
MCUXpresso SDK Documentation
Release 25.12.00

NXP
Dec 18, 2025

Table of contents

1 IMX943EVK 3
1.1 Overview . 3
1.2 Getting Started with MCUXpresso SDK Package . 3

1.2.1 Getting Started with Package . 3
1.3 Getting Started with MCUXpresso SDK GitHub . 16

1.3.1 Getting Started with MCUXpresso SDK Repository 16
1.4 Release Notes . 40

1.4.1 MCUXpresso SDK Release Notes . 40
1.5 ChangeLog . 44

1.5.1 MCUXpresso SDK Changelog . 44
1.6 Driver API Reference Manual . 141
1.7 Middleware Documentation . 142

1.7.1 Multicore . 142
1.7.2 FreeMASTER . 142
1.7.3 FreeRTOS . 142
1.7.4 lwIP . 142

2 Drivers 143
2.1 DSC . 143
2.2 i.MX . 143
2.3 i.MX RT . 143
2.4 Kinetis . 143
2.5 LPC . 143
2.6 MCX . 143
2.7 Wireless . 143

3 Middleware 145
3.1 Connectivity . 145

3.1.1 lwIP . 145
3.2 Motor Control . 146

3.2.1 FreeMASTER . 146
3.3 MultiCore . 183

3.3.1 Multicore SDK . 183

4 RTOS 283
4.1 FreeRTOS . 283

4.1.1 FreeRTOS kernel . 283
4.1.2 FreeRTOS drivers . 283
4.1.3 backoffalgorithm . 283
4.1.4 corehttp . 283
4.1.5 corejson . 283
4.1.6 coremqtt . 284
4.1.7 corepkcs11 . 284
4.1.8 freertos-plus-tcp . 284

i

ii

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the imx943evk board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

IMX943EVK

Note:
IMX943EVK includes IMX943-19X19-LPDDR5-EVK, IMX943-19X19-LPDDR4-EVK, IMX943-15X15-
LPDDR4-EVK

IMX943 19x19 LPDDR5 EVK(IMX943LP5EVK-19) = IMX943LP5CPU-19 SOM + X-IMX943BB

IMX943 19x19 LPDDR4 EVK(IMX943LP4EVK-19) = IMX943LP4CPU-19 SOM + X-IMX943BB

IMX943 15x15 LPDDR4 EVK(IMX943LP4EVK-15) = IMX943LP4CPU-15 SOM + X-IMX943BB

1.1 Overview

MCU device and part on board is shown below:

• Device: MIMX94398

• PartNumber: MIMX94398AVKM, MIMX94398AVMM

• Note: - IMX943LP5CPU-19 SOM and IMX943LP4CPU-19 SOM boards are using the Part-
Number MIMX94398AVKM - IMX943LP4CPU-15 SOM board is using the PartNumber
MIMX94398AVMM

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with Package

3

MCUXpresso SDK Documentation, Release 25.12.00

Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed
to optimize, ease and help accelerate embedded system development of applications based on
general purpose, crossover and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK in-
cludes a flexible set of peripheral drivers designed to speed up and simplify development of
embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering everything from basic peripheral use
case examples to demo applications. The MCUXpresso SDK also contains optional RTOS inte-
grations such as FreeRTOS and Azure RTOS, and device stack to support rapid development on
devices.

For supported toolchain versions, seeMCUXpresso SDK Release Notes for IMX943-EVK (document
MCUXSDKIMX943EVKRN).

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK
homepage MCUXpresso-SDK: Software Development Kit for MCUXpresso.

|

|

MCUXpresso SDK board support folders

MCUXpresso SDK board support provides example applications for NXP development and eval-
uation boards for Arm Cortex-M cores. Board support packages are found inside of the top level
boards folder, and each supported board has its own folder (MCUXpresso SDK package can sup-
port multiple boards). Within each<board_name> folder there are various sub-folders to classify
the type of examples they contain. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CM-
SIS drivers.

• demo_apps: Full-featured applications intended to highlight key functionality and use cases
of the target MCU. These applications typically use multiple MCU peripherals and may lever-
age stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUX-
presso SDK’s peripheral drivers for a single use case.

• rtos_examples: Basic FreeRTOS OS examples showcasing the use of various RTOS objects
(semaphores, queues, and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

• multicore_examples: Simple applications intended to concisely illustrate how to use middle-
ware/multicore stack.

4 Chapter 1. IMX943EVK

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello_world_sm exam-
ple (part of the demo_apps folder), the same general rules apply to any type of example in the
<board_name> folder.

In the hello_world_sm application folder you see the following contents:

|

|

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Parent topic:MCUXpresso SDK board support folders

Locating example application source files When opening an example application in any of
the supported IDEs, a variety of source files are referenced. The MCUXpresso SDK devices folder
is the central component to all example applications. It means the examples reference the same
source files and, if one of these files is modified, it could potentially impact the behavior of other
examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and
a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector ta-
ble definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of
the example applications

• devices/<devices_name>/project_template: Project template used in CMSIS PACK new
project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes
are in the rtos folder. The core files of each of these are shared, so modifying one could have
potential impacts on other projects that depend on that file.

Parent topic:MCUXpresso SDK board support folders

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.12.00

Toolchain introduction

The MCUXpresso SDK release for i.MX 943 includes the build system to be used with some
toolchains. In this chapter, the toolchain support is presented and detailed.

Build a demo application using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and
debug demo applications. Additionally, this section lists the necessary driver libraries provided
in the MCUXpresso SDK. The hello_world_sm demo application targeted for the IMX943 series
hardware platform is used as an example, though these steps can be applied to any board, demo,
or example application in the MCUXpresso SDK.

Linux OS host The following sections provide steps to run a demo compiled with Arm GCC on
Linux host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run a MCUXpresso SDK demo application with the Arm GCC toolchain, as supported
by the MCUXpresso SDK.

Install GCC Arm embedded toolchain Download and run the installer from the GNU Arm
Embedded Toolchain Downloads page. The GNU Arm embedded toolchain contains the GCC
compiler, libraries, and other tools required for bare-metal software development. The GCC
toolchain should correspond to the latest supported version, as described in the MCUXpresso
SDK Release Notes for IMX943 Series (document MCUXSDKIMX943SERIESRN).

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system envi-
ronment variable and name it ARMGCC_DIR. The value of this variable should point to the
Arm GCC embedded toolchain installation path. For this example, the path is: $ export AR-
MGCC_DIR=<path_to_GNUARM_GCC_installation_dir>.

Parent topic:Set up toolchain

Parent topic:Linux OS host

Build an example application To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a
path similar to the following: <install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc. For example, the exact path is: <install_dir>/boards/
imx943evk/demo_apps/hello_world/armgcc.

2. Run the build_debug.sh script at the command-line to perform the build. The output is
shown as below:

$./build_debug.sh
-- TOOLCHAIN_DIR:
-- BUILD_TYPE: debug
-- TOOLCHAIN_DIR:
-- BUILD_TYPE: debug
-- The ASM compiler identification is GNU
-- Found assembler:
-- Configuring done

(continues on next page)

6 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
-- Generating done
-- Build files have been written to:
Scanning dependencies of target hello_world.elf
< -- skipping lines -- >
[100%] Linking C executable debug/hello_world.elf
[100%] Built target hello_world.elf

Note: build_debug/release.sh are ram target.

Parent topic:Linux OS host

Parent topic:Build a demo application using Arm GCC

Windows OS host The following sections provide steps to run a demo compiled with Arm GCC
on Windows OS host.

Set up toolchain This section contains the steps to install the necessary components required
to build and run a MCUXpresso SDK demo application with the Arm GCC toolchain on Windows
OS, as supported by the MCUXpresso SDK.

Install GCC Arm embedded toolchain Download and run the installer from the GNU Arm
Embedded Toolchain Downloads page. The GNU Arm embedded toolchain contains the GCC
compiler, libraries, and other tools required for bare-metal software development. The GCC
toolchain should correspond to the latest supported version, as described in MCUXpresso SDK
Release Notes for IMX943 Series(document MCUXSDKIMX943SERIESRN).

Parent topic:Set up toolchain

Add a new system environment variable for ARMGCC_DIR Create a new system environ-
ment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm GCC
embedded toolchain installation path. For this example, the path is: C:\Program Files (x86)\GNU
Arm Embedded Toolchain\9 2020-q2-update. Reference the installation folder of the GNU Arm GCC
embedded tools for the exact path.

Parent topic:Set up toolchain

Parent topic:Windows OS host

Build an example application To build an example application, follow these steps.

1. Open the GCC Arm embedded toolchain command window. To launch the window on the
Windows operating system, select Start-> Programs-> GNU Tools ARM Embedded <ver-
sion>-> GCC Command Prompt.

1.2. Getting Started with MCUXpresso SDK Package 7

MCUXpresso SDK Documentation, Release 25.12.00

2. Change the directory to the example application project directory, which has a
path similar to the following: <install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc. For this example, the exact path is: <install_dir>/boards/
imx943evk/demo_apps/hello_world/armgcc.

3. Type build_debug.bat at the command-line or double-click the build_debug.bat file in Win-
dows. Explorer to perform the build. The output is as shown in Figure 2.

Parent topic:Windows OS host

Parent topic:Build a demo application using Arm GCC

Build a demo application with IAR

This section describes the steps to run the example applications provided in the MCUXpresso
SDK. The demo application targeted for the i.MX 943 hardware platform is used as an example,
although these steps can be applied to any example application in the MCUXpresso SDK.

Build an example application The following steps guide you through opening the hello_world
example application. These steps may change slightly for other example applications, as some
of these applications may have additional layers of folders in their paths.

1. If not already done, open the desired demo application workspace. Most example applica-
tion workspace files can be located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the i.MX 943 EVK board as an example, the workspace is located in:

<install_dir>/boards/imx943evk/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. For this example, select hello_world -
debug.

3. To build the demo application, click Make.

4. The build completes without errors.

5. Rename the generated hello_world.bin to m70_image.bin/m71_image.bin/m33s_image.bin,
then copy it to the uuu tool directory.

Parent topic:Generate flash.bin

Generate a flash.bin

1. Get basic images and the imx-mkimage source repository from corresponding Linux BSP
release. These below basic images can to be put into imx-mkimage/iMX94:

8 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

- oei-m33-ddr.bin

- m33_image.bin (m33_image-mx94alt.bin: the image is generated by the command - make con-
fig=mx94alt all;m33_image-mx94evk.bin: the image is generated by the command - make con-
fig=mx94evk all)

- m70_image.bin (demo binary name for cortex-m7 core0 in M70 MIX)

- m71_image.bin (demo binary name for cortex-m7 core1 in M71 MIX)

- m33s_image.bin (demo binary name for cortex-m33 core1 in NETC MIX)

- <lpddr type name>_dmem_qb_v202409.bin(lpddr type name: lpddr5 or lpddr4x)

- <lpddr type name>_dmem_v202409.bin

- <lpddr type name>_imem_qb_v202409.bin

- <lpddr type name>_imem_v202409.bin

- u-boot.bin

- u-boot-spl.bin

- bl31.bin

- tee.bin

- mx943a0-ahab-container.img

Note:
• mx943evk for m33_image.bin is used for rpmsg str echo, rpmsg ping pong and
power_mode_switch_rtos.

• mx943alt for m33_image.bin is used for almost other examples.

2. Copy binary built by ARMGCC/IAR into imx-mkimage/iMX94, and rename them to
m70_image.bin/m71_image.bin/m33s_image.bin.

3. Generate flash.bin.

• make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr5 (Boot up Cortex-A cores
and Cortex-M cores[cortex-m33 core1, cortex-m7 core0, cortex-m7 core1])

or

• make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr5 (Boot up
Cortex-M cores[cortex-m33 core1, cortex-m7 core0, cortex-m7 core1])

Note:
• For LPDDR5, LPDDR_TYPE=lpddr5; For LPDDR4, LPDDR_TYPE=lpddr4x.

• For IMX943-19X19-LPDDR5-EVK, use the following command,

– make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr5

or

– make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr5

• For IMX943-19X19-LPDDR4-EVK or IMX943-15X15-LPDDR4-EVK, use the following
command,

– make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr4x

or

– make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr4x

• Valid combination demos to avoid resource conflict.

– Any demo on cm33_core1, hello_world demo on cm7 core0 and cm7 core1

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.12.00

– Any demo on cm7_core0, hello_world demo on cm33 core1 and cm7 core1

– Any demo on cm7_core1, hello_world demo on cm33 core1 and cm7 core0

4. Burn flash.bin to MicroSD/eMMC at 32 K(0x8000) offset with dd or HxD or UUU and then
plug the MicroSD card to the board.

For example:

• Burn flash.bin into Micro SD card with dd

dd if=flash.bin of=/dev/sdh bs=1k seek=32 && sync

• Burn flash.bin into SD/eMMC with UUU

1. Connect USB Type-C port to PC through the USB cable. It is used for downloading
firmware of the board.

2. Switch to serial downloader mode; boot core is cortex-m33. sd: uuu -b sd
imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all new-flash.bin

3. Burn flash.bin with uuu.

emmc: uuu -b emmc imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all flash.bin

sd: uuu -b sd imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all flash.bin

Note:
– imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all (imx-boot-imx943-19x19-lpddr4x-evk-sd.
bin-flash_all for IMX943LP4CPU-19 SOM + X-IMX943BB;
imx-boot-imx943-15x15-lpddr4x-evk-sd.bin-flash_all for IMX943LP4CPU-15 SOM
+ X-IMX943BB). Get them from linux bsp.

– flash.bin. The flash.bin is generated by yourself.

5. Change the boot mode to SW4[1:4] = x011 for sd boot, SW4[1:4] = x010 for emmc boot.

6. Power on the board .

Parent topic:Run a demo application

Enable MCU UARTs

1. Connect usb typec cable from pc to typec port J15 of board.(It will emulate four serial
ports[e.g. COM0 - LPUART8, COM1, COM2 - LPUART1, COM3 - LPUART2] in pc)

• COM0(LPUART8 - use as uart of cortex-m33 core1), please perform the following steps,

a. Enable BCU,

– Change SW7-1 from OFF.(For imx943evk proto2 board, base board version: REV
B1)

– Change SW7-1 from ON.(For imx943evk proto1 board)

b. Enable the serial port via bcu command,

– bcu set_gpio fta_jtag_host_en 0 -board=imx943evk19b1 or bcu set_gpio
fta_jtag_host_en 0 -board=imx943evk19a0

– bcu set_gpio fta_jtag_uart_sel 1 -board=imx943evk19b1 or bcu set_gpio
fta_jtag_uart_sel 1 -board=imx943evk19a0

• COM2(LPUART1 - use as uart of Cortex-A)

• COM3(LPUART2 - use as uart of Cortex-m33 core0)

2. Connect two usb2uart converter from pc to arduino interface of board.(It will emulate two
serial ports[e.g. COM4 - LPUART11, COM5 - LPUART12] in pc)

10 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

• COM4(LPUART11 - use as uart of cortex-m7 core0)

J48-2(M2_UART11_RXD) – TX of usb2uart converter – pc

J48-4(M2_UART11_TXD) – RX of usb2uart converter – pc

GND —————– GND of usb2uart converter – pc

• COM5(LPUART12 - use as uart of cortex-m7 core1)

J44-4(M1_UART12_RXD) – TX of usb2uart converter – pc

J44-2(M1_UART12_TXD) – RX of usb2uart converter – pc

GND —————– GND of usb2uart converter – pc

Note:
• mx943evk for m33_image.bin is used for rpmsg str echo, rpmsg ping pong and
power_mode_switch_rtos.

• mx943alt for m33_image.bin is used for almost other examples.

• JTAG cannot be used when LPUART8 is used.

• Pls change uart from LPUART8 to LPUART1 and generate m33_image.bin with com-
mand make config=mx94alt all when debugging with jtag.

– For MCUXPresso SDK

_boards/imx943evk/board.h
#define BOARD_DEBUG_UART_INSTANCE 8 -> #define BOARD_DEBUG_UART_

↪→INSTANCE 1

Parent topic:Run a demo application

Run a demo application

This section describes the steps to download the flash.bin to sd and emmc, run the example
applications provided in the MCUXpresso SDK. The hello_world_sm demo application targeted
for the i.MX 943 hardware platform is used as an example, although these steps can be applied
to any example application in the MCUXpresso SDK.

Generate a flash.bin
1. Get basic images and the imx-mkimage source repository from corresponding Linux BSP

release. These below basic images can to be put into imx-mkimage/iMX94:

- oei-m33-ddr.bin

- m33_image.bin (m33_image-mx94alt.bin: the image is generated by the command - make con-
fig=mx94alt all;m33_image-mx94evk.bin: the image is generated by the command - make con-
fig=mx94evk all)

- m70_image.bin (demo binary name for cortex-m7 core0 in M70 MIX)

- m71_image.bin (demo binary name for cortex-m7 core1 in M71 MIX)

- m33s_image.bin (demo binary name for cortex-m33 core1 in NETC MIX)

- <lpddr type name>_dmem_qb_v202409.bin(lpddr type name: lpddr5 or lpddr4x)

- <lpddr type name>_dmem_v202409.bin

- <lpddr type name>_imem_qb_v202409.bin

- <lpddr type name>_imem_v202409.bin

- u-boot.bin

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.12.00

- u-boot-spl.bin

- bl31.bin

- tee.bin

- mx943a0-ahab-container.img

Note:
• mx943evk for m33_image.bin is used for rpmsg str echo, rpmsg ping pong and
power_mode_switch_rtos.

• mx943alt for m33_image.bin is used for almost other examples.

2. Copy binary built by ARMGCC/IAR into imx-mkimage/iMX94, and rename them to
m70_image.bin/m71_image.bin/m33s_image.bin.

3. Generate flash.bin.

• make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr5 (Boot up Cortex-A cores
and Cortex-M cores[cortex-m33 core1, cortex-m7 core0, cortex-m7 core1])

or

• make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr5 (Boot up
Cortex-M cores[cortex-m33 core1, cortex-m7 core0, cortex-m7 core1])

Note:
• For LPDDR5, LPDDR_TYPE=lpddr5; For LPDDR4, LPDDR_TYPE=lpddr4x.

• For IMX943-19X19-LPDDR5-EVK, use the following command,

– make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr5

or

– make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr5

• For IMX943-19X19-LPDDR4-EVK or IMX943-15X15-LPDDR4-EVK, use the following
command,

– make SOC=iMX94 OEI=YES flash_m33s_m70_m71 LPDDR_TYPE=lpddr4x

or

– make SOC=iMX94 OEI=YES flash_all LPDDR_TYPE=lpddr4x

• Valid combination demos to avoid resource conflict.

– Any demo on cm33_core1, hello_world demo on cm7 core0 and cm7 core1

– Any demo on cm7_core0, hello_world demo on cm33 core1 and cm7 core1

– Any demo on cm7_core1, hello_world demo on cm33 core1 and cm7 core0

4. Burn flash.bin to MicroSD/eMMC at 32 K(0x8000) offset with dd or HxD or UUU and then
plug the MicroSD card to the board.

For example:

• Burn flash.bin into Micro SD card with dd

dd if=flash.bin of=/dev/sdh bs=1k seek=32 && sync

• Burn flash.bin into SD/eMMC with UUU

1. Connect USB Type-C port to PC through the USB cable. It is used for downloading
firmware of the board.

2. Switch to serial downloader mode; boot core is cortex-m33. sd: uuu -b sd
imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all new-flash.bin

12 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

3. Burn flash.bin with uuu.

emmc: uuu -b emmc imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all flash.bin

sd: uuu -b sd imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all flash.bin

Note:
– imx-boot-imx943-19x19-lpddr5-evk-sd.bin-flash_all (imx-boot-imx943-19x19-lpddr4x-evk-sd.
bin-flash_all for IMX943LP4CPU-19 SOM + X-IMX943BB;
imx-boot-imx943-15x15-lpddr4x-evk-sd.bin-flash_all for IMX943LP4CPU-15 SOM
+ X-IMX943BB). Get them from linux bsp.

– flash.bin. The flash.bin is generated by yourself.

5. Change the boot mode to SW4[1:4] = x011 for sd boot, SW4[1:4] = x010 for emmc boot.

6. Power on the board .

Parent topic:Run a demo application

How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP
hardware development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This
can be achieved by going to the Windows operating system Start menu and typing Device
Manager in the search bar, as shown in Figure 1.

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.12.00

|

|

2. In theDeviceManager, expand the Ports (COM&LPT) section to view the available ports.
Depending on the NXP board you’re using, the COM port can be named differently.

1. USB-UART interface

|

14 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

|

Host setup

An MCUXpresso SDK build requires that some packages are installed on the Host. Depending on
the used Host operating system, the following tools should be installed.

Linux:

• Cmake

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake –-version

Windows:
• MinGW

The Minimalist GNU for Windows OS (MinGW) development tools provide a set of tools that
are not dependent on third party C-Runtime DLLs (such as Cygwin). The build environment
used by the SDK does not utilize the MinGW build tools, but does leverage the base install
of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from source-
forge.net/projects/mingw/files/Installer/.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may
install to any location.

Note: The installation path cannot contain any spaces.

3. Ensure that mingw32-base and msys-base are selected under Basic Setup.

|

|

4. Click **Apply Changes** in the **Installation** menu and follow the remaining instructions to complete␣
↪→the installation.

|

|

5. Add the appropriate item to the Windows operating system path environment variable. It can be found␣
↪→under **Control Panel**-\>**System and Security**-\>**System**-\>**Advanced System Settings** in␣
↪→the **Environment Variables...** section. The path is: `<mingw_install_dir>\bin`.

Assuming the default installation path, `C:\MinGW`, an example is as shown in [Figure 3](host_setup.md
↪→#ADDINGPATH). If the path is not set correctly, the toolchain does not work.

Note: If you have `C:\MinGW\msys\x.x\bin` in your PATH variable \(as required by KSDK 1.0.0\),␣
↪→remove it to ensure that the new GCC build system works correctly.

|

|

1.2. Getting Started with MCUXpresso SDK Package 15

http://sourceforge.net/projects/mingw/files/Installer/
http://sourceforge.net/projects/mingw/files/Installer/

MCUXpresso SDK Documentation, Release 25.12.00

• Cmake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when
installing. The user chooses to select whether it is installed into the PATH for all users
or just the current user. In this example, it is installed for all users.

|

|

3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in a multi-repositorymodel. The
SDK is distributed across multiple GitHub repositories and managed using the ZephyrWest tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:

• Modular Structure: Multiple repositories for flexibility and scalability.

• Zephyr West Integration: Simplified repository management and synchronization.

16 Chapter 1. IMX943EVK

http://www.cmake.org/cmake/resources/software.html

MCUXpresso SDK Documentation, Release 25.12.00

• Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

• Scalability: Easily add or update components without impacting the entire SDK.

• Collaboration: Enables distributed development across teams and repositories.

• Version Control: Independent versioning for components ensures better stability.

• Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation

2. Run the installer and select “MCUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

• Visit git-scm.com

• Download for your operating system

• Run installer with default settings

• Important: Make sure “Add Git to PATH” is selected during installation

Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

1.3. Getting Started with MCUXpresso SDK GitHub 17

https://docs.mcuxpresso.nxp.com/mcux-vscode/latest/html/Dependency-Installation.html
https://git-scm.com/

MCUXpresso SDK Documentation, Release 25.12.00

Python - Scripting Environment What it does: Runs build scripts and SDK tools.

Installation:

• Install Python 3.10 or newer from python.org

• Important: Check “Add Python to PATH” during installation

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.

Recommended version: 3.30.0 or newer

Installation:

• Windows: Download .msi installer from cmake.org/download

• Linux: Use package manager or download from cmake.org

• macOS: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.

Minimum version: 1.12.1 or newer

Installation:

• Windows: Usually included, or download from ninja-build.org

• Linux: sudo apt install ninja-build or download binary

• macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able

ARM GCC (Recom-
mended)

Most users, free ARM GNU
Toolchain

ARMGCC_DIR

IAR EWARM Professional develop-
ment

IAR Systems IAR_DIR

Keil MDK ARM ecosystem ARM Developer MDK_DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_DIR

18 Chapter 1. IMX943EVK

https://www.python.org/downloads/
https://cmake.org/download/
https://ninja-build.org/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/
https://developer.arm.com/documentation/109350/v6/Installation
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded

MCUXpresso SDK Documentation, Release 25.12.00

Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR=”/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

Check each tool - you should see version numbers
git --version
python --version
west --version
cmake --version
ninja --version
arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

• The tool isn’t in your system PATH

• Solution: Add the installation directory to your PATH environment variable

Python/pip issues:

• Try using python3 and pip3 instead of python and pip

• On Windows, run the Command Prompt as an Administrator

Slow downloads:

• Add timeout option: pip install -U west --default-timeout=1000

• Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:

System Requirements:
• Python 3.8 or later

• Git 2.25 or later

• CMake 3.20 or later

• Build tools for your target platform

Verification Commands:

1.3. Getting Started with MCUXpresso SDK GitHub 19

MCUXpresso SDK Documentation, Release 25.12.00

python --version # Should show 3.8+
git --version # Should show 2.25+
cmake --version # Should show 3.20+
west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK frommain branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update

This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.

Best for:
• Exploring the complete SDK

• Multi-board development projects

• Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

For specific board development
west update_board --set board your_board_name

For specific device family development
west update_board --set device your_device_name

List available repositories before downloading
west update_board --set board your_board_name --list-repo

Best for:
• Single board development

20 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

• Faster setup and reduced disk usage

• Focused development workflows

Examples:

Update only repositories for FRDM-MCXW23 board
west update_board --set board frdmmcxw23

Update only repositories for MCXW23 device family
west update_board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

Verify workspace structure
ls -la
Should show: manifests/ and mcuxsdk/ directories

Test build system
west list_project -p examples/demo_apps/hello_world
Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

Update only repositories for specific board, e.g., frdmmcxw23
west update_board --set board frdmmcxw23

List available repositories for the board before updating
west update_board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

Update only repositories for specific device, e.g., MCXW235
west update_board --set device mcxw23

List available repositories for the device family
west update_board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

Use custom configuration file
west update_board --set custom path/to/custom-config.yml

Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
• Download only components needed for your target board or device

• Significantly faster initial setup for focused development

1.3. Getting Started with MCUXpresso SDK GitHub 21

MCUXpresso SDK Documentation, Release 25.12.00

• Typical reduction from 7 GB to 2GB

Optimized Workspace
• Cleaner workspace with relevant components only

• Reduced disk space usage

• Faster repository operations

Flexible Development
• Switch between different board configurations easily

• Maintain separate workspaces for different projects

• Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

Display repository information in console
west update_board --set board frdmmcxw23 --list-repo

Export repository information to YAML file for reference
west update_board --set board frdmmcxw23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

Generate board-specific SDK package
west update_board --set board frdmmcxw23 -o frdmmcxw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:

For Complete SDKWorkspace:

Update manifest repository
cd manifests
git pull

Update all component repositories
cd ..
west update

For Targeted Workspace:

Update manifest repository
cd manifests
git pull

Update board-specific repositories
cd ..
west update_board --set board your_board_name

22 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Status Check workspace synchronization status:

Show status of all repositories
west status

Show detailed information about repositories
west list

Troubleshooting Network Issues:
• Use west update --keep-descendants for partial failures

• Configure Git credentials for private repositories

• Check firewall settings for Git protocol access

Permission Issues:
• Ensure write permissions in workspace directory

• Run commands without sudo/administrator privileges

• Verify Git SSH key configuration for authenticated access

Disk Space:
• Full SDK workspace requires approximately 7-8 GB

• Targeted workspace typically requires 1-2 GB

• Use board-specific setup to reduce workspace size

Repository Management Issues:
• Verify board/device names match available configurations

• Check that custom YAML files follow the correct template format

• Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:

1. Review Workspace Structure to understand the layout

2. Build your first project with First Build Guide

3. ExploreDevelopmentWorkflowsMCUXPresso VSCode orDevelopmentWorkflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

RepositoryOrganization Based on the manifest structure, the SDK consists of four main repos-
itory categories:

1.3. Getting Started with MCUXpresso SDK GitHub 23

https://docs.zephyrproject.org/latest/develop/west/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

• Devices: MCU-specific support packages

• Examples: Demonstration applications and code samples

• Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

• Connectivity: Networking stacks, USB, and communication protocols

• Security: Cryptographic libraries and secure boot components

• Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

• Graphics: Display drivers and UI frameworks

• Audio: Audio processing and voice recognition libraries

• Machine Learning: AI inference engines and neural network libraries

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:

• nxp-mcuxpresso

• NXP

• nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.

24 Chapter 1. IMX943EVK

https://github.com/nxp-mcuxpresso/
https://github.com/NXP
https://github.com/nxp-zephyr

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization
your-sdk-workspace/
��� manifests/ # West manifest repository
��� mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.

SDK Component Layout Based on the actual SDK structure, the main directories include:

Di-
rec-
tory

Contents Purpose

arch/ Architecture-specific files ARM CMSIS, build
configurations

cmake/ Build system modules CMake configura-
tion and build rules

components/Software components Reusable software li-
braries and utilities

devices/Device support packages MCU-specific head-
ers, startup code,
linker scripts

drivers/Peripheral drivers Hardware abstrac-
tion layer for MCU
peripherals

examples/Sample applications Demonstration code
and reference im-
plementations

middleware/Optional software stacks Networking, graph-
ics, security, and
other libraries

rtos/ Operating system support FreeRTOS integra-
tion

scripts/Build and utility scripts West extensions and
development tools

svd Svd files for devices, this is optional because of large size. Cus-
tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

Example Organization Examples follow a two-tier structure separating common code from
board-specific implementations:

Common Example Files
examples/demo_apps/hello_world/
��� CMakeLists.txt # Build configuration
��� example.yml # Example metadata
��� hello_world.c # Application source code
��� Kconfig # Configuration options
��� readme.md # General documentation

1.3. Getting Started with MCUXpresso SDK GitHub 25

MCUXpresso SDK Documentation, Release 25.12.00

Board-Specific Files
examples/_boards/your_board/demo_apps/hello_world/
��� app.h # Board specific application header
��� example_board_readme.md # Board specific documentation
��� hardware_init.c # Board specific hardware initialization
��� pin_mux.c # Pin multiplexing configuration
��� pin_mux.h # Pin multiplexing header definitions
��� hello_world.bin # Pre-built binary for quick testing
��� hello_world.mex # MCUXpresso Config Tools project file
��� prj.conf # Board specific Kconfig configuration
��� reconfig.cmake # Board specific cmake configuration overrides

Device Support Structure Device support is organized hierarchically by MCU family:

devices/
��� MCX/ # MCU portfolio

��� MCXW/ # MCU family
��� MCXW235/ # Specific device

��� MCXW235.h # Device register definitions
��� drivers/ # Device-specific drivers
��� gcc/ # GNU toolchain files
��� iar/ # IAR toolchain files
��� mcuxpresso/ # MCUXpresso IDE files
��� startup_MCXW235.c # Startup and vector table
��� system_MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories
include:

• Connectivity: USB, TCP/IP, industrial protocols

• Security: Cryptographic libraries, secure boot

• Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

• Graphics: Display drivers, UI frameworks

• Audio: Processing libraries, voice recognition

• Machine Learning: Inference engines, neural networks

• Safety: IEC60730B safety libraries

• Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:

• docs/ - Core SDK documentation and build infrastructure

• Component repositories - API documentation and integration guides

• Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

26 Chapter 1. IMX943EVK

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/

MCUXpresso SDK Documentation, Release 25.12.00

1. General README: examples/demo_apps/hello_world/readme.md

• What the example does

• General functionality description

• Common usage information

2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/
example_board_readme.md

• Board-specific setup instructions

• Hardware connections required

• Board-specific behavior notes

Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

Development Workflows

Get started with building and running projects:

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development board connected via USB

• Build tools installed per Installation Guide

UnderstandingBoard Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_board examples/demo_apps/hello_world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

1.3. Getting Started with MCUXpresso SDK GitHub 27

MCUXpresso SDK Documentation, Release 25.12.00

Specifying Configuration
Release build
west build -b your_board examples/demo_apps/hello_world --config release

Debug build (default)
west build -b your_board examples/demo_apps/hello_world --config debug

Alternative Toolchains
IAR toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar

Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device DEVICE_PART_NUMBER --config␣
↪→release

Project Configuration

28 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

CMake Configuration Only Run configuration without building:

west build -b your_board examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list_project -p examples/demo_apps/hello_world

Next Steps
• Explore other examples in the SDK

• Learn about Command Line Development for advanced options

• Try VS Code Development for integrated development

• Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.

Prerequisites
• SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)

• Development tools installed per Installation Guide

• Visual Studio Code installed

• MCUXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

1.3. Getting Started with MCUXpresso SDK GitHub 29

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you’ve already obtained the SDK according to setting up the repo. Select your
location and click Import.

Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART

PANEL

30 Chapter 1. IMX943EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL

2. Configure project settings:

• MCUXpresso SDK: Select your imported SDK

• Arm GNU Toolchain: Choose toolchain

• Board: Select your target development board

• Template: Choose example category

1.3. Getting Started with MCUXpresso SDK GitHub 31

MCUXpresso SDK Documentation, Release 25.12.00

• Application: Select specific example (e.g., hello_world)

• App type: Choose between Repository applications or Freestanding applications

3. Click Import

Application Types Repository Applications:
• Located inside the MCUXpresso SDK

• Integrated with SDK workspace

Freestanding Applications:
• Imported to user-defined location

• Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

32 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

Build Process
1. Navigate to PROJECTS view

2. Find your project

3. Click the Build Project icon

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup
1. Open Serial Monitor from VS Code’s integrated terminal

2. Configure serial settings:

• VCom Port: Select port for your device

• Baud Rate: Set to 115200

Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:

• Continue: Resume code execution

• Step controls: Navigate through code

1.3. Getting Started with MCUXpresso SDK GitHub 33

MCUXpresso SDK Documentation, Release 25.12.00

• Stop: Terminate debug session .

Monitor Output Observe application output in the Serial Monitor to verify correct operation.

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

• Example applications

• Board configurations

34 Chapter 1. IMX943EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.12.00

• Middleware components

• Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
• Verify SDK workspace is properly initialized

• Ensure all required repositories are updated

• Check SDK manifest files are present

Project import failures:
• Confirm board support exists for selected example

• Verify toolchain installation

• Check example compatibility with selected board

Build Problems Build failures:
• Check integrated terminal for error messages

• Verify all dependencies are installed

• Ensure toolchain is properly configured

Debug Issues Debug session fails:
• Verify board connection via USB

• Check debug probe drivers are installed

• Confirm build completed successfully

Serial monitor problems:
• Verify correct VCom port selection

• Check baud rate configuration (115200)

• Ensure board drivers are installed

IntegrationwithCommandLine MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

1.3. Getting Started with MCUXpresso SDK GitHub 35

MCUXpresso SDK Documentation, Release 25.12.00

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
• Explore additional examples in the SDK

• Review Command Line Development for advanced build options

• Refer MCUXpresso for VS Code Wiki for detailed documentation

• Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• Development tools installed per Installation Guide

• Target board connected via USB

UnderstandingBoard Support Use the west extension to discover available examples for your
board:

west list_project -p examples/demo_apps/hello_world

This shows all supported build configurations. You can filter by toolchain:

west list_project -p examples/demo_apps/hello_world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_board examples/demo_apps/hello_world

Specifying Build Configuration
Release build
west build -b your_board examples/demo_apps/hello_world --config release

Debug build with specific toolchain
west build -b your_board examples/demo_apps/hello_world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug

For multicore projects using sysbuild:

36 Chapter 1. IMX943EVK

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki

MCUXpresso SDK Documentation, Release 25.12.00

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore_examples/hello_world/primary -Dcore_
↪→id=cm7 --config flexspi_nor_debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk_examples/sensors/fxls8974cf/fxls8974cf_poll -
↪→Dcore_id=cm33_core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_apps/hello_world -p always

Dry Run See what commands would be executed:

west build -b your_board examples/demo_apps/hello_world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_apps/hello_world --device MK22F12810 --config release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_apps/hello_world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:

1.3. Getting Started with MCUXpresso SDK GitHub 37

MCUXpresso SDK Documentation, Release 25.12.00

Generate IAR project
west build -b evkbmimxrt1170 examples/demo_apps/hello_world --toolchain iar -Dcore_id=cm7 --config␣
↪→flexspi_nor_debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup
instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo_apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:

Check ARM GCC
echo $ARMGCC_DIR
arm-none-eabi-gcc --version

Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h

Check Supported Configurations If unsure about supported options for an example:

west list_project -p examples/demo_apps/hello_world

Best Practices

Project Organization
• Keep custom projects outside the SDK tree

• Use version control for your application code

• Document any SDK modifications

Build Efficiency
• Use -p always for clean builds when troubleshooting

• Leverage --dry-run to understand build processes

• Use specific configs and toolchains to reduce build time

38 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

Development Workflow
1. Start with existing examples closest to your requirements

2. Copy and modify rather than building from scratch

3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
• Explore VS Code Development for integrated development experience

• Review Workspace Structure to understand SDK organization

• Refer build system documentation for advanced configurations

UsingMCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
• GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted

• MCUXpresso Config Tools standalone installed (version 25.09 or above)

• MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project_info -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_
↪→id=cm33_core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

1.3. Getting Started with MCUXpresso SDK GitHub 39

https://www.nxp.com/doc/GSMCUXCTUG
https://mcuxpresso.nxp.com/mcux-vscode/latest/html/Working-with-MCUXpresso-Config-Tools.html

MCUXpresso SDK Documentation, Release 25.12.00

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: …mcuxsdk/examples/demo_apps/
hello_world/cfg_tools/).

