this feature for IW416. [3] Contact your support
representative to use this feature for.

Bluetooth radio

164 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth classic

Feature Sub feature 88W8987IW416IW611/IW612RW610/RW612IW610AW611
General fea-
tures

Bluetooth Class 1.5 and Class 2 sup-
port

Y Y Y N N Y

General fea-
tures

Scatternet support Y Y Y N N Y

General fea-
tures

Maximum of seven simultaneous
ACL connections – Central links

Y Y Y N N Y

General fea-
tures

Automatic packet type selection Y Y Y N N Y

General fea-
tures

Bluetooth - 2.1 to 5.0 specification
support

Y Y Y N N Y

General fea-
tures

Low power sniff Y Y Y N N Y

General fea-
tures

Deep sleep using out-of-band Y Y N N N N

General fea-
tures

Wake on Bluetooth (SoC to host) Y Y Y N N Y

General fea-
tures

Independent reset (in-band)1 Y Y Y Y N Y

General fea-
tures

Independent reset (out-band)1 Y Y N N N N

General fea-
tures

Firmware download (parallel)1 Y Y N N N N

General fea-
tures

RF test mode Y Y Y N N Y

Bluetooth
packet type
supported

ACL (DM1, DH1, DM3, DH3, DM5,
DH5, 2-DH1, 2-DH3, 2-DH5, 3-DH1,
3-DH3, 3-DH5)

Y Y Y N N Y

Bluetooth
packet type
supported

SCO (HV1, HV3) Y Y Y N N Y

Bluetooth
packet type
supported

eSCO (EV3, EV4, EV5, 2EV3, 3EV3,
2EV5, 3EV5)

Y Y Y N N Y

Bluetooth
profiles sup-
ported

A2DP source/sink Y Y Y N N Y

Bluetooth
profiles sup-
ported

AVRCP target/controller Y Y Y N N Y

Bluetooth
profiles sup-
ported

HFP Dev/AG Y Y Y N N Y

Bluetooth
profiles sup-
ported

OPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

SPP server/client Y Y Y N N Y

Bluetooth
profiles sup-
ported

HID target/device Y Y Y N N Y

Bluetooth au-
dio features

PCM NBS central/peripheral Y Y Y N N Y

Bluetooth au-
dio features

PCM WBS central/peripheral Y Y Y N N Y

1.7. Wireless 165



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

Bluetooth LE
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Generic features Maximum 16 Bluetooth LE connections (central role) Y Y Y Y Y Y
Generic features Deep sleep using out-of-band Y Y N N N N
Generic features Wake on Bluetooth LE (SoC to Host) Y Y Y N N Y
Generic features RF Test mode Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE HID over GATT Y Y Y Y Y Y
Bluetooth profile support Bluetooth LE GAP Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy physical layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Low Energy link layer Y Y Y Y Y Y
Bluetooth LE 4.0 support Enhancements to HCI for Low Energy Y Y Y Y Y Y
Bluetooth LE 4.0 support Low energy direct test mode Y Y Y Y Y Y
Bluetooth 4.1 support Low duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE dual mode topology Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE privacy v1.1 Y Y Y Y Y Y
Bluetooth 4.1 support Bluetooth LE link layer topology Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE secure connection Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE link layer privacy v1.2 Y Y Y Y Y Y
Bluetooth 4.2 support Bluetooth LE data length extension Y Y Y Y Y Y
Bluetooth 4.2 support Link layer extended scanner filter policies Y Y Y Y Y Y
Bluetooth 5.0 support Bluetooth LE 2 Mbps support Y Y Y Y Y Y
Bluetooth 5.0 support High duty cycle directed advertising Y Y Y Y Y Y
Bluetooth 5.0 support Low Energy advertising extension N Y Y Y Y Y
Bluetooth 5.0 support Low Energy long range N Y Y Y Y Y
Bluetooth 5.0 support Low Energy periodic advertisement N Y Y Y Y Y
Bluetooth 5.2 support Low Energy power control N N Y Y Y Y
Bluetooth LE audio support1 2 Isochronous channel N N Y Y Y Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS source N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS sink N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIG Validation N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio: Mono and Stereo N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Broadcast LE Audio BIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS source N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS sink N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIG validation N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS synchronization N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio Phy: 1M/2M/ coded N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio framed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio unframed mode N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio sequential packing N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio: mono and stereo N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS encrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio CIS unencrypted audio N N Y N N Y
Bluetooth LE audio support1 2 Unicast LE Audio TX/RX and bidirectional traffic N N Y N N Y

continues on next page

166 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 3 – continued from previous page
Features Sub features 88W8987 IW416 IW611/IW612 RW610/RW612 IW610 AW611
Bluetooth LE audio support1 2 ISO interval for LE Audio: 7.5ms 10ms 20ms 30ms N N Y N N Y
Bluetooth LE audio support1 2 Sampling frequency for LE Audio: 8kHz 16kHz 24kHz, 32kHz, 44.1kHz, 48kHz N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Auracast use cases: Auracast streaming 2 BISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast use cases: Unicast streaming 2 CISes N N Y N N Y
Bluetooth LE audio support1 2 LE Audio Unicast Use cases: Unicast streaming 4 CISes N N Y N N Y
Bluetooth LE audio support1 2 A2DP + Auracast/Unicast Bridge use cases – CIS/BIS N N Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM Coexistence mode (shared antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) STA + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth coexistence Y Y Y N N Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth LE coexistence Y Y Y Y Y Y
BCA TDM coexistence mode (separate antenna) AP + Bluetooth + Bluetooth LE coexistence Y Y Y N N Y

Note: Details of the tested Bluetooth LE Audio use cases:

• Number of streams:

– 1-CIG | upto 4-CIS with 1 LE ACL (for 4-CIS: execute only mono UCs, SDU Int: 10ms)

