
MCUXpresso SDK Documentation
Release 25.12.00

NXP
Dec 18, 2025

Table of contents

1 FRDM-MCXC041 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with MCUXpresso SDK Package 3
1.3 Getting Started with MCUXpresso SDK GitHub . 58

1.3.1 Getting Started with MCUXpresso SDK Repository 58
1.4 Release Notes . 65

1.4.1 MCUXpresso SDK Release Notes . 65
1.5 ChangeLog . 68

1.5.1 MCUXpresso SDK Changelog . 68
1.6 Driver API Reference Manual . 100
1.7 Middleware Documentation . 100

1.7.1 FreeMASTER . 100
1.7.2 FreeRTOS . 100
1.7.3 File systemFatfs . 100

2 MCXC041 101
2.1 ADC16: 16-bit SAR Analog-to-Digital Converter Driver 101
2.2 Clock Driver . 110
2.3 CMP: Analog Comparator Driver . 119
2.4 COP: Watchdog Driver . 124
2.5 FGPIO Driver . 126
2.6 C90TFS Flash Driver . 128
2.7 ftfx adapter . 128
2.8 Ftftx CACHE Driver . 128
2.9 ftfx controller . 130
2.10 ftfx feature . 147
2.11 Ftftx FLASH Driver . 147
2.12 Ftftx FLEXNVM Driver . 161
2.13 ftfx utilities . 172
2.14 GPIO: General-Purpose Input/Output Driver . 172
2.15 GPIO Driver . 174
2.16 I2C: Inter-Integrated Circuit Driver . 176
2.17 I2C Driver . 176
2.18 Common Driver . 190
2.19 LLWU: Low-Leakage Wakeup Unit Driver . 203
2.20 LPTMR: Low-Power Timer . 207
2.21 LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver 212
2.22 LPUART Driver . 212
2.23 MCM: Miscellaneous Control Module . 231
2.24 PMC: Power Management Controller . 236
2.25 PORT: Port Control and Interrupts . 241
2.26 RCM: Reset Control Module Driver . 249
2.27 RTC: Real Time Clock . 254
2.28 SIM: System Integration Module Driver . 262
2.29 SMC: System Mode Controller Driver . 263

i

2.30 SPI: Serial Peripheral Interface Driver . 269
2.31 SPI Driver . 269
2.32 TPM: Timer PWM Module . 282
2.33 VREF: Voltage Reference Driver . 298

3 Middleware 303
3.1 File System . 303

3.1.1 FatFs . 303
3.2 Motor Control . 305

3.2.1 FreeMASTER . 305

4 RTOS 343
4.1 FreeRTOS . 343

4.1.1 FreeRTOS kernel . 343
4.1.2 FreeRTOS drivers . 343
4.1.3 backoffalgorithm . 343
4.1.4 corehttp . 343
4.1.5 corejson . 343
4.1.6 coremqtt . 344
4.1.7 corepkcs11 . 344
4.1.8 freertos-plus-tcp . 344

ii

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the frdmmcxc041 board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

FRDM-MCXC041

1.1 Overview

The FRDM-MCXC041 is supported by a range of NXP and third-party development software.

MCU device and part on board is shown below:

• Device: MCXC041

• PartNumber: MCXC041VFK

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Starting with version 25.09.00, MCUXpresso SDK introduced two package versions for
offline development:

• Classic SDK Package: Traditional board-specific packages with pre-configured IDE
projects for MCUXpresso IDE, IAR, Keil, and other toolchains.

• Repository-Layout SDK Package: Board-specific packages that maintain the same
structure and build system as the GitHub Repository SDK, providing offline access to
the repository SDK development experience. Available when selecting the ARMGCC
toolchain.

From version 25.12.00 onward:
• When you select ARMGCC, the SDK download will use the Repository-Layout version.

• For all other toolchains, the SDK download will remain in the Classic version.

Note: The Repository-Layout SDK package was first introduced in version 25.09.00, but initially
only for MCXW23x platforms.

3

MCUXpresso SDK Documentation, Release 25.12.00

Classic SDK Package

Overview The NXP MCUXpresso software and tools offer comprehensive development solu-
tions designed to optimize, ease, and help accelerate embedded system development of applica-
tions based on general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUX-
presso SDK includes a flexible set of peripheral drivers designed to speed up and simplify de-
velopment of embedded applications. Along with the peripheral drivers, the MCUXpresso SDK
provides an extensive and rich set of example applications covering everything from basic pe-
ripheral use case examples to full demo applications. The MCUXpresso SDK contains optional
RTOS integrations such as FreeRTOS and Azure RTOS, and various other middleware to support
rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

MCUXpresso SDK board support package folders MCUXpresso SDK board support package
provides example applications for NXP development and evaluation boards for Arm Cortex-M
cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are
found inside the top-level boards folder and each supported board has its own folder (an MCUX-
presso SDK package can support multiple boards). Within each <board_name> folder, there are
various subfolders to classify the type of examples it contains. These include (but are not limited
to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

• emwin_examples: Applications that use the emWin GUI widgets.

• rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

4 Chapter 1. FRDM-MCXC041

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world application folder you see the following contents:

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.12.00

rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE Note: Ensure that the MCUXpresso IDE toolchain is in-
cluded when generating the MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is
used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK example(s)….

3. Expand the demo_apps folder and select hello_world.

6 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

4. Click Next.

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_basic, adc_burst,
adc_dma, and adc_interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

1.2. Getting Started with MCUXpresso SDK Package 7

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.12.00

2. No parity

3. 8 data bits

4. 1 stop bit

4. On the Quickstart Panel, click Debug to launch the debug session.

5. The first time you debug a project, theDebugEmulator Selectiondialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

8 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

6. The application is downloaded to the target and automatically runs to main().

7. Start the application by clicking Resume.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.12.00

Build amulticore example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)… on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114J256. Then, select lpcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cm0plus counterpart
project is automatically imported with the cm4 project, because the multicore examples are
linked together and there is no need to select it explicitly. Click Finish.

10 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the lpcxpresso54114_multicore_examples_hello_world_cm4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cm0plus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.12.00

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See the following figures
as reference.

12 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.12.00

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cm0plus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cm0plus’ [Debug]” to launch the second debug

14 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

session.

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.12.00

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_world multicore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of the main() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

16 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.

1.2. Getting Started with MCUXpresso SDK Package 17

MCUXpresso SDK Documentation, Release 25.12.00

18 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_world example application targeted for the MIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)… on the Quickstart Panel. In the
window that appears, expand theMIMXRT500 folder and selectMIMXRT595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.12.00

3. Now, two projects should be imported into the workspace. To start building the TrustZone
application, highlight the evkmimxrt595_hello_world_s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrow next to the hammer icon, as shown in following figure.
For this example, select the Debug target.

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-
cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitive menu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

20 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>_hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.12.00

Now, the TrustZone sessions should be opened. Click Resume. The hello_world TrustZone appli-
cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR This section describes the steps required to build, run, and
debug example applications provided in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and
the IAR toolchain should correspond to the latest supported version, as described in the MCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

22 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

3. To build the demo application, click Make, highlighted in red in following figure.

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.12.00

4. 1 stop bit

4. In IAR, click the Download and Debug button to download the application to the target.

5. The application is then downloaded to the target and automatically runs to the main() func-
tion.

6. Run the code by clicking the Go button.

24 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

7. The hello_world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/iar/hello_world_cm0plus.
↪→eww

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cm0plus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 – 4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.12.00

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/[<core_type>]/iar/
↪→<application_name>_s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/iar/hello_world_
↪→ns.eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world_s.
↪→eww

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

This project hello_world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 – 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the device memory, and the secure application
is executed. It stops at the Reset_Handler function.

26 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Run the code by clicking Go to start the application.

The TrustZone hello_world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i.MXRT500.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.12.00

Run a demo using Keil MDK/μVision This section describes the steps required to build, run,
and debug example applications provided in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

2. After the installation finishes, close the Pack Installer window and return to the μVision
IDE.

Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual
path is:

28 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

2. To build the demo project, select Rebuild, highlighted in red.

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)

2. No parity

3. 8 data bits

4. 1 stop bit

4. In μVision, after the application is built, click the Download button to download the appli-
cation to the target.

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.12.00

5. After clicking theDownload button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

6. Run the code by clicking the Run button to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

30 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm0plus/mdk/hello_world_
↪→cm0plus.uvmpw

<install_dir>/boards/lpcxpresso54114/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cm0plus) first because the primary core application project (cm4) must know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 – 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.12.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second μVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/M0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_ns/
↪→mdk

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<application_name>_s/
↪→mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/μVision workspaces are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_ns/mdk/hello_world_
↪→ns.uvmpw

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world_s.
↪→uvmpw

32 Chapter 1. FRDM-MCXC041

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.12.00

<install_dir>/boards/<board_name>/trustzone_examples/hello_world/hello_world_s/mdk/hello_world.
↪→uvmpw

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in μVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

Run the code by clicking Run to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 33

MCUXpresso SDK Documentation, Release 25.12.00

Run a demo using ARMGCC / VSCODE This section describes the steps to run an example
application from the SDK archive using the ARMGCC / VSCODE toolchain.

Refer to the running a demo using MCUXpresso VSC section for detailed instructions on setting
up and configuring your project in Visual Studio Code.

Refer to the CLI section for detailed instructions on building and running your project from the
command line.

MCUXpresso ConfigTools MCUXpresso Config Tools can help configure the processor and gen-
erate initialization code for the on chip peripherals. The tools are able to modify any existing
example project, or create a new configuration for the selected board or processor. The gener-
ated code is designed to be used with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

Config Tool Description Im-
age

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

Peripher-
als tools

For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device
Config-
uration
tool

Configures Device Configuration Data (DCD) contained in the program
image that the Boot ROM code interprets to set up various on-chip pe-
ripherals prior to the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

HowtodetermineCOMport This section describes the steps necessary to determine the debug
COM port number of your NXP hardware development platform. All NXP boards ship with a
factory programmed, onboard debug interface, whether it is based on MCU-Link or the legacy
OpenSDA, LPC-Link2, P&E Micro OSJTAG interface. To determine what your specific board ships
with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

34 Chapter 1. FRDM-MCXC041

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

$ dmesg | grep ”ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
[503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is for core0 debug console and the other is for core1.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLink interface:

2. P&E Micro:

3. J-Link:

4. P&E Micro OSJTAG:

5. MRB-KW01:

On-board Debugger This section describes the on-board debuggers used on NXP development
boards.

On-boarddebuggerMCU-Link MCU-Link is a powerful and cost effective debug probe that can
be used seamlessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-board MCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-

serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

1.2. Getting Started with MCUXpresso SDK Package 35

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration

MCUXpresso SDK Documentation, Release 25.12.00

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table inDefault
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-

serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

36 Chapter 1. FRDM-MCXC041

https://www.segger.com/downloads/jlink/
https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.12.00

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program_CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.
• For boards with CMSIS-DAP firmware, visit developer.mbed.org/handbook/Windows-

serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

• For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro
Hardware Interface Drivers package.

1.2. Getting Started with MCUXpresso SDK Package 37

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.12.00

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

• J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

• CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

• P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.

1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> cp -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

38 Chapter 1. FRDM-MCXC041

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

MCUXpresso SDK Documentation, Release 25.12.00

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
a power supply input through a single micro-USB connector. It is a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.
• See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

Default debug interfaces The MCUXpresso SDK supports various hardware platforms that
come loaded with various factory programmed debug interface configurations. The follow-
ing table lists the hardware platforms supported by the MCUXpresso SDK, their default debug
firmware, and any version information that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe
EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA266 CMSIS-DAP MCU-Link
FRDM-MCXA344 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXA366 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXE31B CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link

continues on next page

1.2. Getting Started with MCUXpresso SDK Package 39

http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.12.00

Table 1 – continued from previous page
Hardware platform Default debugger firmware On-board debugger probe
FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B41Z-EVK CMSIS-DAP MCU-Link
KW45B41Z-LOC CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z75M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files With MCUXpresso SDK, users could define their own
IRQ handler in application level to override the default IRQ handler. For example, to override

40 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

the default PIT_IRQHandler define in startup_DEVICE.s, application code like app.c can be im-
plement like:

// c
void PIT_IRQHandler(void)
{

// Your code
}

When application file is CPP file, like app.cpp, then extern ”C” should be used to ensure the func-
tion prototype alignment.

// cpp
extern ”C” {

void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{

// Your code
}

Repository-Layout SDK Package

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation

2. Run the installer and select “MCUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

• Visit git-scm.com

• Download for your operating system

• Run installer with default settings

• Important: Make sure “Add Git to PATH” is selected during installation

Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

1.2. Getting Started with MCUXpresso SDK Package 41

https://docs.mcuxpresso.nxp.com/mcux-vscode/latest/html/Dependency-Installation.html
https://git-scm.com/

MCUXpresso SDK Documentation, Release 25.12.00

Python - Scripting Environment What it does: Runs build scripts and SDK tools.

Installation:

• Install Python 3.10 or newer from python.org

• Important: Check “Add Python to PATH” during installation

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.

Recommended version: 3.30.0 or newer

Installation:

• Windows: Download .msi installer from cmake.org/download

• Linux: Use package manager or download from cmake.org

• macOS: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.

Minimum version: 1.12.1 or newer

Installation:

• Windows: Usually included, or download from ninja-build.org

• Linux: sudo apt install ninja-build or download binary

• macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able

ARM GCC (Recom-
mended)

Most users, free ARM GNU
Toolchain

ARMGCC_DIR

IAR EWARM Professional develop-
ment

IAR Systems IAR_DIR

Keil MDK ARM ecosystem ARM Developer MDK_DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_DIR

42 Chapter 1. FRDM-MCXC041

https://www.python.org/downloads/
https://cmake.org/download/
https://ninja-build.org/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/
https://developer.arm.com/documentation/109350/v6/Installation
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded

MCUXpresso SDK Documentation, Release 25.12.00

Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR=”/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

Check each tool - you should see version numbers
git --version
python --version
west --version
cmake --version
ninja --version
arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

• The tool isn’t in your system PATH

• Solution: Add the installation directory to your PATH environment variable

Python/pip issues:

• Try using python3 and pip3 instead of python and pip

• On Windows, run the Command Prompt as an Administrator

Slow downloads:

• Add timeout option: pip install -U west --default-timeout=1000

• Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development board connected via USB

• Build tools installed per Installation Guide

UnderstandingBoard Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.12.00

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_board examples/demo_apps/hello_world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

Specifying Configuration
Release build
west build -b your_board examples/demo_apps/hello_world --config release

Debug build (default)
west build -b your_board examples/demo_apps/hello_world --config debug

Alternative Toolchains
IAR toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar

Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

44 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device DEVICE_PART_NUMBER --config␣
↪→release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b your_board examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list_project -p examples/demo_apps/hello_world

Next Steps
• Explore other examples in the SDK

• Learn about Command Line Development for advanced options

• Try VS Code Development for integrated development

• Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.12.00

Prerequisites
• SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)

• Development tools installed per Installation Guide

• Visual Studio Code installed

• MCUXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you’ve already obtained the SDK according to setting up the repo. Select your
location and click Import.

46 Chapter 1. FRDM-MCXC041

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART

PANEL
Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.12.00

2. Configure project settings:

• MCUXpresso SDK: Select your imported SDK

• Arm GNU Toolchain: Choose toolchain

• Board: Select your target development board

• Template: Choose example category

• Application: Select specific example (e.g., hello_world)

• App type: Choose between Repository applications or Freestanding applications

3. Click Import

Application Types Repository Applications:

48 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• Located inside the MCUXpresso SDK

• Integrated with SDK workspace

Freestanding Applications:
• Imported to user-defined location

• Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

Build Process
1. Navigate to PROJECTS view

2. Find your project

3. Click the Build Project icon

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup
1. Open Serial Monitor from VS Code’s integrated terminal

2. Configure serial settings:

• VCom Port: Select port for your device

• Baud Rate: Set to 115200

1.2. Getting Started with MCUXpresso SDK Package 49

MCUXpresso SDK Documentation, Release 25.12.00

Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:

• Continue: Resume code execution

• Step controls: Navigate through code

• Stop: Terminate debug session .

Monitor Output Observe application output in the Serial Monitor to verify correct operation.

50 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

• Example applications

• Board configurations

• Middleware components

• Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
• Verify SDK workspace is properly initialized

• Ensure all required repositories are updated

• Check SDK manifest files are present

Project import failures:
• Confirm board support exists for selected example

• Verify toolchain installation

• Check example compatibility with selected board

Build Problems Build failures:
• Check integrated terminal for error messages

• Verify all dependencies are installed

• Ensure toolchain is properly configured

1.2. Getting Started with MCUXpresso SDK Package 51

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.12.00

Debug Issues Debug session fails:
• Verify board connection via USB

• Check debug probe drivers are installed

• Confirm build completed successfully

Serial monitor problems:
• Verify correct VCom port selection

• Check baud rate configuration (115200)

• Ensure board drivers are installed

IntegrationwithCommandLine MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
• Explore additional examples in the SDK

• Review Command Line Development for advanced build options

• Refer MCUXpresso for VS Code Wiki for detailed documentation

• Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development tools installed per Installation Guide

• Target board connected via USB

UnderstandingBoard Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

52 Chapter 1. FRDM-MCXC041

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki

MCUXpresso SDK Documentation, Release 25.12.00

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_board examples/demo_apps/hello_world

Specifying Build Configuration
Release build
west build -b your_board examples/demo_apps/hello_world --config release

Debug build with specific toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

Dry Run See what commands would be executed:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device MK22F12810 --config release

Project Configuration

1.2. Getting Started with MCUXpresso SDK Package 53

MCUXpresso SDK Documentation, Release 25.12.00

CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:

Generate IAR project
west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup
instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:

Check ARM GCC
echo $ARMGCC_DIR
arm-none-eabi-gcc --version

Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h

54 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Check Supported Configurations If unsure about supported options for an example:

west list_project -p examples/demo_apps/hello_world

Best Practices

Project Organization
• Keep custom projects outside the SDK tree

• Use version control for your application code

• Document any SDK modifications

Build Efficiency
• Use -p always for clean builds when troubleshooting

• Leverage --dry-run to understand build processes

• Use specific configs and toolchains to reduce build time

Development Workflow
1. Start with existing examples closest to your requirements

2. Copy and modify rather than building from scratch

3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
• Explore VS Code Development for integrated development experience

• Review Workspace Structure to understand SDK organization

• Refer build system documentation for advanced configurations

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization
your-sdk-workspace/
��� manifests/ # West manifest repository
��� mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.

1.2. Getting Started with MCUXpresso SDK Package 55

MCUXpresso SDK Documentation, Release 25.12.00

SDK Component Layout Based on the actual SDK structure, the main directories include:

Di-
rec-
tory

Contents Purpose

arch/ Architecture-specific files ARM CMSIS, build
configurations

cmake/ Build system modules CMake configura-
tion and build rules

components/Software components Reusable software li-
braries and utilities

devices/Device support packages MCU-specific head-
ers, startup code,
linker scripts

drivers/Peripheral drivers Hardware abstrac-
tion layer for MCU
peripherals

examples/Sample applications Demonstration code
and reference im-
plementations

middleware/Optional software stacks Networking, graph-
ics, security, and
other libraries

rtos/ Operating system support FreeRTOS integra-
tion

scripts/Build and utility scripts West extensions and
development tools

svd Svd files for devices, this is optional because of large size. Cus-
tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

Example Organization Examples follow a two-tier structure separating common code from
board-specific implementations:

Common Example Files
examples/demo_apps/hello_world/
��� CMakeLists.txt # Build configuration
��� example.yml # Example metadata
��� hello_world.c # Application source code
��� Kconfig # Configuration options
��� readme.md # General documentation

Board-Specific Files
examples/_boards/your_board/demo_apps/hello_world/
��� app.h # Board specific application header
��� example_board_readme.md # Board specific documentation
��� hardware_init.c # Board specific hardware initialization
��� pin_mux.c # Pin multiplexing configuration
��� pin_mux.h # Pin multiplexing header definitions
��� hello_world.bin # Pre-built binary for quick testing
��� hello_world.mex # MCUXpresso Config Tools project file
��� prj.conf # Board specific Kconfig configuration
��� reconfig.cmake # Board specific cmake configuration overrides

56 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Device Support Structure Device support is organized hierarchically by MCU family:

devices/
��� MCX/ # MCU portfolio

��� MCXW/ # MCU family
��� MCXW235/ # Specific device

��� MCXW235.h # Device register definitions
��� drivers/ # Device-specific drivers
��� gcc/ # GNU toolchain files
��� iar/ # IAR toolchain files
��� mcuxpresso/ # MCUXpresso IDE files
��� startup_MCXW235.c # Startup and vector table
��� system_MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories
include:

• Connectivity: USB, TCP/IP, industrial protocols

• Security: Cryptographic libraries, secure boot

• Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

• Graphics: Display drivers, UI frameworks

• Audio: Processing libraries, voice recognition

• Machine Learning: Inference engines, neural networks

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:

• docs/ - Core SDK documentation and build infrastructure

• Component repositories - API documentation and integration guides

• Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

1. General README: examples/demo_apps/hello_world/readme.md

• What the example does

• General functionality description

• Common usage information

2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/
example_board_readme.md

• Board-specific setup instructions

• Hardware connections required

• Board-specific behavior notes

1.2. Getting Started with MCUXpresso SDK Package 57

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/

MCUXpresso SDK Documentation, Release 25.12.00

Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in amulti-repositorymodel. The
SDK is distributed across multiple GitHub repositories and managed using the ZephyrWest tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:

• Modular Structure: Multiple repositories for flexibility and scalability.

• Zephyr West Integration: Simplified repository management and synchronization.

• Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

• Scalability: Easily add or update components without impacting the entire SDK.

• Collaboration: Enables distributed development across teams and repositories.

• Version Control: Independent versioning for components ensures better stability.

• Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:

System Requirements:
• Python 3.8 or later

• Git 2.25 or later

• CMake 3.20 or later

• Build tools for your target platform

Verification Commands:

58 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

python --version # Should show 3.8+
git --version # Should show 2.25+
cmake --version # Should show 3.20+
west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK frommain branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update

This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.

Best for:
• Exploring the complete SDK

• Multi-board development projects

• Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

For specific board development
west update_board --set board your_board_name

For specific device family development
west update_board --set device your_device_name

List available repositories before downloading
west update_board --set board your_board_name --list-repo

Best for:
• Single board development

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.12.00

• Faster setup and reduced disk usage

• Focused development workflows

Examples:

Update only repositories for FRDM-MCXW23 board
west update_board --set board frdmmcxw23

Update only repositories for MCXW23 device family
west update_board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

Verify workspace structure
ls -la
Should show: manifests/ and mcuxsdk/ directories

Test build system
west list_project -p examples/demo_apps/hello_world
Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

Update only repositories for specific board, e.g., frdmmcxw23
west update_board --set board frdmmcxw23

List available repositories for the board before updating
west update_board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

Update only repositories for specific device, e.g., MCXW235
west update_board --set device mcxw23

List available repositories for the device family
west update_board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

Use custom configuration file
west update_board --set custom path/to/custom-config.yml

Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
• Download only components needed for your target board or device

• Significantly faster initial setup for focused development

60 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• Typical reduction from 7 GB to 2GB

Optimized Workspace
• Cleaner workspace with relevant components only

• Reduced disk space usage

• Faster repository operations

Flexible Development
• Switch between different board configurations easily

• Maintain separate workspaces for different projects

• Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

Display repository information in console
west update_board --set board frdmmcxw23 --list-repo

Export repository information to YAML file for reference
west update_board --set board frdmmcxw23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

Generate board-specific SDK package
west update_board --set board frdmmcxw23 -o frdmmcxw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:

For Complete SDKWorkspace:

Update manifest repository
cd manifests
git pull

Update all component repositories
cd ..
west update

For Targeted Workspace:

Update manifest repository
cd manifests
git pull

Update board-specific repositories
cd ..
west update_board --set board your_board_name

1.3. Getting Started with MCUXpresso SDK GitHub 61

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Status Check workspace synchronization status:

Show status of all repositories
west status

Show detailed information about repositories
west list

Troubleshooting Network Issues:
• Use west update --keep-descendants for partial failures

• Configure Git credentials for private repositories

• Check firewall settings for Git protocol access

Permission Issues:
• Ensure write permissions in workspace directory

• Run commands without sudo/administrator privileges

• Verify Git SSH key configuration for authenticated access

Disk Space:
• Full SDK workspace requires approximately 7-8 GB

• Targeted workspace typically requires 1-2 GB

• Use board-specific setup to reduce workspace size

Repository Management Issues:
• Verify board/device names match available configurations

• Check that custom YAML files follow the correct template format

• Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:

1. Review Workspace Structure to understand the layout

2. Build your first project with First Build Guide

3. ExploreDevelopmentWorkflowsMCUXPresso VSCode orDevelopmentWorkflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

RepositoryOrganization Based on the manifest structure, the SDK consists of four main repos-
itory categories:

62 Chapter 1. FRDM-MCXC041

https://docs.zephyrproject.org/latest/develop/west/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

• Devices: MCU-specific support packages

• Examples: Demonstration applications and code samples

• Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

• Connectivity: Networking stacks, USB, and communication protocols

• Security: Cryptographic libraries and secure boot components

• Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

• Graphics: Display drivers and UI frameworks

• Audio: Audio processing and voice recognition libraries

• Machine Learning: AI inference engines and neural network libraries

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:

• nxp-mcuxpresso

• NXP

• nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.

1.3. Getting Started with MCUXpresso SDK GitHub 63

https://github.com/nxp-mcuxpresso/
https://github.com/NXP
https://github.com/nxp-zephyr

MCUXpresso SDK Documentation, Release 25.12.00

Development Workflows

Get started with building and running projects:

UsingMCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• MCUXpresso Config Tools standalone installed (version 25.09 or above)

• MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project_info -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_
↪→id=cm33_core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: …mcuxsdk/examples/demo_apps/
hello_world/cfg_tools/).

Updating the SDKWest project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.

64 Chapter 1. FRDM-MCXC041

https://www.nxp.com/doc/GSMCUXCTUG
https://mcuxpresso.nxp.com/mcux-vscode/latest/html/Working-with-MCUXpresso-Config-Tools.html

MCUXpresso SDK Documentation, Release 25.12.00

This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_id=cm33_core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg_resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

1.4. Release Notes 65

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• MCUXpresso IDE, Rev. 25.06.xx

• IAR Embedded Workbench for Arm, version is 9.60.4

• Keil MDK, version is 5.42

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development boards MCU devices
FRDM-MCXC041 MCXC041VFG, MCXC041VFK

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

66 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

TinyCBOR Concise Binary Object Representation (CBOR) Library

SDMMC stack The SDMMC software is integrated with MCUXpresso SDK to support
SD/MMC/SDIO standard specification. This also includes a host adapter layer for bare-
metal/RTOS applications.

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

llhttp HTTP parser llhttp

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

File systemFatfs The FatFs file system is integrated with the MCUXpresso SDK and can be used
to access either the SD card or the USB memory stick when the SD card driver or the USB Mass
Storage Device class implementation is used.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

1.4. Release Notes 67

MCUXpresso SDK Documentation, Release 25.12.00

Known Issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE
New Project wizard.

USBFS controller issue

Due to the USBFS controller design issues, the USB host suspend/resume demos
(usb_suspend_resume_host_hid_mouse) of the full speed controller do not support the low
speed device directly.

USB PID issue

Because the PID of all USB device examples is updated, uninstall the device drivers and then
reinstall when the device (with new PID) is plugged in the first time

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

[25.06.00]
• Initial version

68 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

ADC16

[2.3.0]
• Improvements

– Added new API ADC16_EnableAsynchronousClockOutput() to enable/disable ADACK
output.

– In ADC16_GetDefaultConfig(), set enableAsynchronousClock to false.

[2.2.0]
• Improvements

– Added hardware average mode in adc_config_t structure, then the hardware average
mode can be set by invoking ADC16_Init() function.

[2.1.0]
• New Features:

– Supported KM series’ new ADC reference voltage source, bandgap from PMC.

[2.0.3]
• Bug Fixes

– Fixed IAR warning Pa082: the order of volatile access should be defined.

[2.0.2]
• Improvements

– Used conversion control feature macro instead of that in IO map.

[2.0.1]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 16.4, 10.1, 13.2, 14.4 and 17.7.

[2.0.0]
• Initial version

CLOCK

[2.0.0]
• Initial version.

1.5. ChangeLog 69

MCUXpresso SDK Documentation, Release 25.12.00

CMP

[2.0.3]
• Improvements

– Updated to clear CMP settings in DeInit function.

[2.0.2]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.3

[2.0.1]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 14.4, rule 10.3, rule 10.1, rule 10.4 and rule 17.7.

[2.0.0]
• Initial version.

COMMON

[2.6.3]
• Bug Fixes

– Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

[2.6.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts

[2.6.1]
• Improvements

– Support Cortex M23.

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

70 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

72 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

COP

[2.0.2]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.1]
• Bug Fixes

– Fixed MISRA-2012 issues.

* Rule 10.1 and rule 17.7.

[2.0.0]
• Initial version.

FLASH

[3.3.0]
• New Feature

– Support for EEPROM Quick Write on devices with FTFC

[3.2.0]
• New Feature

– Basic support for FTFC

[3.1.3]
• New Feature

– Support 512KB flash for Kinetis E serials.

74 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[3.1.2]
• Bug Fixes — Remove redundant comments.

[3.1.1]
• Bug Fixes — MISRA C-2012 issue fixed: rule 10.3

[3.1.0]
• New Feature

– Support erase flash asynchronously.

[3.0.2]
• Bug Fixes — MISRA C-2012 issue fixed: rule 8.4, 17.7, 10.4, 16.1, 21.15, 11.3, 10.7 — building

warning -Wnull-dereference on arm compiler v6

[3.0.1]
• New Features

– Added support FlexNVM alias for (kw37/38/39).

[3.0.0]
• Improvements

– Reorganized FTFx flash driver source file.

– Extracted flash cache driver from FTFx driver.

– Extracted flexnvm flash driver from FTFx driver.

[2.3.1]
• Bug Fixes

– Unified Flash IFR design from K3.

– New encoding rule for K3 flash size.

[2.3.0]
• New Features

– Added support for device with LP flash (K3S/G).

– Added flash prefetch speculation APIs.

• Improvements

– Refined flash_cache_clear function.

– Reorganized the member of flash_config_t struct.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• New Features

– Supported FTFL device in FLASH_Swap API.

– Supported various pflash start addresses.

– Added support for KV58 in cache clear function.

– Added support for device with secondary flash (KW40).

• Bug Fixes

– Compiled execute-in-ram functions as PIC binary code for driver use.

– Added missed flexram properties.

– Fixed unaligned variable issue for execute-in-ram function code array.

[2.1.0]
• Improvements

– Updated coding style to align with KSDK 2.0.

– Different-alignment-size support for pflash and flexnvm.

– Improved the implementation of execute-in-ram functions.

[2.0.0]
• Initial version

GPIO

[2.8.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 Rule 10.1, 5.7.

[2.8.2]
• Bug Fixes

– Fixed COVERITY issue that GPIO_GetInstance could return clock array overflow values
 due to GPIO base and clock being out of sync.

[2.8.1]
• Bug Fixes

– Fixed CERT INT31-C issues.

[2.8.0]
• Improvements

– Add API GPIO_PortInit/GPIO_PortDeinit to set GPIO clock enable and releasing GPIO
reset.

76 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.0]
• Improvements

– Add API GPIO_PortInit/GPIO_PortDeinit to set GPIO clock enable and releasing GPIO
reset.

– Remove support for API GPIO_GetPinsDMARequestFlags with GPIO_ISFR_COUNT <= 1.

[2.7.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.7.2]
• New Features

– Support devices without PORT module.

[2.7.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.4 issues in GPIO_GpioGetInterruptChannelFlags() function
and GPIO_GpioClearInterruptChannelFlags() function.

[2.7.0]
• New Features

– Added API to support Interrupt select (IRQS) bitfield.

[2.6.0]
• New Features

– Added API to get GPIO version information.

– Added API to control a pin for general purpose input.

– Added some APIs to control pin in secure and previliege status.

[2.5.3]
• Bug Fixes

– Correct the feature macro typo: FSL_FEATURE_GPIO_HAS_NO_INDEP_OUTPUT_CONTORL.

[2.5.2]
• Improvements

– Improved GPIO_PortSet/GPIO_PortClear/GPIO_PortToggle functions to support devices
without Set/Clear/Toggle registers.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
• Bug Fixes

– Fixed wrong macro definition.

– Fixed MISRA C-2012 rule issues in the FGPIO_CheckAttributeBytes() function.

– Defined the new macro to separate the scene when the width of registers is different.

– Removed some redundant macros.

• New Features

– Added some APIs to get/clear the interrupt status flag when the port doesn’t control
pins’ interrupt.

[2.4.1]
• Improvements

– Improved GPIO_CheckAttributeBytes() function to support 8 bits width GACR register.

[2.4.0]
• Improvements

– API interface added:

* New APIs were added to configure the GPIO interrupt clear settings.

[2.3.2]
• Bug Fixes

– Fixed the issue for MISRA-2012 check.

* Fixed rule 3.1, 10.1, 8.6, 10.6, and 10.3.

[2.3.1]
• Improvements

– Removed deprecated APIs.

[2.3.0]
• New Features

– Updated the driver code to adapt the case of interrupt configurations in GPIO module.
New APIs were added to configure the GPIO interrupt settings if the module has this
feature on it.

[2.2.1]
• Improvements

– API interface changes:

* Refined naming of APIs while keeping all original APIs by marking them as dep-
recated. The original APIs will be removed in next release. The main change is
updating APIs with prefix of _PinXXX() and _PortXXX.

78 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Improvements

– API interface changes:

* Added an API for the check attribute bytes.

[2.1.0]
• Improvements

– API interface changes:

* Added “pins” or “pin” to some APIs’ names.

* Renamed “_PinConfigure” to “GPIO_PinInit”.

I2C

[2.0.10]
• Bug Fixes

– Fixed coverity issues.

[2.0.9]
• Bug Fixes

– Fixed the MISRA-2012 violations.

* Fixed rule 8.4, 10.1, 10.4, 13.5, 20.8.

[2.0.8]
• Bug Fixes

– Fixed the bug that DFEN bit of I2C Status register 2 could not be set in I2C_MasterInit.

– MISRA C-2012 issue fixed: rule 14.2, 15.7, and 16.4.

– Eliminated IAR Pa082 warnings from I2C_MasterTransferDMA and
I2C_MasterTransferCallbackDMA by assigning volatile variables to local variables and
using local variables instead.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 11.9, 14.4, 15.7, 17.7.

• Improvements

– Improved timeout mechanism when waiting certain state in transfer API.

– Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

– Moved the master manually acknowledge byte operation into static function
I2C_MasterAckByte.

– Fixed control/status clean flow issue inside I2C_MasterReadBlocking to avoid potential
issue that pending status is cleaned before it’s proceeded.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.7]
• Bug Fixes

– Fixed the issue for MISRA-2012 check.

* Fixed rule 11.9 ,15.7 ,14.4 ,10.4 ,10.8 ,10.3, 10.1, 10.6, 13.5, 11.3, 13.2, 17.7, 5.7, 8.3,
8.5, 11.1, 16.1.

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

– Fixed variable redefine issue by moving i2cBases from fsl_i2c.h to fsl_i2c.c.

• Improvements

– Added I2C_MASTER_FACK_CONTROL macro to enable FACK control for master trans-
fer receive flow with IP supporting double buffer, then master could hold the SCL by
manually setting TX AK/NAK during data transfer.

[2.0.6]
• Bug Fixes

– Fixed the issue that I2C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed by the subaddress.

[2.0.5]
• Improvements

– Added I2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.4]
• Bug Fixes

– Added a proper handle for transfer config flag kI2C_TransferNoStartFlag to support
transmit with kI2C_TransferNoStartFlag flag. Support write only or write+read with
no start flag; does not support read only with no start flag.

[2.0.3]
• Bug Fixes

– Removed enableHighDrive member in the master/slave configuration structure be-
cause the operation to HDRS bit is useless, the user need to use DSE bit in port register
to configure the high drive capability.

– Added register reset operation in I2C_MasterInit and I2C_SlaveInit APIs. Fixed issue
where I2C could not switch between master and slave mode.

– Improved slave IRQ handler to handle the corner case that stop flag and address match
flag come synchronously.

[2.0.2]
• Bug Fixes

– Fixed issue in master receive and slave transmit mode with no stop flag. The master
could not succeed to start next transfer because the master could not send out re-start
signal.

80 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the out-of-order issue of data transfer due to memory barrier.

– Added hold time configuration for slave. By leaving the SCL divider and MULT reset
values when configured to slave mode, the setup and hold time of the slave is then
reduced outside of spec for lower baudrates. This can cause intermittent arbitration
loss on the master side.

• New Features

– Added address nak event for master.

– Added general call event for slave.

[2.0.1]
• New Features

– Added double buffer enable configuration for SoCs which have the DFEN bit in S2 reg-
ister.

– Added flexible transmit/receive buffer size support in I2C_SlaveHandleIRQ.

– Added start flag clear, address match, and release bus operation in
I2C_SlaveWrite/ReadBlocking API.

• Bug Fixes

– Changed the kI2C_SlaveRepeatedStartEvent to kI2C_SlaveStartEvent.

[2.0.0]
• Initial version.

LLWU

[2.0.5]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

– Fixed the issue that function LLWU_SetExternalWakeupPinMode() does not work on
32-bit width platforms.

[2.0.4]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 10.6, 10.7, 11.3.

– Fixed issue that LLWU_ClearExternalWakeupPinFlag may clear other filter flags by
mistake on platforms with 32-bit LLWU registers.

[2.0.3]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 16.4.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Improvements

– Corrected driver function LLWU_SetResetPinMode parameter name.

• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 14.4, 10.8, 10.4, 10.3.

[2.0.1]
• Other Changes

– Updates for KL8x.

[2.0.0]
• Initial version.

LPTMR

[2.2.1]
• Bug Fixes

– Fix CERT INT31-C issues.

[2.2.0]
• Improvements

– Updated lptmr_prescaler_clock_select_t, only define the valid options.

[2.1.1]
• Improvements

– Updated the characters from “PTMR” to “LPTMR” in
“FSL_FEATURE_PTMR_HAS_NO_PRESCALER_CLOCK_SOURCE_1_SUPPORT” feature
definition.

[2.1.0]
• Improvements

– Implement for some special devices’ not supporting for all clock sources.

• Bug Fixes

– Fixed issue when accessing CMR register.

[2.0.2]
• Bug Fixes

– Fixed MISRA-2012 issues.

* Rule 10.1.

82 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Updated the LPTMR driver to support 32-bit CNR and CMR registers in some devices.

[2.0.0]
• Initial version.

LPUART

[2.10.0]
• New Feature

– Added support to configure RTS watermark.

[2.9.4]
• Improvements

– Merged duplicate code.

[2.9.3]
• Improvements

– Added timeout for while loops in LPUART_Deinit().

[2.9.2]
• Bug Fixes

– Fixed coverity issues.

[2.9.1]
• Bug Fixes

– Fixed coverity issues.

[2.9.0]
• New Feature

– Added support for swap TXD and RXD pins.

– Added common IRQ handler entry LPUART_DriverIRQHandler.

[2.8.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.2]
• Bug Fix

– Fixed the bug that LPUART_TransferEnable16Bit controled by wrong feature macro.

[2.8.1]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-5.3, rule-5.8, rule-10.4, rule-11.3, rule-11.8.

[2.8.0]
• Improvements

– Added support of DATA register for 9bit or 10bit data transmit in write and
read API. Such as: LPUART_WriteBlocking16bit, LPUART_ReadBlocking16bit,
LPUART_TransferEnable16Bit LPUART_WriteNonBlocking16bit,
LPUART_ReadNonBlocking16bit.

[2.7.7]
• Bug Fixes

– Fixed the bug that baud rate calculation overflow when srcClock_Hz is 528MHz.

[2.7.6]
• Bug Fixes

– Fixed LPUART_EnableInterrupts and LPUART_DisableInterrupts bug that blocks if the
LPUART address doesn’t support exclusive access.

[2.7.5]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.7.4]
• Improvements

– Added support for atomic register accessing in LPUART_EnableInterrupts and
LPUART_DisableInterrupts.

[2.7.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 15.7.

[2.7.2]
• Bug Fix

– Fixed the bug that the OSR calculation error when lupart init and lpuart set baud rate.

84 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]
• Improvements

– Added support for LPUART_BASE_PTRS_NS in security mode in file fsl_lpuart.c.

[2.7.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpuart.c.

[2.6.0]
• Bug Fixes

– Fixed bug that when there are multiple lpuart instance, unable to support different
ISR.

[2.5.3]
• Bug Fixes

– Fixed comments by replacing unused status flags kLPUART_NoiseErrorInRxDataRegFlag
and kLPUART_ParityErrorInRxDataRegFlag with kLPUART_NoiseErrorFlag and
kLPUART_ParityErrorFlag.

[2.5.2]
• Bug Fixes

– Fixed bug that when setting watermark for TX or RX FIFO, the value may exceed the
maximum limit.

• Improvements

– Added check in LPUART_TransferDMAHandleIRQ and
LPUART_TransferEdmaHandleIRQ to ensure if user enables any interrupts other
than transfer complete interrupt, the dma transfer is not terminated by mistake.

[2.5.1]
• Improvements

– Use separate data for TX and RX in lpuart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling LPUART_TransferReceiveNonBlocking, the received data count returned
by LPUART_TransferGetReceiveCount is wrong.

[2.5.0]
• Bug Fixes

– Added missing interrupt enable masks kLPUART_Match1InterruptEnable and
kLPUART_Match2InterruptEnable.

– Fixed bug in LPUART_EnableInterrupts, LPUART_DisableInterrupts and
LPUART_GetEnabledInterrupts that the BAUD[LBKDIE] bit field should be soc
specific.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed bug in LPUART_TransferHandleIRQ that idle line interrupt should be disabled
when rx data size is zero.

– Deleted unused status flags kLPUART_NoiseErrorInRxDataRegFlag and
kLPUART_ParityErrorInRxDataRegFlag, since firstly their function are the same
as kLPUART_NoiseErrorFlag and kLPUART_ParityErrorFlag, secondly to obtain them
one data word must be read out thus interfering with the receiving process.

– Fixed bug in LPUART_GetStatusFlags that the STAT[LBKDIF], STAT[MA1F] and
STAT[MA2F] should be soc specific.

– Fixed bug in LPUART_ClearStatusFlags that tx/rx FIFO is reset by mistake when clear-
ing flags.

– Fixed bug in LPUART_TransferHandleIRQ that while clearing idle line flag the other
bits should be masked in case other status bits be cleared by accident.

– Fixed bug of race condition during LPUART transfer using transactional APIs, by dis-
abling and re-enabling the global interrupt before and after critical operations on in-
terrupt enable register.

– Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

• New Features

– Added APIs LPUART_GetRxFifoCount/LPUART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs LPUART_SetRxFifoWatermark/LPUART_SetTxFifoWatermark to set rx/tx
FIFO water mark.

[2.4.1]
• Bug Fixes

– Fixed MISRA advisory 17.7 issues.

[2.4.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

[2.3.1]
• Bug Fixes

– Fixed MISRA advisory 15.5 issues.