Updating the SDKWest project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.
This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b lpcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore_id=cm33_core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg_resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes

Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and

40 Chapter 1. IMX943EVK

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

• IAR Embedded Workbench for Arm, version is 9.60.4

• MCUXpresso for VS Code v25.09

• GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Devel-
opment
boards

MCU devices

IMX943-
EVK

MIMX94398AVKM, MIMX94398AVMM, MIMX94398CVKM, MIMX94398CVMM,
MIMX94398DVKM, MIMX94398DVMM, MIMX94398XVKM, MIMX94398XVMM

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

1.4. Release Notes 41

MCUXpresso SDK Documentation, Release 25.12.00

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

RTOS

FreeRTOS Real-time operating system for microcontrollers from Amazon

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development
pack, including the prebuilt libraries.

USB Type-C PD Stack See the MCUXpresso SDK USB Type-C PD Stack User’s Guide (document
MCUXSDKUSBPDUG) for more information

USB Host, Device, OTG Stack See the MCUXpresso SDK USB Stack User’s Guide (document
MCUXSDKUSBSUG) for more information.

TinyCBOR Concise Binary Object Representation (CBOR) Library

PKCS#11 The PKCS#11 standard specifies an application programming interface (API), called
“Cryptoki,” for devices that hold cryptographic information and perform cryptographic func-
tions. Cryptoki follows a simple object based approach, addressing the goals of technology in-
dependence (any kind of device) and resource sharing (multiple applications accessing multiple
devices), presenting to applications a common, logical view of the device called a “cryptographic
token”.

FreeModbus FreeModbus Library

SimpleOpenEtherCATMaster Simple Open EtherCAT Master (SOEM) is an open source Ether-
CAT master stack that is used to write custom EtherCAT Master applications. For more informa-
tion on how to use SOEM, see the Getting Started with MCUXpresso SDK for SOEM document.

Motor Control Software (ACIM, BLDC, PMSM) Motor control examples.

Multicore Multicore Software Development Kit

lwIP The lwIP TCP/IP stack is pre-integrated with MCUXpresso SDK and runs on top of the
MCUXpresso SDK Ethernet driver with Ethernet-capable devices/boards.

For details, see the lwIP TCPIP Stack and MCUXpresso SDK Integration User’s Guide (document
MCUXSDKLWIPUG).

lwIP is a small independent implementation of the TCP/IP protocol suite.

42 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

llhttp HTTP parser llhttp

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable Location
Boards INSTALL_DIR/boards
Demo Applications INSTALL_DIR/boards/<board_name>/demo_apps
Driver Examples INSTALL_DIR/boards/<board_name>/driver_examples
eIQ examples INSTALL_DIR/boards/<board_name>/eiq_examples
Board Project Template for MCUXpresso IDE NPW INSTALL_DIR/boards/<board_name>/project_template
Driver, SoC header files, extension header files and
feature header files, utilities

INSTALL_DIR/devices/<device_name>

CMSIS drivers INSTALL_DIR/devices/<device_name>/cmsis_drivers
Peripheral drivers INSTALL_DIR/devices/<device_name>/drivers
Toolchain linker files and startup code INSTALL_DIR/devices/<device_name>/<toolchain_name>
Utilities such as debug console INSTALL_DIR/devices/<device_name>/utilities
Device Project Template for MCUXpresso IDE NPW INSTALL_DIR/devices/<device_name>/project_template
CMSIS Arm Cortex-M header files, DSP library source INSTALL_DIR/CMSIS
Components and board device drivers INSTALL_DIR/components
RTOS INSTALL_DIR/rtos
Release Notes, Getting Started Document and other
documents

INSTALL_DIR/docs

Tools such as shared cmake files INSTALL_DIR/tools
Middleware INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

SEGGER J-Link debugger usage problem

When an M core software is already running, it is possible to get HardFault or data verification
issue during loading image into TCM by debugger.

The following steps are recommended to use the J-Link debugger.

1. Configure switch SW1301 to M core boot; low-power boot. Ensure that there is no image on
the boot source.

2. Power the board and start the debugger for use.

3. To restart the debugger, stop the debugger, power off the board, and repeat step 2.

Failed to get temperature from temp_ana

Issue Description Failed to get data from sensor after selecting temp_ana (index 0) sensor
when the demo temperature_measurement is running.

1.4. Release Notes 43

MCUXpresso SDK Documentation, Release 25.12.00

Reference

Ticket Description Version
MCUX-
80597

Failed to get data from sensor after selecting temp_ana (index 0) sen-
sor

25.06.00

Sar_adc trigger not enabled

IssueDescription Sar_adc cannot be triggerred due to FSL_FEATURE_ADC_HAS_EXTERNAL_TRIGGER
not enabled in i.mx943.

Reference

Ticket Description Version
MCUX-80565 [adc_polling_trigger] the app will block after press any key 25.06.00

LPUART trigger no output

Issue Description There is no output after LPUART being triggered due to wrong pin mux con-
figuration for lpuart12 on i.mx943.

Reference
Ticket Description Version
MCUX-80622 [lpuart_polling_trigger] no logs after flashing 25.06.00

1.5 ChangeLog

1.5.1 MCUXpresso SDK Changelog

Board Support Files

board

[25.06.00]
• Initial version

clock_config

[25.06.00]
• Initial version

pin_mux

44 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[25.06.00]
• Initial version

AOI

[2.0.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.0.1]
• Bug Fixes

– MISRA C-2012 issue fixed: rule 10.8, 2.2.

[2.0.0]
• Initial version.

BBNSM

[2.0.0]
• Initial version.

BiSS

[1.0.2]
• Bug Fixes

– Fixed freqMADiv and freqAGSDiv setting

[1.0.1]
• Bug Fixes

– Fixed coverity issues

[1.0.0]
• Initial version.

1.5. ChangeLog 45

MCUXpresso SDK Documentation, Release 25.12.00

CACHE ARMv7-M7

[2.0.5]
• Bug Fixes

– Fixed cache operations to handle zero size and overflow in invalidate/clean functions

[2.0.4]
• Bug Fixes

– Fixed doxygen issue.

[2.0.3]
• Improvements

– Deleted redundancy code about calculating cache clean/invalidate size and address
aligns.

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.1, 10.3 and 10.4.

[2.0.1]
• Bug Fixes

– Fixed cache size issue in L2CACHE_GetDefaultConfig API.

[2.0.0]
• Initial version.

CACHE XCACHE

[2.0.4]
• Improvements

– Add memory barrier when enabling/disabling cache.

[2.0.3]
• Bug Fixes

– Fixed CERT INT30-C violations.

[2.0.2]
• Bug Fixes

– Updated XCACHE_InvalidateCacheByRange(), XCACHE_CleanCacheByRange(),
XCACHE_CleanInvalidateCacheByRange() in case of startAddr equal to endAddr.

46 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Check input parameter “size_byte” must be larger than 0.

[2.0.0]
• Initial version.

COMMON

[2.6.3]
• Bug Fixes

– Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

[2.6.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts

[2.6.1]
• Improvements

– Support Cortex M23.

[2.6.0]
• Bug Fixes

– Fix CERT-C violations.

[2.5.0]
• New Features

– Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGlobalIRQEx so that user can measure the execution time of the protected sections.

[2.4.3]
• Improvements

– Enable irqs that mount under irqsteer interrupt extender.

[2.4.2]
• Improvements

– Add the macros to convert peripheral address to secure address or non-secure address.

1.5. ChangeLog 47

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Improvements

– Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
• New Features

– Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.

– Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
• New Features

– Added NETC into status group.

[2.3.2]
• Improvements

– Make driver aarch64 compatible

[2.3.1]
• Bug Fixes

– Fixed MAKE_VERSION overflow on 16-bit platforms.

[2.3.0]
• Improvements

– Split the driver to common part and CPU architecture related part.

[2.2.10]
• Bug Fixes

– Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
• Bug Fixes

– Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

– Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
• Improvements

– Included stddef.h header file for MDK tool chain.

• New Features:

– Added atomic modification macros.

48 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.7]
• Other Change

– Added MECC status group definition.

[2.2.6]
• Other Change

– Added more status group definition.

• Bug Fixes

– Undef __VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
• Bug Fixes

– Fixed MISRA C-2012 rule-15.5.

[2.2.4]
• Bug Fixes

– Fixed MISRA C-2012 rule-10.4.

[2.2.3]
• New Features

– Provided better accuracy of SDK_DelayAtLeastUs with DWT, use macro
SDK_DELAY_USE_DWT to enable this feature.

– Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
• New Features

– Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.

[2.2.0]
• New Features

– Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
• New Features

– Added OTFAD into status group.

1.5. ChangeLog 49

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.3]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.3.

[2.1.2]
• Improvements

– Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
• Bug Fixes

– Deleted and optimized repeated macro.

[2.1.0]
• New Features

– Added IRQ operation for XCC toolchain.

– Added group IDs for newly supported drivers.

[2.0.2]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed the rule: rule-10.4.

[2.0.1]
• Improvements

– Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

– Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

– Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]
• Initial version.

DCIF

[2.1.0]
• Improvements

– Support background layer 0.

50 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

ECAT

[2.0.1]
• Fix Coverity warning

– CID: 41891133

– CID: 41897853

[2.0.0]
• Initial version.

EDMA

[2.10.9]
• Bug Fixes

– Add new api EDMA_TcdInit to avoid destroying code logic by reordering blocks in the
toolchain.

[2.10.8]
• Bug Fixes

– Fixed coverity issues with CERT INT30-C, CERT INT31-C compliance.

– Fixed incorrect enabling of preemption capability issue.

[2.10.7]
• Improvements

– Add condition to fix build warnings(array subscript 4 is above array bounds of
‘edma_handle_t *[4][64]’)

• Bug Fixes

– Fixed the EDMA header index retrieval error caused by done bit calculation mistake
issue.

[2.10.6]
• Improvements

– Add macro FSL_FEATURE_EDMA_HAS_EDMA_TCD_CLOCK_ENABLE to enable tcd
clocks in EDMA_Init function.

1.5. ChangeLog 51

MCUXpresso SDK Documentation, Release 25.12.00

[2.10.5]
• Bug Fixes

– Fixed memory convert would convert NULL as zero address issue.

[2.10.4]
• Improvements

– Add new MP register macros to ensure compatibility with different devices.

– Add macro DMA_CHANNEL_ARRAY_STEPn to adapt to complex addressing of edma
tcd registers.

[2.10.3]
• Bug Fixes

– Clear interrupt status flags in EDMA_CreateHandle to avoid triggering interrupt by
mistake.

[2.10.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3.

[2.10.1]
• Bug Fixes

– Fixed EDMA_GetRemainingMajorLoopCount may return wrong value issue.

– Fixed violations of the MISRA C-2012 rules 13.5, 10.4.

[2.10.0]
• Improvements

– Modify the structures edma_core_mp_t, edma_core_channel_t, edma_core_tcd_t to
adapt to edma5.

– Add TCD register macro to facilitate confirmation of tcd type.

– Modfiy the mask macro to a fixed value.

– Add EDMA_TCD_TYPE macro to determine edma tcd type.

– Add extension API to the following API to determine edma tcd type.

* EDMA_ConfigChannelSoftwareTCD -> EDMA_ConfigChannelSoftwareTCDExt

* EDMA_TcdReset -> EDMA_TcdResetExt

* EDMA_TcdSetTransferConfig -> EDMA_TcdSetTransferConfigExt

* EDMA_TcdSetMinorOffsetConfig -> EDMA_TcdSetMinorOffsetConfigExt

* EDMA_TcdSetChannelLink -> EDMA_TcdSetChannelLinkExt

* EDMA_TcdSetBandWidth -> EDMA_TcdSetBandWidthExt

* EDMA_TcdSetModulo -> EDMA_TcdSetModuloExt

* EDMA_TcdEnableAutoStopRequest -> EDMA_TcdEnableAutoStopRequestExt

52 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

* EDMA_TcdEnableInterrupts -> EDMA_TcdEnableInterruptsExt

* EDMA_TcdDisableInterrupts -> EDMA_TcdDisableInterruptsExt

* EDMA_TcdSetMajorOffsetConfig -> EDMA_TcdSetMajorOffsetConfigExt

[2.9.2]
• Improvements

– Remove tcd alignment check in API that is low level and does not necessarily use
scather/gather mode.

[2.9.1]
• Bug Fixes

– Deinit channel request source before set channel mux.

[2.9.0]
• Improvements

– Release peripheral from reset if necessary in init function.

• Bug Fixes

– Fixed the variable type definition error issue.

– Fixed doxygen warning.

– Fixed violations of MISRA C-2012 rule 18.1.

[2.8.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3

[2.8.0]
• Improvements

– Added feature FSL_FEATURE_EDMA_HAS_NO_CH_SBR_SEC to separate DMA without
SEC bitfield.

[2.7.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3, 10.4, 11.6, 11.8, 14.3,.

[2.7.0]
• Improvements

– Use more accurate DMA instance based feature macros.

• New Features

– Add new APIs EDMA_PrepareTransferTCD and EDMA_SubmitTransferTCD, which sup-
port EDMA transfer using TCD.

1.5. ChangeLog 53

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
• Improvements

– Modify the type of parameter channelRequestSource from dma_request_source_t to
int32_t in the EDMA_SetChannelMux.

[2.5.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3, 10.4, 11.6, 20.7, 12.2, 20.9, 5.3, 10.8, 8.4, 9.3.

[2.5.2]
• Improvements

– Applied ERRATA 51327.

[2.5.1]
• Bug Fixes

– Fixed the EDMA_ResetChannel function cannot reset channel DONE/ERROR status.

[2.5.0]
• Improvements

– Added feature FSL_FEATURE_EDMA_HAS_NO_SBR_ATTR_BIT to separate DMA with-
out ATTR bitfield.

– Added api EDMA_GetChannelSystemBusInformation to gets the channel identification
and attribute information on the system bus interface.

• Bug Fixes

– Fixed the ESG bit not set in scatter gather mode issue.

– Fixed the DREQ bit configuration missed in single transfer issue.

– Cleared the interrupt status before invoke callback to avoid miss interrupt issue.

– Removed disableRequestAfterMajorLoopComplete from edma_transfer_config_t
structure as driver will handle it.

– Fixed the channel mux configuration not compatible issue.

– Fixed the out of bound access in function EDMA_DriverIRQHandler.

[2.4.4]
• Bug Fixes

– Fixed comments by replacing STCD with TCD

– Fixed the TCD overwrite issue when submit transfer request in the callback if there is
a active TCD in hardware.

54 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.3]
• Improvements

– Added FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET to convert the address be-
tween system mapped address and dma quick access address.

• Bug Fixes

– Fixed the wrong tcd done count calculated in first TCD interrupt for the non scatter
gather case.

[2.4.2]
• Bug Fixes

– Fixed the wrong tcd done count calculated in first TCD interrupt by correct the initial
value of the header.

– Fixed violations of MISRA C-2012 rule 10.3, 10.4.

[2.4.1]
• Bug Fixes

– Added clear CITER and BITER registers in EDMA_AbortTransfer to make sure the TCD
registers in a correct state for next calling of EDMA_SubmitTransfer.

– Removed the clear DONE status for ESG not enabled case to aovid DONE bit cleared
unexpectedly.

[2.4.0]
• Improvements

– Added api EDMA_EnableContinuousChannelLinkMode to support continuous link
mode.

– Added apis EDMA_SetMajorOffsetConfig/EDMA_TcdSetMajorOffsetConfig to support
major loop address offset feature.

– Added api EDMA_EnableChannelMinorLoopMapping for minor loop offset feature.

– Removed the reduntant IRQ Handler in edma driver.

[2.3.2]
• Improvements

– Fixed HIS ccm issue in function EDMA_PrepareTransferConfig.

– Fixed violations of MISRA C-2012 rule 11.6, 10.7, 10.3, 18.1.

• Bug Fixes

– Added ACTIVE & BITER & CITER bitfields to determine the channel status to fixed the
issue of the transfer request cannot submit by function EDMA_SubmitTransfer when
channel is idle.

1.5. ChangeLog 55

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Improvements

– Added source/destination address alignment check.

– Added driver IRQ handler support for multi DMA instance in one SOC.

[2.3.0]
• Improvements

– Added new api EDMA_PrepareTransferConfig to allow different configurations of
width and offset.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4, 10.1.

– Fixed the Coverity issue regarding out-of-bounds write.

[2.2.0]
• Improvements

– Added peripheral-to-peripheral support in EDMA driver.

[2.1.9]
• Bug Fixes

– Fixed MISRA issue: Rule 10.7 and 10.8 in function EDMA_DisableChannelInterrupts
and EDMA_SubmitTransfer.

– Fixed MISRA issue: Rule 10.7 in function EDMA_EnableAsyncRequest.

[2.1.8]
• Bug Fixes

– Fixed incorrect channel preemption base address used in
EDMA_SetChannelPreemptionConfig API which causes incorrect configuration of
the channel preemption register.

[2.1.7]
• Bug Fixes

– Fixed incorrect transfer size setting.

* Added 8 bytes transfer configuration and feature for RT series;

* Added feature to support 16 bytes transfer for Kinetis.

– Fixed the issue that EDMA_HandleIRQ would go to incorrect branch when TCD was not
used and callback function not registered.

56 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
• Bug Fixes

– Fixed KW3X MISRA Issue.

* Rule 14.4, 10.8, 10.4, 10.7, 10.1, 10.3, 13.5, and 13.2.

• Improvements

– Cleared the IRQ handler unavailable for specific platform with macro
FSL_FEATURE_EDMA_MODULE_CHANNEL_IRQ_ENTRY_SHARED_OFFSET.

[2.1.5]
• Improvements

– Improved EDMA IRQ handler to support half interrupt feature.

[2.1.4]
• Bug Fixes

– Cleared enabled request, status during EDMA_Init for the case that EDMA is halted
before reinitialization.

[2.1.3]
• Bug Fixes

– Added clear DONE bit in IRQ handler to avoid overwrite TCD issue.

– Optimized above solution for the case that transfer request occurs in callback.

[2.1.2]
• Improvements

– Added interface to get next TCD address.

– Added interface to get the unused TCD number.

[2.1.1]
• Improvements

– Added documentation for eDMA data flow when scatter/gather is implemented for the
EDMA_HandleIRQ API.

– Updated and corrected some related comments in the EDMA_HandleIRQ API and
edma_handle_t struct.

[2.1.0]
• Improvements

– Changed the EDMA_GetRemainingBytes API into EDMA_GetRemainingMajorLoopCount
due to eDMA IP limitation (see API comments/note for further details).

1.5. ChangeLog 57

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
• Improvements

– Added pubweak DriverIRQHandler for K32H844P (16 channels shared).

[2.0.4]
• Improvements

– Added support for SoCs with multiple eDMA instances.

– Added pubweak DriverIRQHandler for KL28T DMA1 and MCIMX7U5_M4.

[2.0.3]
• Bug Fixes

– Fixed the incorrect pubweak IRQHandler name issue, which caused re-definition build
errors when client set his/her own IRQHandler, by changing the 32-channel IRQHan-
dler name to DriverIRQHandler.

[2.0.2]
• Bug Fixes

– Fixed incorrect minorLoopBytes type definition in _edma_transfer_config struct, and
defined minorLoopBytes as uint32_t instead of uint16_t.

[2.0.1]
• Bug Fixes

– Fixed the eDMA callback issue (which did not check valid status) in EDMA_HandleIRQ
API.

[2.0.0]
• Initial version.

EnDat2.2

[1.0.1]
• Bug Fixes

– Fixed coverity issues

[1.0.0]
• Initial version.

58 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

ENDAT3

[2.0.0]
• Initial version.

[2.0.1]
• Add Daisy Chain support.

EQDC

[2.3.1]
• Bug Fix

• Fixed CTRL2[CMODE] field overwritten in API EQDC_Init.

[2.3.0]
• Improvements

• Add feature macro to support platforms which do not have compare interrupt.

[2.2.3]
• Bug Fix

• Clear Revolution Counter Register(REV) in init function to prevent its value not equal to
zero after reset.

[2.2.2]
• Improvements

• Release peripheral from reset if necessary in init function.

[2.2.1]
• Bug Fix

• Fixed violations of the MISRA C-2012 rules 20.9.

[2.2.0]
• New features

• Supported the feature that the position counter to be initialized by Index Event Edge Mark.

1.5. ChangeLog 59

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Bug Fix

• Fixed typo in interrupt enumeration values.

– Improvements

• Supported Count Direct Change interrupt.

• Removed unused parameter in user configuration.

• Supported ERRATA_051383 check, the CTRL[DMAEN] can’t be cleared.

[2.0.1]
• Bug Fix

• Fixed violations of the MISRA C-2012 rules 10.3, 10.6, 10.8, 14.4, 16.4.

[2.0.0]
• Initial version.

EWM

[2.0.4]
• Bug Fixes

– Fixed CERT INT31-C violations.

[2.0.3]
• Bug Fixes

– Fixed violation of MISRA C-2012 rules: 10.1, 10.3.

[2.0.2]
• Bug Fixes

– Fixed violation of MISRA C-2012 rules: 10.3, 10.4.

[2.0.1]
• Bug Fixes

– Fixed the hard fault in EWM_Deinit.

[2.0.0]
• Initial version.

60 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

FLEXCAN

[2.14.5]
• Improvements

– Make API FLEXCAN_GetFDMailboxOffset public.

– Add API FLEXCAN_SetMbID and FLEXCAN_SetFDMbID to configure Message Buffer
ID individually.

• Bug Fixes

– Fixed violations of the CERT INT30-C INT31-C.

– Fixed violations of the CERT ARR30-C.

[2.14.4]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 10.1, 10.4, 18.1.

[2.14.3]
• Improvements

– Add unhandled interrupt events check for following API:

* FLEXCAN_MbHandleIRQ

* FLEXCAN_EhancedRxFifoHandleIRQ

• Bug Fixes

– Remove FLEXCAN_MemoryErrorHandleIRQ on some platform without memory error
interrupt.

– Add conditional compile for CTRL2[ISOCANFDEN] because some platform do not have
this bit.

[2.14.2]
• Improvements

– Add Coverage Justification for uncovered code.

– Adjust API FLEXCAN_TransferAbortReceive order.

– UpdateFLEXCAN_Enable to enter Freeze Mode first when enter Disable mode on some
platform.

– Added while loop timeout for following API:

* FLEXCAN_EnterFreezeMode

* FLEXCAN_ExitFreezeMode

* FLEXCAN_Enable

* FLEXCAN_Reset

* FLEXCAN_TransferSendBlocking

* FLEXCAN_TransferReceiveBlocking

* FLEXCAN_TransferFDSendBlocking

* FLEXCAN_TransferFDReceiveBlocking

1.5. ChangeLog 61

MCUXpresso SDK Documentation, Release 25.12.00

* FLEXCAN_TransferReceiveFifoBlocking

* FLEXCAN_TransferReceiveEnhancedFifoBlocking

• Bug Fixes

– Remove remote frame feature in CANFD mode because there is no remote frame in
the CANFD format.

– Remove legacy Rx FIFO disabled branch in FLEXCAN_SubHandlerForLegacyRxFIFO
and FLEXCAN_SubHandlerForDataTransfered.

[2.14.1]
• Bug Fixes

– Fixed register IMASK2-4 IFLAG2-4 HR_TIME_STAMPn access issue on FlexCAN in-
stances with different number of MBs.

– Fixed bit field MBDSR1-3 access issue on FlexCAN instances with different number of
MBs.

• Improvements

– Unified following API as same parameter and return value type:

* FLEXCAN_GetMbStatusFlags

* FLEXCAN_ClearMbStatusFlags

* FLEXCAN_EnableMbInterrupts

* FLEXCAN_DisableMbInterrupts

– Add workaround for ERR050443 and ERR052403.

– Update message buffer read process in API FLEXCAN_ReadRxMb and FLEX-
CAN_ReadFDRxMb to make critical section as short as possible.

– Simplify API FLEXCAN_DriverDataIRQHandler implementation by remove parameter
type.

[2.14.0]
• Improvements

– Support external time tick feature.

– Support high resolution timestamp feature.

– Enter Freeze Mode first when enter Disable Mode on some platform.

– Add feature macro for Pretended Networking because some FlexCAN instance do not
have this feature.

– Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

– Add new FlexCAN IRQ Handler FLEXCAN_DriverDataIRQHandler and FLEX-
CAN_DriverEventIRQHandler. Thses IRQ Handlers are used on soc which FlexCAN
interrupts are grouped by specific function and assigned to different vector.

– Update macro FLEXCAN_WAKE_UP_FLAG and FLEXCAN_PNWAKE_UP_FLAG to sim-
plify code.

– Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKMSK_SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_NO_SLFWAK_SUPPORT.

62 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Replace macro FSL_FEATURE_FLEXCAN_HAS_NO_WAKSRC_SUPPORT with
FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER.

• Bug Fixes

– Fixed wrong interrupt and status flag helper macro in enumeration _flexcan_flags and
API FLEXCAN_DisableInterrupts.

– Fixed interrupt flag helper macro typo issue.

– Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_MEMORY_ERROR_INT_FLAG.

– Remove flags which will are unassociated with interrupt in macro FLEX-
CAN_ERROR_AND_STATUS_INT_FLAG.

– Fixed array out-of-bounds access when read enhanced Rx FIFO.

[2.13.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.13.0]
• Improvements

– Support payload endianness selection feature.

[2.12.0]
• Improvements

– Support automatic Remote Response feature.

– Add API FLEXCAN_SetRemoteResponseMbConfig() to configure automatic Remote Re-
sponse mailbox.

[2.11.8]
• Improvements

– Synchronize flexcan driver update on s32z platform.

[2.11.7]
• Bug Fixes

– Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compatibility with edma5.

[2.11.6]
• Bug Fixes

– Fixed ERRATA_9595 FLEXCAN_EnterFreezeMode() may result to bus fault on some
platform.

1.5. ChangeLog 63

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.5]
• Bug Fixes

– Fixed flexcan_memset() crash under high optimization compilation.

[2.11.4]
• Improvements

– Update CANFD max bitrate to 10Mbps on MCXNx3x and MCXNx4x.

– Release peripheral from reset if necessary in init function.

[2.11.3]
• Bug Fixes

– Fixed FLEXCAN_TransferReceiveEnhancedFifoEDMA() compile error with DMA3.

[2.11.2]
• Bug Fixes

– Fixed bug that timestamp in flexcan_handle_t not updated when RX overflow happens.

[2.11.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1.

[2.11.0]
• Bug Fixes

– Fixed wrong base address argument in FLEXCAN2 IRQ Handler.

• Improvements

– Add API to determine if the instance supports CAN FD mode at run time.

[2.10.1]
• Bug Fixes

– Fixed HIS CCM issue.

– Fixed RTOS issue by adding protection to read-modify-write operations on interrupt
enable/disable API.

[2.10.0]
• Improvements

– Update driver to make it able to support devices which has more than 64 8bytes MBs.

– Update CAN FD transfer APIs to make them set/get edl bit according to frame content,
which can make them compatible with classic CAN.

64 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.2]
• Bug Fixes

– Fixed the issue that FLEXCAN_CheckUnhandleInterruptEvents() can’t detecting the ex-
ist enhanced RX FIFO interrupt status.

– Fixed the issue that FLEXCAN_ReadPNWakeUpMB() does not return fail even no exist-
ing valid wake-up frame.

– Fixed the issue that FLEXCAN_ReadEnhancedRxFifo() may clear bits other than the
data available bit.

– Fixed violations of the MISRA C-2012 rules 10.4, 10.8.

• Improvements

– Return kStatus_FLEXCAN_RxFifoDisabled instead of kStatus_Fail when read FIFO fail
during IRQ handler.

– Remove unreachable code from timing calculates APIs.

– Update Enhanced Rx FIFO handler to make it deal with underflow/overflow status first.

[2.9.1]
• Bug Fixes

– Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoBlocking() API clearing
Fifo data available flag more than once.

– Fixed the issue that entering FLEXCAN_SubHandlerForEhancedRxFifo() even if En-
hanced Rx fifo interrupts are not enabled.

– Fixed the issue that FLEXCAN_TransferReceiveEnhancedFifoEDMA() update handle
even if previous Rx FIFO receive not finished.

– Fixed the issue that FLEXCAN_SetEnhancedRxFifoConfig() not configure the ER-
FCR[NFE] bits to the correct value.

– Fixed the issue that FLEXCAN_ReceiveFifoEDMACallback() can’t differentiate between
Rx fifo and enhanced rx fifo.

– Fixed the issue that FLEXCAN_TransferHandleIRQ() can’t report Legacy Rx FIFO warn-
ing status.

[2.9.0]
• Improvements

• Add public set bit rate API to make driver easier to use.

• Update Legacy Rx FIFO transfer APIs to make it support received multiple frames during
one API call.

• Optimized FLEXCAN_SubHandlerForDataTransfered() API in interrupt handling to reduce
the probability of packet loss.

[2.8.7]
• Improvements

• Initialized the EDMA configuration structure in the FLEXCAN EDMA driver.

1.5. ChangeLog 65

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.6]
• Bug Fixes

• Fix Coverity overrun issues in fsl_flexcan_edma driver.

[2.8.5]
• Improvements

– Make driver aarch64 compatible.

[2.8.4]
• Bug Fixes

– Fixed FlexCan_Errata_6032 to disable all interrupts.

[2.8.3]
• Bug Fixes

– Fixed an issue with the FLEXCAN_EnableInterrupts and FLEXCAN_DisableInterrupts
interrupt enable bits in the CTRL1 register.

[2.8.2]
• Bug Fixes

– Fixed errors in timing calculations and simplify the calculation process.

– Fixed issue of CBT and FDCBT register may write failure.

[2.8.1]
• Bug Fixes

– Fixed the issue of CAN FD three sampling points.

– Added macro to support the devices that no MCR[SUPV] bit.

– Remove unnecessary clear WMB operations.

[2.8.0]
• Improvements

– Update config configuration.

* Added enableSupervisorMode member to support enable/disable Supervisor
mode.

– Simplified the algorithm in CAN FD improved timing APIs.

[2.7.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.7.

66 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Improvements

– Update config configuration.

* Added enablePretendedeNetworking member to support enable/disable Pre-
tended Networking feature.

* Added enableTransceiverDelayMeasure member to support enable/disable
Transceiver Delay MeasurementPretended feature.

* Added bitRate/bitRateFD member to work as baudRate/baudRateFD member
union.

– Rename all “baud” in code or comments to “bit” to align with the CAN spec.

– Added Pretended Networking mode related APIs.

* FLEXCAN_SetPNConfig

* FLEXCAN_GetPNMatchCount

* FLEXCAN_ReadPNWakeUpMB

– Added support for Enhanced Rx FIFO.

– Removed independent memory error interrupt/status APIs and put all interrupt/status
control operation into FLEXCAN_EnableInterrupts/FLEXCAN_DisableInterrupts and
FLEXCAN_GetStatusFlags/FLEXCAN_ClearStatusFlags APIs.

– Update improved timing APIs to make it calculate improved timing according to CiA
doc recommended.

* FLEXCAN_CalculateImprovedTimingValues.

* FLEXCAN_FDCalculateImprovedTimingValues.

– Update FLEXCAN_SetBitRate/FLEXCAN_SetFDBitRate to added the use of enhanced
timing registers.

[2.6.2]
• Improvements

– Add CANFD frame data length enumeration.

[2.6.1]
• Bug Fixes

– Fixed the issue of not fully initializing memory in FLEXCAN_Reset() API.

[2.6.0]
• Improvements

– Enable CANFD ISO mode in FLEXCAN_FDInit API.

– Enable the transceiver delay compensation feature when enable FD operation and set
bitrate switch.

– Implementation memory error control in FLEXCAN_Init API.

– Improve FLEXCAN_FDCalculateImprovedTimingValues API to get same value for
FPRESDIV and PRESDIV.

– Added memory error configuration for user.

1.5. ChangeLog 67

MCUXpresso SDK Documentation, Release 25.12.00

* enableMemoryErrorControl

* enableNonCorrectableErrorEnterFreeze

– Added memory error related APIs.

* FLEXCAN_GetMemoryErrorReportStatus

* FLEXCAN_GetMemoryErrorStatusFlags

* FLEXCAN_ClearMemoryErrorStatusFlags

* FLEXCAN_EnableMemoryErrorInterrupts

* FLEXCAN_DisableMemoryErrorInterrupts

• Bug Fixes

– Fixed the issue of sent duff CAN frame after call FLEXCAN_FDInit() API.

[2.5.2]
• Bug Fixes

– Fixed the code error issue and simplified the algorithm in improved timing APIs.

* The bit field in CTRL1 register couldn’t calculate higher ideal SP, we set it as the
lowest one(75%)

· FLEXCAN_CalculateImprovedTimingValues

· FLEXCAN_FDCalculateImprovedTimingValues

– Fixed MISRA-C 2012 Rule 17.7 and 14.4.

• Improvements

– Pass EsrStatus to callback function when kStatus_FLEXCAN_ErrorStatus is comming.

[2.5.1]
• Bug Fixes

– Fixed the non-divisible case in improved timing APIs.

* FLEXCAN_CalculateImprovedTimingValues

* FLEXCAN_FDCalculateImprovedTimingValues

[2.5.0]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-10.1, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-
11.8, rule-12.2, rule-13.4, rule-14.4, rule-15.5, rule-15.6, rule-15.7, rule-16.4, rule-
17.3, rule-5.8, rule-8.3, rule-8.5.

– Fixed the issue that API FLEXCAN_SetFDRxMbConfig lacks inactive message buff.

– Fixed the issue of Pa082 warning.

– Fixed the issue of dead lock in the function of interruption handler.

– Fixed the issue of Legacy Rx Fifo EDMA transfer data fail in evkmimxrt1060 and evk-
mimxrt1064.

– Fixed the issue of setting CANFD Bit Rate Switch.

68 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the issue of operating unknown pointer risk.

* when used the pointer “handle->mbFrameBuf[mbIdx]” to update the timestamp
in a short-live TX frame, the frame pointer became as unknown, the action of op-
erating it would result in program stack destroyed.

– Added assert to check current CAN clock source affected by other clock gates in current
device.

* In some chips, CAN clock sources could be selected by CCM. But for some clock
sources affected by other clock gates, if user insisted on using that clock source,
they had to open these gates at the same time. However, they should take into
consideration the power consumption issue at system level. In RT10xx chips, CAN
clock source 2 was affected by the clock gate of lpuart1. ERRATA ID: (ERR050235
in CCM).

• Improvements

– Implementation for new FLEXCAN with ECC feature able to exit Freeze mode.

– Optimized the function of interruption handler.

– Added two APIs for FLEXCAN EDMA driver.

* FLEXCAN_PrepareTransfConfiguration

* FLEXCAN_StartTransferDatafromRxFIFO

– Added new API for FLEXCAN driver.

* FLEXCAN_GetTimeStamp

· For TX non-blocking API, we wrote the frame into mailbox only, so no need to
register TX frame address to the pointer, and the timestamp could be updated
into the new global variable handle->timestamp[mbIdx], the FLEXCAN driver
provided a new API for user to get it by handle and index number after TX
DONE Success.

* FLEXCAN_EnterFreezeMode

* FLEXCAN_ExitFreezeMode

– Added new configuration for user.

* disableSelfReception

* enableListenOnlyMode

– Renamed the two clock source enum macros based on CLKSRC bit field value directly.

* The CLKSRC bit value had no property about Oscillator or Peripheral type in lots
of devices, it acted as two different clock input source only, but the legacy enum
macros name contained such property, that misled user to select incorrect CAN
clock source.

– Created two new enum macros for the FLEXCAN driver.