– 1-CIG | upto 4-CIS with 4 separate LE ACL (for 4-CIS: SDU Size= Max 100 Oct, PHY=2M,
RTN=1, SDU Int: 10ms only) (execute only mono UCs for 4-CIS)

– 1-BIG | upto 4-BIS (for 4-BIS: execute only mono UCs, SDU Int: 10ms only)

• PHY: 2M and 1M

• Audio mode: mono (for 1 to 4 streams) and stereo (for 1 stream)

• Packing: sequential and interleaved

• Bit rate: maximum 96kbps

– For 1-CIG with upto 3-CIS: maximum bit rate 96kbps

– For 1-CIG with 4-CIS: maximum bit rate 80kbps

– For 1-BIG with 4-BIS: maximum bit rate 80kbps

– For 2-CIG cases: maximum bit rate 80kbps

• Mode: unframed mode

• 48_5 and 48_6 mono and stereo configurations are not supported.

Details of the tested Bluetooth coexistence (Bluetooth + Bluetooth LE Audio) use cases:

• Bluetooth + Bluetooth LE Audio

• A2DP + Bluetooth LE Audio bridging support

• A2DP sink link (central) -> LEA 2-CIS (SDU Int: 10ms only | A2DP only with SBC Codec |
PHY: 2M)

Parent topic:Bluetooth radio

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] LE audio feature is supported for standalone scenarios only and not for BR/EDR and Wi-Fi co-
existence scenarios such as LE audio + BR/EDR link or LE audio + Wi-Fi link. From the perspective

1.7. Wireless 167



MCUXpresso SDK Documentation, Release 25.12.00

of NXP Edgefast Bluetooth host stack, LE audio feature can be disabled by the CONFIG_BT_AUDIO
macro without impact on any other features. LE audio feature can be tested by the user, using
their own supported host stack.

Parent topic:Features

802.15.4 radio

Features Sub features IW612 IW610 RW612
General fea-
tures

Spinel over SPI Y N N

General fea-
tures

OpenThread RCP Mode implementing Thread1.3 Y N N

General fea-
tures

802.15.4-2015 MAC/PHY as required by Thread
1.3

Y Y Y

General fea-
tures

OpenThread Border Router (OTBR) v1.1 Y Y Y

General fea-
tures

Direct/indirect transmission with/without ACK Y Y Y

General fea-
tures

802.15.4 CSL parent feature implementation Y Y Y

General fea-
tures

Enhanced Frame Pending Y Y Y

General fea-
tures

Enhanced keep alive Y Y Y

General fea-
tures

Router Y Y Y

General fea-
tures

Leader Y Y Y

General fea-
tures

Router Eligible End Device (REED) Y Y Y

General fea-
tures

End Device (FED, MED) Y Y Y

Zigbee features Coordinator N N Y
Zigbee features Router N N Y
Zigbee features End Device (RX ON) N N Y
Zigbee features R23 N N Y
Zigbee features OTA Client N N Y
Zigbee features OTA server N N Y
Matter features Matter over Wi-Fi Y N N
Matter features Matter over Thread Y N Y

Parent topic:Features

Coexistence

168 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Wi-Fi and Bluetooth/802.15.4 coexistence

Features Sub features IW612IW610RW612
BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

STA + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Mobile AP + Bluetooth Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + Wi-Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth LE2

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Blue-
tooth + Bluetooth LE

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

OpenThread + Wi-Fi Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth +
OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth LE +
OpenThread + Wi-
Fi

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Bluetooth + Bluetooth
LE + OpenThread + Wi-
Fi

Y N N

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

Single antenna configu-
ration

Y Y Y

BCA_TDM separate antenna1 (lower and higher
isolation) 1x1 Wi-Fi, (Bluetooth and 802.15.4
shared)

External Coexistence
PTA

N Y Y

Parent topic:Coexistence

[1] Experimental feature intended for evaluation/early development only and not production.
Incomplete mandatory certification.

[2] The narrow-band radio can be configured to support Bluetooth LE, 802.15.4, and to time-slice
between Bluetooth LE and 802.15.4.

Parent topic:Features

Feature enable and memory impact

1.7. Wireless 169



MCUXpresso SDK Documentation, Release 25.12.00

Features Macros to enable the feature Memory
impact

CSI CONFIG_CSI Flash
- 60K,
RAM -
4K

AMI CONFIG_CSI_AMI3 Flash -
2032K,
RAM -
772K

DPP CONFIG_WPA_SUPP_DPP Flash -
240K,
RAM -
12K

Independent
reset

CONFIG_WIFI_IND_DNLDCONFIG_WIFI_IND_RESET Minimal

Parallel
firmware
download
Wi-Fi

CONFIG_WIFI_IND_DNLD Minimal

Parallel
firmware
download
Bluetooth

CONFIG_BT_IND_DNLD Minimal

WPA3 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

WPA2 enter-
prise

CONFIG_WPA_SUPP_CRYPTO_ENTERPRISE [Macros specific to
EAP-methods included] CONFIG_EAP_TLS CONFIG_EAP_PEAP
CONFIG_EAP_TTLS CONFIG_EAP_FAST CONFIG_EAP_SIM CON-
FIG_EAP_AKA CONFIG_EAP_AKA_PRIME

Flash -
165K,
RAM -
18K

Host sleep CONFIG_HOST_SLEEP Minimal
WMM CONFIG_WMM1 Flash

- 10K,
RAM -
57K

802.11mc CONFIG_11MC CONFIG_CSI CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

802.11az CONFIG_11MC CONFIG_CSI[2] CONFIG_WLS_CSI_PROC2 CON-
FIG_11AZ

Flash:
52.78KB,
RAM :
121.1KB

Non-
blocking
firmware
download
mechanism

CONFIG_FW_DNLD_ASYNC —

Antenna di-
versity

CONFIG_WLAN_CALDATA_2ANT_DIVERSITY -

P2P CONFIG_WPA_SUPP_P2P -

Note:
• For Wi-Fi, the macros are set with the value “0” by default in the file wifi_config_default.h

170 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

located in <SDK_PATH>/middleware/wifi_nxp/incl/ directory.