[2.3.0]
• Improvements

– Modified LPUART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified LPUART_TransferGetSendCount so that this API returns the real byte count
that LPUART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

86 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.8]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-10.3, rule-14.4, rule-15.5.

– Eliminated Pa082 warnings by assigning volatile variables to local variables and using
local variables instead.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.8, 14.4, 11.6, 17.7.

• Improvements

– Added check for kLPUART_TransmissionCompleteFlag in LPUART_WriteBlocking,
LPUART_TransferHandleIRQ, LPUART_TransferSendDMACallback and
LPUART_SendEDMACallback to ensure all the data would be sent out to bus.

– Rounded up the calculated sbr value in LPUART_SetBaudRate and LPUART_Init to
achieve more acurate baudrate setting. Changed osr from uint32_t to uint8_t since
osr’s bigest value is 31.

– Modified LPUART_ReadBlocking so that if more than one receiver errors occur, all sta-
tus flags will be cleared and the most severe error status will be returned.

[2.2.7]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-12.1, rule-17.7, rule-14.4, rule-13.3, rule-14.4, rule-10.4, rule-10.8, rule-
10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3, rule-13.2, rule-8.3.

[2.2.6]
• Bug Fixes

– Fixed the issue of register’s being in repeated reading status while dealing with the
IRQ routine.

[2.2.5]
• Bug Fixes

– Do not set or clear the TIE/RIE bits when using LPUART_EnableTxDMA and
LPUART_EnableRxDMA.

[2.2.4]
• Improvements

– Added hardware flow control function support.

– Added idle-line-detecting feature in LPUART_TransferNonBlocking function. If an idle
line is detected, a callback is triggered with status kStatus_LPUART_IdleLineDetected
returned. This feature may be useful when the received Bytes is less than the expected
received data size. Before triggering the callback, data in the FIFO (if has FIFO) is read
out, and no interrupt will be disabled, except for that the receive data size reaches 0.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.12.00

– Enabled the RX FIFO watermark function. With the idle-line-detecting feature enabled,
users can set the watermark value to whatever you want (should be less than the RX
FIFO size). Data is received and a callback will be triggered when data receive ends.

[2.2.3]
• Improvements

– Changed parameter type in LPUART_RTOS_Init struct from rtos_lpuart_config to
lpuart_rtos_config_t.

• Bug Fixes

– Disabled LPUART receive interrupt instead of all NVICs when reading data from ring
buffer. Otherwise when the ring buffer is used, receive nonblocking method will dis-
able all NVICs to protect the ring buffer. This may has a negative effect on other IPs
that are using the interrupt.

[2.2.2]
• Improvements

– Added software reset feature support.

– Added software reset API in LPUART_Init.

[2.2.1]
• Improvements

– Added separate RX/TX IRQ number support.

[2.2.0]
• Improvements

– Added support of 7 data bits and MSB.

[2.1.1]
• Improvements

– Removed unnecessary check of event flags and assert in LPUART_RTOS_Receive.

– Added code to always wait for RX event flag in LPUART_RTOS_Receive.

[2.1.0]
• Improvements

– Update transactional APIs.

MCM

[2.2.0]
• Improvements

– Support platforms with less features.

88 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Others

– Remove byteID from mcm_lmem_fault_attribute_t for document update.

[2.0.0]
• Initial version.

PMC

[2.0.3]
• Bug Fixes

– Fixed the violation of MISRA C-2012 rule 11.3.

[2.0.2]
• Bug Fixes

– Fixed the violations of MISRA 2012 rules:

* Rule 10.3.

[2.0.1]
• Bug Fixes

– Fixed MISRA issues.

* Rule 10.8, Rule 10.3.

[2.0.0]
• Initial version.

PORT

[2.5.1]
• Bug Fixes

– Fix CERT INT31-C issues.

– Fixed the violations of MISRA C-2012 rules: 10.1.

[2.5.0]
• Bug Fixes

– Correct the kPORT_MuxAsGpio for some platforms.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules: 10.1, 10.8 and 14.4.

[2.4.0]
• New Features

– Updated port_pin_config_t to support input buffer and input invert.

[2.3.0]
• New Features

– Added new APIs for Electrical Fast Transient(EFT) detect.

– Added new API to configure port voltage range.

[2.2.0]
• New Features

– Added new api PORT_EnablePinDoubleDriveStrength.

[2.1.1]
• Bug Fixes

– Fixed the violations of MISRA C-2012 rules: 10.1, 10.4�11.3�11.8, 14.4.

[2.1.0]
• New Features

– Updated the driver code to adapt the case of the interrupt configurations in GPIO mod-
ule. Will move the pin configuration APIs to GPIO module.

[2.0.2]
• Other Changes

– Added feature guard macros in the driver.

[2.0.1]
• Other Changes

– Added “const” in function parameter.

– Updated some enumeration variables’ names.

RCM

[2.0.4]
• Bug Fixes

– Fixed violation of MISRA C-2012 rule 10.3

90 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 rules.

[2.0.2]
• Bug Fixes

– Fixed MISRA issue.

* Rule 10.8, rule 10.1, rule 13.2, rule 3.1.

[2.0.1]
• Bug Fixes

– Fixed kRCM_SourceSw bit shift issue.

[2.0.0]
• Initial version.

RTC

[2.4.0]
• New features

– Add support for RTC clock output.

– Add support for RTC time seconds interrupt configuration.

[2.3.3]
• Bug Fixes

– Fix RTC_GetDatetime function validating datetime issue.

[2.3.2]
• Improvements

– Handle errata 010716: Disable the counter before setting alarm register and then reen-
able the counter.

[2.3.1]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.3.0]
• Improvements

– Added API RTC_EnableLPOClock to set 1kHz LPO clock.

– Added API RTC_EnableCrystalClock to replace API RTC_SetClockSource.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• Improvements

– Refine _rtc_interrupt_enable order.

[2.2.1]
• Bug Fixes

– Fixed the issue of Pa082 warning.

– Fixed the issue of bit field mask checking.

– Fixed the issue of hard code in RTC_Init.

[2.2.0]
• Bug Fixes

– Fixed MISRA C-2012 issue.

* Fixed rule contain: rule-17.7, rule-14.4, rule-10.4, rule-10.7, rule-10.1, rule-10.3.

– Fixed central repository code formatting issue.

• Improvements

– Added an API for enabling wakeup pin.

[2.1.0]
• Improvements

– Added feature macro check for many features.

[2.0.0]
• Initial version.

SIM

[2.2.0]
• Improvements

– Added API to trigger TRGMUX.

[2.1.3]
• Improvements

– Updated function SIM_GetUniqueId to support different register names.

[2.1.2]
• Bug Fixes

– Fixed SIM_GetUniqueId bug that could not get UIDH.

92 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.4

[2.1.0]
• Improvements

– Added new APIs: SIM_GetRfAddr() and SIM_EnableSystickClock().

[2.0.0]
• Initial version.

SMC

[2.0.7]
• Bug Fixes

– Fixed MISRA-2012 issue 10.3.

[2.0.6]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 10.3, rule 11.3.

[2.0.5]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule 15.7, rule 14.4, rule 10.3, rule 10.1, rule 10.4.

[2.0.4]
• Bug Fixes

– When entering stop modes, used RAM function for the flash synchronization issue. Ap-
plication should make sure that, the RW data of fsl_smc.c is located in memory region
which is not powered off in stop modes.

[2.0.3]
• Improvements

– Added APIs SMC_PreEnterStopModes, SMC_PreEnterWaitModes,
SMC_PostExitWaitModes, and SMC_PostExitStopModes.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Bug Fixes

– Added DSB before WFI while ISB after WFI.

• Other Changes

– Updated SMC_SetPowerModeVlpw implementation.

[2.0.1]
• Other Changes

– Updated for KL8x.

[2.0.0]
• Initial version.

SPI

[2.1.4]
• Bug Fixes

– Fixed coverity issues.

[2.1.3]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API.

[2.1.2]
• Improvements

– Changed SPI_DUMMYDATA to 0x00.

[2.1.1]
• Bug Fixes

– Fixed MISRA 10.3 violation.

[2.1.0]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed the bug that, when working as a slave, instance that does not have FIFO may
miss some rx data.

– Fixed master RX data overflow issue by synchronizing transmit and receive process.

94 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed issue that slave should not share the same non-blocking initialization API and
IRQ handler with master to prevent dead lock issue.

– Fixed issue that callback should be invoked after all data is sent out to bus.

– Added code in SPI_SlaveTransferNonBlocking to empty rx buffer before initializing
transfer.

[2.0.5]
• Bug Fixes

– Eliminated Pa082 warnings from SPI_WriteNonBlocking and SPI_GetStatusFlags.

– Fixed MISRA issues.

* Fixed issues 10.1, 10.3, 10.4, 10.7, 10.8, 11.9, 14.4, 17.7.

[2.0.4]
• New Features

– Supported 3-wire mode for SPI driver. Added new API SPI_SetPinMode() to control the
transfer direction of the single wire. For master instance, MOSI is selected as I/O pin.
For slave instance, MISO is selected as I/O pin.

– Added dummy data setup API to allow users to configure the dummy data to be trans-
ferred.

[2.0.3]
• Bug Fixes

– Fixed the potential interrupt race condition at high baudrate when calling API
SPI_MasterTransferNonBlocking.

[2.0.2]
• New Features

– Allowed users to set the transfer size for SPI_TransferNoBlocking non-integer times of
watermark.

– Allowed users to define the dummy data. Users only need to define the macro
SPI_DUMMYDATA in applications.

[2.0.1]
• Bug Fixes

– Fixed SPI_Enable function parameter error.

– Set the s_dummy variable as static variable in fsl_spi_dma.c.

• Improvements

– Optimized the code size while not using transactional API.

– Improved performance in polling method.

– Added #ifndef/#endif to allow users to change the default tx value at compile time.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

TPM

[2.4.1]
• Improvements

– Add Coverage Justification for uncovered code.

[2.4.0]
• New Feature

– Added while loop timeout for MOD CnV CnSC and SC register write sequence.

– Change the return type from void to status_t for following API:

* TPM_DisableChannel

* TPM_EnableChannel

* TPM_SetupOutputCompare

* TPM_SetTimerPeriod

* TPM_StopTimer

[2.3.6]
• Bug Fixes

– Fixed CERT INT30-C INT31-C issue for TPM_SetupDualEdgeCapture.

[2.3.5]
• New Feature

– Added IRQ handler entry for TPM2.

[2.3.4]
• New Feature

– Added common IRQ handler entry TPM_DriverIRQHandler.

[2.3.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.2]
• Bug Fixes

– Fixed ERR008085 TPM writing the TPMx_MOD or TPMx_CnV registers more than once
may fail when the timer is disabled.

96 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Bug Fixes

– Fixed compilation error when macro FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is
1.

[2.3.0]
• Improvements

– Create callback feature for TPM match and timer overflow interrupts.

[2.2.4]
• Improvements

– Add feature macros(FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_EN,
FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_SYNC).

[2.2.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.2.1]
• Bug Fixes

– Fixed CCM issue by splitting function from TPM_SetupPwm() function to reduce func-
tion complexity.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.2.0]
• Improvements

– Added TPM_SetChannelPolarity to support select channel input/output polarity.

– Added TPM_EnableChannelExtTrigger to support enable external trigger input to be
used by channel.

– Added TPM_CalculateCounterClkDiv to help calculates the counter clock prescaler.

– Added TPM_GetChannelValue to support get TPM channel value.

– Added new TPM configuration.

* syncGlobalTimeBase

* extTriggerPolarity

* chnlPolarity

– Added new PWM signal configuration.

1.5. ChangeLog 97

MCUXpresso SDK Documentation, Release 25.12.00

* secPauseLevel

• Bug Fixes

– Fixed TPM_SetupPwm can’t configure 0% combined PWM issues.

[2.1.1]
• Improvements

– Add feature macro for PWM pause level select feature.

[2.1.0]
• Improvements

– Added TPM_EnableChannel and TPM_DisableChannel APIs.

– Added new PWM signal configuration.

* pauseLevel - Support select output level when counter first enabled or paused.

* enableComplementary - Support enable/disable generate complementary PWM
signal.

* deadTimeValue - Support deadtime insertion for each pair of channels in combined
PWM mode.

• Bug Fixes

– Fixed issues about channel MSnB:MSnA and ELSnB:ELSnA bit fields and CnV register
change request acknowledgement. Writes to these bits are ignored when the interval
between successive writes is less than the TPM clock period.

[2.0.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.4 ,10.7 and 14.4.

[2.0.7]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4 and 17.7.

[2.0.6]
• Bug Fixes

– Fixed Out-of-bounds issue.

[2.0.5]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 10.6, 10.7

98 Chapter 1. FRDM-MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed ERR050050 in functions TPM_SetupPwm/TPM_UpdatePwmDutycycle. When
TPM was configured in EPWM mode as PS = 0, the compare event was missed on the
first reload/overflow after writing 1 to the CnV register.

[2.0.3]
• Bug Fixes

– MISRA-2012 issue fixed.

* Fixed rules: rule-12.1, rule-17.7, rule-16.3, rule-14.4, rule-1.3, rule-10.4, rule-10.3,
rule-10.7, rule-10.1, rule-10.6, and rule-18.1.

[2.0.2]
• Bug Fixes

– Fixed issues in functions TPM_SetupPwm/TPM_UpdateChnlEdgeLevelSelect
/TPM_SetupInputCapture/TPM_SetupOutputCompare/TPM_SetupDualEdgeCapture,
wait acknowledgement when the channel is disabled.

[2.0.1]
• Bug Fixes

– Fixed TPM_UpdateChnIEdgeLevelSelect ACK wait issue.

– Fixed the issue that TPM_SetupdualEdgeCapture could not set FILTER register.

– Fixed TPM_UpdateChnEdgeLevelSelect ACK wait issue.

[2.0.0]
• Initial version.

VREF

[2.1.3]
• Improvements

– Add timeout for APIs with dfmea issues.

[2.1.2]
• Bug Fixes

– Fixed the violation of MISRA-2012 rule 10.3.

– Fixed MISRA C-2012 rule 10.3, rule 10.4 violation.

1.5. ChangeLog 99

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Bug Fixes

– MISRA-2012 issue fixed.

* Fixed rules containing: rule-10.4, rule-10.3, rule-10.1.

[2.1.0]
• Improvements

– Added new functions to support L5K board: added VREF_SetTrim2V1Val() and
VREF_GetTrim2V1Val() functions to supply 2V1 output mode.

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MCXC041

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

1.7.2 FreeRTOS

FreeRTOS

1.7.3 File systemFatfs

FatFs

100 Chapter 1. FRDM-MCXC041

Chapter 2

MCXC041

2.1 ADC16: 16-bit SAR Analog-to-Digital Converter Driver

void ADC16_Init(ADC_Type *base, const adc16_config_t *config)
Initializes the ADC16 module.

Parameters
• base – ADC16 peripheral base address.

• config – Pointer to configuration structure. See “adc16_config_t”.

void ADC16_Deinit(ADC_Type *base)
De-initializes the ADC16 module.

Parameters
• base – ADC16 peripheral base address.

void ADC16_GetDefaultConfig(adc16_config_t *config)
Gets an available pre-defined settings for the converter’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are as follows.

config->referenceVoltageSource = kADC16_ReferenceVoltageSourceVref;
config->clockSource = kADC16_ClockSourceAsynchronousClock;
config->enableAsynchronousClock = false;
config->clockDivider = kADC16_ClockDivider8;
config->resolution = kADC16_ResolutionSE12Bit;
config->longSampleMode = kADC16_LongSampleDisabled;
config->enableHighSpeed = false;
config->enableLowPower = false;
config->enableContinuousConversion = false;

Parameters
• config – Pointer to the configuration structure.

status_t ADC16_DoAutoCalibration(ADC_Type *base)
Automates the hardware calibration.

This auto calibration helps to adjust the plus/minus side gain automatically. Execute the
calibration before using the converter. Note that the hardware trigger should be used dur-
ing the calibration.

Parameters

101

MCUXpresso SDK Documentation, Release 25.12.00

• base – ADC16 peripheral base address.

Return values
• kStatus_Success – Calibration is done successfully.

• kStatus_Fail – Calibration has failed.

Returns
Execution status.

static inline void ADC16_SetOffsetValue(ADC_Type *base, int16_t value)
Sets the offset value for the conversion result.

This offset value takes effect on the conversion result. If the offset value is not zero, the
reading result is subtracted by it. Note, the hardware calibration fills the offset value auto-
matically.

Parameters
• base – ADC16 peripheral base address.

• value – Setting offset value.

static inline void ADC16_EnableDMA(ADC_Type *base, bool enable)
Enables generating the DMA trigger when the conversion is complete.

Parameters
• base – ADC16 peripheral base address.

• enable – Switcher of the DMA feature. “true” means enabled, “false” means
not enabled.

static inline void ADC16_EnableHardwareTrigger(ADC_Type *base, bool enable)
Enables the hardware trigger mode.

Parameters
• base – ADC16 peripheral base address.

• enable – Switcher of the hardware trigger feature. “true” means enabled,
“false” means not enabled.

void ADC16_SetChannelMuxMode(ADC_Type *base, adc16_channel_mux_mode_t mode)
Sets the channel mux mode.

Some sample pins share the same channel index. The channel mux mode decides which
pin is used for an indicated channel.

Parameters
• base – ADC16 peripheral base address.

• mode – Setting channel mux mode. See “adc16_channel_mux_mode_t”.

void ADC16_SetHardwareCompareConfig(ADC_Type *base, const
adc16_hardware_compare_config_t *config)

Configures the hardware compare mode.

The hardware compare mode provides a way to process the conversion result automat-
ically by using hardware. Only the result in the compare range is available. To compare
the range, see “adc16_hardware_compare_mode_t” or the appopriate reference manual for
more information.

Parameters
• base – ADC16 peripheral base address.

102 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the “adc16_hardware_compare_config_t” structure.
Passing “NULL” disables the feature.

void ADC16_SetHardwareAverage(ADC_Type *base, adc16_hardware_average_mode_t mode)
Sets the hardware average mode.

The hardware average mode provides a way to process the conversion result automati-
cally by using hardware. The multiple conversion results are accumulated and averaged
internally making them easier to read.

Parameters
• base – ADC16 peripheral base address.

• mode – Setting the hardware average mode. See
“adc16_hardware_average_mode_t”.

void ADC16_SetPGAConfig(ADC_Type *base, const adc16_pga_config_t *config)
Configures the PGA for the converter’s front end.

Parameters
• base – ADC16 peripheral base address.

• config – Pointer to the “adc16_pga_config_t” structure. Passing “NULL” dis-
ables the feature.

uint32_t ADC16_GetStatusFlags(ADC_Type *base)
Gets the status flags of the converter.

Parameters
• base – ADC16 peripheral base address.

Returns
Flags’ mask if indicated flags are asserted. See “_adc16_status_flags”.

void ADC16_ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clears the status flags of the converter.

Parameters
• base – ADC16 peripheral base address.

• mask – Mask value for the cleared flags. See “_adc16_status_flags”.

static inline void ADC16_EnableAsynchronousClockOutput(ADC_Type *base, bool enable)
Enable/disable ADC Asynchronous clock output to other modules.

Parameters
• base – ADC16 peripheral base address.

• enable – Used to enable/disable ADC ADACK output.

– true Asynchronous clock and clock output is enabled regardless of the
state of the ADC.

– false Asynchronous clock output disabled, asynchronous clock is en-
abled only if it is selected as input clock and a conversion is active.

void ADC16_SetChannelConfig(ADC_Type *base, uint32_t channelGroup, const
adc16_channel_config_t *config)

Configures the conversion channel.

This operation triggers the conversion when in software trigger mode. When in hardware
trigger mode, this API configures the channel while the external trigger source helps to
trigger the conversion.

2.1. ADC16: 16-bit SAR Analog-to-Digital Converter Driver 103

MCUXpresso SDK Documentation, Release 25.12.00

Note that the “Channel Group” has a detailed description. To allow sequential conversions
of the ADC to be triggered by internal peripherals, the ADC has more than one group of sta-
tus and control registers, one for each conversion. The channel group parameter indicates
which group of registers are used, for example, channel group 0 is for Group A registers
and channel group 1 is for Group B registers. The channel groups are used in a “ping-pong”
approach to control the ADC operation. At any point, only one of the channel groups is
actively controlling ADC conversions. The channel group 0 is used for both software and
hardware trigger modes. Channel group 1 and greater indicates multiple channel group
registers for use only in hardware trigger mode. See the chip configuration information in
the appropriate MCU reference manual for the number of SC1n registers (channel groups)
specific to this device. Channel group 1 or greater are not used for software trigger op-
eration. Therefore, writing to these channel groups does not initiate a new conversion.
Updating the channel group 0 while a different channel group is actively controlling a con-
version is allowed and vice versa. Writing any of the channel group registers while that
specific channel group is actively controlling a conversion aborts the current conversion.

Parameters
• base – ADC16 peripheral base address.

• channelGroup – Channel group index.

• config – Pointer to the “adc16_channel_config_t” structure for the conver-
sion channel.

static inline uint32_t ADC16_GetChannelConversionValue(ADC_Type *base, uint32_t
channelGroup)

Gets the conversion value.

Parameters
• base – ADC16 peripheral base address.

• channelGroup – Channel group index.

Returns
Conversion value.

uint32_t ADC16_GetChannelStatusFlags(ADC_Type *base, uint32_t channelGroup)
Gets the status flags of channel.

Parameters
• base – ADC16 peripheral base address.

• channelGroup – Channel group index.

Returns
Flags’ mask if indicated flags are asserted. See “_adc16_channel_status_flags”.

FSL_ADC16_DRIVER_VERSION
ADC16 driver version 2.3.0.

enum _adc16_channel_status_flags
Channel status flags.

Values:

enumerator kADC16_ChannelConversionDoneFlag
Conversion done.

enum _adc16_status_flags
Converter status flags.

Values:

104 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC16_ActiveFlag
Converter is active.

enumerator kADC16_CalibrationFailedFlag
Calibration is failed.

enum _adc_channel_mux_mode
Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example,
ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

Values:

enumerator kADC16_ChannelMuxA
For channel with channel mux a.

enumerator kADC16_ChannelMuxB
For channel with channel mux b.

enum _adc16_clock_divider
Clock divider for the converter.

Values:

enumerator kADC16_ClockDivider1
For divider 1 from the input clock to the module.

enumerator kADC16_ClockDivider2
For divider 2 from the input clock to the module.

enumerator kADC16_ClockDivider4
For divider 4 from the input clock to the module.

enumerator kADC16_ClockDivider8
For divider 8 from the input clock to the module.

enum _adc16_resolution
Converter’s resolution.

Values:

enumerator kADC16_Resolution8or9Bit
Single End 8-bit or Differential Sample 9-bit.

enumerator kADC16_Resolution12or13Bit
Single End 12-bit or Differential Sample 13-bit.

enumerator kADC16_Resolution10or11Bit
Single End 10-bit or Differential Sample 11-bit.

enumerator kADC16_ResolutionSE8Bit
Single End 8-bit.

enumerator kADC16_ResolutionSE12Bit
Single End 12-bit.

enumerator kADC16_ResolutionSE10Bit
Single End 10-bit.

enumerator kADC16_ResolutionDF9Bit
Differential Sample 9-bit.

2.1. ADC16: 16-bit SAR Analog-to-Digital Converter Driver 105

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC16_ResolutionDF13Bit
Differential Sample 13-bit.

enumerator kADC16_ResolutionDF11Bit
Differential Sample 11-bit.

enum _adc16_clock_source
Clock source.

Values:

enumerator kADC16_ClockSourceAlt0
Selection 0 of the clock source.

enumerator kADC16_ClockSourceAlt1
Selection 1 of the clock source.

enumerator kADC16_ClockSourceAlt2
Selection 2 of the clock source.

enumerator kADC16_ClockSourceAlt3
Selection 3 of the clock source.

enumerator kADC16_ClockSourceAsynchronousClock
Using internal asynchronous clock.

enum _adc16_long_sample_mode
Long sample mode.

Values:

enumerator kADC16_LongSampleCycle24
20 extra ADCK cycles, 24 ADCK cycles total.

enumerator kADC16_LongSampleCycle16
12 extra ADCK cycles, 16 ADCK cycles total.

enumerator kADC16_LongSampleCycle10
6 extra ADCK cycles, 10 ADCK cycles total.

enumerator kADC16_LongSampleCycle6
2 extra ADCK cycles, 6 ADCK cycles total.

enumerator kADC16_LongSampleDisabled
Disable the long sample feature.

enum _adc16_reference_voltage_source
Reference voltage source.

Values:

enumerator kADC16_ReferenceVoltageSourceVref
For external pins pair of VrefH and VrefL.

enumerator kADC16_ReferenceVoltageSourceValt
For alternate reference pair of ValtH and ValtL.

enum _adc16_hardware_average_mode
Hardware average mode.

Values:

enumerator kADC16_HardwareAverageCount4
For hardware average with 4 samples.

106 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC16_HardwareAverageCount8
For hardware average with 8 samples.

enumerator kADC16_HardwareAverageCount16
For hardware average with 16 samples.

enumerator kADC16_HardwareAverageCount32
For hardware average with 32 samples.

enumerator kADC16_HardwareAverageDisabled
Disable the hardware average feature.

enum _adc16_hardware_compare_mode
Hardware compare mode.

Values:

enumerator kADC16_HardwareCompareMode0
x < value1.

enumerator kADC16_HardwareCompareMode1
x > value1.

enumerator kADC16_HardwareCompareMode2
if value1 <= value2, then x < value1 || x > value2; else, value1 > x > value2.

enumerator kADC16_HardwareCompareMode3
if value1 <= value2, then value1 <= x <= value2; else x >= value1 || x <= value2.

enum _adc16_pga_gain
PGA’s Gain mode.

Values:

enumerator kADC16_PGAGainValueOf1
For amplifier gain of 1.

enumerator kADC16_PGAGainValueOf2
For amplifier gain of 2.

enumerator kADC16_PGAGainValueOf4
For amplifier gain of 4.

enumerator kADC16_PGAGainValueOf8
For amplifier gain of 8.

enumerator kADC16_PGAGainValueOf16
For amplifier gain of 16.

enumerator kADC16_PGAGainValueOf32
For amplifier gain of 32.

enumerator kADC16_PGAGainValueOf64
For amplifier gain of 64.

typedef enum _adc_channel_mux_mode adc16_channel_mux_mode_t
Channel multiplexer mode for each channel.

For some ADC16 channels, there are two pin selections in channel multiplexer. For example,
ADC0_SE4a and ADC0_SE4b are the different channels that share the same channel number.

typedef enum _adc16_clock_divider adc16_clock_divider_t
Clock divider for the converter.

2.1. ADC16: 16-bit SAR Analog-to-Digital Converter Driver 107

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _adc16_resolution adc16_resolution_t
Converter’s resolution.

typedef enum _adc16_clock_source adc16_clock_source_t
Clock source.

typedef enum _adc16_long_sample_mode adc16_long_sample_mode_t
Long sample mode.

typedef enum _adc16_reference_voltage_source adc16_reference_voltage_source_t
Reference voltage source.

typedef enum _adc16_hardware_average_mode adc16_hardware_average_mode_t
Hardware average mode.

typedef enum _adc16_hardware_compare_mode adc16_hardware_compare_mode_t
Hardware compare mode.

typedef enum _adc16_pga_gain adc16_pga_gain_t
PGA’s Gain mode.

typedef struct _adc16_config adc16_config_t
ADC16 converter configuration.

typedef struct _adc16_hardware_compare_config adc16_hardware_compare_config_t
ADC16 Hardware comparison configuration.

typedef struct _adc16_channel_config adc16_channel_config_t
ADC16 channel conversion configuration.

typedef struct _adc16_pga_config adc16_pga_config_t
ADC16 programmable gain amplifier configuration.

struct _adc16_config
#include <fsl_adc16.h> ADC16 converter configuration.

Public Members

adc16_reference_voltage_source_t referenceVoltageSource
Select the reference voltage source.

adc16_clock_source_t clockSource
Select the input clock source to converter.

bool enableAsynchronousClock
Enable the asynchronous clock output.

adc16_clock_divider_t clockDivider
Select the divider of input clock source.

adc16_resolution_t resolution
Select the sample resolution mode.

adc16_long_sample_mode_t longSampleMode
Select the long sample mode.

bool enableHighSpeed
Enable the high-speed mode.

bool enableLowPower
Enable low power.

108 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

bool enableContinuousConversion
Enable continuous conversion mode.

adc16_hardware_average_mode_t hardwareAverageMode
Set hardware average mode.

struct _adc16_hardware_compare_config
#include <fsl_adc16.h> ADC16 Hardware comparison configuration.

Public Members

adc16_hardware_compare_mode_t hardwareCompareMode
Select the hardware compare mode. See “adc16_hardware_compare_mode_t”.

int16_t value1
Setting value1 for hardware compare mode.

int16_t value2
Setting value2 for hardware compare mode.

struct _adc16_channel_config
#include <fsl_adc16.h> ADC16 channel conversion configuration.

Public Members

uint32_t channelNumber
Setting the conversion channel number. The available range is 0-31. See channel con-
nection information for each chip in Reference Manual document.

bool enableInterruptOnConversionCompleted
Generate an interrupt request once the conversion is completed.

bool enableDifferentialConversion
Using Differential sample mode.

struct _adc16_pga_config
#include <fsl_adc16.h> ADC16 programmable gain amplifier configuration.

Public Members

adc16_pga_gain_t pgaGain
Setting PGA gain.

bool enableRunInNormalMode
Enable PGA working in normal mode, or low power mode by default.

bool disablePgaChopping
Disable the PGA chopping function. The PGA employs chopping to remove/reduce off-
set and 1/f noise and offers an offset measurement configuration that aids the offset
calibration.

bool enableRunInOffsetMeasurement
Enable the PGA working in offset measurement mode. When this feature is enabled,
the PGA disconnects itself from the external inputs and auto-configures into offset mea-
surement mode. With this field set, run the ADC in the recommended settings and en-
able the maximum hardware averaging to get the PGA offset number. The output is
the (PGA offset * (64+1)) for the given PGA setting.

2.1. ADC16: 16-bit SAR Analog-to-Digital Converter Driver 109

MCUXpresso SDK Documentation, Release 25.12.00

2.2 Clock Driver

enum _clock_name
Clock name used to get clock frequency.

Values:

enumerator kCLOCK_CoreSysClk
Core/system clock

enumerator kCLOCK_PlatClk
Platform clock

enumerator kCLOCK_BusClk
Bus clock

enumerator kCLOCK_FlashClk
Flash clock

enumerator kCLOCK_Er32kClk
External reference 32K clock (ERCLK32K)

enumerator kCLOCK_Osc0ErClk
OSC0 external reference clock (OSC0ERCLK)

enumerator kCLOCK_McgFixedFreqClk
MCG fixed frequency clock (MCGFFCLK)

enumerator kCLOCK_McgInternalRefClk
MCG internal reference clock (MCGIRCLK)

enumerator kCLOCK_McgFllClk
MCGFLLCLK

enumerator kCLOCK_McgPeriphClk
MCG peripheral clock (MCGPCLK)

enumerator kCLOCK_McgIrc48MClk
MCG IRC48M clock

enumerator kCLOCK_LpoClk
LPO clock

enum _clock_ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:

enumerator kCLOCK_IpInvalid

enumerator kCLOCK_I2c0

enumerator kCLOCK_Cmp0

enumerator kCLOCK_Vref0

enumerator kCLOCK_Spi0

enumerator kCLOCK_Lptmr0

enumerator kCLOCK_PortA

enumerator kCLOCK_PortB

110 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_Lpuart0

enumerator kCLOCK_Ftf0

enumerator kCLOCK_Tpm0

enumerator kCLOCK_Tpm1

enumerator kCLOCK_Adc0

enumerator kCLOCK_Rtc0

enum _osc_cap_load
Oscillator capacitor load setting.

Values:

enumerator kOSC_Cap2P
2 pF capacitor load

enumerator kOSC_Cap4P
4 pF capacitor load

enumerator kOSC_Cap8P
8 pF capacitor load

enumerator kOSC_Cap16P
16 pF capacitor load

enum _oscer_enable_mode
OSCERCLK enable mode.

Values:

enumerator kOSC_ErClkEnable
Enable.

enumerator kOSC_ErClkEnableInStop
Enable in stop mode.

enum _osc_mode
The OSC work mode.

Values:

enumerator kOSC_ModeExt
Use external clock.

enumerator kOSC_ModeOscLowPower
Oscillator low power.

enum _mcglite_clkout_src
MCG_Lite clock source selection.

Values:

enumerator kMCGLITE_ClkSrcHirc
MCGOUTCLK source is HIRC

enumerator kMCGLITE_ClkSrcLirc
MCGOUTCLK source is LIRC

enumerator kMCGLITE_ClkSrcExt
MCGOUTCLK source is external clock source

2.2. Clock Driver 111

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kMCGLITE_ClkSrcReserved

enum _mcglite_lirc_mode
MCG_Lite LIRC select.

Values:

enumerator kMCGLITE_Lirc2M
Slow internal reference(LIRC) 2 MHz clock selected

enumerator kMCGLITE_Lirc8M
Slow internal reference(LIRC) 8 MHz clock selected

enum _mcglite_lirc_div
MCG_Lite divider factor selection for clock source.

Values:

enumerator kMCGLITE_LircDivBy1
Divider is 1

enumerator kMCGLITE_LircDivBy2
Divider is 2

enumerator kMCGLITE_LircDivBy4
Divider is 4

enumerator kMCGLITE_LircDivBy8
Divider is 8

enumerator kMCGLITE_LircDivBy16
Divider is 16

enumerator kMCGLITE_LircDivBy32
Divider is 32

enumerator kMCGLITE_LircDivBy64
Divider is 64

enumerator kMCGLITE_LircDivBy128
Divider is 128

enum _mcglite_mode
MCG_Lite clock mode definitions.

Values:

enumerator kMCGLITE_ModeHirc48M
Clock mode is HIRC 48 M

enumerator kMCGLITE_ModeLirc8M
Clock mode is LIRC 8 M

enumerator kMCGLITE_ModeLirc2M
Clock mode is LIRC 2 M

enumerator kMCGLITE_ModeExt
Clock mode is EXT

enumerator kMCGLITE_ModeError
Unknown mode

112 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enum _mcglite_irclk_enable_mode
MCG internal reference clock (MCGIRCLK) enable mode definition.

Values:

enumerator kMCGLITE_IrclkEnable
MCGIRCLK enable.

enumerator kMCGLITE_IrclkEnableInStop
MCGIRCLK enable in stop mode.

typedef enum _clock_name clock_name_t
Clock name used to get clock frequency.

typedef enum _clock_ip_name clock_ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef struct _sim_clock_config sim_clock_config_t
SIM configuration structure for clock setting.

typedef struct _oscer_config oscer_config_t
The OSC configuration for OSCERCLK.

typedef enum _osc_mode osc_mode_t
The OSC work mode.

typedef struct _osc_config osc_config_t
OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board,
set the following members according to the board settings:

a. freq: The external frequency.

b. workMode: The OSC module mode.

typedef enum _mcglite_clkout_src mcglite_clkout_src_t
MCG_Lite clock source selection.

typedef enum _mcglite_lirc_mode mcglite_lirc_mode_t
MCG_Lite LIRC select.

typedef enum _mcglite_lirc_div mcglite_lirc_div_t
MCG_Lite divider factor selection for clock source.

typedef enum _mcglite_mode mcglite_mode_t
MCG_Lite clock mode definitions.

typedef struct _mcglite_config mcglite_config_t
MCG_Lite configure structure for mode change.

volatile uint32_t g_xtal0Freq
External XTAL0 (OSC0) clock frequency.

The XTAL0/EXTAL0 (OSC0) clock frequency in Hz. When the clock is set up, use the function
CLOCK_SetXtal0Freq to set the value in the clock driver. For example, if XTAL0 is 8 MHz:

CLOCK_InitOsc0(...); // Set up the OSC0
CLOCK_SetXtal0Freq(80000000); // Set the XTAL0 value to clock driver.

This is important for the multicore platforms where one core needs to set up the OSC0 using
the CLOCK_InitOsc0. All other cores need to call the CLOCK_SetXtal0Freq to get a valid clock
frequency.

2.2. Clock Driver 113

MCUXpresso SDK Documentation, Release 25.12.00

volatile uint32_t g_xtal32Freq
The external XTAL32/EXTAL32/RTC_CLKIN clock frequency.

The XTAL32/EXTAL32/RTC_CLKIN clock frequency in Hz. When the clock is set up, use the
function CLOCK_SetXtal32Freq to set the value in the clock driver.

This is important for the multicore platforms where one core needs to set up the clock. All
other cores need to call the CLOCK_SetXtal32Freq to get a valid clock frequency.

static inline void CLOCK_EnableClock(clock_ip_name_t name)
Enable the clock for specific IP.

Parameters
• name – Which clock to enable, see clock_ip_name_t.

static inline void CLOCK_DisableClock(clock_ip_name_t name)
Disable the clock for specific IP.

Parameters
• name – Which clock to disable, see clock_ip_name_t.

static inline void CLOCK_SetEr32kClock(uint32_t src)
Set ERCLK32K source.

Parameters
• src – The value to set ERCLK32K clock source.

static inline void CLOCK_SetLpuart0Clock(uint32_t src)
Set LPUART clock source.

Parameters
• src – The value to set LPUART clock source.

static inline void CLOCK_SetTpmClock(uint32_t src)
Set TPM clock source.

Parameters
• src – The value to set TPM clock source.

static inline void CLOCK_SetClkOutClock(uint32_t src)
Set CLKOUT source.

Parameters
• src – The value to set CLKOUT source.

static inline void CLOCK_SetRtcClkOutClock(uint32_t src)
Set RTC_CLKOUT source.

Parameters
• src – The value to set RTC_CLKOUT source.

static inline void CLOCK_SetOutDiv(uint32_t outdiv1, uint32_t outdiv4)
System clock divider.

Set the SIM_CLKDIV1[OUTDIV1], SIM_CLKDIV1[OUTDIV4].

Parameters
• outdiv1 – Clock 1 output divider value.

• outdiv4 – Clock 4 output divider value.

114 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t CLOCK_GetFreq(clock_name_t clockName)
Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock fre-
quency for a specific clock name defined in clock_name_t. The MCG must be properly con-
figured before using this function.

Parameters
• clockName – Clock names defined in clock_name_t

Returns
Clock frequency value in Hertz

uint32_t CLOCK_GetCoreSysClkFreq(void)
Get the core clock or system clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetPlatClkFreq(void)
Get the platform clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetBusClkFreq(void)
Get the bus clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetFlashClkFreq(void)
Get the flash clock frequency.

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetEr32kClkFreq(void)
Get the external reference 32K clock frequency (ERCLK32K).

Returns
Clock frequency in Hz.

uint32_t CLOCK_GetOsc0ErClkFreq(void)
Get the OSC0 external reference clock frequency (OSC0ERCLK).

Returns
Clock frequency in Hz.

void CLOCK_SetSimConfig(sim_clock_config_t const *config)
Set the clock configure in SIM module.

This function sets system layer clock settings in SIM module.

Parameters
• config – Pointer to the configure structure.

static inline void CLOCK_SetSimSafeDivs(void)
Set the system clock dividers in SIM to safe value.

The system level clocks (core clock, bus clock, flexbus clock and flash clock) must be in
allowed ranges. During MCG clock mode switch, the MCG output clock changes then the
system level clocks may be out of range. This function could be used before MCG mode
change, to make sure system level clocks are in allowed range.

Parameters

2.2. Clock Driver 115

MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the configure structure.

FSL_CLOCK_DRIVER_VERSION
CLOCK driver version 2.0.0.

SDK_DEVICE_MAXIMUM_CPU_CLOCK_FREQUENCY

RTC_CLOCKS
Clock ip name array for RTC.

LPUART_CLOCKS
Clock ip name array for LPUART.

SPI_CLOCKS
Clock ip name array for SPI.

LPTMR_CLOCKS
Clock ip name array for LPTMR.

ADC16_CLOCKS
Clock ip name array for ADC16.

TPM_CLOCKS
Clock ip name array for TPM.

VREF_CLOCKS
Clock ip name array for VREF.

I2C_CLOCKS
Clock ip name array for I2C.

PORT_CLOCKS
Clock ip name array for PORT.

FTF_CLOCKS
Clock ip name array for FTF.

CMP_CLOCKS
Clock ip name array for CMP.

LPO_CLK_FREQ
LPO clock frequency.

SYS_CLK
Peripherals clock source definition.

BUS_CLK

I2C0_CLK_SRC

SPI0_CLK_SRC

CLK_GATE_REG_OFFSET_SHIFT

CLK_GATE_REG_OFFSET_MASK

CLK_GATE_BIT_SHIFT_SHIFT

CLK_GATE_BIT_SHIFT_MASK

CLK_GATE_DEFINE(reg_offset, bit_shift)

CLK_GATE_ABSTRACT_REG_OFFSET(x)

116 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

CLK_GATE_ABSTRACT_BITS_SHIFT(x)

uint32_t CLOCK_GetOutClkFreq(void)
Gets the MCG_Lite output clock (MCGOUTCLK) frequency.

This function gets the MCG_Lite output clock frequency in Hz based on the current
MCG_Lite register value.

Returns
The frequency of MCGOUTCLK.

uint32_t CLOCK_GetInternalRefClkFreq(void)
Gets the MCG internal reference clock (MCGIRCLK) frequency.

This function gets the MCG_Lite internal reference clock frequency in Hz based on the cur-
rent MCG register value.

Returns
The frequency of MCGIRCLK.

uint32_t CLOCK_GetPeriphClkFreq(void)
Gets the current MCGPCLK frequency.

This function gets the MCGPCLK frequency in Hz based on the current MCG_Lite register
settings.

Returns
The frequency of MCGPCLK.

mcglite_mode_t CLOCK_GetMode(void)
Gets the current MCG_Lite mode.

This function checks the MCG_Lite registers and determines the current MCG_Lite mode.

Returns
The current MCG_Lite mode or error code.

status_t CLOCK_SetMcgliteConfig(mcglite_config_t const *targetConfig)
Sets the MCG_Lite configuration.

This function configures the MCG_Lite, includes the output clock source, MCGIRCLK set-
tings, HIRC settings, and so on. See mcglite_config_t for details.

Parameters
• targetConfig – Pointer to the target MCG_Lite mode configuration structure.

Returns
Error code.

static inline void OSC_SetExtRefClkConfig(OSC_Type *base, oscer_config_t const *config)
Configures the OSC external reference clock (OSCERCLK).

This function configures the OSC external reference clock (OSCERCLK). This is an example
to enable the OSCERCLK in normal mode and stop mode, and set the output divider to 1.

oscer_config_t config =
{

.enableMode = kOSC_ErClkEnable | kOSC_ErClkEnableInStop,

.erclkDiv = 1U,
};

OSC_SetExtRefClkConfig(OSC, &config);

Parameters
• base – OSC peripheral address.

2.2. Clock Driver 117

MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to the configuration structure.

static inline void OSC_SetCapLoad(OSC_Type *base, uint8_t capLoad)
Sets the capacitor load configuration for the oscillator.

This function sets the specified capacitor configuration for the oscillator. This should be
done in the early system level initialization function call based on the system configuration.

Example:

// To enable only 2 pF and 8 pF capacitor load, please use like this.
OSC_SetCapLoad(OSC, kOSC_Cap2P | kOSC_Cap8P);

Parameters
• base – OSC peripheral address.