* kFLEXCAN_ClkSrc0

* kFLEXCAN_ClkSrc1

– Deprecated two legacy enum macros for the FLEXCAN driver.

* kFLEXCAN_ClkSrcOsc

* kFLEXCAN_ClkSrcPeri

– Changed the process flow for Remote request frame response..

* Created a new enum macro for the FLEXCAN driver.

· kStatus_FLEXCAN_RxRemote

1.5. ChangeLog 69

MCUXpresso SDK Documentation, Release 25.12.00

– Changed the process flow for kFLEXCAN_StateRxRemote state in the interrupt handler.

* Should the TX frame not register to the pointer of frame handle, interrupt handler
would not be able to read the remote response frame from the mail box to ram,
so user should read the frame by manual from mail box after a complete remote
frame transfer.

[2.4.0]
• Bug Fixes

– MISRA C-2012 issue check.

* Fixed rules, containing: rule-12.1, rule-17.7, rule-16.4, rule-11.9, rule-8.4, rule-14.4,
rule-10.8, rule-10.4, rule-10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3,
rule-8.3, rule-12.2 and rule-16.1.

– Fixed the issue that CANFD transfer data fail when bus baudrate is 30Khz.

– Fixed the issue that ERR009595 does not folllow the ERRATA document.

– Fixed code error for ERR006032 work around solution.

– Fixed the Coverity issue of BAD_SHIFT in FLEXCAN.

– Fixed the Repo build warning issue for variable without initial.

• Improvements

– Fixed the run fail issue of FlexCAN RemoteRequest UT Case.

– Implementation all TX and RX transfering Timestamp used in FlexCAN demos.

– Fixed the issue of UT Test Fail for CANFD payload size changed from 64BperMB to
8PerMB.

– Implementation for improved timing API by baud rate.

[2.3.2]
• Improvements

– Implementation for ERR005959.

– Implementation for ERR005829.

– Implementation for ERR006032.

[2.3.1]
• Bug Fixes

– Added correct handle when kStatus_FLEXCAN_TxSwitchToRx is comming.

[2.3.0]
• Improvements

– Added self-wakeup support for STOP mode in the interrupt handling.

[2.2.3]
• Bug Fixes

– Fixed the issue of CANFD data phase’s bit rate not set as expected.

70 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.2]
• Improvements

– Added a time stamp feature and enable it in the interrupt_transfer example.

[2.2.1]
• Improvements

– Separated CANFD initialization API.

– In the interrupt handling, fix the issue that the user cannot use the normal CAN API
when with an FD.

[2.2.0]
• Improvements

– Added FSL_FEATURE_FLEXCAN_HAS_SUPPORT_ENGINE_CLK_SEL_REMOVE feature
to support SoCs without CAN Engine Clock selection in FlexCAN module.

– Added FlexCAN Serial Clock Operation to support i.MX SoCs.

[2.1.0]
• Bug Fixes

– Corrected the spelling error in the function name FLEXCAN_XXX().

– Moved Freeze Enable/Disable setting from FLEXCAN_Enter/ExitFreezeMode() to FLEX-
CAN_Init().

– Corrected wrong helper macro values.

• Improvements

– Hid FLEXCAN_Reset() from user.

– Used NDEBUG macro to wrap FLEXCAN_IsMbOccupied() function instead of DEBUG
macro.

[2.0.0]
• Initial version.

FLEXCAN_EDMA

[2.12.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 18.1.

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.12.00

[2.12.0]
• Improvements

– Support high resolution timestamp feature in enhanced Rx FIFO EDMA.

– Add feature macro for enhanced Rx FIFO because some FlexCAN instance do not have
this feature.

• Bug Fixes

– Fixed array out-of-bounds access when read enhanced Rx FIFO in EDMA.

[2.11.7]
• Refer FLEXCAN driver change log 2.7.0 to 2.11.7

FLEXIO

[2.3.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

– Added more pin control functions.

[2.2.3]
• Improvements

– Adapter the FLEXIO driver to platforms which don’t have system level interrupt con-
troller, such as NVIC.

[2.2.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.1]
• Improvements

– Added doxygen index parameter comment in FLEXIO_SetClockMode.

[2.2.0]
• New Features

– Added new APIs to support FlexIO pin register.

[2.1.0]
• Improvements

– Added API FLEXIO_SetClockMode to set flexio channel counter and source clock.

72 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed MISRA 8.4 issues.

[2.0.3]
• Bug Fixes

– Fixed MISRA 10.4 issues.

[2.0.2]
• Improvements

– Split FLEXIO component which combines all flexio/flexio_uart/flexio_i2c/flexio_i2s
drivers into several components: FlexIO component, flexio_uart component,
flexio_i2c_master component, and flexio_i2s component.

• Bug Fixes

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.0.1]
• Bug Fixes

– Fixed the dozen mode configuration error in FLEXIO_Init API. For enableInDoze = true,
the configuration should be 0; for enableInDoze = false, the configuration should be 1.

FLEXIO_A-FORMAT

[1.0.0]
• New Features

– The polling mode was added to read or configure encoder data

– The interrupt mode was added to read or configure encoder data

FLEXIO_I2C

[2.6.2]
• Improvements

– Added timeout for while loop in FLEXIO_I2C_MasterTransferBlocking().

• Bug Fixes

– Fixed build issues related to I2C_RETRY_TIMES.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.1]
• Bug Fixes

– Fixed coverity issues

[2.6.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

[2.5.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_flexio_i2c_master.c.

[2.4.0]
• Improvements

– Added delay of 1 clock cycle in FLEXIO_I2C_MasterTransferRunStateMachine to ensure
that bus would be idle before next transfer if master is nacked.

– Fixed issue that the restart setup time is less than the time in I2C spec by adding delay
of 1 clock cycle before restart signal.

[2.3.0]
• Improvements

– Used 3 timers instead of 2 to support transfer which is more than 14 bytes in single
transfer.

– Improved FLEXIO_I2C_MasterTransferGetCount so that the API can check whether the
transfer is still in progress.

• Bug Fixes

– Fixed MISRA 10.4 issues.

[2.2.0]
• New Features

– Added timeout mechanism when waiting certain state in transfer API.

– Added an API for checking bus pin status.

• Bug Fixes

– Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

74 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Added codes in FLEXIO_I2C_MasterTransferCreateHandle to clear pending NVIC IRQ,
disable internal IRQs before enabling NVIC IRQ.

– Modified code so that during master’s nonblocking transfer the start and slave address
are sent after interrupts being enabled, in order to avoid potential issue of sending the
start and slave address twice.

[2.1.7]
• Bug Fixes

– Fixed the issue that FLEXIO_I2C_MasterTransferBlocking did not wait for STOP bit sent.

– Fixed COVERITY issue of useless call in FLEXIO_I2C_MasterTransferRunStateMachine.

– Fixed the issue that I2C master did not check whether bus was busy before transfer.

[2.1.6]
• Bug Fixes

– Fixed the issue that I2C Master transfer APIs(blocking/non-blocking) did not support
the situation of master transfer with subaddress and transfer data size being zero,
which means no data followed the subaddress.

[2.1.5]
• Improvements

– Unified component full name to FLEXIO I2C Driver.

[2.1.4]
• Bug Fixes

– The following modifications support FlexIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.3]
• Improvements

– Changed the prototype of FLEXIO_I2C_MasterInit to return kStatus_Success if
initialized successfully or to return kStatus_InvalidArgument if “(srcClock_Hz /
masterConfig->baudRate_Bps) / 2 - 1” exceeds 0xFFU.

[2.1.2]
• Bug Fixes

– Fixed the FLEXIO I2C issue where the master could not receive data from I2C slave in
high baudrate.

– Fixed the FLEXIO I2C issue where the master could not receive NAK when master sent
non-existent addr.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed the FLEXIO I2C issue where the master could not get transfer count successfully.

– Fixed the FLEXIO I2C issue where the master could not receive data successfully when
sending data first.

– Fixed the Dozen mode configuration error in FLEXIO_I2C_MasterInit API. For en-
ableInDoze = true, the configuration should be 0; for enableInDoze = false, the con-
figuration should be 1.

– Fixed the issue that FLEXIO_I2C_MasterTransferBlocking API
called FLEXIO_I2C_MasterTransferCreateHandle, which lead to the
s_flexioHandle/s_flexioIsr/s_flexioType variable being written. Then,
if calling FLEXIO_I2C_MasterTransferBlocking API multiple times, the
s_flexioHandle/s_flexioIsr/s_flexioType variable would not be written any more
due to it being out of range. This lead to the following situation: NonBlocking transfer
APIs could not work due to the fail of register IRQ.

[2.1.1]
• Bug Fixes

– Implemented the FLEXIO_I2C_MasterTransferBlocking API which is defined in header
file but has no implementation in the C file.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 12.4.

[2.2.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.2.0]
• New Features

– Added timeout mechanism when waiting certain state in transfer API.

• Bug Fixes

– Fixed IAR Pa082 warnings.

– Fixed violations of the MISRA C-2012 rules 10.4, 14.4, 11.8, 11.9, 10.1, 17.7, 11.6, 10.3,
10.7.

76 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
• Bug Fixes

– Added reset flexio before flexio i2s init to make sure flexio status is normal.

[2.1.5]
• Bug Fixes

– Fixed the issue that I2S driver used hard code for bitwidth setting.

[2.1.4]
• Improvements

– Unified component’s full name to FLEXIO I2S (DMA/EDMA) driver.

[2.1.3]
• Bug Fixes

– The following modifications support FLEXIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.2]
• New Features

– Added configure items for all pin polarity and data valid polarity.

– Added default configure for pin polarity and data valid polarity.

[2.1.1]
• Bug Fixes

– Fixed FlexIO I2S RX data read error and eDMA address error.

– Fixed FlexIO I2S slave timer compare setting error.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

FLEXIO_I2S_EDMA

[2.1.9]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 12.4.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.8]
• Improvements

– Applied EDMA ERRATA 51327.

FLEXIO_SPI

[2.4.3]
• Improvements

– Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.4.2]
• Bug Fixes

– FixedFLEXIO_SPI_MasterTransferBlocking andFLEXIO_SPI_MasterTransferNonBlocking
issue in CS continuous mode, the CS might not be continuous.

[2.4.1]
• Bug Fixes

– Fixed coverity issues

[2.4.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

[2.3.5]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.4]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API

[2.3.3]
• Bugfixes

– Fixed cs-continuous mode.

[2.3.2]
• Improvements

– Changed FLEXIO_SPI_DUMMYDATA to 0x00.

78 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.1]
• Bugfixes

– Fixed IRQ SHIFTBUF overrun issue when one FLEXIO instance used as multiple SPIs.

[2.3.0]
• New Features

– Supported FLEXIO_SPI slave transfer with continuous master CS signal and CPHA=0.

– Supported FLEXIO_SPI master transfer with continuous CS signal.

– Support 32 bit transfer width.

• Bug Fixes

– Fixed wrong timer compare configuration for dma/edma transfer.

– Fixed wrong byte order of rx data if transfer width is 16 bit, since the we use shifter
buffer bit swapped/byte swapped register to read in received data, so the high byte
should be read from the high bits of the register when MSB.

[2.2.1]
• Bug Fixes

– Fixed bug in FLEXIO_SPI_MasterTransferAbortEDMA that when aborting EDMA trans-
fer EDMA_AbortTransfer should be used rather than EDMA_StopTransfer.

[2.2.0]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.4 issues.

– Added codes in FLEXIO_SPI_MasterTransferCreateHandle and
FLEXIO_SPI_SlaveTransferCreateHandle to clear pending NVIC IRQ before enabling
NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

[2.1.3]
• Improvements

– Unified component full name to FLEXIO SPI(DMA/EDMA) Driver.

• Bug Fixes

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.1.2]
• Bug Fixes

– The following modification support FlexIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.12.00

* Updated module Deinit APIs to reset the shifter/timer config instead of disabling
module/clock.

* Updated module Enable APIs to only support enable operation.

[2.1.1]
• Bug Fixes

– Fixed bug where FLEXIO SPI transfer data is in 16 bit per frame mode with eDMA.

– Fixed bug when FLEXIO SPI works in eDMA and interrupt mode with 16-bit per frame
and Lsbfirst.

– Fixed the Dozen mode configuration error in FLEXIO_SPI_MasterInit/FLEXIO_SPI_SlaveInit
API. For enableInDoze = true, the configuration should be 0; for enableInDoze = false,
the configuration should be 1.

• Improvements

– Added #ifndef/#endif to allow users to change the default TX value at compile time.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added transferSize in handle structure to record the transfer size.

• Bug Fixes

– Fixed the error register address return for 16-bit data write in
FLEXIO_SPI_GetTxDataRegisterAddress.

– Provided independent IRQHandler/transfer APIs for Master and slave to fix the bau-
drate limit issue.

FLEXIO_T-FORMAT

[1.0.0]
• New Features

– The polling mode was added to read or configure encoder data

– The interrupt mode was added to read or configure encoder data

FLEXIO_UART

[2.6.4]
• Improvements

– Make UART_RETRY_TIMES configurable by CONFIG_UART_RETRY_TIMES.

80 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.3]
• Bug Fixes

– Fixed coverity issues

[2.6.2]
• Bug Fixes

– Fixed coverity issues

[2.6.1]
• Improvements

– Improve baudrate calculation method, to support higher frequency FlexIO clock
source.

[2.6.0]
• Improvements

– Supported platforms which don’t have DOZE mode control.

[2.5.1]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.0]
• Improvements

– Added API FLEXIO_UART_FlushShifters to flush UART fifo.

[2.4.0]
• Improvements

– Use separate data for TX and RX in flexio_uart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling FLEXIO_UART_TransferReceiveNonBlocking, the received data count re-
turned by FLEXIO_UART_TransferGetReceiveCount is wrong.

[2.3.0]
• Improvements

– Added check for baud rate’s accuracy that returns kSta-
tus_FLEXIO_UART_BaudrateNotSupport when the best achieved baud rate is not
within 3% error of configured baud rate.

• Bug Fixes

– Added codes in FLEXIO_UART_TransferCreateHandle to clear pending NVIC IRQ before
enabling NVIC IRQ, to fix issue of pending IRQ interfering the on-going process.

1.5. ChangeLog 81

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• Improvements

– Added timeout mechanism when waiting for certain states in transfer driver.

• Bug Fixes

– Fixed MISRA 10.4 issues.

[2.1.6]
• Bug Fixes

– Fixed IAR Pa082 warnings.

– Fixed MISRA issues

* Fixed rules 10.1, 10.3, 10.4, 10.7, 11.6, 11.9, 14.4, 17.7.

[2.1.5]
• Improvements

– Triggered user callback after all the data in ringbuffer were received in
FLEXIO_UART_TransferReceiveNonBlocking.

[2.1.4]
• Improvements

– Unified component full name to FLEXIO UART(DMA/EDMA) Driver.

[2.1.3]
• Bug Fixes

– The following modifications support FLEXIO using multiple instances:

* Removed FLEXIO_Reset API in module Init APIs.

* Updated module Deinit APIs to reset the shifter/timer configuration instead of dis-
abling module and clock.

* Updated module Enable APIs to only support enable operation.

[2.1.2]
• Bug Fixes

– Fixed the transfer count calculation issue in FLEXIO_UART_TransferGetReceiveCount,
FLEXIO_UART_TransferGetSendCount, FLEXIO_UART_TransferGetReceiveCountDMA,
FLEXIO_UART_TransferGetSendCountDMA, FLEXIO_UART_TransferGetReceiveCountEDMA
and FLEXIO_UART_TransferGetSendCountEDMA.

– Fixed the Dozen mode configuration error in FLEXIO_UART_Init API. For enableInDoze
= true, the configuration should be 0; for enableInDoze = false, the configuration should
be 1.

– Added code to report errors if the user sets a too-low-baudrate which FLEXIO cannot
reach.

– Disabled FLEXIO_UART receive interrupt instead of all NVICs when reading data from
ring buffer. If ring buffer is used, receive nonblocking will disable all NVIC interrupts
to protect the ring buffer. This had negative effects on other IPs using interrupt.

82 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
• Bug Fixes

– Changed the API name FLEXIO_UART_StopRingBuffer to
FLEXIO_UART_TransferStopRingBuffer to align with the definition in C file.

[2.1.0]
• New Features

– Added Transfer prefix in transactional APIs.

– Added txSize/rxSize in handle structure to record the transfer size.

• Bug Fixes

– Added an error handle to handle the situation that data count is zero or data buffer is
NULL.

FLEXIO_UART_EDMA

[2.3.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules.

[2.3.0]
• Refer FLEXIO_UART driver change log to 2.3.0

FRACT_PLL

[2.0.0]
• Initial version.

GPT

[2.0.6]
• Bug Fixes

– Fix CERT INT30-C issues.

[2.0.5]
• Improvements

– Support workaround for ERR003777. This workaround helps switching the clock
sources.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.4]
• Bug Fixes

– Fixed compiler warning when built with FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
flag enabled.

[2.0.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 5.3 by customizing function parameter.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.1, 10.3, 10.4, 10.6, 10.8, 17.7.

[2.0.0]
• Initial version.

HIPERFACE

[1.0.0]
• Initial version.

IGF

[2.0.0]
• Initial version.

IRQSTEER

[2.0.1]
• Improvement

– Initialize irqsteer defaultly, so users don’t need to call api IRQSTEER_Init to intialize
irqsteer.

84 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

LPI2C

[2.6.3]
• Bug Fixes

– Fixed static analysis identified issues.

[2.6.2]
• Improvements

– Added timeout for while loop in LPI2C_TransferStateMachineSendCommand().

[2.6.1]
• Bug Fixes

– Fixed coverity issues.

[2.6.0]
• New Feature

– Added common IRQ handler entry LPI2C_DriverIRQHandler.

[2.5.7]
• Improvements

– Added support for separated IRQ handlers.

[2.5.6]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.5.5]
• Bug Fixes

– Fixed LPI2C_SlaveInit() - allow to disable SDA/SCL glitch filter.

[2.5.4]
• Bug Fixes

– Fixed LPI2C_MasterTransferBlocking() - the return value was sometime affected by call
of LPI2C_MasterStop().

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.3]
• Improvements

– Added handler for LPI2C7 and LPI2C8.

[2.5.2]
• Bug Fixes

– Fixed ERR051119 to ignore the nak flag when IGNACK=1 in
LPI2C_MasterCheckAndClearError.

[2.5.1]
• Bug Fixes

– Added bus stop incase of bus stall in LPI2C_MasterTransferBlocking.

• Improvements

– Release peripheral from reset if necessary in init function.

[2.5.0]
• New Features

– Added new function LPI2C_SlaveEnableAckStall to enable or disable ACKSTALL.

[2.4.1]
• Improvements

– Before master transfer with transactional APIs, enable master function while disable
slave function and vise versa for slave transfer to avoid the one affecting the other.

[2.4.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpi2c.c.

• Bug Fixes

– Fixed bug in LPI2C_MasterInit that the MCFGR2’s value set in
LPI2C_MasterSetBaudRate may be overwritten by mistake.

[2.3.2]
• Improvements

– Initialized the EDMA configuration structure in the LPI2C EDMA driver.

[2.3.1]
• Improvements

– Updated LPI2C_GetCyclesForWidth to add the parameter of minimum cycle, because
for master SDA/SCL filter, master bus idle/pin low timeout and slave SDA/SCL filter
configuration, 0 means disabling the feature and cannot be used.

• Bug Fixes

86 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Fixed bug in LPI2C_SlaveTransferHandleIRQ that when restart detect event happens
the transfer structure should not be cleared.

– Fixed bug in LPI2C_RunTransferStateMachine, that when only slave address is trans-
ferred or there is still data remaining in tx FIFO the last byte’s nack cannot be ignored.

– Fixed bug in slave filter doze enable, that when FILTDZ is set it means disable rather
than enable.

– Fixed bug in the usage of LPI2C_GetCyclesForWidth. First its return value cannot be
used directly to configure the slave FILTSDA, FILTSCL, DATAVD or CLKHOLD, because
the real cycle width for them should be FILTSDA+3, FILTSCL+3, FILTSCL+DATAVD+3
and CLKHOLD+3. Second when cycle period is not affected by the prescaler value,
prescaler value should be passed as 0 rather than 1.

– Fixed wrong default setting for LPI2C slave. If enabling the slave tx SCL stall, then
the default clock hold time should be set to 250ns according to I2C spec for 100kHz
standard mode baudrate.

– Fixed bug that before pushing command to the tx FIFO the FIFO occupation should be
checked first in case FIFO overflow.

[2.3.0]
• New Features

– Supported reading more than 256 bytes of data in one transfer as master.

– Added API LPI2C_GetInstance.

• Bug Fixes

– Fixed bug in LPI2C_MasterTransferAbortEDMA, LPI2C_MasterTransferAbort and
LPI2C_MasterTransferHandleIRQ that before sending stop signal whether master is
active and whether stop signal has been sent should be checked, to make sure no FIFO
error or bus error will be caused.

– Fixed bug in LPI2C master EDMA transactional layer that the bus error cannot be
caught and returned by user callback, by monitoring bus error events in interrupt
handler.

– Fixed bug in LPI2C_GetCyclesForWidth that the parameter used to calculate clock cycle
should be 2^prescaler rather than prescaler.

– Fixed bug in LPI2C_MasterInit that timeout value should be configured after baudrate,
since the timeout calculation needs prescaler as parameter which is changed during
baudrate configuration.

– Fixed bug in LPI2C_MasterTransferHandleIRQ and LPI2C_RunTransferStateMachine
that when master writes with no stop signal, need to first make sure no data remains
in the tx FIFO before finishes the transfer.

[2.2.0]
• Bug Fixes

– Fixed issue that the SCL high time, start hold time and stop setup time do not meet I2C
specification, by changing the configuration of data valid delay, setup hold delay, clock
high and low parameters.

– MISRA C-2012 issue fixed.

* Fixed rule 8.4, 13.5, 17.7, 20.8.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.12]
• Bug Fixes

– Fixed MISRA advisory 15.5 issues.

[2.1.11]
• Bug Fixes

– Fixed the bug that, during master non-blocking transfer, after the last byte is
sent/received, the kLPI2C_MasterNackDetectFlag is expected, so master should not
check and clear kLPI2C_MasterNackDetectFlag when remainingBytes is zero, in case
FIFO is emptied when stop command has not been sent yet.

– Fixed the bug that, during non-blocking transfer slave may nack master while master
is busy filling tx FIFO, and NDF may not be handled properly.

[2.1.10]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rule 10.3, 14.4, 15.5.

– Fixed unaligned access issue in LPI2C_RunTransferStateMachine.

– Fixed uninitialized variable issue in LPI2C_MasterTransferHandleIRQ.

– Used linked TCD to disable tx and enable rx in read operation to fix the issue that for
platform sharing the same DMA request with tx and rx, during LPI2C read operation if
interrupt with higher priority happened exactly after command was sent and before
tx disabled, potentially both tx and rx could trigger dma and cause trouble.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 11.6, 11.9, 14.4, 17.7.

– Fixed the waitTimes variable not re-assignment issue for each byte read.

• New Features

– Added the IRQHandler for LPI2C5 and LPI2C6 instances.

• Improvements

– Updated the LPI2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.1.9]
• Bug Fixes

– Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.

– Fixed Coverity issue of operands did not affect the result in LPI2C_SlaveReceive and
LPI2C_SlaveSend.

– Removed STOP signal wait when NAK detected.

– Cleared slave repeat start flag before transmission started
in LPI2C_SlaveSend/LPI2C_SlaveReceive. The issue was that
LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the reserved repeat
start flag. This caused the next slave to send a break, and the master was always in
the receive data status, but could not receive data.

88 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.8]
• Bug Fixes

– Fixed the transfer issue with LPI2C_MasterTransferNonBlocking,
kLPI2C_TransferNoStopFlag, with the wait transfer done through callback in a
way of not doing a blocking transfer.

– Fixed the issue that STOP signal did not appear in the bus when NAK event occurred.

[2.1.7]
• Bug Fixes

– Cleared the stopflag before transmission started in LPI2C_SlaveSend/LPI2C_SlaveReceive.
The issue was that LPI2C_SlaveSend/LPI2C_SlaveReceive did not handle with the re-
served stop flag and caused the next slave to send a break, and the master always
stayed in the receive data status but could not receive data.

[2.1.6]
• Bug Fixes

– Fixed driver MISRA build error and C++ build error in LPI2C_MasterSend and
LPI2C_SlaveSend.

– Reset FIFO in LPI2C Master Transfer functions to avoid any byte still remaining in FIFO
during last transfer.

– Fixed the issue that LPI2C_MasterStop did not return the correct NAK status in the bus
for second transfer to the non-existing slave address.

[2.1.5]
• Bug Fixes

– Extended the Driver IRQ handler to support LPI2C4.

– Changed to use ARRAY_SIZE(kLpi2cBases) instead of FEATURE COUNT to decide the
array size for handle pointer array.

[2.1.4]
• Bug Fixes

– Fixed the LPI2C_MasterTransferEDMA receive issue when LPI2C shared same request
source with TX/RX DMA request. Previously, the API used scatter-gather method,
which handled the command transfer first, then the linked TCD which was pre-set with
the receive data transfer. The issue was that the TX DMA request and the RX DMA re-
quest were both enabled, so when the DMA finished the first command TCD transfer
and handled the receive data TCD, the TX DMA request still happened due to empty
TX FIFO. The result was that the RX DMA transfer would start without waiting on the
expected RX DMA request.

– Fixed the issue by enabling IntMajor interrupt for the command TCD and checking if
there was a linked TCD to disable the TX DMA request in LPI2C_MasterEDMACallback
API.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.3]
• Improvements

– Added LPI2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

– Added LPI2C_MasterTransferBlocking API.

[2.1.2]
• Bug Fixes

– In LPI2C_SlaveTransferHandleIRQ, reset the slave status to idle when stop flag was
detected.

[2.1.1]
• Bug Fixes

– Disabled the auto-stop feature in eDMA driver. Previously, the auto-stop feature was
enabled at transfer when transferring with stop flag. Since transfer was without stop
flag and the auto-stop feature was enabled, when starting a new transfer with stop
flag, the stop flag would be sent before the new transfer started, causing unsuccesful
sending of the start flag, so the transfer could not start.

– Changed default slave configuration with address stall false.

[2.1.0]
• Improvements

– API name changed:

* LPI2C_MasterTransferCreateHandle -> LPI2C_MasterCreateHandle.

* LPI2C_MasterTransferGetCount -> LPI2C_MasterGetTransferCount.

* LPI2C_MasterTransferAbort -> LPI2C_MasterAbortTransfer.

* LPI2C_MasterTransferHandleIRQ -> LPI2C_MasterHandleInterrupt.

* LPI2C_SlaveTransferCreateHandle -> LPI2C_SlaveCreateHandle.

* LPI2C_SlaveTransferGetCount -> LPI2C_SlaveGetTransferCount.

* LPI2C_SlaveTransferAbort -> LPI2C_SlaveAbortTransfer.

* LPI2C_SlaveTransferHandleIRQ -> LPI2C_SlaveHandleInterrupt.

[2.0.0]
• Initial version.

LPI2C_EDMA

[2.4.6]
• Bug Fixes

– Fixed static analysis identified issues.

90 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.5]
• Improvements

– Added condition to IRQ handler to check whether the interrupt is enabled -
kLPI2C_MasterTxReadyFlag.

[2.4.4]
• Improvements

– Added support for 2KB data transfer

[2.4.3]
• Improvements

– Added support for separated IRQ handlers.

[2.4.2]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.4.1]
• Refer LPI2C driver change log 2.0.0 to 2.4.1

LPIT

[2.1.3]
• Bug Fixes

– Fixed doxygen generation warnings.

[2.1.2]
• Bug Fixes

– Fix CERT INT31-C issues.

[2.1.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.1.0]
• Improvements

– Add new function LPIT_SetTimerValue to set timeout period.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
• Improvements

– Improved LPIT_SetTimerPeriod implementation, configure timeout value with LPIT
ticks minus 1 generate more correct interval.

– Added timeout value configuration check for LPIT_SetTimerPeriod, at least input 3
ticks for calling LPIT_SetTimerPeriod.

• Bug Fixes

– Fixed MISRA C-2012 rule 17.7 violations.

[2.0.1]
• Bug Fixes

– MISRA C-2012 issue fixed.

* Fixed rules, containing: rule-10.3, rule-14.4, rule-15.5.

[2.0.0]
• Initial version.

LPSPI

[2.7.4]
• Bug Fixes

– Clear WIDTH bits from the TCR register before writing a new value in LP-
SPI_MasterTransferBlocking().

[2.7.3]
• Improvements

– Added timeout for while loop in LPSPI_MasterTransferWriteAllTxData().

– Make SPI_RETRY_TIMES configurable by CONFIG_SPI_RETRY_TIMES.

[2.7.2]
• Bug Fixes

– Fixed coverity issues.

[2.7.1]
• Bug Fixes

– Workaround for errata ERR050607

– Workaround for errata ERR010655

92 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• New Feature

– Added common IRQ handler entry LPSPI_DriverIRQHandler.

[2.6.10]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.6.9]
• Bug Fixes

– Fixed reading of TCR register

– Workaround for errata ERR050606

[2.6.8]
• Bug Fixes

– Fixed build error when SPI_RETRY_TIMES is defined to non-zero value.

[2.6.7]
• Bug Fixes

– Fixed the txData from void * to const void * in transmit API _lpspi_master_handle and
_lpspi_slave_handle.

[2.6.6]
• Bug Fixes

– Added LPSPI register init in LPSPI_MasterInit incase of LPSPI register exist.

[2.6.5]
• Improvements

– Introduced FSL_FEATURE_LPSPI_HAS_NO_PCSCFG and FSL_FEATURE_LPSPI_HAS_NO_MULTI_WIDTH
for conditional compile.

– Release peripheral from reset if necessary in init function.

[2.6.4]
• Bug Fixes

– Added LPSPI6_DriverIRQHandler for LPSPI6 instance.

[2.6.3]
• Hot Fixes

– Added macro switch in function LPSPI_Enable about ERRATA051472.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
• Bug Fixes

– Disabled lpspi before LPSPI_MasterSetBaudRate incase of LPSPI opened.

[2.6.1]
• Bug Fixes

– Fixed return value while calling LPSPI_WaitTxFifoEmpty in function LP-
SPI_MasterTransferNonBlocking.

[2.6.0]
• Feature

– Added the new feature of multi-IO SPI .

[2.5.3]
• Bug Fixes

– Fixed 3-wire txmask of handle vaule reentrant issue.

[2.5.2]
• Bug Fixes

– Workaround for errata ERR051588 by clearing FIFO after transmit underrun occurs.

[2.5.1]
• Bug Fixes

– Workaround for errata ERR050456 by resetting the entire module using LP-
SPIn_CR[RST] bit.

[2.5.0]
• Bug Fixes

– Workaround for errata ERR011097 to wait the TX FIFO to go empty when writing TCR
register and TCR[TXMSK] value is 1.

– Added API LPSPI_WaitTxFifoEmpty for wait the txfifo to go empty.

[2.4.7]
• Bug Fixes

– Fixed bug that the SR[REF] would assert if software disabled or enabled the LPSPI mod-
ule in LPSPI_Enable.

[2.4.6]
• Improvements

– Moved the configuration of registers for the 3-wire lpspi mode to the LPSPI_MasterInit
and LPSPI_SlaveInit function.

94 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.5]
• Improvements

– Improved LPSPI_MasterTransferBlocking send performance when frame size is 1-byte.

[2.4.4]
• Bug Fixes

– Fixed LPSPI_MasterGetDefaultConfig incorrect default inter-transfer delay calculation.

[2.4.3]
• Bug Fixes

– Fixed bug that the ISR response speed is too slow on some platforms, resulting in the
first transmission of overflow, Set proper RX watermarks to reduce the ISR response
times.

[2.4.2]
• Bug Fixes

– Fixed bug that LPSPI_MasterTransferBlocking will modify the parameter txbuff and
rxbuff pointer.

[2.4.1]
• Bug Fixes

– Fixed bug that LPSPI_SlaveTransferNonBlocking can’t detect RX error.

[2.4.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpspi.c.

[2.3.1]
• Improvements

– Initialized the EDMA configuration structure in the LPSPI EDMA driver.

• Bug Fixes

– Fixed bug that function LPSPI_MasterTransferBlocking should return after the trans-
fer complete flag is set to make sure the PCS is re-asserted.

[2.3.0]
• New Features

– Supported the master configuration of sampling the input data using a delayed clock
to improve slave setup time.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Bug Fixes

– Fixed bug in LPSPI_SetPCSContinous when disabling PCS continous mode.

[2.2.0]
• Bug Fixes

– Fixed bug in 3-wire polling and interrupt transfer that the received data is not correct
and the PCS continous mode is not working.

[2.1.0]
• Improvements

– Improved LPSPI_SlaveTransferHandleIRQ to fill up TX FIFO instead of write one data
to TX register which improves the slave transmit performance.

– Added new functional APIs LPSPI_SelectTransferPCS and LPSPI_SetPCSContinous to
support changing PCS selection and PCS continous mode.

• Bug Fixes

– Fixed bug in non-blocking and EDMA transfer APIs that kStatus_InvalidArgument is
returned if user configures 3-wire mode and full-duplex transfer at the same time, but
transfer state is already set to kLPSPI_Busy by mistake causing following transfer can
not start.

– Fixed bug when LPSPI slave using EDMA way to transfer, tx should be masked when tx
data is null, otherwise in 3-wire mode which tx/rx use the same pin, the received data
will be interfered.

[2.0.5]
• Improvements

– Added timeout mechanism when waiting certain states in transfer driver.

• Bug Fixes

– Fixed the bug that LPSPI can not transfer large data using EDMA.

– Fixed MISRA 17.7 issues.

– Fixed variable overflow issue introduced by MISRA fix.

– Fixed issue that rxFifoMaxBytes should be calculated according to transfer width
rather than FIFO width.

– Fixed issue that completion flag was not cleared after transfer completed.

[2.0.4]
• Bug Fixes

– Fixed in LPSPI_MasterTransferBlocking that master rxfifo may overflow in stall con-
dition.

– Eliminated IAR Pa082 warnings.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.6, 11.9, 14.2, 14.4, 15.7, 17.7.

96 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
• Bug Fixes

– Removed LPSPI_Reset from LPSPI_MasterInit and LPSPI_SlaveInit, because this API
may glitch the slave select line. If needed, call this function manually.

[2.0.2]
• New Features

– Added dummy data set up API to allow users to configure the dummy data to be trans-
ferred.

– Enabled the 3-wire mode, SIN and SOUT pins can be configured as input/output pin.

[2.0.1]
• Bug Fixes

– Fixed the bug that the clock source should be divided by the PRESCALE setting in LP-
SPI_MasterSetDelayTimes function.

– Fixed the bug that LPSPI_MasterTransferBlocking function would hang in some corner
cases.

• Optimization

– Added #ifndef/#endif to allow user to change the default TX value at compile time.

[2.0.0]
• Initial version.

LPSPI_EDMA

[2.4.9]
• Improvements

– Removed unused code from LPSPI_SeparateEdmaReadData().

[2.4.8]
• Improvements

– Added timeout for while loop in EDMA_LpspiMasterCallback() and
EDMA_LpspiSlaveCallback().

[2.4.7]
• Bug Fixes

– Add macro LPSPI_ALIGN_TCD_SIZE_MASK to align an address to edma_tcd_t size.

1.5. ChangeLog 97

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.6]
• Improvements

– Increased transmit FIFO watermark to ensure whole transmit FIFO will be used during
data transfer.

[2.4.5]
• Bug Fixes

– Fixed reading of TCR register

– Workaround for errata ERR050606

[2.4.4]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.4.3]
• Improvements

– Supported 32K bytes transmit in DMA, improve the max datasize in LP-
SPI_MasterTransferEDMALite.

[2.4.2]
• Improvements

– Added callback status in EDMA_LpspiMasterCallback and EDMA_LpspiSlaveCallback
to check transferDone.

[2.4.1]
• Improvements

– Add the TXMSK wait after TCR setting.

[2.4.0]
• Improvements

– Separated LPSPI_MasterTransferEDMA functions to LP-
SPI_MasterTransferPrepareEDMA and LPSPI_MasterTransferEDMALite to optimize
the process of transfer.

LPTMR

[2.2.1]
• Bug Fixes

– Fix CERT INT31-C issues.

98 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• Improvements

– Updated lptmr_prescaler_clock_select_t, only define the valid options.

[2.1.1]
• Improvements

– Updated the characters from “PTMR” to “LPTMR” in
“FSL_FEATURE_PTMR_HAS_NO_PRESCALER_CLOCK_SOURCE_1_SUPPORT” feature
definition.