To enable the features, set the value of the macros to “1*” in the file wifi_config.h located
in*<SDK_Wi-Fi_Example_PATH>/ directory***.***

• Bluetooth

To enable the features, set the value of the macros to “1” in the file app_bluetooth_config.h
located in <SDK_Bluetooth_Example_PATH>/ directory.

[1] The macro is not used for IW416.

[2] Prerequisite macros for 802.11mc and 802.11az features

[3] Enable PRINTF_FLOAT_ENABLE only for MCUXpresso IDE and specifically for the RT1060-
EVKC and RT1170-EVKB platforms

• Go to project properties > C/C++ Build > Settings > Preprocessor.

• Add PRINTF_FLOAT_ENABLE=1

88W8987 release notes

Package information
• SDK version: 25.12.00

Parent topic:88W8987 release notes

Version information
• Wireless SoC: 88W8987

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

– 21 - Release version

– p153.9 - Patch number

Parent topic:88W8987 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:88W8987 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

1.7. Wireless 171



MCUXpresso SDK Documentation, Release 25.12.00

WFA certifications
• STA | 802.11n

• STA | 802.11ac

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:88W8987 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• External Access Point: ASUS AX88U

• DUT: W8987 Murata (Module: 1ZMM.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• External Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

172 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External APs: ASUS AX88U

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 52 60 63
WPA2-AES 50 51 60 62
WPA3-SAE 50 51 60 62

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 62 83 121 124
WPA2-AES 61 82 120 126
WPA3-SAE 60 82 120 126

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 52 60 64
WPA2-AES 43 52 61 64
WPA3-SAE 43 52 60 65

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 64 87 126 125
WPA2-AES 63 85 125 120
WPA3-SAE 63 80 125 123

STA mode throughput - AC Mode | 5 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 60 73 78
WPA2-AES 47 60 73 77
WPA3-SAE 47 60 73 77

STA mode throughput - AC Mode | 5 GHz Band | 40 MHz (VHT)

1.7. Wireless 173



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 68 96 161 157
WPA2-AES 69 92 160 155
WPA3-SAE 70 94 160 155

STA mode throughput - AC Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 124 119 228 235
WPA2-AES 118 107 228 204
WPA3-SAE 114 107 229 203

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple Macbook Air

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 47 48 57 60
WPA2-AES 46 49 57 60
WPA3-SAE 47 49 57 60

Mobile AP Mode Throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 66 81 107 121
WPA2-AES 65 80 107 120
WPA3-SAE 65 80 108 120

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 52 60 61
WPA2-AES 44 51 60 61
WPA3-SAE 44 51 60 61

Mobile AP Mode Throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 70 89 126 103
WPA2-AES 70 87 124 102
WPA3-SAE 70 88 125 103

174 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 60 73 76
WPA2-AES 48 59 73 76
WPA3-SAE 48 60 73 76

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 77 106 161 102
WPA2-AES 77 104 160 102
WPA3-SAE 77 104 160 111

Mobile AP Mode Throughput - AC Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 127 141 227 217
WPA2-AES 124 127 227 198
WPA3-SAE 125 127 227 173

Parent topic:Wi-Fi throughput

Parent topic:88W8987 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:88W8987 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Com-
po-
nent

Description

Wi-
Fi

WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E mode-
Associated event is received even when connecting using wrong password WFA APUT
Low iperf TCP/UDP Tx throughput with Realtek station

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless 175



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6

Compo-
nent

Description

Wi-Fi In wrong password scenario, After updating new password the phone is not able
to connect with DUTAP

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p142.5

Compo-
nent

Description

Wi-Fi Fails to encrypt and decrypt data with ccmp 128 and 256 using CLI crypto com-
mands.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2

Component Description
Wi-Fi DUTSTA does not associate to hidden SSID beaconing in DFS channel.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

176 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7

Compo-
nent

Description

Wi-Fi Getting low TCP/UDP TP in DUT-AP 11ac-vht80 mode after hard-reset or wlan-
reset.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Component Description
Wi-Fi Added P2P Persistance and P2P Invitation

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:88W8987 release notes

Known issues
Component Description
NA

Parent topic:88W8987 release notes

IW416 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW416 release notes

Version information
• Wireless SoC: IW416

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 16.92.21.p153.9

– 16 - Major revision

– 92 - Feature pack

1.7. Wireless 177



MCUXpresso SDK Documentation, Release 25.12.00

– 21 - Release version

– p153.9 - Patch number

Parent topic:IW416 release notes

Host platform
• All i.MX RT platforms running FreeRTOS.

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 Support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW416 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | QTT

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW416 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW416 Murata (Module: 1XK M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

178 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version: gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 47 59 59
WPA2-AES 39 43 58 55
WPA3-SAE 39 45 57 53

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 72 59 95 87
WPA2-AES 69 58 116 92
WPA3-SAE 57 58 115 91

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 43 48 59 59
WPA2-AES 42 48 56 60
WPA3-SAE 42 47 57 58

1.7. Wireless 179



MCUXpresso SDK Documentation, Release 25.12.00

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 68 64 118 96
WPA2-AES 65 59 117 96
WPA3-SAE 69 59 118 96

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 41 45 52 54
WPA2-AES 42 45 53 53
WPA3-SAE 45 42 53 53

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 62 70 123 90
WPA2-AES 61 65 117 90
WPA3-SAE 61 65 118 87

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 44 45 58 57
WPA2-AES 42 45 55 56
WPA3-SAE 43 45 57 56