• capLoad – OR’ed value for the capacitor load option.See _osc_cap_load.

void CLOCK_InitOsc0(osc_config_t const *config)
Initializes the OSC0.

This function initializes the OSC0 according to the board configuration.

Parameters
• config – Pointer to the OSC0 configuration structure.

void CLOCK_DeinitOsc0(void)
Deinitializes the OSC0.

This function deinitializes the OSC0.

static inline void CLOCK_SetXtal0Freq(uint32_t freq)
Sets the XTAL0 frequency based on board settings.

Parameters
• freq – The XTAL0/EXTAL0 input clock frequency in Hz.

static inline void CLOCK_SetXtal32Freq(uint32_t freq)
Sets the XTAL32/RTC_CLKIN frequency based on board settings.

Parameters
• freq – The XTAL32/EXTAL32/RTC_CLKIN input clock frequency in Hz.

uint8_t er32kSrc
ERCLK32K source selection.

uint32_t clkdiv1
SIM_CLKDIV1.

uint8_t enableMode
OSCERCLK enable mode. OR’ed value of _oscer_enable_mode.

uint32_t freq
External clock frequency.

uint8_t capLoad
Capacitor load setting.

osc_mode_t workMode
OSC work mode setting.

118 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

oscer_config_t oscerConfig
Configuration for OSCERCLK.

mcglite_clkout_src_t outSrc
MCGOUT clock select.

uint8_t irclkEnableMode
MCGIRCLK enable mode, OR’ed value of _mcglite_irclk_enable_mode.

mcglite_lirc_mode_t ircs
MCG_C2[IRCS].

mcglite_lirc_div_t fcrdiv
MCG_SC[FCRDIV].

mcglite_lirc_div_t lircDiv2
MCG_MC[LIRC_DIV2].

bool hircEnableInNotHircMode
HIRC enable when not in HIRC mode.

FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
Configure whether driver controls clock.

When set to 0, peripheral drivers will enable clock in initialize function and disable clock in
de-initialize function. When set to 1, peripheral driver will not control the clock, application
could control the clock out of the driver.

Note: All drivers share this feature switcher. If it is set to 1, application should handle
clock enable and disable for all drivers.

struct _sim_clock_config
#include <fsl_clock.h> SIM configuration structure for clock setting.

struct _oscer_config
#include <fsl_clock.h> The OSC configuration for OSCERCLK.

struct _osc_config
#include <fsl_clock.h> OSC Initialization Configuration Structure.

Defines the configuration data structure to initialize the OSC. When porting to a new board,
set the following members according to the board settings:

a. freq: The external frequency.

b. workMode: The OSC module mode.

struct _mcglite_config
#include <fsl_clock.h> MCG_Lite configure structure for mode change.

2.3 CMP: Analog Comparator Driver

void CMP_Init(CMP_Type *base, const cmp_config_t *config)
Initializes the CMP.

This function initializes the CMP module. The operations included are as follows.

• Enabling the clock for CMP module.

• Configuring the comparator.

2.3. CMP: Analog Comparator Driver 119

MCUXpresso SDK Documentation, Release 25.12.00

• Enabling the CMP module. Note that for some devices, multiple CMP instances share
the same clock gate. In this case, to enable the clock for any instance enables all CMPs.
See the appropriate MCU reference manual for the clock assignment of the CMP.

Parameters
• base – CMP peripheral base address.

• config – Pointer to the configuration structure.

void CMP_Deinit(CMP_Type *base)
De-initializes the CMP module.

This function de-initializes the CMP module. The operations included are as follows.

• Disabling the CMP module.

• Disabling the clock for CMP module.

This function disables the clock for the CMP. Note that for some devices, multiple CMP in-
stances share the same clock gate. In this case, before disabling the clock for the CMP,
ensure that all the CMP instances are not used.

Parameters
• base – CMP peripheral base address.

static inline void CMP_Enable(CMP_Type *base, bool enable)
Enables/disables the CMP module.

Parameters
• base – CMP peripheral base address.

• enable – Enables or disables the module.

void CMP_GetDefaultConfig(cmp_config_t *config)
Initializes the CMP user configuration structure.

This function initializes the user configuration structure to these default values.

config->enableCmp = true;
config->hysteresisMode = kCMP_HysteresisLevel0;
config->enableHighSpeed = false;
config->enableInvertOutput = false;
config->useUnfilteredOutput = false;
config->enablePinOut = false;
config->enableTriggerMode = false;

Parameters
• config – Pointer to the configuration structure.

void CMP_SetInputChannels(CMP_Type *base, uint8_t positiveChannel, uint8_t
negativeChannel)

Sets the input channels for the comparator.

This function sets the input channels for the comparator. Note that two input channels
cannot be set the same way in the application. When the user selects the same input from
the analog mux to the positive and negative port, the comparator is disabled automatically.

Parameters
• base – CMP peripheral base address.

• positiveChannel – Positive side input channel number. Available range is
0-7.

120 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• negativeChannel – Negative side input channel number. Available range is
0-7.

void CMP_EnableDMA(CMP_Type *base, bool enable)
Enables/disables the DMA request for rising/falling events.

This function enables/disables the DMA request for rising/falling events. Either event trig-
gers the generation of the DMA request from CMP if the DMA feature is enabled. Both
events are ignored for generating the DMA request from the CMP if the DMA is disabled.

Parameters
• base – CMP peripheral base address.

• enable – Enables or disables the feature.

static inline void CMP_EnableWindowMode(CMP_Type *base, bool enable)
Enables/disables the window mode.

Parameters
• base – CMP peripheral base address.

• enable – Enables or disables the feature.

static inline void CMP_EnablePassThroughMode(CMP_Type *base, bool enable)
Enables/disables the pass through mode.

Parameters
• base – CMP peripheral base address.

• enable – Enables or disables the feature.

void CMP_SetFilterConfig(CMP_Type *base, const cmp_filter_config_t *config)
Configures the filter.

Parameters
• base – CMP peripheral base address.

• config – Pointer to the configuration structure.

void CMP_SetDACConfig(CMP_Type *base, const cmp_dac_config_t *config)
Configures the internal DAC.

Parameters
• base – CMP peripheral base address.

• config – Pointer to the configuration structure. “NULL” disables the feature.

void CMP_EnableInterrupts(CMP_Type *base, uint32_t mask)
Enables the interrupts.

Parameters
• base – CMP peripheral base address.

• mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

void CMP_DisableInterrupts(CMP_Type *base, uint32_t mask)
Disables the interrupts.

Parameters
• base – CMP peripheral base address.

• mask – Mask value for interrupts. See “_cmp_interrupt_enable”.

2.3. CMP: Analog Comparator Driver 121

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t CMP_GetStatusFlags(CMP_Type *base)
Gets the status flags.

Parameters
• base – CMP peripheral base address.

Returns
Mask value for the asserted flags. See “_cmp_status_flags”.

void CMP_ClearStatusFlags(CMP_Type *base, uint32_t mask)
Clears the status flags.

Parameters
• base – CMP peripheral base address.

• mask – Mask value for the flags. See “_cmp_status_flags”.

FSL_CMP_DRIVER_VERSION
CMP driver version 2.0.3.

enum _cmp_interrupt_enable
Interrupt enable/disable mask.

Values:

enumerator kCMP_OutputRisingInterruptEnable
Comparator interrupt enable rising.

enumerator kCMP_OutputFallingInterruptEnable
Comparator interrupt enable falling.

enum _cmp_status_flags
Status flags’ mask.

Values:

enumerator kCMP_OutputRisingEventFlag
Rising-edge on the comparison output has occurred.

enumerator kCMP_OutputFallingEventFlag
Falling-edge on the comparison output has occurred.

enumerator kCMP_OutputAssertEventFlag
Return the current value of the analog comparator output.

enum _cmp_hysteresis_mode
CMP Hysteresis mode.

Values:

enumerator kCMP_HysteresisLevel0
Hysteresis level 0.

enumerator kCMP_HysteresisLevel1
Hysteresis level 1.

enumerator kCMP_HysteresisLevel2
Hysteresis level 2.

enumerator kCMP_HysteresisLevel3
Hysteresis level 3.

122 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enum _cmp_reference_voltage_source
CMP Voltage Reference source.

Values:

enumerator kCMP_VrefSourceVin1
Vin1 is selected as a resistor ladder network supply reference Vin.

enumerator kCMP_VrefSourceVin2
Vin2 is selected as a resistor ladder network supply reference Vin.

typedef enum _cmp_hysteresis_mode cmp_hysteresis_mode_t
CMP Hysteresis mode.

typedef enum _cmp_reference_voltage_source cmp_reference_voltage_source_t
CMP Voltage Reference source.

typedef struct _cmp_config cmp_config_t
Configures the comparator.

typedef struct _cmp_filter_config cmp_filter_config_t
Configures the filter.

typedef struct _cmp_dac_config cmp_dac_config_t
Configures the internal DAC.

struct _cmp_config
#include <fsl_cmp.h> Configures the comparator.

Public Members

bool enableCmp
Enable the CMP module.

cmp_hysteresis_mode_t hysteresisMode
CMP Hysteresis mode.

bool enableHighSpeed
Enable High-speed (HS) comparison mode.

bool enableInvertOutput
Enable the inverted comparator output.

bool useUnfilteredOutput
Set the compare output(COUT) to equal COUTA(true) or COUT(false).

bool enablePinOut
The comparator output is available on the associated pin.

bool enableTriggerMode
Enable the trigger mode.

struct _cmp_filter_config
#include <fsl_cmp.h> Configures the filter.

Public Members

bool enableSample
Using the external SAMPLE as a sampling clock input or using a divided bus clock.

2.3. CMP: Analog Comparator Driver 123

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t filterCount
Filter Sample Count. Available range is 1-7; 0 disables the filter.

uint8_t filterPeriod
Filter Sample Period. The divider to the bus clock. Available range is 0-255.

struct _cmp_dac_config
#include <fsl_cmp.h> Configures the internal DAC.

Public Members

cmp_reference_voltage_source_t referenceVoltageSource
Supply voltage reference source.

uint8_t DACValue
Value for the DAC Output Voltage. Available range is 0-63.

2.4 COP: Watchdog Driver

void COP_GetDefaultConfig(cop_config_t *config)
Initializes the COP configuration structure.

This function initializes the COP configuration structure to default values. The default val-
ues are:

copConfig->enableWindowMode = false;
copConfig->timeoutMode = kCOP_LongTimeoutMode;
copConfig->enableStop = false;
copConfig->enableDebug = false;
copConfig->clockSource = kCOP_LpoClock;
copConfig->timeoutCycles = kCOP_2Power10CyclesOr2Power18Cycles;

See also:
cop_config_t

Parameters
• config – Pointer to the COP configuration structure.

void COP_Init(SIM_Type *base, const cop_config_t *config)
Initializes the COP module.

This function configures the COP. After it is called, the COP starts running according to the
configuration. Because all COP control registers are write-once only, the COP_Init function
and the COP_Disable function can be called only once. A second call has no effect.

Example:

cop_config_t config;
COP_GetDefaultConfig(&config);
config.timeoutCycles = kCOP_2Power8CyclesOr2Power16Cycles;
COP_Init(sim_base,&config);

Parameters
• base – SIM peripheral base address.

• config – The configuration of COP.

124 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline void COP_Disable(SIM_Type *base)
De-initializes the COP module. This dedicated function is not provided. Instead, the
COP_Disable function can be used to disable the COP.

Disables the COP module.

This function disables the COP Watchdog. Note: The COP configuration register is a write-
once after reset. To disable the COP Watchdog, call this function first.

Parameters
• base – SIM peripheral base address.

void COP_Refresh(SIM_Type *base)
Refreshes the COP timer.

This function feeds the COP.

Parameters
• base – SIM peripheral base address.

FSL_COP_DRIVER_VERSION
COP driver version 2.0.2.

COP_FIRST_BYTE_OF_REFRESH
First byte of refresh sequence

COP_SECOND_BYTE_OF_REFRESH
Second byte of refresh sequence

enum _cop_clock_source
COP clock source selection.

Values:

enumerator kCOP_LpoClock
COP clock sourced from LPO

enumerator kCOP_McgIrClock
COP clock sourced from MCGIRCLK

enumerator kCOP_OscErClock
COP clock sourced from OSCERCLK

enumerator kCOP_BusClock
COP clock sourced from Bus clock

enum _cop_timeout_cycles
Define the COP timeout cycles.

Values:

enumerator kCOP_2Power5CyclesOr2Power13Cycles
2^5 or 2^13 clock cycles

enumerator kCOP_2Power8CyclesOr2Power16Cycles
2^8 or 2^16 clock cycles

enumerator kCOP_2Power10CyclesOr2Power18Cycles
2^10 or 2^18 clock cycles

enum _cop_timeout_mode
Define the COP timeout mode.

Values:

2.4. COP: Watchdog Driver 125

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCOP_ShortTimeoutMode
COP selects long timeout

enumerator kCOP_LongTimeoutMode
COP selects short timeout

typedef enum _cop_clock_source cop_clock_source_t
COP clock source selection.

typedef enum _cop_timeout_cycles cop_timeout_cycles_t
Define the COP timeout cycles.

typedef enum _cop_timeout_mode cop_timeout_mode_t
Define the COP timeout mode.

typedef struct _cop_config cop_config_t
Describes COP configuration structure.

struct _cop_config
#include <fsl_cop.h> Describes COP configuration structure.

Public Members

bool enableWindowMode
COP run mode: window mode or normal mode

cop_timeout_mode_t timeoutMode
COP timeout mode: long timeout or short timeout

bool enableStop
Enable or disable COP in STOP mode

bool enableDebug
Enable or disable COP in DEBUG mode

cop_clock_source_t clockSource
Set COP clock source

cop_timeout_cycles_t timeoutCycles
Set COP timeout value

2.5 FGPIO Driver

void FGPIO_PinInit(FGPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)
Initializes a FGPIO pin used by the board.

To initialize the FGPIO driver, define a pin configuration, as either input or output, in the
user file. Then, call the FGPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration:

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =

(continues on next page)

126 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• pin – FGPIO port pin number

• config – FGPIO pin configuration pointer

static inline void FGPIO_PinWrite(FGPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the multiple FGPIO pins to the logic 1 or 0.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• pin – FGPIO pin number

• output – FGPIOpin output logic level.

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline void FGPIO_PortSet(FGPIO_Type *base, uint32_t mask)
Sets the output level of the multiple FGPIO pins to the logic 1.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• mask – FGPIO pin number macro

static inline void FGPIO_PortClear(FGPIO_Type *base, uint32_t mask)
Sets the output level of the multiple FGPIO pins to the logic 0.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• mask – FGPIO pin number macro

static inline void FGPIO_PortToggle(FGPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple FGPIO pins.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• mask – FGPIO pin number macro

static inline uint32_t FGPIO_PinRead(FGPIO_Type *base, uint32_t pin)
Reads the current input value of the FGPIO port.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

2.5. FGPIO Driver 127

MCUXpresso SDK Documentation, Release 25.12.00

• pin – FGPIO pin number

Return values
FGPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

uint32_t FGPIO_PortGetInterruptFlags(FGPIO_Type *base)
Reads the FGPIO port interrupt status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared au-
tomatically at the completion of the requested DMA transfer. Otherwise, the flag remains
set until a logic one is written to that flag. If configured for a level-sensitive interrupt that
remains asserted, the flag is set again immediately.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

Return values
The – current FGPIO port interrupt status flags, for example, 0x00010001
means the pin 0 and 17 have the interrupt.

void FGPIO_PortClearInterruptFlags(FGPIO_Type *base, uint32_t mask)
Clears the multiple FGPIO pin interrupt status flag.

Parameters
• base – FGPIO peripheral base pointer (FGPIOA, FGPIOB, FGPIOC, and so

on.)

• mask – FGPIO pin number macro

2.6 C90TFS Flash Driver

2.7 ftfx adapter

2.8 Ftftx CACHE Driver

enum _ftfx_cache_ram_func_constants
Constants for execute-in-RAM flash function.

Values:

enumerator kFTFx_CACHE_RamFuncMaxSizeInWords
The maximum size of execute-in-RAM function.

typedef struct _flash_prefetch_speculation_status ftfx_prefetch_speculation_status_t
FTFx prefetch speculation status.

typedef struct _ftfx_cache_config ftfx_cache_config_t
FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

128 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

status_t FTFx_CACHE_Init(ftfx_cache_config_t *config)
Initializes the global FTFx cache structure members.

This function checks and initializes the Flash module for the other FTFx cache APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

status_t FTFx_CACHE_ClearCachePrefetchSpeculation(ftfx_cache_config_t *config, bool
isPreProcess)

Process the cache/prefetch/speculation to the flash.

Parameters
• config – A pointer to the storage for the driver runtime state.

• isPreProcess – The possible option used to control flash
cache/prefetch/speculation

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – Invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

status_t FTFx_CACHE_PflashSetPrefetchSpeculation(ftfx_prefetch_speculation_status_t
*speculationStatus)

Sets the PFlash prefetch speculation to the intended speculation status.

Parameters
• speculationStatus – The expected protect status to set to the PFlash protec-

tion register. Each bit is

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidSpeculationOption – An invalid speculation option ar-
gument is provided.

status_t FTFx_CACHE_PflashGetPrefetchSpeculation(ftfx_prefetch_speculation_status_t
*speculationStatus)

Gets the PFlash prefetch speculation status.

Parameters
• speculationStatus – Speculation status returned by the PFlash IP.

Return values
kStatus_FTFx_Success – API was executed successfully.

struct _flash_prefetch_speculation_status
#include <fsl_ftfx_cache.h> FTFx prefetch speculation status.

2.8. Ftftx CACHE Driver 129

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool instructionOff
Instruction speculation.

bool dataOff
Data speculation.

union function_bit_operation_ptr_t
#include <fsl_ftfx_cache.h>

Public Members

uint32_t commadAddr

void (*callFlashCommand)(volatile uint32_t *base, uint32_t bitMask, uint32_t bitShift,
uint32_t bitValue)

struct _ftfx_cache_config
#include <fsl_ftfx_cache.h> FTFx cache driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

Public Members

uint8_t flashMemoryIndex
0 - primary flash; 1 - secondary flash

function_bit_operation_ptr_t bitOperFuncAddr
An buffer point to the flash execute-in-RAM function.

2.9 ftfx controller

FTFx driver status codes.

Values:

enumerator kStatus_FTFx_Success
API is executed successfully

enumerator kStatus_FTFx_InvalidArgument
Invalid argument

enumerator kStatus_FTFx_SizeError
Error size

enumerator kStatus_FTFx_AlignmentError
Parameter is not aligned with the specified baseline

enumerator kStatus_FTFx_AddressError
Address is out of range

enumerator kStatus_FTFx_AccessError
Invalid instruction codes and out-of bound addresses

130 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_FTFx_ProtectionViolation
The program/erase operation is requested to execute on protected areas

enumerator kStatus_FTFx_CommandFailure
Run-time error during command execution.

enumerator kStatus_FTFx_UnknownProperty
Unknown property.

enumerator kStatus_FTFx_EraseKeyError
API erase key is invalid.

enumerator kStatus_FTFx_RegionExecuteOnly
The current region is execute-only.

enumerator kStatus_FTFx_ExecuteInRamFunctionNotReady
Execute-in-RAM function is not available.

enumerator kStatus_FTFx_PartitionStatusUpdateFailure
Failed to update partition status.

enumerator kStatus_FTFx_SetFlexramAsEepromError
Failed to set FlexRAM as EEPROM.

enumerator kStatus_FTFx_RecoverFlexramAsRamError
Failed to recover FlexRAM as RAM.

enumerator kStatus_FTFx_SetFlexramAsRamError
Failed to set FlexRAM as RAM.

enumerator kStatus_FTFx_RecoverFlexramAsEepromError
Failed to recover FlexRAM as EEPROM.

enumerator kStatus_FTFx_CommandNotSupported
Flash API is not supported.

enumerator kStatus_FTFx_SwapSystemNotInUninitialized
Swap system is not in an uninitialzed state.

enumerator kStatus_FTFx_SwapIndicatorAddressError
The swap indicator address is invalid.

enumerator kStatus_FTFx_ReadOnlyProperty
The flash property is read-only.

enumerator kStatus_FTFx_InvalidPropertyValue
The flash property value is out of range.

enumerator kStatus_FTFx_InvalidSpeculationOption
The option of flash prefetch speculation is invalid.

enumerator kStatus_FTFx_CommandOperationInProgress
The option of flash command is processing.

enum _ftfx_driver_api_keys
Enumeration for FTFx driver API keys.

Note: The resulting value is built with a byte order such that the string being readable in
expected order when viewed in a hex editor, if the value is treated as a 32-bit little endian
value.

Values:

2.9. ftfx controller 131

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFTFx_ApiEraseKey
Key value used to validate all FTFx erase APIs.

void FTFx_API_Init(ftfx_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

status_t FTFx_API_UpdateFlexnvmPartitionStatus(ftfx_config_t *config)
Updates FlexNVM memory partition status according to data flash 0 IFR.

This function updates FlexNVM memory partition status.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FTFx_CMD_Erase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the flash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

• kStatus_FTFx_EraseKeyError – The API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

132 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_EraseSectorNonBlocking(ftfx_config_t *config, uint32_t start, uint32_t key)
Erases the flash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

• kStatus_FTFx_EraseKeyError – The API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

status_t FTFx_CMD_EraseAll(ftfx_config_t *config, uint32_t key)
Erases entire flash.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FTFx_CMD_EraseAllUnsecure(ftfx_config_t *config, uint32_t key)
Erases the entire flash, including protected sectors.

Parameters
• config – Pointer to the storage for the driver runtime state.

2.9. ftfx controller 133

MCUXpresso SDK Documentation, Release 25.12.00

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FTFx_CMD_EraseAllExecuteOnlySegments(ftfx_config_t *config, uint32_t key)
Erases all program flash execute-only segments defined by the FXACC registers.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_Program(ftfx_config_t *config, uint32_t start, const uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

134 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_ProgramOnce(ftfx_config_t *config, uint32_t index, const uint8_t *src,
uint32_t lengthInBytes)

Programs Program Once Field through parameters.

This function programs the Program Once Field with the desired data for a given flash area
as determined by the index and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• index – The index indicating which area of the Program Once Field to be
programmed.

• src – A pointer to the source buffer of data that is to be programmed into
the Program Once Field.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_ProgramSection(ftfx_config_t *config, uint32_t start, const uint8_t *src,
uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section
command.

2.9. ftfx controller 135

MCUXpresso SDK Documentation, Release 25.12.00

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM
as EEPROM.

status_t FTFx_CMD_ProgramPartition(ftfx_config_t *config, ftfx_partition_flexram_load_opt_t
option, uint32_t eepromDataSizeCode, uint32_t
flexnvmPartitionCode, uint8_t CSEcKeySize, uint8_t CFE)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of
both and initializes the FlexRAM.

Parameters
• config – Pointer to storage for the driver runtime state.

• option – The option used to set FlexRAM load behavior during reset.

• eepromDataSizeCode – Determines the amount of FlexRAM used in each of
the available EEPROM subsystems.

• flexnvmPartitionCode – Specifies how to split the FlexNVM block between
data flash memory and EEPROM backup memory supporting EEPROM
functions.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – Invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

136 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FTFx_CMD_ReadOnce(ftfx_config_t *config, uint32_t index, uint8_t *dst, uint32_t
lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• index – The index indicating the area of program once field to be read.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_ReadResource(ftfx_config_t *config, uint32_t start, uint8_t *dst, uint32_t
lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
read. Must be word-aligned.

• option – The resource option which indicates which area should be read
back.

Return values

2.9. ftfx controller 137

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_VerifyErase(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes,
ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_VerifyEraseAll(ftfx_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

138 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_VerifyEraseAllExecuteOnlySegments(ftfx_config_t *config,
ftfx_margin_value_t margin)

Verifies whether the program flash execute-only segments have been erased to the specified
read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_VerifyProgram(ftfx_config_t *config, uint32_t start, uint32_t lengthInBytes,
const uint8_t *expectedData, ftfx_margin_value_t margin,
uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• expectedData – A pointer to the expected data that is to be verified against.

• margin – Read margin choice.

2.9. ftfx controller 139

MCUXpresso SDK Documentation, Release 25.12.00

• failedAddress – A pointer to the returned failing address.

• failedData – A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBx registers. In this case, zeros are
returned upon failure.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_REG_GetSecurityState(ftfx_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

Parameters
• config – A pointer to storage for the driver runtime state.

• state – A pointer to the value returned for the current security status code:

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FTFx_CMD_SecurityBypass(ftfx_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided
backdoor key with ones in the flash configuration field.

Parameters
• config – A pointer to the storage for the driver runtime state.

• backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

140 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_SetFlexramFunction(ftfx_config_t *config, ftfx_flexram_func_opt_t option)
Sets the FlexRAM function command.

Parameters
• config – A pointer to the storage for the driver runtime state.

• option – The option used to set the work mode of FlexRAM.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FTFx_CMD_SwapControl(ftfx_config_t *config, uint32_t address,
ftfx_swap_control_opt_t option, ftfx_swap_state_config_t
*returnInfo)

Configures the Swap function or checks the swap state of the Flash module.

Parameters
• config – A pointer to the storage for the driver runtime state.

• address – Address used to configure the flash Swap function.

• option – The possible option used to configure Flash Swap function or check
the flash Swap status

• returnInfo – A pointer to the data which is used to return the information
of flash Swap.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is in-
valid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

2.9. ftfx controller 141

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

enum _ftfx_partition_flexram_load_option
Enumeration for the FlexRAM load during reset option.

Values:

enumerator kFTFx_PartitionFlexramLoadOptLoadedWithValidEepromData
FlexRAM is loaded with valid EEPROM data during reset sequence.

enumerator kFTFx_PartitionFlexramLoadOptNotLoaded
FlexRAM is not loaded during reset sequence.

enum _ftfx_read_resource_opt
Enumeration for the two possible options of flash read resource command.

Values:

enumerator kFTFx_ResourceOptionFlashIfr
Select code for Program flash 0 IFR, Program flash swap 0 IFR, Data flash 0 IFR

enumerator kFTFx_ResourceOptionVersionId
Select code for the version ID

enum _ftfx_margin_value
Enumeration for supported FTFx margin levels.

Values:

enumerator kFTFx_MarginValueNormal
Use the ‘normal’ read level for 1s.

enumerator kFTFx_MarginValueUser
Apply the ‘User’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueFactory
Apply the ‘Factory’ margin to the normal read-1 level.

enumerator kFTFx_MarginValueInvalid
Not real margin level, Used to determine the range of valid margin level.

enum _ftfx_security_state
Enumeration for the three possible FTFx security states.

Values:

enumerator kFTFx_SecurityStateNotSecure
Flash is not secure.

enumerator kFTFx_SecurityStateBackdoorEnabled
Flash backdoor is enabled.

enumerator kFTFx_SecurityStateBackdoorDisabled
Flash backdoor is disabled.

enum _ftfx_flexram_function_option
Enumeration for the two possilbe options of set FlexRAM function command.

Values:

enumerator kFTFx_FlexramFuncOptAvailableAsRam
An option used to make FlexRAM available as RAM

142 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFTFx_FlexramFuncOptEepromQuickWriteRecovery
An option used to complete interrupted EEPROM quick write process

enumerator kFTFx_FlexramFuncOptEepromQuickWriteStatus
An option used to make EEPROM quick write status query

enumerator kFTFx_FlexramFuncOptAvailableForEepromQuickWrite
An option used to make FlexRAM available for EEPROM in Quick Write mode

enumerator kFTFx_FlexramFuncOptAvailableForEeprom
An option used to make FlexRAM available for EEPROM

enum _flash_acceleration_ram_property
Enumeration for acceleration ram property.

Values:

enumerator kFLASH_AccelerationRamSize

enum _ftfx_swap_control_option
Enumeration for the possible options of Swap control commands.

Values:

enumerator kFTFx_SwapControlOptionIntializeSystem
An option used to initialize the Swap system

enumerator kFTFx_SwapControlOptionSetInUpdateState
An option used to set the Swap in an update state

enumerator kFTFx_SwapControlOptionSetInCompleteState
An option used to set the Swap in a complete state

enumerator kFTFx_SwapControlOptionReportStatus
An option used to report the Swap status

enumerator kFTFx_SwapControlOptionDisableSystem
An option used to disable the Swap status

enum _ftfx_swap_state
Enumeration for the possible flash Swap status.

Values:

enumerator kFTFx_SwapStateUninitialized
Flash Swap system is in an uninitialized state.

enumerator kFTFx_SwapStateReady
Flash Swap system is in a ready state.

enumerator kFTFx_SwapStateUpdate
Flash Swap system is in an update state.

enumerator kFTFx_SwapStateUpdateErased
Flash Swap system is in an updateErased state.

enumerator kFTFx_SwapStateComplete
Flash Swap system is in a complete state.

enumerator kFTFx_SwapStateDisabled
Flash Swap system is in a disabled state.

2.9. ftfx controller 143

MCUXpresso SDK Documentation, Release 25.12.00

enum _ftfx_swap_block_status
Enumeration for the possible flash Swap block status.

Values:

enumerator kFTFx_SwapBlockStatusLowerHalfProgramBlocksAtZero
Swap block status is that lower half program block at zero.

enumerator kFTFx_SwapBlockStatusUpperHalfProgramBlocksAtZero
Swap block status is that upper half program block at zero.

enum _ftfx_memory_type
Enumeration for FTFx memory type.

Values:

enumerator kFTFx_MemTypePflash

enumerator kFTFx_MemTypeFlexnvm

typedef enum _ftfx_partition_flexram_load_option ftfx_partition_flexram_load_opt_t
Enumeration for the FlexRAM load during reset option.

typedef enum _ftfx_read_resource_opt ftfx_read_resource_opt_t
Enumeration for the two possible options of flash read resource command.

typedef enum _ftfx_margin_value ftfx_margin_value_t
Enumeration for supported FTFx margin levels.

typedef enum _ftfx_security_state ftfx_security_state_t
Enumeration for the three possible FTFx security states.

typedef enum _ftfx_flexram_function_option ftfx_flexram_func_opt_t
Enumeration for the two possilbe options of set FlexRAM function command.

typedef enum _ftfx_swap_control_option ftfx_swap_control_opt_t
Enumeration for the possible options of Swap control commands.

typedef enum _ftfx_swap_state ftfx_swap_state_t
Enumeration for the possible flash Swap status.

typedef enum _ftfx_swap_block_status ftfx_swap_block_status_t
Enumeration for the possible flash Swap block status.

typedef struct _ftfx_swap_state_config ftfx_swap_state_config_t
Flash Swap information.

typedef struct _ftfx_special_mem ftfx_spec_mem_t
ftfx special memory access information.

typedef struct _ftfx_mem_descriptor ftfx_mem_desc_t
Flash memory descriptor.

typedef struct _ftfx_ops_config ftfx_ops_config_t
Active FTFx information for the current operation.

typedef struct _ftfx_ifr_descriptor ftfx_ifr_desc_t
Flash IFR memory descriptor.

typedef struct _ftfx_config ftfx_config_t
Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

144 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

struct _ftfx_swap_state_config
#include <fsl_ftfx_controller.h> Flash Swap information.

Public Members

ftfx_swap_state_t flashSwapState
The current Swap system status.

ftfx_swap_block_status_t currentSwapBlockStatus
The current Swap block status.

ftfx_swap_block_status_t nextSwapBlockStatus
The next Swap block status.

struct _ftfx_special_mem
#include <fsl_ftfx_controller.h> ftfx special memory access information.

Public Members

uint32_t base
Base address of flash special memory.

uint32_t size
size of flash special memory.

uint32_t count
flash special memory count.

struct _ftfx_mem_descriptor
#include <fsl_ftfx_controller.h> Flash memory descriptor.

Public Members

uint32_t blockBase
A base address of the flash block

uint32_t aliasBlockBase
A base address of the alias flash block

uint32_t totalSize
The size of the flash block.

uint32_t sectorSize
The size in bytes of a sector of flash.

uint32_t blockCount
A number of flash blocks.

struct _ftfx_ops_config
#include <fsl_ftfx_controller.h> Active FTFx information for the current operation.

Public Members

uint32_t convertedAddress
A converted address for the current flash type.

2.9. ftfx controller 145

MCUXpresso SDK Documentation, Release 25.12.00

struct _ftfx_ifr_descriptor
#include <fsl_ftfx_controller.h> Flash IFR memory descriptor.

union function_ptr_t
#include <fsl_ftfx_controller.h>

Public Members

uint32_t commadAddr

void (*callFlashCommand)(volatile uint8_t *FTMRx_fstat)

struct _ftfx_config
#include <fsl_ftfx_controller.h> Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

Public Members

uint32_t flexramBlockBase
The base address of the FlexRAM/acceleration RAM

uint32_t flexramTotalSize
The size of the FlexRAM/acceleration RAM

uint16_t eepromTotalSize
The size of EEPROM area which was partitioned from FlexRAM

function_ptr_t runCmdFuncAddr
An buffer point to the flash execute-in-RAM function.

struct __unnamed3__

Public Members

uint8_t type
Type of flash block.

uint8_t index
Index of flash block.

struct feature

struct addrAligment

struct feature

struct resRange

Public Members

uint8_t versionIdStart
Version ID start address

uint32_t pflashIfrStart
Program Flash 0 IFR start address

146 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t dflashIfrStart
Data Flash 0 IFR start address

uint32_t pflashSwapIfrStart
Program Flash Swap IFR start address

struct idxInfo

2.10 ftfx feature

FTFx_DRIVER_IS_FLASH_RESIDENT
Flash driver location.

Used for the flash resident application.

FTFx_DRIVER_IS_EXPORTED
Flash Driver Export option.

Used for the MCUXpresso SDK application.

FTFx_FLASH1_HAS_PROT_CONTROL
Indicates whether the secondary flash has its own protection register in flash module.

FTFx_FLASH1_HAS_XACC_CONTROL
Indicates whether the secondary flash has its own Execute-Only access register in flash
module.

FTFx_DRIVER_HAS_FLASH1_SUPPORT
Indicates whether the secondary flash is supported in the Flash driver.

FTFx_FLASH_COUNT

FTFx_FLASH1_IS_INDEPENDENT_BLOCK

2.11 Ftftx FLASH Driver

status_t FLASH_Init(flash_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

2.10. ftfx feature 147

MCUXpresso SDK Documentation, Release 25.12.00

status_t FLASH_Erase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes, uint32_t
key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the appropriate

number of flash sectors based on the desired start address and length were
erased successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

• kStatus_FTFx_EraseKeyError – The API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_EraseSectorNonBlocking(flash_config_t *config, uint32_t start, uint32_t key)
Erases the Dflash sectors encompassed by parameters passed into function.

This function erases one flash sector size based on the start address, and it is executed
asynchronously.

NOTE: This function can only erase one flash sector at a time, and the other commands can
be executed after the previous command has been completed.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

148 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

• kStatus_FTFx_EraseKeyError – The API erase key is invalid.

status_t FLASH_EraseAll(flash_config_t *config, uint32_t key)
Erases entire flexnvm.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the all pflash and

flexnvm were erased successfully, the swap and eeprom have been reset
to unconfigured state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FLASH_EraseAllUnsecure(flash_config_t *config, uint32_t key)
Erases the entire flexnvm, including protected sectors.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the protected sec-

tors of flash were reset to unprotected status.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

2.11. Ftftx FLASH Driver 149

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FLASH_Program(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired data

were programed successfully into flash based on desired start address and
length.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_ProgramOnce(flash_config_t *config, uint32_t index, uint8_t *src, uint32_t
lengthInBytes)

Program the Program-Once-Field through parameters.

This function Program the Program-once-feild with given index and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• index – The index indicating the area of program once field to be read.

• src – A pointer to the source buffer of data that is used to store data to be
write.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; The index indicat-

ing the area of program once field was programed successfully.

150 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_ProgramSection(flash_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section
command.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired data

have been programed successfully into flash based on start address and
length.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM
as EEPROM.

status_t FLASH_ReadResource(flash_config_t *config, uint32_t start, uint8_t *dst, uint32_t
lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

2.11. Ftftx FLASH Driver 151

MCUXpresso SDK Documentation, Release 25.12.00

This function reads the flash memory with the desired location for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
read. Must be word-aligned.

• option – The resource option which indicates which area should be read
back.

Return values
• kStatus_FTFx_Success – API was executed successfully; the data have been

read successfully from program flash IFR, data flash IFR space, and the
Version ID field.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_ReadOnce(flash_config_t *config, uint32_t index, uint8_t *dst, uint32_t
lengthInBytes)

Reads the Program Once Field through parameters.

This function reads the read once feild with given index and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• index – The index indicating the area of program once field to be read.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the data have been

successfuly read form Program flash0 IFR map and Program Once field
based on index and length.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

152 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_VerifyErase(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully; the specified

FLASH region has been erased.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_VerifyEraseAll(flash_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully; all program flash

and flexnvm were in erased state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

2.11. Ftftx FLASH Driver 153

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_VerifyProgram(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
const uint8_t *expectedData, ftfx_margin_value_t margin,
uint32_t *failedAddress, uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• expectedData – A pointer to the expected data that is to be verified against.

• margin – Read margin choice.

• failedAddress – A pointer to the returned failing address.

• failedData – A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBx registers. In this case, zeros are
returned upon failure.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired data

have been successfully programed into specified FLASH region.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_GetSecurityState(flash_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

154 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• config – A pointer to storage for the driver runtime state.

• state – A pointer to the value returned for the current security status code:

Return values
• kStatus_FTFx_Success – API was executed successfully; the security state

of flash was stored to state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_SecurityBypass(flash_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided
backdoor key with ones in the flash configuration field.

Parameters
• config – A pointer to the storage for the driver runtime state.

• backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLASH_SetFlexramFunction(flash_config_t *config, ftfx_flexram_func_opt_t option)
Sets the FlexRAM function command.

Parameters
• config – A pointer to the storage for the driver runtime state.

• option – The option used to set the work mode of FlexRAM.

Return values
• kStatus_FTFx_Success – API was executed successfully; the FlexRAM has

been successfully configured as RAM or EEPROM.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

2.11. Ftftx FLASH Driver 155

MCUXpresso SDK Documentation, Release 25.12.00

status_t FLASH_Swap(flash_config_t *config, uint32_t address, bool isSetEnable)
Swaps the lower half flash with the higher half flash.

Parameters
• config – A pointer to the storage for the driver runtime state.

• address – Address used to configure the flash swap function

• isSetEnable – The possible option used to configure the Flash Swap function
or check the flash Swap status.

Return values
• kStatus_FTFx_Success – API was executed successfully; the lower half

flash and higher half flash have been swaped.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_SwapIndicatorAddressError – Swap indicator address is in-
valid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_SwapSystemNotInUninitialized – Swap system is not in an
uninitialized state.

status_t FLASH_IsProtected(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_prot_state_t *protection_state)

Returns the protection state of the desired flash area via the pointer passed into the func-
tion.

This function retrieves the current flash protect status for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be checked. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
checked. Must be word-aligned.

• protection_state – A pointer to the value returned for the current protection
status code for the desired flash area.

Return values
• kStatus_FTFx_Success – API was executed successfully; the protection

state of specified FLASH region was stored to protection_state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

156 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_IsExecuteOnly(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
flash_xacc_state_t *access_state)

Returns the access state of the desired flash area via the pointer passed into the function.

This function retrieves the current flash access status for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be checked. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
checked. Must be word-aligned.

• access_state – A pointer to the value returned for the current access status
code for the desired flash area.

Return values
• kStatus_FTFx_Success – API was executed successfully; the executeOnly

state of specified FLASH region was stored to access_state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – The parameter is not aligned to the spec-
ified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

status_t FLASH_PflashSetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)
Sets the PFlash Protection to the intended protection status.

Parameters
• config – A pointer to storage for the driver runtime state.

• protectStatus – The expected protect status to set to the PFlash protection
register. Each bit is corresponding to protection of 1/32(64) of the total
PFlash. The least significant bit is corresponding to the lowest address
area of PFlash. The most significant bit is corresponding to the highest
address area of PFlash. There are two possible cases as shown below: 0:
this area is protected. 1: this area is unprotected.

Return values
• kStatus_FTFx_Success – API was executed successfully; the specified

FLASH region is protected.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FLASH_PflashGetProtection(flash_config_t *config, pflash_prot_status_t *protectStatus)
Gets the PFlash protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – Protect status returned by the PFlash IP. Each bit is corre-
sponding to the protection of 1/32(64) of the total PFlash. The least signif-
icant bit corresponds to the lowest address area of the PFlash. The most
significant bit corresponds to the highest address area of PFlash. There

2.11. Ftftx FLASH Driver 157

MCUXpresso SDK Documentation, Release 25.12.00

are two possible cases as shown below: 0: this area is protected. 1: this
area is unprotected.

Return values
• kStatus_FTFx_Success – API was executed successfully; the Protection

state was stored to protectStatus;

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLASH_GetProperty(flash_config_t *config, flash_property_tag_t whichProperty,
uint32_t *value)

Returns the desired flash property.

Parameters
• config – A pointer to the storage for the driver runtime state.

• whichProperty – The desired property from the list of properties in enum
flash_property_tag_t

• value – A pointer to the value returned for the desired flash property.

Return values
• kStatus_FTFx_Success – API was executed successfully; the flash property

was stored to value.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_UnknownProperty – An unknown property tag.

status_t FLASH_GetCommandState(void)
Get previous command status.

This function is used to obtain the execution status of the previous command.

Return values
• kStatus_FTFx_Success – The previous command is executed successfully.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

FSL_FLASH_DRIVER_VERSION
Flash driver version for SDK.

Version 3.3.0.

FSL_FLASH_DRIVER_VERSION_ROM
Flash driver version for ROM.

Version 3.0.0.

enum _flash_protection_state
Enumeration for the three possible flash protection levels.

Values:

enumerator kFLASH_ProtectionStateUnprotected
Flash region is not protected.

158 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLASH_ProtectionStateProtected
Flash region is protected.

enumerator kFLASH_ProtectionStateMixed
Flash is mixed with protected and unprotected region.

enum _flash_execute_only_access_state
Enumeration for the three possible flash execute access levels.

Values:

enumerator kFLASH_AccessStateUnLimited
Flash region is unlimited.

enumerator kFLASH_AccessStateExecuteOnly
Flash region is execute only.

enumerator kFLASH_AccessStateMixed
Flash is mixed with unlimited and execute only region.

enum _flash_property_tag
Enumeration for various flash properties.

Values:

enumerator kFLASH_PropertyPflash0SectorSize
Pflash sector size property.

enumerator kFLASH_PropertyPflash0TotalSize
Pflash total size property.

enumerator kFLASH_PropertyPflash0BlockSize
Pflash block size property.

enumerator kFLASH_PropertyPflash0BlockCount
Pflash block count property.

enumerator kFLASH_PropertyPflash0BlockBaseAddr
Pflash block base address property.

enumerator kFLASH_PropertyPflash0FacSupport
Pflash fac support property.

enumerator kFLASH_PropertyPflash0AccessSegmentSize
Pflash access segment size property.

enumerator kFLASH_PropertyPflash0AccessSegmentCount
Pflash access segment count property.

enumerator kFLASH_PropertyPflash1SectorSize
Pflash sector size property.

enumerator kFLASH_PropertyPflash1TotalSize
Pflash total size property.

enumerator kFLASH_PropertyPflash1BlockSize
Pflash block size property.

enumerator kFLASH_PropertyPflash1BlockCount
Pflash block count property.

enumerator kFLASH_PropertyPflash1BlockBaseAddr
Pflash block base address property.