[2.1.0]
• Improvements

– Implement for some special devices’ not supporting for all clock sources.

• Bug Fixes

– Fixed issue when accessing CMR register.

[2.0.2]
• Bug Fixes

– Fixed MISRA-2012 issues.

* Rule 10.1.

[2.0.1]
• Improvements

– Updated the LPTMR driver to support 32-bit CNR and CMR registers in some devices.

[2.0.0]
• Initial version.

LPUART

[2.10.0]
• New Feature

– Added support to configure RTS watermark.

[2.9.4]
• Improvements

– Merged duplicate code.

1.5. ChangeLog 99

MCUXpresso SDK Documentation, Release 25.12.00

[2.9.3]
• Improvements

– Added timeout for while loops in LPUART_Deinit().

[2.9.2]
• Bug Fixes

– Fixed coverity issues.

[2.9.1]
• Bug Fixes

– Fixed coverity issues.

[2.9.0]
• New Feature

– Added support for swap TXD and RXD pins.

– Added common IRQ handler entry LPUART_DriverIRQHandler.

[2.8.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.8.2]
• Bug Fix

– Fixed the bug that LPUART_TransferEnable16Bit controled by wrong feature macro.

[2.8.1]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-5.3, rule-5.8, rule-10.4, rule-11.3, rule-11.8.

[2.8.0]
• Improvements

– Added support of DATA register for 9bit or 10bit data transmit in write and
read API. Such as: LPUART_WriteBlocking16bit, LPUART_ReadBlocking16bit,
LPUART_TransferEnable16Bit LPUART_WriteNonBlocking16bit,
LPUART_ReadNonBlocking16bit.

[2.7.7]
• Bug Fixes

– Fixed the bug that baud rate calculation overflow when srcClock_Hz is 528MHz.

100 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.6]
• Bug Fixes

– Fixed LPUART_EnableInterrupts and LPUART_DisableInterrupts bug that blocks if the
LPUART address doesn’t support exclusive access.

[2.7.5]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.7.4]
• Improvements

– Added support for atomic register accessing in LPUART_EnableInterrupts and
LPUART_DisableInterrupts.

[2.7.3]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 15.7.

[2.7.2]
• Bug Fix

– Fixed the bug that the OSR calculation error when lupart init and lpuart set baud rate.

[2.7.1]
• Improvements

– Added support for LPUART_BASE_PTRS_NS in security mode in file fsl_lpuart.c.

[2.7.0]
• Improvements

– Split some functions, fixed CCM problem in file fsl_lpuart.c.

[2.6.0]
• Bug Fixes

– Fixed bug that when there are multiple lpuart instance, unable to support different
ISR.

[2.5.3]
• Bug Fixes

– Fixed comments by replacing unused status flags kLPUART_NoiseErrorInRxDataRegFlag
and kLPUART_ParityErrorInRxDataRegFlag with kLPUART_NoiseErrorFlag and
kLPUART_ParityErrorFlag.

1.5. ChangeLog 101

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.2]
• Bug Fixes

– Fixed bug that when setting watermark for TX or RX FIFO, the value may exceed the
maximum limit.

• Improvements

– Added check in LPUART_TransferDMAHandleIRQ and
LPUART_TransferEdmaHandleIRQ to ensure if user enables any interrupts other
than transfer complete interrupt, the dma transfer is not terminated by mistake.

[2.5.1]
• Improvements

– Use separate data for TX and RX in lpuart_transfer_t.

• Bug Fixes

– Fixed bug that when ring buffer is used, if some data is received in ring buffer first be-
fore calling LPUART_TransferReceiveNonBlocking, the received data count returned
by LPUART_TransferGetReceiveCount is wrong.

[2.5.0]
• Bug Fixes

– Added missing interrupt enable masks kLPUART_Match1InterruptEnable and
kLPUART_Match2InterruptEnable.

– Fixed bug in LPUART_EnableInterrupts, LPUART_DisableInterrupts and
LPUART_GetEnabledInterrupts that the BAUD[LBKDIE] bit field should be soc
specific.

– Fixed bug in LPUART_TransferHandleIRQ that idle line interrupt should be disabled
when rx data size is zero.

– Deleted unused status flags kLPUART_NoiseErrorInRxDataRegFlag and
kLPUART_ParityErrorInRxDataRegFlag, since firstly their function are the same
as kLPUART_NoiseErrorFlag and kLPUART_ParityErrorFlag, secondly to obtain them
one data word must be read out thus interfering with the receiving process.

– Fixed bug in LPUART_GetStatusFlags that the STAT[LBKDIF], STAT[MA1F] and
STAT[MA2F] should be soc specific.

– Fixed bug in LPUART_ClearStatusFlags that tx/rx FIFO is reset by mistake when clear-
ing flags.

– Fixed bug in LPUART_TransferHandleIRQ that while clearing idle line flag the other
bits should be masked in case other status bits be cleared by accident.

– Fixed bug of race condition during LPUART transfer using transactional APIs, by dis-
abling and re-enabling the global interrupt before and after critical operations on in-
terrupt enable register.

– Fixed DMA/eDMA transfer blocking issue by enabling tx idle interrupt after
DMA/eDMA transmission finishes.

• New Features

– Added APIs LPUART_GetRxFifoCount/LPUART_GetTxFifoCount to get rx/tx FIFO data
count.

– Added APIs LPUART_SetRxFifoWatermark/LPUART_SetTxFifoWatermark to set rx/tx
FIFO water mark.

102 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Bug Fixes

– Fixed MISRA advisory 17.7 issues.

[2.4.0]
• New Features

– Added APIs to configure 9-bit data mode, set slave address and send address.

[2.3.1]
• Bug Fixes

– Fixed MISRA advisory 15.5 issues.

[2.3.0]
• Improvements

– Modified LPUART_TransferHandleIRQ so that txState will be set to idle only when all
data has been sent out to bus.

– Modified LPUART_TransferGetSendCount so that this API returns the real byte count
that LPUART has sent out rather than the software buffer status.

– Added timeout mechanism when waiting for certain states in transfer driver.

[2.2.8]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-10.3, rule-14.4, rule-15.5.

– Eliminated Pa082 warnings by assigning volatile variables to local variables and using
local variables instead.

– Fixed MISRA issues.

* Fixed rules 10.1, 10.3, 10.4, 10.8, 14.4, 11.6, 17.7.

• Improvements

– Added check for kLPUART_TransmissionCompleteFlag in LPUART_WriteBlocking,
LPUART_TransferHandleIRQ, LPUART_TransferSendDMACallback and
LPUART_SendEDMACallback to ensure all the data would be sent out to bus.

– Rounded up the calculated sbr value in LPUART_SetBaudRate and LPUART_Init to
achieve more acurate baudrate setting. Changed osr from uint32_t to uint8_t since
osr’s bigest value is 31.

– Modified LPUART_ReadBlocking so that if more than one receiver errors occur, all sta-
tus flags will be cleared and the most severe error status will be returned.

1.5. ChangeLog 103

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.7]
• Bug Fixes

– Fixed issue for MISRA-2012 check.

* Fixed rule-12.1, rule-17.7, rule-14.4, rule-13.3, rule-14.4, rule-10.4, rule-10.8, rule-
10.3, rule-10.7, rule-10.1, rule-11.6, rule-13.5, rule-11.3, rule-13.2, rule-8.3.

[2.2.6]
• Bug Fixes

– Fixed the issue of register’s being in repeated reading status while dealing with the
IRQ routine.

[2.2.5]
• Bug Fixes

– Do not set or clear the TIE/RIE bits when using LPUART_EnableTxDMA and
LPUART_EnableRxDMA.

[2.2.4]
• Improvements

– Added hardware flow control function support.

– Added idle-line-detecting feature in LPUART_TransferNonBlocking function. If an idle
line is detected, a callback is triggered with status kStatus_LPUART_IdleLineDetected
returned. This feature may be useful when the received Bytes is less than the expected
received data size. Before triggering the callback, data in the FIFO (if has FIFO) is read
out, and no interrupt will be disabled, except for that the receive data size reaches 0.

– Enabled the RX FIFO watermark function. With the idle-line-detecting feature enabled,
users can set the watermark value to whatever you want (should be less than the RX
FIFO size). Data is received and a callback will be triggered when data receive ends.

[2.2.3]
• Improvements

– Changed parameter type in LPUART_RTOS_Init struct from rtos_lpuart_config to
lpuart_rtos_config_t.

• Bug Fixes

– Disabled LPUART receive interrupt instead of all NVICs when reading data from ring
buffer. Otherwise when the ring buffer is used, receive nonblocking method will dis-
able all NVICs to protect the ring buffer. This may has a negative effect on other IPs
that are using the interrupt.

[2.2.2]
• Improvements

– Added software reset feature support.

– Added software reset API in LPUART_Init.

104 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Improvements

– Added separate RX/TX IRQ number support.

[2.2.0]
• Improvements

– Added support of 7 data bits and MSB.

[2.1.1]
• Improvements

– Removed unnecessary check of event flags and assert in LPUART_RTOS_Receive.

– Added code to always wait for RX event flag in LPUART_RTOS_Receive.

[2.1.0]
• Improvements

– Update transactional APIs.

LPUART_EDMA

[2.4.0]
• Refer LPUART driver change log 2.1.0 to 2.4.0

MCM

[2.2.0]
• Improvements

– Support platforms with less features.

[2.1.0]
• Others

– Remove byteID from mcm_lmem_fault_attribute_t for document update.

[2.0.0]
• Initial version.

1.5. ChangeLog 105

MCUXpresso SDK Documentation, Release 25.12.00

MSGINTR

[2.0.2]
• Improvements

– Conditional compile IRQ handlers.

[2.0.1]
• Bug Fixes

– Fixed MISRA issue rule 8.4, 11.9, 17.7.

[2.0.0]
• Initial version.

MU

[2.8.1]
• Bug Fixes

– Avoid incorrect MU_BUSY_POLL_COUNT macro use.

[2.8.0]
• New Features

– Added MU1_BUSY_POLL_COUNT parameter to prevent infinite polling loops in MU op-
erations.

– Added timeout mechanism to all polling loops in MU driver code.

• Improvements

– Updated function signatures to return status codes for better error handling:

* Changed MU_ResetBothSides to return status_t instead of void

* Updated MU_SendMsg to return status_t for timeout indication

* Added new function MU_ReceiveMsgTimeout() to include timeout mechanism.

– Enhanced documentation across all functions to clarify timeout behavior and return
values.

[2.7.0]
• New Features

– Added API MU_GetRxStatusFlags.

[2.6.0]
• New Features

– Added API MU_GetInterruptsPending.

106 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.1]
• Bug Fixes

– Fixed the bug that MU_TriggerGeneralPurposeInterrupts and MU_TriggerInterrupts
may trigger previous triggered general purpose interrupts again by mistake.

[2.5.0]
• New Features

– Supported more than 4 general purpose interrupts.

– Added seperate APIs for general purpose interrupts.

[2.4.0]
• Improvements

– Supported the case that some features only avaiable with specific instances. These
features include Hardware Reset, Boot Peer Core, Hold Reset. When using the features
with instances which don’t support them, driver will report error.

[2.3.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.3.2]
• Improvements

– Supported platforms which don’t have CCR0[RSTH], CCR0[CLKE], CCR0[HR],
CCR0[HRM].

[2.3.1]
• Bug Fixes

– Fixed build error for platforms which have CCR0[RSTH], but no CCR0[NMI].

[2.3.0]
• New features

– Added support for i.MX RT7xx.

[2.2.1]
• Bug Fixes

– Fixed issue that MU_GetInstance() is defined but never used.

1.5. ChangeLog 107

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• New features

– Added support for i.MX RT118x.

• Bug Fixes

– Fixed general purpose interrupt bug.

• Other Changes

– Change _mu_interrupt_trigger item value.

[2.1.2]
• Bug Fixes

– Fixed bug that general purpose interrupt can’t be configured.

[2.1.1]
• Bug Fixes

– Fixed MISRA C-2012 issues.

[2.1.0]
• Improvements

– Added new enum mu_msg_reg_index_t.

[2.0.0]
• Initial version.

NETC

[2.10.3]
• New Features

– Supported rrt member in netc_tb_ipf_cfge_t.

– Moved timer reference clock definition to soc to support i.MX95/i.MX943.

• Bug Fixes

– Got right size of TX timestamp response frame.

[2.10.2]
• Bug Fixes

– Correct transmit start time bit width of transmit buffer descriptor format.

108 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.10.1]
• New Features

– Supported IP version class commands in VSI-PSI message driver.

– Added VSI3 definition.

[2.10.0]
• Bug Fixes

– Fixed structures used for time gate control list and stream gate request commands
memset.

• New Features

– Added public API to query table entry in Frame Modification Table.

• Improvements

– Optimized NETC Transmit functions: cached configuration in driver handle instead
of accessing directly device registers at each packet transmit, and removed calls to
memset/memcpy in the transmit path.

[2.9.1]
• Improvements

– NETC_TimerInit() will always ignore user config->atomicMode and set it to 1 internally.
This guarantees that period updates, that change both the integer and fractional part
are always done atomically.

[2.9.0]
• Bug Fixes

– Fixed padding in netc_tb_sgi_rsp_data_t union structure for query operations on
OEXEN and IRXEN parameters.

– Fixed structure use for rate policer and stream gate request commands memset.

– Updated ERRATA 052134 to 052206.

– Fixed MII mode setting.

– Fixed i.MX943 getting function instance.

• New Features

– Added API to Reset IRX and OEX flags in stream gate instance entry.

– Added API to configure the priority to traffic class map.

– Added APIs to query table entry and get maximum entry number for Frame Modifica-
tion Table.

– Added APIs to configure Frame preemption.

– Added APIs to configure PSRCR and PGCR registers to implement HSR feature.

– Moved PHY WRAPPER init sequence (NETC_PHYInit) implementation to SoC. And
Added i.MX943 support.

• Improvements

– keep netc_tb_sgi_rsp_data_t local to the low level driver functions for SGI table entry
query.

1.5. ChangeLog 109

MCUXpresso SDK Documentation, Release 25.12.00

– Converted to use preinitVsi callback for VSI pre-init.

– Added note for ERRATA 052167 to remind that actual MAC Tx IPG is longer than con-
figured when transmitting back-to-back packets in MII half duplex. When using MII
protocol, using full-duplex mode is recommended instead of half-duplex. If using MII
half-duplex mode, additional bandwidth loss should be expected and accounted for
due to extended IPG.

[2.8.2]
• Bug Fixes

– Fixed ingress port filter table frame attribute flags mask field issue.

[2.8.1]
• Bug Fixes

– Fixed MAC/VLAN filter operations through VSI-PSI message.

– Fixed NETC_PortConfigTxIpgPreamble compile.

• Improvements

– Enabled standard VLAN EtherTypes for i.MX95 VSIs for VLAN support.

– Added netc_timer_exttrig_index_t definition for i.MX95.

– Updated default BPCR[STAMVD] value setting to align the register reset value.

[2.8.0]
• Bug Fixes

– Fixed ERRATA 052024.

– Fixed ERRATA 052129.

– Fixed ERRATA 052134.

– Fixed ERRATA 052031.

– Fixed ERRATA 051994.

– Fixed ERRATA 051936.

• New Features

– Added interface to reset the mark frame red parameter.

– Added support for FRER sequence generation reset.

– Added NETC Switch Tag support.

– Added the Tx offload feature support.

• Improvements

– Simplify NETC_TimerGetFreeRunningTime. Hardware synchronizes reads from
high/low registers for the free running time. No need to do it in software.

[2.7.2]
• Bug Fixes

– Fixed MISRA issue rule 4.10, 10.1, 10.3, 10.4, 10.7, 10.8, 11.3, 16.1, 16.4, 17.7.

110 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.1]
• Bug Fixes

– Fixed Coverity issue with array out of bounds access.

[2.7.0]
• New Features

– Added VSI-PSI messaging driver.

• Bug Fixes

– Fixed the issue that EP/SWT_ReceiveFrame don’t return error status when some errors
occur.

[2.6.1]
• Bug Fixes

– Updated the MAC loopback configuration as Reference Manual.

[2.6.0]
• New Features

– Added API to get transmit max SDU for specified port Traffic Class.

– Added API to query entry from the Rate Policing table.

– Added API to retrieve maximum rate policer entries.

– Added API to set switch port default VID separately.

– Added API to set max frame size separately.

– Added API to query FRER resource.

• Bug Fixes

– Fixed the issue that stream gate query functions don’t check return status.

– Fixed the ISF table query function operation issue.

– Fixed the wrong configuration of Tx max SDU check.

– Fixed ERRATA 051524.

– Fixed ERRATA 051649.

– Fixed ERRATA 051707.

– Fixed ERRATA 051710.

– Fixed ERRATA 051711.

• Improvements

– Factorized qbv basetime workaround code, and stop using synchronized time for the
workaround code. Synchronized time functionality should be reserved for gPTP oper-
ation.

[2.5.1]
• Improvements

– Conditional compile NETC_ETH_LINK_PM0_COMMAND_CONFIG_HD_FCEN register.

1.5. ChangeLog 111

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
• New Features

– Added PHY WRAPPER driver.

– Added C45 support for internal MDIO.

– Added 10G support.

• Bug Fixes

– Fixed ERRATA 051130.

– Fixed master bus and memory access.

• Improvements

– Moved platform specific code to soc driver.

– Split switch code.

[2.4.0]
• New Features

– Added the interrupt control functions for port MAC module.

– Added setting parameters including half-duplex back pressure, port timestamp cap-
ture point, RGMII Tx clock stop state during low power idle, ports default traffic class
gating states and timer atomic writing setting.

– Added NETC_TimerInitHandle() to initialize a timer handle without modifying hard-
ware state. Required to be able to read timer from another CPU.

– Added NETC_TimerGetFreeRunningTime() to be able to read free running timer.

– Added support for ingress stream gate query.

• Improvements

– Added necessary default settings in the GetDefaultConfig functions in case some fea-
tures can’t work after initialization.

– Updated loopback function according to new bit field in CRR.

– Deleted the useless error check for ERRATA051243.

– Updated NETC_TimerGetCurrentTime() to avoid using synchronized time and be able
to read the time from different threads/cpus without locking.

– Deleted the useless priority check in NETC_PortConfigTcCBS().

• Bug Fixes

– Fixed typo in NETC_PortConfig.

[2.3.2]
• Bug Fixes

– Added workaround for ERRATA051587.

[2.3.1]
• Bug Fixes

– Fixed MISRA issue rule 10.3, 10.4, 10.8, 11.6, 11.7.

112 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• Bug Fixes

– Added SWT_PortStop() API for ERRATA051398.

– Fixed the build error by add feature macro for port FCS Error Action feature.

– Removed duplicate code from NETC_PortEthMacGracefulStop() API.

– Fixed MISRA issue rule 8.6, 10.4, 11.9, 14.4.

[2.2.2]
• Bug Fixes

– Fixed the issue that NETC_PortSetSpeed() would overwrite the full PCR register.

[2.2.1]
• Improvements

– Fixed cpp build warning.

[2.2.0]
• Bug Fixes

– Fixed the issue that NETC_ConfigTGSAdminList() doesn’t clear the previous command
response data status filed.

– Fixed the issue that EP_ReceiveFrameCopy(&handle, 0, NULL, 0, NULL) can’t drop error
frame.

– Fixed the issue that SWT_GetTimestampRefResp can’t get Switch Tx TS Resp with no
MgmtRxBdRing.

– Fixed the issue that RGMII Half Duplex mode misconfigured.

– Fixed the issue that missing workaround for ERR050679, ERR051246 and ERR051254.

– Fixed the issue that missing feature macro for ERR051130, ERR051202, ERR051260.

– Fixed the issue that ep/swt_tx_opt struct use wrong vlan tag tpid value.

– Fixed MISRA issue rule 5.8, 8.3, 8.12, 10.1, 10.3, 10.4, 10.6, 10.7, 10.8, 11.6, 11.8, 12.2,
14.4, 15.5, 15.6, 16.1, 16.3, 16.4, 17.7.

– Fixed the issue that internal MDIO read function uses wrong register.

– Fixed the issue that SWT_TxPortTGSEnable()/EP_TxPortTGSEnable() still uses the de-
fault timer after enabling the 1588 timer.

– Remove the resetCount parameter from get port discard statistic APIs because the reg-
isters required by this function have been removed from hardware design.

– Fixed the issue that SWT/EP_ReclaimTxDesc() can’t call reclaim callback for each full
frame.

– Fixed the issue in NETC_TimerAdjustFreq().

• New Features

– Added the support for 1588 One-Step timestamp when chip doesn’t have ERR051255.

– Added APIs to get dynamic table remaining available entry numbers.

– Added APIs to get static table number of entries.

1.5. ChangeLog 113

MCUXpresso SDK Documentation, Release 25.12.00

• Improvements

– Return detail error status instead of kStatus_Fail in NTMP APIs.

– Rename feature macros and move them into the feature file.

– Optimize the implementation of the NETC_TimerAddOffset() function to avoid
change the TMR_CNT_L/H registers, and add required procedure for call
NETC_TimerAddOffset() API in the comments.

– Update the SWT_FMDUpdateTableEntry()/SWT_FMDQueryTableEntry() APIs to make
them use internel table buffer.

– Update SWT_TxPortTGSEnable()/EP_TxPortTGSEnable() to make it can config the de-
fault administration gate control list gates’ state.

– Use TMR_SRT_L/H instead of TMR_CUR_TIMER when want to get current 1588 timer
value.

[2.1.0]
• Bug Fixes

– Fixed the issue that EP_RxL2MFInit doesn’t set the multicast promiscuous correctly.

– Fixed the timer add offset issue.

– Fixed the issue that all ENETC/Switch PCIe functions must be enabled firstly before
triggering EP/SWT NTMP access and MSIX messages.

– Fixed RT1180 NETC errata 051202: Configure Tx MAC to wait until 32 bytes of data are
built up in the transmit FIFO before beginning transmission on the link.

– Added workaround for RT1180 NETC errata 051130: C Egress time gate scheduling can
get corrupted when functional level reset is applied or when time gating is disabled.

– Fixed bugs in statistic APIs.

• New Features

– Added the support for EP VSI transmission and PSI-VSI message exchanging.

– Added EP receive regular frame zero-copy support.

– Integrated EMDIO support in NETC MDIO driver for accessing PHY when EP/Switch
function isn’t enabled.

– Added Timer and Switch MSIX table configuration support.

– Added update entry APIs for IPF/VF/FDB/L2MCF/IS/ISF/SGI/RP/FM/ET/ISEQG tables,
and search entry APIs for FDB/L2MCF table.

– Added Ingress buffer pool table config APIs.

– Added MAC Tx padding and Rx min/max frame size configuration to support Tx/Rx
frames smaller than 64 bytes.

– Added API to do graceful Stop for ETH MAC.

• Improvements

– Used Rx buffer address array provided by application instead of buffer start address
with contiguous memory to make the Rx buffer setup more flexible.

– Added ring and userData parameter in the Tx reclaim callback.

– Updated NETC hardware layer folder name from ‘hw’ to ‘netc_hw’.

– Stored necessary EP and SWT configurations constant in handle structure instead of
storing pointer which forces appliction to keep static configuration structure data.

114 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Updated NETC_MsixXxx to EP_MsixXxx to differentiate with corresponding
SWT/Timer MSIX configuration APIs.

– Aligned TGSL/SGCL API with enet_qos high-level driver.

– Updated EP/Switch config structure to include all port related config.

– Updated Switch transfer API only send management frame (Direct enqueue and Switch
Port Masquerading) and only receive Host Reason no-zero frames.

– Updated EP transfer API only send/receive regular frames.

– Updated Switch/EP handle to make them use independent cache maintain, alloc/free
memory and reclaimCallback functions.

[2.0.0]
• Initial version.

PDM

[2.9.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.9.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.9.1]
• Bug Fixes

– Fixed the issue that the driver still enters the interrupt after disabling clock.

[2.9.0]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_DECIMATION_FILTER_BYPASS to config
CTRL_2[DEC_BYPASS] field.

• Modify code to make the OSR value is not limited to 16.

[2.8.1]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_DOZEN to handle nonexistent
CTRL_1[DOZEN] field.

1.5. ChangeLog 115

MCUXpresso SDK Documentation, Release 25.12.00

[2.8.0]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_HWVAD to remove the support of hadware
voice activity detector.

• Added feature FSL_FEATURE_PDM_HAS_NO_FILTER_BUFFER to remove the support of
FIR_RDY bitfield in STAT register.

[2.7.4]
• Bug Fixes

– Fixed driver can not determine the specific float number of clock divider.

– Fixed PDM_ValidateSrcClockRate calculates PDM channel in wrong method issue.

[2.7.3]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_VADEF to remove the support of VADEF bit-
field in VAD0_STAT register.

[2.7.2]
• Improvements

• Added feature FSL_FEATURE_PDM_HAS_NO_MINIMUM_CLKDIV to decide whether the
minimum clock frequency division is required.

[2.7.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 10.3, 10.1, 10.4, 14.4

[2.7.0]
• Improvements

– Added api PDM_EnableHwvadInterruptCallback to support handle hwvad IRQ in PDM
driver.

– Corrected the sample rate configuration for non high quality mode.

– Added api PDM_SetChannelGain to support adjust the channel gain.

[2.6.0]
• Improvements

– Added new features FSL_FEATURE_PDM_HAS_STATUS_LOW_FREQ/FSL_FEATURE_PDM_HAS_DC_OUT_CTRL/FSL_FEATURE_PDM_DC_CTRL_VALUE_FIXED.

[2.5.0]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 8.4, 16.5, 10.4, 10.3, 10.1, 11.9, 17.7, 10.6,
14.4, 11.8, 11.6.

116 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.1]
• Bug Fixes

– Fixed MDK 66-D warning in pdm driver.

[2.4.0]
• Improvements

– Added api PDM_TransferSetChannelConfig/PDM_ReadFifo to support read different
width data.

– Added feature FSL_FEATURE_PDM_HAS_RANGE_CTRL and api
PDM_ClearRangeStatus/PDM_GetRangeStatus for range register.

• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 14.4, 10.3, 10.4.

[2.3.0]
• Improvements

– Enabled envelope/energy voice detect mode by adding apis
PDM_SetHwvadInEnvelopeBasedMode/PDM_SetHwvadInEnergyBasedMode.

– Added feature FSL_FEATURE_PDM_CHANNEL_NUM for different SOC.

[2.2.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.1, 10.3, 10.4, 10.6, 10.7, 11.3, 11.8, 14.4, 17.7,
18.4.

– Added medium quality mode support in function PDM_SetSampleRateConfig.

[2.2.0]
• Improvements

– Added api PDM_SetSampleRateConfig to improve user experience and marked api
PDM_SetSampleRate as deprecated.

[2.1.1]
• Improvements

• Used new SDMA API SDMA_SetDoneConfig instead of SDMA_EnableSwDone for PDM SDMA
driver.

[2.1.0]
• Improvements

– Added software buffer queue for transactional API.

1.5. ChangeLog 117

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
• Improvements

– Improved HWVAD feature.

[2.0.0]
• Initial version.

PDM_EDMA

[2.6.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8.

[2.6.4]
• Improvements

– Add handling for runtime change of number of linked transfers

[2.6.3]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.6.2]
• Improvements

– Add macro MCUX_SDK_PDM_EDMA_PDM_ENABLE_INTERNAL to let the user decide
whether to enable it when calling PDM_TransferReceiveEDMA.

[2.6.1]
• Bug Fixes

– Fixed violation of MISRA C-2012 Rule 10.3, 10.4.

[2.6.0]
• Improvements

– Updated api PDM_TransferReceiveEDMA to support channel block interleave transfer.

– Added new api PDM_TransferSetMultiChannelInterleaveType to support channel in-
terleave type configurations.

[2.5.0]
• Refer PDM driver change log 2.1.0 to 2.5.0

118 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

PWM

[2.9.1]
• Improvements

– Add new APIPWM_SetupFaultsExt andPWM_SetupFaultInputFilterExt to support Flex-
PWM which has more than one fault input channels.

– Support fault 4-7 interrupt and its flag.

• Bug Fixes

– Fixed violations of the CERT INT31-C.

[2.9.0]
• Improvements

– Support PWMX channel output for edge aligned PWM.

– Forbid submodule 0 counter initialize with master sync and master reload mode.

– Clarify kPWM_BusClock meaning.

– Verify pulseCnt within 65535 when update period register.

[2.8.4]
• Improvements

– Support workaround for ERR051989. This function helps realize no phase delay be-
tween submodule 0 and other submodule.

[2.8.3]
• Bug Fixes

– Fixed MISRA C-2012 Rule 15.7

[2.8.2]
• Bug Fixes

– Fixed warning conversion from ‘int’ to ‘uint16_t’ on API PWM_Init.

– Fixed warning unused variable ‘reg’ on API PWM_SetPwmForceOutputToZero.

[2.8.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.8.0]
• Improvements

– Added API PWM_UpdatePwmPeriodAndDutycycle to update the PWM signal’s period
and dutycycle for a PWM submodule.

1.5. ChangeLog 119

MCUXpresso SDK Documentation, Release 25.12.00

– Added API PWM_SetPeriodRegister and PWM_SetDutycycleRegister to merge dupli-
cate code in API PWM_SetupPwm, PWM_UpdatePwmDutycycleHighAccuracy and
PWM_UpdatePwmPeriodAndDutycycle

[2.7.1]
• Improvements

– Supported UPDATE_MASK bit in MASK register.

[2.7.0]
• Improvements

– Supported platforms which don’t have Capture feature with channel A and B.

– Supported platforms which don’t have Submodule 3.

– Added assert function in API PWM_SetPhaseDelay to prevent wrong argument.

[2.6.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.3.

[2.6.0]
• Improvements

– Added API PWM_SetPhaseDelay to set the phase delay from the master sync signal of
submodule 0.

– Added API PWM_SetFilterSampleCountthe to set number of consecutive samples that
must agree prior to the input filter.

– Added API PWM_SetFilterSamplePeriod to set set the sampling period of the fault pin
input filter.

[2.5.1]
• Bug Fixes

– Fixed MISRA C-2012 rules: 10.1, 10.3, 10.4 , 10.6 and 10.8.

– Fixed the issue that PWM_UpdatePwmDutycycle() can’t update duty cycle status value
correct.

[2.5.0]
• Improvements

– Added API PWM_SetOouputToIdle to set pwm channel output to idle.

– Added API PWM_GetPwmChannelState to get the pwm channel output duty cycle
value.

– Added API PWM_SetPwmForceOutputToZero to set the pwm channel output to zero
logic.

– Added API PWM_SetChannelOutput to set the pwm channel output state.

– Added API PWM_SetClockMode to set the value of the clock prescaler.

120 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

– Added API PWM_SetupPwmPhaseShift to set PWM which a special phase shift and 50%
duty cycle.

– Added API PWM_SetVALxValue/PWM_GetVALxValue to set/get PWM VALs registers
values directly.

[2.4.0]
• Improvements

– Supported the PWM which can’t work in wait mode.

[2.3.0]
• Improvements

– Add PWM output enable&disbale API for SDK.

• Bug Fixes

– Fixed changing channel B configuration when parameter is kPWM_PWMX and PWMX
configuration is not supported yet.

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.3, 10.4.

• Bug Fixes

– Fixed the issue that PWM drivers computed VAL1 improperly.

• Improvements

– Updated calculation accuracy of reloadValue in dutyCycleToReloadValue function.

[2.2.0]
• Improvements

– Added new enumeration and two APIs to support enabling and disabling one or more
PWM output triggers.

– Added a new function to make the most of 16-bit resolution PWM.

– Added one API to support updating fault status of PWM output.

– Added one API to support PWM DMA write request.

– Added three APIs to support PWM DMA capture read request.

– Added one API to support get default fault config of PWM.

– Added one API to support setting PWM fault disable mapping.

[2.1.0]
• Improvements

– Moved the configuration of fault input filter into a new API to avoid be initialized mul-
tiple times.

• Bug Fixes

– MISRA C-2012 issue fixed.

1.5. ChangeLog 121

MCUXpresso SDK Documentation, Release 25.12.00

* Fix rules, containing: rule-10.2, rule-10.3, rule-10.4, rule-10.7, rule-10.8, rule-14.4,
rule-16.4.

[2.0.1]
• Bug Fixes

– Fixed the issue that PWM submodule may be initialized twice in function
PWM_SetupPwm().

[2.0.0]
• Initial version.

PXP

[2.7.0]
• New Features

– Added the PS_LRC setting for V4.

– Added the PXP_SetPath setting for V4.

– Fixed the code logic, V4 do not support DATA_PATH_CTRL1.

[2.6.1]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.6.0]
• Bug Fixes

– Added missing configuration option for fetch engine background value.

– Fixed bug in PXP_SetStoreEngineConfig that the address increment for store mask is
not linear.

– Added channel aribitration configuration for fetch engine, channel combine for store
engine.

– Fixed wrong method of obtaining the store mask address.

– Fixed wrong method of configuring flag shift mask/width which can only be written
in word boundary.

– Fixed wrong configurations of block store and pitch in PXP_SetStoreEngineConfig.

– Fixed wrong method of obtaining cfaValue address and calculating word count.

– Fixed the channel word order cannot be updated when configuring the second chan-
nel.

– Fixed bugs in PXP_SetHistogramConfig of wrong method to obtain the store mask ad-
dress and wrong access of 32-bit registers.

122 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.5.0]
• New Features

– Added new API PXP_GetPorterDuffConfigExt for flexible Porter-Duff configuration.

– Added enumerations for new AS/PS pixel formats for certain SoCs.

[2.4.1]
• New Features

– Added API PXP_ResetControl to reset the PXP and the control register to initialized
state.

[2.4.0]
• New Features

– Added the API PXP_BuildRect of building a solid rectangle of given pixel value.

– Added the interrupt enable/disable and status mask for V3.

– Added API PXP_EnableProcessEngine to enable/disable process engines for V3.

– Added API PXP_SetHistogramSize to re-configure the histogram size for each update.

– Updated PXP_WfeaInit and PXP_SetWfeaConfig according to header file’s update of
WFE related registers.

– Updated PXP_WfeaInit to support handshake with upstream dither store engine and
added API PXP_WfeaEnableDitherHandshake to enable/disable the feature.

– Added API PXP_GetLutUsage to get the occupied LUT list.

– Updated APIs to support alpha blending engine1.

– Added the API PXP_MemCopy to support all memory size copy.

• Bug Fixes

– Fixed wrong naming for mux16.

– Fixed wrong naming for enumerations in pxp_scanline_burst_t.

– Fixed bug in PXP_GetHistogramMatchResult since there are 2 histograms engines
rather than 1.

– Fixed bug in PXP_SetFetchEngineConfig that the fetch size should not be minus one
coding.

[2.3.0]
• New Features

– Added the configuration of fetch engine, store engine, pre-dither engine and histogram
block.

[2.2.2]
• Improvements

– Disable alpha surface (AS) in PXP_Init.

1.5. ChangeLog 123

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Improvements

– Added memory address conversion to support buffers which could only be accessed
using alias address by non-core masters.

[2.2.0]
• Bug Fixes

– Fixed Porter Duff configuration error.

[2.1.0]
• New Features

– Added Porter Duff support.

– Added APIs PXP_StartMemCopy and PXP_StartPictureCopy.

– Added API PXP_SetProcessSurfaceYUVFormat.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 3.1, 10.8, 11.6, 12.2.

[2.0.1]
• Bug Fixes

– Fixed the rotate function issue for i.MX 6ULL.

[2.0.0]
• Initial version.

QTMR

[2.3.0]
• Improvements

– Support for platforms which QTMR registers are 32-bit.

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

[2.2.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.8.

124 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
• Improvements

– Added API QTMR_SetPwmOutputToIdle to set the generated pwm signal to the config-
ured idle value.

– Added API QTMR_GetPwmOutputStatus to return the output status of the generated
pwm signal.

– Added API QTMR_GetPwmChannelStatus to return the channel dutycycle value.

– Added API QTMR_SetPwmClockMode to set clock mode change peripheral clock fre-
quency.

• Bug Fixes

– Fixed the issue that pwm duty cycle could not be 0 and 100.

[2.1.0]
• Bug Fixes

– Fixed the issue QTMR_SetTimerPeriod needs to decrement down count by 1, and added
new APIs to configure the LOAD register, COMP register.

[2.0.2]
• Bug Fixes

– Fixed the issue introduced by previous code correction for improving the output signal
accuracy.

[2.0.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rules: 10.1, 10.3, 11.5, 11.9.

• Improvements

– Improved the output signal accuracy.

[2.0.0]
• Initial version.

RGPIO

[2.2.0]
• Added RGPIO_GetPinDirection() API to get the current direction of a RGPIO pin.

• Added FGPIO_GetPinDirection() API to get the current direction of a FGPIO pin.

1.5. ChangeLog 125

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New feature:

– Added API RGPIO_EnablePortInput()

– Added API RGPIO_SetPinInterruptConfig()

– Added API RGPIO_GetPinsInterruptFlags()

– Added API RGPIO_ClearPinsInterruptFlags()

[2.0.3]
• Improvements:

– Enhanced FGPIO_PinInit to enable clock internally.

[2.0.2]
• Bug fix

– MISRA C-2012 issue fixed.

* Fix rules, containing: rule-10.3, rule-14.4, rule-15.5.

[2.0.1]
• API Interface Change:

– Refined naming of API while keep all original APIs with marking them as deprecated.
The original API will be removed in the next release. The main change is to update API
with prefix of _PinXXX() and _PortXXX().

[2.0.0]
• Initial version.

S3MU

• 2.0.2 Fix macro BIT redefined warning when compiling with Zephyr.

• 2.0.1 Update kStatusGroup_SNT to kStatusGroup_ELEMU.

• 2.0.0 Initial version of S3MU driver.

SAI

[2.4.10]
• Improvements

– Allow enabling/disabling implicit channel configuration.

– Allow NULL FIFO watermark.

• Bug Fixes

– Fix compilation warnings when asserts are disabled

126 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.9]
• Added Errata ERR051421 workaround.

[2.4.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.4.7]
• Added conditional support for bit clock swap feature

• Added common IRQ handler entry SAI_DriverIRQHandler.

[2.4.6]
• Bug Fixes

– Fixed the IAR build warning.

[2.4.5]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.4.4]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t - add RX configuration.

[2.4.3]
• Bug Fixes

– Fixed enumeration sai_fifo_combine_t value configuration issue.

[2.4.2]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.4.1]
• Bug Fixes

– Fixed bitWidth incorrectly assigned issue.

[2.4.0]
• Improvements

– Removed deprecated APIs.

1.5. ChangeLog 127

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

[2.3.7]
• Improvements

– Change feature “FSL_FEATURE_SAI_FIFO_COUNT” to “FSL_FEATURE_SAI_HAS_FIFO”.

– Added feature “FSL_FEATURE_SAI_FIFO_COUNTn(x)” to align SAI fifo count function
with IP in function

[2.3.6]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 5.6.

[2.3.5]
• Improvements

– Make driver to be aarch64 compatible.

[2.3.4]
• Bug Fixes

– Corrected the fifo combine feature macro used in driver.

[2.3.3]
• Bug Fixes

– Added bit clock polarity configuration when sai act as slave.

– Fixed out of bound access coverity issue.

– Fixed violations of MISRA C-2012 rule 10.3, 10.4.

[2.3.2]
• Bug Fixes

– Corrected the frame sync configuration when sai act as slave.

[2.3.1]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.3.0]
• Bug Fixes

– Fixed the build error caused by the SOC has no fifo feature.

128 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.3]
• Bug Fixes

– Corrected the peripheral name in function SAI0_DriverIRQHandler.

[2.2.2]
• Bug Fixes

– Fixed the issue of MISRA 2004 rule 9.3.

– Fixed sign-compare warning.

– Fixed the PA082 build warning.

– Fixed sign-compare warning.

– Fixed violations of MISRA C-2012 rule 10.3,17.7,10.4,8.4,10.7,10.8,14.4,17.7,11.6,10.1,10.6,8.4,14.3,16.4,18.4.

– Allow to reset Rx or Tx FIFO pointers only when Rx or Tx is disabled.

• Improvements

– Added 24bit raw audio data width support in sai sdma driver.

– Disabled the interrupt/DMA request in the SAI_Init to avoid generates unexpected sai
FIFO requests.

[2.2.1]
• Improvements

– Added mclk post divider support in function SAI_SetMasterClockDivider.

– Removed useless configuration code in SAI_RxSetSerialDataConfig.

• Bug Fixes

– Fixed the SAI SDMA driver build issue caused by the wrong structure member name
used in the function SAI_TransferRxSetConfigSDMA/SAI_TransferTxSetConfigSDMA.

– Fixed BAD BIT SHIFT OPERATION issue caused by the
FSL_FEATURE_SAI_CHANNEL_COUNTn.

– Applied ERR05144: not set FCONT = 1 when TMR > 0, otherwise the TX may not work.

[2.2.0]
• Improvements

– Added new APIs for parameters collection and simplified user interfaces:

* SAI_Init

* SAI_SetMasterClockConfig

* SAI_TxSetBitClockRate

* SAI_TxSetSerialDataConfig

* SAI_TxSetFrameSyncConfig

* SAI_TxSetFifoConfig

* SAI_TxSetBitclockConfig

* SAI_TxSetConfig

* SAI_TxSetTransferConfig

1.5. ChangeLog 129

MCUXpresso SDK Documentation, Release 25.12.00

* SAI_RxSetBitClockRate

* SAI_RxSetSerialDataConfig

* SAI_RxSetFrameSyncConfig

* SAI_RxSetFifoConfig

* SAI_RxSetBitclockConfig

* SAI_RXSetConfig

* SAI_RxSetTransferConfig

* SAI_GetClassicI2SConfig

* SAI_GetLeftJustifiedConfig

* SAI_GetRightJustifiedConfig

* SAI_GetTDMConfig

[2.1.9]
• Improvements

– Improved SAI driver comment for clock polarity.

– Added enumeration for SAI for sample inputs on different edges.

– Changed FSL_FEATURE_SAI_CHANNEL_COUNT to FSL_FEATURE_SAI_CHANNEL_COUNTn(base)
for the difference between the different SAI instances.

• Added new APIs:

– SAI_TxSetBitClockDirection

– SAI_RxSetBitClockDirection

– SAI_RxSetFrameSyncDirection

– SAI_TxSetFrameSyncDirection

[2.1.8]
• Improvements

– Added feature macro test for the sync mode2 and mode 3.

– Added feature macro test for masterClockHz in sai_transfer_format_t.

[2.1.7]
• Improvements

– Added feature macro test for the mclkSource member in sai_config_t.

– Changed “FSL_FEATURE_SAI5_SAI6_SHARE_IRQ” to “FSL_FEATURE_SAI_SAI5_SAI6_SHARE_IRQ”.

– Added #ifndef #endif check for SAI_XFER_QUEUE_SIZE to allow redefinition.

• Bug Fixes

– Fixed build error caused by feature macro test for mclkSource.

130 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
• Improvements

– Added feature macro test for mclkSourceClockHz check.

– Added bit clock source name for general devices.

• Bug Fixes

– Fixed incorrect channel numbers setting while calling RX/TX set format together.

[2.1.5]
• Bug Fixes

– Corrected SAI3 driver IRQ handler name.

– Added I2S4/5/6 IRQ handler.

– Added base in handler structure to support different instances sharing one IRQ num-
ber.

• New Features

– Updated SAI driver for MCR bit MICS.

– Added 192 KHZ/384 KHZ in the sample rate enumeration.

– Added multi FIFO interrupt/SDMA transfer support for TX/RX.

– Added an API to read/write multi FIFO data in a blocking method.

– Added bclk bypass support when bclk is same with mclk.

[2.1.4]
• New Features

– Added an API to enable/disable auto FIFO error recovery in platforms that support this
feature.

– Added an API to set data packing feature in platforms which support this feature.

[2.1.3]
• New Features

– Added feature to make I2S frame sync length configurable according to bitWidth.

[2.1.2]
• Bug Fixes

– Added 24-bit support for SAI eDMA transfer. All data shall be 32 bits for send/receive,
as eDMA cannot directly handle 3-Byte transfer.

[2.1.1]
• Improvements

– Reduced code size while not using transactional API.

1.5. ChangeLog 131

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Improvements

– API name changes:

* SAI_GetSendRemainingBytes -> SAI_GetSentCount.

* SAI_GetReceiveRemainingBytes -> SAI_GetReceivedCount.

* All names of transactional APIs were added with “Transfer” prefix.

* All transactional APIs use base and handle as input parameter.

* Unified the parameter names.

• Bug Fixes

– Fixed WLC bug while reading TCSR/RCSR registers.

– Fixed MOE enable flow issue. Moved MOE enable after MICS settings in
SAI_TxInit/SAI_RxInit.

[2.0.0]
• Initial version.

SAI_EDMA

[2.7.3]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 12.4.

[2.7.2]
• Improvements

– Add macros MCUX_SDK_SAI_EDMA_TX_ENABLE_INTERNAL and
MCUX_SDK_SAI_EDMA_RX_ENABLE_INTERNAL to let the user decide whether to
enable SAI when calling SAI_TransferSendEDMA/SAI_TransferReceiveEDMA.

[2.7.1]
• Improvements

– Add EDMA ext API to accommodate more types of EDMA.

[2.7.0]
• Improvements

– Updated api SAI_TransferReceiveEDMA to support voice channel block interleave
transfer.

– Updated api SAI_TransferSendEDMA to support voice channel block interleave trans-
fer.

– Added new api SAI_TransferSetInterleaveType to support channel interleave type con-
figurations.

132 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.0]
• Improvements

– Removed deprecated APIs.

[2.5.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 20.7.

[2.5.0]
• Improvements

– Added new api SAI_TransferSendLoopEDMA/SAI_TransferReceiveLoopEDMA to sup-
port loop transfer.

– Added multi sai channel transfer support.

[2.4.0]
• Improvements

– Added new api SAI_TransferGetValidTransferSlotsEDMA which can be used to get
valid transfer slot count in the sai edma transfer queue.

– Deprecated the api SAI_TransferRxSetFormatEDMA and
SAI_TransferTxSetFormatEDMA.

• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.3,10.4.

[2.3.2]
• Refer SAI driver change log 2.1.0 to 2.3.2

SAR_ADC

[2.3.0]
• New Feature

– Added new feature macro a for compatibility with ADCs on some platforms where
some instances do not support group3.

[2.2.0]
• New Feature

– Added new features to compatible with new platforms.

[2.1.1]
• Improvement

– Change ADC sample rate phase duration default value from 0x08 to 0x14.

1.5. ChangeLog 133

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• New Feature

– Added ADC_StopConvChain function to support stop scan in normal conversion scan
operation mode.

[2.0.3]
• Bug Fixes

– Fixed the array name usage error in function ADC_GetInstance.

[2.0.2]
• Bug Fixes

– Fixed MISRA issues.

[2.0.1]
• Bug Fixes

– Fixed the bug that when calling function ADC_EnableWdgThresholdInt() in function
ADC_SetAnalogWdgConfig(), the parameter was passed incorrectly.

[2.0.0]
• Initial version.

SEMA42

[2.1.1]
• Improvements

– Updated SEMA42_TryLock function to avoid unsigned integer operations wrap issue.

[2.1.0]
• New Features

– Added SEMA42_BUSY_POLL_COUNT parameter to prevent infinite polling loops in
SEMA42 operations.

– Added timeout mechanism to all polling loops in SEMA42 driver code.

• Improvements

– Updated SEMA42_Lock function to return status_t instead of void for better error han-
dling.

– Enhanced documentation to clarify timeout behavior and return values.

[2.0.4]
• Improvements

– Release peripheral from reset if necessary in init function.

134 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.3]
• Improvements

– Changed to implement SEMA42_Lock base on SEMA42_TryLock.

[2.0.2]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 17.7.

[2.0.1]
• Bug Fixes

– Fixed violations of the MISRA C-2012 rules 10.3, 10.4, 14.4, 18.1.

[2.0.0]
• Initial version.

SINC

[2.1.5]
• Bug Fixes

– Fixed building warning.

[2.1.4]
• Bug Fixes

– Fixed building issue.

[2.1.3]
• Bug Fixes

– Fixed function ‘SINC_SetChannelProtectionOption’ logic operation error.

[2.1.2]
• Bug Fixes

– Fixed the typo issue of missing character ‘U’ in the feature macro
‘FSL_FEATRE_SINC_CACFR_HAS_NO_PTMUX’.

[2.1.1]
• Bug Fixes

– Fixed MISRA C-2012 rule 10.4 and 10.8 issues.

1.5. ChangeLog 135

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
• Improvements

– Added support for chips that each instance equipped with 5 channels.

[2.0.2]
• Improvements

– Added comments for over sample ratio.

[2.0.1]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 15.6, 10.4, 10.1, 10.3 and 10.7.

[2.0.0]
• Initial version.

SRAMCTL

[3.0.0]
• Initial version.

TPM

[2.4.1]
• Improvements

– Add Coverage Justification for uncovered code.

[2.4.0]
• New Feature

– Added while loop timeout for MOD CnV CnSC and SC register write sequence.

– Change the return type from void to status_t for following API:

* TPM_DisableChannel

* TPM_EnableChannel

* TPM_SetupOutputCompare

* TPM_SetTimerPeriod

* TPM_StopTimer

[2.3.6]
• Bug Fixes

– Fixed CERT INT30-C INT31-C issue for TPM_SetupDualEdgeCapture.

136 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.5]
• New Feature

– Added IRQ handler entry for TPM2.

[2.3.4]
• New Feature

– Added common IRQ handler entry TPM_DriverIRQHandler.

[2.3.3]
• Improvements

– Conditionally compile interrupt handling code to solve the problem of using this driver
on CPU cores that do not support interrupts.

[2.3.2]
• Bug Fixes

– Fixed ERR008085 TPM writing the TPMx_MOD or TPMx_CnV registers more than once
may fail when the timer is disabled.

[2.3.1]
• Bug Fixes

– Fixed compilation error when macro FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL is
1.

[2.3.0]
• Improvements

– Create callback feature for TPM match and timer overflow interrupts.

[2.2.4]
• Improvements

– Add feature macros(FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_EN,
FSL_FEATURE_TPM_HAS_GLOBAL_TIME_BASE_SYNC).

[2.2.3]
• Improvements

– Release peripheral from reset if necessary in init function.

[2.2.2]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4.

1.5. ChangeLog 137

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.1]
• Bug Fixes

– Fixed CCM issue by splitting function from TPM_SetupPwm() function to reduce func-
tion complexity.

– Fixed violations of MISRA C-2012 rule 17.7.

[2.2.0]
• Improvements

– Added TPM_SetChannelPolarity to support select channel input/output polarity.

– Added TPM_EnableChannelExtTrigger to support enable external trigger input to be
used by channel.

– Added TPM_CalculateCounterClkDiv to help calculates the counter clock prescaler.

– Added TPM_GetChannelValue to support get TPM channel value.

– Added new TPM configuration.

* syncGlobalTimeBase

* extTriggerPolarity

* chnlPolarity

– Added new PWM signal configuration.

* secPauseLevel

• Bug Fixes

– Fixed TPM_SetupPwm can’t configure 0% combined PWM issues.

[2.1.1]
• Improvements

– Add feature macro for PWM pause level select feature.

[2.1.0]
• Improvements

– Added TPM_EnableChannel and TPM_DisableChannel APIs.

– Added new PWM signal configuration.

* pauseLevel - Support select output level when counter first enabled or paused.

* enableComplementary - Support enable/disable generate complementary PWM
signal.

* deadTimeValue - Support deadtime insertion for each pair of channels in combined
PWM mode.

• Bug Fixes

– Fixed issues about channel MSnB:MSnA and ELSnB:ELSnA bit fields and CnV register
change request acknowledgement. Writes to these bits are ignored when the interval
between successive writes is less than the TPM clock period.

138 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.8]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.1, 10.4 ,10.7 and 14.4.

[2.0.7]
• Bug Fixes

– Fixed violations of MISRA C-2012 rule 10.4 and 17.7.

[2.0.6]
• Bug Fixes

– Fixed Out-of-bounds issue.

[2.0.5]
• Bug Fixes

– Fixed MISRA-2012 rules.

* Rule 10.6, 10.7

[2.0.4]
• Bug Fixes

– Fixed ERR050050 in functions TPM_SetupPwm/TPM_UpdatePwmDutycycle. When
TPM was configured in EPWM mode as PS = 0, the compare event was missed on the
first reload/overflow after writing 1 to the CnV register.

[2.0.3]
• Bug Fixes

– MISRA-2012 issue fixed.

* Fixed rules: rule-12.1, rule-17.7, rule-16.3, rule-14.4, rule-1.3, rule-10.4, rule-10.3,
rule-10.7, rule-10.1, rule-10.6, and rule-18.1.

[2.0.2]
• Bug Fixes

– Fixed issues in functions TPM_SetupPwm/TPM_UpdateChnlEdgeLevelSelect
/TPM_SetupInputCapture/TPM_SetupOutputCompare/TPM_SetupDualEdgeCapture,
wait acknowledgement when the channel is disabled.

[2.0.1]
• Bug Fixes

– Fixed TPM_UpdateChnIEdgeLevelSelect ACK wait issue.

– Fixed the issue that TPM_SetupdualEdgeCapture could not set FILTER register.

– Fixed TPM_UpdateChnEdgeLevelSelect ACK wait issue.

1.5. ChangeLog 139

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]
• Initial version.

TSTMR

[2.1.0]
• New Features

– Support configured clock frequency.

– Add TSTMR_Init and TSTMR_init APIs.

• Improvements

– Change TSTMR_DelayUs from static inline function to normal function.

[2.0.4]
• Bugfix

– Fix MISRA C-2012 Rule 10.4 and 14.4 issues.

[2.0.3]
• Bugfix

– Fix CERT INT30-C that Unsigned integer operation TSTMR_ReadTimeStamp(base) -
startTime may wrap.

[2.0.2]
• Improvements

– Support 24MHz clock source.

• Bugfix

– Fix MISRA C-2012 Rule 10.4 issue.

– Read of TSTMR HIGH must follow TSTMR LOW atomically: require masking interrupt
around 2 LSB / MSB accesses.

[2.0.1]
• Bugfix

– Restrict to read with 32-bit accesses only.

– Restrict that TSTMR LOW read occurs first, followed by the TSTMR HIGH read.

[2.0.0]
• Initial version.

140 Chapter 1. IMX943EVK

MCUXpresso SDK Documentation, Release 25.12.00

XBAR

[2.2.0]
• New Features

– Support register write protection.

[2.1.2]
• Correct bits of SEL registers

[2.1.1]
• Fix wrong offset of ctrl registers

[2.1.0]
• unify bit fields width for xbar instance index and xbar input/output signal index.

[2.0.4]
• Improvements

– Rename feature macro name.

[2.0.3]
• Improvements

– Improved to support 32-bit width peripheral.

[2.0.2]
• Bug Fixes

– Fixed MISRA C-2012 violations.

[2.0.1]
• Bug Fixes

– Fixed the xbar instance base offset error.

[2.0.0]
• Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

MIMX94398_drivers

1.6. Driver API Reference Manual 141

MCUXpresso SDK Documentation, Release 25.12.00

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 Multicore

Multicore SDK

1.7.2 FreeMASTER

freemaster

1.7.3 FreeRTOS

FreeRTOS

1.7.4 lwIP

lwIP

142 Chapter 1. IMX943EVK

Chapter 2

Drivers

The following is a list of the Driver API Reference Manuals categorized by device series.

2.1 DSC

2.2 i.MX

2.3 i.MX RT

2.4 Kinetis

2.5 LPC

2.6 MCX

2.7 Wireless

143

MCUXpresso SDK Documentation, Release 25.12.00

144 Chapter 2. Drivers

Chapter 3

Middleware

3.1 Connectivity

3.1.1 lwIP

This is the NXP fork of the lwIP networking stack.
• For details about changes and additions made by NXP, see CHANGELOG.

• For details about the NXP porting layer, see The NXP lwIP Port.

• For usage and API of lwIP, use official documentation at http://www.nongnu.org/lwip/.

The NXP lwIP Port

Below is description of possible settings of the port layer and an overview of a few helper func-
tions.

The best place for redefinition of any mentioned macro is lwipopts.h.

The declaration of every mentioned function is in ethernetif.h. Please check the doxygen com-
ments of those functions before.

Link state Physical link state (up/down) and its speed and duplex must be read out from PHY
over MDIO bus. Especially link information is useful for lwIP stack so it can for example send
DHCP discovery immediately when a link becomes up.

To simplify this port layer offers a function ethernetif_probe_link() which reads those data from
PHY and forwards them into lwIP stack.

In almost all examples this function is called every ETH_LINK_POLLING_INTERVAL_MS
(1500ms) by a function probe_link_cyclic().

By setting ETH_LINK_POLLING_INTERVAL_MS to 0 polling will be disabled. On FreeRTOS,
probe_link_cyclic() will be then called on an interrupt generated by PHY. GPIO port and pin for
the interrupt line must be set in the ethernetifConfig struct passed to ethernetif_init(). On bare
metal interrupts are not supported right now.

Rx task To improve the reaction time of the app, reception of packets is done in a dedicated
task. The rx task stack size can be set by ETH_RX_TASK_STACK_SIZE macro, its priority by
ETH_RX_TASK_PRIO.

145

https://savannah.nongnu.org/projects/lwip/
http://www.nongnu.org/lwip/

MCUXpresso SDK Documentation, Release 25.12.00

If you want to save memory you can set reception to be done in an interrupt by setting
ETH_DO_RX_IN_SEPARATE_TASK macro to 0.

DisablingRx interruptwhenout of buffers If ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS
is set to 1, then when the port gets out of Rx buffers, Rx enet interrupt will be disabled for a
particular controller. Everytime Rx buffer is freed, Rx interrupt will be enabled.

This prevents your app from never getting out of Rx interrupt when the network is flooded with
traffic.

ETH_DISABLE_RX_INT_WHEN_OUT_OF_BUFFERS is by default turned on, on FreeRTOS
and off on bare metal.

Limit the number of packets read out from the driver at once on bare metal. You may
define macro ETH_MAX_RX_PKTS_AT_ONCE to limit the number of received packets read
out from the driver at once.

In case of heavy Rx traffic, lowering this number improves the realtime behaviour of an app.
Increasing improves Rx throughput.

Setting it to value < 1 or not defining means “no limit”.

Helper functions If your application needs to wait for the link to become up you can use one
of the following functions:

• ethernetif_wait_linkup()- Blocks until the link on the passed netif is not up.

• ethernetif_wait_linkup_array() - Blocks until the link on at least one netif from the passed
list of netifs becomes up.

If your app needs to wait for the IPv4 address on a particular netif to become different than
“ANY” address (255.255.255.255) function ethernetif_wait_ipv4_valid() does this.

3.2 Motor Control

3.2.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

• Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

• USB direct connection to target microcontroller

• CAN bus
• TCP/IP network wired or WiFi

• Segger J-Link RTT

146 Chapter 3. Middleware

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

• JTAG debug port communication

• …and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

• General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

• Transport CommunicationLayer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

3.2. Motor Control 147

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

• Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the lwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:

• The official FreeMASTER middleware repository.

• Online version of this document

148 Chapter 3. Middleware

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

• fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

• fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

• fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

• fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use lwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

• fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

• fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

• fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

• fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

• fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

3.2. Motor Control 149

MCUXpresso SDK Documentation, Release 25.12.00

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

• Read/write access to any memory location on the target.

• Optional password protection of the read, read/write, and read/write/flash access levels.

• Atomic bit manipulation on the target memory (bit-wise write access).

• Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

• Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

• Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

• Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

• Application commands—high-level message delivery from the PC to the application.

• TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

• Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

• Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.

• Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

• Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

• Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

• Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

• TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

• The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

• Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

150 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

BoardDetection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

• Version of the driver and the version of the protocol implemented.

• MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

• Application name, description, and version strings.

• Application build date and time as a string.

• Target processor byte ordering (little/big endian).

• Protection level that requires password authentication.

• Number of the Recorder and Oscilloscope instances.

• RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

MemoryWrite Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

MaskedMemoryWrite To implement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

3.2. Motor Control 151

MCUXpresso SDK Documentation, Release 25.12.00

Recorder The protocol enables the host to select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

• “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

152 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

• src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

• src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

– freemaster.h - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

– freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

– freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

– freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

– freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

3.2. Motor Control 153

MCUXpresso SDK Documentation, Release 25.12.00

– freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

– freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

– freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

– freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

– freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

– freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

– freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

– freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

– freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

– freemaster_serial.h - defines the low-level character-oriented Serial API.

– freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

– freemaster_can.h - defines the low-level message-oriented CAN API.

– freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

– freemaster_net.h - definitions related to the Network transport.

– freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

– freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

– freemaster_utils.h - definitions related to utility code.

• src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_serial_XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

154 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

– freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

• src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

– freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using lwIP stack.

– freemaster_net_segger_rtt.c - implementation of network transport using Segger J-Link
RTT interface

Driver configuration The driver is configured using a single header file (freemaster_cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes
#define FMSTR_LONG_INTR [0|1]
#define FMSTR_SHORT_INTR [0|1]
#define FMSTR_POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

• FMSTR_LONG_INTR — long interrupt mode

• FMSTR_SHORT_INTR — short interrupt mode

• FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_TRANSPORT [identifier]

3.2. Motor Control 155

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

• FMSTR_SERIAL - serial communication protocol

• FMSTR_CAN - using CAN communication

• FMSTR_PDBDM - using packet-driven BDM communication

• FMSTR_NET - network communication using TCP or UDP protocol

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR_SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR_SERIAL_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

• FMSTR_SERIAL_MCUX_UART - UART driver

• FMSTR_SERIAL_MCUX_LPUART - LPUART driver

• FMSTR_SERIAL_MCUX_USART - USART driver

• FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver

• FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

• FMSTR_SERIAL_MCUX_USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

• FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

• FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

156 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER_SIZE
#define FMSTR_COMM_BUFFER_SIZE [number]

Value Type 0 or a value in range 32…255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR_COMM_RQUEUE_SIZE [number]

Value Type Value in range 0…255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR_SERIAL_SINGLEWIRE [0|1]

Value Type Boolean 0 or 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CANBus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_TRANSPORT FMSTR_CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

3.2. Motor Control 157

MCUXpresso SDK Documentation, Release 25.12.00

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

• FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver

• FMSTR_CAN_MCUX_MCAN - MCAN driver

• FMSTR_CAN_MCUX_MSCAN - msCAN driver

• FMSTR_CAN_MCUX_DSCFLEXCAN - DSC FlexCAN driver

• FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR_CAN_RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Note that both CMDID and RSPID values may be the same. Default value
is 0x7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN_TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

158 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN_RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR_NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

• FMSTR_NET_LWIP_TCP - TCP communication using lwIP stack

• FMSTR_NET_LWIP_UDP - UDP communication using lwIP stack

• FMSTR_NET_SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET_PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET_BLOCKING_TIMEOUT

3.2. Motor Control 159

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_NET_BLOCKING_TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR_Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

FMSTR_NET_AUTODISCOVERY
#define FMSTR_NET_AUTODISCOVERY [0|1]

Value Type Boolean 0 or 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR_DISABLE [0|1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR_DEBUG_TX [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

160 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_APPLICATION_STR
#define FMSTR_APPLICATION_STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

FMSTR_USE_READMEM
#define FMSTR_USE_READMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.
Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR_USE_WRITEMEM [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR_USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR_MAX_SCOPE_VARS [number]

3.2. Motor Control 161

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE_RECORDER [number]

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF_SIZE
#define FMSTR_REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC_TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:

• FMSTR_REC_BASE_SECONDS(x)

• FMSTR_REC_BASE_MILLISEC(x)

• FMSTR_REC_BASE_MICROSEC(x)

• FMSTR_REC_BASE_NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG

162 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_REC_FLOAT_TRIG [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

FMSTR_USE_APPCMD
#define FMSTR_USE_APPCMD [0|1]

Value Type Boolean 0 or 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF_SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX_APPCMD_CALLS
#define FMSTR_MAX_APPCMD_CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR_USE_TSA [0|1]

Value Type Boolean 0 or 1.

3.2. Motor Control 163

MCUXpresso SDK Documentation, Release 25.12.00

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR_USE_TSA_SAFETY [0|1]

Value Type Boolean 0 or 1.

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.
Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_USE_TSA_INROM [0|1]

Value Type Boolean 0 or 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.
Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR_USE_TSA_DYNAMIC [0|1]

Value Type Boolean 0 or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_SetUpTsaBuff() and FMSTR_TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean 0 or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

164 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_MAX_PIPES_COUNT
#define FMSTR_MAX_PIPES_COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR_LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_SerialIsr, FMSTR_CanIsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_SerialIsr, FM-
STR_CanIsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR_Poll routine. Call FMSTR_Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_SerialIsr or FM-
STR_CanIsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

3.2. Motor Control 165

MCUXpresso SDK Documentation, Release 25.12.00

Completely Poll-driven
#define FMSTR_POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Poll routine. No interrupts are needed and the FMSTR_SerialIsr, FMSTR_CanIsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT_INTR and FMSTR_POLL_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR_SerialIsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module bit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_CanIsr function
from the application handler.

Note: It is not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set

166 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

Follow these steps to enable the basic FreeMASTER connectivity in the application:

• Make sure that all *.c files of the FreeMASTER driver from the
src/common/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

• Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

• Include the freemaster.h file into any application source file that makes the FreeMASTER
API calls.

• Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

• For the FMSTR_LONG_INTR and FMSTR_SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_SerialIsr or FMSTR_CanIsr functions from
this handler.

• Call the FMSTR_Init function early on in the application initialization code.

• Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

• In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

• For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the bit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

3.2. Motor Control 167

MCUXpresso SDK Documentation, Release 25.12.00

Control API There are three key functions to initialize and use the driver.

FMSTR_Init

Prototype
FMSTR_BOOL FMSTR_Init(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR_Poll(void);

• Declaration: freemaster.h

• Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar

where:

• N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

• Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_SerialIsr / FMSTR_CanIsr

Prototype

168 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

void FMSTR_SerialIsr(void);
void FMSTR_CanIsr(void);

• Declaration: freemaster.h

• Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR_BOOL FMSTR_RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC_BUFF_SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR_Recorder(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

3.2. Motor Control 169

MCUXpresso SDK Documentation, Release 25.12.00

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger

Prototype
void FMSTR_RecorderTrigger(FMSTR_INDEX recIndex);

• Declaration: freemaster.h

• Implementation: freemaster_rec.c

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

FastRecorderAPI The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA_TABLE_BEGIN(table_id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA_RW_VAR(name, type) /* read/write variable entry */
FMSTR_TSA_RO_VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA_STRUCT(struct_name) /* structure or union type entry */

(continues on next page)

170 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
FMSTR_TSA_MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_MEM(name, type, address, size) /* read/write memory block */
FMSTR_TSA_RO_MEM(name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR_TSA_TABLE_END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

• name — variable name. The variable must be defined before the TSA descriptor references
it.

• type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

• struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

• member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description
FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).
FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC_UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM-
STR_TSA_USERTYPE(name)

Structure or union type declared with FMSTR_TSA_STRUCT
record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_TABLE_LIST_BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR_TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)
...

3.2. Motor Control 171

MCUXpresso SDK Documentation, Release 25.12.00

The list is closed with the FMSTR_TSA_TABLE_LIST_END macro:

FMSTR_TSA_TABLE_LIST_END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR_TSA_TABLE_BEGIN(files_and_links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR_TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE(”readme.txt”, readme_txt, sizeof(readme_txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR_TSA_MEMFILE(”/prj/demo.pmp”, demo_pmp, sizeof(demo_pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR_TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR_TSA_HREF(”FreeMASTER Home Page”, ”http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ”/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, ”http://mycompany.com/prj/demo.pmp”)

FMSTR_TSA_TABLE_END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR_BOOL FMSTR_SetUpTsaBuff(FMSTR_ADDR buffAddr, FMSTR_SIZE buffSize);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• buffAddr [in] - address of the memory buffer for the dynamic TSA table

• buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

172 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype
FMSTR_BOOL FMSTR_TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR␣
↪→tsaType,

FMSTR_TSATBL_VOIDPTR varAddr, FMSTR_SIZE32 varSize,
FMSTR_SIZE flags);

• Declaration: freemaster.h

• Implementation: freemaster_tsa.c

Arguments
• tsaName [in] - name of the object

• tsaType [in] - name of the object type

• varAddr [in] - address of the object

• varSize [in] - size of the object

• flags [in] - access flags; a combination of these values:

– FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)

– FMSTR_TSA_INFO_RW_VAR — read/write memory-mapped object

– FMSTR_TSA_INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR_APPCMD_CODE FMSTR_GetAppCmd(void);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

3.2. Motor Control 173

MCUXpresso SDK Documentation, Release 25.12.00

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT_NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

Prototype
FMSTR_APPCMD_PDATA FMSTR_GetAppCmdData(FMSTR_SIZE* dataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• dataLen [out] - pointer to the variable that receives the length of the data available in the

buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR_AppCmdAck(FMSTR_APPCMD_RESULT resultCode);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT_NOCMD.

FMSTR_AppCmdSetResponseData

174 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
void FMSTR_AppCmdSetResponseData(FMSTR_ADDR resultDataAddr, FMSTR_SIZE resultDataLen);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-

mand data buffer

• resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR_BOOL FMSTR_RegisterAppCmdCall(FMSTR_APPCMD_CODE appCmdCode, FMSTR_
↪→PAPPCMDFUNC callbackFunc);

• Declaration: freemaster.h

• Implementation: freemaster_appcmd.c

Arguments
• appCmdCode [in] - the Application Command code for which the callback is to be registered

• callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR_APPCMD_RESULT HandlerFunction(FMSTR_APPCMD_CODE nAppcmd,
FMSTR_APPCMD_PDATA pData, FMSTR_SIZE nDataLen);

3.2. Motor Control 175

MCUXpresso SDK Documentation, Release 25.12.00

Where:

• nAppcmd -Application Command code

• pData —points to the Application Command data received (if any)

• nDataLen —information about the Application Command data length

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX_APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE_PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,
↪→

FMSTR_ADDR pipeRxBuff, FMSTR_PIPE_SIZE pipeRxSize,
FMSTR_ADDR pipeTxBuff, FMSTR_PIPE_SIZE pipeTxSize,
FMSTR_U8 type, const FMSTR_CHAR *name);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipePort [in] - port number that identifies the pipe for the client

• pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

• pipeRxBuff [in] - address of the receive memory buffer

• pipeRxSize [in] - size of the receive memory buffer

• pipeTxBuff [in] - address of the transmit memory buffer

• pipeTxSize [in] - size of the transmit memory buffer

• type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

• name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

176 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

void PipeHandler(FMSTR_HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR_PipeClose(FMSTR_HPIPE pipeHandle);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeWrite(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE writeGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data to be written

• pipeDataLen [in] - length of the data to be written

• writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.

3.2. Motor Control 177

MCUXpresso SDK Documentation, Release 25.12.00

This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

Prototype
FMSTR_PIPE_SIZE FMSTR_PipeRead(FMSTR_HPIPE pipeHandle, FMSTR_ADDR pipeData,

FMSTR_PIPE_SIZE pipeDataLen, FMSTR_PIPE_SIZE readGranularity);

• Declaration: freemaster.h

• Implementation: freemaster_pipes.c

Arguments
• pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

• pipeData [in] - address of the data buffer to be filled with the received data

• pipeDataLen [in] - length of the data to be read

• readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platforms.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

178 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Type name Description
FM-
STR_ADDR

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-
STR_SIZE

Data type used to hold the memory block size.

It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL

Data type used as a general boolean type.

This type
is used
only in
zero/non-
zero con-
ditions in
the driver
code.
FM-
STR_APPCMD_CODE

Data type used to hold the Application Command code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_DATA

Data type used to create the Application Command data buffer.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCMD_RESULT

Data type used to hold the Application Command result code.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_PAPPCMDFUNC

Pointer to the Application Command handler function.

See FM-
STR_RegisterAppCmdCall
for more
details.

3.2. Motor Control 179

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster.h file.

FM-
STR_TSA_TINDEX

Data type used to hold a descriptor index in the TSA table or a table index in the
list of TSA tables.

By default,
this is
defined
as FM-
STR_SIZE.
FM-
STR_TSA_TSIZE

Data type used to hold a memory block size, as used in the TSA descriptors.

By default,
this is
defined
as FM-
STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

FM-
STR_HPIPE

Pipe handle that identifies the open-pipe object.

Generally,
this is a
pointer
to a void
type.
FM-
STR_PIPE_PORT

Integer type required to hold at least 7 bits of data.

Generally,
this is an
unsigned
8-bit or
16-bit type.
FM-
STR_PIPE_SIZE

Integer type required to hold at least 16 bits of data.

This is
used to
store the
data buffer
sizes.
FM-
STR_PPIPEFUNC

Pointer to the pipe handler function.

See FM-
STR_PipeOpen
for more
details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

180 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_U8 The smallest memory entity.
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.
On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.
FM-
STR_U16

Unsigned 16-bit integer.

FM-
STR_U32

Unsigned 32-bit integer.

FMSTR_S8 Signed 8-bit integer.
FM-
STR_S16

Signed 16-bit integer.

FM-
STR_S32

Signed 32-bit integer.

FM-
STR_FLOAT

4-byte standard IEEE floating-point type.

FM-
STR_FLAGS

Data type forming a union with a structure of flag bit-fields.

FM-
STR_SIZE8

Data type holding a general size value, at least 8 bits wide.

FM-
STR_INDEX

General for-loop index. Must be signed, at least 16 bits wide.

FM-
STR_BCHR

A single character in the communication buffer.

Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-
STR_BPTR

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links
• This document online: https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/

freemaster/doc/index.html

3.2. Motor Control 181

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

• FreeMASTER tool home: www.nxp.com/freemaster

• FreeMASTER community area: community.nxp.com/community/freemaster

• FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster

• MCUXpresso SDK home: www.nxp.com/mcuxpresso

• MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
• FreeMASTER Usage Serial Driver Implementation (document AN4752)

• Integrating FreeMASTER Time Debugging ToolWith CodeWarrior ForMicrocontrollers v10.X
Project (document AN4771)

• Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

182 Chapter 3. Middleware

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Revi-
sion

Date Description

1.0 03/2006 Limited initial release
2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-

ument template used.
2.1 12/2007 Added description of the new Fast Recorder feature and

its API.
2.2 04/2010 Added support for MPC56xx platform, Added new API

for use CAN interface.
2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-

ating system.
2.4 06/2011 Serial driver update, adds support for USB CDC inter-

face.
2.5 08/2011 Added Packet Driven BDM interface.
2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-

back configuration option.
2.8 06/2014 Removed obsolete license text, see the software pack-

age content for up-to-date license.
2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-

TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

4.1 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

4.4 04/2025 Added Zephyr-specific information. Accompanying the
MCUXpresso SDK version 25.06.00.

3.3 MultiCore

3.3.1 Multicore SDK

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides com-
prehensive software support for NXP dual/multicore devices. The MCSDK is combined with the
MCUXpresso SDK to make the software framework for easy development of multicore applica-
tions.

3.3. MultiCore 183

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK (MCSDK) Release Notes

Overview These are the release notes for the NXP Multicore Software Development Kit
(MCSDK) version 25.12.00.
This software package contains components for efficient work with multicore devices as well as
for the
multiprocessor communication.

What is new
• eRPC CHANGELOG

• RPMsg-Lite CHANGELOG

• MCMgr CHANGELOG

• Supported evaluation boards (multicore examples):

– LPCXpresso55S69

– FRDM-K32L3A6

– MIMXRT1170-EVKB

– MIMXRT1160-EVK

– MIMXRT1180-EVK

– MCX-N5XX-EVK

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– KW47-EVK

– KW47-LOC

– FRDM-MCXW72

– MCX-W72-EVK

– FRDM-IMXRT1186

• Supported evaluation boards (multiprocessor examples):

– LPCXpresso55S36

– FRDM-K22F

– FRDM-K32L2B

– MIMXRT685-EVK

– MIMXRT1170-EVKB

– MIMXRT1180

– FRDM-MCXN236

– FRDM-MCXC242

– FRDM-MCXC444

– MCX-N9XX-EVK

– FRDM-MCXN947

– MIMXRT700-EVK

– FRDM-IMXRT1186

184 Chapter 3. Middleware

https://github.com/EmbeddedRPC/erpc/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/rpmsg-lite/blob/release/25.12.00/CHANGELOG.md
https://github.com/nxp-mcuxpresso/mcux-mcmgr/blob/release/25.12.00/CHANGELOG.md

MCUXpresso SDK Documentation, Release 25.12.00

Development tools The Multicore SDK (MCSDK) was compiled and tested with development
tools referred in: Development tools

Release contents This table describes the release contents. Not all MCUXpresso SDK packages
contain the whole set of these components.

Deliverable Location
Multicore SDK location
<MCSDK_dir>

<MCUXpressoSDK_install_dir>/middleware/
multicore/

Documentation <MCSDK_dir>/mcuxsdk-doc/
Embedded Remote Procedure Call
component

<MCSDK_dir>/erpc/

Multicore Manager component <MCSDK_dir>/mcmgr/
RPMsg-Lite <MCSDK_dir>/rpmsg_lite/
Multicore demo applications <MCUXpressoSDK_install_dir>/examples/

multicore_examples/
Multiprocessor demo applications <MCUXpressoSDK_install_dir>/examples/

multiprocessor_examples/

Multicore SDK release overview Together, the Multicore SDK (MCSDK) and the MCUXpresso
SDK (SDK) form a framework for the development of software for NXP multicore devices. The
MCSDK release consists of the following elementary software components for multicore:

• Embedded Remote Procedure Call (eRPC)

• Multicore Manager (MCMGR) - included just in SDK for multicore devices

• Remote Processor Messaging - Lite (RPMsg-Lite) - included just in SDK for multicore devices

The MCSDK is also accompanied with documentation and several multicore and multiprocessor
demo applications.

Demo applications The multicore demo applications demonstrate the usage of the MCSDK
software components on supported multicore development boards.
The following multicore demo applications are located together with other MCUXpresso SDK ex-
amples in
the <MCUXpressoSDK_install_dir>/examples/multicore_examples subdirectories.

• erpc_matrix_multiply_mu

• erpc_matrix_multiply_mu_rtos

• erpc_matrix_multiply_rpmsg

• erpc_matrix_multiply_rpmsg_rtos

• erpc_two_way_rpc_rpmsg_rtos

• freertos_message_buffers

• hello_world

• multicore_manager

• rpmsg_lite_pingpong

• rpmsg_lite_pingpong_rtos

• rpmsg_lite_pingpong_dsp

• rpmsg_lite_pingpong_tzm

3.3. MultiCore 185

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#toolchain

MCUXpresso SDK Documentation, Release 25.12.00

The eRPC multicore component can be leveraged for inter-processor communication and remote
procedure calls between SoCs / development boards.
The following multiprocessor demo applications are located together with other MCUXpresso
SDK examples in
the <MCUXpressoSDK_install_dir>/examples/multiprocessor_examples subdirectories.

• erpc_client_matrix_multiply_spi

• erpc_server_matrix_multiply_spi

• erpc_client_matrix_multiply_uart

• erpc_server_matrix_multiply_uart

• erpc_server_dac_adc

• erpc_remote_control

Getting Started with Multicore SDK (MCSDK)

Overview Multicore Software Development Kit (MCSDK) is a Software Development Kit that
provides comprehensive software support for NXP dual/multicore devices. The MCSDK is com-
bined with the MCUXpresso SDK to make the software framework for easy development of mul-
ticore applications.

The following figure highlights the layers and main software components of the MCSDK.

186 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

All the MCSDK-related files are located in <MCUXpressoSDK_install_dir>/middleware/multicore
folder.

For supported toolchain versions, see the Multicore SDK v25.12.00 Release Notes (document MCS-
DKRN). For the latest version of this and other MCSDK documents, visit www.nxp.com.

Multicore SDK (MCSDK) components The MCSDK consists of the following software compo-
nents:

• Embedded Remote Procedure Call (eRPC): This component is a combination of a library
and code generator tool that implements a transparent function call interface to remote
services (running on a different core).

• Multicore Manager (MCMGR): This library maintains information about all cores and
starts up secondary/auxiliary cores.

• Remote Processor Messaging - Lite (RPMsg-Lite): Inter-Processor Communication li-
brary.

Embedded Remote Procedure Call (eRPC) The Embedded Remote Procedure Call (eRPC) is
the RPC system created by NXP. The RPC is a mechanism used to invoke a software routine on a
remote system via a simple local function call.

When a remote function is called by the client, the function’s parameters and an identifier for
the called routine are marshaled (or serialized) into a stream of bytes. This byte stream is trans-
ported to the server through a communications channel (IPC, TPC/IP, UART, and so on). The
server unmarshaled the parameters, determines which function was invoked, and calls it. If the
function returns a value, it is marshaled and sent back to the client.

3.3. MultiCore 187

http://www.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

RPC implementations typically use a combination of a tool (erpcgen) and IDL (interface definition
language) file to generate source code to handle the details of marshaling a function’s parameters
and building the data stream.

Main eRPC features:
• Scalable from BareMetal to Linux OS - configurable memory and threading policies.

• Focus on embedded systems - intrinsic support for C, modular, and lightweight implemen-
tation.

• Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or
SPI-based solutions can be used for multichip.

The eRPC library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc
folder. For detailed information about the eRPC, see the documentation available in the
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/doc folder.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems.

The main MCMGR features:

• Maintains information about all cores in system.

• Secondary/auxiliary cores startup and shutdown.

• Remote core monitoring and event handling.

The MCMGR library is located in the<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr
folder. For detailed information about the MCMGR library, see the documentation available in
the <MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/doc folder.

Remote Processor Messaging Lite (RPMsg-Lite) RPMsg-Lite is a lightweight implementation
of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface used to com-
municate between multiple cores in a heterogeneous multicore system. Compared to the legacy
OpenAMP implementation, RPMsg-Lite offers a code size reduction, API simplification, and im-
proved modularity.

The main RPMsg protocol features:

• Shared memory interprocessor communication.

• Virtio-based messaging bus.

• Application-defined messages sent between endpoints.

188 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• Portable to different environments/platforms.

• Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
rpmsg-lite folder. For detailed information about the RPMsg-Lite, see the RPMsg-Lite User’s Guide
located in the <MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/doc folder.

MCSDK demo applications Multicore and multiprocessor example applications are stored to-
gether with other MCUXpresso SDK examples, in the dedicated multicore subfolder.

Location Folder
Multicore example
projects

<MCUXpressoSDK_install_dir>/examples/multicore_examples/
<application_name>/

Multiprocessor example
projects

<MCUXpressoSDK_install_dir>/examples/
multiprocessor_examples/<application_name>/

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started
with MCUXpresso SDK for XXX Derivatives documents for more information about the MCUX-
presso SDK example folder structure and the location of individual files that form the example
application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example applica-
tion also contains a readme file that describes the operation of the example and required setup
steps.

Inter-Processor Communication (IPC) levels The MCSDK provides several mechanisms for
Inter-Processor Communication (IPC). Particular ways and levels of IPC are described in this
chapter.

IPC using low-level drivers
The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange be-
tween individual cores. They deal with the Mailbox peripheral for LPC parts and the Messaging
Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute of both modules is the
ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate
with each other in a simple manner.

The most lightweight method of IPC uses the MCUXpresso SDK low-level drivers for these periph-
erals. Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core
via the dedicated registers (could be a scalar or a pointer to shared memory) and also to trigger
inter-core interrupts for notifications.

For details about individual driver API functions, see the MCUXpresso SDK API Reference Man-
ual of the specific multicore device. The MCUXpresso SDK is accompanied with the RPMsg-Lite
documentation that shows how to use this API in multicore applications.

Messaging mechanism
On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to
send between multiple endpoints created on each of the CPUs. The RPMsg-Lite library of the
MCSDK provides this ability and serves as the preferred MCUXpresso SDK messaging library. It
implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism.

The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore
platforms and environments (Operating Systems). The advantages of such a messaging system
are ease of use (there is no need to study behavior of the used underlying hardware) and smooth
application code portability between platforms due to unified messaging API.

3.3. MultiCore 189

MCUXpresso SDK Documentation, Release 25.12.00

However, this costs several kB of code and data memory. The MCUXpresso SDK is accompanied
by the RPMsg-Lite documentation and several multicore examples. You can also obtain the latest
RPMsg-Lite code from the GitHub account github.com/nxp-mcuxpresso/rpmsg-lite.

Remote procedure calls
To facilitate the IPC even more and to allow the remote functions invocation, the remote pro-
cedure call mechanism can be implemented. The eRPC of the MCSDK serves for these purposes
and allows the ability to invoke a software routine on a remote system via a simple local function
call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The
eRPC is mostly applicable to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows you to export existing C functions without having to change their proto-
types (in most cases). It is accompanied by the code generator tool that generates the shim code
for serialization and invocation based on the IDL file with definitions of data types and remote
interfaces (API).

If the communicating peer is running as a Linux OS user-space application, the generated code
can be either in C/C++ or Python.

Using the eRPC simplifies the access to services implemented on individual cores. This way, the
following types of applications running on dedicated cores can be easily interfaced:

• Communication stacks (USB, Thread, Bluetooth Low Energy, Zigbee)

• Sensor aggregation/fusion applications

• Encryption algorithms

• Virtual peripherals

The eRPC is publicly available from the following GitHub account:
github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK is accompanied by the eRPC
code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on
application needs, different IPC techniques can be used. It depends on the complexity, required
speed, memory resources, system design, and so on. The MCSDK brings users the possibility for
quick and easy development of multicore and multiprocessor applications.

Changelog Multicore SDK

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[25.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.2

– RPMsg-Lite v5.3.0

[25.09.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

190 Chapter 3. Middleware

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.1

– RPMsg-Lite v5.2.1

[25.06.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.14.0

– eRPC generator (erpcgen) v1.14.0

– Multicore Manager (MCMgr) v5.0.0

– RPMsg-Lite v5.2.0

[25.03.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.7

– RPMsg-Lite v5.1.4

[24.12.00]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.6

– RPMsg-Lite v5.1.3

[2.16.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.13.0

– eRPC generator (erpcgen) v1.13.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.2

[2.15.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.12.0

– eRPC generator (erpcgen) v1.12.0

– Multicore Manager (MCMgr) v4.1.5

– RPMsg-Lite v5.1.1

3.3. MultiCore 191

MCUXpresso SDK Documentation, Release 25.12.00

[2.14.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.11.0

– eRPC generator (erpcgen) v1.11.0

– Multicore Manager (MCMgr) v4.1.4

– RPMsg-Lite v5.1.0

[2.13.0_imxrt1180a0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.13.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.10.0

– eRPC generator (erpcgen) v1.10.0

– Multicore Manager (MCMgr) v4.1.3

– RPMsg-Lite v5.0.0

[2.12.0_imx93]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.1

[2.12.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.1

– eRPC generator (erpcgen) v1.9.1

– Multicore Manager (MCMgr) v4.1.2

– RPMsg-Lite v4.0.0

192 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.11.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.1

[2.11.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.9.0

– eRPC generator (erpcgen) v1.9.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.2.0

[2.10.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.1

– eRPC generator (erpcgen) v1.8.1

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.2

[2.9.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.8.0

– eRPC generator (erpcgen) v1.8.0

– Multicore Manager (MCMgr) v4.1.1

– RPMsg-Lite v3.1.1

[2.8.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.4

– eRPC generator (erpcgen) v1.7.4

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.1.0

3.3. MultiCore 193

MCUXpresso SDK Documentation, Release 25.12.00

[2.7.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.3

– eRPC generator (erpcgen) v1.7.3

– Multicore Manager (MCMgr) v4.1.0

– RPMsg-Lite v3.0.0

[2.6.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.2

– eRPC generator (erpcgen) v1.7.2

– Multicore Manager (MCMgr) v4.0.3

– RPMsg-Lite v2.2.0

[2.5.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.1

– eRPC generator (erpcgen) v1.7.1

– Multicore Manager (MCMgr) v4.0.2

– RPMsg-Lite v2.0.2

[2.4.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.7.0

– eRPC generator (erpcgen) v1.7.0

– Multicore Manager (MCMgr) v4.0.1

– RPMsg-Lite v2.0.1

[2.3.1]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.6.0

– eRPC generator (erpcgen) v1.6.0

– Multicore Manager (MCMgr) v4.0.0

– RPMsg-Lite v1.2.0

194 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.5.0

– eRPC generator (erpcgen) v1.5.0

– Multicore Manager (MCMgr) v3.0.0

– RPMsg-Lite v1.2.0

[2.2.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.4.0

– eRPC generator (erpcgen) v1.4.0

– Multicore Manager (MCMgr) v2.0.1

– RPMsg-Lite v1.1.0

[2.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.3.0

– eRPC generator (erpcgen) v1.3.0

[2.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.2.0

– eRPC generator (erpcgen) v1.2.0

– Multicore Manager (MCMgr) v2.0.0

– RPMsg-Lite v1.0.0

[1.1.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.1.0

– Multicore Manager (MCMgr) v1.1.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev01

[1.0.0]
• Multicore SDK component versions:

– embedded Remote Procedure Call (eRPC) v1.0.0

– Multicore Manager (MCMgr) v1.0.0

– Open-AMP / RPMsg based on SHA1 ID 44b5f3c0a6458f3cf80 rev00

3.3. MultiCore 195

MCUXpresso SDK Documentation, Release 25.12.00

Multicore SDK Components

RPMSG-Lite

MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite

Overview This repository is for MCUXpresso SDK RPMSG-Lite middleware delivery and it con-
tains RPMSG-Lite component officially provided in NXP MCUXpresso SDK. This repository is part
of the MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects.
Navigate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to
be able to build and run RPMSG-Lite examples that are based on mcux-sdk-middleware-rpmsg-
lite component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit RPMSG-Lite - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
rpmsg-lite project placed on github. Contributing can be managed via pull-requests. Before a
pull-request is created the code should be tested and properly formatted.

RPMSG-Lite This documentation describes the RPMsg-Lite component, which is a lightweight
implementation of the Remote Processor Messaging (RPMsg) protocol. The RPMsg protocol de-
fines a standardized binary interface used to communicate between multiple cores in a hetero-
geneous multicore system.

Compared to the RPMsg implementation of the Open Asymmetric Multi Processing (OpenAMP)
framework (https://github.com/OpenAMP/open-amp), the RPMsg-Lite offers a code size reduc-
tion, API simplification, and improved modularity. On smaller Cortex-M0+ based systems, it is
recommended to use RPMsg-Lite.

The RPMsg-Lite is an open-source component developed by NXP Semiconductors and released
under the BSD-compatible license.

For overview please read RPMSG-Lite VirtIO Overview.

For RPMSG-Lite Design Considerations please read RPMSG-Lite Design Considerations.

Motivation to create RPMsg-Lite There are multiple reasons why RPMsg-Lite was developed.
One reason is the need for the small footprint of the RPMsg protocol-compatible communication
component, another reason is the simplification of extensive API of OpenAMP RPMsg implemen-
tation.

RPMsg protocol was not documented, and its only definition was given by the Linux Kernel and
legacy OpenAMP implementations. This has changed with [1] which is a standardization proto-
col allowing multiple different implementations to coexist and still be mutually compatible.

196 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/rpmsg-lite/README.html
https://nxp-mcuxpresso.github.io/rpmsg-lite/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

Small MCU-based systems often do not implement dynamic memory allocation. The creation of
static API in RPMsg-Lite enables another reduction of resource usage. Not only does the dynamic
allocation adds another 5 KB of code size, but also communication is slower and less determinis-
tic, which is a property introduced by dynamic memory. The following table shows some rough
comparison data between the OpenAMP RPMsg implementation and new RPMsg-Lite implemen-
tation:

Component / Configuration Flash [B] RAM [B]
OpenAMP RPMsg / Release (reference) 5547 456 + dynamic
RPMsg-Lite / Dynamic API, Release 3462 56 + dynamic
Relative Difference [%] ~62.4% ~12.3%
RPMsg-Lite / Static API (no malloc), Release 2926 352
Relative Difference [%] ~52.7% ~77.2%

Implementation The implementation of RPMsg-Lite can be divided into three sub-
components, from which two are optional. The core component is situated in rpmsg_lite.c. Two
optional components are used to implement a blocking receive API (in rpmsg_queue.c) and
dynamic “named” endpoint creation and deletion announcement service (in rpmsg_ns.c).

The actual “media access” layer is implemented in virtqueue.c, which is one of the few files
shared with the OpenAMP implementation. This layer mainly defines the shared memory model,
and internally defines used components such as vring or virtqueue.

The porting layer is split into two sub-layers: the environment layer and the platform layer. The
first sublayer is to be implemented separately for each environment. (The bare metal environ-
ment already exists and is implemented in rpmsg_env_bm.c, and the FreeRTOS environment is
implemented in rpmsg_env_freertos.c etc.) Only the source file, which matches the used envi-
ronment, is included in the target application project. The second sublayer is implemented in
rpmsg_platform.c and defines low-level functions for interrupt enabling, disabling, and trigger-
ing mainly. The situation is described in the following figure:

RPMsg-Lite core sub-component This subcomponent implements a blocking send API and
callback-based receive API. The RPMsg protocol is part of the transport layer. This is realized by
using so-called endpoints. Each endpoint can be assigned a different receive callback function.

3.3. MultiCore 197

MCUXpresso SDK Documentation, Release 25.12.00

However, it is important to notice that the callback is executed in an interrupt environment in
current design. Therefore, certain actions like memory allocation are discouraged to execute in
the callback. The following figure shows the role of RPMsg in an ISO/OSI-like layered model:

Queue sub-component (optional) This subcomponent is optional and requires implementa-
tion of the env_*_queue() functions in the environment porting layer. It uses a blocking receive
API, which is common in RTOS-environments. It supports both copy and nocopy blocking receive
functions.

Name Service sub-component (optional) This subcomponent is a minimum implementation
of the name service which is present in the Linux Kernel implementation of RPMsg. It allows
the communicating node both to send announcements about “named” endpoint (in other words,
channel) creation or deletion and to receive these announcement taking any user-defined action
in an application callback. The endpoint address used to receive name service announcements
is arbitrarily fixed to be 53 (0x35).

Usage The application should put the /rpmsg_lite/lib/include directory to the include path and
in the application, include either the rpmsg_lite.h header file, or optionally also include the
rpmsg_queue.h and/or rpmsg_ns.h files. Both porting sublayers should be provided for you by
NXP, but if you plan to use your own RTOS, all you need to do is to implement your own envi-
ronment layer (in other words, rpmsg_env_myrtos.c) and to include it in the project build.

The initialization of the stack is done by calling the rpmsg_lite_master_init() on the master side
and the rpmsg_lite_remote_init() on the remote side. This initialization function must be called
prior to any RPMsg-Lite API call. After the init, it is wise to create a communication endpoint, oth-
erwise communication is not possible. This can be done by calling the rpmsg_lite_create_ept()
function. It optionally accepts a last argument, where an internal context of the endpoint is
created, just in case the RL_USE_STATIC_API option is set to 1. If not, the stack internally calls
env_alloc() to allocate dynamic memory for it. In case a callback-based receiving is to be used,
an ISR-callback is registered to each new endpoint with user-defined callback data pointer. If
a blocking receive is desired (in case of RTOS environment), the rpmsg_queue_create() func-
tion must be called before calling rpmsg_lite_create_ept(). The queue handle is passed to the
endpoint creation function as a callback data argument and the callback function is set to
rpmsg_queue_rx_cb(). Then, it is possible to use rpmsg_queue_receive() function to listen on
a queue object for incoming messages. The rpmsg_lite_send() function is used to send messages
to the other side.

The RPMsg-Lite also implements no-copy mechanisms for both sending and receiving operations.
These methods require specifics that have to be considered when used in an application.

198 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

no-copy-send mechanism: This mechanism allows sending messages without the cost for copying
data from the application buffer to the RPMsg/virtio buffer in the shared memory. The sequence
of no-copy sending steps to be performed is as follows:

• Call the rpmsg_lite_alloc_tx_buffer() function to get the virtio buffer and provide the buffer
pointer to the application.

• Fill the data to be sent into the pre-allocated virtio buffer. Ensure that the filled data does not
exceed the buffer size (provided as the rpmsg_lite_alloc_tx_buffer() size output parameter).

• Call the rpmsg_lite_send_nocopy() function to send the message to the destination end-
point. Consider the cache functionality and the virtio buffer alignment. See the
rpmsg_lite_send_nocopy() function description below.

no-copy-receive mechanism: This mechanism allows reading messages without the cost for copy-
ing data from the virtio buffer in the shared memory to the application buffer. The sequence of
no-copy receiving steps to be performed is as follows:

• Call the rpmsg_queue_recv_nocopy() function to get the virtio buffer pointer to the received
data.

• Read received data directly from the shared memory.

• Call the rpmsg_queue_nocopy_free() function to release the virtio buffer and to make it
available for the next data transfer.

The user is responsible for destroying any RPMsg-Lite objects he has created in case of deini-
tialization. In order to do this, the function rpmsg_queue_destroy() is used to destroy a queue,
rpmsg_lite_destroy_ept() is used to destroy an endpoint and finally, rpmsg_lite_deinit() is used
to deinitialize the RPMsg-Lite intercore communication stack. Deinitialize all endpoints using a
queue before deinitializing the queue. Otherwise, you are actively invalidating the used queue
handle, which is not allowed. RPMsg-Lite does not check this internally, since its main aim is to
be lightweight.

3.3. MultiCore 199

MCUXpresso SDK Documentation, Release 25.12.00

Examples RPMsg_Lite multicore examples are part of NXP MCUXpressoSDK packages. Visit
https://mcuxpresso.nxp.com to configure, build and download these packages. To get the board
list with multicore support (RPMsg_Lite included) use filtering based on Middleware and search
for ‘multicore’ string. Once the selected package with the multicore middleware is downloaded,

200 Chapter 3. Middleware

https://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for RPMsg_Lite
multicore examples with ‘rpmsg_lite_’ name prefix.

Another way of getting NXP MCUXpressoSDK RPMsg_Lite multicore examples is using the
mcuxsdk-manifests Github repo. Follow the description how to use the West tool to clone and up-
date the mcuxsdk-manifests repo in readme section. Once done the armgcc rpmsg_lite examples
can be found in

mcuxsdk/examples/_<board_name>/multicore_examples

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the RPMsg_Lite examples use the ‘rpmsg_lite_’ name prefix.

Notes

Environment layers implementation Several environment layers are provided in
lib/rpmsg_lite/porting/environment folder. Not all of them are fully tested however. Here
is the list of environment layers that passed testing:

• rpmsg_env_bm.c

• rpmsg_env_freertos.c

• rpmsg_env_xos.c

• rpmsg_env_threadx.c

The rest of environment layers has been created and used in some experimental projects, it has
been running well at the time of creation but due to the lack of unit testing there is no guarantee
it is still fully functional.

Shared memory configuration It is important to correctly initialize/configure the shared
memory for data exchange in the application. The shared memory must be accessible from both
the master and the remote core and it needs to be configured as Non-Cacheable memory. Dedi-
cated shared memory section in liker file is also a good practise, it is recommended to use linker
files from MCUXpressSDK packages for NXP devices based applications. It needs to be ensured
no other application part/component is unintentionally accessing this part of memory.

Configuration options The RPMsg-Lite can be configured at the compile time. The default
configuration is defined in the rpmsg_default_config.h header file. This configuration can be
customized by the user by including rpmsg_config.h file with custom settings. The following
table summarizes all possible RPMsg-Lite configuration options.

3.3. MultiCore 201

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests
https://github.com/nxp-mcuxpresso/mcuxsdk-manifests?tab=readme-ov-file#readme

MCUXpresso SDK Documentation, Release 25.12.00

Config-
uration
option

De-
fault
value

Usage

RL_MS_PER_INTERVAL(1) Delay in milliseconds used in non-blocking API functions for polling.
RL_BUFFER_PAYLOAD_SIZE(496) Size of the buffer payload, it must be more than 1 byte, and has to be word

align (including rpmsg header size 16 bytes), if not it will be aligned up
RL_BUFFER_COUNT(2) Number of the buffers, it must be power of two (2, 4, …)
RL_API_HAS_ZEROCOPY(1) Zero-copy API functions enabled/disabled.
RL_USE_STATIC_API(0) Static API functions (no dynamic allocation) enabled/disabled.
RL_USE_DCACHE(0) Memory cache management of shared memory. Use in case of data cache

is enabled for shared memory.
RL_CLEAR_USED_BUFFERS(0) Clearing used buffers before returning back to the pool of free buffers en-

abled/disabled.
RL_USE_MCMGR_IPC_ISR_HANDLER(0) When enabled IPC interrupts are managed by the Multicore Manager (IPC

interrupts router), when disabled RPMsg-Lite manages IPC interrupts by
itself.

RL_USE_ENVIRONMENT_CONTEXT(0) When enabled the environment layer uses its own context. Required for
some environments (QNX). The default value is 0 (no context, saves some
RAM).

RL_DEBUG_CHECK_BUFFERS(0) When enabled buffer pointers passed to rpmsg_lite_send_nocopy()
and rpmsg_lite_release_rx_buffer() functions (enabled by
RL_API_HAS_ZEROCOPY config) are checked to avoid passing invalid
buffer pointer. The default value is 0 (disabled). Do not use in RPMsg-Lite
to Linux configuration.

RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION(0) When enabled the opposite side is notified each time received buffers are
consumed and put into the queue of available buffers. Enable this option in
RPMsg-Lite to Linux configuration to allow unblocking of the Linux block-
ing send. The default value is 0 (RPMsg-Lite to RPMsg-Lite communication).

RL_ALLOW_CUSTOM_SHMEM_CONFIG(0) It allows to define custom shared memory configuration and replacing the
shared memory related global settings from rpmsg_config.h This is useful
when multiple instances are running in parallel but different shared mem-
ory arrangement (vring size & alignment, buffers size & count) is required.
The default value is 0 (all RPMsg_Lite instances use the same shared mem-
ory arrangement as defined by common config macros).

RL_ASSERTsee
rpmsg_default_config.h

Assert implementation.

How to format rpmsg-lite code To format code, use the application developed by Google,
named clang-format. This tool is part of the llvm project. Currently, the clang-format
10.0.0 version is used for rpmsg-lite. The set of style settings used for clang-format is de-
fined in the .clang-format file, placed in a root of the rpmsg-lite directory where Python
script run_clang_format.py can be executed. This script executes the application named clang-
format.exe. You need to have the path of this application in the OS’s environment path, or you
need to change the script.

References

[1]M.Novak,M.Cingel, Lockless SharedMemoryBasedMulticoreCommunicationProtocol
Copyright © 2016 Freescale Semiconductor, Inc. Copyright © 2016-2025 NXP

Changelog RPMSG-Lite All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

202 Chapter 3. Middleware

http://llvm.org/
https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

[v5.3.0]

Added
• RT700 porting layer added support to send rpmsg messages between CM33_0 <-> Hifi1 and

CM33_1 <-> Hifi4 cores.

• Add new platform macro RL_PLATFORM_MAX_ISR_COUNT this will set number of IRQ
count per platform. This macro is then used in environment layers to set isr_table size
where irq handles are registered. It size should match the bit length of VQ_ID so all combi-
nations can fit into table.

• Unit tests updated to improve code coverage, new unit tests added covering static alloca-
tions in rtos environment layers.

Fixed
• virtio.h removed typedef uint8_t boolean and in its place use standard C99 bool type to avoid

potential type conflicts.

• env_acquire_sync_lock() and env_release_sync_lock() synchronization primitives removed

• Kconfig consolidation, when RL_ALLOW_CUSTOM_SHMEM_CONFIG enabled the plat-
form_get_custom_shmem_config() function needs to be implemented in platform layer to
provide custom shared memory configuration for RPMsg-Lite instance.

v5.2.1

Added
• Doc added RPMSG-Lite VirtIO Overview

• Doc added RPSMG-Lite Design Consi derations

• Added frdmimxrt1186 unit testing

Changed
• Remove limitation that RL_BUFFER_SIZE needs to be power of 2. It just has to be more

than 16 bytes, e.g. 16 bytes of rpmsg header and payload size at least 1 byte and word
aligned, if not it will be aligned up.

Fixed
• Fixed CERT-C INT31-C violation in platform_notify function in rpmsg_platform.c for

imxrt700_m33, imxrt700_hifi4, imxrt700_hifi1 platforms

v5.2.0

Added
• Add MCXL20 porting layer and unit testing

• New utility macro RL_CALCULATE_BUFFER_COUNT_DOWN_SAFE to safely deter-
mine maximum buffer count within shared memory while preventing integer underflow.

• RT700 platform add support for MCMGR in DSPs

3.3. MultiCore 203

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Change rpmsg_platform.c to support new MCMGR API

• Improved input validation in initialization functions to properly handle insufficient mem-
ory size conditions.

• Refactored repeated buffer count calculation pattern for better code maintainability.

• To make sure that remote has already registered IRQ there is required App level IPC mech-
anism to notify master about it

Fixed
• Fixed env_wait_for_link_up function to handle timeout in link state checks for baremetal

and qnx environment, RL_BLOCK mode can be used to wait indefinitely.

• Fixed CERT-C INT31-C violation by adding compile-time check to ensure
RL_PLATFORM_HIGHEST_LINK_ID remains within safe range for 16-bit casting in
virtqueue ID creation.

• Fixed CERT-C INT30-C violations by adding protection against unsigned inte-
ger underflow in shared memory calculations, specifically in shmem_length -
(uint32_t)RL_VRING_OVERHEAD and shmem_length - 2U * shmem_config.vring_size
expressions.

• Fixed CERT INT31-C violation in platform_interrupt_disable() and similar functions by re-
placing unsafe cast from uint32_t to int32_t with a return of 0 constant.

• Fixed unsigned integer underflow in rpmsg_lite_alloc_tx_buffer() where subtracting
header size from buffer size could wrap around if buffer was too small, potentially leading
to incorrect buffer sizing.

• Fixed CERT-C INT31-C violation in rpmsg_lite.c where size parameter was cast from uint32_t
to uint16_t without proper validation.

– Applied consistent masking approach to both size and flags parameters: (uint16_t)(value
& 0xFFFFU).

– This fix prevents potential data loss when size values exceed 65535.

• Fixed CERT INT31-C violation in env_memset functions by explicitly converting int32_t val-
ues to unsigned char using bit masking. This prevents potential data loss or misinterpreta-
tion when passing values outside the unsigned char range (0-255) to the standard memset()
function.

• Fixed CERT-C INT31-C violations in RPMsg-Lite environment porting: Added validation
checks for signed-to-unsigned integer conversions to prevent data loss and misinterpre-
tation.

– rpmsg_env_freertos.c: Added validation before converting int32_t to UBaseType_t.

– rpmsg_env_qnx.c: Fixed format string and added validation before assigning to mqstat
fields.

– rpmsg_env_threadx.c: Added validation to prevent integer overflow and negative val-
ues.

– rpmsg_env_xos.c: Added range checking before casting to uint16_t.

– rpmsg_env_zephyr.c: Added validation before passing values to k_msgq_init.

• Fixed a CERT INT31-C compliance issue in env_get_current_queue_size() function where an
unsigned queue count was cast to a signed int32_t without proper validation, which could
lead to lost or misinterpreted data if queue size exceeded INT32_MAX.

• Fixed CERT INT31-C violation in rpmsg_platform.c where memcmp() return value (signed int)
was compared with unsigned constant without proper type handling.

204 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

• Fixed CERT INT31-C violation in rpmsg_platform.c where casting from uint32_t to uint16_t
could potentially result in data loss. Changed length variable type from uint16_t to uint32_t
to properly handle memory address differences without truncation.

• Fixed potential integer overflow in env_sleep_msec() function in ThreadX environment im-
plementation by rearranging calculation order in the sleep duration formula.

• Fixed CERT-C INT31-C violation in RPMsg-Lite where bitwise NOT operations on integer
constants were performed in signed integer context before being cast to unsigned. This
could potentially lead to misinterpreted data on imx943 platform.

• Added RL_MAX_BUFFER_COUNT (32768U) and RL_MAX_VRING_ALIGN (65536U) limit to
ensure alignment values cannot contribute to integer overflow

• Fixed CERT INT31-C violation in vring_need_event(), added cast to uint16_t for each
operand.

v5.1.4 - 27-Mar-2025

Added
• Add KW43B43 porting layer

Changed
• Doxygen bump to version 1.9.6

v5.1.3 - 13-Jan-2025

Added
• Memory cache management of shared memory. Enable with #define RL_USE_DCACHE
(1) in rpmsg_config.h in case of data cache is used.

• Cmake/Kconfig support added.

• Porting layers for imx95, imxrt700, mcmxw71x, mcmxw72x, kw47b42 added.

v5.1.2 - 08-Jul-2024

Changed
• Zephyr-related changes.

• Minor Misra corrections.

v5.1.1 - 19-Jan-2024

Added
• Test suite provided.

• Zephyr support added.

3.3. MultiCore 205

MCUXpresso SDK Documentation, Release 25.12.00

Changed
• Minor changes in platform and env. layers, minor test code updates.

v5.1.0 - 02-Aug-2023

Added
• RPMsg-Lite: Added aarch64 support.

Changed
• RPMsg-Lite: Increased the queue size to (2 * RL_BUFFER_COUNT) to cover zero copy cases.

• Code formatting using LLVM16.

Fixed
• Resolved issues in ThreadX env. layer implementation.

v5.0.0 - 19-Jan-2023

Added
• Timeout parameter added to rpmsg_lite_wait_for_link_up API function.

Changed
• Improved debug check buffers implementation - instead of checking the pointer fits into

shared memory check the presence in the VirtIO ring descriptors list.

• VRING_SIZE is set based on number of used buffers now (as calculated in vring_init) - up-
dated for all platforms that are not communicating to Linux rpmsg counterpart.

Fixed
• Fixed wrong RL_VRING_OVERHEAD macro comment in platform.h files

• Misra corrections.

v4.0.0 - 20-Jun-2022

Added
• Added support for custom shared memory arrangement per the RPMsg_Lite instance.

• Introduced new rpmsg_lite_wait_for_link_up() API function - this allows to avoid using busy
loops in rtos environments, GitHub PR #21.

Changed
• Adjusted rpmsg_lite_is_link_up() to return RL_TRUE/RL_FALSE.

206 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/21

MCUXpresso SDK Documentation, Release 25.12.00

v3.2.0 - 17-Jan-2022

Added
• Added support for i.MX8 MP multicore platform.

Changed
• Improved static allocations - allow OS-specific objects being allocated statically, GitHub PR

#14.

• Aligned rpmsg_env_xos.c and some platform layers to latest static allocation support.

Fixed
• Minor Misra and typo corrections, GitHub PR #19, #20.

v3.1.2 - 16-Jul-2021

Added
• Addressed MISRA 21.6 rule violation in rpmsg_env.h (use SDK’s PRINTF in MCUXpressoSDK

examples, otherwise stdio printf is used).

• Added environment layers for XOS.

• Added support for i.MX RT500, i.MX RT1160 and i.MX RT1170 multicore platforms.

Fixed
• Fixed incorrect description of the rpmsg_lite_get_endpoint_from_addr function.

Changed
• Updated RL_BUFFER_COUNT documentation (issue #10).

• Updated imxrt600_hifi4 platform layer.

v3.1.1 - 15-Jan-2021

Added
• Introduced RL_ALLOW_CONSUMED_BUFFERS_NOTIFICATION config option to allow oppo-

site side notification sending each time received buffers are consumed and put into the
queue of available buffers.

• Added environment layers for Threadx.

• Added support for i.MX8QM multicore platform.

Changed
• Several MISRA C-2012 violations addressed.

v3.1.0 - 22-Jul-2020

3.3. MultiCore 207

https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/14
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/19
https://github.com/nxp-mcuxpresso/rpmsg-lite/pull/20
https://github.com/nxp-mcuxpresso/rpmsg-lite/issues/10

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed (7.4).

• Fixed missing lock in rpmsg_lite_rx_callback() for QNX env.

• Correction of rpmsg_lite_instance structure members description.

• Address -Waddress-of-packed-member warnings in GCC9.

Changed
• Clang update to v10.0.0, code re-formatted.

v3.0.0 - 20-Dec-2019

Added
• Added support for several new multicore platforms.

Fixed
• MISRA C-2012 violations fixed, incl. data types consolidation.

• Code formatted.

v2.2.0 - 20-Mar-2019

Added
• Added configuration macro RL_DEBUG_CHECK_BUFFERS.

• Several MISRA violations fixed.

• Added environment layers for QNX and Zephyr.

• Allow environment context required for some environment (controlled by the
RL_USE_ENVIRONMENT_CONTEXT configuration macro).

• Data types consolidation.

v1.1.0 - 28-Apr-2017

Added
• Supporting i.MX6SX and i.MX7D MPU platforms.

• Supporting LPC5411x MCU platform.

• Baremental and FreeRTOS support.

• Support of copy and zero-copy transfer.

• Support of static API (without dynamic allocations).

208 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Multicore Manager

MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)

Overview This repository is for MCUXpresso SDK Multicore Manager middleware delivery and
it contains Multicore Manager component officially provided in NXP MCUXpresso SDK. This
repository is part of the MCUXpresso SDK overall delivery which is composed of several sub-
repositories/projects. Navigate to the top/parent repository mcuxsdk for the complete delivery
of MCUXpresso SDK to be able to build and run Multicore Manager examples that are based on
mcux-sdk-middleware-mcmgr component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit Multicore Manager - Documentation to review details on the contents in this sub-repo.

For Further API documentation, please look at doxygen documentation

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
mcmgr project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

Multicore Manager (MCMGR) The Multicore Manager (MCMGR) software library provides a
number of services for multicore systems. This library is distributed as a part of the Multicore
SDK (MCSDK). Together, the MCSDK and the MCUXpresso SDK (SDK) form a framework for de-
velopment of software for NXP multicore devices.

The MCMGR component is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/
mcmgr directory.

3.3. MultiCore 209

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/mcmgr/README.html
https://nxp-mcuxpresso.github.io/mcux-mcmgr/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

The Multicore Manager provides the following major functions:

• Maintains information about all cores in system.

• Secondary/auxiliary core(s) startup and shutdown.

• Remote core monitoring and event handling.

Usage of the MCMGR software component The main use case of MCMGR is the sec-
ondary/auxiliary core start. This functionality is performed by the public API function.

Example of MCMGR usage to start secondary core:

#include ”mcmgr.h”

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

(continues on next page)

210 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass ”1” as startup data,␣
↪→starting synchronously. */

MCMGR_StartCore(kMCMGR_Core1, CORE1_BOOT_ADDRESS, 1, kMCMGR_Start_Synchronous);
.
.
.

/* Stop secondary core execution. */
MCMGR_StopCore(kMCMGR_Core1);

}

Some platforms allow stopping and re-starting the secondary core application again, using the
MCMGR_StopCore / MCMGR_StartCore API calls. It is necessary to ensure the initially loaded im-
age is not corrupted before re-starting, especially if it deals with the RAM target. Cache coherence
has to be considered/ensured as well.

It could also happen that the secondary core application stops running correctly and the primary
core application does not know about that situation. Therefore, it is beneficial to implement a
mechanism for core health monitoring. The test_heartbeat unit test can serve as an example
how to ensure that: secondary core could periodically send heartbeat signals to the primary
core using MCMGR_TriggerEvent() API to indicate that it is alive and functioning properly.

Another important MCMGR feature is the ability for remote core monitoring and handling of
events such as reset, exception, and application events. Application-specific callback functions
for events are registered by the MCMGR_RegisterEvent() API. Triggering these events is done
using the MCMGR_TriggerEvent() API. mcmgr_event_type_t enums all possible event types.

An example of MCMGR usage for remote core monitoring and event handling. Code for the
primary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)
#define APP_NUMBER_OF_CORES (2)
#define APP_SECONDARY_CORE kMCMGR_Core1

/* Callback function registered via the MCMGR_RegisterEvent() and triggered by MCMGR_TriggerEvent()␣
↪→called on the secondary core side */
void RPMsgRemoteReadyEventHandler(mcmgr_core_t coreNum, uint16_t eventData, void *context)
{

uint16_t *data = &((uint16_t *)context)[coreNum];

*data = eventData;
}

void main()
{

uint16_t RPMsgRemoteReadyEventData[NUMBER_OF_CORES] = {0};

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

/* Register the application event before starting the secondary core */
MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent, RPMsgRemoteReadyEventHandler, (void␣

↪→*)RPMsgRemoteReadyEventData);

(continues on next page)

3.3. MultiCore 211

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
/* Boot secondary core application from the CORE1_BOOT_ADDRESS, pass rpmsg_lite_base address␣

↪→as startup data, starting synchronously. */
MCMGR_StartCore(APP_SECONDARY_CORE, CORE1_BOOT_ADDRESS, (uint32_t)rpmsg_lite_

↪→base, kMCMGR_Start_Synchronous);

/* Wait until the secondary core application signals the rpmsg remote has been initialized and is ready to␣
↪→communicate. */

while(APP_RPMSG_READY_EVENT_DATA != RPMsgRemoteReadyEventData[APP_SECONDARY_
↪→CORE]) {};
.
.
.
}

Code for the secondary side:

#include ”mcmgr.h”

#define APP_RPMSG_READY_EVENT_DATA (1)

void main()
{

/* Initialize MCMGR - low level multicore management library.
Call this function as close to the reset entry as possible,
(into the startup sequence) to allow CoreUp event triggering. */

MCMGR_EarlyInit();

/* Initialize MCMGR, install generic event handlers */
MCMGR_Init();

.

.

.

/* Signal the to other core that we are ready by triggering the event and passing the APP_RPMSG_
↪→READY_EVENT_DATA */

MCMGR_TriggerEvent(kMCMGR_Core0, kMCMGR_RemoteApplicationEvent, APP_RPMSG_
↪→READY_EVENT_DATA);
.
.
.
}

MCMGR Data Exchange Diagram The following picture shows how the handshakes are sup-
posed to work between the two cores in the MCMGR software.

212 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

3.3. MultiCore 213

MCUXpresso SDK Documentation, Release 25.12.00

Changelog Multicore Manager All notable changes to this project will be documented in this
file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

[v5.0.2]

Added
• Added gcov options and configs to support mcmgr code coverage

• Added new test_weak_mu_isr testcase for devices with MU peripheral

• Added new test_heartbeat testcase showing heartbeat mechanism between primary and
secondary cores using the MCMGR

v5.0.1

Added
• Added frdmimxrt1186 unit testing

Changed
• [KW43] Rename core#1 reset control register

Fixed
• Added CX flag into CMakeLists.txt to allow c++ build compatibility.

• Fix path to mcmgr headers directory in doxyfile

v5.0.0

Added
• Added MCMGR_BUSY_POLL_COUNT macro to prevent infinite polling loops in MCMGR

operations.

• Implemented timeout mechanism for all polling loops in MCMGR code.

• Added support to handle more then two cores. Breaking API change by adding parameter
coreNum specifying core number in functions bellow.

– MCMGR_GetStartupData(uint32_t *startupData, mcmgr_core_t coreNum)

– MCMGR_TriggerEvent(mcmgr_event_type_t type, uint16_t eventData, mcmgr_core_t
coreNum)

– MCMGR_TriggerEventForce(mcmgr_event_type_t type, uint16_t eventData,
mcmgr_core_t coreNum)

– typedef void (*mcmgr_event_callback_t)(uint16_t data, void *context, mcmgr_core_t
coreNum);

214 Chapter 3. Middleware

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html

MCUXpresso SDK Documentation, Release 25.12.00

When registering the event with function MCMGR_RegisterEvent() user now needs to pro-
vide callbackData pointer to array of elements per every core in system (see README.md
for example).In case of systems with only two cores the coreNum in callback can be ignored
as events can arrive only from one core. Please see Porting guide for more details: Porting-
GuideTo_v5.md

• Updated all porting files to support new MCMGR API.

• Added new platform specific include file mcmgr_platform.h. It will contain common plat-
form specific macros that can be then used in mcmgr and application. e.g. platform core
count MCMGR_CORECOUNT 4.

• Move all header files to new inc directory.

• Added new platform-specific include files inc/platform/<platform_name>/mcmgr_platform.
h.

Added
• Add MCXL20 porting layer and unit testing

v4.1.7

Fixed
• mcmgr_stop_core_internal() function now returns kStatus_MCMGR_NotImplemented status

code instead of kStatus_MCMGR_Success when device does not support stop of secondary
core. Ports affected: kw32w1, kw45b41, kw45b42, mcxw716, mcxw727.

[v4.1.6]

Added
• Multicore Manager moved to standalone repository.

• Add porting layers for imxrt700, mcmxw727, kw47b42.

• New MCMGR_ProcessDeferredRxIsr() API added.

[v4.1.5]

Added
• Add notification into MCMGR_EarlyInit and mcmgr_early_init_internal functions to avoid

using uninitialized data in their implementations.

[v4.1.4]

Fixed
• Avoid calling tx isr callbacks when respective Messaging Unit Transmit Interrupt Enable

flag is not set in the CR/TCR register.

• Messaging Unit RX and status registers are cleared after the initialization.

3.3. MultiCore 215

MCUXpresso SDK Documentation, Release 25.12.00

[v4.1.3]

Added
• Add porting layers for imxrt1180.

Fixed
• mu_isr() updated to avoid calling tx isr callbacks when respective Transmit Interrupt En-

able flag is not set in the CR/TCR register.

• mcmgr_mu_internal.c code adaptation to new supported SoCs.

[v4.1.2]

Fixed
• Update mcmgr_stop_core_internal() implementations to set core state to kM-

CMGR_ResetCoreState.

[v4.1.0]

Fixed
• Code adjustments to address MISRA C-2012 Rules

[v4.0.3]

Fixed
• Documentation updated to describe handshaking in a graphic form.

• Minor code adjustments based on static analysis tool findings

[v4.0.2]

Fixed
• Align porting layers to the updated MCUXpressoSDK feature files.

[v4.0.1]

Fixed
• Code formatting, removed unused code

[v4.0.0]

216 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Added
• Add new MCMGR_TriggerEventForce() API.

[v3.0.0]

Removed
• Removed MCMGR_LoadApp(), MCMGR_MapAddress() and MCMGR_SignalReady()

Modified
• Modified MCMGR_GetStartupData()

Added
• Added MCMGR_EarlyInit(), MCMGR_RegisterEvent() and MCMGR_TriggerEvent()

• Added the ability for remote core monitoring and event handling

[v2.0.1]

Fixed
• Updated to be Misra compliant.

[v2.0.0]

Added
• Support for lpcxpresso54114 board.

[v1.1.0]

Fixed
• Ported to KSDK 2.0.0.

[v1.0.0]

Added
• Initial release.

eRPC

MCUXpresso SDK : mcuxsdk-middleware-erpc

3.3. MultiCore 217

MCUXpresso SDK Documentation, Release 25.12.00

Overview This repository is for MCUXpresso SDK eRPC middleware delivery and it contains
eRPC component officially provided in NXP MCUXpresso SDK. This repository is part of the
MCUXpresso SDK overall delivery which is composed of several sub-repositories/projects. Nav-
igate to the top/parent repository mcuxsdk for the complete delivery of MCUXpresso SDK to be
able to build and run eRPC examples that are based on mcux-sdk-middleware-erpc component.

Documentation Overall details can be reviewed here: MCUXpresso SDK Online Documenta-
tion

Visit eRPC - Documentation to review details on the contents in this sub-repo.

Setup Instructions on how to install the MCUXpresso SDK provided from GitHub via west man-
ifest Getting Started with SDK - Detailed Installation Instructions

Contribution We welcome and encourage the community to submit patches directly to the
eRPC project placed on github. Contributing can be managed via pull-requests. Before a pull-
request is created the code should be tested and properly formatted.

eRPC

• MCUXpresso SDK : mcuxsdk-middleware-erpc

– Overview

– Documentation

– Setup

– Contribution

• eRPC

– About

– Releases

* Edge releases

– Documentation

– Examples

– References

– Directories

– Building and installing

* Requirements

· Windows

· Mac OS X

* Building

· CMake and KConfig

· Make

218 Chapter 3. Middleware

https://github.com/nxp-mcuxpresso/mcuxsdk-manifests/
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/introduction/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/multicore/erpc/README.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/gsd/installation.html#installation

MCUXpresso SDK Documentation, Release 25.12.00

* Installing for Python

– Known issues and limitations

– Code providing

About

eRPC (Embedded RPC) is an open source Remote Procedure Call (RPC) system for multichip em-
bedded systems and heterogeneous multicore SoCs.

Unlike other modern RPC systems, such as the excellent Apache Thrift, eRPC distinguishes itself
by being designed for tightly coupled systems, using plain C for remote functions, and having a
small code size (<5kB). It is not intended for high performance distributed systems over a net-
work.

eRPC does not force upon you any particular API style. It allows you to export existing C func-
tions, without having to change their prototypes. (There are limits, of course.) And although the
internal infrastructure is written in C++, most users will be able to use only the simple C setup
APIs shown in the examples below.

A code generator tool called erpcgen is included. It accepts input IDL files, having an .erpc exten-
sion, that have definitions of your data types and remote interfaces, and generates the shim code
that handles serialization and invocation. erpcgen can generate either C/C++ or Python code.

Example .erpc file:

// Define a data type.
enum LEDName { kRed, kGreen, kBlue }

// An interface is a logical grouping of functions.
interface IO {

// Simple function declaration with an empty reply.
set_led(LEDName whichLed, bool onOrOff) -> void

}

Client side usage:

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* init eRPC client IO service */
initIO_client(client_manager);

// Now we can call the remote function to turn on the green LED.
set_led(kGreen, true);

/* deinit objects */
deinitIO_client();
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);

(continues on next page)

3.3. MultiCore 219

http://thrift.apache.org

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
erpc_transport_tcp_deinit(transport);

}

void example_client(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_client_t client_manager;

/* Init eRPC client infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
client_manager = erpc_client_init(transport, message_buffer_factory);

/* scope for client service */
{

/* init eRPC client IO service */
IO_client client(client_manager);

// Now we can call the remote function to turn on the green LED.
client.set_led(kGreen, true);

}

/* deinit objects */
erpc_client_deinit(client_manager);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

Server side usage:

// Implement the remote function.
void set_led(LEDName whichLed, bool onOrOff) {

// implementation goes here
}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
erpc_service_t service = create_IO_service();

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, service);

// Run the server.
erpc_server_run();

/* deinit objects */
destroy_IO_service(service);
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

// Implement the remote function.
class IO : public IO_interface

(continues on next page)

220 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
{

/* eRPC call definition */
void set_led(LEDName whichLed, bool onOrOff) override {

// implementation goes here
}

}

void example_server(void) {
erpc_transport_t transport;
erpc_mbf_t message_buffer_factory;
erpc_server_t server;
IO IOImpl;
IO_service io(&IOImpl);

/* Init eRPC server infrastructure */
transport = erpc_transport_cmsis_uart_init(Driver_USART0);
message_buffer_factory = erpc_mbf_dynamic_init();
server = erpc_server_init(transport, message_buffer_factory);

/* add custom service implementation to the server */
erpc_add_service_to_server(server, &io);

/* poll for requests */
erpc_status_t err = server.run();

/* deinit objects */
erpc_server_deinit(server);
erpc_mbf_dynamic_deinit(message_buffer_factory);
erpc_transport_tcp_deinit(transport);

}

A number of transports are supported, and new transport classes are easy to write.

Supported transports can be found in erpc/erpc_c/transport folder. E.g:

• CMSIS UART

• NXP Kinetis SPI and DSPI

• POSIX and Windows serial port

• TCP/IP (mostly for testing)

• NXP RPMsg-Lite / RPMsg TTY

• SPIdev Linux

• USB CDC

• NXP Messaging Unit

eRPC is available with an unrestrictive BSD 3-clause license. See the LICENSE file for the full
license text.

Releases eRPC releases

Edge releases Edge releases can by found on eRPC CircleCI webpage. Choose build of interest,
then platform target and choose ARTIFACTS tab. Here you can find binary application from
chosen build.

3.3. MultiCore 221

https://github.com/nxp-mcuxpresso/rpmsg-lite
https://github.com/EmbeddedRPC/erpc/blob/develop/LICENSE
https://github.com/EmbeddedRPC/erpc/releases
https://app.circleci.com/pipelines/github/EmbeddedRPC/erpc

MCUXpresso SDK Documentation, Release 25.12.00

Documentation Documentation is in the wiki section.

eRPC Infrastructure documentation

Examples Example IDL is available in the examples/ folder.

Plenty of eRPC multicore and multiprocessor examples can be also found in NXP MCUXpres-
soSDK packages. Visit https://mcuxpresso.nxp.com to configure, build and download these pack-
ages.

To get the board list with multicore support (eRPC included) use filtering based on Middleware
and search for ‘multicore’ string. Once the selected package with the multicore middleware is
downloaded, see

<MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples for eRPC multicore
examples (RPMsg_Lite or Messaging Unit transports used) or

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples for eRPC multi-
processor examples (UART or SPI transports used).

eRPC examples use the ‘erpc_’ name prefix.

Another way of getting NXP MCUXpressoSDK eRPC multicore and multiprocessor examples is
using the mcux-sdk Github repo. Follow the description how to use the West tool to clone and
update the mcuxsdk repo in readme Overview section. Once done the armgcc eRPC examples
can be found in

mcuxsdk/examples/<board_name>/multicore_examples or in

mcuxsdk/examples/<board_name>/multiprocessor_examples folders.

You can use the evkmimxrt1170 as the board_name for instance. Similar to MCUXpressoSDK
packages the eRPC examples use the ‘erpc_’ name prefix.

References This section provides links to interesting erpc-based projects, articles, blogs or
guides:

• erpc (EmbeddedRPC) getting started notes

• ERPC Linux Local Environment Construction and Use

• The New Wio Terminal eRPC Firmware

Directories doc - Documentation.

doxygen - Configuration and support files for running Doxygen over the eRPC C++ infrastructure
and erpcgen code.

erpc_c - Holds C/C++ infrastructure for eRPC. This is the code you will include in your application.

erpc_python - Holds Python version of the eRPC infrastructure.

erpcgen - Holds source code for erpcgen and makefiles or project files to build erpcgen on Win-
dows, Linux, and OS X.

erpcsniffer - Holds source code for erpcsniffer application.

examples - Several example IDL files.

mk - Contains common makefiles for building eRPC components.

test - Client/server tests. These tests verify the entire communications path from client to server
and back.

utilities - Holds utilities which bring additional benefit to eRPC apps developers.

222 Chapter 3. Middleware

https://github.com/EmbeddedRPC/erpc/wiki
https://embeddedrpc.github.io/
https://mcuxpresso.nxp.com
https://github.com/nxp-mcuxpresso/mcux-sdk
https://github.com/nxp-mcuxpresso/mcux-sdk#overview
https://programmersought.com/article/37585084512/
https://programmersought.com/article/88827920353/
https://www.hackster.io/Salmanfarisvp/the-new-wio-terminal-erpc-firmware-bfd8bd

MCUXpresso SDK Documentation, Release 25.12.00

Building and installing These build instructions apply to host PCs and embedded Linux. For
bare metal or RTOS embedded environments, you should copy the erpc_c directory into your
application sources.

CMake and KConfig build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests and examples.

CMake is compatible with gcc and clang. On Windows local MingGW downloaded by script can
be used.

Make build:

It builds a static library of the eRPC C/C++ infrastructure, the erpcgen executable, and optionally
the unit tests.

The makefiles are compatible with gcc or clang on Linux, OS X, and Cygwin. A Windows build of
erpcgen using Visual Studio is also available in the erpcgen/VisualStudio_v14 directory. There is
also an Xcode project file in the erpcgen directory, which can be used to build erpcgen for OS X.

Requirements eRPC now support building erpcgen, erpc_lib, tests and C examples using
CMake.

Requirements when using CMake:

• CMake (minimal version 3.20.0)

• Generator - Make, Ninja, …

• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Requirements when using Make:

• Make
• C/C++ compiler - GCC, CLANG, …

• Binson - https://www.gnu.org/software/bison/

• Flex - https://github.com/westes/flex/

Windows Related steps to build erpcgen using Visual Studio are described in erpcgen/
VisualStudio_v14/readme_erpcgen.txt.

To install MinGW, Bison, Flex locally on Windows:

./install_dependencies.ps1
* ```

Linux

```bash
./install_dependencies.sh

Mandatory for case, when build for different architecture is needed

• gcc-multilib, g++-multilib

Mac OS X

3.3. MultiCore 223



MCUXpresso SDK Documentation, Release 25.12.00

./install_dependencies.sh

Building

CMakeandKConfig eRPC use CMake and KConfig to configurate and build eRPC related targets.
KConfig can be edited by prj.conf or menuconfig when building.

Generate project, config and build. In erpc/ execute:

cmake -B ./build # in erpc/build generate cmake project
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

**CMake will use the system’s default compilers and generator

If you want to use Windows and locally installed MinGW, use CMake preset :

cmake --preset mingw64 # Generate project in ./build using mingw64's make and compilers
cmake --build ./build --target menuconfig # Build menuconfig and configurate erpcgen, erpc_lib, tests and␣
↪→examples
cmake --build ./build # Build all selected target from prj.conf/menuconfig

Make To build the library and erpcgen, run from the repo root directory:

make

To install the library, erpcgen, and include files, run:

make install

You may need to sudo the make install.

By default this will install into /usr/local. If you want to install elsewhere, set the PREFIX envi-
ronment variable. Example for installing into /opt:

make install PREFIX=/opt

List of top level Makefile targets:

• erpc: build the liberpc.a static library

• erpcgen: build the erpcgen tool

• erpcsniffer: build the sniffer tool

• test: build the unit tests under the test directory

• all: build all of the above

• install: install liberpc.a, erpcgen, and include files

eRPC code is validated with respect to the C++ 11 standard.

Installing for Python To install the Python infrastructure for eRPC see instructions in the erpc
python readme.

224 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Known issues and limitations
• Static allocations controlled by the ERPC_ALLOCATION_POLICY config macro are not fully

supported yet, i.e. not all erpc objects can be allocated statically now. It deals with the
ongoing process and the full static allocations support will be added in the future.

Code providing Repository on Github contains two main branches: main and develop. Code
is developed on develop branch. Release version is created via merging develop branch into
main branch.

Copyright 2014-2016 Freescale Semiconductor, Inc.

Copyright 2016-2025 NXP

eRPC Getting Started

Overview This Getting Started User Guide shows software developers how to use Remote Pro-
cedure Calls (RPC) in embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK_install_dir>/ middle-
ware/multicore/erpc/doc folder.

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

3.3. MultiCore 225



MCUXpresso SDK Documentation, Release 25.12.00

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

226 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 227



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

228 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

3.3. MultiCore 229



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

230 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 231



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

232 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 233



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

234 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

3.3. MultiCore 235



MCUXpresso SDK Documentation, Release 25.12.00

|

236 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

3.3. MultiCore 237



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

238 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

3.3. MultiCore 239



MCUXpresso SDK Documentation, Release 25.12.00

|

240 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

3.3. MultiCore 241



MCUXpresso SDK Documentation, Release 25.12.00

|

242 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

3.3. MultiCore 243



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

244 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

3.3. MultiCore 245



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

246 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

eRPC example This section shows how to create an example eRPC application called “Matrix
multiply”, which implements one eRPC function (matrix multiply) with two function parameters
(two matrices). The client-side application calls this eRPC function, and the server side performs
the multiplication of received matrices. The server side then returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR
Embedded Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

• The primary core (CM7) runs the eRPC client.

• The secondary core (CM4) runs the eRPC server.

• RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

3.3. MultiCore 247



MCUXpresso SDK Documentation, Release 25.12.00

The “Matrix multiply” application can be also run in the multi-processor setup. In other words,
the eRPC client running on one SoC comunicates with the eRPC server that runs on anothe SoC,
utilizing different transport channels. It is possible to run the board-to-PC example (PC as the
eRPC server and a board as the eRPC client, and vice versa) and also the board-to-board example.
These multiprocessor examples are prepared for selected boards only.

|Multicore application source and project files|<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/|
|Multiprocessor application source and project files|<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/

| |eRPC source files|<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/| |RPMsg-Lite
source files|<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/|

Designing the eRPC application The matrix multiply application is based on calling single
eRPC function that takes 2 two-dimensional arrays as input and returns matrix multiplication
results as another 2 two-dimensional array. The IDL file syntax supports arrays with the dimen-
sion length set by the number only (in the current eRPC implementation). Because of this, a
variable is declared in the IDL dedicated to store information about matrix dimension length,
and to allow easy maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data
type has is declared in the IDL. Declaring this alias name ensures that the same data type can be
used across the client and server applications.

Parent topic:eRPC example

Creating the IDL file The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc_matrix_multiply
/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
const int32 matrix_size = 5;
/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */
type Matrix = int32[matrix_size][matrix_size];
interface MatrixMultiplyService {
erpcMatrixMultiply(in Matrix matrix1, in Matrix matrix2, out Matrix result_matrix) ->
void
}

Details:

• The IDL file starts with the program name (erpc_matrix_multiply), and this program name
is used in the naming of all generated outputs.

• The declaration and definition of the constant variable namedmatrix_size follows next. The
matrix_size variable is used for passing information about the length of matrix dimensions
to the client/server user code.

• The alias name for the two-dimensional array type (Matrix) is declared.

• The interface groupMatrixMultiplyService is located at the end of the IDL file. This interface
group contains only one function declaration erpcMatrixMultiply.

• As shown above, the function’s declaration contains three parameters of Matrix type: ma-
trix1 and matrix2 are input parameters, while result_matrix is the output parameter. Addi-
tionally, the returned data type is declared as void.

248 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.

2. New data types and constants declarations.

3. Declarations of interfaces and functions at the end of the IDL file.

Parent topic:eRPC example

Using the eRPCgenerator tool |Windows OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Windows|
|Linux OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x64

<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

| |Mac OS|<MCUXpressoSDK_install_dir>/middleware/multicore/tools/erpcgen/Mac|

The files for the “Matrix multiply” example are pre-generated and already a part of the applica-
tion projects. The following section describes how they have been created.

• The easiest way to create the shim code is to copy the erpcgen application to the same folder
where the IDL file (*.erpc) is located; then run the following command:

erpcgen <IDL_file>.erpc

• In the “Matrix multiply” example, the command should look like:

erpcgen erpc_matrix_multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using
input commands:

• “-?”/”—help” – Shows supported commands.

• “-o <filePath>”/”—output<filePath>” – Sets the output directory.

For example,

<path_to_erpcgen>/erpcgen –o <path_to_output>
<path_to_IDL>/<IDL_file_name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen
location, it looks like:

erpcgen –o

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service

../../../../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.erpc

In both cases, the following four files are generated into the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service
folder.

• erpc_matrix_multiply.h

• erpc_matrix_multiply_client.cpp

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUX-
pressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service
folder.

For Linux OS users:
• Do not forget to set the permissions for the eRPC generator application.

• Run the application as ./erpcgen… instead of as erpcgen ….

3.3. MultiCore 249



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:eRPC example

Create an eRPC application This section describes a generic way to create a client/server eRPC
application:

1. Design the eRPC application: Decide which data types are sent between applications, and
define functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used
in an eRPC application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for
the client and the server-side applications.

4. Create an eRPC application:
1. Create two projects, where one project is for the client side (primary core) and the

other project is for the server side (secondary core).

2. Add generated files for the client application to the client project, and add generated
files for the server application to the server project.

3. Add infrastructure files.

4. Add user code for client and server applications.

5. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that
the server has been run before the client request was sent.

A specific example follows in the next section.

Multicore server application The “Matrix multiply” eRPC server project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4/iar/

The project files for the eRPC server have the _cm4 suffix.

Server project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

250 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 251



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server related generated files The server-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_server.h

• erpc_matrix_multiply_server.cpp

The server-related generated files contain the shim code for functions and data types declared in
the IDL file. These files also contain functions for the identification of client requested functions,
data deserialization, calling requested function’s implementations, and data serialization and
return, if requested by the client. These shim code files can be found in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/

252 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore server application

Server infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

3.3. MultiCore 253



MCUXpresso SDK Documentation, Release 25.12.00

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

– Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple_server.hpp, and
erpc_simple_server.cpp, are used for running the eRPC server on the server-side
applications. The simple server is currently the only implementation of the server,
and its role is to catch client requests, identify and call requested functions, and send
data back when requested.

– Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used
for codecs. Currently, the basic codec is the initial and only implementation of the
codecs.

– The erpc_common.hpp file is used for common eRPC definitions, typedefs, and enums.

– The erpc_manually_constructed.hpp file is used for allocating static storage for the used
objects.

– Message buffer files are used for storing serialized data: erpc_message_buffer.h and
erpc_message_buffer.cpp.

– The erpc_transport.h file defines the abstract interface for transport layer.

• The port subfolder contains the eRPC porting layer to adapt to different environments.

– erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

– erpc_port_stdlib.cpp file ensures adaptation to stdlib.

– erpc_config_internal.h internal erpc configuration file.

• The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, provid-
ing client and server init and deinit routines that greatly simplify eRPC usage in C-based
projects. No knowledge of C++ is required to use these APIs.

– The erpc_server_setup.h and erpc_server_setup.cpp files needs to be added into the “Ma-
trix multiply” example project to demonstrate the use of C-wrapped functions in this
example.

– The erpc_transport_setup.h and erpc_setup_rpmsg_lite_remote.cpp files needs to be
added into the project in order to allow the C-wrapped function for transport layer
setup.

– The erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the
project in order to allow message buffer factory usage.

• The transports subfolder contains transport classes for the different methods of commu-
nication supported by eRPC. Some transports are applicable only to host PCs, while others
are applicable only to embedded or multicore systems. Most transports have correspond-
ing client and server setup functions in the setup folder.

– RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files need to be added into the server project.

254 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 255



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

256 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

3.3. MultiCore 257



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore server application

Server user code The server’s user code is stored in the main_core1.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm4

The main_core1.c file contains two functions:

• The main() function contains the code for the target board and eRPC server initialization.
After the initialization, the matrix multiply service is added and the eRPC server waits for
client’s requests in the while loop.

• The erpcMatrixMultiply() function is the user implementation of the eRPC function de-
fined in the IDL file.

• There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error_handler.h and
erpc_error_handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(const Matrix *matrix1, const Matrix *matrix2, Matrix *result_matrix)
{
...

}
int main()
{
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_remote_init(src, dst, (void*)startupData,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID, SignalReady, NULL);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server);
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

258 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Except for the application main file, there are configuration files for the
RPMsg-Lite (rpmsg_config.h) and eRPC (erpc_config.h), located in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/ erpc_matrix_multiply_rpmsg
folder.

|

|

Parent topic:Multicore server application

Parent topic:Create an eRPC application

Multicore client application The “Matrix multiply” eRPC client project is located in the fol-
lowing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg/cm7/iar/

Project files for the eRPC client have the _cm7 suffix.

Client project basic source files The startup files, board-related settings, peripheral drivers,
and utilities belong to the basic project source files and form the skeleton of all MCUXpresso SDK
applications. These source files are located in the following folders:

• <MCUXpressoSDK_install_dir>/devices/<device>

• <MCUXpressoSDK_install_dir>/boards/<board_name>/multicore_examples/<example_name>/

3.3. MultiCore 259



MCUXpresso SDK Documentation, Release 25.12.00

|

260 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client-related generated files The client-related generated files are:

• erpc_matric_multiply.h

• erpc_matrix_multiply_client.cpp

These files contain the shim code for the functions and data types declared in the IDL
file. These functions also call methods for codec initialization, data serialization, per-
forming eRPC requests, and de-serializing outputs into expected data structures (if re-
turn values are expected). These shim code files can be found in the <MCUXpres-
soSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/
folder.

3.3. MultiCore 261



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Client infrastructure files The eRPC infrastructure files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++
language. These files are distributed into subfolders.

• The infra subfolder contains C++ infrastructure code used to build server and client appli-
cations.

262 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

• Two files, erpc_client_manager.h and erpc_client_manager.cpp, are used for managing the
client-side application. The main purpose of the client files is to create, perform, and release
eRPC requests.

• Three files (erpc_codec.hpp, erpc_basic_codec.hpp, and erpc_basic_codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

• erpc_common.h file is used for common eRPC definitions, typedefs, and enums.

• erpc_manually_constructed.hpp file is used for allocating static storage for the used objects.

• Message buffer files are used for storing serialized data: erpc_message_buffer.hpp and
erpc_message_buffer.cpp.

• erpc_transport.hpp file defines the abstract interface for transport layer.

The port subfolder contains the eRPC porting layer to adapt to different environments.

• erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.

• erpc_port_stdlib.cpp file ensures adaptation to stdlib.

• erpc_config_internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing
client and server init and deinit routines that greatly simplify eRPC usage in C-based projects.
No knowledge of C++ is required to use these APIs.

• erpc_client_setup.h and erpc_client_setup.cpp files needs to be added into the “Matrix mul-
tiply” example project to demonstrate the use of C-wrapped functions in this example.

• erpc_transport_setup.h and erpc_setup_rpmsg_lite_master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

• erpc_mbf_setup.h and erpc_setup_mbf_rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication
supported by eRPC. Some transports are applicable only to host PCs, while others are applicable
only to embedded or multicore systems. Most transports have corresponding client and server
setup functions, in the setup folder.

• RPMsg-Lite is used as the transport layer for the communication between
cores, erpc_rpmsg_lite_base_transport.hpp, erpc_rpmsg_lite_transport.hpp, and
erpc_rpmsg_lite_transport.cpp files needs to be added into the client project.

3.3. MultiCore 263



MCUXpresso SDK Documentation, Release 25.12.00

|

264 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client multicore infrastructure files Because of the RPMsg-Lite (transport layer), it is also
necessary to include RPMsg-Lite related files, which are in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/rpmsg_lite/

The multicore example applications also use the Multicore Manager software library to control
the secondary core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/mcmgr/

3.3. MultiCore 265



MCUXpresso SDK Documentation, Release 25.12.00

|

266 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

|

Parent topic:Multicore client application

Client user code The client’s user code is stored in the main_core0.c file, located in the follow-
ing folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply_rpmsg/cm7

The main_core0.c file contains the code for target board and eRPC initialization.

• After initialization, the secondary core is released from reset.

• When the secondary core is ready, the primary core initializes two matrix variables.

• The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the
matrix multiply application is implemented in erpc_error_handler.h and erpc_error_handler.cpp
files.

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* RPMsg-Lite transport layer initialization */
erpc_transport_t transport;
transport = erpc_transport_rpmsg_lite_master_init(src, dst,
ERPC_TRANSPORT_RPMSG_LITE_LINK_ID);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_rpmsg_init(transport);
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport, message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Except for the application main file, there are configuration files for the RPMsg-Lite
(rpmsg_config.h) and eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply_rpmsg

3.3. MultiCore 267



MCUXpresso SDK Documentation, Release 25.12.00

|

|

Parent topic:Multicore client application

Parent topic:Create an eRPC application

Multiprocessor server application The “Matrix multiply” eRPC server
project for multiprocessor applications is located in the <MCUX-
pressoSDK_install_dir»/boards/<board_name>/multiprocessor_examples/
erpc_server_matrix_multiply_<transport_layer> folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires server-related generated files (server shim code),
server infrastructure files, and the server user code. There is no need for server multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either by
SPI or UART transports. The following table shows the required transport-related files per each
transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_slave.cpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_(d)spi_slave_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

268 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Server user code The server’s user code is stored in the
main_server.c file, located in the <MCUXpressoSDK_install_dir>/boards/
<board_name>/multiprocessor_examples/erpc_server_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply(Matrix matrix1, Matrix matrix2, Matrix result_matrix)
{
...

}
int main()
{
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣

↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC server side initialization */
erpc_server_t server;
server = erpc_server_init(transport, message_buffer_factory);
...
/* Adding the service to the server */
erpc_service_t service = create_MatrixMultiplyService_service();
erpc_add_service_to_server(server, service);
...
while (1)
{
/* Process eRPC requests */
erpc_status_t status = erpc_server_poll(server)
/* handle error status */
if (status != kErpcStatus_Success)
{
/* print error description */
erpc_error_handler(status, 0);
...

}
...

}
}

Parent topic:Multiprocessor server application

Multiprocessor client application The “Matrix multiply” eRPC client project
for multiprocessor applications is located in the <MCUXpressoSDK_install_dir>/
boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply_<transport_layer>/iar/
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The
multiprocessor server application requires client-related generated files (server shim code),

3.3. MultiCore 269



MCUXpresso SDK Documentation, Release 25.12.00

client infrastructure files, and the client user code. There is no need for client multicore in-
frastructure files (MCMGR and RPMsg-Lite). The RPMsg-Lite transport layer is replaced either
by SPI or UART transports. The following table shows the required transport-related files per
each transport type.

|SPI|<eRPC base directory>/erpc_c/setup/erpc_setup_(d)spi_master.cpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.hpp

<eRPC base directory>/erpc_c/transports/ erpc_(d)spi_master_transport.cpp

| |UART|<eRPC base directory>/erpc_c/setup/erpc_setup_uart_cmsis.cpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.hpp

<eRPC base directory>/erpc_c/transports/erpc_uart_cmsis_transport.cpp

|

Client user code The client’s user code is stored in the main_client.c file, located
in the <MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor_examples/
erpc_client_matrix_multiply_<transport_layer>/ folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

...
extern bool g_erpc_error_occurred;
...
/* Declare matrix arrays */
Matrix matrix1 = {0}, matrix2 = {0}, result_matrix = {0};
...
/* UART transport layer initialization, ERPC_DEMO_UART is the structure of CMSIS UART driver␣
↪→operations */
erpc_transport_t transport;
transport = erpc_transport_cmsis_uart_init((void *)&ERPC_DEMO_UART);
...
/* MessageBufferFactory initialization */
erpc_mbf_t message_buffer_factory;
message_buffer_factory = erpc_mbf_dynamic_init();
...
/* eRPC client side initialization */
erpc_client_t client;
client = erpc_client_init(transport,message_buffer_factory);
...
/* Set default error handler */
erpc_client_set_error_handler(client, erpc_error_handler);
...
while (1)
{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply(matrix1, matrix2, result_matrix);
...
/* Check if some error occured in eRPC */
if (g_erpc_error_occurred)
{
/* Exit program loop */
break;

}
...

}

Parent topic:Multiprocessor client application

Parent topic:Multiprocessor server application

270 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Parent topic:Create an eRPC application

Running the eRPC application Follow the instructions in Getting Started with MCUXpresso
SDK (document MCUXSDKGSUG) (located in the <MCUXpressoSDK_install_dir>/docs folder), to
load both the primary and the secondary core images into the on-chip memory, and then effec-
tively debug the dual-core application. After the application is running, the serial console should
look like:

|

|

For multiprocessor applications that are running between PC and the target evaluation board
or between two boards, follow the instructions in the accompanied example readme files that
provide details about the proper board setup and the PC side setup (Python).

Parent topic:Create an eRPC application

Parent topic:eRPC example

Other uses for an eRPC implementation The eRPC implementation is generic, and its use is
not limited to just embedded applications. When creating an eRPC application outside the em-
bedded world, the same principles apply. For example, this manual can be used to create an eRPC
application for a PC running the Linux operating system. Based on the used type of transport
medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

Note about the source code in the document Example code shown in this document has the
following copyright and BSD-3-Clause license:

3.3. MultiCore 271

https://github.com/EmbeddedRPC


MCUXpresso SDK Documentation, Release 25.12.00

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog eRPC All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Unreleased

Added

Fixed
• Python code of the eRPC infrastructure was updated to match the proper python code style,

add type annotations and improve readability.

1.14.0

Added
• Added Cmake/Kconfig support.

• Made java code jdk11 compliant, GitHub PR #432.

• Added imxrt1186 support into mu transport layer.

• erpcgen: Added assert for listType before usage, GitHub PR #406.

Fixed
• eRPC: Sources reformatted.

• erpc: Fixed typo in semaphore get (mutex -> semaphore), and write it can fail in case of
timeout, GitHub PR #446.

• erpc: Free the arbitrated client token from client manager, GitHub PR #444.

272 Chapter 3. Middleware

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


MCUXpresso SDK Documentation, Release 25.12.00

• erpc: Fixed Makefile, install the erpc_simple_server header, GitHub PR #447.

• erpc_python: Fixed possible AttributeError and OSError on calling TCPTransport.close(),
GitHub PR #438.

• Examples and tests consolidated.

1.13.0

Added
• erpc: Add BSD-3 license to endianness agnostic files, GitHub PR #417.

• eRPC: Add new Zephyr-related transports (zephyr_uart, zephyr_mbox).

• eRPC: Add new Zephyr-related examples.

Fixed
• eRPC,erpcgen: Fixing/improving markdown files, GitHub PR #395.

• eRPC: Fix Python client TCPTransports not being able to close, GitHub PR #390.

• eRPC,erpcgen: Align switch brackets, GitHub PR #396.

• erpc: Fix zephyr uart transport, GitHub PR #410.

• erpc: UART ZEPHYR Transport stop to work after a few transactions when using USB-CDC
resolved, GitHub PR #420.

Removed
• eRPC,erpcgen: Remove cstbool library, GitHub PR #403.

1.12.0

Added
• eRPC: Add dynamic/static option for transport init, GitHub PR #361.

• eRPC,erpcgen: Winsock2 support, GitHub PR #365.

• eRPC,erpcgen: Feature/support multiple clients, GitHub PR #271.

• eRPC,erpcgen: Feature/buffer head - Framed transport header data stored in Message-
Buffer, GitHub PR #378.

• eRPC,erpcgen: Add experimental Java support.

Fixed
• eRPC: Fix receive error value for spidev, GitHub PR #363.

• eRPC: UartTransport::init adaptation to changed driver.

• eRPC: Fix typo in assert, GitHub PR #371.

• eRPC,erpcgen: Move enums to enum classes, GitHub PR #379.

• eRPC: Fixed rpmsg tty transport to work with serial transport, GitHub PR #373.

3.3. MultiCore 273



MCUXpresso SDK Documentation, Release 25.12.00

1.11.0

Fixed
• eRPC: Makefiles update, GitHub PR #301.

• eRPC: Resolving warnings in Python, GitHub PR #325.

• eRPC: Python3.8 is not ready for usage of typing.Any type, GitHub PR #325.

• eRPC: Improved codec function to use reference instead of address, GitHub PR #324.

• eRPC: Fix NULL check for pending client creation, GitHub PR #341.

• eRPC: Replace sprintf with snprintf, GitHub PR #343.

• eRPC: Use MU_SendMsg blocking call in MU transport.

• eRPC: New LPSPI and LPI2C transport layers.

• eRPC: Freeing static objects, GitHub PR #353.

• eRPC: Fixed casting in deinit functions, GitHub PR #354.

• eRPC: Align LIBUSBSIO.GetNumPorts API use with libusbsio python module v. 2.1.11.

• erpcgen: Renamed temp variable to more generic one, GitHub PR #321.

• erpcgen: Add check that string read is not more than max length, GitHub PR #328.

• erpcgen: Move to g++ in pytest, GitHub PR #335.

• erpcgen: Use build=release for make, GitHub PR #334.

• erpcgen: Removed boost dependency, GitHub PR #346.

• erpcgen: Mingw support, GitHub PR #344.

• erpcgen: VS build update, GitHub PR #347.

• erpcgen: Modified name for common types macro scope, GitHub PR #337.

• erpcgen: Fixed memcpy for template, GitHub PR #352.

• eRPC,erpcgen: Change default build target to release + adding artefacts, GitHub PR #334.

• eRPC,erpcgen: Remove redundant includes, GitHub PR #338.

• eRPC,erpcgen: Many minor code improvements, GitHub PR #323.

1.10.0

Fixed
• eRPC: MU transport layer switched to blocking MU_SendMsg() API use.

1.10.0

Added
• eRPC: Add TCP_NODELAY option to python, GitHub PR #298.

274 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: MUTransport adaptation to new supported SoCs.

• eRPC: Simplifying CI with installing dependencies using shell script, GitHub PR #267.

• eRPC: Using event for waiting for sock connection in TCP python server, formatting python
code, C specific includes, GitHub PR #269.

• eRPC: Endianness agnostic update, GitHub PR #276.

• eRPC: Assertion added for functions which are returning status on freeing memory, GitHub
PR #277.

• eRPC: Fixed closing arbitrator server in unit tests, GitHub PR #293.

• eRPC: Makefile updated to reflect the correct header names, GitHub PR #295.

• eRPC: Compare value length to used length() in reading data from message buffer, GitHub
PR #297.

• eRPC: Replace EXPECT_TRUE with EXPECT_EQ in unit tests, GitHub PR #318.

• eRPC: Adapt rpmsg_lite based transports to changed rpmsg_lite_wait_for_link_up() API pa-
rameters.

• eRPC, erpcgen: Better distuingish which file can and cannot by linked by C linker, GitHub
PR #266.

• eRPC, erpcgen: Stop checking if pointer is NULL before sending it to the erpc_free function,
GitHub PR #275.

• eRPC, erpcgen: Changed api to count with more interfaces, GitHub PR #304.

• erpcgen: Check before reading from heap the buffer boundaries, GitHub PR #287.

• erpcgen: Several fixes for tests and CI, GitHub PR #289.

• erpcgen: Refactoring erpcgen code, GitHub PR #302.

• erpcgen: Fixed assigning const value to enum, GitHub PR #309.

• erpcgen: Enable runTesttest_enumErrorCode_allDirection, serialize enums as int32 instead
of uint32.

1.9.1

Fixed
• eRPC: Construct the USB CDC transport, rather than a client, GitHub PR #220.

• eRPC: Fix premature import of package, causing failure when attempting installation of
Python library in a clean environment, GitHub PR #38, #226.

• eRPC: Improve python detection in make, GitHub PR #225.

• eRPC: Fix several warnings with deprecated call in pytest, GitHub PR #227.

• eRPC: Fix freeing union members when only default need be freed, GitHub PR #228.

• eRPC: Fix making test under Linux, GitHub PR #229.

• eRPC: Assert costumizing, GitHub PR #148.

• eRPC: Fix corrupt clientList bug in TransportArbitrator, GitHub PR #199.

• eRPC: Fix build issue when invoking g++ with -Wno-error=free-nonheap-object, GitHub PR
#233.

• eRPC: Fix inout cases, GitHub PR #237.

3.3. MultiCore 275



MCUXpresso SDK Documentation, Release 25.12.00

• eRPC: Remove ERPC_PRE_POST_ACTION dependency on return type, GitHub PR #238.

• eRPC: Adding NULL to ptr when codec function failed, fixing memcpy when fail is present
during deserialization, GitHub PR #253.

• eRPC: MessageBuffer usage improvement, GitHub PR #258.

• eRPC: Get rid for serial and enum34 dependency (enum34 is in python3 since 3.4 (from
2014)), GitHub PR #247.

• eRPC: Several MISRA violations addressed.

• eRPC: Fix timeout for Freertos semaphore, GitHub PR #251.

• eRPC: Use of rpmsg_lite_wait_for_link_up() in rpmsg_lite based transports, GitHub PR #223.

• eRPC: Fix codec nullptr dereferencing, GitHub PR #264.

• erpcgen: Fix two syntax errors in erpcgen Python output related to non-encapsulated
unions, improved test for union, GitHub PR #206, #224.

• erpcgen: Fix serialization of list/binary types, GitHub PR #240.

• erpcgen: Fix empty list parsing, GitHub PR #72.

• erpcgen: Fix templates for malloc errors, GitHub PR #110.

• erpcgen: Get rid of encapsulated union declarations in global scale, improve enum usage
in unions, GitHub PR #249, #250.

• erpcgen: Fix compile error:UniqueIdChecker.cpp:156:104:’sort’ was not declared, GitHub
PR #265.

1.9.0

Added
• eRPC: Allow used LIBUSBSIO device index being specified from the Python command line

argument.

Fixed
• eRPC: Improving template usage, GitHub PR #153.

• eRPC: run_clang_format.py cleanup, GitHub PR #177.

• eRPC: Build TCP transport setup code into liberpc, GitHub PR #179.

• eRPC: Fix multiple definitions of g_client error, GitHub PR #180.

• eRPC: Fix memset past end of buffer in erpc_setup_mbf_static.cpp, GitHub PR #184.

• eRPC: Fix deprecated error with newer pytest version, GitHub PR #203.

• eRPC, erpcgen: Static allocation support and usage of rpmsg static FreeRTOSs related APi,
GitHub PR #168, #169.

• erpcgen: Remove redundant module imports in erpcgen, GitHub PR #196.

1.8.1

Added
• eRPC: New i2c_slave_transport trasnport introduced.

276 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

Fixed
• eRPC: Fix misra erpc c, GitHub PR #158.

• eRPC: Allow conditional compilation of message_loggers and pre_post_action.

• eRPC: (D)SPI slave transports updated to avoid busy loops in rtos environments.

• erpcgen: Re-implement EnumMember::hasValue(), GitHub PR #159.

• erpcgen: Fixing several misra issues in shim code, erpcgen and unit tests updated, GitHub
PR #156.

• erpcgen: Fix bison file, GitHub PR #156.

1.8.0

Added
• eRPC: Support win32 thread, GitHub PR #108.

• eRPC: Add mbed support for malloc() and free(), GitHub PR #92.

• eRPC: Introduced pre and post callbacks for eRPC call, GitHub PR #131.

• eRPC: Introduced new USB CDC transport.

• eRPC: Introduced new Linux spidev-based transport.

• eRPC: Added formatting extension for VSC, GitHub PR #134.

• erpcgen: Introduce ustring type for unsigned char and force cast to char*, GitHub PR #125.

Fixed
• eRPC: Update makefile.

• eRPC: Fixed warnings and error with using MessageLoggers, GitHub PR #127.

• eRPC: Extend error msg for python server service handle function, GitHub PR #132.

• eRPC: Update CMSIS UART transport layer to avoid busy loops in rtos environments, intro-
duce semaphores.

• eRPC: SPI transport update to allow usage without handshaking GPIO.

• eRPC: Native _WIN32 erpc serial transport and threading.

• eRPC: Arbitrator deadlock fix, TCP transport updated, TCP setup functions introduced,
GitHub PR #121.

• eRPC: Update of matrix_multiply.py example: Add –serial and –baud argument, GitHub PR
#137.

• eRPC: Update of .clang-format, GitHub PR #140.

• eRPC: Update of erpc_framed_transport.cpp: return error if received message has zero
length, GitHub PR #141.

• eRPC, erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-
errors compiler flags, GitHub PR #136, #139.

• eRPC, erpcgen: Core re-formatted using Clang version 10.

• erpcgen: Enable deallocation in server shim code when callback/function pointer used as
out parameter in IDL.

• erpcgen: Removed ‘$’ character from generated symbol name in ‘_$union’ suffix, GitHub
PR #103.

3.3. MultiCore 277



MCUXpresso SDK Documentation, Release 25.12.00

• erpcgen: Resolved mismatch between C++ and Python for callback index type, GitHub PR
#111.

• erpcgen: Python generator improvements, GitHub PR #100, #118.

• erpcgen: Fixed error messages produced by -Wall -Wextra -Wshadow -pedantic-errors com-
piler flags, GitHub PR #136.

1.7.4

Added
• eRPC: Support MU transport unit testing.

• eRPC: Adding mbed os support.

Fixed
• eRPC: Unit test code updated to handle service add and remove operations.

• eRPC: Several MISRA issues in rpmsg-based transports addressed.

• eRPC: Fixed Linux/TCP acceptance tests in release target.

• eRPC: Minor documentation updates, code formatting.

• erpcgen: Whitespace removed from C common header template.

1.7.3

Fixed
• eRPC: Improved the test_callbacks logic to be more understandable and to allow requested

callback execution on the server side.

• eRPC: TransportArbitrator::prepareClientReceive modified to avoid incorrect return value
type.

• eRPC: The ClientManager and the ArbitratedClientManager updated to avoid performing
client requests when the previous serialization phase fails.

• erpcgen: Generate the shim code for destroy of statically allocated services.

1.7.2

Added
• eRPC: Add missing doxygen comments for transports.

Fixed
• eRPC: Improved support of const types.

• eRPC: Fixed Mac build.

• eRPC: Fixed serializing python list.

• eRPC: Documentation update.

278 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

1.7.1

Fixed
• eRPC: Fixed semaphore in static message buffer factory.

• erpcgen: Fixed MU received error flag.

• erpcgen: Fixed tcp transport.

1.7.0

Added
• eRPC: List names are based on their types. Names are more deterministic.

• eRPC: Service objects are as a default created as global static objects.

• eRPC: Added missing doxygen comments.

• eRPC: Added support for 64bit numbers.

• eRPC: Added support of program language specific annotations.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Generating crc value is optional.

• eRPC: Fixed CMSIS Uart driver. Removed dependency on KSDK.

• eRPC: Forbid users use reserved words.

• eRPC: Removed outByref for function parameters.

• eRPC: Optimized code style of callback functions.

1.6.0

Added
• eRPC: Added @nullable support for scalar types.

Fixed
• eRPC: Improved code size of generated code.

• eRPC: Improved eRPC nested calls.

• eRPC: Improved eRPC list length variable serialization.

1.5.0

3.3. MultiCore 279



MCUXpresso SDK Documentation, Release 25.12.00

Added
• eRPC: Added support for unions type non-wrapped by structure.

• eRPC: Added callbacks support.

• eRPC: Added support @external annotation for functions.

• eRPC: Added support @name annotation.

• eRPC: Added Messaging Unit transport layer.

• eRPC: Added RPMSG Lite RTOS TTY transport layer.

• eRPC: Added version verification and IDL version verification between eRPC code and eRPC
generated shim code.

• eRPC: Added support of shared memory pointer.

• eRPC: Added annotation to forbid generating const keyword for function parameters.

• eRPC: Added python matrix multiply example.

• eRPC: Added nested call support.

• eRPC: Added struct member “byref” option support.

• eRPC: Added support of forward declarations of structures

• eRPC: Added Python RPMsg Multiendpoint kernel module support

• eRPC: Added eRPC sniffer tool

1.4.0

Added
• eRPC: New RPMsg-Lite Zero Copy (RPMsgZC) transport layer.

Fixed
• eRPC: win_flex_bison.zip for windows updated.

• eRPC: Use one codec (instead of inCodec outCodec).

[1.3.0]

Added
• eRPC: New annotation types introduced (@length, @max_length, …).

• eRPC: Support for running both erpc client and erpc server on one side.

• eRPC: New transport layers for (LP)UART, (D)SPI.

• eRPC: Error handling support.

[1.2.0]

Added
• eRPC source directory organization changed.

• Many eRPC improvements.

280 Chapter 3. Middleware



MCUXpresso SDK Documentation, Release 25.12.00

[1.1.0]

Added
• Multicore SDK 1.1.0 ported to KSDK 2.0.0.

[1.0.0]

Added
• Initial Release

3.3. MultiCore 281



MCUXpresso SDK Documentation, Release 25.12.00

282 Chapter 3. Middleware



Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme

FreeRTOS kernel for MCUXpresso SDK ChangeLog

FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

C language HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

283



MCUXpresso SDK Documentation, Release 25.12.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 corepkcs11

PKCS #11 key management library.

Readme

4.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

284 Chapter 4. RTOS


	IMX943EVK
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with Package
	Overview
	MCUXpresso SDK board support folders
	Example application structure
	Locating example application source files

	Toolchain introduction
	Build a demo application using Arm GCC
	Linux OS host
	Set up toolchain
	Install GCC Arm embedded toolchain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application

	Windows OS host
	Set up toolchain
	Install GCC Arm embedded toolchain
	Add a new system environment variable for ARMGCC_DIR
	Build an example application


	Build a demo application with IAR
	Build an example application

	Generate a flash.bin
	Enable MCU UARTs
	Run a demo application
	Generate a flash.bin

	How to determine COM port
	Host setup


	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Overview
	Benefits of the Multi-Repository Approach
	Setup and Configuration
	Development Tools Installation
	Quick Start: Automated Installation (Recommended)
	Manual Installation
	Essential Tools
	Git - Version Control
	Python - Scripting Environment
	West - SDK Management Tool
	Build System Tools
	CMake - Build Configuration
	Ninja - Fast Build System
	Ruby - IDE Project Generation (Optional)
	Compiler Toolchains
	Setting Up Environment Variables
	Verify Your Installation
	Troubleshooting Installation Issues

	GitHub Repository Setup
	Prerequisites
	Workspace Initialization
	Step 1: Initialize Workspace
	Step 2: Choose Your Repository Update Strategy
	Option A: Download All Repositories (Complete SDK)
	Option B: Targeted Repository Download (Recommended)
	Step 3: Verify Installation
	Advanced Repository Management
	Board-Specific Setup
	Device-Specific Setup
	Custom Configuration
	Benefits of Targeted Setup
	Repository Information
	Package Generation (Optional)
	Workspace Management
	Updating Your Workspace
	Workspace Status
	Troubleshooting
	Next Steps


	Explore SDK Structure and Content
	SDK Architecture Overview
	Repository Organization
	Manifest Repository
	Base Repositories
	Middleware Repositories
	Internal Repositories
	Repository Hosting
	Benefits of This Architecture
	Workspace Management

	Workspace Structure
	Top-Level Organization
	SDK Component Layout
	Example Organization
	Common Example Files
	Board-Specific Files
	Device Support Structure
	Middleware Organization
	Documentation Structure
	Understanding Example Structure
	1. General README: examples/demo_apps/hello_world/readme.md
	2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/example_board_readme.md


	Development Workflows
	Building Your First Project
	Prerequisites
	Understanding Board Support
	Basic Build Process
	Simple Build
	Specifying Configuration
	Alternative Toolchains
	Multicore Applications
	Flash an Application
	Debug
	Common Build Options
	Clean Build
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Troubleshooting
	Build Failures
	Getting Help
	Check Supported Configurations
	Next Steps

	MCUXpresso for VS Code Development
	Prerequisites
	Extension Installation
	Install MCUXpresso for VS Code
	SDK Import and Setup
	Import Methods
	Import GitHub Repository SDK
	Import Repository-Layout SDK Package
	Building Example Applications
	Import Example Project
	Application Types
	Trust Confirmation
	Building Projects
	Build Process
	Running and Debugging
	Serial Monitor Setup
	Debug Session
	Debug Controls
	Monitor Output
	Debug Probe Support
	Project Configuration
	Workspace Management
	Multi-Project Support
	Troubleshooting
	Import Issues
	Build Problems
	Debug Issues
	Integration with Command Line
	Advanced Features
	Project Types
	Build System Integration
	Next Steps

	Command Line Development
	Prerequisites
	Understanding Board Support
	Basic Build Commands
	Standard Build Process
	Specifying Build Configuration
	Multicore Applications
	Shield Support
	Advanced Build Options
	Clean Builds
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Flashing and Debugging
	Flash Application
	Debug Session
	IDE Project Generation
	Troubleshooting
	Build Failures
	Toolchain Issues
	Getting Help
	Check Supported Configurations
	Best Practices
	Project Organization
	Build Efficiency
	Development Workflow
	Next Steps

	Using MCUXpresso Config Tools
	Prerequisites
	Board Files
	Visual Studio Code
	Manual Workflow
	Updating the SDK West project




	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	RTOS
	FreeRTOS

	Middleware
	CMSIS DSP Library
	USB Type-C PD Stack
	USB Host, Device, OTG Stack
	TinyCBOR
	PKCS#11
	FreeModbus
	Simple Open EtherCAT Master
	Motor Control Software (ACIM, BLDC, PMSM)
	Multicore
	lwIP
	llhttp
	FreeMASTER

	Release contents
	Known issues
	SEGGER J-Link debugger usage problem
	Failed to get temperature from temp_ana
	Issue Description
	Reference

	Sar_adc trigger not enabled
	Issue Description
	Reference

	LPUART trigger no output
	Issue Description
	Reference



	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]


	AOI
	[2.0.2]
	[2.0.1]
	[2.0.0]

	BBNSM
	[2.0.0]

	BiSS
	[1.0.2]
	[1.0.1]
	[1.0.0]

	CACHE ARMv7-M7
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CACHE XCACHE
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	COMMON
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	DCIF
	[2.1.0]
	[2.0.0]

	ECAT
	[2.0.1]
	[2.0.0]

	EDMA
	[2.10.9]
	[2.10.8]
	[2.10.7]
	[2.10.6]
	[2.10.5]
	[2.10.4]
	[2.10.3]
	[2.10.2]
	[2.10.1]
	[2.10.0]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.1]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	EnDat2.2
	[1.0.1]
	[1.0.0]

	ENDAT3
	[2.0.0]
	[2.0.1]

	EQDC
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	EWM
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	FLEXCAN
	[2.14.5]
	[2.14.4]
	[2.14.3]
	[2.14.2]
	[2.14.1]
	[2.14.0]
	[2.13.1]
	[2.13.0]
	[2.12.0]
	[2.11.8]
	[2.11.7]
	[2.11.6]
	[2.11.5]
	[2.11.4]
	[2.11.3]
	[2.11.2]
	[2.11.1]
	[2.11.0]
	[2.10.1]
	[2.10.0]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.7]
	[2.8.6]
	[2.8.5]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	FLEXCAN_EDMA
	[2.12.1]
	[2.12.0]
	[2.11.7]

	FLEXIO
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]

	FLEXIO_A-FORMAT
	[1.0.0]

	FLEXIO_I2C
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_I2S
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_I2S_EDMA
	[2.1.9]
	[2.1.8]

	FLEXIO_SPI
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_T-FORMAT
	[1.0.0]

	FLEXIO_UART
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]

	FLEXIO_UART_EDMA
	[2.3.1]
	[2.3.0]

	FRACT_PLL
	[2.0.0]

	GPT
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	HIPERFACE
	[1.0.0]

	IGF
	[2.0.0]

	IRQSTEER
	[2.0.1]
	[2.0.0]

	LPI2C
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.7]
	[2.5.6]
	[2.5.5]
	[2.5.4]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	LPI2C_EDMA
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]

	LPIT
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPSPI
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.10]
	[2.6.9]
	[2.6.8]
	[2.6.7]
	[2.6.6]
	[2.6.5]
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPSPI_EDMA
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]

	LPTMR
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPUART
	[2.10.0]
	[2.9.4]
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.7]
	[2.7.6]
	[2.7.5]
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]

	LPUART_EDMA
	[2.4.0]

	MCM
	[2.2.0]
	[2.1.0]
	[2.0.0]

	MSGINTR
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MU
	[2.8.1]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	NETC
	[2.10.3]
	[2.10.2]
	[2.10.1]
	[2.10.0]
	[2.9.1]
	[2.9.0]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	PDM
	[2.9.3]
	[2.9.2]
	[2.9.1]
	[2.9.0]
	[2.8.1]
	[2.8.0]
	[2.7.4]
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PDM_EDMA
	[2.6.5]
	[2.6.4]
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]

	PWM
	[2.9.1]
	[2.9.0]
	[2.8.4]
	[2.8.3]
	[2.8.2]
	[2.8.1]
	[2.8.0]
	[2.7.1]
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	PXP
	[2.7.0]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	QTMR
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RGPIO
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	S3MU
	SAI
	[2.4.10]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.8]
	[2.3.7]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	SAI_EDMA
	[2.7.3]
	[2.7.2]
	[2.7.1]
	[2.7.0]
	[2.6.0]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.2]

	SAR_ADC
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SEMA42
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SINC
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SRAMCTL
	[3.0.0]

	TPM
	[2.4.1]
	[2.4.0]
	[2.3.6]
	[2.3.5]
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	TSTMR
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	XBAR
	[2.2.0]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]



	Driver API Reference Manual
	Middleware Documentation
	Multicore
	FreeMASTER
	FreeRTOS
	lwIP


	Drivers
	DSC
	i.MX
	i.MX RT
	Kinetis
	LPC
	MCX
	Wireless

	Middleware
	Connectivity
	lwIP
	The NXP lwIP Port
	Link state
	Rx task
	Disabling Rx interrupt when out of buffers
	Limit the number of packets read out from the driver at once on bare metal.
	Helper functions



	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications


	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types


	Document references
	Links
	Documents
	Revision history



	MultiCore
	Multicore SDK
	Multicore SDK (MCSDK) Release Notes
	Overview
	What is new
	Development tools
	Release contents
	Multicore SDK release overview
	Demo applications

	Getting Started with Multicore SDK (MCSDK)
	Overview
	Multicore SDK (MCSDK) components
	Embedded Remote Procedure Call (eRPC)
	Multicore Manager (MCMGR)
	Remote Processor Messaging Lite (RPMsg-Lite)
	MCSDK demo applications
	Inter-Processor Communication (IPC) levels

	Changelog Multicore SDK
	[25.12.00]
	[25.09.00]
	[25.06.00]
	[25.03.00]
	[24.12.00]
	[2.16.0]
	[2.15.0]
	[2.14.0]
	[2.13.0_imxrt1180a0]
	[2.13.0]
	[2.12.0_imx93]
	[2.12.0]
	[2.11.1]
	[2.11.0]
	[2.10.0]
	[2.9.0]
	[2.8.0]
	[2.7.0]
	[2.6.0]
	[2.5.0]
	[2.4.0]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.0]
	[1.1.0]
	[1.0.0]

	Multicore SDK Components
	RPMSG-Lite
	MCUXpresso SDK : mcuxsdk-middleware-rpmsg-lite
	Overview
	Documentation
	Setup
	Contribution
	RPMSG-Lite
	Motivation to create RPMsg-Lite
	Implementation
	RPMsg-Lite core sub-component
	Queue sub-component (optional)
	Name Service sub-component (optional)
	Usage
	Examples
	Notes
	Environment layers implementation
	Shared memory configuration
	Configuration options
	How to format rpmsg-lite code
	References
	[1] M. Novak, M. Cingel, Lockless Shared Memory Based Multicore Communication Protocol
	Changelog RPMSG-Lite
	[v5.3.0]
	Added
	Fixed
	v5.2.1
	Added
	Changed
	Fixed
	v5.2.0
	Added
	Changed
	Fixed
	v5.1.4 - 27-Mar-2025
	Added
	Changed
	v5.1.3 - 13-Jan-2025
	Added
	v5.1.2 - 08-Jul-2024
	Changed
	v5.1.1 - 19-Jan-2024
	Added
	Changed
	v5.1.0 - 02-Aug-2023
	Added
	Changed
	Fixed
	v5.0.0 - 19-Jan-2023
	Added
	Changed
	Fixed
	v4.0.0 - 20-Jun-2022
	Added
	Changed
	v3.2.0 - 17-Jan-2022
	Added
	Changed
	Fixed
	v3.1.2 - 16-Jul-2021
	Added
	Fixed
	Changed
	v3.1.1 - 15-Jan-2021
	Added
	Changed
	v3.1.0 - 22-Jul-2020
	Added
	Fixed
	Changed
	v3.0.0 - 20-Dec-2019
	Added
	Fixed
	v2.2.0 - 20-Mar-2019
	Added
	v1.1.0 - 28-Apr-2017
	Added

	Multicore Manager
	MCUXpresso SDK : mcuxsdk-middleware-mcmgr (Multicore Manager)
	Overview
	Documentation
	Setup
	Contribution
	Multicore Manager (MCMGR)
	Usage of the MCMGR software component
	MCMGR Data Exchange Diagram
	Changelog Multicore Manager
	[v5.0.2]
	Added
	v5.0.1
	Added
	Changed
	Fixed
	v5.0.0
	Added
	Added
	v4.1.7
	Fixed
	[v4.1.6]
	Added
	[v4.1.5]
	Added
	[v4.1.4]
	Fixed
	[v4.1.3]
	Added
	Fixed
	[v4.1.2]
	Fixed
	[v4.1.0]
	Fixed
	[v4.0.3]
	Fixed
	[v4.0.2]
	Fixed
	[v4.0.1]
	Fixed
	[v4.0.0]
	Added
	[v3.0.0]
	Removed
	Modified
	Added
	[v2.0.1]
	Fixed
	[v2.0.0]
	Added
	[v1.1.0]
	Fixed
	[v1.0.0]
	Added

	eRPC
	MCUXpresso SDK : mcuxsdk-middleware-erpc
	Overview
	Documentation
	Setup
	Contribution
	eRPC
	About
	Releases
	Edge releases
	Documentation
	Examples
	References
	Directories
	Building and installing
	Requirements
	Windows
	Mac OS X
	Building
	CMake and KConfig
	Make
	Installing for Python
	Known issues and limitations
	Code providing
	eRPC Getting Started
	Overview
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	eRPC example
	Designing the eRPC application
	Creating the IDL file
	Using the eRPC generator tool
	Create an eRPC application
	Multicore server application
	Server project basic source files
	Server related generated files
	Server infrastructure files
	Server multicore infrastructure files
	Server user code
	Multicore client application
	Client project basic source files
	Client-related generated files
	Client infrastructure files
	Client multicore infrastructure files
	Client user code
	Multiprocessor server application
	Server user code
	Multiprocessor client application
	Client user code
	Running the eRPC application
	Other uses for an eRPC implementation
	Note about the source code in the document
	Changelog eRPC
	Unreleased
	Added
	Fixed
	1.14.0
	Added
	Fixed
	1.13.0
	Added
	Fixed
	Removed
	1.12.0
	Added
	Fixed
	1.11.0
	Fixed
	1.10.0
	Fixed
	1.10.0
	Added
	Fixed
	1.9.1
	Fixed
	1.9.0
	Added
	Fixed
	1.8.1
	Added
	Fixed
	1.8.0
	Added
	Fixed
	1.7.4
	Added
	Fixed
	1.7.3
	Fixed
	1.7.2
	Added
	Fixed
	1.7.1
	Fixed
	1.7.0
	Added
	Fixed
	1.6.0
	Added
	Fixed
	1.5.0
	Added
	1.4.0
	Added
	Fixed
	[1.3.0]
	Added
	[1.2.0]
	Added
	[1.1.0]
	Added
	[1.0.0]
	Added





	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme