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 75 85 118 100
WPA2-AES 77 68 118 100
WPA3-SAE 77 69 118 100

Parent topic:Wi-Fi throughput

Parent topic:IW416 release notes

180 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW416 release notes

Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p64.1 to 16.91.21.p82

Compo-
nent

Description

Wi-Fi WPA3-R3 enabled APUT beacons does not have RSNXE when configured in H2E
mode

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p91.6 to 16.91.21.p124

Compo-
nent

Description

Wi-Fi Cloud keep alive packets not seen after DUT enters host sleep. DUT is sending QOS
null packets even in host sleep

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p124 to 16.91.21.p133
Component Description
Wi-Fi NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p133 to 16.91.21.p133.2

Com-
ponent

Description

Wi-Fi DUT STA getting rebooted after 15~20 iterations of 11R-Command based roam-
ing0xa4 command timeout after several hours of stress test

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless 181



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5

Component Description
Wi-Fi DUT fails to reconnect after the configured auto-reconnect time interval.
Coex During HFP call, TX side noise is observed with coex CLI

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7

Com-
ponent

Description

Wi-Fi Samsung S24 Ultra and Google Pixel 7 mobiles having Android 14 are not able con-
nect to the DUTAP with WPA3 SAE security.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5

Com-
ponent

Description

Wi-Fi The DUT encounters a command response timeout during the execution of the wlan-
info command following UDP traffic tests.

Wi-Fi Random hang issue seen when using wlan-p2p-find/stop in succession

Parent topic:Bug fixes and/or feature enhancements

Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6

Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW416 release notes

Known issues

Compo-
nent

Description

Coex Wi-Fi connection in 2.4GHz is not stable, observed deauthentication within
10sec.

Parent topic:IW416 release notes

182 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

IW611/IW612 release notes Note: The IW611/IW612 support is enabled in i.MX RT1170 EVKB
and i.MX RT1060 EVKC.

Package information
• SDK version: 25.12.00

Parent topic:IW611/IW612 release notes

Version information
• Wireless SoC: IW611/IW612

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.3.p27.10

– 18 - Major revision

– 99 - Feature pack

– 3 - Release version

– p27.10 - Patch number

Parent topic:IW611/IW612 release notes

Host platform
• i.MX RT1170 EVKB and i.MX RT1060 EVKC Platforms running FreeRTOS

• Host interfaces

– Wi-Fi over SDIO (SDIO 2.0 support, SDIO clock frequency: 50 MHz)

– Bluetooth/Bluetooth LE over UART

– 802.15.4 over SPI (IW612 only)

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW611/IW612 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

1.7. Wireless 183



MCUXpresso SDK Documentation, Release 25.12.00

Refer to 6.

Note: This release supports STAUT only certifications.

Parent topic:Wi-Fi and Bluetooth certification

Bluetooth controller certification QDID: refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW611/IW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW612 Murata (Module: 2EL M.2) with EVK-MIMXRT1060 EVKC platform

• DUT Power Source: External power supply

• Client: Apple MacBook Air

• Channel: 6 | 36

• Wi-Fi application: wifi_wpa_supplicant

• Compiler used to build application: armgcc

• Compiler Version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 2

The throughput numbers are captured with default configurations using wifi_wpa_supplicant
sample application.

Parent topic:Wi-Fi throughput

184 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

iPerf host configurationand impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
To get the highest throughput, the throughput values shown in STA throughput and Mobile
AP throughput are measured with the maximum values of the default host configuration
macros. STA and AP throughput captured with the minimum values of the host configuration
macros shows the throughput numbers obtained when using the minimum values of the host
configuration macros. The macro values are defined in lwipopts.h file.

The table below lists the minimum and maximum values of the host configuration macros.

Values of the host configuration macros

Parameter Maximum value Minimum value
TCPIP_MBOX_SIZE 96 32
DEFAULT_RAW_RECVMBOX_SIZE 32 12
DEFAULT_UDP_RECVMBOX_SIZE 64 12
DEFAULT_TCP_RECVMBOX_SIZE 64 12
TCP_MSS 1460 536
TCP_SND_BUF 24 * TCP_MSS 2 * TCP_MSS
MEM_SIZE 319160 41,080
TCP_WND 15 * TCP_MSS 10 * TCP_MSS
MEMP_NUM_PBUF 20 10
MEMP_NUM_TCP_SEG 96 12
MEMP_NUM_TCPIP_MSG_INPKT 80 16
MEMP_NUM_TCPIP_MSG_API 80 8
MEMP_NUM_NETBUF 32 16

STA and AP throughput captured with the minimum values of the host configuration
macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
STA mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 7 18 111 124
WPA2-AES 7 18 110 124
WPA3-SAE 6 18 110 124

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open Security 2 19 93 127
WPA2-AES 2 19 105 126
WPA3-SAE 2 19 104 132

Parent topic:iPerf host configuration and impact on throughput

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

1.7. Wireless 185



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 52 51 64 63
WPA2-AES 51 50 62 62
WPA3-SAE 51 50 63 61

STA mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 79 85 118 131
WPA2-AES 78 84 118 129
WPA3-SAE 78 83 118 130

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 50 52 63 64
WPA2-AES 49 51 63 63
WPA3-SAE 49 51 63 63

STA mode throughput - AN Mode | 5 GHz Band | 40 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 77 86 118 133
WPA2-AES 76 86 118 132
WPA3-SAE 79 86 118 132

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 56 59 76 76
WPA2-AES 56 59 74 75
WPA3-SAE 56 59 76 75

STA mode throughput - VHT Mode | 2.4 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 74 92 162 170
WPA2-AES 74 90 160 169
WPA3-SAE 71 91 161 171

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz (VHT)