2.11. Ftftx FLASH Driver 159

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLASH_PropertyPflash1FacSupport
Pflash fac support property.

enumerator kFLASH_PropertyPflash1AccessSegmentSize
Pflash access segment size property.

enumerator kFLASH_PropertyPflash1AccessSegmentCount
Pflash access segment count property.

enumerator kFLASH_PropertyFlexRamBlockBaseAddr
FlexRam block base address property.

enumerator kFLASH_PropertyFlexRamTotalSize
FlexRam total size property.

typedef enum _flash_protection_state flash_prot_state_t
Enumeration for the three possible flash protection levels.

typedef union _pflash_protection_status pflash_prot_status_t
PFlash protection status.

typedef enum _flash_execute_only_access_state flash_xacc_state_t
Enumeration for the three possible flash execute access levels.

typedef enum _flash_property_tag flash_property_tag_t
Enumeration for various flash properties.

typedef struct _flash_config flash_config_t
Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

kStatus_FLASH_Success

kFLASH_ApiEraseKey

union _pflash_protection_status
#include <fsl_ftfx_flash.h> PFlash protection status.

Public Members

uint32_t protl
PROT[31:0] .

uint32_t proth
PROT[63:32].

uint8_t protsl
PROTS[7:0] .

uint8_t protsh
PROTS[15:8] .

uint8_t reserved[2]

struct _flash_config
#include <fsl_ftfx_flash.h> Flash driver state information.

An instance of this structure is allocated by the user of the flash driver and passed into each
of the driver APIs.

160 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

2.12 Ftftx FLEXNVM Driver

status_t FLEXNVM_Init(flexnvm_config_t *config)
Initializes the global flash properties structure members.

This function checks and initializes the Flash module for the other Flash APIs.

Parameters
• config – Pointer to the storage for the driver runtime state.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FLEXNVM_DflashErase(flexnvm_config_t *config, uint32_t start, uint32_t lengthInBytes,
uint32_t key)

Erases the Dflash sectors encompassed by parameters passed into function.

This function erases the appropriate number of flash sectors based on the desired start
address and length.

Parameters
• config – The pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be erased. The start
address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words) to be
erased. Must be word-aligned.

• key – The value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the appropriate

number of date flash sectors based on the desired start address and length
were erased successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – The parameter is not aligned with the
specified baseline.

• kStatus_FTFx_AddressError – The address is out of range.

• kStatus_FTFx_EraseKeyError – The API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

2.12. Ftftx FLEXNVM Driver 161

MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXNVM_EraseAll(flexnvm_config_t *config, uint32_t key)
Erases entire flexnvm.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the entire flexnvm

has been erased successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FLEXNVM_EraseAllUnsecure(flexnvm_config_t *config, uint32_t key)
Erases the entire flexnvm, including protected sectors.

Parameters
• config – Pointer to the storage for the driver runtime state.

• key – A value used to validate all flash erase APIs.

Return values
• kStatus_FTFx_Success – API was executed successfully; the flexnvm is not

in securityi state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_EraseKeyError – API erase key is invalid.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_PartitionStatusUpdateFailure – Failed to update the partition
status.

status_t FLEXNVM_DflashProgram(flexnvm_config_t *config, uint32_t start, uint8_t *src,
uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters.

162 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and the length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired date

have been successfully programed into specified date flash region.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_DflashProgramSection(flexnvm_config_t *config, uint32_t start, uint8_t *src,
uint32_t lengthInBytes)

Programs flash with data at locations passed in through parameters via the Program Section
command.

This function programs the flash memory with the desired data for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired date

have been successfully programed into specified date flash area.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

2.12. Ftftx FLEXNVM Driver 163

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_SetFlexramAsRamError – Failed to set flexram as RAM.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

• kStatus_FTFx_RecoverFlexramAsEepromError – Failed to recover FlexRAM
as EEPROM.

status_t FLEXNVM_ProgramPartition(flexnvm_config_t *config,
ftfx_partition_flexram_load_opt_t option, uint32_t
eepromDataSizeCode, uint32_t flexnvmPartitionCode)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of
both and initializes the FlexRAM.

Parameters
• config – Pointer to storage for the driver runtime state.

• option – The option used to set FlexRAM load behavior during reset.

• eepromDataSizeCode – Determines the amount of FlexRAM used in each of
the available EEPROM subsystems.

• flexnvmPartitionCode – Specifies how to split the FlexNVM block between
data flash memory and EEPROM backup memory supporting EEPROM
functions.

Return values
• kStatus_FTFx_Success – API was executed successfully; the FlexNVM block

for use as data flash, EEPROM backup, or a combination of both have been
Prepared.

• kStatus_FTFx_InvalidArgument – Invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FLEXNVM_ProgramPartition_CSE(flexnvm_config_t *config,
ftfx_partition_flexram_load_opt_t option, uint32_t
eepromDataSizeCode, uint32_t
flexnvmPartitionCode, uint8_t CSEcKeySize, uint8_t
SFE)

Prepares the FlexNVM block for use as data flash, EEPROM backup, or a combination of
both and initializes the FlexRAM. This is the CSE enabled version for IP’s like FTFC.

Parameters

164 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• config – Pointer to storage for the driver runtime state.

• option – The option used to set FlexRAM load behavior during reset.

• eepromDataSizeCode – Determines the amount of FlexRAM used in each of
the available EEPROM subsystems.

• flexnvmPartitionCode – Specifies how to split the FlexNVM block between
data flash memory and EEPROM backup memory supporting EEPROM
functions.

• CSEcKeySize – CSEc/SHE key size, see RM for details and possible values

• SFE – Security Flag Extension (SFE), see RM for details and possible values

Return values
• kStatus_FTFx_Success – API was executed successfully; the FlexNVM block

for use as data flash, EEPROM backup, or a combination of both have been
Prepared.

• kStatus_FTFx_InvalidArgument – Invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FLEXNVM_ReadResource(flexnvm_config_t *config, uint32_t start, uint8_t *dst, uint32_t
lengthInBytes, ftfx_read_resource_opt_t option)

Reads the resource with data at locations passed in through parameters.

This function reads the flash memory with the desired location for a given flash area as
determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• dst – A pointer to the destination buffer of data that is used to store data to
be read.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
read. Must be word-aligned.

• option – The resource option which indicates which area should be read
back.

Return values
• kStatus_FTFx_Success – API was executed successfully; the data have been

read successfully from program flash IFR, data flash IFR space, and the
Version ID field

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with the speci-
fied baseline.

2.12. Ftftx FLEXNVM Driver 165

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_DflashVerifyErase(flexnvm_config_t *config, uint32_t start, uint32_t
lengthInBytes, ftfx_margin_value_t margin)

Verifies an erasure of the desired flash area at a specified margin level.

This function checks the appropriate number of flash sectors based on the desired start
address and length to check whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. The
start address does not need to be sector-aligned but must be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully; the specified data

flash region is in erased state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_VerifyEraseAll(flexnvm_config_t *config, ftfx_margin_value_t margin)
Verifies erasure of the entire flash at a specified margin level.

This function checks whether the flash is erased to the specified read margin level.

Parameters
• config – A pointer to the storage for the driver runtime state.

• margin – Read margin choice.

Return values
• kStatus_FTFx_Success – API was executed successfully; the entire flexnvm

region is in erased state.

166 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_DflashVerifyProgram(flexnvm_config_t *config, uint32_t start, uint32_t
lengthInBytes, const uint8_t *expectedData,
ftfx_margin_value_t margin, uint32_t *failedAddress,
uint32_t *failedData)

Verifies programming of the desired flash area at a specified margin level.

This function verifies the data programmed in the flash memory using the Flash Program
Check Command and compares it to the expected data for a given flash area as determined
by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be verified. Must
be word-aligned.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
verified. Must be word-aligned.

• expectedData – A pointer to the expected data that is to be verified against.

• margin – Read margin choice.

• failedAddress – A pointer to the returned failing address.

• failedData – A pointer to the returned failing data. Some derivatives do not
include failed data as part of the FCCOBx registers. In this case, zeros are
returned upon failure.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desired data

hve been programed successfully into specified data flash region.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AlignmentError – Parameter is not aligned with specified
baseline.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

2.12. Ftftx FLEXNVM Driver 167

MCUXpresso SDK Documentation, Release 25.12.00

status_t FLEXNVM_GetSecurityState(flexnvm_config_t *config, ftfx_security_state_t *state)
Returns the security state via the pointer passed into the function.

This function retrieves the current flash security status, including the security enabling
state and the backdoor key enabling state.

Parameters
• config – A pointer to storage for the driver runtime state.

• state – A pointer to the value returned for the current security status code:

Return values
• kStatus_FTFx_Success – API was executed successfully; the security state

of flexnvm was stored to state.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

status_t FLEXNVM_SecurityBypass(flexnvm_config_t *config, const uint8_t *backdoorKey)
Allows users to bypass security with a backdoor key.

If the MCU is in secured state, this function unsecures the MCU by comparing the provided
backdoor key with ones in the flash configuration field.

Parameters
• config – A pointer to the storage for the driver runtime state.

• backdoorKey – A pointer to the user buffer containing the backdoor key.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_SetFlexramFunction(flexnvm_config_t *config, ftfx_flexram_func_opt_t
option)

Sets the FlexRAM function command.

Parameters
• config – A pointer to the storage for the driver runtime state.

• option – The option used to set the work mode of FlexRAM.

Return values
• kStatus_FTFx_Success – API was executed successfully; the FlexRAM has

been successfully configured as RAM or EEPROM

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_ExecuteInRamFunctionNotReady – Execute-in-RAM function
is not available.

• kStatus_FTFx_AccessError – Invalid instruction codes and out-of bounds
addresses.

168 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_CommandFailure – Run-time error during the command ex-
ecution.

status_t FLEXNVM_DflashSetProtection(flexnvm_config_t *config, uint8_t protectStatus)
Sets the DFlash protection to the intended protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – The expected protect status to set to the DFlash protection
register. Each bit corresponds to the protection of the 1/8 of the total
DFlash. The least significant bit corresponds to the lowest address area
of the DFlash. The most significant bit corresponds to the highest address
area of the DFlash. There are two possible cases as shown below: 0: this
area is protected. 1: this area is unprotected.

Return values
• kStatus_FTFx_Success – API was executed successfully; the specified

DFlash region is protected.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_CommandNotSupported – Flash API is not supported.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FLEXNVM_DflashGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)
Gets the DFlash protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – DFlash Protect status returned by the PFlash IP. Each bit
corresponds to the protection of the 1/8 of the total DFlash. The least sig-
nificant bit corresponds to the lowest address area of the DFlash. The most
significant bit corresponds to the highest address area of the DFlash, and
so on. There are two possible cases as below: 0: this area is protected. 1:
this area is unprotected.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_EepromSetProtection(flexnvm_config_t *config, uint8_t protectStatus)
Sets the EEPROM protection to the intended protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – The expected protect status to set to the EEPROM protection
register. Each bit corresponds to the protection of the 1/8 of the total EEP-
ROM. The least significant bit corresponds to the lowest address area of
the EEPROM. The most significant bit corresponds to the highest address
area of EEPROM, and so on. There are two possible cases as shown below:
0: this area is protected. 1: this area is unprotected.

Return values

2.12. Ftftx FLEXNVM Driver 169

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_CommandNotSupported – Flash API is not supported.

• kStatus_FTFx_CommandFailure – Run-time error during command execu-
tion.

status_t FLEXNVM_EepromGetProtection(flexnvm_config_t *config, uint8_t *protectStatus)
Gets the EEPROM protection status.

Parameters
• config – A pointer to the storage for the driver runtime state.

• protectStatus – DFlash Protect status returned by the PFlash IP. Each bit
corresponds to the protection of the 1/8 of the total EEPROM. The least sig-
nificant bit corresponds to the lowest address area of the EEPROM. The
most significant bit corresponds to the highest address area of the EEP-
ROM. There are two possible cases as below: 0: this area is protected. 1:
this area is unprotected.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_CommandNotSupported – Flash API is not supported.

status_t FLEXNVM_GetProperty(flexnvm_config_t *config, flexnvm_property_tag_t
whichProperty, uint32_t *value)

Returns the desired flexnvm property.

Parameters
• config – A pointer to the storage for the driver runtime state.

• whichProperty – The desired property from the list of properties in enum
flexnvm_property_tag_t

• value – A pointer to the value returned for the desired flexnvm property.

Return values
• kStatus_FTFx_Success – API was executed successfully.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_UnknownProperty – An unknown property tag.

enum _flexnvm_property_tag
Enumeration for various flexnvm properties.

Values:

enumerator kFLEXNVM_PropertyDflashSectorSize
Dflash sector size property.

enumerator kFLEXNVM_PropertyDflashTotalSize
Dflash total size property.

enumerator kFLEXNVM_PropertyDflashBlockSize
Dflash block size property.

enumerator kFLEXNVM_PropertyDflashBlockCount
Dflash block count property.

170 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kFLEXNVM_PropertyDflashBlockBaseAddr
Dflash block base address property.

enumerator kFLEXNVM_PropertyAliasDflashBlockBaseAddr
Dflash block base address Alias property.

enumerator kFLEXNVM_PropertyFlexRamBlockBaseAddr
FlexRam block base address property.

enumerator kFLEXNVM_PropertyFlexRamTotalSize
FlexRam total size property.

enumerator kFLEXNVM_PropertyEepromTotalSize
EEPROM total size property.

typedef enum _flexnvm_property_tag flexnvm_property_tag_t
Enumeration for various flexnvm properties.

typedef struct _flexnvm_config flexnvm_config_t
Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into
each of the driver APIs.

status_t FLEXNVM_EepromWrite(flexnvm_config_t *config, uint32_t start, uint8_t *src, uint32_t
lengthInBytes)

Programs the EEPROM with data at locations passed in through parameters.

This function programs the emulated EEPROM with the desired data for a given flash area
as determined by the start address and length.

Parameters
• config – A pointer to the storage for the driver runtime state.

• start – The start address of the desired flash memory to be programmed.
Must be word-aligned.

• src – A pointer to the source buffer of data that is to be programmed into
the flash.

• lengthInBytes – The length, given in bytes (not words or long-words), to be
programmed. Must be word-aligned.

Return values
• kStatus_FTFx_Success – API was executed successfully; the desires data

have been successfully programed into specified eeprom region.

• kStatus_FTFx_InvalidArgument – An invalid argument is provided.

• kStatus_FTFx_AddressError – Address is out of range.

• kStatus_FTFx_SetFlexramAsEepromError – Failed to set flexram as eep-
rom.

• kStatus_FTFx_ProtectionViolation – The program/erase operation is re-
quested to execute on protected areas.

• kStatus_FTFx_RecoverFlexramAsRamError – Failed to recover the
FlexRAM as RAM.

struct _flexnvm_config
#include <fsl_ftfx_flexnvm.h> Flexnvm driver state information.

An instance of this structure is allocated by the user of the Flexnvm driver and passed into
each of the driver APIs.

2.12. Ftftx FLEXNVM Driver 171

MCUXpresso SDK Documentation, Release 25.12.00

2.13 ftfx utilities

ALIGN_DOWN(x, a)
Alignment(down) utility.

ALIGN_UP(x, a)
Alignment(up) utility.

MAKE_VERSION(major, minor, bugfix)
Constructs the version number for drivers.

MAKE_STATUS(group, code)
Constructs a status code value from a group and a code number.

FOUR_CHAR_CODE(a, b, c, d)
Constructs the four character code for the Flash driver API key.

B1P4(b)
bytes2word utility.

B1P3(b)

B1P2(b)

B1P1(b)

B2P3(b)

B2P2(b)

B2P1(b)

B3P2(b)

B3P1(b)

BYTE2WORD_1_3(x, y)

BYTE2WORD_2_2(x, y)

BYTE2WORD_3_1(x, y)

BYTE2WORD_1_1_2(x, y, z)

BYTE2WORD_1_2_1(x, y, z)

BYTE2WORD_2_1_1(x, y, z)

BYTE2WORD_1_1_1_1(x, y, z, w)

2.14 GPIO: General-Purpose Input/Output Driver

FSL_GPIO_DRIVER_VERSION
GPIO driver version.

enum _gpio_pin_direction
GPIO direction definition.

Values:

172 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kGPIO_DigitalInput
Set current pin as digital input

enumerator kGPIO_DigitalOutput
Set current pin as digital output

enum _gpio_checker_attribute
GPIO checker attribute.

Values:

enumerator kGPIO_UsernonsecureRWUsersecureRWPrivilegedsecureRW
User nonsecure:Read+Write; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRWPrivilegedsecureRW
User nonsecure:Read; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRWPrivilegedsecureRW
User nonsecure:None; User Secure:Read+Write; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureRUsersecureRPrivilegedsecureRW
User nonsecure:Read; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureRPrivilegedsecureRW
User nonsecure:None; User Secure:Read; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureRW
User nonsecure:None; User Secure:None; Privileged Secure:Read+Write

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureR
User nonsecure:None; User Secure:None; Privileged Secure:Read

enumerator kGPIO_UsernonsecureNUsersecureNPrivilegedsecureN
User nonsecure:None; User Secure:None; Privileged Secure:None

enumerator kGPIO_IgnoreAttributeCheck
Ignores the attribute check

typedef enum _gpio_pin_direction gpio_pin_direction_t
GPIO direction definition.

typedef enum _gpio_checker_attribute gpio_checker_attribute_t
GPIO checker attribute.

typedef struct _gpio_pin_config gpio_pin_config_t
The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If config-
ured as an input pin, leave the outputConfig unused. Note that in some use cases, the cor-
responding port property should be configured in advance with the PORT_SetPinConfig().

GPIO_FIT_REG(value)

struct _gpio_pin_config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Each pin can only be configured as either an output pin or an input pin at a time. If config-
ured as an input pin, leave the outputConfig unused. Note that in some use cases, the cor-
responding port property should be configured in advance with the PORT_SetPinConfig().

2.14. GPIO: General-Purpose Input/Output Driver 173

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set a default output logic, which has no use in input

2.15 GPIO Driver

void GPIO_PortInit(GPIO_Type *base)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.

Parameters
• base – GPIO peripheral base pointer.

void GPIO_PortDenit(GPIO_Type *base)
Denitializes the GPIO peripheral.

Parameters
• base – GPIO peripheral base pointer.

void GPIO_PinInit(GPIO_Type *base, uint32_t pin, const gpio_pin_config_t *config)
Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, as either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or an output pin configuration.

Define a digital input pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalInput,
0,

}
Define a digital output pin configuration,
gpio_pin_config_t config =
{
kGPIO_DigitalOutput,
0,

}

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• pin – GPIO port pin number

• config – GPIO pin configuration pointer

static inline void GPIO_PinWrite(GPIO_Type *base, uint32_t pin, uint8_t output)
Sets the output level of the multiple GPIO pins to the logic 1 or 0.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• pin – GPIO pin number

• output – GPIO pin output logic level.

174 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

– 0: corresponding pin output low-logic level.

– 1: corresponding pin output high-logic level.

static inline void GPIO_PortSet(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• mask – GPIO pin number macro

static inline void GPIO_PortClear(GPIO_Type *base, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• mask – GPIO pin number macro

static inline void GPIO_PortToggle(GPIO_Type *base, uint32_t mask)
Reverses the current output logic of the multiple GPIO pins.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• mask – GPIO pin number macro

static inline uint32_t GPIO_PinRead(GPIO_Type *base, uint32_t pin)
Reads the current input value of the GPIO port.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• pin – GPIO pin number

Return values
GPIO – port input value

• 0: corresponding pin input low-logic level.

• 1: corresponding pin input high-logic level.

uint32_t GPIO_PortGetInterruptFlags(GPIO_Type *base)
Reads the GPIO port interrupt status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared au-
tomatically at the completion of the requested DMA transfer. Otherwise, the flag remains
set until a logic one is written to that flag. If configured for a level sensitive interrupt that
remains asserted, the flag is set again immediately.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

Return values
The – current GPIO port interrupt status flag, for example, 0x00010001 means
the pin 0 and 17 have the interrupt.

void GPIO_PortClearInterruptFlags(GPIO_Type *base, uint32_t mask)
Clears multiple GPIO pin interrupt status flags.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• mask – GPIO pin number macro

2.15. GPIO Driver 175

MCUXpresso SDK Documentation, Release 25.12.00

void GPIO_CheckAttributeBytes(GPIO_Type *base, gpio_checker_attribute_t attribute)
brief The GPIO module supports a device-specific number of data ports, organized as 32-bit
words/8-bit Bytes. Each 32-bit/8-bit data port includes a GACR register, which defines the
byte-level attributes required for a successful access to the GPIO programming model. If
the GPIO module’s GACR register organized as 32-bit words, the attribute controls for the 4
data bytes in the GACR follow a standard little endian data convention.

Parameters
• base – GPIO peripheral base pointer (GPIOA, GPIOB, GPIOC, and so on.)

• attribute – GPIO checker attribute

2.16 I2C: Inter-Integrated Circuit Driver

2.17 I2C Driver

void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I2C peripheral. Call this API to ungate the I2C clock and configure the I2C
with master configuration.

Note: This API should be called at the beginning of the application. Otherwise, any op-
eration to the I2C module can cause a hard fault because the clock is not enabled. The
configuration structure can be custom filled or it can be set with default values by using
the I2C_MasterGetDefaultConfig(). After calling this API, the master is ready to transfer.
This is an example.

i2c_master_config_t config = {
.enableMaster = true,
.enableStopHold = false,
.highDrive = false,
.baudRate_Bps = 100000,
.glitchFilterWidth = 0
};
I2C_MasterInit(I2C0, &config, 12000000U);

Parameters
• base – I2C base pointer

• masterConfig – A pointer to the master configuration structure

• srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz)
Initializes the I2C peripheral. Call this API to ungate the I2C clock and initialize the I2C with
the slave configuration.

Note: This API should be called at the beginning of the application. Otherwise, any opera-
tion to the I2C module can cause a hard fault because the clock is not enabled. The config-
uration structure can partly be set with default values by I2C_SlaveGetDefaultConfig() or it
can be custom filled by the user. This is an example.

176 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

i2c_slave_config_t config = {
.enableSlave = true,
.enableGeneralCall = false,
.addressingMode = kI2C_Address7bit,
.slaveAddress = 0x1DU,
.enableWakeUp = false,
.enablehighDrive = false,
.enableBaudRateCtl = false,
.sclStopHoldTime_ns = 4000
};
I2C_SlaveInit(I2C0, &config, 12000000U);

Parameters
• base – I2C base pointer

• slaveConfig – A pointer to the slave configuration structure

• srcClock_Hz – I2C peripheral clock frequency in Hz

void I2C_MasterDeinit(I2C_Type *base)
De-initializes the I2C master peripheral. Call this API to gate the I2C clock. The I2C master
module can’t work unless the I2C_MasterInit is called.

Parameters
• base – I2C base pointer

void I2C_SlaveDeinit(I2C_Type *base)
De-initializes the I2C slave peripheral. Calling this API gates the I2C clock. The I2C slave
module can’t work unless the I2C_SlaveInit is called to enable the clock.

Parameters
• base – I2C base pointer

uint32_t I2C_GetInstance(I2C_Type *base)
Get instance number for I2C module.

Parameters
• base – I2C peripheral base address.

void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Sets the I2C master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use
in the I2C_MasterConfigure(). Use the initialized structure unchanged in the
I2C_MasterConfigure() or modify the structure before calling the I2C_MasterConfigure().
This is an example.

i2c_master_config_t config;
I2C_MasterGetDefaultConfig(&config);

Parameters
• masterConfig – A pointer to the master configuration structure.

void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig)
Sets the I2C slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in the
I2C_SlaveConfigure(). Modify fields of the structure before calling the I2C_SlaveConfigure().
This is an example.

2.17. I2C Driver 177

MCUXpresso SDK Documentation, Release 25.12.00

i2c_slave_config_t config;
I2C_SlaveGetDefaultConfig(&config);

Parameters
• slaveConfig – A pointer to the slave configuration structure.

static inline void I2C_Enable(I2C_Type *base, bool enable)
Enables or disables the I2C peripheral operation.

Parameters
• base – I2C base pointer

• enable – Pass true to enable and false to disable the module.

uint32_t I2C_MasterGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline uint32_t I2C_SlaveGetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

Parameters
• base – I2C base pointer

Returns
status flag, use status flag to AND _i2c_flags to get the related status.

static inline void I2C_MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag.

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

– kI2C_StartDetectFlag (if available)

– kI2C_StopDetectFlag (if available)

– kI2C_ArbitrationLostFlag

– kI2C_IntPendingFlagFlag

static inline void I2C_SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared kI2C_ArbitrationLostFlag and
kI2C_IntPendingFlag

Parameters
• base – I2C base pointer

• statusMask – The status flag mask, defined in type i2c_status_flag_t. The
parameter can be any combination of the following values:

178 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

– kI2C_StartDetectFlag (if available)

– kI2C_StopDetectFlag (if available)

– kI2C_ArbitrationLostFlag

– kI2C_IntPendingFlagFlag

void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask)
Enables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

– kI2C_SdaTimeoutInterruptEnable

void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask)
Disables I2C interrupt requests.

Parameters
• base – I2C base pointer

• mask – interrupt source The parameter can be combination of the follow-
ing source if defined:

– kI2C_GlobalInterruptEnable

– kI2C_StopDetectInterruptEnable/kI2C_StartDetectInterruptEnable

– kI2C_SdaTimeoutInterruptEnable

static inline void I2C_EnableDMA(I2C_Type *base, bool enable)
Enables/disables the I2C DMA interrupt.

Parameters
• base – I2C base pointer

• enable – true to enable, false to disable

static inline uint32_t I2C_GetDataRegAddr(I2C_Type *base)
Gets the I2C tx/rx data register address. This API is used to provide a transfer address for
I2C DMA transfer configuration.

Parameters
• base – I2C base pointer

Returns
data register address

void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C master transfer baud rate.

Parameters
• base – I2C base pointer

• baudRate_Bps – the baud rate value in bps

• srcClock_Hz – Source clock

2.17. I2C Driver 179

MCUXpresso SDK Documentation, Release 25.12.00

status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I2C START signal.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy.

status_t I2C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
• kStatus_Success – Successfully send the stop signal.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a REPEATED START on the I2C bus.

Parameters
• base – I2C peripheral base pointer

• address – 7-bit slave device address.

• direction – Master transfer directions(transmit/receive).

Return values
• kStatus_Success – Successfully send the start signal.

• kStatus_I2C_Busy – Current bus is busy but not occupied by current I2C
master.

status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

180 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transaction on the I2C bus.

Note: The I2C_MasterReadBlocking function stops the bus before reading the final byte.
Without stopping the bus prior for the final read, the bus issues another read, resulting in
garbage data being read into the data register.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

• flags – Transfer control flag to decide whether need to send a stop, use
kI2C_TransferDefaultFlag to issue a stop and kI2C_TransferNoStop to not
send a stop.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Timeout – Send stop signal failed, timeout.

status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transaction on the I2C bus.

Parameters
• base – The I2C peripheral base pointer.

• txBuff – The pointer to the data to be transferred.

• txSize – The length in bytes of the data to be transferred.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

status_t I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transaction on the I2C bus.

Parameters
• base – I2C peripheral base pointer.

• rxBuff – The pointer to the data to store the received data.

• rxSize – The length in bytes of the data to be received.

Return values
• kStatus_Success – Successfully complete data receive.

• kStatus_I2C_Timeout – Wait status flag timeout.

status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

2.17. I2C Driver 181

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – I2C peripheral base address.

• xfer – Pointer to the transfer structure.

Return values
• kStatus_Success – Successfully complete the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

• kStatus_I2C_ArbitrationLost – Transfer error, arbitration lost.

• kStataus_I2C_Nak – Transfer error, receive NAK during transfer.

void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure to store the transfer
state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a master interrupt non-blocking transfer on the I2C bus.

Note: Calling the API returns immediately after transfer initiates. The user needs to call
I2C_MasterGetTransferCount to poll the transfer status to check whether the transfer is
finished. If the return status is not kStatus_I2C_Busy, the transfer is finished.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure which stores the transfer
state.

• xfer – pointer to i2c_master_transfer_t structure.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_I2C_Busy – Previous transmission still not finished.

• kStatus_I2C_Timeout – Transfer error, wait signal timeout.

status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Gets the master transfer status during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure which stores the transfer
state.

182 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

status_t I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Aborts an interrupt non-blocking transfer early.

Note: This API can be called at any time when an interrupt non-blocking transfer initiates
to abort the transfer early.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_master_handle_t structure which stores the transfer
state

Return values
• kStatus_I2C_Timeout – Timeout during polling flag.

• kStatus_Success – Successfully abort the transfer.

void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Master interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_master_handle_t structure.

void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle,
i2c_slave_transfer_callback_t callback, void *userData)

Initializes the I2C handle which is used in transactional functions.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure to store the transfer state.

• callback – pointer to user callback function.

• userData – user parameter passed to the callback function.

status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling the I2C_SlaveInit() and I2C_SlaveTransferCreateHandle() to start
processing transactions driven by an I2C master. The slave monitors the I2C bus and passes
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle(). The
callback is always invoked from the interrupt context.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kLPI2C_SlaveReceiveEvent events
are always enabled and do not need to be included in the mask. Alternatively, pass 0 to get
a default set of only the transmit and receive events that are always enabled. In addition,
the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all events.

Parameters

2.17. I2C Driver 183

MCUXpresso SDK Documentation, Release 25.12.00

• base – The I2C peripheral base address.

• handle – Pointer to i2c_slave_handle_t structure which stores the transfer
state.

• eventMask – Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
• kStatus_Success – Slave transfers were successfully started.

• kStatus_I2C_Busy – Slave transfers have already been started on this han-
dle.

void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave transfer.

Note: This API can be called at any time to stop slave for handling the bus events.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure which stores the transfer
state.

status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters
• base – I2C base pointer.

• handle – pointer to i2c_slave_handle_t structure.

• count – Number of bytes transferred so far by the non-blocking transaction.

Return values
• kStatus_InvalidArgument – count is Invalid.

• kStatus_Success – Successfully return the count.

void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Slave interrupt handler.

Parameters
• base – I2C base pointer.

• i2cHandle – pointer to i2c_slave_handle_t structure which stores the trans-
fer state

FSL_I2C_DRIVER_VERSION
I2C driver version.

I2C status return codes.

Values:

enumerator kStatus_I2C_Busy
I2C is busy with current transfer.

184 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_I2C_Idle
Bus is Idle.

enumerator kStatus_I2C_Nak
NAK received during transfer.

enumerator kStatus_I2C_ArbitrationLost
Arbitration lost during transfer.

enumerator kStatus_I2C_Timeout
Timeout polling status flags.

enumerator kStatus_I2C_Addr_Nak
NAK received during the address probe.

enum _i2c_flags
I2C peripheral flags.

Note: These enumerations are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ReceiveNakFlag
I2C receive NAK flag.

enumerator kI2C_IntPendingFlag
I2C interrupt pending flag. This flag can be cleared.

enumerator kI2C_TransferDirectionFlag
I2C transfer direction flag.

enumerator kI2C_RangeAddressMatchFlag
I2C range address match flag.

enumerator kI2C_ArbitrationLostFlag
I2C arbitration lost flag. This flag can be cleared.

enumerator kI2C_BusBusyFlag
I2C bus busy flag.

enumerator kI2C_AddressMatchFlag
I2C address match flag.

enumerator kI2C_TransferCompleteFlag
I2C transfer complete flag.

enumerator kI2C_StopDetectFlag
I2C stop detect flag. This flag can be cleared.

enumerator kI2C_StartDetectFlag
I2C start detect flag. This flag can be cleared.

enum _i2c_interrupt_enable
I2C feature interrupt source.

Values:

enumerator kI2C_GlobalInterruptEnable
I2C global interrupt.

enumerator kI2C_StopDetectInterruptEnable
I2C stop detect interrupt.

2.17. I2C Driver 185

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C_StartStopDetectInterruptEnable
I2C start&stop detect interrupt.

enum _i2c_direction
The direction of master and slave transfers.

Values:

enumerator kI2C_Write
Master transmits to the slave.

enumerator kI2C_Read
Master receives from the slave.

enum _i2c_slave_address_mode
Addressing mode.

Values:

enumerator kI2C_Address7bit
7-bit addressing mode.

enumerator kI2C_RangeMatch
Range address match addressing mode.

enum _i2c_master_transfer_flags
I2C transfer control flag.

Values:

enumerator kI2C_TransferDefaultFlag
A transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_TransferNoStartFlag
A transfer starts without a start signal, only support write only or write+read with no
start flag, do not support read only with no start flag.

enumerator kI2C_TransferRepeatedStartFlag
A transfer starts with a repeated start signal.

enumerator kI2C_TransferNoStopFlag
A transfer ends without a stop signal.

enum _i2c_slave_transfer_event
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C_SlaveTransmitEvent
A callback is requested to provide data to transmit (slave-transmitter role).

186 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C_SlaveReceiveEvent
A callback is requested to provide a buffer in which to place received data (slave-
receiver role).

enumerator kI2C_SlaveTransmitAckEvent
A callback needs to either transmit an ACK or NACK.

enumerator kI2C_SlaveStartEvent
A start/repeated start was detected.

enumerator kI2C_SlaveCompletionEvent
A stop was detected or finished transfer, completing the transfer.

enumerator kI2C_SlaveGenaralcallEvent
Received the general call address after a start or repeated start.

enumerator kI2C_SlaveAllEvents
A bit mask of all available events.

Common sets of flags used by the driver.

Values:

enumerator kClearFlags
All flags which are cleared by the driver upon starting a transfer.

enumerator kIrqFlags

typedef enum _i2c_direction i2c_direction_t
The direction of master and slave transfers.

typedef enum _i2c_slave_address_mode i2c_slave_address_mode_t
Addressing mode.

typedef enum _i2c_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for nonblocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created by
OR’ing together events is passed to I2C_SlaveTransferNonBlocking() to specify which events
to enable. Then, when the slave callback is invoked, it is passed the current event through
its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_master_config i2c_master_config_t
I2C master user configuration.

typedef struct _i2c_slave_config i2c_slave_config_t
I2C slave user configuration.

typedef struct _i2c_master_handle i2c_master_handle_t
I2C master handle typedef.

typedef void (*i2c_master_transfer_callback_t)(I2C_Type *base, i2c_master_handle_t *handle,
status_t status, void *userData)

I2C master transfer callback typedef.

typedef struct _i2c_slave_handle i2c_slave_handle_t
I2C slave handle typedef.

2.17. I2C Driver 187

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _i2c_master_transfer i2c_master_transfer_t
I2C master transfer structure.

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
I2C slave transfer structure.

typedef void (*i2c_slave_transfer_callback_t)(I2C_Type *base, i2c_slave_transfer_t *xfer, void
*userData)

I2C slave transfer callback typedef.

I2C_RETRY_TIMES
Retry times for waiting flag.

I2C_MASTER_FACK_CONTROL
Mater Fast ack control, control if master needs to manually write ack, this is used to low
the speed of transfer for SoCs with feature FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING.

I2C_HAS_STOP_DETECT

struct _i2c_master_config
#include <fsl_i2c.h> I2C master user configuration.

Public Members

bool enableMaster
Enables the I2C peripheral at initialization time.

bool enableStopHold
Controls the stop hold enable.

bool enableDoubleBuffering
Controls double buffer enable; notice that enabling the double buffer disables the clock
stretch.

uint32_t baudRate_Bps
Baud rate configuration of I2C peripheral.

uint8_t glitchFilterWidth
Controls the width of the glitch.

struct _i2c_slave_config
#include <fsl_i2c.h> I2C slave user configuration.

Public Members

bool enableSlave
Enables the I2C peripheral at initialization time.

bool enableGeneralCall
Enables the general call addressing mode.

bool enableWakeUp
Enables/disables waking up MCU from low-power mode.

bool enableDoubleBuffering
Controls a double buffer enable; notice that enabling the double buffer disables the
clock stretch.

bool enableBaudRateCtl
Enables/disables independent slave baud rate on SCL in very fast I2C modes.

188 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint16_t slaveAddress
A slave address configuration.

uint16_t upperAddress
A maximum boundary slave address used in a range matching mode.

i2c_slave_address_mode_t addressingMode
An addressing mode configuration of i2c_slave_address_mode_config_t.

uint32_t sclStopHoldTime_ns
the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data)
while SCL is high (stop condition), SDA hold time and SCL start hold time are also con-
figured according to the SCL stop hold time.

struct _i2c_master_transfer
#include <fsl_i2c.h> I2C master transfer structure.

Public Members

uint32_t flags
A transfer flag which controls the transfer.

uint8_t slaveAddress
7-bit slave address.

i2c_direction_t direction
A transfer direction, read or write.

uint32_t subaddress
A sub address. Transferred MSB first.

uint8_t subaddressSize
A size of the command buffer.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

struct _i2c_master_handle
#include <fsl_i2c.h> I2C master handle structure.

Public Members

i2c_master_transfer_t transfer
I2C master transfer copy.

size_t transferSize
Total bytes to be transferred.

uint8_t state
A transfer state maintained during transfer.

i2c_master_transfer_callback_t completionCallback
A callback function called when the transfer is finished.

void *userData
A callback parameter passed to the callback function.

struct _i2c_slave_transfer
#include <fsl_i2c.h> I2C slave transfer structure.

2.17. I2C Driver 189

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

i2c_slave_transfer_event_t event
A reason that the callback is invoked.

uint8_t *volatile data
A transfer buffer.

volatile size_t dataSize
A transfer size.

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.

size_t transferredCount
A number of bytes actually transferred since the start or since the last repeated start.

struct _i2c_slave_handle
#include <fsl_i2c.h> I2C slave handle structure.

Public Members

volatile bool isBusy
Indicates whether a transfer is busy.

i2c_slave_transfer_t transfer
I2C slave transfer copy.

uint32_t eventMask
A mask of enabled events.

i2c_slave_transfer_callback_t callback
A callback function called at the transfer event.

void *userData
A callback parameter passed to the callback.

2.18 Common Driver

FSL_COMMON_DRIVER_VERSION
common driver version.

DEBUG_CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.

DEBUG_CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.

DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.

190 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

DEBUG_CONSOLE_DEVICE_TYPE_FLEXCOMM
Debug console based on FLEXCOMM.

DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG_CONSOLE_DEVICE_TYPE_VUSART
Debug console based on LPC_VUSART.

DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG_CONSOLE_DEVICE_TYPE_QSCI
Debug console based on QSCI.

MIN(a, b)
Computes the minimum of a and b.

MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.

UINT32_MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)
For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)
For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true , else return false .

SDK_ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)
For the variable at address address, set as newValue value and return old value.

USEC_TO_COUNT(us, clockFreqInHz)
Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

2.18. Common Driver 191

MCUXpresso SDK Documentation, Release 25.12.00

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_BARRIER

SDK_ALIGN(var, alignbytes)
Macro to define a variable with alignbytes alignment

SDK_SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment

Macro to define a variable with L2 cache line size alignment

Macro to change a value to a given size aligned value (rounded up)

SDK_SIZEALIGN_UP(var, alignbytes)
Macro to change a value to a given size aligned value (rounded up), the wrapper of
SDK_SIZEALIGN

SDK_SIZEALIGN_DOWN(var, alignbytes)
Macro to change a value to a given size aligned value (rounded down)

SDK_IS_ALIGNED(var, alignbytes)
Macro to check if a value is aligned to a given size

AT_NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN(var, alignbytes)
Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT_NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT_NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)
Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

AT_CACHE_LINE_SECTION(var)
Define a variable var, which is cache line size aligned and be placed in CacheLineData sec-
tion.

AT_CACHE_LINE_SECTION_INIT(var)
Define a variable var with initial value, which is cache line size aligned and be placed in
CacheLineData.init section.

AT_QUICKACCESS_SECTION_CODE(func)
Place function in a section which can be accessed quickly by core.

AT_QUICKACCESS_SECTION_DATA(var)
Place data in a section which can be accessed quickly by core.

AT_QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes)
Place data in a section which can be accessed quickly by core, and the variable address is
set to align with alignbytes.

192 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

MCUX_RAMFUNC
Function attribute to place function in RAM. For example, to place function my_func in ram,
use like:

MCUX_RAMFUNC my_func

RAMFUNCTION_SECTION_CODE(func)
Place function in ram.

enum _status_groups
Status group numbers.

Values:

enumerator kStatusGroup_Generic
Group number for generic status codes.

enumerator kStatusGroup_FLASH
Group number for FLASH status codes.

enumerator kStatusGroup_LPSPI
Group number for LPSPI status codes.

enumerator kStatusGroup_FLEXIO_SPI
Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_DSPI
Group number for DSPI status codes.

enumerator kStatusGroup_FLEXIO_UART
Group number for FLEXIO UART status codes.

enumerator kStatusGroup_FLEXIO_I2C
Group number for FLEXIO I2C status codes.

enumerator kStatusGroup_LPI2C
Group number for LPI2C status codes.

enumerator kStatusGroup_UART
Group number for UART status codes.

enumerator kStatusGroup_I2C
Group number for UART status codes.

enumerator kStatusGroup_LPSCI
Group number for LPSCI status codes.

enumerator kStatusGroup_LPUART
Group number for LPUART status codes.

enumerator kStatusGroup_SPI
Group number for SPI status code.

enumerator kStatusGroup_XRDC
Group number for XRDC status code.

enumerator kStatusGroup_SEMA42
Group number for SEMA42 status code.

enumerator kStatusGroup_SDHC
Group number for SDHC status code

2.18. Common Driver 193

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_SDMMC
Group number for SDMMC status code

enumerator kStatusGroup_SAI
Group number for SAI status code

enumerator kStatusGroup_MCG
Group number for MCG status codes.

enumerator kStatusGroup_SCG
Group number for SCG status codes.

enumerator kStatusGroup_SDSPI
Group number for SDSPI status codes.

enumerator kStatusGroup_FLEXIO_I2S
Group number for FLEXIO I2S status codes

enumerator kStatusGroup_FLEXIO_MCULCD
Group number for FLEXIO LCD status codes

enumerator kStatusGroup_FLASHIAP
Group number for FLASHIAP status codes

enumerator kStatusGroup_FLEXCOMM_I2C
Group number for FLEXCOMM I2C status codes

enumerator kStatusGroup_I2S
Group number for I2S status codes

enumerator kStatusGroup_IUART
Group number for IUART status codes

enumerator kStatusGroup_CSI
Group number for CSI status codes

enumerator kStatusGroup_MIPI_DSI
Group number for MIPI DSI status codes

enumerator kStatusGroup_SDRAMC
Group number for SDRAMC status codes.

enumerator kStatusGroup_POWER
Group number for POWER status codes.

enumerator kStatusGroup_ENET
Group number for ENET status codes.

enumerator kStatusGroup_PHY
Group number for PHY status codes.

enumerator kStatusGroup_TRGMUX
Group number for TRGMUX status codes.

enumerator kStatusGroup_SMARTCARD
Group number for SMARTCARD status codes.

enumerator kStatusGroup_LMEM
Group number for LMEM status codes.

enumerator kStatusGroup_QSPI
Group number for QSPI status codes.

194 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_DMA
Group number for DMA status codes.

enumerator kStatusGroup_EDMA
Group number for EDMA status codes.

enumerator kStatusGroup_DMAMGR
Group number for DMAMGR status codes.

enumerator kStatusGroup_FLEXCAN
Group number for FlexCAN status codes.

enumerator kStatusGroup_LTC
Group number for LTC status codes.

enumerator kStatusGroup_FLEXIO_CAMERA
Group number for FLEXIO CAMERA status codes.

enumerator kStatusGroup_LPC_SPI
Group number for LPC_SPI status codes.

enumerator kStatusGroup_LPC_USART
Group number for LPC_USART status codes.

enumerator kStatusGroup_DMIC
Group number for DMIC status codes.

enumerator kStatusGroup_SDIF
Group number for SDIF status codes.

enumerator kStatusGroup_SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_OTP
Group number for OTP status codes.

enumerator kStatusGroup_MCAN
Group number for MCAN status codes.

enumerator kStatusGroup_CAAM
Group number for CAAM status codes.

enumerator kStatusGroup_ECSPI
Group number for ECSPI status codes.

enumerator kStatusGroup_USDHC
Group number for USDHC status codes.

enumerator kStatusGroup_LPC_I2C
Group number for LPC_I2C status codes.

enumerator kStatusGroup_DCP
Group number for DCP status codes.

enumerator kStatusGroup_MSCAN
Group number for MSCAN status codes.

enumerator kStatusGroup_ESAI
Group number for ESAI status codes.

enumerator kStatusGroup_FLEXSPI
Group number for FLEXSPI status codes.

2.18. Common Driver 195

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_MMDC
Group number for MMDC status codes.

enumerator kStatusGroup_PDM
Group number for MIC status codes.

enumerator kStatusGroup_SDMA
Group number for SDMA status codes.

enumerator kStatusGroup_ICS
Group number for ICS status codes.

enumerator kStatusGroup_SPDIF
Group number for SPDIF status codes.

enumerator kStatusGroup_LPC_MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_HASHCRYPT
Group number for Hashcrypt status codes

enumerator kStatusGroup_LPC_SPI_SSP
Group number for LPC_SPI_SSP status codes.

enumerator kStatusGroup_I3C
Group number for I3C status codes

enumerator kStatusGroup_LPC_I2C_1
Group number for LPC_I2C_1 status codes.

enumerator kStatusGroup_NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_DebugConsole
Group number for debug console status codes.

enumerator kStatusGroup_SEMC
Group number for SEMC status codes.

enumerator kStatusGroup_ApplicationRangeStart
Starting number for application groups.

enumerator kStatusGroup_IAP
Group number for IAP status codes

enumerator kStatusGroup_SFA
Group number for SFA status codes

enumerator kStatusGroup_SPC
Group number for SPC status codes.

enumerator kStatusGroup_PUF
Group number for PUF status codes.

enumerator kStatusGroup_TOUCH_PANEL
Group number for touch panel status codes

enumerator kStatusGroup_VBAT
Group number for VBAT status codes

enumerator kStatusGroup_XSPI
Group number for XSPI status codes

196 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_PNGDEC
Group number for PNGDEC status codes

enumerator kStatusGroup_JPEGDEC
Group number for JPEGDEC status codes

enumerator kStatusGroup_AUDMIX
Group number for AUDMIX status codes

enumerator kStatusGroup_HAL_GPIO
Group number for HAL GPIO status codes.

enumerator kStatusGroup_HAL_UART
Group number for HAL UART status codes.

enumerator kStatusGroup_HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_HAL_SPI
Group number for HAL SPI status codes.

enumerator kStatusGroup_HAL_I2C
Group number for HAL I2C status codes.

enumerator kStatusGroup_HAL_FLASH
Group number for HAL FLASH status codes.

enumerator kStatusGroup_HAL_PWM
Group number for HAL PWM status codes.

enumerator kStatusGroup_HAL_RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_HAL_I2S
Group number for HAL I2S status codes.

enumerator kStatusGroup_HAL_ADC_SENSOR
Group number for HAL ADC SENSOR status codes.

enumerator kStatusGroup_TIMERMANAGER
Group number for TiMER MANAGER status codes.

enumerator kStatusGroup_SERIALMANAGER
Group number for SERIAL MANAGER status codes.

enumerator kStatusGroup_LED
Group number for LED status codes.

enumerator kStatusGroup_BUTTON
Group number for BUTTON status codes.

enumerator kStatusGroup_EXTERN_EEPROM
Group number for EXTERN EEPROM status codes.

enumerator kStatusGroup_SHELL
Group number for SHELL status codes.

enumerator kStatusGroup_MEM_MANAGER
Group number for MEM MANAGER status codes.

enumerator kStatusGroup_LIST
Group number for List status codes.

2.18. Common Driver 197

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_OSA
Group number for OSA status codes.

enumerator kStatusGroup_COMMON_TASK
Group number for Common task status codes.

enumerator kStatusGroup_MSG
Group number for messaging status codes.

enumerator kStatusGroup_SDK_OCOTP
Group number for OCOTP status codes.

enumerator kStatusGroup_SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

enumerator kStatusGroup_CODEC
Group number for codec status codes.

enumerator kStatusGroup_ASRC
Group number for codec status ASRC.

enumerator kStatusGroup_OTFAD
Group number for codec status codes.

enumerator kStatusGroup_SDIOSLV
Group number for SDIOSLV status codes.

enumerator kStatusGroup_MECC
Group number for MECC status codes.

enumerator kStatusGroup_ENET_QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_LOG
Group number for LOG status codes.

enumerator kStatusGroup_I3CBUS
Group number for I3CBUS status codes.

enumerator kStatusGroup_QSCI
Group number for QSCI status codes.

enumerator kStatusGroup_ELEMU
Group number for ELEMU status codes.

enumerator kStatusGroup_QUEUEDSPI
Group number for QSPI status codes.

enumerator kStatusGroup_POWER_MANAGER
Group number for POWER_MANAGER status codes.

enumerator kStatusGroup_IPED
Group number for IPED status codes.

enumerator kStatusGroup_ELS_PKC
Group number for ELS PKC status codes.

enumerator kStatusGroup_CSS_PKC
Group number for CSS PKC status codes.

enumerator kStatusGroup_HOSTIF
Group number for HOSTIF status codes.

198 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_CLIF
Group number for CLIF status codes.

enumerator kStatusGroup_BMA
Group number for BMA status codes.

enumerator kStatusGroup_NETC
Group number for NETC status codes.

enumerator kStatusGroup_ELE
Group number for ELE status codes.

enumerator kStatusGroup_GLIKEY
Group number for GLIKEY status codes.

enumerator kStatusGroup_AON_POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_AON_COMMON
Group number for AON_COMMON status codes.

enumerator kStatusGroup_ENDAT3
Group number for ENDAT3 status codes.

enumerator kStatusGroup_HIPERFACE
Group number for HIPERFACE status codes.

enumerator kStatusGroup_NPX
Group number for NPX status codes.

enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_FLEXIO_T_FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_FLEXIO_A_FORMAT
Group number for A-format status codes.

enumerator kStatusGroup_LPC_QSPI
Group number for LPC QSPI status codes.

Generic status return codes.

Values:

enumerator kStatus_Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ReadOnly
Generic status for read only failure.

enumerator kStatus_OutOfRange
Generic status for out of range access.

enumerator kStatus_InvalidArgument
Generic status for invalid argument check.

2.18. Common Driver 199

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_Timeout
Generic status for timeout.

enumerator kStatus_NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.

Parameters
• size – The length required to malloc.

• alignbytes – The alignment size.

Return values
The – allocated memory.

void SDK_Free(void *ptr)
Free memory.

Parameters
• ptr – The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)
Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
• delayTime_us – Delay time in unit of microsecond.

• coreClock_Hz – Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt enabled successfully

• kStatus_Fail – Failed to enable the interrupt

200 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ number.

Return values
• kStatus_Success – Interrupt disabled successfully

• kStatus_Fail – Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to Enable.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline status_t IRQ_SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The IRQ to set.

• priNum – Priority number set to interrupt controller register.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

2.18. Common Driver 201

MCUXpresso SDK Documentation, Release 25.12.00

static inline status_t IRQ_ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
• interrupt – The flag which IRQ to clear.

Return values
• kStatus_Success – Interrupt priority set successfully

• kStatus_Fail – Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGlobalIRQ(uint32_t primask)
Enable the global IRQ.

Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management
mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQ() in pair.

Parameters
• primask – value of primask register to be restored. The primask value is

supposed to be provided by the DisableGlobalIRQ().

static inline bool _SDK_AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)

static inline uint32_t _SDK_AtomicTestAndSet(uint32_t *addr, uint32_t newValue)

FSL_DRIVER_TRANSFER_DOUBLE_WEAK_IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit
platforms(such as DSC).

| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY_SIZE(x)
Computes the number of elements in an array.

202 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

UINT64_H(X)
Macro to get upper 32 bits of a 64-bit value

UINT64_L(X)
Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()
For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(x)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE_ADDR(x)
Convert the register address to the one used in non-secure mode.

MSDK_HAS_DWT_CYCCNT
The chip supports DWT CYCCNT or not.

MSDK_INVALID_IRQ_HANDLER
Invalid IRQ handler address.

2.19 LLWU: Low-Leakage Wakeup Unit Driver

static inline void LLWU_GetVersionId(LLWU_Type *base, llwu_version_id_t *versionId)
Gets the LLWU version ID.

This function gets the LLWU version ID, including the major version number, the minor
version number, and the feature specification number.

Parameters
• base – LLWU peripheral base address.

• versionId – A pointer to the version ID structure.

static inline void LLWU_GetParam(LLWU_Type *base, llwu_param_t *param)
Gets the LLWU parameter.

This function gets the LLWU parameter, including a wakeup pin number, a module number,
a DMA number, and a pin filter number.

Parameters
• base – LLWU peripheral base address.

• param – A pointer to the LLWU parameter structure.

void LLWU_SetExternalWakeupPinMode(LLWU_Type *base, uint32_t pinIndex,
llwu_external_pin_mode_t pinMode)

Sets the external input pin source mode.

This function sets the external input pin source mode that is used as a wake up source.

Parameters
• base – LLWU peripheral base address.

• pinIndex – A pin index to be enabled as an external wakeup source starting
from 1.

2.19. LLWU: Low-Leakage Wakeup Unit Driver 203

MCUXpresso SDK Documentation, Release 25.12.00

• pinMode – A pin configuration mode defined in the
llwu_external_pin_modes_t.

bool LLWU_GetExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)
Gets the external wakeup source flag.

This function checks the external pin flag to detect whether the MCU is woken up by the
specific pin.

Parameters
• base – LLWU peripheral base address.

• pinIndex – A pin index, which starts from 1.

Returns
True if the specific pin is a wakeup source.

void LLWU_ClearExternalWakeupPinFlag(LLWU_Type *base, uint32_t pinIndex)
Clears the external wakeup source flag.

This function clears the external wakeup source flag for a specific pin.

Parameters
• base – LLWU peripheral base address.

• pinIndex – A pin index, which starts from 1.

static inline void LLWU_EnableInternalModuleInterruptWakup(LLWU_Type *base, uint32_t
moduleIndex, bool enable)

Enables/disables the internal module source.

This function enables/disables the internal module source mode that is used as a wake up
source.

Parameters
• base – LLWU peripheral base address.

• moduleIndex – A module index to be enabled as an internal wakeup source
starting from 1.

• enable – An enable or a disable setting

static inline void LLWU_EnableInternalModuleDmaRequestWakup(LLWU_Type *base, uint32_t
moduleIndex, bool enable)

Enables/disables the internal module DMA wakeup source.

This function enables/disables the internal DMA that is used as a wake up source.

Parameters
• base – LLWU peripheral base address.

• moduleIndex – An internal module index which is used as a DMA request
source, starting from 1.

• enable – Enable or disable the DMA request source

void LLWU_SetPinFilterMode(LLWU_Type *base, uint32_t filterIndex,
llwu_external_pin_filter_mode_t filterMode)

Sets the pin filter configuration.

This function sets the pin filter configuration.

Parameters
• base – LLWU peripheral base address.

204 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• filterIndex – A pin filter index used to enable/disable the digital filter, start-
ing from 1.

• filterMode – A filter mode configuration

bool LLWU_GetPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)
Gets the pin filter configuration.

This function gets the pin filter flag.

Parameters
• base – LLWU peripheral base address.

• filterIndex – A pin filter index, which starts from 1.

Returns
True if the flag is a source of the existing low-leakage power mode.

void LLWU_ClearPinFilterFlag(LLWU_Type *base, uint32_t filterIndex)
Clears the pin filter configuration.

This function clears the pin filter flag.

Parameters
• base – LLWU peripheral base address.

• filterIndex – A pin filter index to clear the flag, starting from 1.

void LLWU_SetResetPinMode(LLWU_Type *base, bool pinEnable, bool pinFilterEnable)
Sets the reset pin mode.

This function determines how the reset pin is used as a low leakage mode exit source.

Parameters
• base – LLWU peripheral base address.

• pinEnable – Enable reset the pin filter

• pinFilterEnable – Specify whether the pin filter is enabled in Low-Leakage
power mode.

FSL_LLWU_DRIVER_VERSION
LLWU driver version.

enum _llwu_external_pin_mode
External input pin control modes.

Values:

enumerator kLLWU_ExternalPinDisable
Pin disabled as a wakeup input.

enumerator kLLWU_ExternalPinRisingEdge
Pin enabled with the rising edge detection.

enumerator kLLWU_ExternalPinFallingEdge
Pin enabled with the falling edge detection.

enumerator kLLWU_ExternalPinAnyEdge
Pin enabled with any change detection.

enum _llwu_pin_filter_mode
Digital filter control modes.

Values:

2.19. LLWU: Low-Leakage Wakeup Unit Driver 205

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLLWU_PinFilterDisable
Filter disabled.

enumerator kLLWU_PinFilterRisingEdge
Filter positive edge detection.

enumerator kLLWU_PinFilterFallingEdge
Filter negative edge detection.

enumerator kLLWU_PinFilterAnyEdge
Filter any edge detection.

typedef enum _llwu_external_pin_mode llwu_external_pin_mode_t
External input pin control modes.

typedef enum _llwu_pin_filter_mode llwu_pin_filter_mode_t
Digital filter control modes.

typedef struct _llwu_version_id llwu_version_id_t
IP version ID definition.

typedef struct _llwu_param llwu_param_t
IP parameter definition.

typedef struct _llwu_external_pin_filter_mode llwu_external_pin_filter_mode_t
An external input pin filter control structure.

LLWU_REG_VAL(x)

struct _llwu_version_id
#include <fsl_llwu.h> IP version ID definition.

Public Members

uint16_t feature
A feature specification number.

uint8_t minor
The minor version number.

uint8_t major
The major version number.

struct _llwu_param
#include <fsl_llwu.h> IP parameter definition.

Public Members

uint8_t filters
A number of the pin filter.

uint8_t dmas
A number of the wakeup DMA.

uint8_t modules
A number of the wakeup module.

uint8_t pins
A number of the wake up pin.

struct _llwu_external_pin_filter_mode
#include <fsl_llwu.h> An external input pin filter control structure.

206 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t pinIndex
A pin number

llwu_pin_filter_mode_t filterMode
Filter mode

2.20 LPTMR: Low-Power Timer

void LPTMR_Init(LPTMR_Type *base, const lptmr_config_t *config)
Ungates the LPTMR clock and configures the peripheral for a basic operation.

Note: This API should be called at the beginning of the application using the LPTMR driver.

Parameters
• base – LPTMR peripheral base address

• config – A pointer to the LPTMR configuration structure.

void LPTMR_Deinit(LPTMR_Type *base)
Gates the LPTMR clock.

Parameters
• base – LPTMR peripheral base address

void LPTMR_GetDefaultConfig(lptmr_config_t *config)
Fills in the LPTMR configuration structure with default settings.

The default values are as follows.

config->timerMode = kLPTMR_TimerModeTimeCounter;
config->pinSelect = kLPTMR_PinSelectInput_0;
config->pinPolarity = kLPTMR_PinPolarityActiveHigh;
config->enableFreeRunning = false;
config->bypassPrescaler = true;
config->prescalerClockSource = kLPTMR_PrescalerClock_1;
config->value = kLPTMR_Prescale_Glitch_0;

Parameters
• config – A pointer to the LPTMR configuration structure.

static inline void LPTMR_EnableInterrupts(LPTMR_Type *base, uint32_t mask)
Enables the selected LPTMR interrupts.

Parameters
• base – LPTMR peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration lptmr_interrupt_enable_t

static inline void LPTMR_DisableInterrupts(LPTMR_Type *base, uint32_t mask)
Disables the selected LPTMR interrupts.

Parameters
• base – LPTMR peripheral base address

2.20. LPTMR: Low-Power Timer 207

MCUXpresso SDK Documentation, Release 25.12.00

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration lptmr_interrupt_enable_t.

static inline uint32_t LPTMR_GetEnabledInterrupts(LPTMR_Type *base)
Gets the enabled LPTMR interrupts.

Parameters
• base – LPTMR peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
lptmr_interrupt_enable_t

static inline uint32_t LPTMR_GetStatusFlags(LPTMR_Type *base)
Gets the LPTMR status flags.

Parameters
• base – LPTMR peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
lptmr_status_flags_t

static inline void LPTMR_ClearStatusFlags(LPTMR_Type *base, uint32_t mask)
Clears the LPTMR status flags.

Parameters
• base – LPTMR peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration lptmr_status_flags_t.

static inline void LPTMR_SetTimerPeriod(LPTMR_Type *base, uint32_t ticks)
Sets the timer period in units of count.

Timers counts from 0 until it equals the count value set here. The count value is written to
the CMR register.

Note:
a. The TCF flag is set with the CNR equals the count provided here and then increments.

b. Call the utility macros provided in the fsl_common.h to convert to ticks.

Parameters
• base – LPTMR peripheral base address

• ticks – A timer period in units of ticks

static inline uint32_t LPTMR_GetCurrentTimerCount(LPTMR_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note: Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters
• base – LPTMR peripheral base address

208 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Returns
The current counter value in ticks

static inline void LPTMR_StartTimer(LPTMR_Type *base)
Starts the timer.

After calling this function, the timer counts up to the CMR register value. Each time the
timer reaches the CMR value and then increments, it generates a trigger pulse and sets the
timeout interrupt flag. An interrupt is also triggered if the timer interrupt is enabled.

Parameters
• base – LPTMR peripheral base address

static inline void LPTMR_StopTimer(LPTMR_Type *base)
Stops the timer.

This function stops the timer and resets the timer’s counter register.

Parameters
• base – LPTMR peripheral base address

FSL_LPTMR_DRIVER_VERSION
Driver Version

enum _lptmr_pin_select
LPTMR pin selection used in pulse counter mode.

Values:

enumerator kLPTMR_PinSelectInput_0
Pulse counter input 0 is selected

enumerator kLPTMR_PinSelectInput_1
Pulse counter input 1 is selected

enumerator kLPTMR_PinSelectInput_2
Pulse counter input 2 is selected

enumerator kLPTMR_PinSelectInput_3
Pulse counter input 3 is selected

enum _lptmr_pin_polarity
LPTMR pin polarity used in pulse counter mode.

Values:

enumerator kLPTMR_PinPolarityActiveHigh
Pulse Counter input source is active-high

enumerator kLPTMR_PinPolarityActiveLow
Pulse Counter input source is active-low

enum _lptmr_timer_mode
LPTMR timer mode selection.

Values:

enumerator kLPTMR_TimerModeTimeCounter
Time Counter mode

enumerator kLPTMR_TimerModePulseCounter
Pulse Counter mode

2.20. LPTMR: Low-Power Timer 209

MCUXpresso SDK Documentation, Release 25.12.00

enum _lptmr_prescaler_glitch_value
LPTMR prescaler/glitch filter values.

Values:

enumerator kLPTMR_Prescale_Glitch_0
Prescaler divide 2, glitch filter does not support this setting

enumerator kLPTMR_Prescale_Glitch_1
Prescaler divide 4, glitch filter 2

enumerator kLPTMR_Prescale_Glitch_2
Prescaler divide 8, glitch filter 4

enumerator kLPTMR_Prescale_Glitch_3
Prescaler divide 16, glitch filter 8

enumerator kLPTMR_Prescale_Glitch_4
Prescaler divide 32, glitch filter 16

enumerator kLPTMR_Prescale_Glitch_5
Prescaler divide 64, glitch filter 32

enumerator kLPTMR_Prescale_Glitch_6
Prescaler divide 128, glitch filter 64

enumerator kLPTMR_Prescale_Glitch_7
Prescaler divide 256, glitch filter 128

enumerator kLPTMR_Prescale_Glitch_8
Prescaler divide 512, glitch filter 256

enumerator kLPTMR_Prescale_Glitch_9
Prescaler divide 1024, glitch filter 512

enumerator kLPTMR_Prescale_Glitch_10
Prescaler divide 2048 glitch filter 1024

enumerator kLPTMR_Prescale_Glitch_11
Prescaler divide 4096, glitch filter 2048

enumerator kLPTMR_Prescale_Glitch_12
Prescaler divide 8192, glitch filter 4096

enumerator kLPTMR_Prescale_Glitch_13
Prescaler divide 16384, glitch filter 8192

enumerator kLPTMR_Prescale_Glitch_14
Prescaler divide 32768, glitch filter 16384

enumerator kLPTMR_Prescale_Glitch_15
Prescaler divide 65536, glitch filter 32768

enum _lptmr_prescaler_clock_select
LPTMR prescaler/glitch filter clock select.

Note: Clock connections are SoC-specific

Values:

enumerator kLPTMR_PrescalerClock_0
Prescaler/glitch filter clock 0 selected.

210 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPTMR_PrescalerClock_1
Prescaler/glitch filter clock 1 selected.

enumerator kLPTMR_PrescalerClock_2
Prescaler/glitch filter clock 2 selected.

enumerator kLPTMR_PrescalerClock_3
Prescaler/glitch filter clock 3 selected.

enum _lptmr_interrupt_enable
List of the LPTMR interrupts.

Values:

enumerator kLPTMR_TimerInterruptEnable
Timer interrupt enable

enum _lptmr_status_flags
List of the LPTMR status flags.

Values:

enumerator kLPTMR_TimerCompareFlag
Timer compare flag

typedef enum _lptmr_pin_select lptmr_pin_select_t
LPTMR pin selection used in pulse counter mode.

typedef enum _lptmr_pin_polarity lptmr_pin_polarity_t
LPTMR pin polarity used in pulse counter mode.

typedef enum _lptmr_timer_mode lptmr_timer_mode_t
LPTMR timer mode selection.

typedef enum _lptmr_prescaler_glitch_value lptmr_prescaler_glitch_value_t
LPTMR prescaler/glitch filter values.

typedef enum _lptmr_prescaler_clock_select lptmr_prescaler_clock_select_t
LPTMR prescaler/glitch filter clock select.

Note: Clock connections are SoC-specific

typedef enum _lptmr_interrupt_enable lptmr_interrupt_enable_t
List of the LPTMR interrupts.

typedef enum _lptmr_status_flags lptmr_status_flags_t
List of the LPTMR status flags.

typedef struct _lptmr_config lptmr_config_t
LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this
structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

static inline void LPTMR_EnableTimerDMA(LPTMR_Type *base, bool enable)
Enable or disable timer DMA request.

Parameters
• base – base LPTMR peripheral base address

2.20. LPTMR: Low-Power Timer 211

MCUXpresso SDK Documentation, Release 25.12.00

• enable – Switcher of timer DMA feature. “true” means to enable, “false”
means to disable.

struct _lptmr_config
#include <fsl_lptmr.h> LPTMR config structure.

This structure holds the configuration settings for the LPTMR peripheral. To initialize this
structure to reasonable defaults, call the LPTMR_GetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration struct can be made constant so it resides in flash.

Public Members

lptmr_timer_mode_t timerMode
Time counter mode or pulse counter mode

lptmr_pin_select_t pinSelect
LPTMR pulse input pin select; used only in pulse counter mode

lptmr_pin_polarity_t pinPolarity
LPTMR pulse input pin polarity; used only in pulse counter mode

bool enableFreeRunning
True: enable free running, counter is reset on overflow False: counter is reset when
the compare flag is set

bool bypassPrescaler
True: bypass prescaler; false: use clock from prescaler

lptmr_prescaler_clock_select_t prescalerClockSource
LPTMR clock source

lptmr_prescaler_glitch_value_t value
Prescaler or glitch filter value

2.21 LPUART: Low Power Universal Asynchronous Re-
ceiver/Transmitter Driver

2.22 LPUART Driver

static inline void LPUART_SoftwareReset(LPUART_Type *base)
Resets the LPUART using software.

This function resets all internal logic and registers except the Global Register. Remains set
until cleared by software.

Parameters
• base – LPUART peripheral base address.

status_t LPUART_Init(LPUART_Type *base, const lpuart_config_t *config, uint32_t srcClock_Hz)
Initializes an LPUART instance with the user configuration structure and the peripheral
clock.

This function configures the LPUART module with user-defined settings. Call the
LPUART_GetDefaultConfig() function to configure the configuration structure and get the
default configuration. The example below shows how to use this API to configure the
LPUART.

212 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

lpuart_config_t lpuartConfig;
lpuartConfig.baudRate_Bps = 115200U;
lpuartConfig.parityMode = kLPUART_ParityDisabled;
lpuartConfig.dataBitsCount = kLPUART_EightDataBits;
lpuartConfig.isMsb = false;
lpuartConfig.stopBitCount = kLPUART_OneStopBit;
lpuartConfig.txFifoWatermark = 0;
lpuartConfig.rxFifoWatermark = 1;
LPUART_Init(LPUART1, &lpuartConfig, 20000000U);

Parameters
• base – LPUART peripheral base address.

• config – Pointer to a user-defined configuration structure.

• srcClock_Hz – LPUART clock source frequency in HZ.

Return values
• kStatus_LPUART_BaudrateNotSupport – Baudrate is not support in cur-

rent clock source.

• kStatus_Success – LPUART initialize succeed

status_t LPUART_Deinit(LPUART_Type *base)
Deinitializes a LPUART instance.

This function waits for transmit to complete, disables TX and RX, and disables the LPUART
clock.

Parameters
• base – LPUART peripheral base address.

Return values
• kStatus_Success – Deinit is success.

• kStatus_LPUART_Timeout – Timeout during deinit.

void LPUART_GetDefaultConfig(lpuart_config_t *config)
Gets the default configuration structure.

This function initializes the LPUART configuration structure to a default value. The
default values are: lpuartConfig->baudRate_Bps = 115200U; lpuartConfig->parityMode
= kLPUART_ParityDisabled; lpuartConfig->dataBitsCount = kLPUART_EightDataBits;
lpuartConfig->isMsb = false; lpuartConfig->stopBitCount = kLPUART_OneStopBit;
lpuartConfig->txFifoWatermark = 0; lpuartConfig->rxFifoWatermark = 1;
lpuartConfig->rxIdleType = kLPUART_IdleTypeStartBit; lpuartConfig->rxIdleConfig =
kLPUART_IdleCharacter1; lpuartConfig->enableTx = false; lpuartConfig->enableRx = false;

Parameters
• config – Pointer to a configuration structure.

status_t LPUART_SetBaudRate(LPUART_Type *base, uint32_t baudRate_Bps, uint32_t
srcClock_Hz)

Sets the LPUART instance baudrate.

This function configures the LPUART module baudrate. This function is used to update the
LPUART module baudrate after the LPUART module is initialized by the LPUART_Init.

LPUART_SetBaudRate(LPUART1, 115200U, 20000000U);

Parameters

2.22. LPUART Driver 213

MCUXpresso SDK Documentation, Release 25.12.00

• base – LPUART peripheral base address.

• baudRate_Bps – LPUART baudrate to be set.

• srcClock_Hz – LPUART clock source frequency in HZ.

Return values
• kStatus_LPUART_BaudrateNotSupport – Baudrate is not supported in the

current clock source.

• kStatus_Success – Set baudrate succeeded.

void LPUART_Enable9bitMode(LPUART_Type *base, bool enable)
Enable 9-bit data mode for LPUART.

This function set the 9-bit mode for LPUART module. The 9th bit is not used for parity thus
can be modified by user.

Parameters
• base – LPUART peripheral base address.

• enable – true to enable, flase to disable.

static inline void LPUART_SetMatchAddress(LPUART_Type *base, uint16_t address1, uint16_t
address2)

Set the LPUART address.

This function configures the address for LPUART module that works as slave in 9-bit data
mode. One or two address fields can be configured. When the address field’s match enable
bit is set, the frame it receices with MSB being 1 is considered as an address frame, oth-
erwise it is considered as data frame. Once the address frame matches one of slave’s own
addresses, this slave is addressed. This address frame and its following data frames are
stored in the receive buffer, otherwise the frames will be discarded. To un-address a slave,
just send an address frame with unmatched address.

Note: Any LPUART instance joined in the multi-slave system can work as slave. The posi-
tion of the address mark is the same as the parity bit when parity is enabled for 8 bit and 9
bit data formats.

Parameters
• base – LPUART peripheral base address.

• address1 – LPUART slave address1.

• address2 – LPUART slave address2.

static inline void LPUART_EnableMatchAddress(LPUART_Type *base, bool match1, bool
match2)

Enable the LPUART match address feature.

Parameters
• base – LPUART peripheral base address.

• match1 – true to enable match address1, false to disable.

• match2 – true to enable match address2, false to disable.

static inline void LPUART_SetRxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the rx FIFO watermark.

Parameters
• base – LPUART peripheral base address.

214 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• water – Rx FIFO watermark.

static inline void LPUART_SetTxFifoWatermark(LPUART_Type *base, uint8_t water)
Sets the tx FIFO watermark.

Parameters
• base – LPUART peripheral base address.

• water – Tx FIFO watermark.

static inline void LPUART_TransferEnable16Bit(lpuart_handle_t *handle, bool enable)
Sets the LPUART using 16bit transmit, only for 9bit or 10bit mode.

This function Enable 16bit Data transmit in lpuart_handle_t.

Parameters
• handle – LPUART handle pointer.

• enable – true to enable, false to disable.

uint32_t LPUART_GetStatusFlags(LPUART_Type *base)
Gets LPUART status flags.

This function gets all LPUART status flags. The flags are returned as the logical OR value
of the enumerators _lpuart_flags. To check for a specific status, compare the return value
with enumerators in the _lpuart_flags. For example, to check whether the TX is empty:

if (kLPUART_TxDataRegEmptyFlag & LPUART_GetStatusFlags(LPUART1))
{

...
}

Parameters
• base – LPUART peripheral base address.

Returns
LPUART status flags which are ORed by the enumerators in the _lpuart_flags.

status_t LPUART_ClearStatusFlags(LPUART_Type *base, uint32_t mask)
Clears status flags with a provided mask.

This function clears LPUART status flags with a provided mask. Automatically cleared
flags can’t be cleared by this function. Flags that can only cleared or set by hard-
ware are: kLPUART_TxDataRegEmptyFlag, kLPUART_TransmissionCompleteFlag,
kLPUART_RxDataRegFullFlag, kLPUART_RxActiveFlag, kLPUART_NoiseErrorFlag,
kLPUART_ParityErrorFlag, kLPUART_TxFifoEmptyFlag,kLPUART_RxFifoEmptyFlag Note:
This API should be called when the Tx/Rx is idle, otherwise it takes no effects.

Parameters
• base – LPUART peripheral base address.

• mask – the status flags to be cleared. The user can use the enumerators in
the _lpuart_status_flag_t to do the OR operation and get the mask.

Return values
• kStatus_LPUART_FlagCannotClearManually – The flag can’t be cleared by

this function but it is cleared automatically by hardware.

• kStatus_Success – Status in the mask are cleared.

Returns
0 succeed, others failed.

2.22. LPUART Driver 215

MCUXpresso SDK Documentation, Release 25.12.00

void LPUART_EnableInterrupts(LPUART_Type *base, uint32_t mask)
Enables LPUART interrupts according to a provided mask.

This function enables the LPUART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See the _lpuart_interrupt_enable. This examples
shows how to enable TX empty interrupt and RX full interrupt:

LPUART_EnableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – LPUART peripheral base address.

• mask – The interrupts to enable. Logical OR of _lpuart_interrupt_enable.

void LPUART_DisableInterrupts(LPUART_Type *base, uint32_t mask)
Disables LPUART interrupts according to a provided mask.

This function disables the LPUART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _lpuart_interrupt_enable. This example shows
how to disable the TX empty interrupt and RX full interrupt:

LPUART_DisableInterrupts(LPUART1,kLPUART_TxDataRegEmptyInterruptEnable | kLPUART_
↪→RxDataRegFullInterruptEnable);

Parameters
• base – LPUART peripheral base address.

• mask – The interrupts to disable. Logical OR of _lpuart_interrupt_enable.

uint32_t LPUART_GetEnabledInterrupts(LPUART_Type *base)
Gets enabled LPUART interrupts.

This function gets the enabled LPUART interrupts. The enabled interrupts are re-
turned as the logical OR value of the enumerators _lpuart_interrupt_enable. To check
a specific interrupt enable status, compare the return value with enumerators in
_lpuart_interrupt_enable. For example, to check whether the TX empty interrupt is en-
abled:

uint32_t enabledInterrupts = LPUART_GetEnabledInterrupts(LPUART1);

if (kLPUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
{

...
}

Parameters
• base – LPUART peripheral base address.

Returns
LPUART interrupt flags which are logical OR of the enumerators in
_lpuart_interrupt_enable.

static inline uintptr_t LPUART_GetDataRegisterAddress(LPUART_Type *base)
Gets the LPUART data register address.

This function returns the LPUART data register address, which is mainly used by the
DMA/eDMA.

Parameters
• base – LPUART peripheral base address.

216 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Returns
LPUART data register addresses which are used both by the transmitter and
receiver.

static inline void LPUART_EnableTxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter DMA request.

This function enables or disables the transmit data register empty flag, STAT[TDRE], to gen-
erate DMA requests.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_EnableRxDMA(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver DMA.

This function enables or disables the receiver data register full flag, STAT[RDRF], to generate
DMA requests.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

uint32_t LPUART_GetInstance(LPUART_Type *base)
Get the LPUART instance from peripheral base address.

Parameters
• base – LPUART peripheral base address.

Returns
LPUART instance.

static inline void LPUART_EnableTx(LPUART_Type *base, bool enable)
Enables or disables the LPUART transmitter.

This function enables or disables the LPUART transmitter.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_EnableRx(LPUART_Type *base, bool enable)
Enables or disables the LPUART receiver.

This function enables or disables the LPUART receiver.

Parameters
• base – LPUART peripheral base address.

• enable – True to enable, false to disable.

static inline void LPUART_WriteByte(LPUART_Type *base, uint8_t data)
Writes to the transmitter register.

This function writes data to the transmitter register directly. The upper layer must ensure
that the TX register is empty or that the TX FIFO has room before calling this function.

Parameters
• base – LPUART peripheral base address.

• data – Data write to the TX register.

2.22. LPUART Driver 217

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint8_t LPUART_ReadByte(LPUART_Type *base)
Reads the receiver register.

This function reads data from the receiver register directly. The upper layer must ensure
that the receiver register is full or that the RX FIFO has data before calling this function.

Parameters
• base – LPUART peripheral base address.

Returns
Data read from data register.

static inline uint8_t LPUART_GetRxFifoCount(LPUART_Type *base)
Gets the rx FIFO data count.

Parameters
• base – LPUART peripheral base address.

Returns
rx FIFO data count.

static inline uint8_t LPUART_GetTxFifoCount(LPUART_Type *base)
Gets the tx FIFO data count.

Parameters
• base – LPUART peripheral base address.

Returns
tx FIFO data count.

void LPUART_SendAddress(LPUART_Type *base, uint8_t address)
Transmit an address frame in 9-bit data mode.

Parameters
• base – LPUART peripheral base address.

• address – LPUART slave address.

status_t LPUART_WriteBlocking(LPUART_Type *base, const uint8_t *data, size_t length)
Writes to the transmitter register using a blocking method.

This function polls the transmitter register, first waits for the register to be empty or TX
FIFO to have room, and writes data to the transmitter buffer, then waits for the dat to be
sent out to the bus.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t LPUART_WriteBlocking16bit(LPUART_Type *base, const uint16_t *data, size_t length)
Writes to the transmitter register using a blocking method in 9bit or 10bit mode.

Note: This function only support 9bit or 10bit transfer. Please make sure only 10bit of data
is valid and other bits are 0.

218 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – LPUART peripheral base address.

• data – Start address of the data to write.

• length – Size of the data to write.

Return values
• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully wrote all data.

status_t LPUART_ReadBlocking(LPUART_Type *base, uint8_t *data, size_t length)
Reads the receiver data register using a blocking method.

This function polls the receiver register, waits for the receiver register full or receiver FIFO
has data, and reads data from the TX register.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the buffer to store the received data.

• length – Size of the buffer.

Return values
• kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened

while receiving data.

• kStatus_LPUART_NoiseError – Noise error happened while receiving data.

• kStatus_LPUART_FramingError – Framing error happened while receiv-
ing data.

• kStatus_LPUART_ParityError – Parity error happened while receiving
data.

• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

status_t LPUART_ReadBlocking16bit(LPUART_Type *base, uint16_t *data, size_t length)
Reads the receiver data register in 9bit or 10bit mode.

Note: This function only support 9bit or 10bit transfer.

Parameters
• base – LPUART peripheral base address.

• data – Start address of the buffer to store the received data by 16bit, only
10bit is valid.

• length – Size of the buffer.

Return values
• kStatus_LPUART_RxHardwareOverrun – Receiver overrun happened

while receiving data.

• kStatus_LPUART_NoiseError – Noise error happened while receiving data.

• kStatus_LPUART_FramingError – Framing error happened while receiv-
ing data.

2.22. LPUART Driver 219

MCUXpresso SDK Documentation, Release 25.12.00

• kStatus_LPUART_ParityError – Parity error happened while receiving
data.

• kStatus_LPUART_Timeout – Transmission timed out and was aborted.

• kStatus_Success – Successfully received all data.

void LPUART_TransferCreateHandle(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_callback_t callback, void *userData)

Initializes the LPUART handle.

This function initializes the LPUART handle, which can be used for other LPUART transac-
tional APIs. Usually, for a specified LPUART instance, call this API once to get the initialized
handle.

The LPUART driver supports the “background” receiving, which means that user can set
up an RX ring buffer optionally. Data received is stored into the ring buffer even when the
user doesn’t call the LPUART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.
The ring buffer is disabled if passing NULL as ringBuffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• callback – Callback function.

• userData – User data.

status_t LPUART_TransferSendNonBlocking(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function send data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data written to the transmitter register. When all
data is written to the TX register in the ISR, the LPUART driver calls the callback function
and passes the kStatus_LPUART_TxIdle as status parameter.

Note: The kStatus_LPUART_TxIdle is passed to the upper layer when all data are written to
the TX register. However, there is no check to ensure that all the data sent out. Before dis-
abling the TX, check the kLPUART_TransmissionCompleteFlag to ensure that the transmit
is finished.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• xfer – LPUART transfer structure, see lpuart_transfer_t.

Return values
• kStatus_Success – Successfully start the data transmission.

• kStatus_LPUART_TxBusy – Previous transmission still not finished, data
not all written to the TX register.

• kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferStartRingBuffer(LPUART_Type *base, lpuart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

220 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Sets up the RX ring buffer.

This function sets up the RX ring buffer to a specific UART handle.

When the RX ring buffer is used, data received is stored into the ring buffer even when
the user doesn’t call the UART_TransferReceiveNonBlocking() API. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using RX ring buffer, one byte is reserved for internal use. In other words, if
ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• ringBuffer – Start address of ring buffer for background receiving. Pass
NULL to disable the ring buffer.

• ringBufferSize – size of the ring buffer.

void LPUART_TransferStopRingBuffer(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

size_t LPUART_TransferGetRxRingBufferLength(LPUART_Type *base, lpuart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

Returns
Length of received data in RX ring buffer.

void LPUART_TransferAbortSend(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are not sent out.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

status_t LPUART_TransferGetSendCount(LPUART_Type *base, lpuart_handle_t *handle, uint32_t
*count)

Gets the number of bytes that have been sent out to bus.

This function gets the number of bytes that have been sent out to bus by an interrupt
method.

Parameters
• base – LPUART peripheral base address.

2.22. LPUART Driver 221

MCUXpresso SDK Documentation, Release 25.12.00

• handle – LPUART handle pointer.

• count – Send bytes count.

Return values
• kStatus_NoTransferInProgress – No send in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

status_t LPUART_TransferReceiveNonBlocking(LPUART_Type *base, lpuart_handle_t *handle,
lpuart_transfer_t *xfer, size_t *receivedBytes)

Receives a buffer of data using the interrupt method.

This function receives data using an interrupt method. This is a non-blocking function
which returns without waiting to ensure that all data are received. If the RX ring buffer is
used and not empty, the data in the ring buffer is copied and the parameter receivedBytes
shows how many bytes are copied from the ring buffer. After copying, if the data in the ring
buffer is not enough for read, the receive request is saved by the LPUART driver. When the
new data arrives, the receive request is serviced first. When all data is received, the LPUART
driver notifies the upper layer through a callback function and passes a status parameter
kStatus_UART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in ring buffer. The 5 bytes are copied to xfer->data, which returns with the parameter
receivedBytes set to 5. For the remaining 5 bytes, the newly arrived data is saved from xfer-
>data[5]. When 5 bytes are received, the LPUART driver notifies the upper layer. If the RX
ring buffer is not enabled, this function enables the RX and RX interrupt to receive data to
xfer->data. When all data is received, the upper layer is notified.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

• xfer – LPUART transfer structure, see uart_transfer_t.

• receivedBytes – Bytes received from the ring buffer directly.

Return values
• kStatus_Success – Successfully queue the transfer into the transmit queue.

• kStatus_LPUART_RxBusy – Previous receive request is not finished.

• kStatus_InvalidArgument – Invalid argument.

void LPUART_TransferAbortReceive(LPUART_Type *base, lpuart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
• base – LPUART peripheral base address.

• handle – LPUART handle pointer.

status_t LPUART_TransferGetReceiveCount(LPUART_Type *base, lpuart_handle_t *handle,
uint32_t *count)

Gets the number of bytes that have been received.

This function gets the number of bytes that have been received.

Parameters
• base – LPUART peripheral base address.

222 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• handle – LPUART handle pointer.

• count – Receive bytes count.

Return values
• kStatus_NoTransferInProgress – No receive in progress.

• kStatus_InvalidArgument – Parameter is invalid.

• kStatus_Success – Get successfully through the parameter count;

void LPUART_TransferHandleIRQ(LPUART_Type *base, void *irqHandle)
LPUART IRQ handle function.

This function handles the LPUART transmit and receive IRQ request.

Parameters
• base – LPUART peripheral base address.

• irqHandle – LPUART handle pointer.

void LPUART_TransferHandleErrorIRQ(LPUART_Type *base, void *irqHandle)
LPUART Error IRQ handle function.

This function handles the LPUART error IRQ request.

Parameters
• base – LPUART peripheral base address.

• irqHandle – LPUART handle pointer.

void LPUART_DriverIRQHandler(uint32_t instance)
LPUART driver IRQ handler common entry.

This function provides the common IRQ request entry for LPUART.

Parameters
• instance – LPUART instance.

FSL_LPUART_DRIVER_VERSION
LPUART driver version.

Error codes for the LPUART driver.

Values:

enumerator kStatus_LPUART_TxBusy
TX busy

enumerator kStatus_LPUART_RxBusy
RX busy

enumerator kStatus_LPUART_TxIdle
LPUART transmitter is idle.

enumerator kStatus_LPUART_RxIdle
LPUART receiver is idle.

enumerator kStatus_LPUART_TxWatermarkTooLarge
TX FIFO watermark too large

enumerator kStatus_LPUART_RxWatermarkTooLarge
RX FIFO watermark too large

2.22. LPUART Driver 223

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_LPUART_FlagCannotClearManually
Some flag can’t manually clear

enumerator kStatus_LPUART_Error
Error happens on LPUART.

enumerator kStatus_LPUART_RxRingBufferOverrun
LPUART RX software ring buffer overrun.

enumerator kStatus_LPUART_RxHardwareOverrun
LPUART RX receiver overrun.

enumerator kStatus_LPUART_NoiseError
LPUART noise error.

enumerator kStatus_LPUART_FramingError
LPUART framing error.

enumerator kStatus_LPUART_ParityError
LPUART parity error.

enumerator kStatus_LPUART_BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus_LPUART_IdleLineDetected
IDLE flag.

enumerator kStatus_LPUART_Timeout
LPUART times out.

enum _lpuart_parity_mode
LPUART parity mode.

Values:

enumerator kLPUART_ParityDisabled
Parity disabled

enumerator kLPUART_ParityEven
Parity enabled, type even, bit setting: PE|PT = 10

enumerator kLPUART_ParityOdd
Parity enabled, type odd, bit setting: PE|PT = 11

enum _lpuart_data_bits
LPUART data bits count.

Values:

enumerator kLPUART_EightDataBits
Eight data bit

enumerator kLPUART_SevenDataBits
Seven data bit

enum _lpuart_stop_bit_count
LPUART stop bit count.

Values:

enumerator kLPUART_OneStopBit
One stop bit

224 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_TwoStopBit
Two stop bits

enum _lpuart_transmit_cts_source
LPUART transmit CTS source.

Values:

enumerator kLPUART_CtsSourcePin
CTS resource is the LPUART_CTS pin.

enumerator kLPUART_CtsSourceMatchResult
CTS resource is the match result.

enum _lpuart_transmit_cts_config
LPUART transmit CTS configure.

Values:

enumerator kLPUART_CtsSampleAtStart
CTS input is sampled at the start of each character.

enumerator kLPUART_CtsSampleAtIdle
CTS input is sampled when the transmitter is idle

enum _lpuart_idle_type_select
LPUART idle flag type defines when the receiver starts counting.

Values:

enumerator kLPUART_IdleTypeStartBit
Start counting after a valid start bit.

enumerator kLPUART_IdleTypeStopBit
Start counting after a stop bit.

enum _lpuart_idle_config
LPUART idle detected configuration. This structure defines the number of idle characters
that must be received before the IDLE flag is set.

Values:

enumerator kLPUART_IdleCharacter1
the number of idle characters.

enumerator kLPUART_IdleCharacter2
the number of idle characters.

enumerator kLPUART_IdleCharacter4
the number of idle characters.

enumerator kLPUART_IdleCharacter8
the number of idle characters.

enumerator kLPUART_IdleCharacter16
the number of idle characters.

enumerator kLPUART_IdleCharacter32
the number of idle characters.

enumerator kLPUART_IdleCharacter64
the number of idle characters.

2.22. LPUART Driver 225

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_IdleCharacter128
the number of idle characters.

enum _lpuart_interrupt_enable
LPUART interrupt configuration structure, default settings all disabled.

This structure contains the settings for all LPUART interrupt configurations.

Values:

enumerator kLPUART_LinBreakInterruptEnable
LIN break detect. bit 7

enumerator kLPUART_RxActiveEdgeInterruptEnable
Receive Active Edge. bit 6

enumerator kLPUART_TxDataRegEmptyInterruptEnable
Transmit data register empty. bit 23

enumerator kLPUART_TransmissionCompleteInterruptEnable
Transmission complete. bit 22

enumerator kLPUART_RxDataRegFullInterruptEnable
Receiver data register full. bit 21

enumerator kLPUART_IdleLineInterruptEnable
Idle line. bit 20

enumerator kLPUART_RxOverrunInterruptEnable
Receiver Overrun. bit 27

enumerator kLPUART_NoiseErrorInterruptEnable
Noise error flag. bit 26

enumerator kLPUART_FramingErrorInterruptEnable
Framing error flag. bit 25

enumerator kLPUART_ParityErrorInterruptEnable
Parity error flag. bit 24

enumerator kLPUART_Match1InterruptEnable
Parity error flag. bit 15

enumerator kLPUART_Match2InterruptEnable
Parity error flag. bit 14

enumerator kLPUART_TxFifoOverflowInterruptEnable
Transmit FIFO Overflow. bit 9

enumerator kLPUART_RxFifoUnderflowInterruptEnable
Receive FIFO Underflow. bit 8

enumerator kLPUART_AllInterruptEnable

enum _lpuart_flags
LPUART status flags.

This provides constants for the LPUART status flags for use in the LPUART functions.

Values:

enumerator kLPUART_TxDataRegEmptyFlag
Transmit data register empty flag, sets when transmit buffer is empty. bit 23

226 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kLPUART_TransmissionCompleteFlag
Transmission complete flag, sets when transmission activity complete. bit 22

enumerator kLPUART_RxDataRegFullFlag
Receive data register full flag, sets when the receive data buffer is full. bit 21

enumerator kLPUART_IdleLineFlag
Idle line detect flag, sets when idle line detected. bit 20

enumerator kLPUART_RxOverrunFlag
Receive Overrun, sets when new data is received before data is read from receive reg-
ister. bit 19

enumerator kLPUART_NoiseErrorFlag
Receive takes 3 samples of each received bit. If any of these samples differ, noise flag
sets. bit 18

enumerator kLPUART_FramingErrorFlag
Frame error flag, sets if logic 0 was detected where stop bit expected. bit 17

enumerator kLPUART_ParityErrorFlag
If parity enabled, sets upon parity error detection. bit 16

enumerator kLPUART_LinBreakFlag
LIN break detect interrupt flag, sets when LIN break char detected and LIN circuit
enabled. bit 31

enumerator kLPUART_RxActiveEdgeFlag
Receive pin active edge interrupt flag, sets when active edge detected. bit 30

enumerator kLPUART_RxActiveFlag
Receiver Active Flag (RAF), sets at beginning of valid start. bit 24

enumerator kLPUART_DataMatch1Flag
The next character to be read from LPUART_DATA matches MA1. bit 15

enumerator kLPUART_DataMatch2Flag
The next character to be read from LPUART_DATA matches MA2. bit 14

enumerator kLPUART_TxFifoEmptyFlag
TXEMPT bit, sets if transmit buffer is empty. bit 7

enumerator kLPUART_RxFifoEmptyFlag
RXEMPT bit, sets if receive buffer is empty. bit 6

enumerator kLPUART_TxFifoOverflowFlag
TXOF bit, sets if transmit buffer overflow occurred. bit 1

enumerator kLPUART_RxFifoUnderflowFlag
RXUF bit, sets if receive buffer underflow occurred. bit 0

enumerator kLPUART_AllClearFlags

enumerator kLPUART_AllFlags

typedef enum _lpuart_parity_mode lpuart_parity_mode_t
LPUART parity mode.

typedef enum _lpuart_data_bits lpuart_data_bits_t
LPUART data bits count.

typedef enum _lpuart_stop_bit_count lpuart_stop_bit_count_t
LPUART stop bit count.

2.22. LPUART Driver 227

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _lpuart_transmit_cts_source lpuart_transmit_cts_source_t
LPUART transmit CTS source.

typedef enum _lpuart_transmit_cts_config lpuart_transmit_cts_config_t
LPUART transmit CTS configure.

typedef enum _lpuart_idle_type_select lpuart_idle_type_select_t
LPUART idle flag type defines when the receiver starts counting.

typedef enum _lpuart_idle_config lpuart_idle_config_t
LPUART idle detected configuration. This structure defines the number of idle characters
that must be received before the IDLE flag is set.

typedef struct _lpuart_config lpuart_config_t
LPUART configuration structure.

typedef struct _lpuart_transfer lpuart_transfer_t
LPUART transfer structure.

typedef struct _lpuart_handle lpuart_handle_t

typedef void (*lpuart_transfer_callback_t)(LPUART_Type *base, lpuart_handle_t *handle,
status_t status, void *userData)

LPUART transfer callback function.

typedef void (*lpuart_isr_t)(LPUART_Type *base, void *handle)

void *s_lpuartHandle[]

const IRQn_Type s_lpuartTxIRQ[]

lpuart_isr_t s_lpuartIsr[]

UART_RETRY_TIMES
Retry times for waiting flag.

struct _lpuart_config
#include <fsl_lpuart.h> LPUART configuration structure.

Public Members

uint32_t baudRate_Bps
LPUART baud rate

lpuart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

lpuart_data_bits_t dataBitsCount
Data bits count, eight (default), seven

bool isMsb
Data bits order, LSB (default), MSB

lpuart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

uint8_t txFifoWatermark
TX FIFO watermark

uint8_t rxFifoWatermark
RX FIFO watermark

228 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

bool enableRxRTS
RX RTS enable

bool enableTxCTS
TX CTS enable

lpuart_transmit_cts_source_t txCtsSource
TX CTS source

lpuart_transmit_cts_config_t txCtsConfig
TX CTS configure

uint8_t rtsWatermark
RTS watermark

lpuart_idle_type_select_t rxIdleType
RX IDLE type.

lpuart_idle_config_t rxIdleConfig
RX IDLE configuration.

bool enableTx
Enable TX

bool enableRx
Enable RX

bool swapTxdRxd
Swap TXD and RXD pins

struct _lpuart_transfer
#include <fsl_lpuart.h> LPUART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _lpuart_handle
#include <fsl_lpuart.h> LPUART handle structure.

Public Members

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

2.22. LPUART Driver 229

MCUXpresso SDK Documentation, Release 25.12.00

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

lpuart_transfer_callback_t callback
Callback function.

void *userData
LPUART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state.

bool isSevenDataBits
Seven data bits flag.

bool is16bitData
16bit data bits flag, only used for 9bit or 10bit data

union __unnamed13__

Public Members

uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

uint16_t *rxData16
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

const uint16_t *txData16
The buffer of data to be sent.

union __unnamed15__

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

const uint16_t *volatile txData16
Address of remaining data to send.

union __unnamed17__

Public Members

uint8_t *volatile rxData
Address of remaining data to receive.

uint16_t *volatile rxData16
Address of remaining data to receive.

union __unnamed19__

230 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

uint16_t *rxRingBuffer16
Start address of the receiver ring buffer.

2.23 MCM: Miscellaneous Control Module

FSL_MCM_DRIVER_VERSION
MCM driver version.

Enum _mcm_interrupt_flag. Interrupt status flag mask. .

Values:

enumerator kMCM_CacheWriteBuffer
Cache Write Buffer Error Enable.

enumerator kMCM_ParityError
Cache Parity Error Enable.

enumerator kMCM_FPUInvalidOperation
FPU Invalid Operation Interrupt Enable.

enumerator kMCM_FPUDivideByZero
FPU Divide-by-zero Interrupt Enable.

enumerator kMCM_FPUOverflow
FPU Overflow Interrupt Enable.

enumerator kMCM_FPUUnderflow
FPU Underflow Interrupt Enable.

enumerator kMCM_FPUInexact
FPU Inexact Interrupt Enable.

enumerator kMCM_FPUInputDenormalInterrupt
FPU Input Denormal Interrupt Enable.

typedef union _mcm_buffer_fault_attribute mcm_buffer_fault_attribute_t
The union of buffer fault attribute.

typedef union _mcm_lmem_fault_attribute mcm_lmem_fault_attribute_t
The union of LMEM fault attribute.

static inline void MCM_EnableCrossbarRoundRobin(MCM_Type *base, bool enable)
Enables/Disables crossbar round robin.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable crossbar round robin.

– true Enable crossbar round robin.

– false disable crossbar round robin.

2.23. MCM: Miscellaneous Control Module 231

MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_EnableInterruptStatus(MCM_Type *base, uint32_t mask)
Enables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline void MCM_DisableInterruptStatus(MCM_Type *base, uint32_t mask)
Disables the interrupt.

Parameters
• base – MCM peripheral base address.

• mask – Interrupt status flags mask(_mcm_interrupt_flag).

static inline uint16_t MCM_GetInterruptStatus(MCM_Type *base)
Gets the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline void MCM_ClearCacheWriteBufferErroStatus(MCM_Type *base)
Clears the Interrupt status .

Parameters
• base – MCM peripheral base address.

static inline uint32_t MCM_GetBufferFaultAddress(MCM_Type *base)
Gets buffer fault address.

Parameters
• base – MCM peripheral base address.

static inline void MCM_GetBufferFaultAttribute(MCM_Type *base, mcm_buffer_fault_attribute_t
*bufferfault)

Gets buffer fault attributes.

Parameters
• base – MCM peripheral base address.

• bufferfault – Structure to store the result.

static inline uint32_t MCM_GetBufferFaultData(MCM_Type *base)
Gets buffer fault data.

Parameters
• base – MCM peripheral base address.

static inline void MCM_LimitCodeCachePeripheralWriteBuffering(MCM_Type *base, bool enable)
Limit code cache peripheral write buffering.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable limit code cache peripheral write buffering.

– true Enable limit code cache peripheral write buffering.

– false disable limit code cache peripheral write buffering.

232 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_BypassFixedCodeCacheMap(MCM_Type *base, bool enable)
Bypass fixed code cache map.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable bypass fixed code cache map.

– true Enable bypass fixed code cache map.

– false disable bypass fixed code cache map.

static inline void MCM_EnableCodeBusCache(MCM_Type *base, bool enable)
Enables/Disables code bus cache.

Parameters
• base – MCM peripheral base address.

• enable – Used to disable/enable code bus cache.

– true Enable code bus cache.

– false disable code bus cache.

static inline void MCM_ForceCodeCacheToNoAllocation(MCM_Type *base, bool enable)
Force code cache to no allocation.

Parameters
• base – MCM peripheral base address.

• enable – Used to force code cache to allocation or no allocation.

– true Force code cache to no allocation.

– false Force code cache to allocation.

static inline void MCM_EnableCodeCacheWriteBuffer(MCM_Type *base, bool enable)
Enables/Disables code cache write buffer.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable code cache write buffer.

– true Enable code cache write buffer.

– false Disable code cache write buffer.

static inline void MCM_ClearCodeBusCache(MCM_Type *base)
Clear code bus cache.

Parameters
• base – MCM peripheral base address.

static inline void MCM_EnablePcParityFaultReport(MCM_Type *base, bool enable)
Enables/Disables PC Parity Fault Report.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity Fault Report.

– true Enable PC Parity Fault Report.

– false disable PC Parity Fault Report.

2.23. MCM: Miscellaneous Control Module 233

MCUXpresso SDK Documentation, Release 25.12.00

static inline void MCM_EnablePcParity(MCM_Type *base, bool enable)
Enables/Disables PC Parity.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable PC Parity.

– true Enable PC Parity.

– false disable PC Parity.

static inline void MCM_LockConfigState(MCM_Type *base)
Lock the configuration state.

Parameters
• base – MCM peripheral base address.

static inline void MCM_EnableCacheParityReporting(MCM_Type *base, bool enable)
Enables/Disables cache parity reporting.

Parameters
• base – MCM peripheral base address.

• enable – Used to enable/disable cache parity reporting.

– true Enable cache parity reporting.

– false disable cache parity reporting.

static inline uint32_t MCM_GetLmemFaultAddress(MCM_Type *base)
Gets LMEM fault address.

Parameters
• base – MCM peripheral base address.

static inline void MCM_GetLmemFaultAttribute(MCM_Type *base, mcm_lmem_fault_attribute_t
*lmemFault)

Get LMEM fault attributes.

Parameters
• base – MCM peripheral base address.

• lmemFault – Structure to store the result.

static inline uint64_t MCM_GetLmemFaultData(MCM_Type *base)
Gets LMEM fault data.

Parameters
• base – MCM peripheral base address.

MCM_LMFATR_TYPE_MASK

MCM_LMFATR_MODE_MASK

MCM_LMFATR_BUFF_MASK

MCM_LMFATR_CACH_MASK

MCM_ISCR_STAT_MASK

FSL_COMPONENT_ID

union _mcm_buffer_fault_attribute
#include <fsl_mcm.h> The union of buffer fault attribute.

234 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t attribute
Indicates the faulting attributes, when a properly-enabled cache write buffer error
interrupt event is detected.

struct _mcm_buffer_fault_attribute._mcm_buffer_fault_attribut attribute_memory

struct _mcm_buffer_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t busErrorDataAccessType
Indicates the type of cache write buffer access.

uint32_t busErrorPrivilegeLevel
Indicates the privilege level of the cache write buffer access.

uint32_t busErrorSize
Indicates the size of the cache write buffer access.

uint32_t busErrorAccess
Indicates the type of system bus access.

uint32_t busErrorMasterID
Indicates the crossbar switch bus master number of the captured cache write
buffer bus error.

uint32_t busErrorOverrun
Indicates if another cache write buffer bus error is detected.

union _mcm_lmem_fault_attribute
#include <fsl_mcm.h> The union of LMEM fault attribute.

Public Members

uint32_t attribute
Indicates the attributes of the LMEM fault detected.

struct _mcm_lmem_fault_attribute._mcm_lmem_fault_attribut attribute_memory

struct _mcm_lmem_fault_attribut
#include <fsl_mcm.h>

Public Members

uint32_t parityFaultProtectionSignal
Indicates the features of parity fault protection signal.

uint32_t parityFaultMasterSize
Indicates the parity fault master size.

uint32_t parityFaultWrite
Indicates the parity fault is caused by read or write.

uint32_t backdoorAccess
Indicates the LMEM access fault is initiated by core access or backdoor access.

2.23. MCM: Miscellaneous Control Module 235

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t parityFaultSyndrome
Indicates the parity fault syndrome.

uint32_t overrun
Indicates the number of faultss.

2.24 PMC: Power Management Controller

static inline void PMC_GetVersionId(PMC_Type *base, pmc_version_id_t *versionId)
Gets the PMC version ID.

This function gets the PMC version ID, including major version number, minor version
number, and a feature specification number.

Parameters
• base – PMC peripheral base address.

• versionId – Pointer to version ID structure.

void PMC_GetParam(PMC_Type *base, pmc_param_t *param)
Gets the PMC parameter.

This function gets the PMC parameter including the VLPO enable and the HVD enable.

Parameters
• base – PMC peripheral base address.

• param – Pointer to PMC param structure.

void PMC_ConfigureLowVoltDetect(PMC_Type *base, const pmc_low_volt_detect_config_t
*config)

Configures the low-voltage detect setting.

This function configures the low-voltage detect setting, including the trip point voltage set-
ting, enables or disables the interrupt, enables or disables the system reset.

Parameters
• base – PMC peripheral base address.

• config – Low-voltage detect configuration structure.

static inline bool PMC_GetLowVoltDetectFlag(PMC_Type *base)
Gets the Low-voltage Detect Flag status.

This function reads the current LVDF status. If it returns 1, a low-voltage event is detected.

Parameters
• base – PMC peripheral base address.

Returns
Current low-voltage detect flag

• true: Low-voltage detected

• false: Low-voltage not detected

static inline void PMC_ClearLowVoltDetectFlag(PMC_Type *base)
Acknowledges clearing the Low-voltage Detect flag.

This function acknowledges the low-voltage detection errors (write 1 to clear LVDF).

Parameters

236 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• base – PMC peripheral base address.

void PMC_ConfigureLowVoltWarning(PMC_Type *base, const pmc_low_volt_warning_config_t
*config)

Configures the low-voltage warning setting.

This function configures the low-voltage warning setting, including the trip point voltage
setting and enabling or disabling the interrupt.

Parameters
• base – PMC peripheral base address.

• config – Low-voltage warning configuration structure.

static inline bool PMC_GetLowVoltWarningFlag(PMC_Type *base)
Gets the Low-voltage Warning Flag status.

This function polls the current LVWF status. When 1 is returned, it indicates a low-voltage
warning event. LVWF is set when V Supply transitions below the trip point or after reset
and V Supply is already below the V LVW.

Parameters
• base – PMC peripheral base address.

Returns
Current LVWF status

• true: Low-voltage Warning Flag is set.

• false: the Low-voltage Warning does not happen.

static inline void PMC_ClearLowVoltWarningFlag(PMC_Type *base)
Acknowledges the Low-voltage Warning flag.

This function acknowledges the low voltage warning errors (write 1 to clear LVWF).

Parameters
• base – PMC peripheral base address.

void PMC_ConfigureHighVoltDetect(PMC_Type *base, const pmc_high_volt_detect_config_t
*config)

Configures the high-voltage detect setting.

This function configures the high-voltage detect setting, including the trip point voltage
setting, enabling or disabling the interrupt, enabling or disabling the system reset.

Parameters
• base – PMC peripheral base address.

• config – High-voltage detect configuration structure.

static inline bool PMC_GetHighVoltDetectFlag(PMC_Type *base)
Gets the High-voltage Detect Flag status.

This function reads the current HVDF status. If it returns 1, a low voltage event is detected.

Parameters
• base – PMC peripheral base address.

Returns
Current high-voltage detect flag

• true: High-voltage detected

• false: High-voltage not detected

2.24. PMC: Power Management Controller 237

MCUXpresso SDK Documentation, Release 25.12.00

static inline void PMC_ClearHighVoltDetectFlag(PMC_Type *base)
Acknowledges clearing the High-voltage Detect flag.

This function acknowledges the high-voltage detection errors (write 1 to clear HVDF).

Parameters
• base – PMC peripheral base address.

void PMC_ConfigureBandgapBuffer(PMC_Type *base, const pmc_bandgap_buffer_config_t
*config)

Configures the PMC bandgap.

This function configures the PMC bandgap, including the drive select and behavior in low-
power mode.

Parameters
• base – PMC peripheral base address.

• config – Pointer to the configuration structure

static inline bool PMC_GetPeriphIOIsolationFlag(PMC_Type *base)
Gets the acknowledge Peripherals and I/O pads isolation flag.

This function reads the Acknowledge Isolation setting that indicates whether certain pe-
ripherals and the I/O pads are in a latched state as a result of having been in the VLLS
mode.

Parameters
• base – PMC peripheral base address.

• base – Base address for current PMC instance.

Returns
ACK isolation 0 - Peripherals and I/O pads are in a normal run state. 1 - Certain
peripherals and I/O pads are in an isolated and latched state.

static inline void PMC_ClearPeriphIOIsolationFlag(PMC_Type *base)
Acknowledges the isolation flag to Peripherals and I/O pads.

This function clears the ACK Isolation flag. Writing one to this setting when it is set releases
the I/O pads and certain peripherals to their normal run mode state.

Parameters
• base – PMC peripheral base address.

static inline bool PMC_IsRegulatorInRunRegulation(PMC_Type *base)
Gets the regulator regulation status.

This function returns the regulator to run a regulation status. It provides the current status
of the internal voltage regulator.

Parameters
• base – PMC peripheral base address.

• base – Base address for current PMC instance.

Returns
Regulation status 0 - Regulator is in a stop regulation or in transition to/from
the regulation. 1 - Regulator is in a run regulation.

FSL_PMC_DRIVER_VERSION
PMC driver version.

Version 2.0.3.

238 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enum _pmc_low_volt_detect_volt_select
Low-voltage Detect Voltage Select.

Values:

enumerator kPMC_LowVoltDetectLowTrip
Low-trip point selected (VLVD = VLVDL)

enumerator kPMC_LowVoltDetectHighTrip
High-trip point selected (VLVD = VLVDH)

enum _pmc_low_volt_warning_volt_select
Low-voltage Warning Voltage Select.

Values:

enumerator kPMC_LowVoltWarningLowTrip
Low-trip point selected (VLVW = VLVW1)

enumerator kPMC_LowVoltWarningMid1Trip
Mid 1 trip point selected (VLVW = VLVW2)

enumerator kPMC_LowVoltWarningMid2Trip
Mid 2 trip point selected (VLVW = VLVW3)

enumerator kPMC_LowVoltWarningHighTrip
High-trip point selected (VLVW = VLVW4)

enum _pmc_high_volt_detect_volt_select
High-voltage Detect Voltage Select.

Values:

enumerator kPMC_HighVoltDetectLowTrip
Low-trip point selected (VHVD = VHVDL)

enumerator kPMC_HighVoltDetectHighTrip
High-trip point selected (VHVD = VHVDH)

enum _pmc_bandgap_buffer_drive_select
Bandgap Buffer Drive Select.

Values:

enumerator kPMC_BandgapBufferDriveLow
Low-drive.

enumerator kPMC_BandgapBufferDriveHigh
High-drive.

enum _pmc_vlp_freq_option
VLPx Option.

Values:

enumerator kPMC_FreqRestrict
Frequency is restricted in VLPx mode.

enumerator kPMC_FreqUnrestrict
Frequency is unrestricted in VLPx mode.

typedef enum _pmc_low_volt_detect_volt_select pmc_low_volt_detect_volt_select_t
Low-voltage Detect Voltage Select.

2.24. PMC: Power Management Controller 239

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pmc_low_volt_warning_volt_select pmc_low_volt_warning_volt_select_t
Low-voltage Warning Voltage Select.

typedef enum _pmc_high_volt_detect_volt_select pmc_high_volt_detect_volt_select_t
High-voltage Detect Voltage Select.

typedef enum _pmc_bandgap_buffer_drive_select pmc_bandgap_buffer_drive_select_t
Bandgap Buffer Drive Select.

typedef enum _pmc_vlp_freq_option pmc_vlp_freq_mode_t
VLPx Option.

typedef struct _pmc_version_id pmc_version_id_t
IP version ID definition.

typedef struct _pmc_param pmc_param_t
IP parameter definition.

typedef struct _pmc_low_volt_detect_config pmc_low_volt_detect_config_t
Low-voltage Detect Configuration Structure.

typedef struct _pmc_low_volt_warning_config pmc_low_volt_warning_config_t
Low-voltage Warning Configuration Structure.

typedef struct _pmc_high_volt_detect_config pmc_high_volt_detect_config_t
High-voltage Detect Configuration Structure.

typedef struct _pmc_bandgap_buffer_config pmc_bandgap_buffer_config_t
Bandgap Buffer configuration.

struct _pmc_version_id
#include <fsl_pmc.h> IP version ID definition.

Public Members

uint16_t feature
Feature Specification Number.

uint8_t minor
Minor version number.

uint8_t major
Major version number.

struct _pmc_param
#include <fsl_pmc.h> IP parameter definition.

Public Members

bool vlpoEnable
VLPO enable.

bool hvdEnable
HVD enable.

struct _pmc_low_volt_detect_config
#include <fsl_pmc.h> Low-voltage Detect Configuration Structure.

240 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableInt
Enable interrupt when Low-voltage detect

bool enableReset
Enable system reset when Low-voltage detect

pmc_low_volt_detect_volt_select_t voltSelect
Low-voltage detect trip point voltage selection

struct _pmc_low_volt_warning_config
#include <fsl_pmc.h> Low-voltage Warning Configuration Structure.

Public Members

bool enableInt
Enable interrupt when low-voltage warning

pmc_low_volt_warning_volt_select_t voltSelect
Low-voltage warning trip point voltage selection

struct _pmc_high_volt_detect_config
#include <fsl_pmc.h> High-voltage Detect Configuration Structure.

Public Members

bool enableInt
Enable interrupt when high-voltage detect

bool enableReset
Enable system reset when high-voltage detect

pmc_high_volt_detect_volt_select_t voltSelect
High-voltage detect trip point voltage selection

struct _pmc_bandgap_buffer_config
#include <fsl_pmc.h> Bandgap Buffer configuration.

Public Members

bool enable
Enable bandgap buffer.

bool enableInLowPowerMode
Enable bandgap buffer in low-power mode.

pmc_bandgap_buffer_drive_select_t drive
Bandgap buffer drive select.

2.25 PORT: Port Control and Interrupts

2.25. PORT: Port Control and Interrupts 241

MCUXpresso SDK Documentation, Release 25.12.00

static inline void PORT_SetPinConfig(PORT_Type *base, uint32_t pin, const port_pin_config_t
*config)

Sets the port PCR register.

This is an example to define an input pin or output pin PCR configuration.

// Define a digital input pin PCR configuration
port_pin_config_t config = {

kPORT_PullUp,
kPORT_FastSlewRate,
kPORT_PassiveFilterDisable,
kPORT_OpenDrainDisable,
kPORT_LowDriveStrength,
kPORT_MuxAsGpio,
kPORT_UnLockRegister,

};

Parameters
• base – PORT peripheral base pointer.

• pin – PORT pin number.

• config – PORT PCR register configuration structure.

static inline void PORT_SetMultiplePinsConfig(PORT_Type *base, uint32_t mask, const
port_pin_config_t *config)

Sets the port PCR register for multiple pins.

This is an example to define input pins or output pins PCR configuration.

Define a digital input pin PCR configuration
port_pin_config_t config = {

kPORT_PullUp ,
kPORT_PullEnable,
kPORT_FastSlewRate,
kPORT_PassiveFilterDisable,
kPORT_OpenDrainDisable,
kPORT_LowDriveStrength,
kPORT_MuxAsGpio,
kPORT_UnlockRegister,

};

Parameters
• base – PORT peripheral base pointer.

• mask – PORT pin number macro.

• config – PORT PCR register configuration structure.

static inline void PORT_SetMultipleInterruptPinsConfig(PORT_Type *base, uint32_t mask,
port_interrupt_t config)

Sets the port interrupt configuration in PCR register for multiple pins.

Parameters
• base – PORT peripheral base pointer.

• mask – PORT pin number macro.

• config – PORT pin interrupt configuration.

– kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

– kPORT_DMARisingEdge : DMA request on rising edge(if the DMA re-
quests exit).

242 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

– kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA re-
quests exit).

– kPORT_DMAEitherEdge : DMA request on either edge(if the DMA re-
quests exit).

– kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

– kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

– kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

– kPORT_InterruptLogicZero : Interrupt when logic zero.

– kPORT_InterruptRisingEdge : Interrupt on rising edge.

– kPORT_InterruptFallingEdge: Interrupt on falling edge.

– kPORT_InterruptEitherEdge : Interrupt on either edge.

– kPORT_InterruptLogicOne : Interrupt when logic one.

– kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger
output (if the trigger states exit).

– kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger out-
put (if the trigger states exit).

static inline void PORT_SetPinMux(PORT_Type *base, uint32_t pin, port_mux_t mux)
Configures the pin muxing.

Note: : This function is NOT recommended to use together with the PORT_SetPinsConfig,
because the PORT_SetPinsConfig need to configure the pin mux anyway (Otherwise the pin
mux is reset to zero : kPORT_PinDisabledOrAnalog). This function is recommended to use
to reset the pin mux

Parameters
• base – PORT peripheral base pointer.

• pin – PORT pin number.

• mux – pin muxing slot selection.

– kPORT_PinDisabledOrAnalog: Pin disabled or work in analog function.

– kPORT_MuxAsGpio : Set as GPIO.

– kPORT_MuxAlt2 : chip-specific.

– kPORT_MuxAlt3 : chip-specific.

– kPORT_MuxAlt4 : chip-specific.

– kPORT_MuxAlt5 : chip-specific.

– kPORT_MuxAlt6 : chip-specific.

– kPORT_MuxAlt7 : chip-specific.

static inline void PORT_EnablePinsDigitalFilter(PORT_Type *base, uint32_t mask, bool enable)
Enables the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters
• base – PORT peripheral base pointer.

• mask – PORT pin number macro.

• enable – PORT digital filter configuration.

2.25. PORT: Port Control and Interrupts 243

MCUXpresso SDK Documentation, Release 25.12.00

static inline void PORT_SetDigitalFilterConfig(PORT_Type *base, const
port_digital_filter_config_t *config)

Sets the digital filter in one port, each bit of the 32-bit register represents one pin.

Parameters
• base – PORT peripheral base pointer.

• config – PORT digital filter configuration structure.

static inline void PORT_SetPinInterruptConfig(PORT_Type *base, uint32_t pin, port_interrupt_t
config)

Configures the port pin interrupt/DMA request.

Parameters
• base – PORT peripheral base pointer.

• pin – PORT pin number.

• config – PORT pin interrupt configuration.

– kPORT_InterruptOrDMADisabled: Interrupt/DMA request disabled.

– kPORT_DMARisingEdge : DMA request on rising edge(if the DMA re-
quests exit).

– kPORT_DMAFallingEdge: DMA request on falling edge(if the DMA re-
quests exit).

– kPORT_DMAEitherEdge : DMA request on either edge(if the DMA re-
quests exit).

– kPORT_FlagRisingEdge : Flag sets on rising edge(if the Flag states exit).

– kPORT_FlagFallingEdge : Flag sets on falling edge(if the Flag states exit).

– kPORT_FlagEitherEdge : Flag sets on either edge(if the Flag states exit).

– kPORT_InterruptLogicZero : Interrupt when logic zero.

– kPORT_InterruptRisingEdge : Interrupt on rising edge.

– kPORT_InterruptFallingEdge: Interrupt on falling edge.

– kPORT_InterruptEitherEdge : Interrupt on either edge.

– kPORT_InterruptLogicOne : Interrupt when logic one.

– kPORT_ActiveHighTriggerOutputEnable : Enable active high-trigger
output (if the trigger states exit).

– kPORT_ActiveLowTriggerOutputEnable : Enable active low-trigger out-
put (if the trigger states exit).

static inline void PORT_SetPinDriveStrength(PORT_Type *base, uint32_t pin, uint8_t strength)
Configures the port pin drive strength.

Parameters
• base – PORT peripheral base pointer.

• pin – PORT pin number.

• strength – PORT pin drive strength

– kPORT_LowDriveStrength = 0U - Low-drive strength is configured.

– kPORT_HighDriveStrength = 1U - High-drive strength is configured.

244 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t PORT_GetPinsInterruptFlags(PORT_Type *base)
Reads the whole port status flag.

If a pin is configured to generate the DMA request, the corresponding flag is cleared au-
tomatically at the completion of the requested DMA transfer. Otherwise, the flag remains
set until a logic one is written to that flag. If configured for a level sensitive interrupt that
remains asserted, the flag is set again immediately.

Parameters
• base – PORT peripheral base pointer.

Returns
Current port interrupt status flags, for example, 0x00010001 means the pin 0
and 16 have the interrupt.

static inline void PORT_ClearPinsInterruptFlags(PORT_Type *base, uint32_t mask)
Clears the multiple pin interrupt status flag.

Parameters
• base – PORT peripheral base pointer.

• mask – PORT pin number macro.

FSL_PORT_DRIVER_VERSION
PORT driver version.

enum _port_pull
Internal resistor pull feature selection.

Values:

enumerator kPORT_PullDisable
Internal pull-up/down resistor is disabled.

enumerator kPORT_PullDown
Internal pull-down resistor is enabled.

enumerator kPORT_PullUp
Internal pull-up resistor is enabled.

enum _port_slew_rate
Slew rate selection.

Values:

enumerator kPORT_FastSlewRate
Fast slew rate is configured.

enumerator kPORT_SlowSlewRate
Slow slew rate is configured.

enum _port_open_drain_enable
Open Drain feature enable/disable.

Values:

enumerator kPORT_OpenDrainDisable
Open drain output is disabled.

enumerator kPORT_OpenDrainEnable
Open drain output is enabled.

2.25. PORT: Port Control and Interrupts 245

MCUXpresso SDK Documentation, Release 25.12.00

enum _port_passive_filter_enable
Passive filter feature enable/disable.

Values:

enumerator kPORT_PassiveFilterDisable
Passive input filter is disabled.

enumerator kPORT_PassiveFilterEnable
Passive input filter is enabled.

enum _port_drive_strength
Configures the drive strength.

Values:

enumerator kPORT_LowDriveStrength
Low-drive strength is configured.

enumerator kPORT_HighDriveStrength
High-drive strength is configured.

enum _port_lock_register
Unlock/lock the pin control register field[15:0].

Values:

enumerator kPORT_UnlockRegister
Pin Control Register fields [15:0] are not locked.

enumerator kPORT_LockRegister
Pin Control Register fields [15:0] are locked.

enum _port_mux
Pin mux selection.

Values:

enumerator kPORT_PinDisabledOrAnalog
Corresponding pin is disabled, but is used as an analog pin.

enumerator kPORT_MuxAsGpio
Corresponding pin is configured as GPIO.

enumerator kPORT_MuxAlt0
Chip-specific

enumerator kPORT_MuxAlt1
Chip-specific

enumerator kPORT_MuxAlt2
Chip-specific

enumerator kPORT_MuxAlt3
Chip-specific

enumerator kPORT_MuxAlt4
Chip-specific

enumerator kPORT_MuxAlt5
Chip-specific

enumerator kPORT_MuxAlt6
Chip-specific

246 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPORT_MuxAlt7
Chip-specific

enumerator kPORT_MuxAlt8
Chip-specific

enumerator kPORT_MuxAlt9
Chip-specific

enumerator kPORT_MuxAlt10
Chip-specific

enumerator kPORT_MuxAlt11
Chip-specific

enumerator kPORT_MuxAlt12
Chip-specific

enumerator kPORT_MuxAlt13
Chip-specific

enumerator kPORT_MuxAlt14
Chip-specific

enumerator kPORT_MuxAlt15
Chip-specific

enum _port_interrupt
Configures the interrupt generation condition.

Values:

enumerator kPORT_InterruptOrDMADisabled
Interrupt/DMA request is disabled.

enumerator kPORT_DMARisingEdge
DMA request on rising edge.

enumerator kPORT_DMAFallingEdge
DMA request on falling edge.

enumerator kPORT_DMAEitherEdge
DMA request on either edge.

enumerator kPORT_FlagRisingEdge
Flag sets on rising edge.

enumerator kPORT_FlagFallingEdge
Flag sets on falling edge.

enumerator kPORT_FlagEitherEdge
Flag sets on either edge.

enumerator kPORT_InterruptLogicZero
Interrupt when logic zero.

enumerator kPORT_InterruptRisingEdge
Interrupt on rising edge.

enumerator kPORT_InterruptFallingEdge
Interrupt on falling edge.

2.25. PORT: Port Control and Interrupts 247

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPORT_InterruptEitherEdge
Interrupt on either edge.

enumerator kPORT_InterruptLogicOne
Interrupt when logic one.

enumerator kPORT_ActiveHighTriggerOutputEnable
Enable active high-trigger output.

enumerator kPORT_ActiveLowTriggerOutputEnable
Enable active low-trigger output.

enum _port_digital_filter_clock_source
Digital filter clock source selection.

Values:

enumerator kPORT_BusClock
Digital filters are clocked by the bus clock.

enumerator kPORT_LpoClock
Digital filters are clocked by the 1 kHz LPO clock.

typedef enum _port_mux port_mux_t
Pin mux selection.

typedef enum _port_interrupt port_interrupt_t
Configures the interrupt generation condition.

typedef enum _port_digital_filter_clock_source port_digital_filter_clock_source_t
Digital filter clock source selection.

typedef struct _port_digital_filter_config port_digital_filter_config_t
PORT digital filter feature configuration definition.

typedef struct _port_pin_config port_pin_config_t
PORT pin configuration structure.

FSL_COMPONENT_ID

struct _port_digital_filter_config
#include <fsl_port.h> PORT digital filter feature configuration definition.

Public Members

uint32_t digitalFilterWidth
Set digital filter width

port_digital_filter_clock_source_t clockSource
Set digital filter clockSource

struct _port_pin_config
#include <fsl_port.h> PORT pin configuration structure.

Public Members

uint16_t pullSelect
No-pull/pull-down/pull-up select

uint16_t slewRate
Fast/slow slew rate Configure

248 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint16_t passiveFilterEnable
Passive filter enable/disable

uint16_t openDrainEnable
Open drain enable/disable

uint16_t driveStrength
Fast/slow drive strength configure

uint16_t lockRegister
Lock/unlock the PCR field[15:0]

2.26 RCM: Reset Control Module Driver

static inline void RCM_GetVersionId(RCM_Type *base, rcm_version_id_t *versionId)
Gets the RCM version ID.

This function gets the RCM version ID including the major version number, the minor ver-
sion number, and the feature specification number.

Parameters
• base – RCM peripheral base address.

• versionId – Pointer to the version ID structure.

static inline uint32_t RCM_GetResetSourceImplementedStatus(RCM_Type *base)
Gets the reset source implemented status.

This function gets the RCM parameter that indicates whether the corresponding reset
source is implemented. Use source masks defined in the rcm_reset_source_t to get the de-
sired source status.

This is an example.

uint32_t status;

To test whether the MCU is reset using Watchdog.
status = RCM_GetResetSourceImplementedStatus(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters
• base – RCM peripheral base address.

Returns
All reset source implemented status bit map.

static inline uint32_t RCM_GetPreviousResetSources(RCM_Type *base)
Gets the reset source status which caused a previous reset.

This function gets the current reset source status. Use source masks defined in the
rcm_reset_source_t to get the desired source status.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetPreviousResetSources(RCM) & kRCM_SourceWdog;

(continues on next page)

2.26. RCM: Reset Control Module Driver 249

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

To test multiple reset sources.
resetStatus = RCM_GetPreviousResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters
• base – RCM peripheral base address.

Returns
All reset source status bit map.

static inline uint32_t RCM_GetStickyResetSources(RCM_Type *base)
Gets the sticky reset source status.

This function gets the current reset source status that has not been cleared by software for
a specific source.

This is an example.

uint32_t resetStatus;

To get all reset source statuses.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceAll;

To test whether the MCU is reset using Watchdog.
resetStatus = RCM_GetStickyResetSources(RCM) & kRCM_SourceWdog;

To test multiple reset sources.
resetStatus = RCM_GetStickyResetSources(RCM) & (kRCM_SourceWdog | kRCM_SourcePin);

Parameters
• base – RCM peripheral base address.

Returns
All reset source status bit map.

static inline void RCM_ClearStickyResetSources(RCM_Type *base, uint32_t sourceMasks)
Clears the sticky reset source status.

This function clears the sticky system reset flags indicated by source masks.

This is an example.

Clears multiple reset sources.
RCM_ClearStickyResetSources(kRCM_SourceWdog | kRCM_SourcePin);

Parameters
• base – RCM peripheral base address.

• sourceMasks – reset source status bit map

void RCM_ConfigureResetPinFilter(RCM_Type *base, const rcm_reset_pin_filter_config_t *config)
Configures the reset pin filter.

This function sets the reset pin filter including the filter source, filter width, and so on.

Parameters
• base – RCM peripheral base address.

• config – Pointer to the configuration structure.

250 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline bool RCM_GetEasyPortModePinStatus(RCM_Type *base)
Gets the EZP_MS_B pin assert status.

This function gets the easy port mode status (EZP_MS_B) pin assert status.

Parameters
• base – RCM peripheral base address.

Returns
status true - asserted, false - reasserted

static inline rcm_boot_rom_config_t RCM_GetBootRomSource(RCM_Type *base)
Gets the ROM boot source.

This function gets the ROM boot source during the last chip reset.

Parameters
• base – RCM peripheral base address.

Returns
The ROM boot source.

static inline void RCM_ClearBootRomSource(RCM_Type *base)
Clears the ROM boot source flag.

This function clears the ROM boot source flag.

Parameters
• base – Register base address of RCM

void RCM_SetForceBootRomSource(RCM_Type *base, rcm_boot_rom_config_t config)
Forces the boot from ROM.

This function forces booting from ROM during all subsequent system resets.

Parameters
• base – RCM peripheral base address.

• config – Boot configuration.

static inline void RCM_SetSystemResetInterruptConfig(RCM_Type *base, uint32_t intMask,
rcm_reset_delay_t delay)

Sets the system reset interrupt configuration.

For a graceful shut down, the RCM supports delaying the assertion of the sys-
tem reset for a period of time when the reset interrupt is generated. This func-
tion can be used to enable the interrupt and the delay period. The interrupts are
passed in as bit mask. See rcm_int_t for details. For example, to delay a re-
set for 512 LPO cycles after the WDOG timeout or loss-of-clock occurs, configure as
follows: RCM_SetSystemResetInterruptConfig(kRCM_IntWatchDog | kRCM_IntLossOfClk,
kRCM_ResetDelay512Lpo);

Parameters
• base – RCM peripheral base address.

• intMask – Bit mask of the system reset interrupts to enable. See
rcm_interrupt_enable_t for details.

• delay – Bit mask of the system reset interrupts to enable.

FSL_RCM_DRIVER_VERSION
RCM driver version 2.0.4.

2.26. RCM: Reset Control Module Driver 251

MCUXpresso SDK Documentation, Release 25.12.00

enum _rcm_reset_source
System Reset Source Name definitions.

Values:

enumerator kRCM_SourceWakeup
Low-leakage wakeup reset

enumerator kRCM_SourceLvd
Low-voltage detect reset

enumerator kRCM_SourceLoc
Loss of clock reset

enumerator kRCM_SourceLol
Loss of lock reset

enumerator kRCM_SourceWdog
Watchdog reset

enumerator kRCM_SourcePin
External pin reset

enumerator kRCM_SourcePor
Power on reset

enumerator kRCM_SourceJtag
JTAG generated reset

enumerator kRCM_SourceLockup
Core lock up reset

enumerator kRCM_SourceSw
Software reset

enumerator kRCM_SourceMdmap
MDM-AP system reset

enumerator kRCM_SourceEzpt
EzPort reset

enumerator kRCM_SourceSackerr
Parameter could get all reset flags

enumerator kRCM_SourceAll

enum _rcm_run_wait_filter_mode
Reset pin filter select in Run and Wait modes.

Values:

enumerator kRCM_FilterDisable
All filtering disabled

enumerator kRCM_FilterBusClock
Bus clock filter enabled

enumerator kRCM_FilterLpoClock
LPO clock filter enabled

enum _rcm_boot_rom_config
Boot from ROM configuration.

Values:

252 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kRCM_BootFlash
Boot from flash

enumerator kRCM_BootRomCfg0
Boot from boot ROM due to BOOTCFG0

enumerator kRCM_BootRomFopt
Boot from boot ROM due to FOPT[7]

enumerator kRCM_BootRomBoth
Boot from boot ROM due to both BOOTCFG0 and FOPT[7]

enum _rcm_reset_delay
Maximum delay time from interrupt asserts to system reset.

Values:

enumerator kRCM_ResetDelay8Lpo
Delay 8 LPO cycles.

enumerator kRCM_ResetDelay32Lpo
Delay 32 LPO cycles.

enumerator kRCM_ResetDelay128Lpo
Delay 128 LPO cycles.

enumerator kRCM_ResetDelay512Lpo
Delay 512 LPO cycles.

enum _rcm_interrupt_enable
System reset interrupt enable bit definitions.

Values:

enumerator kRCM_IntNone
No interrupt enabled.

enumerator kRCM_IntLossOfClk
Loss of clock interrupt.

enumerator kRCM_IntLossOfLock
Loss of lock interrupt.

enumerator kRCM_IntWatchDog
Watch dog interrupt.

enumerator kRCM_IntExternalPin
External pin interrupt.

enumerator kRCM_IntGlobal
Global interrupts.

enumerator kRCM_IntCoreLockup
Core lock up interrupt

enumerator kRCM_IntSoftware
software interrupt

enumerator kRCM_IntStopModeAckErr
Stop mode ACK error interrupt.

enumerator kRCM_IntCore1
Core 1 interrupt.

2.26. RCM: Reset Control Module Driver 253

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kRCM_IntAll
Enable all interrupts.

typedef enum _rcm_reset_source rcm_reset_source_t
System Reset Source Name definitions.

typedef enum _rcm_run_wait_filter_mode rcm_run_wait_filter_mode_t
Reset pin filter select in Run and Wait modes.

typedef enum _rcm_boot_rom_config rcm_boot_rom_config_t
Boot from ROM configuration.

typedef enum _rcm_reset_delay rcm_reset_delay_t
Maximum delay time from interrupt asserts to system reset.

typedef enum _rcm_interrupt_enable rcm_interrupt_enable_t
System reset interrupt enable bit definitions.

typedef struct _rcm_version_id rcm_version_id_t
IP version ID definition.

typedef struct _rcm_reset_pin_filter_config rcm_reset_pin_filter_config_t
Reset pin filter configuration.

struct _rcm_version_id
#include <fsl_rcm.h> IP version ID definition.

Public Members

uint16_t feature
Feature Specification Number.

uint8_t minor
Minor version number.

uint8_t major
Major version number.

struct _rcm_reset_pin_filter_config
#include <fsl_rcm.h> Reset pin filter configuration.

Public Members

bool enableFilterInStop
Reset pin filter select in stop mode.

rcm_run_wait_filter_mode_t filterInRunWait
Reset pin filter in run/wait mode.

uint8_t busClockFilterCount
Reset pin bus clock filter width.

2.27 RTC: Real Time Clock

254 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

void RTC_Init(RTC_Type *base, const rtc_config_t *config)
Ungates the RTC clock and configures the peripheral for basic operation.

This function issues a software reset if the timer invalid flag is set.

Note: This API should be called at the beginning of the application using the RTC driver.

Parameters
• base – RTC peripheral base address

• config – Pointer to the user’s RTC configuration structure.

static inline void RTC_Deinit(RTC_Type *base)
Stops the timer and gate the RTC clock.

Parameters
• base – RTC peripheral base address

void RTC_GetDefaultConfig(rtc_config_t *config)
Fills in the RTC config struct with the default settings.

The default values are as follows.

config->clockOutput = false;
config->wakeupSelect = false;
config->updateMode = false;
config->supervisorAccess = false;
config->compensationInterval = 0;
config->compensationTime = 0;

Parameters
• config – Pointer to the user’s RTC configuration structure.

status_t RTC_SetDatetime(RTC_Type *base, const rtc_datetime_t *datetime)
Sets the RTC date and time according to the given time structure.

The RTC counter must be stopped prior to calling this function because writes to the RTC
seconds register fail if the RTC counter is running.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

Returns
kStatus_Success: Success in setting the time and starting the RTC kSta-
tus_InvalidArgument: Error because the datetime format is incorrect

void RTC_GetDatetime(RTC_Type *base, rtc_datetime_t *datetime)
Gets the RTC time and stores it in the given time structure.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to the structure where the date and time details are
stored.

2.27. RTC: Real Time Clock 255

MCUXpresso SDK Documentation, Release 25.12.00

status_t RTC_SetAlarm(RTC_Type *base, const rtc_datetime_t *alarmTime)
Sets the RTC alarm time.

The function checks whether the specified alarm time is greater than the present time. If
not, the function does not set the alarm and returns an error.

Parameters
• base – RTC peripheral base address

• alarmTime – Pointer to the structure where the alarm time is stored.

Returns
kStatus_Success: success in setting the RTC alarm kStatus_InvalidArgument:
Error because the alarm datetime format is incorrect kStatus_Fail: Error be-
cause the alarm time has already passed

void RTC_GetAlarm(RTC_Type *base, rtc_datetime_t *datetime)
Returns the RTC alarm time.

Parameters
• base – RTC peripheral base address

• datetime – Pointer to the structure where the alarm date and time details
are stored.

void RTC_EnableInterrupts(RTC_Type *base, uint32_t mask)
Enables the selected RTC interrupts.

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

void RTC_DisableInterrupts(RTC_Type *base, uint32_t mask)
Disables the selected RTC interrupts.

Parameters
• base – RTC peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration rtc_interrupt_enable_t

uint32_t RTC_GetEnabledInterrupts(RTC_Type *base)
Gets the enabled RTC interrupts.

Parameters
• base – RTC peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
rtc_interrupt_enable_t

uint32_t RTC_GetStatusFlags(RTC_Type *base)
Gets the RTC status flags.

Parameters
• base – RTC peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
rtc_status_flags_t

256 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

void RTC_ClearStatusFlags(RTC_Type *base, uint32_t mask)
Clears the RTC status flags.

Parameters
• base – RTC peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration rtc_status_flags_t

static inline void RTC_EnableLPOClock(RTC_Type *base, bool enable)
Enable/Disable RTC 1kHz LPO clock.

Note: After setting this bit, RTC prescaler increments using the LPO 1kHz clock and not
the RTC 32kHz crystal clock.

Parameters
• base – RTC peripheral base address

• enable – Enable/Disable RTC 1kHz LPO clock

static inline void RTC_StartTimer(RTC_Type *base)
Starts the RTC time counter.

After calling this function, the timer counter increments once a second provided SR[TOF]
or SR[TIF] are not set.

Parameters
• base – RTC peripheral base address

static inline void RTC_StopTimer(RTC_Type *base)
Stops the RTC time counter.

RTC’s seconds register can be written to only when the timer is stopped.

Parameters
• base – RTC peripheral base address

void RTC_GetMonotonicCounter(RTC_Type *base, uint64_t *counter)
Reads the values of the Monotonic Counter High and Monotonic Counter Low and returns
them as a single value.

Parameters
• base – RTC peripheral base address

• counter – Pointer to variable where the value is stored.

void RTC_SetMonotonicCounter(RTC_Type *base, uint64_t counter)
Writes values Monotonic Counter High and Monotonic Counter Low by decomposing the
given single value. The Monotonic Overflow Flag in RTC_SR is cleared due to the API.

Parameters
• base – RTC peripheral base address

• counter – Counter value

status_t RTC_IncrementMonotonicCounter(RTC_Type *base)
Increments the Monotonic Counter by one.

2.27. RTC: Real Time Clock 257

MCUXpresso SDK Documentation, Release 25.12.00

Increments the Monotonic Counter (registers RTC_MCLR and RTC_MCHR accordingly) by
setting the monotonic counter enable (MER[MCE]) and then writing to the RTC_MCLR reg-
ister. A write to the monotonic counter low that causes it to overflow also increments the
monotonic counter high.

Parameters
• base – RTC peripheral base address

Returns
kStatus_Success: success kStatus_Fail: error occurred, either time invalid or
monotonic overflow flag was found

FSL_RTC_DRIVER_VERSION
Version 2.4.0

enum _rtc_interrupt_enable
List of RTC interrupts.

Values:

enumerator kRTC_TimeInvalidInterruptEnable
Time invalid interrupt.

enumerator kRTC_TimeOverflowInterruptEnable
Time overflow interrupt.

enumerator kRTC_AlarmInterruptEnable
Alarm interrupt.

enumerator kRTC_MonotonicOverflowInterruptEnable
Monotonic Overflow Interrupt Enable

enumerator kRTC_SecondsInterruptEnable
Seconds interrupt.

enumerator kRTC_TestModeInterruptEnable

enumerator kRTC_FlashSecurityInterruptEnable

enumerator kRTC_TamperPinInterruptEnable

enumerator kRTC_SecurityModuleInterruptEnable

enumerator kRTC_LossOfClockInterruptEnable

enum _rtc_status_flags
List of RTC flags.

Values:

enumerator kRTC_TimeInvalidFlag
Time invalid flag

enumerator kRTC_TimeOverflowFlag
Time overflow flag

enumerator kRTC_AlarmFlag
Alarm flag

enumerator kRTC_MonotonicOverflowFlag
Monotonic Overflow Flag

enumerator kRTC_TamperInterruptDetectFlag
Tamper interrupt detect flag

258 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kRTC_TestModeFlag

enumerator kRTC_FlashSecurityFlag

enumerator kRTC_TamperPinFlag

enumerator kRTC_SecurityTamperFlag

enumerator kRTC_LossOfClockTamperFlag

enum _rtc_osc_cap_load
List of RTC Oscillator capacitor load settings.

Values:

enumerator kRTC_Capacitor_2p
2 pF capacitor load

enumerator kRTC_Capacitor_4p
4 pF capacitor load

enumerator kRTC_Capacitor_8p
8 pF capacitor load

enumerator kRTC_Capacitor_16p
16 pF capacitor load

enum _rtc_timer_seconds_interrupt_frequency
List of RTC Timer Seconds Interrupt Frequencies.

Values:

enumerator kRTC_TimerSecondsFrequency1Hz
Timer seconds frequency is 1Hz

enumerator kRTC_TimerSecondsFrequency2Hz
Timer seconds frequency is 2Hz

enumerator kRTC_TimerSecondsFrequency4Hz
Timer seconds frequency is 4Hz

enumerator kRTC_TimerSecondsFrequency8Hz
Timer seconds frequency is 8Hz

enumerator kRTC_TimerSecondsFrequency16Hz
Timer seconds frequency is 16Hz

enumerator kRTC_TimerSecondsFrequency32Hz
Timer seconds frequency is 32Hz

enumerator kRTC_TimerSecondsFrequency64Hz
Timer seconds frequency is 64Hz

enumerator kRTC_TimerSecondsFrequency128Hz
Timer seconds frequency is 128Hz

typedef enum _rtc_interrupt_enable rtc_interrupt_enable_t
List of RTC interrupts.

typedef enum _rtc_status_flags rtc_status_flags_t
List of RTC flags.

typedef enum _rtc_osc_cap_load rtc_osc_cap_load_t
List of RTC Oscillator capacitor load settings.

2.27. RTC: Real Time Clock 259

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _rtc_timer_seconds_interrupt_frequency rtc_timer_seconds_interrupt_frequency_t
List of RTC Timer Seconds Interrupt Frequencies.

typedef struct _rtc_datetime rtc_datetime_t
Structure is used to hold the date and time.

typedef struct _rtc_pin_config rtc_pin_config_t
RTC pin config structure.

typedef struct _rtc_config rtc_config_t
RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this
structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

static inline uint32_t RTC_GetTamperTimeSeconds(RTC_Type *base)
Get the RTC tamper time seconds.

Parameters
• base – RTC peripheral base address

static inline void RTC_SetOscCapLoad(RTC_Type *base, uint32_t capLoad)
This function sets the specified capacitor configuration for the RTC oscillator.

Parameters
• base – RTC peripheral base address

• capLoad – Oscillator loads to enable. This is a logical OR of members of the
enumeration rtc_osc_cap_load_t

static inline void RTC_Reset(RTC_Type *base)
Performs a software reset on the RTC module.

This resets all RTC registers except for the SWR bit and the RTC_WAR and RTC_RAR registers.
The SWR bit is cleared by software explicitly clearing it.

Parameters
• base – RTC peripheral base address

static inline void RTC_EnableWakeUpPin(RTC_Type *base, bool enable)
Enables or disables the RTC Wakeup Pin Operation.

This function enable or disable RTC Wakeup Pin. The wakeup pin is optional and not avail-
able on all devices.

Parameters
• base – RTC_Type base pointer.

• enable – true to enable, false to disable.

static inline void RTC_EnableClockOutput(RTC_Type *base, bool enable)
Enables or disables the RTC 32 kHz clock output.

This function enables or disables the RTC 32 kHz clock output.

Parameters
• base – RTC_Type base pointer.

• enable – true to enable, false to disable.

260 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

void RTC_SetTimerSecondsInterruptFrequency(RTC_Type *base,
rtc_timer_seconds_interrupt_frequency_t freq)

Sets the RTC timer seconds interrupt frequency.

This function sets the RTC timer seconds interrupt frequency.

Parameters
• base – RTC peripheral base address

• freq – The timer seconds interrupt frequency. This is a member of the enu-
meration rtc_timer_seconds_interrupt_frequency_t

struct _rtc_datetime
#include <fsl_rtc.h> Structure is used to hold the date and time.

Public Members

uint16_t year
Range from 1970 to 2099.

uint8_t month
Range from 1 to 12.

uint8_t day
Range from 1 to 31 (depending on month).

uint8_t hour
Range from 0 to 23.

uint8_t minute
Range from 0 to 59.

uint8_t second
Range from 0 to 59.

struct _rtc_pin_config
#include <fsl_rtc.h> RTC pin config structure.

Public Members

bool inputLogic
true: Tamper pin input data is logic one. false: Tamper pin input data is logic zero.

bool pinActiveLow
true: Tamper pin is active low. false: Tamper pin is active high.

bool filterEnable
true: Input filter is enabled on the tamper pin. false: Input filter is disabled on the
tamper pin.

bool pullSelectNegate
true: Tamper pin pull resistor direction will negate the tamper pin. false: Tamper pin
pull resistor direction will assert the tamper pin.

bool pullEnable
true: Pull resistor is enabled on tamper pin. false: Pull resistor is disabled on tamper
pin.

2.27. RTC: Real Time Clock 261

MCUXpresso SDK Documentation, Release 25.12.00

struct _rtc_config
#include <fsl_rtc.h> RTC config structure.

This structure holds the configuration settings for the RTC peripheral. To initialize this
structure to reasonable defaults, call the RTC_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool clockOutput
true: The 32 kHz clock is not output to other peripherals; false: The 32 kHz clock is
output to other peripherals

bool wakeupSelect
true: Wakeup pin outputs the 32 KHz clock; false:Wakeup pin used to wakeup the chip

bool updateMode
true: Registers can be written even when locked under certain conditions, false: No
writes allowed when registers are locked

bool supervisorAccess
true: Non-supervisor accesses are allowed; false: Non-supervisor accesses are not sup-
ported

uint32_t compensationInterval
Compensation interval that is written to the CIR field in RTC TCR Register

uint32_t compensationTime
Compensation time that is written to the TCR field in RTC TCR Register

2.28 SIM: System Integration Module Driver

FSL_SIM_DRIVER_VERSION
Driver version.

enum _sim_usb_volt_reg_enable_mode
USB voltage regulator enable setting.

Values:

enumerator kSIM_UsbVoltRegEnable
Enable voltage regulator.

enumerator kSIM_UsbVoltRegEnableInLowPower
Enable voltage regulator in VLPR/VLPW modes.

enumerator kSIM_UsbVoltRegEnableInStop
Enable voltage regulator in STOP/VLPS/LLS/VLLS modes.

enumerator kSIM_UsbVoltRegEnableInAllModes
Enable voltage regulator in all power modes.

enum _sim_flash_mode
Flash enable mode.

Values:

262 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSIM_FlashDisableInWait
Disable flash in wait mode.

enumerator kSIM_FlashDisable
Disable flash in normal mode.

typedef struct _sim_uid sim_uid_t
Unique ID.

void SIM_SetUsbVoltRegulatorEnableMode(uint32_t mask)
Sets the USB voltage regulator setting.

This function configures whether the USB voltage regulator is enabled in normal RUN mode,
STOP/VLPS/LLS/VLLS modes, and VLPR/VLPW modes. The configurations are passed in as
mask value of _sim_usb_volt_reg_enable_mode. For example, to enable USB voltage regu-
lator in RUN/VLPR/VLPW modes and disable in STOP/VLPS/LLS/VLLS mode, use:

SIM_SetUsbVoltRegulatorEnableMode(kSIM_UsbVoltRegEnable |
kSIM_UsbVoltRegEnableInLowPower);

Parameters
• mask – USB voltage regulator enable setting.

void SIM_GetUniqueId(sim_uid_t *uid)
Gets the unique identification register value.

Parameters
• uid – Pointer to the structure to save the UID value.

static inline void SIM_SetFlashMode(uint8_t mode)
Sets the flash enable mode.

Parameters
• mode – The mode to set; see _sim_flash_mode for mode details.

struct _sim_uid
#include <fsl_sim.h> Unique ID.

Public Members

uint32_t H
UIDH.

uint32_t M
SIM_UIDM.

uint32_t L
UIDL.

2.29 SMC: System Mode Controller Driver

static inline void SMC_GetVersionId(SMC_Type *base, smc_version_id_t *versionId)
Gets the SMC version ID.

This function gets the SMC version ID, including major version number, minor version
number, and feature specification number.

Parameters

2.29. SMC: System Mode Controller Driver 263

MCUXpresso SDK Documentation, Release 25.12.00

• base – SMC peripheral base address.

• versionId – Pointer to the version ID structure.

void SMC_GetParam(SMC_Type *base, smc_param_t *param)
Gets the SMC parameter.

This function gets the SMC parameter including the enabled power mdoes.

Parameters
• base – SMC peripheral base address.

• param – Pointer to the SMC param structure.

static inline void SMC_SetPowerModeProtection(SMC_Type *base, uint8_t allowedModes)
Configures all power mode protection settings.

This function configures the power mode protection settings for supported power
modes in the specified chip family. The available power modes are defined in the
smc_power_mode_protection_t. This should be done at an early system level initialization
stage. See the reference manual for details. This register can only write once after the
power reset.

The allowed modes are passed as bit map. For example, to allow LLS
and VLLS, use SMC_SetPowerModeProtection(kSMC_AllowPowerModeVlls
| kSMC_AllowPowerModeVlps). To allow all modes, use
SMC_SetPowerModeProtection(kSMC_AllowPowerModeAll).

Parameters
• base – SMC peripheral base address.

• allowedModes – Bitmap of the allowed power modes.

static inline smc_power_state_t SMC_GetPowerModeState(SMC_Type *base)
Gets the current power mode status.

This function returns the current power mode status. After the application switches the
power mode, it should always check the status to check whether it runs into the specified
mode or not. The application should check this mode before switching to a different mode.
The system requires that only certain modes can switch to other specific modes. See the
reference manual for details and the smc_power_state_t for information about the power
status.

Parameters
• base – SMC peripheral base address.

Returns
Current power mode status.

void SMC_PreEnterStopModes(void)
Prepares to enter stop modes.

This function should be called before entering STOP/VLPS/LLS/VLLS modes.

void SMC_PostExitStopModes(void)
Recovers after wake up from stop modes.

This function should be called after wake up from STOP/VLPS/LLS/VLLS modes. It is used
with SMC_PreEnterStopModes.

void SMC_PreEnterWaitModes(void)
Prepares to enter wait modes.

This function should be called before entering WAIT/VLPW modes.

264 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

void SMC_PostExitWaitModes(void)
Recovers after wake up from stop modes.

This function should be called after wake up from WAIT/VLPW modes. It is used with
SMC_PreEnterWaitModes.

status_t SMC_SetPowerModeRun(SMC_Type *base)
Configures the system to RUN power mode.

Parameters
• base – SMC peripheral base address.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeHsrun(SMC_Type *base)
Configures the system to HSRUN power mode.

Parameters
• base – SMC peripheral base address.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeWait(SMC_Type *base)
Configures the system to WAIT power mode.

Parameters
• base – SMC peripheral base address.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeStop(SMC_Type *base, smc_partial_stop_option_t option)
Configures the system to Stop power mode.

Parameters
• base – SMC peripheral base address.

• option – Partial Stop mode option.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeVlpr(SMC_Type *base, bool wakeupMode)
Configures the system to VLPR power mode.

Parameters
• base – SMC peripheral base address.

• wakeupMode – Enter Normal Run mode if true, else stay in VLPR mode.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeVlpw(SMC_Type *base)
Configures the system to VLPW power mode.

Parameters
• base – SMC peripheral base address.

Returns
SMC configuration error code.

2.29. SMC: System Mode Controller Driver 265

MCUXpresso SDK Documentation, Release 25.12.00

status_t SMC_SetPowerModeVlps(SMC_Type *base)
Configures the system to VLPS power mode.

Parameters
• base – SMC peripheral base address.

Returns
SMC configuration error code.

status_t SMC_SetPowerModeLls(SMC_Type *base, const smc_power_mode_lls_config_t *config)
Configures the system to LLS power mode.

Parameters
• base – SMC peripheral base address.

• config – The LLS power mode configuration structure

Returns
SMC configuration error code.

status_t SMC_SetPowerModeVlls(SMC_Type *base, const smc_power_mode_vlls_config_t *config)
Configures the system to VLLS power mode.

Parameters
• base – SMC peripheral base address.

• config – The VLLS power mode configuration structure.

Returns
SMC configuration error code.

FSL_SMC_DRIVER_VERSION
SMC driver version.

enum _smc_power_mode_protection
Power Modes Protection.

Values:

enumerator kSMC_AllowPowerModeVlls
Allow Very-low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeLls
Allow Low-leakage Stop Mode.

enumerator kSMC_AllowPowerModeVlp
Allow Very-Low-power Mode.

enumerator kSMC_AllowPowerModeHsrun
Allow High-speed Run mode.

enumerator kSMC_AllowPowerModeAll
Allow all power mode.

enum _smc_power_state
Power Modes in PMSTAT.

Values:

enumerator kSMC_PowerStateRun
0000_0001 - Current power mode is RUN

enumerator kSMC_PowerStateStop
0000_0010 - Current power mode is STOP

266 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSMC_PowerStateVlpr
0000_0100 - Current power mode is VLPR

enumerator kSMC_PowerStateVlpw
0000_1000 - Current power mode is VLPW

enumerator kSMC_PowerStateVlps
0001_0000 - Current power mode is VLPS

enumerator kSMC_PowerStateLls
0010_0000 - Current power mode is LLS

enumerator kSMC_PowerStateVlls
0100_0000 - Current power mode is VLLS

enumerator kSMC_PowerStateHsrun
1000_0000 - Current power mode is HSRUN

enum _smc_run_mode
Run mode definition.

Values:

enumerator kSMC_RunNormal
Normal RUN mode.

enumerator kSMC_RunVlpr
Very-low-power RUN mode.

enumerator kSMC_Hsrun
High-speed Run mode (HSRUN).

enum _smc_stop_mode
Stop mode definition.

Values:

enumerator kSMC_StopNormal
Normal STOP mode.

enumerator kSMC_StopVlps
Very-low-power STOP mode.

enumerator kSMC_StopLls
Low-leakage Stop mode.

enumerator kSMC_StopVlls
Very-low-leakage Stop mode.

enum _smc_stop_submode
VLLS/LLS stop sub mode definition.

Values:

enumerator kSMC_StopSub0
Stop submode 0, for VLLS0/LLS0.

enumerator kSMC_StopSub1
Stop submode 1, for VLLS1/LLS1.

enumerator kSMC_StopSub2
Stop submode 2, for VLLS2/LLS2.

2.29. SMC: System Mode Controller Driver 267

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSMC_StopSub3
Stop submode 3, for VLLS3/LLS3.

enum _smc_partial_stop_mode
Partial STOP option.

Values:

enumerator kSMC_PartialStop
STOP - Normal Stop mode

enumerator kSMC_PartialStop1
Partial Stop with both system and bus clocks disabled

enumerator kSMC_PartialStop2
Partial Stop with system clock disabled and bus clock enabled

_smc_status, SMC configuration status.

Values:

enumerator kStatus_SMC_StopAbort
Entering Stop mode is abort

typedef enum _smc_power_mode_protection smc_power_mode_protection_t
Power Modes Protection.

typedef enum _smc_power_state smc_power_state_t
Power Modes in PMSTAT.

typedef enum _smc_run_mode smc_run_mode_t
Run mode definition.

typedef enum _smc_stop_mode smc_stop_mode_t
Stop mode definition.

typedef enum _smc_stop_submode smc_stop_submode_t
VLLS/LLS stop sub mode definition.

typedef enum _smc_partial_stop_mode smc_partial_stop_option_t
Partial STOP option.

typedef struct _smc_version_id smc_version_id_t
IP version ID definition.

typedef struct _smc_param smc_param_t
IP parameter definition.

typedef struct _smc_power_mode_lls_config smc_power_mode_lls_config_t
SMC Low-Leakage Stop power mode configuration.

typedef struct _smc_power_mode_vlls_config smc_power_mode_vlls_config_t
SMC Very Low-Leakage Stop power mode configuration.

struct _smc_version_id
#include <fsl_smc.h> IP version ID definition.

Public Members

uint16_t feature
Feature Specification Number.

268 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t minor
Minor version number.

uint8_t major
Major version number.

struct _smc_param
#include <fsl_smc.h> IP parameter definition.

Public Members

bool hsrunEnable
HSRUN mode enable.

bool llsEnable
LLS mode enable.

bool lls2Enable
LLS2 mode enable.

bool vlls0Enable
VLLS0 mode enable.

struct _smc_power_mode_lls_config
#include <fsl_smc.h> SMC Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode
Low-leakage Stop sub-mode

bool enableLpoClock
Enable LPO clock in LLS mode

struct _smc_power_mode_vlls_config
#include <fsl_smc.h> SMC Very Low-Leakage Stop power mode configuration.

Public Members

smc_stop_submode_t subMode
Very Low-leakage Stop sub-mode

bool enablePorDetectInVlls0
Enable Power on reset detect in VLLS mode

bool enableRam2InVlls2
Enable RAM2 power in VLLS2

bool enableLpoClock
Enable LPO clock in VLLS mode

2.30 SPI: Serial Peripheral Interface Driver

2.31 SPI Driver

2.30. SPI: Serial Peripheral Interface Driver 269

MCUXpresso SDK Documentation, Release 25.12.00

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or
modify some fields of the structure before calling SPI_MasterInit(). After calling this API,
the master is ready to transfer. Example:

spi_master_config_t config;
SPI_MasterGetDefaultConfig(&config);

Parameters
• config – pointer to master config structure

void SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spi_master_config_t config = {
.baudRate_Bps = 400000,
...
};
SPI_MasterInit(SPI0, &config);

Parameters
• base – SPI base pointer

• config – pointer to master configuration structure

• srcClock_Hz – Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_SlaveInit(). Modify some fields of the structure before calling SPI_SlaveInit(). Exam-
ple:

spi_slave_config_t config;
SPI_SlaveGetDefaultConfig(&config);

Parameters
• config – pointer to slave configuration structure

void SPI_SlaveInit(SPI_Type *base, const spi_slave_config_t *config)
Initializes the SPI with slave configuration.

The configuration structure can be filled by user from scratch or be set with default val-
ues by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spi_slave_config_t config = {
.polarity = kSPIClockPolarity_ActiveHigh;
.phase = kSPIClockPhase_FirstEdge;
.direction = kSPIMsbFirst;
...
};
SPI_MasterInit(SPI0, &config);

270 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – SPI base pointer

• config – pointer to master configuration structure

void SPI_Deinit(SPI_Type *base)
De-initializes the SPI.

Calling this API resets the SPI module, gates the SPI clock. The SPI module can’t work unless
calling the SPI_MasterInit/SPI_SlaveInit to initialize module.

Parameters
• base – SPI base pointer

static inline void SPI_Enable(SPI_Type *base, bool enable)
Enables or disables the SPI.

Parameters
• base – SPI base pointer

• enable – pass true to enable module, false to disable module

uint32_t SPI_GetStatusFlags(SPI_Type *base)
Gets the status flag.

Parameters
• base – SPI base pointer

Returns
SPI Status, use status flag to AND _spi_flags could get the related status.

static inline void SPI_ClearInterrupt(SPI_Type *base, uint8_t mask)
Clear the interrupt if enable INCTLR.

Parameters
• base – SPI base pointer

• mask – Interrupt need to be cleared The parameter could be any combina-
tion of the following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

– kSPI_TxFifoNearEmptyInterruptEnable

void SPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
Enables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• mask – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

2.31. SPI Driver 271

MCUXpresso SDK Documentation, Release 25.12.00

– kSPI_TxFifoNearEmptyInterruptEnable

void SPI_DisableInterrupts(SPI_Type *base, uint32_t mask)
Disables the interrupt for the SPI.

Parameters
• base – SPI base pointer

• mask – SPI interrupt source. The parameter can be any combination of the
following values:

– kSPI_RxFullAndModfInterruptEnable

– kSPI_TxEmptyInterruptEnable

– kSPI_MatchInterruptEnable

– kSPI_RxFifoNearFullInterruptEnable

– kSPI_TxFifoNearEmptyInterruptEnable

static inline void SPI_EnableDMA(SPI_Type *base, uint8_t mask, bool enable)
Enables the DMA source for SPI.

Parameters
• base – SPI base pointer

• mask – SPI DMA source.

• enable – True means enable DMA, false means disable DMA

static inline uint32_t SPI_GetDataRegisterAddress(SPI_Type *base)
Gets the SPI tx/rx data register address.

This API is used to provide a transfer address for the SPI DMA transfer configuration.

Parameters
• base – SPI base pointer

Returns
data register address

uint32_t SPI_GetInstance(SPI_Type *base)
Get the instance for SPI module.

Parameters
• base – SPI base address

static inline void SPI_SetPinMode(SPI_Type *base, spi_pin_mode_t pinMode)
Sets the pin mode for transfer.

Parameters
• base – SPI base pointer

• pinMode – pin mode for transfer AND _spi_pin_mode could get the related
configuration.

void SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.

Parameters
• base – SPI base pointer

• baudRate_Bps – baud rate needed in Hz.

• srcClock_Hz – SPI source clock frequency in Hz.

272 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

static inline void SPI_SetMatchData(SPI_Type *base, uint32_t matchData)
Sets the match data for SPI.

The match data is a hardware comparison value. When the value received in the SPI receive
data buffer equals the hardware comparison value, the SPI Match Flag in the S register
(S[SPMF]) sets. This can also generate an interrupt if the enable bit sets.

Parameters
• base – SPI base pointer

• matchData – Match data.

void SPI_EnableFIFO(SPI_Type *base, bool enable)
Enables or disables the FIFO if there is a FIFO.

Parameters
• base – SPI base pointer

• enable – True means enable FIFO, false means disable FIFO.

status_t SPI_WriteBlocking(SPI_Type *base, uint8_t *buffer, size_t size)
Sends a buffer of data bytes using a blocking method.

Note: This function blocks via polling until all bytes have been sent.

Parameters
• base – SPI base pointer

• buffer – The data bytes to send

• size – The number of data bytes to send

Returns
kStatus_SPI_Timeout The transfer timed out and was aborted.

void SPI_WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register.

Parameters
• base – SPI base pointer

• data – needs to be write.

uint16_t SPI_ReadData(SPI_Type *base)
Gets a data from the SPI data register.

Parameters
• base – SPI base pointer

Returns
Data in the register.

void SPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
Set up the dummy data.

Parameters
• base – SPI peripheral address.

• dummyData – Data to be transferred when tx buffer is NULL.

2.31. SPI Driver 273

MCUXpresso SDK Documentation, Release 25.12.00

void SPI_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle,
spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPI master handle which can be used for other SPI master trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer_t *xfer)
Transfers a block of data using a polling method.

Parameters
• base – SPI base pointer

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

status_t SPI_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.

Note: The API immediately returns after transfer initialization is finished. Call
SPI_GetStatusIRQ() to get the transfer status.

Note: If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structure which stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t
*count)

Gets the bytes of the SPI interrupt transferred.

Parameters
• base – SPI peripheral base address.

274 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• handle – Pointer to SPI transfer handle, this should be a static variable.

• count – Transferred bytes of SPI master.

Return values
• kStatus_SPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

void SPI_MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
Aborts an SPI transfer using interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_master_handle_t structure which stores the transfer
state.

void SPI_SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle,
spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
• base – SPI peripheral base address.

• handle – SPI handle pointer.

• callback – Callback function.

• userData – User data.

status_t SPI_SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.

Note: The API returns immediately after the transfer initialization is finished. Call
SPI_GetStatusIRQ() to get the transfer status.

Note: If SPI transfer data frame size is 16 bits, the transfer size cannot be an odd number.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_slave_handle_t structure which stores the transfer
state

• xfer – pointer to spi_xfer_config_t structure

2.31. SPI Driver 275

MCUXpresso SDK Documentation, Release 25.12.00

Return values
• kStatus_Success – Successfully start a transfer.

• kStatus_InvalidArgument – Input argument is invalid.

• kStatus_SPI_Busy – SPI is not idle, is running another transfer.

static inline status_t SPI_SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle,
size_t *count)

Gets the bytes of the SPI interrupt transferred.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

• count – Transferred bytes of SPI slave.

Return values
• kStatus_SPI_Success – Succeed get the transfer count.

• kStatus_NoTransferInProgress – There is not a non-blocking transaction cur-
rently in progress.

static inline void SPI_SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
Aborts an SPI slave transfer using interrupt.

Parameters
• base – SPI peripheral base address.

• handle – Pointer to SPI transfer handle, this should be a static variable.

void SPI_SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.

Parameters
• base – SPI peripheral base address.

• handle – pointer to spi_slave_handle_t structure which stores the transfer
state

FSL_SPI_DRIVER_VERSION
SPI driver version.

Return status for the SPI driver.

Values:

enumerator kStatus_SPI_Busy
SPI bus is busy

enumerator kStatus_SPI_Idle
SPI is idle

enumerator kStatus_SPI_Error
SPI error

enumerator kStatus_SPI_Timeout
SPI timeout polling status flags.

enum _spi_clock_polarity
SPI clock polarity configuration.

Values:

276 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPI_ClockPolarityActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ClockPolarityActiveLow
Active-low SPI clock (idles high).

enum _spi_clock_phase
SPI clock phase configuration.

Values:

enumerator kSPI_ClockPhaseFirstEdge
First edge on SPSCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ClockPhaseSecondEdge
First edge on SPSCK occurs at the start of the first cycle of a data transfer.

enum _spi_shift_direction
SPI data shifter direction options.

Values:

enumerator kSPI_MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_LsbFirst
Data transfers start with least significant bit.

enum _spi_ss_output_mode
SPI slave select output mode options.

Values:

enumerator kSPI_SlaveSelectAsGpio
Slave select pin configured as GPIO.

enumerator kSPI_SlaveSelectFaultInput
Slave select pin configured for fault detection.

enumerator kSPI_SlaveSelectAutomaticOutput
Slave select pin configured for automatic SPI output.

enum _spi_pin_mode
SPI pin mode options.

Values:

enumerator kSPI_PinModeNormal
Pins operate in normal, single-direction mode.

enumerator kSPI_PinModeInput
Bidirectional mode. Master: MOSI pin is input; Slave: MISO pin is input.

enumerator kSPI_PinModeOutput
Bidirectional mode. Master: MOSI pin is output; Slave: MISO pin is output.

enum _spi_data_bitcount_mode
SPI data length mode options.

Values:

enumerator kSPI_8BitMode
8-bit data transmission mode

2.31. SPI Driver 277

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPI_16BitMode
16-bit data transmission mode

enum _spi_interrupt_enable
SPI interrupt sources.

Values:

enumerator kSPI_RxFullAndModfInterruptEnable
Receive buffer full (SPRF) and mode fault (MODF) interrupt

enumerator kSPI_TxEmptyInterruptEnable
Transmit buffer empty interrupt

enumerator kSPI_MatchInterruptEnable
Match interrupt

enumerator kSPI_RxFifoNearFullInterruptEnable
Receive FIFO nearly full interrupt

enumerator kSPI_TxFifoNearEmptyInterruptEnable
Transmit FIFO nearly empty interrupt

enum _spi_flags
SPI status flags.

Values:

enumerator kSPI_RxBufferFullFlag
Read buffer full flag

enumerator kSPI_MatchFlag
Match flag

enumerator kSPI_TxBufferEmptyFlag
Transmit buffer empty flag

enumerator kSPI_ModeFaultFlag
Mode fault flag

enumerator kSPI_RxFifoNearFullFlag
Rx FIFO near full

enumerator kSPI_TxFifoNearEmptyFlag
Tx FIFO near empty

enumerator kSPI_TxFifoFullFlag
Tx FIFO full

enumerator kSPI_RxFifoEmptyFlag
Rx FIFO empty

enumerator kSPI_TxFifoError
Tx FIFO error

enumerator kSPI_RxFifoError
Rx FIFO error

enumerator kSPI_TxOverflow
Tx FIFO Overflow

enumerator kSPI_RxOverflow
Rx FIFO Overflow

278 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enum _spi_w1c_interrupt
SPI FIFO write-1-to-clear interrupt flags.

Values:

enumerator kSPI_RxFifoFullClearInterrupt
Receive FIFO full interrupt

enumerator kSPI_TxFifoEmptyClearInterrupt
Transmit FIFO empty interrupt

enumerator kSPI_RxNearFullClearInterrupt
Receive FIFO nearly full interrupt

enumerator kSPI_TxNearEmptyClearInterrupt
Transmit FIFO nearly empty interrupt

enum _spi_txfifo_watermark
SPI TX FIFO watermark settings.

Values:

enumerator kSPI_TxFifoOneFourthEmpty
SPI tx watermark at 1/4 FIFO size

enumerator kSPI_TxFifoOneHalfEmpty
SPI tx watermark at 1/2 FIFO size

enum _spi_rxfifo_watermark
SPI RX FIFO watermark settings.

Values:

enumerator kSPI_RxFifoThreeFourthsFull
SPI rx watermark at 3/4 FIFO size

enumerator kSPI_RxFifoOneHalfFull
SPI rx watermark at 1/2 FIFO size

enum _spi_dma_enable_t
SPI DMA source.

Values:

enumerator kSPI_TxDmaEnable
Tx DMA request source

enumerator kSPI_RxDmaEnable
Rx DMA request source

enumerator kSPI_DmaAllEnable
All DMA request source

typedef enum _spi_clock_polarity spi_clock_polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_clock_phase_t
SPI clock phase configuration.

typedef enum _spi_shift_direction spi_shift_direction_t
SPI data shifter direction options.

typedef enum _spi_ss_output_mode spi_ss_output_mode_t
SPI slave select output mode options.

2.31. SPI Driver 279

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _spi_pin_mode spi_pin_mode_t
SPI pin mode options.

typedef enum _spi_data_bitcount_mode spi_data_bitcount_mode_t
SPI data length mode options.

typedef enum _spi_w1c_interrupt spi_w1c_interrupt_t
SPI FIFO write-1-to-clear interrupt flags.

typedef enum _spi_txfifo_watermark spi_txfifo_watermark_t
SPI TX FIFO watermark settings.

typedef enum _spi_rxfifo_watermark spi_rxfifo_watermark_t
SPI RX FIFO watermark settings.

typedef struct _spi_master_config spi_master_config_t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_transfer_t
SPI transfer structure.

typedef struct _spi_master_handle spi_master_handle_t

typedef spi_master_handle_t spi_slave_handle_t
Slave handle is the same with master handle

typedef void (*spi_master_callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_callback_t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI master callback for finished transmit.

volatile uint8_t g_spiDummyData[]
Global variable for dummy data value setting.

SPI_DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

SPI_RETRY_TIMES
Retry times for waiting flag.

struct _spi_master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members

bool enableMaster
Enable SPI at initialization time

bool enableStopInWaitMode
SPI stop in wait mode

spi_clock_polarity_t polarity
Clock polarity

280 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_bitcount_mode_t dataMode
8bit or 16bit mode

spi_txfifo_watermark_t txWatermark
Tx watermark settings

spi_rxfifo_watermark_t rxWatermark
Rx watermark settings

spi_ss_output_mode_t outputMode
SS pin setting

spi_pin_mode_t pinMode
SPI pin mode select

uint32_t baudRate_Bps
Baud Rate for SPI in Hz

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

Public Members

bool enableSlave
Enable SPI at initialization time

bool enableStopInWaitMode
SPI stop in wait mode

spi_clock_polarity_t polarity
Clock polarity

spi_clock_phase_t phase
Clock phase

spi_shift_direction_t direction
MSB or LSB

spi_data_bitcount_mode_t dataMode
8bit or 16bit mode

spi_txfifo_watermark_t txWatermark
Tx watermark settings

spi_rxfifo_watermark_t rxWatermark
Rx watermark settings

spi_pin_mode_t pinMode
SPI pin mode select

struct _spi_transfer
#include <fsl_spi.h> SPI transfer structure.

2.31. SPI Driver 281

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

uint32_t flags
SPI control flag, useless to SPI.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members

const uint8_t *volatile txData
Transfer buffer

uint8_t *volatile rxData
Receive buffer

volatile size_t txRemainingBytes
Send data remaining in bytes

volatile size_t rxRemainingBytes
Receive data remaining in bytes

volatile uint32_t state
SPI internal state

size_t transferSize
Bytes to be transferred

uint8_t bytePerFrame
SPI mode, 2bytes or 1byte in a frame

uint8_t watermark
Watermark value for SPI transfer

spi_master_callback_t callback
SPI callback

void *userData
Callback parameter

2.32 TPM: Timer PWMModule

uint32_t TPM_GetInstance(TPM_Type *base)
Gets the instance from the base address.

Parameters
• base – TPM peripheral base address

Returns
The TPM instance

282 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

void TPM_Init(TPM_Type *base, const tpm_config_t *config)
Ungates the TPM clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the TPM driver.

Parameters
• base – TPM peripheral base address

• config – Pointer to user’s TPM config structure.

void TPM_Deinit(TPM_Type *base)
Stops the counter and gates the TPM clock.

Parameters
• base – TPM peripheral base address

void TPM_GetDefaultConfig(tpm_config_t *config)
Fill in the TPM config struct with the default settings.

The default values are:

config->prescale = kTPM_Prescale_Divide_1;
config->useGlobalTimeBase = false;
config->syncGlobalTimeBase = false;
config->dozeEnable = false;
config->dbgMode = false;
config->enableReloadOnTrigger = false;
config->enableStopOnOverflow = false;
config->enableStartOnTrigger = false;

#if FSL_FEATURE_TPM_HAS_PAUSE_COUNTER_ON_TRIGGER
config->enablePauseOnTrigger = false;

#endif
config->triggerSelect = kTPM_Trigger_Select_0;

#if FSL_FEATURE_TPM_HAS_EXTERNAL_TRIGGER_SELECTION
config->triggerSource = kTPM_TriggerSource_External;
config->extTriggerPolarity = kTPM_ExtTrigger_Active_High;

#endif
#if defined(FSL_FEATURE_TPM_HAS_POL) && FSL_FEATURE_TPM_HAS_POL

config->chnlPolarity = 0U;
#endif

Parameters
• config – Pointer to user’s TPM config structure.

tpm_clock_prescale_t TPM_CalculateCounterClkDiv(TPM_Type *base, uint32_t
counterPeriod_Hz, uint32_t srcClock_Hz)

Calculates the counter clock prescaler.

This function calculates the values for SC[PS].

return Calculated clock prescaler value.

Parameters
• base – TPM peripheral base address

• counterPeriod_Hz – The desired frequency in Hz which corresponding to
the time when the counter reaches the mod value

• srcClock_Hz – TPM counter clock in Hz

2.32. TPM: Timer PWMModule 283

MCUXpresso SDK Documentation, Release 25.12.00

static inline void TPM_Reset(TPM_Type *base)
Performs a software reset on the TPM module.

Reset all internal logic and registers, except the Global Register. Remains set until cleared
by software.

Note: TPM software reset is available on certain SoC’s only

Parameters
• base – TPM peripheral base address

status_t TPM_SetupPwm(TPM_Type *base, const tpm_chnl_pwm_signal_param_t *chnlParams,
uint8_t numOfChnls, tpm_pwm_mode_t mode, uint32_t pwmFreq_Hz,
uint32_t srcClock_Hz)

Configures the PWM signal parameters.

User calls this function to configure the PWM signals period, mode, dutycycle and edge. Use
this function to configure all the TPM channels that will be used to output a PWM signal

Parameters
• base – TPM peripheral base address

• chnlParams – Array of PWM channel parameters to configure the chan-
nel(s)

• numOfChnls – Number of channels to configure, this should be the size of
the array passed in

• mode – PWM operation mode, options available in enumeration
tpm_pwm_mode_t

• pwmFreq_Hz – PWM signal frequency in Hz

• srcClock_Hz – TPM counter clock in Hz

Returns
kStatus_Success PWM setup successful kStatus_Error PWM setup failed kSta-
tus_Timeout PWM setup timeout when write register CnV or MOD

status_t TPM_UpdatePwmDutycycle(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_pwm_mode_t currentPwmMode, uint8_t
dutyCyclePercent)

Update the duty cycle of an active PWM signal.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number. In combined mode, this represents the
channel pair number

• currentPwmMode – The current PWM mode set during PWM setup

• dutyCyclePercent – New PWM pulse width, value should be between 0 to
100 0=inactive signal(0% duty cycle)… 100=active signal (100% duty cycle)

Returns
kStatus_Success if the PWM setup was successful, kStatus_Error on failure

void TPM_UpdateChnlEdgeLevelSelect(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t level)
Update the edge level selection for a channel.

284 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Note: When the TPM has PWM pause level select feature
(FSL_FEATURE_TPM_HAS_PAUSE_LEVEL_SELECT = 1), the PWM output cannot be turned
off by selecting the output level. In this case, must use TPM_DisableChannel API to close
the PWM output.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• level – The level to be set to the ELSnB:ELSnA field; valid values are 00, 01,
10, 11. See the appropriate SoC reference manual for details about this
field.

static inline uint8_t TPM_GetChannelContorlBits(TPM_Type *base, tpm_chnl_t chnlNumber)
Get the channel control bits value (mode, edge and level bit fileds).

This function disable the channel by clear all mode and level control bits.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
The contorl bits value. This is the logical OR of members of the enumeration
tpm_chnl_control_bit_mask_t.

static inline status_t TPM_DisableChannel(TPM_Type *base, tpm_chnl_t chnlNumber)
Dsiable the channel.

This function disable the channel by clear all mode and level control bits.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

static inline status_t TPM_EnableChannel(TPM_Type *base, tpm_chnl_t chnlNumber, uint8_t
control)

Enable the channel according to mode and level configs.

This function enable the channel output according to input mode/level config parameters.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• control – The contorl bits value. This is the logical OR of members of the
enumeration tpm_chnl_control_bit_mask_t.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

2.32. TPM: Timer PWMModule 285

MCUXpresso SDK Documentation, Release 25.12.00

void TPM_SetupInputCapture(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_input_capture_edge_t captureMode)

Enables capturing an input signal on the channel using the function parameters.

When the edge specified in the captureMode argument occurs on the channel, the TPM
counter is captured into the CnV register. The user has to read the CnV register separately
to get this value.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• captureMode – Specifies which edge to capture

status_t TPM_SetupOutputCompare(TPM_Type *base, tpm_chnl_t chnlNumber,
tpm_output_compare_mode_t compareMode, uint32_t
compareValue)

Configures the TPM to generate timed pulses.

When the TPM counter matches the value of compareVal argument (this is written into
CnV reg), the channel output is changed based on what is specified in the compareMode
argument.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• compareMode – Action to take on the channel output when the compare
condition is met

• compareValue – Value to be programmed in the CnV register.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnV

void TPM_SetupDualEdgeCapture(TPM_Type *base, tpm_chnl_t chnlPairNumber, const
tpm_dual_edge_capture_param_t *edgeParam, uint32_t
filterValue)

Configures the dual edge capture mode of the TPM.

This function allows to measure a pulse width of the signal on the input of channel of a
channel pair. The filter function is disabled if the filterVal argument passed is zero.

Parameters
• base – TPM peripheral base address

• chnlPairNumber – The TPM channel pair number; options are 0, 1, 2, 3

• edgeParam – Sets up the dual edge capture function

• filterValue – Filter value, specify 0 to disable filter.

void TPM_SetupQuadDecode(TPM_Type *base, const tpm_phase_params_t *phaseAParams,
const tpm_phase_params_t *phaseBParams,
tpm_quad_decode_mode_t quadMode)

Configures the parameters and activates the quadrature decode mode.

Parameters
• base – TPM peripheral base address

• phaseAParams – Phase A configuration parameters

286 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

• phaseBParams – Phase B configuration parameters

• quadMode – Selects encoding mode used in quadrature decoder mode

static inline void TPM_SetChannelPolarity(TPM_Type *base, tpm_chnl_t chnlNumber, bool
enable)

Set the input and output polarity of each of the channels.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• enable – true: Set the channel polarity to active high; false: Set the channel
polarity to active low;

static inline void TPM_EnableChannelExtTrigger(TPM_Type *base, tpm_chnl_t chnlNumber, bool
enable)

Enable external trigger input to be used by channel.

In input capture mode, configures the trigger input that is used by the channel to capture
the counter value. In output compare or PWM mode, configures the trigger input used
to modulate the channel output. When modulating the output, the output is forced to the
channel initial value whenever the trigger is not asserted.

Note: No matter how many external trigger sources there are, only input trigger 0 and 1
are used. The even numbered channels share the input trigger 0 and the odd numbered
channels share the second input trigger 1.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

• enable – true: Configures trigger input 0 or 1 to be used by channel; false:
Trigger input has no effect on the channel

void TPM_EnableInterrupts(TPM_Type *base, uint32_t mask)
Enables the selected TPM interrupts.

Parameters
• base – TPM peripheral base address

• mask – The interrupts to enable. This is a logical OR of members of the
enumeration tpm_interrupt_enable_t

void TPM_DisableInterrupts(TPM_Type *base, uint32_t mask)
Disables the selected TPM interrupts.

Parameters
• base – TPM peripheral base address

• mask – The interrupts to disable. This is a logical OR of members of the
enumeration tpm_interrupt_enable_t

uint32_t TPM_GetEnabledInterrupts(TPM_Type *base)
Gets the enabled TPM interrupts.

Parameters
• base – TPM peripheral base address

2.32. TPM: Timer PWMModule 287

MCUXpresso SDK Documentation, Release 25.12.00

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
tpm_interrupt_enable_t

void TPM_RegisterCallBack(TPM_Type *base, tpm_callback_t callback)
Register callback.

If channel or overflow interrupt is enabled by the user, then a callback can be registered
which will be invoked when the interrupt is triggered.

Parameters
• base – TPM peripheral base address

• callback – Callback function

void TPM_DriverIRQHandler(uint32_t instance)
TPM driver IRQ handler common entry.

This function provides the common IRQ request entry for TPM.

Parameters
• instance – TPM instance.

static inline uint32_t TPM_GetChannelValue(TPM_Type *base, tpm_chnl_t chnlNumber)
Gets the TPM channel value.

Note: The TPM channel value contain the captured TPM counter value for the input modes
or the match value for the output modes.

Parameters
• base – TPM peripheral base address

• chnlNumber – The channel number

Returns
The channle CnV regisyer value.

static inline uint32_t TPM_GetStatusFlags(TPM_Type *base)
Gets the TPM status flags.

Parameters
• base – TPM peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
tpm_status_flags_t

static inline void TPM_ClearStatusFlags(TPM_Type *base, uint32_t mask)
Clears the TPM status flags.

Parameters
• base – TPM peripheral base address

• mask – The status flags to clear. This is a logical OR of members of the
enumeration tpm_status_flags_t

static inline status_t TPM_SetTimerPeriod(TPM_Type *base, uint32_t ticks)
Sets the timer period in units of ticks.

Timers counts from 0 until it equals the count value set here. The count value is written to
the MOD register.

288 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Note:
a. This API allows the user to use the TPM module as a timer. Do not mix usage of this

API with TPM’s PWM setup API’s.

b. Call the utility macros provided in the fsl_common.h to convert usec or msec to ticks.

Parameters
• base – TPM peripheral base address

• ticks – A timer period in units of ticks, which should be equal or greater
than 1.

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

static inline uint32_t TPM_GetCurrentTimerCount(TPM_Type *base)
Reads the current timer counting value.

This function returns the real-time timer counting value in a range from 0 to a timer period.

Note: Call the utility macros provided in the fsl_common.h to convert ticks to usec or msec.

Parameters
• base – TPM peripheral base address

Returns
The current counter value in ticks

static inline void TPM_StartTimer(TPM_Type *base, tpm_clock_source_t clockSource)
Starts the TPM counter.

Parameters
• base – TPM peripheral base address

• clockSource – TPM clock source; once clock source is set the counter will
start running

static inline status_t TPM_StopTimer(TPM_Type *base)
Stops the TPM counter.

Parameters
• base – TPM peripheral base address

Returns
kStatus_Success PWM setup successful kStatus_Timeout PWM setup timeout
when write register CnSC

FSL_TPM_DRIVER_VERSION
TPM driver version 2.4.0.

enum _tpm_chnl
List of TPM channels.

Note: Actual number of available channels is SoC dependent

Values:

2.32. TPM: Timer PWMModule 289

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTPM_Chnl_0
TPM channel number 0

enumerator kTPM_Chnl_1
TPM channel number 1

enumerator kTPM_Chnl_2
TPM channel number 2

enumerator kTPM_Chnl_3
TPM channel number 3

enumerator kTPM_Chnl_4
TPM channel number 4

enumerator kTPM_Chnl_5
TPM channel number 5

enumerator kTPM_Chnl_6
TPM channel number 6

enumerator kTPM_Chnl_7
TPM channel number 7

enum _tpm_pwm_mode
TPM PWM operation modes.

Values:

enumerator kTPM_EdgeAlignedPwm
Edge aligned PWM

enumerator kTPM_CenterAlignedPwm
Center aligned PWM

enumerator kTPM_CombinedPwm
Combined PWM (Edge-aligned, center-aligned, or asymmetrical PWMs can be obtained
in combined mode using different software configurations)

enum _tpm_pwm_level_select
TPM PWM output pulse mode: high-true, low-true or no output.

Note: When the TPM has PWM pause level select feature, the PWM output cannot be
turned off by selecting the output level. In this case, the channel must be closed to close the
PWM output.

Values:

enumerator kTPM_NoPwmSignal
No PWM output on pin

enumerator kTPM_LowTrue
Low true pulses

enumerator kTPM_HighTrue
High true pulses

enum _tpm_chnl_control_bit_mask
List of TPM channel modes and level control bit mask.

Values:

290 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTPM_ChnlELSnAMask
Channel ELSA bit mask.

enumerator kTPM_ChnlELSnBMask
Channel ELSB bit mask.

enumerator kTPM_ChnlMSAMask
Channel MSA bit mask.

enumerator kTPM_ChnlMSBMask
Channel MSB bit mask.

enum _tpm_trigger_select
Trigger sources available.

This is used for both internal & external trigger sources (external trigger sources available
in certain SoC’s)

Note: The actual trigger sources available is SoC-specific.

Values:

enumerator kTPM_Trigger_Select_0

enumerator kTPM_Trigger_Select_1

enumerator kTPM_Trigger_Select_2

enumerator kTPM_Trigger_Select_3

enumerator kTPM_Trigger_Select_4

enumerator kTPM_Trigger_Select_5

enumerator kTPM_Trigger_Select_6

enumerator kTPM_Trigger_Select_7

enumerator kTPM_Trigger_Select_8

enumerator kTPM_Trigger_Select_9

enumerator kTPM_Trigger_Select_10

enumerator kTPM_Trigger_Select_11

enumerator kTPM_Trigger_Select_12

enumerator kTPM_Trigger_Select_13

enumerator kTPM_Trigger_Select_14

enumerator kTPM_Trigger_Select_15

enum _tpm_trigger_source
Trigger source options available.

Note: This selection is available only on some SoC’s. For SoC’s without this selection, the
only trigger source available is internal triger.

Values:

2.32. TPM: Timer PWMModule 291

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTPM_TriggerSource_External
Use external trigger input

enumerator kTPM_TriggerSource_Internal
Use internal trigger (channel pin input capture)

enum _tpm_ext_trigger_polarity
External trigger source polarity.

Note: Selects the polarity of the external trigger source.

Values:

enumerator kTPM_ExtTrigger_Active_High
External trigger input is active high

enumerator kTPM_ExtTrigger_Active_Low
External trigger input is active low

enum _tpm_output_compare_mode
TPM output compare modes.

Values:

enumerator kTPM_NoOutputSignal
No channel output when counter reaches CnV

enumerator kTPM_ToggleOnMatch
Toggle output

enumerator kTPM_ClearOnMatch
Clear output

enumerator kTPM_SetOnMatch
Set output

enumerator kTPM_HighPulseOutput
Pulse output high

enumerator kTPM_LowPulseOutput
Pulse output low

enum _tpm_input_capture_edge
TPM input capture edge.

Values:

enumerator kTPM_RisingEdge
Capture on rising edge only

enumerator kTPM_FallingEdge
Capture on falling edge only

enumerator kTPM_RiseAndFallEdge
Capture on rising or falling edge

enum _tpm_quad_decode_mode
TPM quadrature decode modes.

Note: This mode is available only on some SoC’s.

Values:

292 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTPM_QuadPhaseEncode
Phase A and Phase B encoding mode

enumerator kTPM_QuadCountAndDir
Count and direction encoding mode

enum _tpm_phase_polarity
TPM quadrature phase polarities.

Values:

enumerator kTPM_QuadPhaseNormal
Phase input signal is not inverted

enumerator kTPM_QuadPhaseInvert
Phase input signal is inverted

enum _tpm_clock_source
TPM clock source selection.

Values:

enumerator kTPM_SystemClock
System clock

enumerator kTPM_ExternalClock
External TPM_EXTCLK pin clock

enumerator kTPM_ExternalInputTriggerClock
Selected external input trigger clock

enum _tpm_clock_prescale
TPM prescale value selection for the clock source.

Values:

enumerator kTPM_Prescale_Divide_1
Divide by 1

enumerator kTPM_Prescale_Divide_2
Divide by 2

enumerator kTPM_Prescale_Divide_4
Divide by 4

enumerator kTPM_Prescale_Divide_8
Divide by 8

enumerator kTPM_Prescale_Divide_16
Divide by 16

enumerator kTPM_Prescale_Divide_32
Divide by 32

enumerator kTPM_Prescale_Divide_64
Divide by 64

enumerator kTPM_Prescale_Divide_128
Divide by 128

enum _tpm_interrupt_enable
List of TPM interrupts.

Values:

2.32. TPM: Timer PWMModule 293

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kTPM_Chnl0InterruptEnable
Channel 0 interrupt.

enumerator kTPM_Chnl1InterruptEnable
Channel 1 interrupt.

enumerator kTPM_Chnl2InterruptEnable
Channel 2 interrupt.

enumerator kTPM_Chnl3InterruptEnable
Channel 3 interrupt.

enumerator kTPM_Chnl4InterruptEnable
Channel 4 interrupt.

enumerator kTPM_Chnl5InterruptEnable
Channel 5 interrupt.

enumerator kTPM_Chnl6InterruptEnable
Channel 6 interrupt.

enumerator kTPM_Chnl7InterruptEnable
Channel 7 interrupt.

enumerator kTPM_TimeOverflowInterruptEnable
Time overflow interrupt.

enum _tpm_status_flags
List of TPM flags.

Values:

enumerator kTPM_Chnl0Flag
Channel 0 flag

enumerator kTPM_Chnl1Flag
Channel 1 flag

enumerator kTPM_Chnl2Flag
Channel 2 flag

enumerator kTPM_Chnl3Flag
Channel 3 flag

enumerator kTPM_Chnl4Flag
Channel 4 flag

enumerator kTPM_Chnl5Flag
Channel 5 flag

enumerator kTPM_Chnl6Flag
Channel 6 flag

enumerator kTPM_Chnl7Flag
Channel 7 flag

enumerator kTPM_TimeOverflowFlag
Time overflow flag

typedef enum _tpm_chnl tpm_chnl_t
List of TPM channels.

Note: Actual number of available channels is SoC dependent

294 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _tpm_pwm_mode tpm_pwm_mode_t
TPM PWM operation modes.

typedef enum _tpm_pwm_level_select tpm_pwm_level_select_t
TPM PWM output pulse mode: high-true, low-true or no output.

Note: When the TPM has PWM pause level select feature, the PWM output cannot be
turned off by selecting the output level. In this case, the channel must be closed to close the
PWM output.

typedef enum _tpm_chnl_control_bit_mask tpm_chnl_control_bit_mask_t
List of TPM channel modes and level control bit mask.

typedef struct _tpm_chnl_pwm_signal_param tpm_chnl_pwm_signal_param_t
Options to configure a TPM channel’s PWM signal.

typedef enum _tpm_trigger_select tpm_trigger_select_t
Trigger sources available.

This is used for both internal & external trigger sources (external trigger sources available
in certain SoC’s)

Note: The actual trigger sources available is SoC-specific.

typedef enum _tpm_trigger_source tpm_trigger_source_t
Trigger source options available.

Note: This selection is available only on some SoC’s. For SoC’s without this selection, the
only trigger source available is internal triger.

typedef enum _tpm_ext_trigger_polarity tpm_ext_trigger_polarity_t
External trigger source polarity.

Note: Selects the polarity of the external trigger source.

typedef enum _tpm_output_compare_mode tpm_output_compare_mode_t
TPM output compare modes.

typedef enum _tpm_input_capture_edge tpm_input_capture_edge_t
TPM input capture edge.

typedef struct _tpm_dual_edge_capture_param tpm_dual_edge_capture_param_t
TPM dual edge capture parameters.

Note: This mode is available only on some SoC’s.

typedef enum _tpm_quad_decode_mode tpm_quad_decode_mode_t
TPM quadrature decode modes.

Note: This mode is available only on some SoC’s.

2.32. TPM: Timer PWMModule 295

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _tpm_phase_polarity tpm_phase_polarity_t
TPM quadrature phase polarities.

typedef struct _tpm_phase_param tpm_phase_params_t
TPM quadrature decode phase parameters.

typedef enum _tpm_clock_source tpm_clock_source_t
TPM clock source selection.

typedef enum _tpm_clock_prescale tpm_clock_prescale_t
TPM prescale value selection for the clock source.

typedef struct _tpm_config tpm_config_t
TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this
structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

typedef enum _tpm_interrupt_enable tpm_interrupt_enable_t
List of TPM interrupts.

typedef enum _tpm_status_flags tpm_status_flags_t
List of TPM flags.

typedef void (*tpm_callback_t)(TPM_Type *base)
TPM callback function pointer.

Param base
TPM peripheral base address.

TPM_TIMEOUT
Max loops to wait for writing register.

When writing MOD CnV CnSC and SC register, driver will wait until register is updated. This
parameter defines how many loops to check completion before return timeout. If defined
as 0, driver will wait forever until completion.

TPM_MAX_COUNTER_VALUE(x)
Help macro to get the max counter value.

struct _tpm_chnl_pwm_signal_param
#include <fsl_tpm.h> Options to configure a TPM channel’s PWM signal.

Public Members

tpm_chnl_t chnlNumber
TPM channel to configure. In combined mode (available in some SoC’s), this represents
the channel pair number

tpm_pwm_level_select_t level
PWM output active level select

uint8_t dutyCyclePercent
PWM pulse width, value should be between 0 to 100 0=inactive signal(0% duty cycle)…
100=always active signal (100% duty cycle)

296 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t firstEdgeDelayPercent
Used only in combined PWM mode to generate asymmetrical PWM. Specifies the delay
to the first edge in a PWM period. If unsure, leave as 0. Should be specified as percent-
age of the PWM period, (dutyCyclePercent + firstEdgeDelayPercent) value should be
not greate than 100.

bool enableComplementary
Used only in combined PWM mode. true: The combined channels output complemen-
tary signals; false: The combined channels output same signals;

uint8_t deadTimeValue[2]
The dead time value for channel n and n+1 in combined complementary PWM mode.
Deadtime insertion is disabled when this value is zero, otherwise deadtime insertion
for channel n/n+1 is configured as (deadTimeValue * 4) clock cycles. deadTimeValue’s
available range is 0 ~ 15.

struct _tpm_dual_edge_capture_param
#include <fsl_tpm.h> TPM dual edge capture parameters.

Note: This mode is available only on some SoC’s.

Public Members

bool enableSwap
true: Use channel n+1 input, channel n input is ignored; false: Use channel n input,
channel n+1 input is ignored

tpm_input_capture_edge_t currChanEdgeMode
Input capture edge select for channel n

tpm_input_capture_edge_t nextChanEdgeMode
Input capture edge select for channel n+1

struct _tpm_phase_param
#include <fsl_tpm.h> TPM quadrature decode phase parameters.

Public Members

uint32_t phaseFilterVal
Filter value, filter is disabled when the value is zero

tpm_phase_polarity_t phasePolarity
Phase polarity

struct _tpm_config
#include <fsl_tpm.h> TPM config structure.

This structure holds the configuration settings for the TPM peripheral. To initialize this
structure to reasonable defaults, call the TPM_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

tpm_clock_prescale_t prescale
Select TPM clock prescale value

2.32. TPM: Timer PWMModule 297

MCUXpresso SDK Documentation, Release 25.12.00

bool useGlobalTimeBase
true: The TPM channels use an external global time base (the local counter still use for
generate overflow interrupt and DMA request); false: All TPM channels use the local
counter as their timebase

bool syncGlobalTimeBase
true: The TPM counter is synchronized to the global time base; false: disabled

tpm_trigger_select_t triggerSelect
Input trigger to use for controlling the counter operation

tpm_trigger_source_t triggerSource
Decides if we use external or internal trigger.

tpm_ext_trigger_polarity_t extTriggerPolarity
when using external trigger source, need selects the polarity of it.

bool enableDoze
true: TPM counter is paused in doze mode; false: TPM counter continues in doze mode

bool enableDebugMode
true: TPM counter continues in debug mode; false: TPM counter is paused in debug
mode

bool enableReloadOnTrigger
true: TPM counter is reloaded on trigger; false: TPM counter not reloaded

bool enableStopOnOverflow
true: TPM counter stops after overflow; false: TPM counter continues running after
overflow

bool enableStartOnTrigger
true: TPM counter only starts when a trigger is detected; false: TPM counter starts
immediately

bool enablePauseOnTrigger
true: TPM counter will pause while trigger remains asserted; false: TPM counter con-
tinues running

uint8_t chnlPolarity
Defines the input/output polarity of the channels in POL register

2.33 VREF: Voltage Reference Driver

status_t VREF_Init(VREF_Type *base, const vref_config_t *config)
Enables the clock gate and configures the VREF module according to the configuration
structure.

This function must be called before calling all other VREF driver functions, read/write reg-
isters, and configurations with user-defined settings. The example below shows how to
set up vref_config_t parameters and how to call the VREF_Init function by passing in these
parameters. This is an example.

vref_config_t vrefConfig;
vrefConfig.bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig.enableExternalVoltRef = false;
vrefConfig.enableLowRef = false;
VREF_Init(VREF, &vrefConfig);

298 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
• base – VREF peripheral address.

• config – Pointer to the configuration structure.

Return values
• kStatus_Success – run success.

• kStatus_Timeout – timeout occurs.

void VREF_Deinit(VREF_Type *base)
Stops and disables the clock for the VREF module.

This function should be called to shut down the module. This is an example.

vref_config_t vrefUserConfig;
VREF_Init(VREF);
VREF_GetDefaultConfig(&vrefUserConfig);
...
VREF_Deinit(VREF);

Parameters
• base – VREF peripheral address.

void VREF_GetDefaultConfig(vref_config_t *config)
Initializes the VREF configuration structure.

This function initializes the VREF configuration structure to default values. This is an ex-
ample.

vrefConfig->bufferMode = kVREF_ModeHighPowerBuffer;
vrefConfig->enableExternalVoltRef = false;
vrefConfig->enableLowRef = false;

Parameters
• config – Pointer to the initialization structure.

status_t VREF_SetTrimVal(VREF_Type *base, uint8_t trimValue)
Sets a TRIM value for the reference voltage.

This function sets a TRIM value for the reference voltage. Note that the TRIM value maxi-
mum is 0x3F.

Parameters
• base – VREF peripheral address.

• trimValue – Value of the trim register to set the output reference voltage
(maximum 0x3F (6-bit)).

Return values
• kStatus_Success – run success.

• kStatus_Timeout – timeout occurs.

static inline uint8_t VREF_GetTrimVal(VREF_Type *base)
Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the TRM register.

Parameters
• base – VREF peripheral address.

2.33. VREF: Voltage Reference Driver 299

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Six-bit value of trim setting.

status_t VREF_SetTrim2V1Val(VREF_Type *base, uint8_t trimValue)
Sets a TRIM value for the reference voltage (2V1).

This function sets a TRIM value for the reference voltage (2V1). Note that the TRIM value
maximum is 0x3F.

Parameters
• base – VREF peripheral address.

• trimValue – Value of the trim register to set the output reference voltage
(maximum 0x3F (6-bit)).

Return values
• kStatus_Success – run success.

• kStatus_Timeout – timeout occurs.

static inline uint8_t VREF_GetTrim2V1Val(VREF_Type *base)
Reads the value of the TRIM meaning output voltage (2V1).

This function gets the TRIM value from the VREF_TRM4 register.

Parameters
• base – VREF peripheral address.

Returns
Six-bit value of trim setting.

status_t VREF_SetLowReferenceTrimVal(VREF_Type *base, uint8_t trimValue)
Sets the TRIM value for the low voltage reference.

This function sets the TRIM value for low reference voltage. Note the following.

• The TRIM value maximum is 0x05U

• The values 111b and 110b are not valid/allowed.

Parameters
• base – VREF peripheral address.

• trimValue – Value of the trim register to set output low reference voltage
(maximum 0x05U (3-bit)).

Return values
• kStatus_Success – run success.

• kStatus_Timeout – timeout occurs.

static inline uint8_t VREF_GetLowReferenceTrimVal(VREF_Type *base)
Reads the value of the TRIM meaning output voltage.

This function gets the TRIM value from the VREFL_TRM register.

Parameters
• base – VREF peripheral address.

Returns
Three-bit value of the trim setting.

FSL_VREF_DRIVER_VERSION
Version 2.1.3.

300 Chapter 2. MCXC041

MCUXpresso SDK Documentation, Release 25.12.00

VREF_INTERNAL_VOLTAGE_STABLE_TIMEOUT
Max loops to wait for VREF internal voltage stable.

This parameter defines how many loops to check completion before return timeout. If de-
fined as 0, driver will wait forever until completion.

enum _vref_buffer_mode
VREF modes.

Values:

enumerator kVREF_ModeBandgapOnly
Bandgap on only, for stabilization and startup

enumerator kVREF_ModeHighPowerBuffer
High-power buffer mode enabled

enumerator kVREF_ModeLowPowerBuffer
Low-power buffer mode enabled

typedef enum _vref_buffer_mode vref_buffer_mode_t
VREF modes.

typedef struct _vref_config vref_config_t
The description structure for the VREF module.

VREF_SC_MODE_LV

VREF_SC_REGEN

VREF_SC_VREFEN

VREF_SC_ICOMPEN

VREF_SC_REGEN_MASK

VREF_SC_VREFST_MASK

VREF_SC_VREFEN_MASK

VREF_SC_MODE_LV_MASK

VREF_SC_ICOMPEN_MASK

TRM

VREF_TRM_TRIM

VREF_TRM_CHOPEN_MASK

VREF_TRM_TRIM_MASK

VREF_TRM_CHOPEN_SHIFT

VREF_TRM_TRIM_SHIFT

VREF_SC_MODE_LV_SHIFT

VREF_SC_REGEN_SHIFT

VREF_SC_VREFST_SHIFT

VREF_SC_ICOMPEN_SHIFT

struct _vref_config
#include <fsl_vref.h> The description structure for the VREF module.

2.33. VREF: Voltage Reference Driver 301

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

vref_buffer_mode_t bufferMode
Buffer mode selection

bool enableLowRef
Set VREFL (0.4 V) reference buffer enable or disable

bool enableExternalVoltRef
Select external voltage reference or not (internal)

bool enable2V1VoltRef
Enable Internal Voltage Reference (2.1V)

302 Chapter 2. MCXC041

Chapter 3

Middleware

3.1 File System

3.1.1 FatFs

MCUXpresso SDK : mcuxsdk-middleware-fatfs

Overview This repository is for FatFs middleware delivery and it contains the components of-
ficially provided in NXP MCUXpresso SDK. This repository is part of the MCUXpresso SDK over-
all delivery which is composed of several sub-repositories/projects. Navigate to the top/parent
repository (mcuxsdk-manifests) for the complete delivery of MCUXpresso SDK.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit FatFs - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution Contributions are not currently accepted. Guidelines to contribute will be posted
in the future.

Repo Specific Content This is MCUXpresso SDK fork of FatFs (FAT file system created by ChaN).
Official documentation is available at http://elm-chan.org/fsw/ff/

MCUXpresso version is extending original content by following hardware specific porting layers:

• mmc_disk

• nand_disk

• ram_disk

• sd_disk

• sdspi_disk

• usb_disk

303

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/fatfs/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation
http://elm-chan.org/fsw/ff/

MCUXpresso SDK Documentation, Release 25.12.00

Changelog FatFs

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog

[R0.15_rev0]
• Upgraded to version 0.15

• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev1]
• Applied patches from http://elm-chan.org/fsw/ff/patches.html

[R0.14b_rev0]
• Upgraded to version 0.14b

[R0.14a_rev0]
• Upgraded to version 0.14a

• Applied patch ff14a_p1.diff and ff14a_p2.diff

[R0.14_rev0]
• Upgraded to version 0.14

• Applied patch ff14_p1.diff and ff14_p2.diff

[R0.13c_rev0]
• Upgraded to version 0.13c

• Applied patches ff_13c_p1.diff,ff_13c_p2.diff, ff_13c_p3.diff and ff_13c_p4.diff.

[R0.13b_rev0]
• Upgraded to version 0.13b

[R0.13a_rev0]
• Upgraded to version 0.13a. Added patch ff_13a_p1.diff.

[R0.12c_rev1]
• Add NAND disk support.

[R0.12c_rev0]
• Upgraded to version 0.12c and applied patches ff_12c_p1.diff and ff_12c_p2.diff.

304 Chapter 3. Middleware

https://keepachangelog.com/en/1.1.0/

MCUXpresso SDK Documentation, Release 25.12.00

[R0.12b_rev0]
• Upgraded to version 0.12b.

[R0.11a]
• Added glue functions for low-level drivers (SDHC, SDSPI, RAM, MMC). Modified diskio.c.

• Added RTOS wrappers to make FatFs thread safe. Modified syscall.c.

• Renamed ffconf.h to ffconf_template.h. Each application should contain its own ffconf.h.

• Included ffconf.h into diskio.c to enable the selection of physical disk from ffconf.h by macro
definition.

• Conditional compilation of physical disk interfaces in diskio.c.

3.2 Motor Control

3.2.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT
• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

3.2. Motor Control 305

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

306 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.2. Motor Control 307

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

308 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

3.2. Motor Control 309

MCUXpresso SDK Documentation, Release 25.12.00

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

310 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.2. Motor Control 311

MCUXpresso SDK Documentation, Release 25.12.00

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

312 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.2. Motor Control 313

MCUXpresso SDK Documentation, Release 25.12.00

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

314 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.2. Motor Control 315

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

316 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

3.2. Motor Control 317

MCUXpresso SDK Documentation, Release 25.12.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT
#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

318 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.2. Motor Control 319

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

320 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.2. Motor Control 321

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

322 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.2. Motor Control 323

MCUXpresso SDK Documentation, Release 25.12.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

324 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.2. Motor Control 325

MCUXpresso SDK Documentation, Release 25.12.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

326 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype
void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.2. Motor Control 327

MCUXpresso SDK Documentation, Release 25.12.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

328 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.2. Motor Control 329

MCUXpresso SDK Documentation, Release 25.12.00

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

330 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

3.2. Motor Control 331

MCUXpresso SDK Documentation, Release 25.12.00

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

332 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.2. Motor Control 333

MCUXpresso SDK Documentation, Release 25.12.00

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

334 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.2. Motor Control 335

MCUXpresso SDK Documentation, Release 25.12.00

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

336 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.2. Motor Control 337

MCUXpresso SDK Documentation, Release 25.12.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

338 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.2. Motor Control 339

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

340 Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.2. Motor Control 341

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

342 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

343

MCUXpresso SDK Documentation, Release 25.12.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 corepkcs11

PKCS #11 key management library.

Readme

4.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

344 Chapter 4. RTOS

	FRDM-MCXC041
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with MCUXpresso SDK Package
	Classic SDK Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Keil MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using ARMGCC / VSCODE
	MCUXpresso Config Tools
	How to determine COM port
	On-board Debugger
	On-board debugger MCU-Link
	Updating MCU-Link firmware
	On-board debugger LPC-Link
	Updating LPC-Link firmware
	On-board debugger OpenSDA
	Updating OpenSDA firmware
	On-board debugger Multilink
	On-board debugger OSJTAG

	Default debug interfaces
	How to define IRQ handler in CPP files

	Repository-Layout SDK Package
	Development Tools Installation
	Quick Start: Automated Installation (Recommended)
	Manual Installation
	Essential Tools
	Git - Version Control
	Python - Scripting Environment
	West - SDK Management Tool
	Build System Tools
	CMake - Build Configuration
	Ninja - Fast Build System
	Ruby - IDE Project Generation (Optional)
	Compiler Toolchains
	Setting Up Environment Variables
	Verify Your Installation
	Troubleshooting Installation Issues

	Building Your First Project
	Prerequisites
	Understanding Board Support
	Basic Build Process
	Simple Build
	Specifying Configuration
	Alternative Toolchains
	Multicore Applications
	Flash an Application
	Debug
	Common Build Options
	Clean Build
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Troubleshooting
	Build Failures
	Getting Help
	Check Supported Configurations
	Next Steps

	MCUXpresso for VS Code Development
	Prerequisites
	Extension Installation
	Install MCUXpresso for VS Code
	SDK Import and Setup
	Import Methods
	Import GitHub Repository SDK
	Import Repository-Layout SDK Package
	Building Example Applications
	Import Example Project
	Application Types
	Trust Confirmation
	Building Projects
	Build Process
	Running and Debugging
	Serial Monitor Setup
	Debug Session
	Debug Controls
	Monitor Output
	Debug Probe Support
	Project Configuration
	Workspace Management
	Multi-Project Support
	Troubleshooting
	Import Issues
	Build Problems
	Debug Issues
	Integration with Command Line
	Advanced Features
	Project Types
	Build System Integration
	Next Steps

	Command Line Development
	Prerequisites
	Understanding Board Support
	Basic Build Commands
	Standard Build Process
	Specifying Build Configuration
	Multicore Applications
	Shield Support
	Advanced Build Options
	Clean Builds
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Flashing and Debugging
	Flash Application
	Debug Session
	IDE Project Generation
	Troubleshooting
	Build Failures
	Toolchain Issues
	Getting Help
	Check Supported Configurations
	Best Practices
	Project Organization
	Build Efficiency
	Development Workflow
	Next Steps

	Workspace Structure
	Top-Level Organization
	SDK Component Layout
	Example Organization
	Common Example Files
	Board-Specific Files
	Device Support Structure
	Middleware Organization
	Documentation Structure
	Understanding Example Structure
	1. General README: examples/demo_apps/hello_world/readme.md
	2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/example_board_readme.md

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Overview
	Benefits of the Multi-Repository Approach
	Setup and Configuration
	GitHub Repository Setup
	Prerequisites
	Workspace Initialization
	Step 1: Initialize Workspace
	Step 2: Choose Your Repository Update Strategy
	Option A: Download All Repositories (Complete SDK)
	Option B: Targeted Repository Download (Recommended)
	Step 3: Verify Installation
	Advanced Repository Management
	Board-Specific Setup
	Device-Specific Setup
	Custom Configuration
	Benefits of Targeted Setup
	Repository Information
	Package Generation (Optional)
	Workspace Management
	Updating Your Workspace
	Workspace Status
	Troubleshooting
	Next Steps

	Explore SDK Structure and Content
	SDK Architecture Overview
	Repository Organization
	Manifest Repository
	Base Repositories
	Middleware Repositories
	Internal Repositories
	Repository Hosting
	Benefits of This Architecture
	Workspace Management

	Development Workflows
	Using MCUXpresso Config Tools
	Prerequisites
	Board Files
	Visual Studio Code
	Manual Workflow
	Updating the SDK West project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	TinyCBOR
	SDMMC stack
	PKCS#11
	llhttp
	FreeMASTER
	File systemFatfs

	Release contents
	Known Issues
	Cannot add SDK components into FreeRTOS projects
	USBFS controller issue
	USB PID issue

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	ADC16
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.0.0]

	CMP
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COP
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLASH
	[3.3.0]
	[3.2.0]
	[3.1.3]
	[3.1.2]
	[3.1.1]
	[3.1.0]
	[3.0.2]
	[3.0.1]
	[3.0.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	GPIO
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.8.0]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.1.1]
	[2.1.0]

	I2C
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LLWU
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPTMR
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPUART
	[2.10.0]
	[2.9.4]
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.7]
	[2.7.6]
	[2.7.5]
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	PMC
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PORT
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]

	RCM
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RTC
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	SIM
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SMC
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SPI
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	TPM
	[2.4.1]
	[2.4.0]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	VREF
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER
	FreeRTOS
	File systemFatfs

	MCXC041
	ADC16: 16-bit SAR Analog-to-Digital Converter Driver
	Clock Driver
	CMP: Analog Comparator Driver
	COP: Watchdog Driver
	FGPIO Driver
	C90TFS Flash Driver
	ftfx adapter
	Ftftx CACHE Driver
	ftfx controller
	ftfx feature
	Ftftx FLASH Driver
	Ftftx FLEXNVM Driver
	ftfx utilities
	GPIO: General-Purpose Input/Output Driver
	GPIO Driver
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	Common Driver
	LLWU: Low-Leakage Wakeup Unit Driver
	LPTMR: Low-Power Timer
	LPUART: Low Power Universal Asynchronous Receiver/Transmitter Driver
	LPUART Driver
	MCM: Miscellaneous Control Module
	PMC: Power Management Controller
	PORT: Port Control and Interrupts
	RCM: Reset Control Module Driver
	RTC: Real Time Clock
	SIM: System Integration Module Driver
	SMC: System Mode Controller Driver
	SPI: Serial Peripheral Interface Driver
	SPI Driver
	TPM: Timer PWM Module
	VREF: Voltage Reference Driver

	Middleware
	File System
	FatFs
	MCUXpresso SDK : mcuxsdk-middleware-fatfs
	Overview
	Documentation
	Setup
	Contribution
	Repo Specific Content

	Changelog FatFs
	[R0.15_rev0]
	[R0.14b_rev1]
	[R0.14b_rev0]
	[R0.14a_rev0]
	[R0.14_rev0]
	[R0.13c_rev0]
	[R0.13b_rev0]
	[R0.13a_rev0]
	[R0.12c_rev1]
	[R0.12c_rev0]
	[R0.12b_rev0]
	[R0.11a]

	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