186 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 57 76 78
WPA2-AES 42 57 75 77
WPA3-SAE 43 57 75 77

STA mode throughput - VHT Mode | 5 GHz Band | 40 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 88 95 118 177
WPA2-AES 87 94 118 175
WPA3-SAE 91 94 118 175

STA mode throughput - VHT Mode | 5 GHz Band | 80 MHz (VHT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 121 102 118 200
WPA2-AES 121 103 118 200
WPA3-SAE 121 103 118 200

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 78 64 117 105
WPA2-AES 78 67 117 104
WPA3-SAE 79 65 117 97

STA mode throughput - HE Mode | 2.4 GHz Band | 40 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 95 91 118 199
WPA2-AES 93 90 118 200
WPA3-SAE 91 87 118 199

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 76 66 118 127
WPA2-AES 75 68 118 125
WPA3-SAE 75 68 118 126

STA mode throughput - HE Mode | 5 GHz Band | 40 MHz (HE)

1.7. Wireless 187



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 105 69 118 200
WPA2-AES 104 70 118 200
WPA3-SAE 104 70 118 200

STA mode throughput - HE Mode | 5 GHz Band | 80 MHz (HE)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 125 73 118 200
WPA2-AES 123 76 118 200
WPA3-SAE 123 76 118 200

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 54 61 60
WPA2-AES 50 55 61 60
WPA3-SAE 51 54 61 60

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 85 107 118 124
WPA2-AES 86 101 118 126
WPA3-SAE 84 102 118 126

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 51 43 63 60
WPA2-AES 50 43 62 60
WPA3-SAE 50 43 63 60

Mobile AP mode throughput - AN Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 89 115 118 128
WPA2-AES 88 110 118 128
WPA3-SAE 88 115 118 128

188 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 58 66 76 72
WPA2-AES 58 65 75 72
WPA3-SAE 58 65 75 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 103 141 135 168
WPA2-AES 102 134 137 167
WPA3-SAE 102 134 139 167

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 137 180 182 218
WPA2-AES 130 174 181 218
WPA3-SAE 136 175 182 218

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 53 66 85 120
WPA2-AES 52 65 83 116
WPA3-SAE 52 65 83 118

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 40 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 86 100 133 132
WPA2-AES 83 100 135 134
WPA3-SAE 86 100 136 134

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 65 82 83
WPA2-AES 58 65 82 82
WPA3-SAE 58 65 81 81

Mobile AP mode throughput - HE Mode | 5 GHz Band | 40 MHz

1.7. Wireless 189



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 104 141 151 170
WPA2-AES 102 137 151 170
WPA3-SAE 103 136 150 170

Mobile AP mode throughput - HE Mode | 5 GHz Band | 80 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 138 180 189 219
WPA2-AES 135 175 190 218
WPA3-SAE 135 175 192 218

Parent topic:Wi-Fi throughput

Parent topic:IW611/IW612 release notes

EU conformance tests
• EU Adaptivity test - EN 300 328 v2.1.1 (for 2.4 GHz)

• EU Adaptivity test - EN 301 893 v2.1.1 (for 5 GHz)

Parent topic:IW611/IW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p49.9 to 18.99.2.p155

Com-
po-
nent

Description

Blue-
tooth

Audio lost occurs due to periodic adv sync lost, during 2 BIS 44.1kHz unencrypted
streams with 1M PHY configuration.BIS sync loss may occur in long audio streaming
sessions.

Parent topic:Bug fixes and/or feature enhancements

190 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.2.p155 to 18.99.2.p66.30

Com-
po-
nent

Description

Wi-
Fi

802.11R Fast BSS roaming works only with hostapd and does not work with standard
APs (supporting 11R)

Blue-
tooth

DUT is not able to sustain a connection with the remote device that does extended ad-
vertisement with coded PHY configuration. When 2 CIS streams are active, after the first
device disconnects followed by the second device disconnecting, the second peripheral
device hangs.Audio Play/Pause does not work in BIS case.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5

Com-
po-
nent

Description

Wi-
Fi

STAUT not sending Neighbor Advertisement packet after receiving Neighbor Solicitation
packet from Ex-AP.Antenna selection time exceeds configured evaluation time

Blue-
tooth

When DUT works as CIS source and CIS Offset is 612us, high packet drops observed
which affects the audio streaming.For BIS Source Use Cases, Periodic Interval and ISO
Interval should be multiple of each other value.In 1-CIS and 2-CIS, Continuous Audio
Glitches are observed with 96 kbps bit rate.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9

Com-
po-
nent

Description

Wi-
Fi

After performing independent reset (out-of-band mode), the STAUT fails to connect to
the external AP via wlan-connect command, observed command timeout 0x107 error.

Blue-
tooth

Audio glitches observed with Google Pixel 7 Pro streaming audio after CIS is established
with DUT.During Call Gateway (CG) / Call Terminal (CT) Use Case, the firmware peri-
odically sends NULL PDU, which results in frequent Audio Glitch on both CG and CT
sides.Heavy audio glitches observed with CIS SRC Google Pixel 7 ProContinuous audio
glitches observed in 1 CIS and 2 CIS for 48_3 and 48_4 config.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154

Compo-
nent

Description

Wi-Fi STAUT fail to ping AP backend machine when connected with DFS channel and
DUTSTA went in bad state.

Blue-
tooth

CIS Sink frequently fails to acknowledge CIS Source TX PDU.

1.7. Wireless 191



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
Component Description
- NA

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11

Component Description
Bluetooth Packet lost observed in CIS case, which causes audio noise.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10

Com-
ponent

Description

Wi-Fi During legacy roaming when the “Link Lost” observed the DUTSTA fails to roam
Wi-Fi During the automated testing of the channel performance, a system hang can occur,

with the error message “.sdio_drv_write failed”.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW611/IW612 release notes

Known issues

Com-
po-
nent

Description

Blue-
tooth

Sequential Removal of CIS Handles as per current Controller implementation i.e CIS Dis-
connection sequence should be in sequence => CIS - 4,3,2,1While 4-CIS streaming, audio
glitches observed on all CIS SINK with Samsung Galaxy budsWhile 4-CIS streaming, dis-
connection with connection timeout observed on first CIS SINK with Samsung Galaxy
budsOnly two streams (CIS/BIS) with one channel is supported.

Parent topic:IW611/IW612 release notes

RW610/RW612 release notes

192 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Package information
• SDK version: 25.12.00

Parent topic:RW610/RW612 release notes

Version information
• Wi-Fi firmware version: 18.99.6.p50

– rw61x_sb_wifi_a2.bin for A2

– 18 - Major revision

– 99 - Feature pack

– 6 - Release version

– p50 - Patch number

• Bluetooth LE firmware version: 18.25.6.p50

– rw61x_sb_ble_a2.bin for A2

– 18 - Major revision

– 25 - Feature pack

– 6 - Release version

– p50 - Patch number

• 802.15.4 and Bluetooth LE (up to core 4.1) firmware version: 18.34.6.p50

– rw61x_sb_ble_15d4_combo_a2.bin for A2

– 18 - Major revision

– 34 - Feature pack

– 6 - Release version

– p50 - Patch number

Parent topic:RW610/RW612 release notes

Host platform
• RW610/RW612 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:RW610/RW612 release notes

Wireless certification The Wi-Fi and Bluetooth certification is obtained with the following
combinations.

WFA certifications
• STA | 802.11n

• STA | PMF

• STA | FFD

• STA | SVD

1.7. Wireless 193



MCUXpresso SDK Documentation, Release 25.12.00

• STA | WPA3 SAE (R3)

• STA | 802.11ac

• STA | 802.11ax

• STA | QTT

Refer to 1.

Note: This release supports STAUT only certifications.

Parent topic:Wireless certification

Bluetooth LE controller certification QDID: Refer to 4.

Parent topic:Wireless certification

Thread Thread group: refer to 7.

Product Name: NXP RW612 Wireless MCU with Integrated Tri-Radio

Thread version: V1.3.0

CID #: 13A109

Parent topic:Wireless certification

Matter RW612 certification: refer to 8.

Certificate ID: CSA23C36MAT41746-24

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi

RW610 certification: refer to 9.

Certificate ID: CSA23C43MAT41753-50

Device type: Root Node, Thermostat

Transport: Matter over Wi-Fi and Matter over Thread

Parent topic:Wireless certification

Parent topic:RW610/RW612 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: RW610/RW612

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

194 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 38 62 62
WPA2-AES 37 37 61 63
WPA3-SAE 37 37 60 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 64 64
WPA2-AES 37 38 62 64
WPA3-SAE 39 38 62 64

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 41 75 74
WPA2-AES 41 41 73 74
WPA3-SAE 40 41 72 73

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

1.7. Wireless 195



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 42 76 76
WPA2-AES 42 41 75 75
WPA3-SAE 42 41 75 74

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 45 97 99
WPA2-AES 43 44 96 98
WPA3-SAE 42 44 97 98

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 47 47 100 103
WPA2-AES 45 46 100 101
WPA3-SAE 47 46 100 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 39 39 62 62
WPA2-AES 39 39 61 61
WPA3-SAE 38 39 61 61

Mobile AP throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 40 40 63 63
WPA2-AES 39 39 62 61
WPA3-SAE 39 39 62 61

Mobile AP throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 43 43 73 73
WPA2-AES 43 42 72 72
WPA3-SAE 43 42 73 72

196 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 44 44 74 74
WPA2-AES 43 43 74 74
WPA3-SAE 43 43 74 74

Mobile AP throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 48 48 95 96
WPA2-AES 47 47 98 95
WPA3-SAE 47 47 97 95

Mobile AP throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 49 49 96 97
WPA2-AES 48 48 101 97
WPA3-SAE 48 48 101 97

Parent topic:Wi-Fi throughput

Parent topic:RW610/RW612 release notes

Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p34 to 18.99.6.p40

Com-
ponent

Description

Zigbee Zigbee Coordinator and Router are disconnected during BLE connection pairing and
bonding with a mobile app for the first time.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.6.p40 to 18.99.6.p46

Compo-
nent

Description

Wi-Fi Fails to establish a persistent connection when the device attempts to reinvoke the
second stored Persistent Group

Blue-
tooth

NCP cannot work after flash uart bins for both host and device side

Parent topic:Bug fixes and/or feature enhancements

1.7. Wireless 197



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.6.p46 to 18.99.6.p47
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:RW610/RW612 release notes

Known issues
Component Description
Wi-Fi —
Bluetooth LE —
Zigbee -
Coex -

Parent topic:RW610/RW612 release notes

IW610 release notes

Package information
• SDK version: 25.12.00

Parent topic:IW610 release notes

Version information
• Wireless SoC: IW610

• Wi-Fi and Bluetooth/Bluetooth LE firmware version: 18.99.5.p86

– 18 - Major revision

– 99 - Feature pack

– 5 - Release version

– p86 - Patch number

Parent topic:IW610 release notes

Host platform
• IW610 platform running FreeRTOS

• Test tools

– iPerf (version 2.1.9)

Parent topic:IW610 release notes

Wi-Fi and Bluetooth certification The Wi-Fi and Bluetooth certification is obtained with the
following combinations.

198 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Bluetooth controller certification QDID: Refer to 4.

Note: QDID upgrade to Bluetooth Core Specification Version 5.4 is in progress.

Parent topic:Wi-Fi and Bluetooth certification

Parent topic:IW610 release notes

Wi-Fi throughput

Throughput test setup
• Environment: Shield Room - Over the Air

• Access Point: Asus AX88u

• DUT: IW610

• External Client: Intel AX210

• Channel: 6 | 36

• Wi-Fi application: wifi_cli

• Compiler used to build application: armgcc

• Compiler version gcc-arm-none-eabi-13.2

• iPerf commands used in test:

TCP TX

iperf -c <remote_ip> -t 60

TCP RX

iperf -s

UDP TX

iperf -c <remote_ip> -t 60 -u -B <local_ip> -b 120

Note: The default rate is 100 Mbps.

UDP RX

iperf -s -u -B <local_ip>

Note: Read more about the throughput test setup and topology in 3.

Parent topic:Wi-Fi throughput

STA throughput External AP: Asus AX88u

STA mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 37 37 60 62
WPA2-AES 36 37 59 61
WPA3-SAE 36 37 59 61

STA mode throughput - AN Mode | 5 GHz Band | 20 MHz

1.7. Wireless 199



MCUXpresso SDK Documentation, Release 25.12.00

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 35 40 64 65
WPA2-AES 34 39 62 64
WPA3-SAE 35 39 77 76

STA mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz (HT)

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 41 40 72 72
WPA2-AES 40 40 72 72
WPA3-SAE 40 40 72 71

STA mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 38 42 77 76
WPA2-AES 37 41 75 75
WPA3-SAE 37 40 75 75

STA mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 45 44 93 96
WPA2-AES 43 43 93 95
WPA3-SAE 44 43 93 96

STA mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
OpenSecurity 42 46 94 100
WPA2-AES 42 45 94 101
WPA3-SAE 41 45 94 101

Parent topic:Wi-Fi throughput

Mobile AP throughput External client: Apple MacBook Air

Mobile AP mode throughput - BGN Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 48 44 61 61
WPA2-AES 47 43 59 59
WPA3-SAE 47 43 59 59

200 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Mobile AP mode throughput - AN Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 49 46 64 63
WPA2-AES 48 45 62 61
WPA3-SAE 48 45 62 61

Mobile AP mode throughput - VHT Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 50 73 73
WPA2-AES 53 49 73 72
WPA3-SAE 52 49 73 72

Mobile AP mode throughput - VHT Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 54 51 71 70
WPA2-AES 53 50 71 70
WPA3-SAE 52 50 71 70

Mobile AP mode throughput - HE Mode | 2.4 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 59 56 93 90
WPA2-AES 57 53 94 84
WPA3-SAE 57 53 94 84

Mobile AP mode throughput - HE Mode | 5 GHz Band | 20 MHz

Protocol TCP (Mbit/s) TCP (Mbit/s) UDP (Mbit/s) UDP (Mbit/s)
Direction TX RX TX RX
Open security 61 58 96 91
WPA2-AES 59 56 98 85
WPA3-SAE 59 55 98 85

Parent topic:Wi-Fi throughput

Parent topic:IW610 release notes

Bug fixes and/or feature enhancements

1.7. Wireless 201



MCUXpresso SDK Documentation, Release 25.12.00

Firmware version: 18.99.5.p66 to 18.99.5.p76

Compo-
nent

Description

Wi-Fi The P2P client connection fails when an attempt is made to connect after the P2P
Group Owner (P2P-GO) has been stopped.

Parent topic:Bug fixes and/or feature enhancements

Firmware version: 18.99.5.p76 to 18.99.5.p79
Component Description
Wi-Fi Enabled mbedtls 3.x

Parent topic:Bug fixes and/or feature enhancements

Parent topic:IW610 release notes

Known issues
Component Description
NA

Parent topic:IW610 release notes

Abbreviations
Abbreviation Definition
A2DP Advanced audio distribution profile
AMPDU Aggregated MAC protocol data unit
AMSDU Aggregated MAC service data unit
AP Access point
BW Bandwidth
CCMP Counter mode CBC-MAC protocol
CSI Channel state information
CTS Clear To Send
DL Down link
EDCA Enhanced distributed channel access
ER Extended range
ERP Extended rate physical
GATT Generic attribute profile
HFP Hands free profile
HID Human interface device
HT High throughput
LDPC Low density parity check
MCS Modulation and coding scheme
MLME Mac layer management entity
OMI Operating mode indication
PMF Protected management frames
RTS Request to send
SAE Simultaneous authentication of equals
STA Station

continues on next page

202 Chapter 1. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Table 4 – continued from previous page
Abbreviation Definition
TWT Target wake time
UL Up link
VHT Very high throughput
WEP Wired equivalent private
WFD Wi-Fi direct
WMM Wireless multi-media
WPA Wi-Fi protected access
WPS Wi-Fi protected setup
WSC Wi-Fi Simple Configuration

References
1. Application note - AN13681 – Wi-Fi Alliance (WFA) Derivative Certification Process (avail-

able in the SDK package)

2. User manual – UM11442 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for i.MX
RT Platforms (available in the SDK package)

3. User manual – UM11799 - NXP Wi-Fi and Bluetooth Demo Applications User Guide for
RW61x (available in the SDK package)

4. Certification – Bluetooth controller - QDID (link)

5. User manual - UM12133 - NXP NCP Application Guide for RW612 with MCU Host

6. Technical note - TN00066 – Wi-Fi Alliance (WFA) Derivative Certification Process (available
in the SDK package)

7. Web page – Thread certified products (link)

8. Web page – Connectivity standard alliance (csa) – NXP RW612 Tri-Radio Wireless MCU De-
velopment Platform (link)

9. Web page – Connectivity standard alliance (csa) – NXP RW610 Wireless MCU Development
Platform (link)

10. Application note - AN14634 – Kconfig Memory Optimizer (link)

1.7. Wireless 203

https:/launchstudio.bluetooth.com/ListingDetails/115533
https://www.threadgroup.org/What-is-Thread/Thread-Benefits
https://csa-iot.org/csa_product/nxp-rw612-tri-radio-wireless-mcu-development-platform
https://csa-iot.org/csa_product/nxp-rw610-wireless-mcu-development-platform/
https://docs.nxp.com/bundle/AN14634/page/topics/about_this_document.html


MCUXpresso SDK Documentation, Release 25.12.00

204 Chapter 1. Middleware



Chapter 2

RTOS

2.1 FreeRTOS

2.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

2.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

2.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

2.1.4 corehttp

C language HTTP client library designed for embedded platforms.

2.1.5 corejson

JSON parser.

205



MCUXpresso SDK Documentation, Release 25.12.00

Readme

2.1.6 coremqtt

MQTT publish/subscribe messaging library.

2.1.7 corepkcs11

PKCS #11 key management library.

Readme

2.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

206 Chapter 2. RTOS


	Middleware
	Boot
	MCUXpresso SDK : mcuxsdk-middleware-mcuboot_opensource
	Overview
	Documentation
	Setup
	Contribution
	NXP Fork

	MCUboot
	MCUboot How-tos
	Roadmap
	Source files
	Joining the project


	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions



	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]



	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications


	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types


	Document references
	Links
	Documents
	Revision history



	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.12.00]
	[25.09.00]
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	[v5.3.0]
	Added
	Fixed
	v5.2.1
	Added
	Changed
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	[v5.0.2]
	Added
	v5.0.1
	Added
	Changed
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	Added
	Fixed
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added




	Multimedia
	Xtensa Audio Framework (XAF)
	Xtensa Audio Framework (XAF) Examples
	Overview
	Availability Note
	Included Examples
	XAF Playback Example
	XAF Record Example
	XAF USB Example


	XAF Playback Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Example Configuration
	Running the Demo
	MIMXRT685-AUD-EVK Multi-channel Support:

	Known Issues

	XAF Record Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Example Configuration
	Running the Demo
	Running on CM33
	Running on DSP

	Known Issues

	XAF USB Example
	Table of Content
	Overview
	Functionality
	Hardware Requirements
	Hardware Modifications
	Preparation
	Running the Demo
	Running on CM33
	Running the demo DSP

	Known Issues



	Wireless
	NXP Wireless Framework and Stacks
	Wi-Fi, Bluetooth, 802.15.4
	Application notes
	User manuals
	Release notes
	Wireless SoC features and release notes for FreeRTOS
	About this document
	Supported products
	Features
	Wi-Fi radio
	Client mode
	AP mode
	AP-STA mode
	Wi-Fi Generic features
	Wi-Fi direct/P2P
	Bluetooth radio
	Bluetooth classic
	Bluetooth LE
	802.15.4 radio
	Coexistence
	Wi-Fi and Bluetooth/802.15.4 coexistence
	Feature enable and memory impact
	88W8987 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.2
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.91.21.p149.2 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW416 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: From 16.91.21.p64.1 to 16.91.21.p82
	Firmware version: From 16.91.21.p82 to 16.91.21.p91.6
	Firmware version: From 16.91.21.p91.6 to 16.91.21.p124
	Firmware version: From 16.91.21.p124 to 16.91.21.p133
	Firmware version: From 16.91.21.p133 to 16.91.21.p133.2
	Firmware version: From 16.91.21.p133.2 to 16.91.21.p142.5
	Firmware version: From 16.91.21.p142.5 to 16.91.21.p149.4
	Firmware version: From 16.91.21.p149.4 to 16.92.21.p151.7
	Firmware version: From 16.92.21.p151.7 to 16.92.21.p153.5
	Firmware version: From 16.92.21.p153.5 to 16.92.21.p153.6
	Known issues
	IW611/IW612 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	WFA certifications
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	iPerf host configuration and impact on throughput {#iperf_host_configuration_and_impact_on_throughput}
	STA and AP throughput captured with the minimum values of the host configuration macros {#sta_and_ap_throughput_captured_with_the_minimum_values_of_the_host_configuration_macros}
	STA throughput
	Mobile AP throughput
	EU conformance tests
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.2.p7.19
	Firmware version: 18.99.2.p7.19 to 18.99.2.p49.9
	Firmware version: 18.99.2.p49.9 to 18.99.2.p155
	Firmware version: 18.99.2.p155 to 18.99.2.p66.30
	Firmware version: 18.99.2.p66.30 to 18.99.3.p10.5
	Firmware version: 18.99.3.p10.5 to 18.99.3.p17.9
	Firmware version: 18.99.3.p17.9 to 18.99.3.p21.154
	Firmware version: 18.99.3.p21.154 to 18.99.3.p23.16
	Firmware version: 18.99.3.p23.16 to 18.99.3.p25.11
	Firmware version: 18.99.3.p25.11 to 18.99.3.p26.10
	Firmware version: 18.99.3.p26.10 to 18.99.3.p27.1
	Known issues
	RW610/RW612 release notes
	Package information
	Version information
	Host platform
	Wireless certification
	WFA certifications
	Bluetooth LE controller certification
	Thread
	Matter
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.6.p34 to 18.99.6.p40
	Firmware version: 18.99.6.p40 to 18.99.6.p46
	Firmware version: 18.99.6.p46 to 18.99.6.p47
	Known issues
	IW610 release notes
	Package information
	Version information
	Host platform
	Wi-Fi and Bluetooth certification
	Bluetooth controller certification
	Wi-Fi throughput
	Throughput test setup
	STA throughput
	Mobile AP throughput
	Bug fixes and/or feature enhancements
	Firmware version: 18.99.5.p66 to 18.99.5.p76
	Firmware version: 18.99.5.p76 to 18.99.5.p79
	Known issues
	Abbreviations
	References





	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme




