- W& MCUXpresso SDK Documentation
Release 25.12.00

NXP

Dec 18, 2025 -

Table of contents

1 LPC845BREAKOUT
11 OVEIVIEW . . o oo e e e e e e e e e e e e e e e e
1.2 Getting Started with MCUXpresso SDKPackage
1.2.1 Getting Started with MCUXpresso SDKPackage
1.3 Getting Started with MCUXpresso SDKGitHub
1.3.1 Getting Started with MCUXpresso SDK Repository
1.4 Release NOteS ot i e e e e e
1.41 MCUXpresso SDKReleaseNotes,
1.5 Changelog o ittt e e e e e e e e e e e e e e e e e
1.5.1 MCUXpresso SDKChangelogo ...
1.6 Driver API Reference Manual eenen...
1.7 Middleware Documentation
1.7.1 FreeMASTER e e

2 LPC845
2.1 CAPT: Capacitive Touch et
2.2 ClockDIiVer . . . o it e
2.3 CRC: Cyclic Redundancy Check Driver
2.4 CTIMER: Standard counter/timers it ittt it
2.5 DMA: Direct Memory Access Controller Driver
2.6 I2C: Inter-Integrated Circuit Driver
277 I2CDTIIVEr . o ot e e e e e
2.8 I2CMaster DIiVer o ot it i e e e e e e e e e e e
2.9 I2CSlave Driver o e
2.10 IAP:In Application Programming Driver
2.11 INPUTMUX: Input Multiplexing Driver
212 CommoON DIIVEr o e e e e
2.13 LPC_ACOMP: Analog comparator Driver,
2.14 ADC: 12-bit SAR Analog-to-Digital Converter Driver
2.15 DAC: 10-bit Digital To Analog Converter Driver
2.16 GPIO: General PurposeI/O i
2.17 IOCON:I/O pin configuration v it it e e e e e e e e e e
218 MRT: Multi-Rate TIMET v v it et et e e e et e e e e e
2.19 PINT: Pin Interrupt and Pattern Match Driver
2.20 POWer DIiver i i e e
2.21 ResetDriver e
2.22 SCTimer: SCTImer/PWM (SCT) v o it e e e e e e
2.23 SPI: Serial Peripheral Interface Driver
224 SPIDTIVEI. . o ottt e e e e
2.25 SWM: Switch Matrix Module
2.26 SYSCON: System Configuration vt ittt ettt ettt e e
2.27 USART: Universal Asynchronous Receiver/Transmitter Driver
2.28 USART DIIVET . . o i ottt e e e e e e e e e e e e e e
2.29 WKT: Self-wake-up Timer e
2.30 WWDT: Windowed Watchdog Timer Driverot

3 Middleware

100
100
100

101
101
108
122
125
134
151
151
152
161
171
177
180
193
196
207
209
212
212
217
226
231
234
251
251
263
271
274
274
286
289

293

4

3.1 Motor Control o vt e e e e e e e e e 293

311 FreeMASTER . . . oo e 293
RTOS 331
4.1 FreeRTOS . . . o oo e e 331

411 FreeRTOSKernel 331

4.1.2 FreeRTOSArIVErS i ittt e e e e e e e e e e e 331

4.1.3 backoffalgorithm 331

414 corehttpo e e e e 331

0 T o0 < -1) o AP 331

4.1.6 CcoremMQit. . . . v v i e e e e e e e e e e e e e e e e e e 332

4.1.7 corepkeSIl 332

4.1.8 freertos-plus-tCp o ot it e 332

ii

MCUXpresso SDK Documentation, Release 25.12.00

This documentation contains information specific to the Ipc845breakout board.

Table of contents 1

MCUXpresso SDK Documentation, Release 25.12.00

2 Table of contents

Chapter 1

LPC845BREAKOUT

1.1 Overview

The LPC845 breakout board provides a powerful and flexible development system for NXP’s low
end Cortex-MO0+-based LPC84x Family of MCUs, delivered in an ultra-low-cost evaluation board.
This breakout board can be used with a range of development tools, including the MCUXpresso
IDE toolchain. The LPCXpresso845 Breakout board is developed by NXP to enable evaluation
of and prototyping with the LPC84x family of MCUs. The LPC845 breakout board features an
on-board CMSIS-DAP debug and VCOM port, RGB user LEDs, capacitive touch button, user po-
tentiometer and allows an easy prototyping experience with access to 38 LPC845 port pins.

MCU device and part on board is shown below:
* Device: LPC845
* PartNumber: LPC845M301]JBD48

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Starting with version 25.09.00, MCUXpresso SDK introduced two package versions for
offline development:

¢ Classic SDK Package: Traditional board-specific packages with pre-configured IDE
projects for MCUXpresso IDE, IAR, Keil, and other toolchains.

* Repository-Layout SDK Package: Board-specific packages that maintain the same
structure and build system as the GitHub Repository SDK, providing offline access to
the repository SDK development experience. Available when selecting the ARMGCC
toolchain.

From version 25.12.00 onward:
* When you select ARMGCC, the SDK download will use the Repository-Layout version.

* For all other toolchains, the SDK download will remain in the Classic version.

MCUXpresso SDK Documentation, Release 25.12.00

Note: The Repository-Layout SDK package was first introduced in version 25.09.00, but initially
only for MCXW23x platforms.

Classic SDK Package

Overview The NXP MCUXpresso software and tools offer comprehensive development solu-
tions designed to optimize, ease, and help accelerate embedded system development of applica-
tions based on general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUX-
presso SDK includes a flexible set of peripheral drivers designed to speed up and simplify de-
velopment of embedded applications. Along with the peripheral drivers, the MCUXpresso SDK
provides an extensive and rich set of example applications covering everything from basic pe-
ripheral use case examples to full demo applications. The MCUXpresso SDK contains optional
RTOS integrations such as FreeRTOS and Azure RTOS, and various other middleware to support
rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).
For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSF Library)

Microcontroller Hardware

MCUXpresso SDK board support package folders MCUXpresso SDK hoard support package
provides example applications for NXP development and evaluation boards for Arm Cortex-M
cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are
found inside the top-level boards folder and each supported board has its own folder (an MCUX-
presso SDK package can support multiple boards). Within each <board name> folder, there are
various subfolders to classify the type of examples it contains. These include (but are not limited
to):

* cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

* demo_ apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

* driver_examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

* emwin_ examples: Applications that use the emWin GUI widgets.

4 Chapter 1. LPC845BREAKOUT

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

* rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

* usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello world exam-
ple (part of the demo_ apps folder), the same general rules apply to any type of example in the
<board name> folder.

In the hello_world application folder you see the following contents:

armgec
iar — Toolchain folders: project and linker files
mdk

R Board macro definitions (LEDs, buttons, etc)
board.h

clock_config.c

[?__ ['_-" [?__ ['_-'__

T —— Application-specific clock configuration

hello_world.bin » Pre-compiled application

&l hello_world.c » Application main source file

B8 hello_world.mex —» Application-specific MCUXpresso Config Tool configuration
hello_world.xml > Project definition file for MCUXpresso IDE and PG

:: z:::z: Application-specific pin configuration
readme. txt » Description and instructions for running

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

* devices/<device name>/cmsis_drivers: All the CMSIS drivers for your specific MCU
* devices/<device_name> /drivers: All of the peripheral drivers for your specific MCU

* devices/<device name>/<tool name>: Toolchain-specific startup code, including vector ta-
ble definitions

* devices/<device_name> /utilities: Items such as the debug console that are used by many of
the example applications

1.2. Getting Started with MCUXpresso SDK Package 5

MCUXpresso SDK Documentation, Release 25.12.00

* devices/<devices name> /project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE Note: Ensure that the MCUXpresso IDE toolchain is in-
cluded when generating the MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello world demo application targeted for the hardware platform is
used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

(1) Installed SDKs 2 [] Properties & Console |*| Problems [] Memory 3 Instruction”

i1 Installed SDKs

To install an 50K, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.

Marme Yersion Location

2. On the Quickstart Panel, click Import SDK example(s)....

U Quickstart Panel "= Global Variables =Variables % Breakpoints &5 Outline Sl

4 MCUXpresso IDE - Quickstart Panel
=t No project selected

~ Create or import a project
B ey poiect
m|III[':(J"."\l}K‘—fﬂII[P—':‘\:' l

¥ Import project(s) from file system

~ Build your project
= Debug your project Br-Ed~-HA-~

~ Miscellaneous

& Quick Settings> >

“ Build all projects []

6 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

3. Expand the demo_ apps folder and select hello_ world.
4. Click Next.

5.

&0 SDK Import Wizarc W o o= S

M-
1, The source from the SDK will be copied into the workspace. \E
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KB4F' SDK.
. Import projects =

Project name prefix — 2 Project name suffixc
Use default location
C\Usersh b599068"\Documents\MCUXpressolDE_10.0.0_299_beta\workspacefrdmbaaf_ Browse...

Project Type Project Options

@ C Project C++ Project C Static Library C++ Static Library Copy sources

Bl | 2 M%|EE

m

»

Mame Version
i [[] £ cmsis_driver_examples
4 S demo_apps
o =
2 [£ mbedtls
> O] £ wifi_gea
» [] E wolfss
[= adclb_low_power
[[] = bubble
[[] = dac_adc
[[] = ecompass
[= ftm_pdb_adclé
[[] = ftm quad_decoder

b /| = hello_world

[[] = power_manager

m

[[] = power_mode_switch
[= rtc_func

[= chall
4 T | r

@ BTN T (s

Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_ basic, adc_ burst,
adc_dma, and adc_ interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1.

Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

. Connect the development platform to your PC via a USB cable.

. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the

debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1.2.

Getting Started with MCUXpresso SDK Package 7

https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.12.00

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)

2. No parity
3. 8 data bhits

Category:

—I Session Basic options for your PuTTY session
~ Loggng Specify the destinat t t

= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell com4 115200
- Features - o

= Window onnection type:
. Appearance (ORaw () Telnet ()Rlogin ()SSH | (@) Serial
Beha\ﬂoyr Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours

= Connection -
- Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin

[+ SSH Delete
- Serial
Close window on exit:
(JAways ()Never (®) Only on clean exit
About Open Cancel

4. 1stop bit
4. On the Quickstart Panel, click Debug to launch the debug session.

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

-
. Probes discovered ==

Connect to target: MK64FN1IMMookl2
1 probe found. Select the probe to use:

Available attached probes

Marne Serial number/ID Type Manu... IDE Debug Mode

Eﬂ USEL - OpenSDA (JATI0E4D TATI0E4D USB1 P&E M All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CM3IS-DAP) probes
P&E Micro probes

SEGGER J-Link probes i

Probe search options

-

Remember my selection (for this Launch configuration)
®

6. The application is downloaded to the target and automatically runs to main().

b

7. Start the application by clicking Resume.

Project peliies Window
din @l

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 9

MCUXpresso SDK Documentation, Release 25.12.00

hello world.

]

Build a multicore example application This section describes the steps required to configure
MCUZXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)... on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114]J256. Then, select Ipcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cmOplus counterpart
project is automatically imported with the cm4 project, because the multicore examples are
linked together and there is no need to select it explicitly. Click Finish.

10 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

- SDK Import Wizard O x

Y The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the ‘SDK_2.x_FRDM-K32L3A6' SDK. The advanced options page is disabled when either more than one

. Import projects
Project name prefix frdmk3213ab Project name suffix

i¥] Use default location

Project Type Project Options
SDK Debug Console (_) Semihost UART (®) Example default

~| Import other files

Examples = ¥ iy | &

Name Description Version -~
[[] & fatfs_examples
[[] & mbedtls_examples

~ [m] = multicore_examples

erpc_matrix_multiply_mu_cm0plus The Multicore eRPC Matrix Multiply project is a simple demonstration program that
4 i The Multicore eRPC Matrix Multiply project is a simple demonstration program that ..
erpc_matrix_multiply_mu_rtos_cmDplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t y t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra.
[] erpc_matrix_multiply_rpmsg_cm0Oplus The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
t I t The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
L ¥ erpc_matrix_multiply_rpmsg_rtos_cmOplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t tiply rp t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
| = hello_world_cmOplus The Multicore Hello World demo application demonstrates how to set up projects f...
] A The Multicore Hello World demo application demaonstrates how to set up projects f...
[multicore_manager_cm0Oplus The Multicore Manager example application demonstrates advanced features of the. v
L < Back Next Cancel

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the Ipcxpresso54114_ multicore examples_hello world_ c¢m4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

. workspace - Develop - Welcome page - MCUXpresso]D_
File Edit Mavigate Search Project Run FreeRTOS Window Help
N B R 2 PR BN R FS
v 1 Debug (Debug build)
2 Release (Release build)

H"_‘, Project Explorer &3 bol Viewer

=l

. 25 Ipoxepresso54114_multicore_examples_helle_world_cmplus
» |25 Ipcxpresso54114 _multicore_examples_hello_world_cmd

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cmOplus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

1.2. Getting Started with MCUXpresso SDK Package 11

MCUXpresso SDK Documentation, Release 25.12.00

I wortpace - Deveop - Welione page“We Dz CENI

File Edit Mavigate Search Project Run FreeRTOS Window Help

Huil | S -R-@iw|0ENe 2SR bHEARRKNS LI HE-09Q
[Project Explorer 3% | 2, Peripherals+ [l Registers . Symbol Viewer = 0O @ Welcome 53
=05 ~ @ 5 file///Crp/MCUXpressol

(=3 Ipcxpresso54114_multicore_examples_hello_werld_cmOplus
s | Ipcxpresso54114_multicore_examples_hello_world_cmé

Mew 3

Go Into

Copy Ctrl+C
Paste Chrl+V
Delete Delete

Source »
Move...

Rename... F2

Import...

EE

Export...

Build Project
Clean Project
Refresh Fa
Close Project

Close Unrelated Projects

Build Cenfigurations 4 Set Active »
Build Targets 2 Manage... v 2 Release (Release build)

Index 3

Build All

Run As 4 Clean All
Debug As 4 Build Selected...
Profile As 3 [

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See the following figures
as reference.

o] MCUXpre:

J Cruackstart Panel ©° *=Variables *e Breakpoints .
Help -> MCUXpresso IDE User Gu
A MCUXpresso IDE - Quickstart Panel

" Project: frdmk3213a6_hello_world_cmd [Release] Help H'Hp L.O,'“e'm

= Create or import a project

B e proiect =T¢
[/ I
L] 4 CDT Build Console [frdmk3213a6_hello world_om
= Build your project make --no-print-directory post-buil
™ Performing post-build steps
m arm-none-eabi-size "frdmk3213aé_hel
r text data bss dec
Teee e 8488 15488
* Debug your project E~d-B~
® o ® Debug using LinkServer probes (CTRL+SHIFT+ALT+L)
Attach to a running target using LinkServer (CTRL+ALT+L)
o g targel ng

Program flash action using LinkServer
= Miscellanecus

. Erase flash action using LinkServer

12 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

-
B Probes discovered E@g

Connect to target: LPC54114J256

{1y The following probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame Serial number/ID Type Manufa... IDE Debug Mode
LPC-LIMEKZ CM5IS-DAP V5,134 ADODO00002 LinkServe MNXP Semi MNon-Stop

Supported Probes (tick/untick to enable/disable)
MCUKXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[C] P&E Micro probes

[C] SEGGER J-Link probes

Probe search options

Rermember my selection (for this Launch configuration)

®
b
F'. Eg N

SWD Configuration

(1, 2 available SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!

Bevicen| Name TAP Id Details

0 Corex-M4 0:2ball477 APID:24770011
|1 Cortex-MO+ 0:2bal1477 APID:24770011

®

1.2. Getting Started with MCUXpresso SDK Package 13

MCUXpresso SDK Documentation, Release 25.12.00

. workspace - Develop - Ipoxpresso54114_multicore_examples_hello_world_cmd/source/hello_world_core(.c - MCUXpresso [D_
File Edit 5Source Refactor Mavigate Search Project Bun FreeRTOS Window Help

- B -/ -@in| B CEN-NAES [- ESCHUEZ LR R
E # Debug 3

rb 4 . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

?b 4 L,_"'E} Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

a f® Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel.c:85 1:98a
& s arm-none-eabi-gdb (7.12.0.20161204)

) [hello_werld_corel.c 32

)= 68
o= 63 uint32_t corel image size;
72 #if defined(_ CC_ARM)
% 71 corel_image_size = (uint32_t)&Imagef$COREL_REGIONFFLength;
e 72 #elif defined(_ ICCARM_)
== 73 #pragma section = "_ sec_core”
74 corel_image_size = (uint32_t)_ section_end("_ sec_core™) - (uint32_t)&corel_image_start;
75 #endif
76 return corel image size;
78 #endif
792 /*!
88 * (ibrief Main function
82- int main(void)
83 {
34 /* Define the init structure for the switches*/
a5 | gpio pin_config t sw_config = {kGPIO DigitalInput, @};
86
87 /* Init board hardware.*/
38 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk(kFROIZM to FLEXCOMMA);
o
91 BOARD_InitPins_Core@();
92 BOARD_BootClockFROHFAEM();
93 BOARD_InitDebugConsole();
94
95 /* Init switches */
96 GPIO_PinInit(BOARD SW1 GPIO, BOARD SW1_GPIO PORT, BOARD SW1_GPIO PIN, &sw_config);
97 GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2_GPIO PIN, &sw_config);

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

File Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core, _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the second debug

14 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

session.

U Quickstart Pa... ®-Global Varia.. ®=Variables % Breakpoints B Qutline — O Fur

~ Installed SDKs [E Properties 22 E Consols

g MCUXpresso IDE - Quickstart Panel Property

Project: Ipcxpresso54114_hello_world_cmOplus [Debug]
~ Create or import a project

. & New project..
. Import SDK example(s)...

2 Import project(s) from file system...
~ Build your project

R Build
& Clean

~ Debug your project W~EH~H~
3 Debug M Debug using LinkServer probes (CTRL+SHIFT+L)
35 B Attach to a running target using LinkServer (CTRL+ALT+L)
) B Program flash using LinkServer
v Micrallananiic B Erase flash using LinkServer

1.2. Getting Started with MCUXpresso SDK Package 15

MCUXpresso SDK Documentation, Release 25.12.00

. workspace - Develop - Ipexpresso54114 multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXprﬁsoID-
Eile Edit Scurce Refactor MNavigate Search Project Bun FreeRTOS Window Help

™ | B~ -@in|[®E 2R g i @E 2R E LA -0
E %5 Debug 53

rﬁ__‘ 4 . Ipcxpresso54114_multicore_exarmples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

4 E Ipcxpressa54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-mOplus)]

T a4 f® Thread #1 1 (Stopped) (Suspended : Breakpaoint)

it = main(] at hello_world_corel.c:85 0:98a

& w | arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_helle_world_cm0plus Debug [C/C++ (NXP Semicenductors) MCU Application]

& 4 % lpcxpresso54114_multicore_examples_hello_world_crm0plus.axf [LPC54114)256 {cortex-m0Oplus)]

0! 4 o Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal])

-~ = Oxlec

#= = <signal handler called> () at Dxfffffffo

(e = 00

% w arm-none-eabi-gdb (7.12.0.20161204)

o=

[£] hello_world_cored.c &3

68 {

63 uint32 t corel_image_size;

72 #if defined(_ CC_ARM)

71 corel_image_size = (uint32 t)&Image$$COREL_REGION$SLength;

72 #elif defined(ICCARM)

73 #pragma section = "_ sec_core”

74 corel image size = (uint32 t) section_end(" sec_core™) - (uint32_t)&corel_image start;
75 #endif

return corel _image size;

J
~] O

-

78 #endif

792 f*!

38 * @brief Main function

81 */

2= int main(void)

83

34 /* Define the init structure for the switches*/

85 | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};
86

87 /* Init board hardware.*/

88 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk({kFROI2M to FLEXCOMMB);

98

a1 BOARD_InitPins_Core@();

a2 BOARD BootClockFROHF48M();

a3 BOARD_InitDebugConsole();

o4

a5 /* Init switches */

96 GPIO_PinInit({BOARD_SW1_GPIO, BOARD_SW1_GPIO_PORT, BOARD_SW1_GPIO_PIN, &sw_config);
a7

GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2 GPIO PIN, &sw_config);

=]
a

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_world multicore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of the main() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.

16 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

. wiorkspace - Develop - Ipc::pre55054114_muHimm_mn’ples_hellu_mrld_cmﬂphslmEE E E - E@_

Eile Edit 5curce Refactor Mavigate 5Search Project Bun FreeRTOS Window Help

Hmil | B-(R-@Biw|(I ENIR LS lERRSE LI 0G|

Debug 3

32 Thread #1 1 (Stopped] (Running)
s arm-none-eabi-gdb (7.12.0.20161204)

[Step Return All Debug sessions l

a . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ [NXP Semiconductors) MCU Application]
4 &? Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

i a . Ipcxpressod4114_multicore_examples_hello_world_cmOplus Debug [C/C++ (NXP Semiconductors) MCU Application]
4 E;} Ipcxpresso54114_multicore_examples_helle_world_cm0plus.axf [LPC54114)256 (cortex-m0plus)]

= a o Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel .c:71 0x20010846
s | arm-none-eabi-gdb (7.12.0.20161204)

h VO | fel_mailbox.h @ hello_world_corel.c &3

=]
m

6@ 1

61 }

62

632 /*!

64 * (ibrief Main function
85 */

66= int main{void)

7 {

uint32_t startupData, i;

gpioc_pin_config t led_config = {
kGPIO DigitalOutput, @,

Ti

/* Initialize MCMGR before calling its APT */
MCMGR_Init();

/* @et the startup data */
MCMGR_GetStartupData(kMCMGR_Corel, RstartupData);

/* Make a noticable delay after the reset */

for (i = @; 1 « startupData; i++)
delay();

¥ CO Dd 00 0O Co -

A wr e ®

/* Define the init structure for the output LED pin*/

/* Use startup parameter from the master core... */

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug

sessions” buttons.

1.2. Getting Started with MCUXpresso SDK Package

17

MCUXpresso SDK Documentation, Release 25.12.00

() workspace - Develop - Ipcxpresso54114 multicore_examples_hello_worid_cmOplus/source/hello_world_corel.c - MCUXpresso IDE NN

File Edit Source Refactor Mavigate Search Project Run FreeRTOS Window Help
ML B R @R Mo eS| plRBRDR S LI F0O

45 Debug &2
4 . Ipcxpresso54114_multicore_examples_helle_world_cmé Debug [C/C++ (MNXP Semicenductors) MCU Application]
4 Ipcxpresso34114_multicore_examples_hello_world_cmd.axf [LPC54114J256 (cortex-m0plus)]
| o8 Thread #1 1 (Stopped) (Running) |

ba arm-none-eabi-gdb (7.12.0.20161204)
{ 4 . Ipcxpressa54114_multicore_examples_hello_world_cm0Oplus Debug [C/C++ (NXP Semiconductors) MCU Application]
— 4 Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-m0plus)]
= |4 Thread #1 1 (Stopped) (Running) |

s arm-none-eabi-gdb (7.12.0.20161204)

)
b=
(x)=
%
Oz
o-
.| hello_world_corel.c h| f=l_mailbox.h @ hello_world_carel.c &2 o | 0x190
o L
59 __asm("NOP"); /* delay */
&8 1
61 }
62
632 /*!
64 * (@brief Main function
65 */

G66= int main(void)

67 {

68 uint32_t startupData, 1i;

69

78 /* Define the init structure for the output LED pin*/
71 gpio pin config t led config = {

72 kGPIO DigitalOutput, @,

73 1

74

75 /* Initialize MCMGR before calling its API */

76 MCMGR_Init();

77

78 /* @et the startup data */

79 MCMGR_GetStartupData (BMCHMGR_Corel, &startupData);
88

81 /* Make a ngticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (i1 =8@; 1 < startupData; i++)

84 delay();

AL

18 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

. workspace - Develop - Ipcxpressoﬁ-dl14_mul|:icure_acan'fles_helIo_world_cmﬂplus.'snurce;‘hellu_mrid_corel.c - MCUXpresso ID'-
Eile Edit Scurce Refactor Mavigate Search Project Run FreeRTOS Window Help

Al |- K[-EBiw|Dms 2R npuuii».uzv-wieg,ioﬂjéﬁsvﬁv

=

B 4 . lpcxpresso54114_multicore_examples_helle_world_cm4 Debug [C/C++ (MXP Semiconductors) MCU Application]
4 ,_':E Ipcxpresso54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-m0plus)]

i) a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

i = GPIO_ReadPinlnput() at fs|_gpio.h:146 0:85¢

main(} at hello_world_corel.c:134 Oxal0

w arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]

) 4 ,_':E Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-mOplus)]

a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

delay() at hello_world_corel.c:58 020010824

a2 = main() at hello_world_corel.c:93 0x200108a0

% w arm-none-eabi-gdb (7.12.0.20161204)

45 Debug i3

(=)=

oz
[=N

[£] helle_world_corel.c &3

__asm("NOP"); /* delay */

LV N

@brief Main function

- int main(void)

{

)

uint32_t startupData, i;

e s B s O T o N VR
wnoca [LY =

=

* Define the init structure for the output LED pin®/
gpic pin_config t led config = {
kGPIO DigitalOutput, @,

]
[EV S

)

I

wd

[N

)

/* Initialize MCMGR before calling its API */
MCMGR_TInit();

TN
=~

* Get the startup data */
MCMER_GetStartupData(kMCMGR_Corel, &startupData);

J
wnoca

o]

* Make a ngticable delay after the reset */
'* Use startup parameter from the master core... */
for (i = @; 1 <« startupData; i++)

delay();

¥ CO 00 COC0 CO o~
LEVI S

n B

Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_ world example application targeted for the MIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)... on the Quickstart Panel. In the
window that appears, expand the MIMXRT500 folder and select MIMXRTS595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

1.2. Getting Started with MCUXpresso SDK Package 19

MCUXpresso SDK Documentation, Release 25.12.00

3 sDK Import Wizard @] 'S
i\, The source from the SDK will be copied into the workspace. ; &
If you want to use linked files, please unzip the 'SDK_2.x_board_EVK-MIMXRT393 SDK. The advanced options page is disabled when either more than one project has

. Import projects =

Project name prefic | Evkmimurt393 L7 | Project name suffic

Use default location

C\Usersinxal3435\Documents\MCUXpressolDE_11.0.1_2363\workspace\evkmimxrt395 Browse
Project Type Project Options
CProject (1 C++ Project C Static Library () C++ Static Library SDK Debug Console () Semihost @UART) Example default

Copy sources

[Import other files

Examples | & VM %|EE
[typeto fitter |
Name Description Version Lt

[1 £ mbedtls_examples
os_examples

dmmec_exsmples

The Hello World deme application provides a sanity check for the new SDK build environments ...
The Helle Werld deme application provides a sanity check for the new SDK build environments ...
The Secure Faults demo application demonstrates handling of different secure faults, This appli...

The Secure Faults demo application demonstrates handling of different secure faults, This appli...
The Secure GPI0 demo application demonstrates using of secure GPIO peripheral and GPIQ mas..
The Secure GPIO deme application demonstrates using of secure GPIO peripheral and GPIO mas...

Gy
) <Back e [CE] cn

3. Now, two projects should be imported into the workspace. To start building the TrustZone

application, highlight the evkmimxrt595_hello_world__s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrow next to the hammer icon, as shown in following figure.
For this example, select the Debug target.

nr@ waorkspace - Welcorne page - MCUXpresso IDE
File Edit Mavigate Search Project ConfigTools Run Analysis

[= | BRI I @riBin|
5 Project Bxpl... 53 |E + 1 Debug (Debug build) ’ = F

2 Releaze (Release build) . - G

E == evkmimxrt393_helle_world_ns

: == evkmimxrt393_hellc world s = Debug=

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-

cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitive menu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

20

Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

=
.. workspace - Welcome page - MCUXpresso IDE
File Edit MNavigate Search Project ConfigTools FRun Analysis FreeRTOS Window Help

AR | &~/ -BIOVI@-iBIN| D BN SR bERR RIS
[ty Project Bxpl... 22 |2, Peripherals+ [} Registers % Faults = O @ Welcome &3

I
I
I
I
i
i
\
I
|
1 & - = & T P
: =IE=| | & v [files/1/C:/mp/MCUXpressolDE_11.0.1_2563/ide
: =5 evkmimxrt395_helln wnrld ns <Nehnns
Uy 25 evkmimxrt595_ New L]
|
| Go Into
|
|
| Show in Lecal Terminal »
|
| .
! =] Copy Ctrl+C
! Paste Ctrl+V
|
H ¥ Delete Delete
|
| Source ¥
|
! Move...
! Rename... F2
|
|
1 [y Import. Welc
| 2]
|
H i Export. MCUXpresso IDE provides an easy-t
| Cortex®-M cores, including LPC and
i Build Projects compiling, and debugging features w
| h debugging, and integrated configurat
: Clean Project o i
ocumentation
| Refresh F5
| Cl Prai For information on how to get started
| ose Projects please consult the supplied MCUXpr
| Close Unrelated Project # Help - MCUXpresso IDE User (
|
|
1! Build Configurations b Set Active » '+ 1Debug (Debug build) ra
i
! Build Targets > Manage... 2 Release (Release build)
! tiol
| Inelex ’ Build Al _
! o Help us improve MCUXpresso IDE
| Run As] Clean All
! i MCUXpresso IDE can send anonymi
! :ﬁ; Debug As > Build Selected... AL L RmARN TR e _m .
|
' () Quickstart Panel £ Profile As » E| nstalled SDKs || Properties Problems B Conscle 33

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>__hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.

1.2. Getting Started with MCUXpresso SDK Package 21

MCUXpresso SDK Documentation, Release 25.12.00

B8 workspace - evkmimxrtS95_hello_world_s/source/hello_world_s.c - MCUXpresso IDE

File Edit Source Refactor Mavigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

i [B-R-BiYD@-Bin|b0Ey 3.0 (P EEZ2RE-SL I -0-%-i® -
P Blet o [auice acces] | 1 | [&] 4%

5P e P HR. FpF. T O dFDebug 32 |i#+ = = 8 = outiine = g
= ﬁ)‘ ‘ . v 7 v evkmimxrt395_hello_world_s LinkServer Debug [C/C++ (MXP Semiconductors) MCU Application] -~ = 1az W \S o % v
5 evkmimxrt395_hello_world_ns A il evkmimuat595_hello_world_s.axf [MIMXRTS93S (cortex-m33)] - U fsl_device_registersh
v (25 evkmimxrt55_hello_world_s < Debug» o 0 Thrazd 21 1 (Qrnandad - Brasbnnint) 21 fsl_debug_console.h
& Project Settings (€] hello_world_s.c &2 = 8 o arm_cmseh
3%, Binaries R B S 2 beardh
) Includes (@brief Main function I veneer table.h
@ cMsis nt main(void) 2 tzm_config.h
2 board o pin_muxh
component uncptr_ns ResetHandler_ns; clock_config.
2 comp Funcptr_ dler_ 5 clock configh
@ device # NON_SECURE_START
8 drivers /* Init board hardware. */ @ funcpte_ns: void(*)(void
BOARD_InitPins(); - ;
(2 flash_config BOARD_BootCLockRUN()5 & SysteminitHook{void) - void
(3 libs BOARD_InitDebugConsole(); @ main{void) : int
~ (2 source
[F) Tl el ooz v PRINTF("Hello from secure world!\r\n");
< >
. /* Set non-secure main stack (MSP_NS) */
O Quic... & B __TZ set_MSP_NS(*((uint32_t *)(NON_SECURE_START)));
/* Set non-secure vector table */ v
. ~ < >
- MCUXpresso IDE - Quicks
15) Project: evimimut393_hello_world_s B Comsole 12 & . =0 g Memoy i =o|
~ Create or import a project = | = BE B @@I‘ = Brs. =.|| E|] <§‘)| - =

- B8 New project...
Import SDK example(s)...
® Import project(s) from file systel

evkmimurt595_hello_world_s LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] evkmimxrt595_hello v M
[MCUXpresso Semihosting Telnet console for 'evkmimxrt595_hello_world_s LinkServer Debug » =

~ Build your project
& Build
& Clean
~ Debug your project LSihg

< > < >

Writable SmartInsert | 25:8 () NXP MIMXRT5955* (evkmimur..world s)

Now, the TrustZone sessions should be opened. Click Resume. The hello_ world TrustZone appli-

cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR This section describes the steps required to build, run, and
debug example applications provided in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and

the IAR toolchain should correspond to the latest supported version, as described in the MCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install dir>/boards/<board_name>/<example_type>/<application name> /iar
Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.

22 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Release
B (7 hello_world - Deb... v

(I board
[(Jdoc
(I drivers
([source
(1 startup
[(Jutilities
(1 Output

3. To build the demo application, click Make, highlighted in red in following figure.

Debugy

Files = I
& @ hello_world - Debug v

i board

M doc

i drivers

M source

B startup

i utilities

B Qutput

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG_ UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

1.2. Getting Started with MCUXpresso SDK Package 23

MCUXpresso SDK Documentation, Release 25.12.00

PuTTY Configuration
g

Category:
= Session Basic options for your PuTTY session
- Logging Specify the destinati t to connect t
= Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features CoRmECTon Ty
= Window onneclion type:
- Appearance (OJRaw () Telnet ()Rlogin ()SSH | (@) Serial
Behawopr Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours
= Connection :
. Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin
[+ SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About Open Cancel

4. 1stop bit

4. In IAR, click the Download and Debug button to download the application to the target.

-

< Q >

=< B >0 B0 =

5. The application is then downloaded to the target and automatically runs to the main() func-

NMNEB@ = XEB0 9C »<Q>%(2< B[N0 BO-=EGCcO KA sl v @9~ dh;
Workspace v ax ‘hello_world.c x ‘
Debug ~ | |main()
- 41
Files & . LD [JHeti s b b s ek R R R R AR AR A AR A AR AR AR R R R R R R AR E AR AR R AR AR R R AR AR SRR R R
=] ‘helluiwurld - Debug L4 43 T # Prototypes
i hoard 08 L bt hht bt kb A bR AR R R AR AR SRR R AR R AR R AR R AR RS AR AR E AR R RERR LRk y
i doc 45
5 drivers A6 JEERE R R AR AR AR R R R AR AR AR AR AR AR AR E AR R AR AR R AR AR AR AR R AR AR AR AR AR R R AR
M source 47 T Cods
= 88 L ersnnsdn b ikt kR AR AR R AR R RS AR E R AR AR AR R RS RR AR SRR AR R R R AR RERR SR y
B starup
= '
M utilities ;ET ;k gbriet M Functi
= Ebrae: lain unction
L@ & Output = |
2 52 |int main(void)

53E {

54 char ch;

55

56 /* Init board hardware. */

57 /* attach 12 MHz clock to FLEXCOMMO (debug console) */
53 CLOCK_AttachClk (BORRD_DEEUG_UART_CLK ATTACH);

59

&0 BOARD_TnitPins():

61 BORRD BootClockFROHF4EM()

62

BOARD_InitDebugConscle():

6. Run the code by clicking the Go button.

24

Chapter 1

. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Q> &5=< 0> BO-=GcO_ inIrsdr]oa-_i&f;

= -

7. The hello_ world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board__name>/multicore_examples/<application name>/<core_ type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install dir>/boards/lpcxpresso54114 /multicore examples/hello_ world /cmOplus/iar/hello_world cmOplus.
SeWW

<install_dir> /boards/Ipcxpresso54114 /multicore__examples/hello_world/cm4 /iar /hello_world _cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cmOplus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 -4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

0: O - l:lilv

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 25

MCUXpresso SDK Documentation, Release 25.12.00

~ COM25:115200baud - Tera Term C=aran N
File Edit Setup Contrel Window KanjiCode Help

N

Hello World from the Primary Core! P

Starting Secondary core. _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

ke v LiW~-| o o

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install dir>/boards/<board name> /trustzone examples/<application name>/[<core_type>]/iar/
—<application_name>_ns/iar

<install _dir>/boards/<board_name> /trustzone examples/<application name>/[<core_type>]/iar/
—»<application_ name>_ s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install dir>/boards/<board_name> /trustzone_ examples/hello_ world/hello_world ns/iar/hello_world
< NS.eWW

<install _dir>/boards/<board_name> /trustzone_ examples/hello_ world /hello_ world__s/iar/hello_ world_s.
—CWW

<install dir>/boards/<board_name> /trustzone examples/hello_world/hello_world s/iar/hello_world.eww

This project hello_ world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 — 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the device memory, and the secure application
is executed. It stops at the Reset_ Handler function.

26 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

9 hello_world - I1AR Embedded Workbench IDE - Arm 832.1

File Edit View Project Debug Disassembly CMSIS-DAP Tools Window Help

DOEe = 0 [y - Q 5= < > B@=GcO_ R I :H:» 8 - _GEmoaw P,
Waorkspace w o X | startup LPC55569 cm33 corel.s X hello world ns.c
hella_world_s - debug v
) Vectors_End
Files o . — =
= [l hello_warld
|-= @ hello_world_s -de__. « _ Vectors EQU _ wector table
® hello_world_ns-debug « _ Vectors Size EQU _ Vectors End - _ Vectors

2: Default interrupt handlers.

‘THUMB

PUBWEAK Reset_Handler
SECTION .text:CODE:REORDER:NOROOT (2)
Reset_Handler

E | CESID I ; Mask interrupts
LDR RO, =s3fb (CSTACK)
MSR MSPLIM, RO
LDR RO, =SystemlInit
BLX RO
CPSIE I s Ummask interrupts
LDR R0, =_ iar program start
BX RO

PUBWEAK NMI Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HMI_Handler

B .

PUBWEAK HardFault Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HardFault_Handler

B .

Run the code by clicking Go to start the application.

The TrustZone hello_ world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

COMST7 - PuTTY - O *

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i. MXRT500.

1.2. Getting Started with MCUXpresso SDK Package 27

MCUXpresso SDK Documentation, Release 25.12.00

File Edit View Project CMSIS-DAP Tools Window Help

DOEM@ = XK OC -LL Q> B s L >0 B®-= 0 » Cidh
Weispia Zr Options for node "hello_world_s" X
hello_world_s - debug ~ |

Files =
& O hello_world EeTrDy Factory Settings

[Jhello_world_s - debug - General Options

L1 @ hello_world_ns - debug v Static Analysis

Runtime Checking

C/C++ Compiler Setup Download Images Extra Options Multicors Plugins

Assembler .

Output Converter Verify download

Custom Build [[] Suppress download

Buldifctions [] Use flash loader(s)

Linker

Debugger Overmide default .board file
Simulator $TOOLKIT_DIR$\config\flashloader\NXP\FlashIMXRT
CADI
CMSIS DAP B
GDB Server
I-jet/ITAGjet Perform mass erase before flashing
J-Link/J-Trace
T1 Stellaris
Nu-Link

Owverview hello_world_s | hello_world_ns PE micro
ST-LINK =
Debug Log Third-Party Driver
— TI MSP-FET o
Log TIXDS
Wed Jan 09, 2019 18:03:35: MultiCore: Sy B

& Wed Jan 09, 20719 18:03:35: There was 1

A\ Wed Jan 09, 2019 18:03:35: Could not go to frain'.

Run a demo using Keil MDK/uVision This section describes the steps required to build, run,
and debug example applications provided in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called pVision. In the IDE, select the Pack Installer icon.

kA uvision
File Edit WView Project Flash Debug Peripherals Tools SVCS Window

15 A @] 5 | | | | & E /)

E 82 ¢ &

2. After the installation finishes, close the Pack Installer window and return to the pVision
IDE.

Build an example application
1. Open the desired example application workspace in:

<install dir>/boards/<board name>/<example type>/<application name>/mdk

The workspace file is named as <demo_ name>.uvmpw. For this specific example, the actual
path is:

28 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

2. To build the demo project, select Rebuild, highlighted in red.

(¥ ﬂlg | "f,ﬂ hello_world Debug v J:\|

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

Category:

—I Session Basic options for your PuTTY session
~ Loggng Specify the destinat t t

1 Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COoM4 115200
- Features g onTy

= Window onnection type:
. Appearance (ORaw () Telnet ()Rlogin ()SSH | (@) Serial
~Behaviour Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours

= Connection -
- Data Default Settings Load
Proxy
- Telnet Save
- Rlogin

[+ SSH Delete
- Serial
Close window on exit:
(JAways ()Never (@) Only on clean exit
About Open Cancel

4. 1stop bit

4. In uVision, after the application is built, click the Download button to download the appli-
cation to the target.

1.2. Getting Started with MCUXpresso SDK Package 29

MCUXpresso SDK Documentation, Release 25.12.00

.............

| LOAD

¥4

Project

r B

=-&d WorkSpace
a- % Project: hello_world

hello_world Debug

5. After clicking the Download button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

NEZd@| » A9 | | BPBABR

=L | @ vseussoororefs] s o ([@])

EEHolewee o s [DREEDA-

UISRE RE=RE R

Registers n B Disassembly
Rogler [Value = 000003802 4770 BX ir
B-C ul 57t BOARD InitPins():
: 0x00003804 FT7FDFAC6é BL.W BOARD InitPins (0x00000D94)

(<0D003805
E 58:

0x00003808 F7FDFASA BL.W
59:

AN -

BOARD BootClockRUN();

<[
) oo () ez |

BOARD BootClockRUN (0x00000D20)
BOARD InitDebugConsole():

52 int main (void)

Re (xD0000000 s34

R9 00000000 54 char ch;

R10 (00000000 =

R11 (00000000 56 /* Init board hardware. */

R12 (00000000 57 BOARD InitPins():

i AR 58 BOARD BootClockRUN () ;

R14(LR) s9 BOARD InitDebugConsole () :
! R15(PC) &0 -
Il PSR (61000000 61 PRINTF ("hello world.\r\n"):
Banked 62
* System 3 while (1)

6. Run the code by clicking the Run button to start the application.

o v e oo

o
Run (F5)
Start code execution

Registers
Register
=l Core

Ox1FFF044(

The hello_ world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

30

Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board name>/multicore_examples/<application_name>/<core_ type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
Keil MSDK/uVision workspaces are located in this folder:

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cmOplus/mdk /hello_ world__
—cmOplus.uvmpw

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cm4/mdk /hello_ world__cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cmOplus) first because the primary core application project (cm4) must know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 — 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

' COM25:115200baud - Tera Term VT | (5 S

|Ei|e Edit Setup Contrel Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core. _
The secondary core application has been started.

1.2. Getting Started with MCUXpresso SDK Package 31

MCUXpresso SDK Documentation, Release 25.12.00

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second pVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

EH@| » @ |« | = | & e [@)
sBo|lawreu o [OEEERLE-O)2-2- 2 @ -
Registers o @ Disassembly
Register [Value | 51: for (i = 0; i < 1000000; ++i)
52:]
—I Core :
— ——— 0x20010B52 9000 STR r0, [=p, $0x00]
0x20010B5C EOQO3 B 0x20010B66
A1 (<000F4240 = sam (MHOE") : fe deiay o/
R2 (20000000 54: — i o e
Ei &Egggg@gﬁ 0x20010B5E B.FOO HCP
- Far (i = N« i « 1000OAN= 2243
R5 (00000001 |
R& bc20010C0C
R7 U<FFFFEFFE _] hello_world_corel.c
At QeFFFFFFFF T[] [e e e e e e o ke ok o ek R o o ok o e e Rk ok kR
RS bFFFFFFFF 3g * Prototypes
R10 QeFFFFFFFF 40 o e e e e e e e e e o R R R
R11 (FFFFFFFF an
R12 QeFFFFFFFF GO] [r R AR AR R AR RN AR AN A AR RN A IR RA N AR ANAARRRA R RR A AR
RI3(SP) (20026770 s T . Code
R14 (LR} (c20010BSF P
RI5(C) (x20010868 ...
* PSR (01000000 46T * @brief Function to create delay for Led blink.
+- Banked 47 ny
H System 48 void delay (void)
=l Intermal =l
Mode Thread 50 volatile wint32 © i = 0;
Privilege Privileged B> 51 for (i = 0; i < 1000000; +4+i)
Stack MSP 52 {
53 _ asm("NOP™); /% delay */
54 }
55
56

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/MO0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install _dir>/boards/<board_name> /trustzone_examples/<application_name>/<application_name>_ ns/

<install dir>/boards/<board name>/trustzone examples/<application name>/<application name>_ s/
— mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/uVision workspaces are located in this folder:

<install _dir>/boards/<board_ name> /trustzone__examples/hello_world/hello_ world_ns/mdk/hello_ world__
<,NS.UVMPW

<install _dir> /boards/<board_name> /trustzone_examples/hello_ world /hello_ world_s/mdk/hello_ world_ s.
< UuvVmpw

32 Chapter 1. LPC845BREAKOUT

http://www.keil.com/appnotes/docs/apnt_318.asp
https://www.youtube.com/watch?v=lMX-2lrv7Zs

MCUXpresso SDK Documentation, Release 25.12.00

<install dir>/boards/<board name>/trustzone examples/hello_world/helloworld s/mdk/hello_world.
—uvmpw

This project hello_ world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in pVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

K2 C\nxp\EVK-MIMXRT 395\ boards\evimimzxrt393\demo_apps\hello_world\mdk\hello_werld uvprojx - pVision - [m] X 1
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Eda =% I == @ DEMO_NONSEC_ADDRESw 5} 9% | @) - | @ S &-a-| A |
HEO By DB EakE-8-3-R-8- 8- 8- |
Registers 2 E Disassembly n@f
Redister Value - 31z "~
[+ 32: char ch: '
33: F
34: /* Init board hardware. */
35: F
000082850 F7EDE BOARD_InitPins (0x000B073C) v
(, S N
0<0CO0F301] hello_worid.c v X
R7 (KE000EDOB I T
RE (R5ACICI5A 27 9/
R9 (xC33CC33C Z-ELT * @bri
R10 (x5AC3C3BA 29 ®
R11 (00000000 30 int main(void)
R12 40001010 =T |
R13(SP) 20300000 32
R14(LR) 0x00D3053D 33
R15(PC) 0x00D82250 34
Gl PSR (x69000000 35
- Banked 36
- Secure L 37
- Non-Secure 38
= Intemal 38
Mode Secure Thr 40
Privilege Privieged 41 while (1) -
(=] Project | = Registers < 2
Command o E Call Stack = Locals n @
A | Name Location/Value Type
Setup(): // Setup for Running
= % main 0x00082850 int {0
g, main ¢ ch <nat in scope> auto - uchar
v
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess ‘},—‘J[a\lstack—mcals j em
CMSIS-DAP ARMYS-M Debugger | Debug: Secure CPU: Secure t1: 0.00009300 sec

Run the code by clicking Run to start the application.

The hello_ world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

E® COMST - PuTTY

1.2.

Getting Started with MCUXpresso SDK Package

33

MCUXpresso SDK Documentation, Release 25.12.00

Run a demo using ARMGCC / VSCODE This section describes the steps to run an example
application from the SDK archive using the ARMGCC / VSCODE toolchain.

Refer to the running a demo using MCUXpresso VSC section for detailed instructions on setting
up and configuring your project in Visual Studio Code.

Refer to the CLI section for detailed instructions on building and running your project from the
command line.

MCUXpresso Config Tools MCUXpresso Config Tools can help configure the processor and gen-
erate initialization code for the on chip peripherals. The tools are able to modify any existing
example project, or create a new configuration for the selected board or processor. The gener-
ated code is designed to be used with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

Config Tool Description

m —
Q 3
(] 1

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

als tools

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Peripher- For configuration of other peripherals @

Device Configures Device Configuration Data (DCD) contained in the program
Config- image that the Boot ROM code interprets to set up various on-chip pe-
uration ripherals prior to the program launch.

tool

MCUZXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

« Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port Thissection describes the steps necessary to determine the debug
COM port number of your NXP hardware development platform. All NXP hoards ship with a
factory programmed, onboard debug interface, whether it is based on MCU-Link or the legacy
OpenSDA, LPC-Link2, P&E Micro OSJTAG interface. To determine what your specific board ships
with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:

34 Chapter 1. LPC845BREAKOUT

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

MCUXpresso SDK Documentation, Release 25.12.00

$ dmesg | grep "ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: c¢p210x converter now attached to ttyUSB1
There are two ports, one is for core0 debug console and the other is for corel.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLInk interface:

4 7% Ports (COM &L LPT)
v W Ports (COM & LPT) T %' mbed Serial Port (COM41)

ﬁ MCL-Link VCom Part (COMT)

2. P&E Micro:
473 Ports (COM & LPT)

3. J-Link:
4 77" Ports (COM & LPT)

4. P&E Micro OSJTAG:

475 Ports (COM & LPT)

5. MRB-KW01:
4 75" Ports (COM & LPT)

On-board Debugger This section describes the on-board debuggers used on NXP development
boards.

On-board debugger MCU-Link MCU-Link is a powerful and cost effective debug probe that can
be used seamlessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-board MCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

1.2. Getting Started with MCUXpresso SDK Package 35

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration

MCUXpresso SDK Documentation, Release 25.12.00

* If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program__ CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir> /scripts/program_ JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

¢ If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

36 Chapter 1. LPC845BREAKOUT

https://www.segger.com/downloads/jlink/
https://www.nxp.com/design/design-center/software/development-software/mcu-link-debug-probe-architecture:MCU-LINK-ARCHITECTURE
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
https://www.segger.com/downloads/jlink/

MCUXpresso SDK Documentation, Release 25.12.00

Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).
5

. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program__CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir> /scripts/program_ JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

* For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro
Hardware Interface Drivers package.

1.2. Getting Started with MCUXpresso SDK Package 37

https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/lpcscrypt:LPCSCRYPT
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.12.00

Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

* J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

» CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

* P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

"M Computer

#‘ Primary (C:]
e MAINTENAMCE (E:)

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.
1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> ¢p -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.

38 Chapter 1. LPC845BREAKOUT

http://www.segger.com/opensda.html
http://www.nxp.com/opensda
http://www.pemicro.com/opensda/index.cfm

MCUXpresso SDK Documentation, Release 25.12.00

The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
a power supply input through a single micro-USB connector. Itis a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

Default debug interfaces The MCUXpresso SDK supports various hardware platforms that
come loaded with various factory programmed debug interface configurations. The follow-
ing table lists the hardware platforms supported by the MCUXpresso SDK, their default debug
firmware, and any version information that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe

EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA266 CMSIS-DAP MCU-Link
FRDM-MCXA344 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXA366 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXE31B CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link

continues on next page

1.2. Getting Started with MCUXpresso SDK Package

39

http://www.pemicro.com/support/downloads_find.cfm
http://www.pemicro.com/support/downloads_find.cfm

MCUXpresso SDK Documentation, Release 25.12.00

Table 1 - continued from previous page

Hardware platform

Default debugger firmware

On-board debugger probe

FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B417Z-EVK CMSIS-DAP MCU-Link
KW45B417-1.0C CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z275M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files With MCUXpresso SDK, users could define their own
IRQ handler in application level to override the default IRQ handler. For example, to override

40 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

the default PIT_IRQHandler define in startup_ DEVICE.s, application code like app.c can be im-
plement like:

/] ¢
void PIT TRQHandler(void)

{

// Your code

}

When application file is CPP file, like app.cpp, then extern "C” should be used to ensure the func-
tion prototype alignment.

// cpp
extern 7C” {
void PIT_TRQHandler(void);

void PIT TRQHandler(void)
{

// Your code

}

Repository-Layout SDK Package

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation
2. Run the installer and select “MCUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

* Visit git-scm.com

* Download for your operating system

* Run installer with default settings

* Important: Make sure “Add Git to PATH” is selected during installation
Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”

1.2. Getting Started with MCUXpresso SDK Package 11

https://docs.mcuxpresso.nxp.com/mcux-vscode/latest/html/Dependency-Installation.html
https://git-scm.com/

MCUXpresso SDK Documentation, Release 25.12.00

Python - Scripting Environment What it does: Runs build scripts and SDK tools.
Installation:

¢ Install Python 3.10 or newer from python.org

* Important: Check “Add Python to PATH” during installation

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.
Recommended version: 3.30.0 or newer
Installation:

* Windows: Download .msi installer from cmake.org/download

* Linux: Use package manager or download from cmake.org

* macOS: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.
Minimum version: 1.12.1 or newer
Installation:

* Windows: Usually included, or download from ninja-build.org

* Linux: sudo apt install ninja-build or download binary

* macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able
ARM GCC (Recom- Most users, free ARM GNU ARMGCC_DIR
mended) Toolchain
IAR EWARM Professional develop- IAR Systems TAR_DIR
ment
Keil MDK ARM ecosystem ARM Developer MDK_ DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_ DIR

42 Chapter 1. LPC845BREAKOUT

https://www.python.org/downloads/
https://cmake.org/download/
https://ninja-build.org/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://learn.arm.com/install-guides/gcc/arm-gnu/
https://www.iar.com/
https://developer.arm.com/documentation/109350/v6/Installation
https://developer.arm.com/documentation/100748/0618/Getting-Started/Installing-Arm-Compiler-for-Embedded

MCUXpresso SDK Documentation, Release 25.12.00

Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR="/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

Check each tool - you should see version numbers
git --version

python --version

west --version

cmake --version

ninja --version

arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

* The tool isn’t in your system PATH

* Solution: Add the installation directory to your PATH environment variable
Python/pip issues:

* Try using python3 and pip3 instead of python and pip

* On Windows, run the Command Prompt as an Administrator
Slow downloads:

* Add timeout option: pip install -U west --default-timeout=1000

* Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* Development board connected via USB

* Build tools installed per Installation Guide

Understanding Board Support Use the west extension to discover available examples for your
board:

west list__project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:

1.2. Getting Started with MCUXpresso SDK Package 43

MCUXpresso SDK Documentation, Release 25.12.00

west list__project -p examples/demo__apps/hello_ world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_ board examples/demo__apps/hello_ world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

Specifying Configuration

Release build
west build -b your_ board examples/demo_ apps/hello_ world --config release

Debug build (default)
west build -b your_board examples/demo_ apps/hello_ world --config debug

Alternative Toolchains

IAR toolchain
west build -b your_ board examples/demo__apps/hello_ world --toolchain iar

Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world --toolchain iar -Dcore__id=cm7 --config
—flexspi_nor_ debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore__examples/hello_ world/primary -Dcore__
—id=cm?7 --config flexspi_nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your board examples/demo_apps/hello_ world -p always

44 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_ apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_ apps/hello_ world --device DEVICE_ PART _NUMBER --config,
—release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b your_ board examples/demo_ apps/hello_ world -Dcore_ id=cm?7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_ board examples/demo__apps/hello_ world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list__project -p examples/demo__apps/hello_ world

Next Steps
» Explore other examples in the SDK
* Learn about Command Line Development for advanced options
» Try VS Code Development for integrated development

» Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.

1.2. Getting Started with MCUXpresso SDK Package 45

MCUXpresso SDK Documentation, Release 25.12.00

Prerequisites
* SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)
* Development tools installed per Installation Guide
* Visual Studio Code installed
* MCUZXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

File Edit Selection View Go Run Terminal Help

MCUX V5 CODE

~ QUICKSTART PANEL @ @ [O £

~+ Import Repositary

% import Example from RepoMry Import Local/Remote Repository
£+8 Import Project
3 New Projec
& Application
Installer

)pen Online Documentation

» IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you've already obtained the SDK according to setting up the repo. Select your
location and click Import.

Import Repository X

Import Repository

Location: cA\Repos\mouxsdk

Import

46 Chapter 1. LPC845BREAKOUT

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Working-with-MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART

File Edit Selection View Go Run Terminal Help

MCLIXP OR VS CODE

v QUICKSTART PANEL ® g
-+ Import Repository
% Import Example from Re LTy Import Local/Remote Repository
8+8 Import Project

T3 MNew Proj rd

@ application Code Hub

pen MCUX Installer
r?) Open Online Documentation

PANEL ~ IMPORTED REPOSITORIES

Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Import Repository X

Import Repository

Location: cA\Repos\mouxsdk

Import

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Import Repository

LOCAL ARCHIVE
Archive: c\nxp\SDK_25_09_00_MCXW23 zip

Name: SDK_25_09_00_MCXWwW23

Note: Path doesn't exist. Folder(s) will be created.

Location: c\nxp

/| Create Git repository

Import

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL

1.2. Getting Started with MCUXpresso SDK Package 47

MCUXpresso SDK Documentation, Release 25.12.00

O FOR VS CODE

~ QUICKSTART PAMNEL

~+ Import Repository

% Import Example from Repository h
8+8 Import Project
T3 MNew Project Wizard

2. Configure project settings:
* MCUXpresso SDK: Select your imported SDK

* Arm GNU Toolchain: Choose toolchain

Board: Select your target development board

* Template: Choose example category

* Application: Select specific example (e.g., hello_world)

* App type: Choose between Repository applications or Freestanding applications

3. Click Import
< Import Example from Repository X
Import Example from Repository
Repository: c\Repos\mcuxsdk
Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7 .1 20231009 (©

Board: FRDM-MCXC444

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the SDK UART dnivers and repeat what user
input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further developmen

Please refer to README file for more details.

App type: Freestanding application

Name: frdmmcxc444_hello_world

Location: \nxp_examples

Note; Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Application Types Repository Applications:

48 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

* Located inside the MCUXpresso SDK

* Integrated with SDK workspace
Freestanding Applications:

* Imported to user-defined location

* Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

Build Process
1. Navigate to PROJECTS view
2. Find your project
3. Click the Build Project icon

 PROJECTS M 8- U &
» frdmmcxcd44 hello_world MC o SDK 25.6.0 BT @

Build Project

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup

1. Open Serial Monitor from VS Code’s integrated terminal

—+ Open an additional monitor

Monitor Mode = Serial V View Mode Text Port COM40 - MCU-Link VCom Port (COM40) v O Baudrate 115200 v

-

lineending €R | PStatMonitoring = ¥a & [0 & &

2. Configure serial settings:
* VCom Port: Select port for your device
* Baud Rate: Set to 115200

1.2. Getting Started with MCUXpresso SDK Package 49

MCUXpresso SDK Documentation, Release 25.12.00

Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

~ PROJECTS
> frdmmexcd44_hello world MCUX

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:
» Continue: Resume code execution

» Step controls: Navigate through code

hello worldc X

frdmmc

main{

ch;

BOARD InitHardware();
PRINTF("hello

while (1)
ch = GETCHAR
PUTCHAR(ch) ;

» Stop: Terminate debug session

Monitor Output Observe application output in the Serial Monitor to verify correct operation.

50 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

SERIAL MOMIT]
—+ Open an additional monitor

Monitor Mode View Mode Text ' Port COMA40 - MCU-Link VCom Port (COM40)

OIstop Monitoring = #®a & @

---- Opened the serial port COM48 ----
hello world.

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

* Example applications
* Board configurations
* Middleware components

* Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
* Verify SDK workspace is properly initialized
* Ensure all required repositories are updated
* Check SDK manifest files are present
Project import failures:
* Confirm board support exists for selected example
* Verify toolchain installation

* Check example compatibility with selected board

Build Problems Build failures:
* Check integrated terminal for error messages
* Verify all dependencies are installed

» Ensure toolchain is properly configured

1.2. Getting Started with MCUXpresso SDK Package 51

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/DebugK

MCUXpresso SDK Documentation, Release 25.12.00

Debug Issues Debug session fails:
* Verify board connection via USB
» Check debug probe drivers are installed
* Confirm build completed successfully
Serial monitor problems:
* Verify correct VCom port selection
* Check baud rate configuration (115200)

* Ensure board drivers are installed

Integration with Command Line MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
» Explore additional examples in the SDK
* Review Command Line Development for advanced build options
* Refer MCUXpresso for VS Code Wiki for detailed documentation

* Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
» Development tools installed per Installation Guide

» Target board connected via USB

Understanding Board Support Use the west extension to discover available examples for your
board:

west list_ project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:

52 Chapter 1. LPC845BREAKOUT

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki

MCUXpresso SDK Documentation, Release 25.12.00

west list__project -p examples/demo__apps/hello_ world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_ board examples/demo__apps/hello_ world

Specifying Build Configuration

Release build
west build -b your_board examples/demo_ apps/hello_world --config release

Debug build with specific toolchain
west build -b your_board examples/demo__apps/hello_ world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo__apps/hello_world --toolchain iar -Dcore__id=cm?7 --config, |
—flexspi_nor_ debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore examples/hello world/primary -Dcore
—id=cm?7 --config flexspi_nor__debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk__examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33_core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_ apps/hello_ world -p always

Dry Run See what commands would be executed:

west build -b your board examples/demo_apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your board examples/demo_apps/hello_ world --device MK22F12810 --config release

Project Configuration

1.2. Getting Started with MCUXpresso SDK Package 53

MCUXpresso SDK Documentation, Release 25.12.00

CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:

Generate [AR project

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world --toolchain iar -Dcore__id=cm?7 --config, |

—flexspi_nor_ debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup

instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo__apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:

Check ARM GCC
echo SARMGCC_ DIR
arm-none-eabi-gcc --version

Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h

34 Chapter 1

. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Check Supported Configurations If unsure about supported options for an example:

west list_ project -p examples/demo_ apps/hello_ world

Best Practices

Project Organization
* Keep custom projects outside the SDK tree
» Use version control for your application code

* Document any SDK modifications

Build Efficiency
* Use -p always for clean builds when troubleshooting
* Leverage --dry-run to understand build processes

* Use specific configs and toolchains to reduce build time

Development Workflow
1. Start with existing examples closest to your requirements
2. Copy and modify rather than building from scratch
3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
» Explore VS Code Development for integrated development experience
* Review Workspace Structure to understand SDK organization

* Refer build system documentation for advanced configurations

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization

your-sdk-workspace/
manifests/ # West manifest repository
mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.

1.2. Getting Started with MCUXpresso SDK Package 55

MCUXpresso SDK Documentation, Release 25.12.00

SDK Component Layout Based on the actual SDK structure, the main directories include:

Di- Contents
rec-

tory

Purpose

arch/ Architecture-specific files

cmake Build system modules

compo Software components

devices Device support packages

drivers Peripheral drivers

examp Sample applications

middle Optional software stacks

rtos/ Operating system support

scripts Build and utility scripts

Svd files for devices, this is optional because of large size. Cus-
tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

svd

ARM CMSIS, build
configurations
CMake configura-
tion and build rules
Reusable software li-
braries and utilities
MCU-specific head-
ers, startup code,
linker scripts
Hardware abstrac-
tion layer for MCU
peripherals
Demonstration code
and reference im-

plementations
Networking, graph-
ics, security, and
other libraries
FreeRTOS integra-
tion

West extensions and
development tools

Example Organization Examples follow a two-tier structure separating common code from

board-specific implementations:

Common Example Files

examples/demo__apps/hello_ world/
CMakeLists.txt # Build configuration
example.yml # Example metadata
hello__world.c # Application source code
Kconfig # Configuration options
readme.md # General documentation

Board-Specific Files

examples/ boards/your_ board/demo_ apps/hello_ world/
app.h # Board specific application header
example_board_readme.md # Board specific documentation
hardware_ init.c # Board specific hardware initialization
pin__mux.c # Pin multiplexing configuration
pin__mux.h # Pin multiplexing header definitions
hello_ world.bin # Pre-built binary for quick testing
hello_ world.mex # MCUZXpresso Config Tools project file
prj.conf # Board specific Kconfig configuration
reconfig.cmake # Board specific cmake configuration overrides

56 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Device Support Structure Device support is organized hierarchically by MCU family:

devices/
MCX/ # MCU portfolio
MCXW/ # MCU family
MCXW235/ # Specific device
MCXW235.h # Device register definitions
drivers/ # Device-specific drivers
gee/ # GNU toolchain files
iar/ # IAR toolchain files

mcuxpresso,/ # MCUXpresso IDE files
startup_ MCXW235.c # Startup and vector table
system_ MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories
include:

* Connectivity: USB, TCP/IP, industrial protocols
 Security: Cryptographic libraries, secure boot

» Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

* Graphics: Display drivers, UI frameworks

* Audio: Processing libraries, voice recognition

* Machine Learning: Inference engines, neural networks
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:
* docs/ - Core SDK documentation and build infrastructure
* Component repositories - API documentation and integration guides
* Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

1. General README: examples/demo_ apps/hello_ world /readme.md
* What the example does
* General functionality description

* Common usage information

2. Board-Specific README: examples/ boards/{board name}/demo_apps/hello_world/

example board readme.md
* Board-specific setup instructions
* Hardware connections required

* Board-specific behavior notes

1.2. Getting Started with MCUXpresso SDK Package 57

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/

MCUXpresso SDK Documentation, Release 25.12.00

Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in a multi-repository model. The
SDK s distributed across multiple GitHub repositories and managed using the Zephyr West tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:
* Modular Structure: Multiple repositories for flexibility and scalability.
* Zephyr West Integration: Simplified repository management and synchronization.

* Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

Scalability: Easily add or update components without impacting the entire SDK.
* Collaboration: Enables distributed development across teams and repositories.
* Version Control: Independent versioning for components ensures better stability.

* Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:
System Requirements:

* Python 3.8 or later

* Git 2.25 or later

» CMake 3.20 or later

* Build tools for your target platform

Verification Commands:

58 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

python --version # Should show 3.8+

git --version # Should show 2.25+

cmake --version # Should show 3.20-+

west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK from main branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update
This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.
Best for:
» Exploring the complete SDK
* Multi-board development projects

* Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

For specific board development
west update_ board --set board your__board_name

For specific device family development
west update_ board --set device your__device_name

List available repositories before downloading
west update__board --set board your_ board_name --list-repo

Best for:

* Single board development

1.3. Getting Started with MCUXpresso SDK GitHub 59

MCUXpresso SDK Documentation, Release 25.12.00

 Faster setup and reduced disk usage
» Focused development workflows

Examples:

Update only repositories for FRDM-MCXW23 board
west update__board --set board frdmmcxw23

Update only repositories for MCXW23 device family
west update__board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

Verify workspace structure
Is -la
Should show: manifests/ and mcuxsdk/ directories

Test build system
west list__project -p examples/demo__apps/hello_ world
Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

Update only repositories for specific board, e.g., frdmmcxw23
west update__board --set board frdmmcxw23

List available repositories for the board before updating
west update_ board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

Update only repositories for specific device, e.g., MCXW235
west update__board --set device mcxw23

List available repositories for the device family
west update__board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

Use custom configuration file
west update_ board --set custom path/to/custom-config.yml

Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
* Download only components needed for your target board or device

+ Significantly faster initial setup for focused development

60 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

» Typical reduction from 7 GB to 2GB
Optimized Workspace
* Cleaner workspace with relevant components only
* Reduced disk space usage
 Faster repository operations
Flexible Development
» Switch between different board configurations easily
* Maintain separate workspaces for different projects

* Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

Display repository information in console
west update__board --set board frdmmecxw?23 --list-repo

Export repository information to YAML file for reference
west update_ board --set board frdmmcxw?23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

Generate board-specific SDK package

west update_board --set board frdmmecxw23 -o frdmmcexw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:
For Complete SDK Workspace:

Update manifest repository
cd manifests
git pull

Update all component repositories
cd ..
west update

For Targeted Workspace:

Update manifest repository
cd manifests
git pull

Update board-specific repositories
cd ..
west update__board --set board your_ board_ name

1.3. Getting Started with MCUXpresso SDK GitHub 61

MCUXpresso SDK Documentation, Release 25.12.00

Workspace Status Check workspace synchronization status:

Show status of all repositories
west status

Show detailed information about repositories
west list

Troubleshooting Network Issues:

* Use west update --keep-descendants for partial failures

* Configure Git credentials for private repositories

» Check firewall settings for Git protocol access
Permission Issues:

» Ensure write permissions in workspace directory

* Run commands without sudo/administrator privileges

* Verify Git SSH key configuration for authenticated access
Disk Space:

» Full SDK workspace requires approximately 7-8 GB

» Targeted workspace typically requires 1-2 GB

» Use board-specific setup to reduce workspace size
Repository Management Issues:

* Verify board/device names match available configurations

* Check that custom YAML files follow the correct template format

» Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:
1. Review Workspace Structure to understand the layout
2. Build your first project with First Build Guide

3. Explore Development Workflows MCUXPresso VSCode or Development Workflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

Repository Organization Based on the manifest structure, the SDK consists of four main repos-
itory categories:

62 Chapter 1. LPC845BREAKOUT

https://docs.zephyrproject.org/latest/develop/west/index.html

MCUXpresso SDK Documentation, Release 25.12.00

Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

* Devices: MCU-specific support packages
* Examples: Demonstration applications and code samples

* Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

* Connectivity: Networking stacks, USB, and communication protocols
* Security: Cryptographic libraries and secure boot components
* Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

» Graphics: Display drivers and UI frameworks

Audio: Audio processing and voice recognition libraries
* Machine Learning: Al inference engines and neural network libraries
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:
* NXP-MCUXpPresso
* NXP
* nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.

1.3. Getting Started with MCUXpresso SDK GitHub 63

https://github.com/nxp-mcuxpresso/
https://github.com/NXP
https://github.com/nxp-zephyr

MCUXpresso SDK Documentation, Release 25.12.00

Development Workflows

Get started with building and running projects:

Using MCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* MCUXpresso Config Tools standalone installed (version 25.09 or above)

* MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project__info -b Ipcxpresso55s69 ...mcuxsdk/examples/demo__apps/hello_world/ -Dcore__
—id=cm33_ core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: ...mcuxsdk/examples/demo_ apps/
hello_ world/cfg_ tools/).

Updating the SDK West project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.

64 Chapter 1. LPC845BREAKOUT

https://www.nxp.com/doc/GSMCUXCTUG
https://mcuxpresso.nxp.com/mcux-vscode/latest/html/Working-with-MCUXpresso-Config-Tools.html

MCUXpresso SDK Documentation, Release 25.12.00

This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b Ipcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore__id=cm33__core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.

1.4. Release Notes 65

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-softw%20re-development-kit-sdk:MCUXpresso-SDK

MCUXpresso SDK Documentation, Release 25.12.00

Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* MCUZXpresso IDE, Rev. 25.06.xx

IAR Embedded Workbench for Arm, version is 9.60.4
Keil MDK, version is 5.42

MCUXpresso for VS Code v25.09

GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development MCU devices

boards

LPC845BREAKOUT LPC845M301JBD48, LPC845M301JBD64, LPC845M301JHI33,
LPC845M301JHI48

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.

66 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development

pack, including the prebuilt libraries.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE

New Project wizard.

The spi_transfer_interrupt examples don’t work

Boards cannot transfer data successfully.

Affected toolchains: mcux Affected platforms: 1pc845breakout, Ipcxpresso860max

1.4. Release Notes

67

MCUXpresso SDK Documentation, Release 25.12.00

1.5 ChangelLog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board

[25.06.00]

 Initial version
clock_config

[25.06.00]

 Initial version
pin_mux

[25.06.00]

 Initial version

LPC_ACOMP

[2.1.0]
* Bug Fixes
— Fixed one wrong enum value for the hysteresis.
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.1, 17.7.

[2.0.2]
* Bug Fixes
— Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
the return value of ACOMP_GetInstance() exceeding the array bounds.
[2.0.1]

* New Features

— Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

68 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

LPC_ADC

[2.6.0]
* New Features

— Added new feature macro to distinguish whether the GPADC_CTRLO_GPADC_TSAMP
control bit is on the device.

— Added new variable extendSampleTimeNumber to indicate the ADC extend sample
time.

* Bugfix

— Fixed the bug that incorrectly sets the PASS_ENABLE bit based on the sample time
setting.

[2.5.3]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.5.2]
* Improvements
— Integrated different sequence’s sample time numbers into one variable.
* Bug Fixes
- Fixed violation of MISRA C-2012 rule 20.9.

[2.5.1]
* Bug Fixes

— Fixed ADC conversion sequence priority misconfiguration issue in the
ADC_SetConvSeqAHighPriority() and ADC_SetConvSeqBHighPriority() APIs.

* Improvements

— Supported configuration ADC conversion sequence sampling time.

[2.5.0]
* Improvements
— Add missing parameter tag of ADC_DoOffsetCalibration().
* Bug Fixes

— Removed a duplicated API with typo in name: ADC_EnableShresholdComparelInterrupt().

[2.4.1]
* Bug Fixes

— Enabled self-calibration after clock divider be changed to make sure the frequency
update be taken.

1.5. ChangeLog 69

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.0]
* New Features

— Added new API ADC_DoOffsetCalibration() which supports a specific operation fre-
quency.

* Other Changes
— Marked the ADC_DoSelfCalibration(ADC_Type *base) as deprecated.
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.1 10.310.4 10.7 10.8 17.7.

[2.3.2]
* Improvements

— Added delay after enabling using the ADC GPADC_CTRLO LDO_POWER_EN bit for
JN5189/QN9090.

* New Features

— Added support for platforms which have only one ADC sequence control/result regis-

ter.
[2.3.1]
* Bug Fixes
— Avoided writing ADC STARTUP register in ADC_Init().
— Fixed Coverity zero divider error in ADC_DoSelfCalibration().
[2.3.0]

* Improvements

— Updated “ADC_Init()*”’ADC_GetChannelConversionResult()” API and “adc_resolution_t”
structure to match QN9090.

— Added “ADC_EnableTemperatureSensor” API.

[2.2.1]
* Improvements

— Added a brief delay in uSec after ADC calibration start.

[2.2.0]
¢ Improvements
— Updated “ADC_DoSelfCalibration” API and “adc_config_t” structure to match LPC845.

[2.1.0]
* Improvements

— Renamed “ADC_EnableShresholdComparelnterrupt” to “ADC_EnableThresholdCompareInterrupt”.

70 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

CAPT

[2.1.0]
* New Features

— Added new API CAPT_PollNow, to immediately launch a one-time-only, simultaneous
poll of all specified X pins.

[2.0.3]
* Bug Fixes
— Fixed bug that CAPT_GetTouchData does not get right count.
[2.0.2]
* Bug Fixes
— Fixed the violation of MISRA-2012 rules:
* Rule 10.315.517.7
[2.0.1]
* Bug Fixes
— Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
return value of CAPT_GetInstance() exceeding array bounds.
[2.0.0]

 Initial version.

CLOCK

[2.3.4]
* Improvements
— Added CLOCK_SetFLASHAccessCyclesForFreq.

[2.3.3]
* Improvements

— Added lost comments for some enumerations.

1.5. ChangeLog 71

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.2]
* Improvements

— Used “offsetof” macro to get the offset of the structure element from the beginning of
the structure.

* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.1, rule 11.3.

[2.3.1]
* Bug Fixes
— Fixed MISRA C-2012 rule 10.1,rule 10.4,rule 10.8.
— Fixed IAR warning Pa082 for the clock driver.
[2.3.0]

* New feature:

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.2.0]

* Replace the delay function

[2.1.0]
* New feature

— Adding new API CLOCK_DelayAtLeastUs() to implemente a delay fucntion which allow
users set delay in unit of microsecond.

[2.0.3]
* New Features
— Added an API to get uart clock frequency.

— Added an API to set fractional multiplier value.

[2.0.2]

* some minor fixes.

[2.0.0]

« initial version.

COMMON

[2.6.3]
* Bug Fixes
— Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

72 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.6.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts
[2.6.1]
* Improvements
— Support Cortex M23.
[2.6.0]
* Bug Fixes
- Fix CERT-C violations.
[2.5.0]

* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEX so that user can measure the execution time of the protected sections.

[2.4.3]
* Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.

[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features
— Added NETC into status group.

1.5. ChangeLog 73

MCUXpresso SDK Documentation, Release 25.12.00

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platforms.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

- Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.

[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef __ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

74 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.5]
* Bug Fixes
- Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
— Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
— Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
% Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

1.5. ChangeLog 75

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
% Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

— Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

 Initial version.

CRC

[2.1.1]
* Fix MISRA issue.

[2.1.0]
* Add CRC_WriteSeed function.

[2.0.2]
» Fix MISRA issue.

[2.0.1]

» Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

76 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

CTIMER
[2.3.4]
* Bug Fixes
— Fixed ERRATA ERR053024 CTIMER will enter interrupt twice when function clock
much slower than bus clock.
[2.3.3]
* Bug Fixes
— Fix CERT INT30-C INT31-C issue.
— Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.
[2.3.2]
* Bug Fixes
— Clear unexpected DMA request generated by RESET PeripheralReset in API
CTIMER Init to avoid trigger DMA by mistake.
[2.3.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.7 and 12.2.
[2.3.0]
* Improvements
— Added the CTIMER_ SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),
CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.
[2.2.2]
* Bug Fixes
— Fixed SetupPwm() API only can use match 3 as period channel issue.
[2.2.1]
* Bug Fixes

— Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.

— Fixed Coverity Out-of-bounds issue.

1.5. ChangeLog 77

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
* Improvements

— Updated three API Interface to support Users to flexibly configure the PWM period and
PWM output.

* Bug Fixes
— MISRA C-2012 issue fixed: rule 8.4.

[2.1.0]
* Improvements
— Added the CTIMER_GetOutputMatchStatus() API Interface.

— Added feature macro for FSL_FEATURE _CTIMER_HAS NO CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS NO_IR_CR2INT.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.
[2.0.2]

* New Features
— Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.
— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

— Added a new feature macro to update the API of CTimer driver for 1pc8n04.

[2.0.1]
* Improvements
— API Interface Change

% Changed API interface by adding CTIMER SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.

[2.0.0]

¢ Initial version.

LPC_DAC

[2.0.2]
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 17.7.

78 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* New Features

— Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

 Initial version.

LPC_DMA

[2.5.4]
* Bug Fixes
— Fixed coverity issues with CERT INT30-C, CERT INT31-C compliance.

[2.5.3]
* Improvements
— Add assert in DMA_SetChannelXferConfig to prevent XFERCOUNT value overflow.

[2.5.2]
* Bug Fixes
— Use separate “SET” and “CLR” registers to modify shared registers for all channels, in
case of thread-safe issue.
[2.5.1]
* Bug Fixes
- Fixed violation of the MISRA C-2012 rule 11.6.
[2.5.0]

* Improvements
— Added a new api DMA_SetChannelXferConfig to set DMA xfer config.

[2.4.4]
* Bug Fixes
— Fixed the issue that DMA_IRQHandle might generate redundant callbacks.
— Fixed the issue that DMA driver cannot support channel bigger then 32.
— Fixed violation of the MISRA C-2012 rule 13.5.
[2.4.3]

* Improvements

— Added features FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZEn/FSL_FEATURE_DMAO_DESCRIPTOR .
to support the descriptor align size not constant in the two instances.

1.5. ChangeLog 79

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.2]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 8.4.

[2.4.1]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 5.7, 8.3.

[2.4.0]
* Improvements

— Added new APIs DMA_LoadChannelDescriptor/DMA_ChannellsBusy to support polling
transfer case.

* Bug Fixes
— Added address alignment check for descriptor source and destination address.
— Added DMA_ALLOCATE_DATA_TRANSFER_BUFFER for application buffer allocation.
— Fixed the sign-compare warning.

— Fixed violations of the MISRA C-2012 rules 18.1, 10.4, 11.6, 10.7, 14.4, 16.3, 20.7, 10.8,
16.1,17.7,10.3, 3.1, 18.1.

[2.3.0]
* Bug Fixes
— Removed DMA_HandleIRQ prototype definition from header file.
— Added DMA_IRQHandle prototype definition in header file.
[2.2.5]

* Improvements
— Added new API DMA_SetupChannelDescriptor to support configuring wrap descriptor.
— Added wrap support in function DMA_SubmitChannelTransfer.

[2.2.4]
* Bug Fixes

— Fixed the issue that macro DMA_CHANNEL_CFER used wrong parameter to calculate
DSTINC.

[2.2.3]
* Bug Fixes
— Improved DMA driver Deinit function for correct logic order.
* Improvements

— Added API DMA_SubmitChannelTransferParameter to support creating head descrip-
tor directly.

80 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

— Added API DMA_SubmitChannelDescriptor to support ping pong transfer.
— Added macro DMA_ALLOCATE_HEAD_DESCRIPTOR/DMA_ALLOCATE_LINK_DESCRIPTOR

to simplify DMA descriptor allocation.

[2.2.2]
* Bug Fixes

— Do not use software trigger when hardware trigger is enabled.

[2.2.1]
* Bug Fixes

— Fixed Coverity issue.

[2.2.0]
* Improvements
— Changed API DMA_SetupDMADescriptor to non-static.
— Marked APIs below as deprecated.
* DMA_PrepareTransfer.
* DMA_Submit transfer.
— Added new APIs as below:
* DMA_SetChannelConfig.
% DMA_PrepareChannelTransfer.
% DMA_InstallDescriptorMemory.
* DMA_SubmitChannelTransfer.
* DMA_SetChannelConfigValid.
% DMA_DoChannelSoftwareTrigger.
DMA_LoadChannelTransferConfig.

*

[2.0.1]

* Improvements

— Added volatile for DMA descriptor member xfercfg to avoid optimization.

[2.0.0]

 Initial version.

GPIO

[2.1.7]
* Improvements

— Enhanced GPIO_PinlInit to enable clock internally.

1.5. ChangeLog

81

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.6]
* Bug Fixes
— Clear bit before set it within GPIO_SetPinInterruptConfig() APL

[2.1.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
* Improvements
— Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.
— Corrected typos in header file.

[2.1.3]
* Improvements

— Updated “GPIO_PinInit” APL If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
* Improvements

— Removed deprecated APIs.

[2.1.1]
* Improvements
— APl interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX

[2.1.0]
* New Features
— Added GPIO initialize API.

[2.0.0]

 Initial version.

82 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

12C
[2.2.1]
* Bug Fixes
— Fixed coverity issues.
[2.2.0]

* Removed Ipc_i2c_dma driver.

[2.1.0]
* Bug Fixes
— Fixed MISRA 8.6 violations.

[2.0.4]
* Bug Fixes
— Fixed wrong assignment for datasize in I12C_InitTransferStateMachineDMA.

— Fixed wrong working flow in I2C_RunTransferStateMachineDMA to ensure master can
work in no start flag and no stop flag mode.

— Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

- Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

— Eliminated IAR Pa082 warning in I12C_SlaveTransferHandleIRQ by assigning volatile
variable to local variable and using local variable instead.

— Fixed MISRA issues.
* Fixed rules 4.7,10.1, 10.3, 10.4, 11.1, 11.8, 14.4, 17.7.
* Improvements
— Rounded up the calculated divider value in I2C_MasterSetBaudRate.
— Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.0.3]
* Bug Fixes
— Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.
[2.0.2]

* New Features

— Added macro gate “FSL_SDK_ENABLE_I2C_DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs which will help reduce the code size when no non-
blocking transfer is used. Default configuration is enabled.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

1.5. ChangeLog 83

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Improvements

— Added I12C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.0]

 Initial version.

IAP
[2.0.7]
* Bug Fixes
— Fixed IAP_ReinvokeISP bug that can’t support UART ISP auto baud detection.
[2.0.6]
* Bug Fixes
— Fixed IAP_ReinvokeISP wrong parameter setting.
[2.0.5]

* New Feature

— Added support config flash memory access time.

[2.0.4]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules 9.1
[2.0.3]

* New Features

— Added support for LPC 845’s FAIM operation.

— Added support for LPC 80x’s fixed reference clock for flash controller.

— Added support for LPC 5411x’s Read UID command useless situation.
* Improvements

— Improved the document and code structure.
* Bug Fixes

— Fixed the violations of MISRA 2012 rules:

% Rule 10.1 10.310.4 17.7

84 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
* New Features
— Added an API to read generated signature.
* Bug Fixes

— Fixed the incorrect board support of IAP_ExtendedFlashSignatureRead().

[2.0.1]
* New Features
— Added an API to read factory settings for some calibration registers.
* Improvements

— Updated the size of result array in part APIs.

[2.0.0]

« Initial version.

INPUTMUX

[2.0.10]
* Bug Fixes
— Fixed CERT-C violations.

[2.0.9]
* Improvements

— Use INPUTMUZX_CLOCKS to initialize the inputmux module clock to adapt to multiple
inputmux instances.

— Modify the API base type from INPUTMUX_Type to void.

[2.0.8]
* Improvements

— Updated a feature macro usage for function INPUTMUX_EnableSignal.

[2.0.7]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.0.6]
* Bug Fixes
— Fixed the documentation wrong in API INPUTMUX_AttachSignal.

1.5. ChangeLog 85

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.5]
* Bug Fixes
— Fixed build error because some devices has no sct.
[2.0.4]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rule 10.4, 12.2 in INPUTMUZX_EnableSignal() func-
tion.
[2.0.3]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.4, 10.7, 12.2.
[2.0.2]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 10.4, 12.2.
[2.0.1]

* Support channel mux setting in INPUTMUX_EnableSignal().

[2.0.0]

 Initial version.

IOCON

[2.0.2]
* Bug Fixes
— Fixed MISRA-C 2012 violations.

[2.0.1]
* Bug Fixes

— Fixed out-of-range issue of the IOCON mode function when enabling DAC.

[2.0.0]

 Initial version.

86 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

MRT
[2.0.5]
* Bug Fixes
— Fixed CERT INT31-C violations.
[2.0.4]

* Improvements

— Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

— Fixed the wrong count value assertion in MRT_StartTimer API.

[2.0.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
* Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

PINT

[2.3.0]
* Improvements

— Add API PINT EnablelnterruptByIndex and PINT DisableInterruptByIndex to provide
more granular interrupt control.

[2.2.0]
* Fixed

— Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.

* Changed

— Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.

1.5. ChangeLog 87

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.13]
* Improvements
— Added instance array for PINT to adapt more devices.

— Used release reset instead of reset PINT which may clear other related registers out of
PINT.

[2.1.12]
* Bug Fixes

— Fixed coverity issue.

[2.1.11]
* Bug Fixes
— Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
* New Features

— Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
* Bug Fixes
— Fixed MISRA-2012 rule 8.4.

[2.1.8]
* Bug Fixes
— Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

[2.1.7]
* Improvements
— Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
* Bug Fixes

— Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

— Changed interrupt init order to make pin interrupt configuration more reasonable.

88 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.4]
* Improvements

— Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT Init and PINT Deinit API.

— Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

— Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
* Bug fix:

— Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

— Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitive mode
and will switch the active level for this pin in level-sensitive mode.

— Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

- Added FSL_FEATURE_SECPINT NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

— Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
e Improvement:
— Improved way of initialization for SECPINT/PINT in PINT _Init APIL.

[2.1.1]
* Improvement:

— Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]

* Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

[2.0.2]
* Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
* Bug fix:

— Updated PINT driver to clear interrupt only in Edge sensitive.

1.5. ChangeLog 89

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

 Initial version.

POWER

[2.1.0]
* New features
— Added BOD control APIs.

[2.0.4]
* Bug Fixes

— Fixed the typo “Enbale”, correcting it as “Enable”.

[2.0.3]
* Bug Fixes

— Fixed doxygen warnings(remove wrong character in annotation).

[2.0.2]
* New Features
— Added the Enable/DisableDeepSleepIRQ() to enable/disable pin wake up.

[2.0.1]
* Improvements

— Updated power drive to support PMU.

[2.0.0]

« initial version.

RESET

[2.4.0]
* Improvements
— Add RESET_ReleasePeripheralReset API.

[2.0.1]

* Update component full name to “Reset Driver”.

90 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.0]

« initial version.

SCTIMER

[2.5.1]
* Bug Fixes

— Fixed bug in SCTIMER_SetupCaptureAction: When KSCTIMER_Counter_H is selected,
events 12-15 and capture registers 12-15 CAPn_H field can’t be used.

[2.5.0]
* Improvements

— Add SCTIMER_GetCaptureValue API to get capture value in capture registers.

[2.4.9]
* Improvements

— Supported platforms which don’t have system level SCTIMER reset.

[2.4.8]
* Bug Fixes
— Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t writes MATCH_H bit
and RELOADn_H.
[2.4.7]
* Bug Fixes
— Fixed the issue that the SCTIMER_UpdatePwmDutycycle() can’t configure 100% duty
cycle PWM.
[2.4.6]
* Bug Fixes
— Fixed the issue where the H register was not written as a word along with the L register.
— Fixed the issue that the SCTIMER_SetCOUNTValue() is not configured with high 16 bits
in unify mode.
[2.4.5]
* Bug Fixes

— Fix SCT_EV_STATE_STATEMSKn macro build error.

1.5. ChangeLog 91

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.4]
* Bug Fixes
- Fix MISRA C-2012 issue 10.8.

[2.4.3]
* Bug Fixes

— Fixed the wrong way of writing CAPCTRL and REGMODE registers in SC-
TIMER_SetupCaptureAction.

[2.4.2]
* Bug Fixes
— Fixed SCTIMER_SetupPwm 100% duty cycle issue.

[2.4.1]
* Bug Fixes
— Fixed the issue that MATCHn_H bit and RELOADn_H bit could not be written.

[2.4.0]

[2.3.0]
* Bug Fixes

— Fixed the potential overflow issue of pulseperiod variable in SC-
TIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle API.

— Fixed the issue of SCTIMER_CreateAndScheduleEvent API does not correctly work with
32 bit unified counter.

— Fixed the issue of position of clear counter operation in SCTIMER_Init APL
* Improvements

— Update SCTIMER_SetupPwm/SCTIMER_UpdatePwmDutycycle to support generate 0%
and 100% PWM signal.

— Add SCTIMER_SetupEventActiveDirection API to configure event activity direction.

— Update SCTIMER_StartTimer/SCTIMER_StopTimer API to support start/stop low
counter and high counter at the same time.

— Add SCTIMER_SetCounterState/SCTIMER_GetCounterState API to write/read counter
current state value.

— Update APIs to make it meaningful.
% SCTIMER_SetEventInState
* SCTIMER_ClearEventInState
* SCTIMER_GetEventInState

92 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.2.0]
* Improvements

— Updated for 16-bit register access.

[2.1.3]
* Bug Fixes
- Fixed the issue of uninitialized variables in SCTIMER_SetupPwm.

— Fixed the issue that the Low 16-bit and high 16-bit work independently in SCTIMER
driver.

* Improvements

— Added an enumerable macro of unify counter for user.
* KkSCTIMER_Counter_U

— Created new APIs for the RTC driver.
* SCTIMER_SetupStateLdMethodAction
* SCTIMER_SetupNextStateActionwithL.dMethod
SCTIMER_SetCOUNTValue
SCTIMER_GetCOUNTValue
4 SCTIMER_SetEventInState
% SCTIMER_ClearEventInState
* SCTIMER_GetEventInState

— Deprecated legacy APIs for the RTC driver.
* SCTIMER_SetupNextStateAction

[2.1.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7, 11.9, 14.2 and 15.5.
[2.1.1]

* Improvements

— Updated the register and macro names to align with the header of devices.

[2.1.0]
* Bug Fixes

— Fixed issue where SCT application level Interrupt handler function is occupied by SCT
driver.

— Fixed issue where wrong value for INSYNC field inside SCTIMER_Init function.
— Fixed issue to change Default value for INSYNC field inside SCTIMER_GetDefaultConfig.

1.5. ChangeLog 93

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* New Features

— Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

SPI

[2.0.8]
* Bug Fixes

— Fixed coverity issue.

[2.0.7]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API.

[2.0.6]
* Improvements
— Changed SPI_DUMMYDATA to 0x00.

[2.0.5]
* Bug Fixes

— Fixed bug that the transfer configuration does not take effect after the first transfer.

[2.0.4]
* Bug Fixes

— Fixed the issue that when transfer finish callback is invoked TX data is not sent to bus
yet.

[2.0.3]
* Improvements
— Added timeout mechanism when waiting certain states in transfer driver.
- Fixed MISRA 10.4 issue.

94 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.2]
* Bug Fixes
— Fixed Coverity issue of incrementing null pointer in SPI_MasterTransferNonBlocking.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.6, 14.4.
* New Features
— Added enumeration for dataWidth.

[2.0.1]
* Bug Fixes

— Added wait mechanism in SPI_MasterTransferBlocking() API, which checks if master
SPI becomes IDLE when the EOT bit is set before returning. This confirms that all data
will be sent out by SPI master.

— Fixed the bug that the EOT bit couldn’t be set when only one frame was sent in polling
mode and interrupt transfer mode.

* New Features

— Added macro gate “FSL_SDK_ENABLE_SPI DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

SWM
[2.1.2]
* Improvements
— Reduce RAM footprint.
[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1 and 10.3.
[2.1.0]

* New Features

— Supported Flextimer function pin assign.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 14.3.

1.5. ChangeLog 95

MCUXpresso SDK Documentation, Release 25.12.00

[2.0.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, and 10.4.
[2.0.0]

 Initial version.

* The API SWM_SetFixedMovablePinSelect() is targeted at the device that has PINASSIGN-
FIXEDO register, such as LPC804.

SYSCON

[2.0.2]
* Bug Fixes
— Fixed CERT-C violations.

[2.0.1]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule 10.4.
[2.0.0]

 Initial version.

USART

[2.5.2]
* Improvements

— Fixed coverity issues.

[2.5.1]
* Improvements

— Fixed doxygen warning in USART_SetRxIdleTimeout.

[2.5.0]
* New Features

— Supported new feature of rx idle timeout.

96 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.4.0]
* Improvements
— Used separate data for TX and RX in usart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.

[2.3.0]
* New Features

— Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

[2.2.0]
* Improvements
— Added timeout mechanism when waiting for certain states in transfer driver.
— Fixed MISRA 10.4 issues.

[2.1.1]
* Bug Fixes

— Fixed the bug that in USART_SetBaudRate best_diff rather than diff should be used to
compare with calculated baudrate.

— Eliminated IAR pa082 warnings from USART_TransferGetRxRingBufferLength and US-
ART_TransferHandleIRQ.

— Fixed MISRA issues.
* Improvements

— Rounded up the calculated sbr value in USART SetBaudRate to achieve more acurate
baudrate setting.

— Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

[2.1.0]
* New Features

— Added new APIs to allow users to configure the USART continuous SCLK feature in
synchronous mode transfer.

[2.0.1]
* Bug Fixes

— Fixed the repeated reading issue of the STAT register while dealing with the IRQ rou-
tine.

* New Features

1.5. ChangeLog 97

MCUXpresso SDK Documentation, Release 25.12.00

— Added macro gate “FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

— Added macro switch gate “FSL,_SDK_USART_DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE”
to enable/disable the baud rate to generate automatically. Disabling this feature will
help reduce the code size to a certain degree. Default configuration enables auto
generating of baud rate.

— Added the check of baud rate while initializing the USART. If the baud rate calculated
is not precise, the software assertion will be triggered.

— Added a new API to allow users to enable the CTS, which determines whether CTS is
used for flow control.

[2.0.0]

 Initial version.

WKT
[2.0.2]
* Bug Fixes
— Fixed violation of MISRA C-2012 rule 10.3.
[2.0.1]

* New Features
— Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

WWDT

[2.1.10]
* Bug Fixes

— Chek WWDT_RSTS instead of FSL_FEATURE_WWDT_HAS_NO_RESET to determine
whether the peripheral can be reset.

[2.1.9]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 10.4.

98 Chapter 1. LPC845BREAKOUT

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.8]
* Improvements

— Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0XFF (reset value) after WWDT _Init function returns.

[2.1.7]
* Bug Fixes
— Fixed the issue that the watchdog reset event affected the system from PMC.
— Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.
— Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.
[2.1.5]
* Bug Fixes
— deprecated a unusable API in WWWDT driver.
* WWDT_Disable
[2.1.4]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3,10.4 and 11.9.
— Fixed the issue of the inseparable process interrupted by other interrupt source.
* WWDT_Init
[2.1.3]
* Bug Fixes
— Fixed legacy issue when initializing the MOD register.
[2.1.2]

* Improvements

— Updated the “WWDT_ClearStatusFlags” API and “WWDT_GetStatusFlags” API to match
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
* New Features

— Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

— Implemented delay/retry in WWDT driver.

1.5. ChangeLog 99

MCUXpresso SDK Documentation, Release 25.12.00

[2.1.0]
* Improvements

— Added new parameter in configuration when initializing WWDT module. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.

[2.0.0]

 Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

LPC845

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster

100 Chapter 1. LPC845BREAKOUT

Chapter 2

LPC845

2.1 CAPT: Capacitive Touch

void CAPT_ Init(CAPT_Type *base, const capt_config_t *config)
Initialize the CAPT module.

Parameters
* base — CAPT peripheral base address.
* config — Pointer to “capt_config_t” structure.
void CAPT_Deinit(CAPT_Type *base)
De-initialize the CAPT module.
Parameters
* base — CAPT peripheral base address.

void CAPT_ GetDefaultConfig(capt_config_t *config)
Gets an available pre-defined settings for the CAPT’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are:

config->enableWaitMode = false;

config->enableTouchLower = true;

config->clockDivider = 15U;

config->timeOutCount = 12U;

config->pollCount = 0U;

config->enableXpins = 0U;

config->triggerMode = kCAPT__YHPortTriggerMode;
config->XpinsMode = kCAPT_ InactiveXpinsDrivenLowMode;
config->mDelay = kCAPT _MeasureDelayNoWait;
config->rDelay = kKCAPT__ResetDelayWait9FCLKs;

Parameters
* config — Pointer to the configuration structure.

static inline void CAPT_SetThreshold(CAPT_Type *base, uint32_t count)
Set Sets the count threshold in divided FCLKs between touch and no-touch.

Parameters
* base — CAPT peripheral base address.

* count — The count threshold.

101

MCUXpresso SDK Documentation, Release 25.12.00

void CAPT_ SetPollMode(CAPT_Type *base, capt_polling mode_t mode)
Set the CAPT polling mode.

Parameters
* base — CAPT peripheral base address.
* mode — The selection of polling mode.

void CAPT_ EnableDMA(CAPT_Type *base, capt_dma_mode_t mode)
Enable DMA feature.

Parameters
* base — CAPT peripheral base address.
* mode — Select how DMA triggers are generated.

void CAPT_ DisableDMA (CAPT_Type *base)
Disable DMA feature.

Parameters
* base — CAPT peripheral base address.

static inline void CAPT_ EnableInterrupts(CAPT_Type *base, uint32_t mask)
Enable interrupt features.

Parameters
* base — CAPT peripheral base address.

* mask — The mask of enabling interrupt features. Please refer to
“_capt_interrupt_enable”.

static inline void CAPT_ DisableInterrupts(CAPT_Type *base, uint32_t mask)
Disable interrupt features.

Parameters
* base — CAPT peripheral base address.

* mask — The mask of disabling interrupt features. Please refer to
“_capt_interrupt_enable”.

static inline uint32_t CAPT_ GetInterruptStatusFlags(CAPT_Type *base)
Get CAPT interrupts’ status flags.

Parameters
* base — CAPT peripheral base address.

Returns
The mask of interrupts’ status flags. please refer to
“_capt_interrupt_status_flags”.

static inline void CAPT _ClearInterruptStatusFlags(CAPT_Type *base, uint32_t mask)
Clear the interrupts’ status flags.

Parameters
* base — CAPT peripheral base address.

* mask — The mask of clearing the interrupts’ status flags, please refer to
“_capt_interrupt_status_flags”.

static inline uint32_t CAPT_ GetStatusFlags(CAPT_Type *base)
Get CAPT status flags.

Parameters

102 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* base — CAPT peripheral base address.

Returns
The mask of CAPT status flags. Please refer to “_capt_status_flags” Or use
CAPT_GET_XMAX NUMBER(mask) to get XMAX number.

bool CAPT_GetTouchData(CAPT_Type *base, capt_touch_data_t *data)
Get CAPT touch data.

Parameters
* base — CAPT peripheral base address.
* data — The structure to store touch data.

Returns
If return ‘true’, which means get valid data. if return ‘false’, which means get
invalid data.

void CAPT_ PollNow(CAPT_Type *base, uint16_t enableXpins)
Start touch data polling using poll-now method.

This function starts new data polling using polling-now method, CAPT stops when the
polling is finished, application could check the status or monitor interrupt to know when
the progress is finished.

Note that this is simultaneous poll of all X pins, all enabled X pins are activated concurrently,
rather than walked one-at-a-time

Parameters
* base — CAPT peripheral base address.
* enableXpins — The X pins enabled in this polling.
FSL_CAPT_DRIVER_ VERSION
CAPT driver version.
enum _ capt_ xpins
The enumeration for X pins.
Values:
enumerator kCAPT_XO0Pin
CAPT_XO pin.
enumerator kCAPT_X1Pin
CAPT X1 pin.
enumerator kCAPT _X2Pin
CAPT_X2 pin.
enumerator kCAPT _X3Pin
CAPT _X3 pin.
enumerator kCAPT _X4Pin
CAPT_X4 pin.
enumerator kCAPT _X5Pin
CAPT_X5 pin.
enumerator kCAPT_X6Pin
CAPT_X6 pin.

enumerator kCAPT X7Pin
CAPT_X7 pin.

2.1. CAPT: Capacitive Touch 103

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAPT_ X8Pin
CAPT_X8 pin.
enumerator kCAPT_ X9Pin
CAPT_X9 pin.
enumerator kCAPT_ X10Pin
CAPT _X10 pin.
enumerator kCAPT_ X11Pin
CAPT _X11 pin.
enumerator kCAPT_ X12Pin
CAPT _X12 pin.
enumerator kCAPT_ X13Pin
CAPT _X13 pin.
enumerator kCAPT_X14Pin
CAPT _X14 pin.
enumerator kCAPT_X15Pin
CAPT _X15 pin.
enum _ capt_ interrupt_ enable
The enumeration for enabling/disabling interrupts.
Values:

enumerator kCAPT_ InterruptOfYesTouchEnable
Generate interrupt when a touch has been detected.

enumerator kCAPT_ InterruptOfNoTouchEnable
Generate interrupt when a no-touch has been detected.
enumerator kCAPT_ InterruptOfPollDoneEnable
Genarate interrupt at the end of a polling round, or when a POLLNOW completes.

enumerator kCAPT_ InterruptOfTimeOutEnable

Generate interrupt when the count reaches the time-out count value before a trigger
occurs.

enumerator kCAPT_ InterruptOfOverRunEnable

Generate interrupt when the Touch Data register has been up-dated before software
has read the previous data, and the touch has been detected.

enum _ capt_ interrupt_ status_ flags
The enumeration for interrupt status flags.

Values:

enumerator kCAPT_ InterruptOfYesTouchStatusFlag
YESTOUCH interrupt status flag.

enumerator kCAPT_ InterruptOfNoTouchStatusFlag
NOTOUCH interrupt status flag.

enumerator kCAPT_ InterruptOfPollDoneStatusFlag
POLLDONE interrupt status flag.

enumerator kCAPT_ InterruptOfTimeOutStatusFlag
TIMEOUT interrupt status flag.

104 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAPT_ InterruptOfOverRunStatusFlag
OVERRUN interrupt status flag.

enum _ capt_ status_ flags
The enumeration for CAPT status flags.
Values:

enumerator kCAPT_BusyStatusFlag
Set while a poll is currently in progress, otherwise cleared.
enumerator kCAPT_XMAXStatusFlag
The maximum number of X pins available for a given device is equal to XMAX+1.
enum _ capt_ trigger mode
The enumeration for CAPT trigger mode.
Values:
enumerator kCAPT__ YHPortTriggerMode
YH port pin trigger mode.
enumerator kCAPT__ ComparatorTriggerMode
Analog comparator trigger mode.
enum _ capt_ inactive_ xpins_mode
The enumeration for the inactive X pins mode.
Values:
enumerator kCAPT_InactiveXpinsHighZMode
Xpins enabled in the XPINSEL field are controlled to HIGH-Z mode when not active.

enumerator kCAPT_ InactiveXpinsDrivenLowMode

Xpins enabled in the XPINSEL field are controlled to be driven low mode when not
active.

enum _ capt_ measurement_ delay
The enumeration for the delay of measuring voltage state.
Values:
enumerator kCAPT_ MeasureDelayNoWait
Don’t wait.
enumerator kCAPT_MeasureDelayWait3FCLKs
Wait 3 divided FCLKs.
enumerator kCAPT_MeasureDelayWait5FCLKs
Wait 5 divided FCLKs.
enumerator kCAPT_MeasureDelayWait9FCLKs
Wait 9 divided FCLKs.
enum _ capt_ reset_ delay
The enumeration for the delay of reseting or draining Cap.
Values:
enumerator kCAPT_ ResetDelayNoWait
Don’t wait.

enumerator kCAPT_ResetDelayWait3FCLKs
Wait 3 divided FCLKs.

2.1. CAPT: Capacitive Touch 105

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCAPT_ResetDelayWaitbFCLKs
Wait 5 divided FCLKs.

enumerator kCAPT_ ResetDelayWait9FCLKs
Wait 9 divided FCLKs.
enum _ capt_ polling_mode
The enumeration of CAPT polling mode.
Values:

enumerator kCAPT PolllnactiveMode

No measurements are taken, no polls are performed. The module remains in the Reset/
Draining Cap.

enumerator kCAPT PollNowMode

Immediately launches (ignoring Poll Delay) a one-time-only, simultaneous poll of all X
pins that are enabled in the XPINSEL field of the Control register, then stops, returning
to Reset/Draining Cap.

enumerator kCAPT PollContinuousMode
Polling rounds are continuously performed, by walking through the enabled X pins.
enum _ capt_ dma_ mode
The enumeration of CAPT DMA trigger mode.
Values:
enumerator kCAPT_DMATriggerOnTouchMode
Trigger on touch.
enumerator kCAPT_DMATriggerOnBothMode
Trigger on both touch and no-touch.
enumerator kCAPT_DMATriggerOnAllMode
Trigger on all touch, no-touch and time-out.
typedef enum _capt_trigger_mode capt_ trigger_ mode_ t
The enumeration for CAPT trigger mode.
typedef enum _capt_inactive_xpins_mode capt_ inactive_xpins_mode_ t
The enumeration for the inactive X pins mode.
typedef enum _capt_measurement_delay capt_ measurement__delay_t
The enumeration for the delay of measuring voltage state.
typedef enum _capt_reset_delay capt_reset delay t
The enumeration for the delay of reseting or draining Cap.
typedef enum _capt_polling mode capt_ polling_mode_t
The enumeration of CAPT polling mode.
typedef enum _capt_dma_mode capt_dma_ mode_ t
The enumeration of CAPT DMA trigger mode.
typedef struct _capt_config capt_ config_t
The structure for CAPT basic configuration.
typedef struct _capt_touch_data capt_touch_data_t
The structure for storing touch data.
CAPT_GET XMAX NUMBER(mask)

struct _ capt_ config
#include <fsl_capt.h> The structure for CAPT basic configuration.

106 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableWaitMode
If enable the wait mode, when the touch event occurs, the module will wait until the
TOUCH register is read before starting the next measurement. Other-wise, measure-
ments continue.

bool enableTouchLower
enableTouchLower = true: Trigger at count < TCNT is a touch. Trigger at count > TCNT
is a no-touch. enableTouchLower = false: Trigger at count > TCNT is a touch. Trigger
at count < TCNT is a no-touch. Notice: TCNT will be set by “CAPT_DoCalibration” API.

uint8_t clockDivider
Function clock divider. The function clock is divided by clockDivider+1 to produce the
divided FCLK for the module. The available range is 0-15.

uint8_t timeOutCount
Sets the count value at which a time-out event occurs if a measurement has not trig-
gered. The time-out count value is calculated as 2AtimeOutCount. The available range
is 0-12.

uint8_t pollCount

Sets the time delay between polling rounds (successive sets of X measurements). After
each polling round completes, the module will wait 4096 x PollCount divided FCLKs
before starting the next polling round. The available range is 0-255.

uint16_t enableXpins

Selects which of the available X pins are enabled. Please refer to ‘_capt_xpins’. For
example, if want to enable X0, X2 and X3 pins, you can set “enableXpins = kCAPT_XOPin

| KCAPT_X2Pin
| kCAPT_X3Pin”.

capt_trigger_mode_t triggerMode
Select the menthods of measuring the voltage across the measurement capacitor.
capt_inactive_xpins_mode_t XpinsMode
Determines how X pins enabled in the XPINSEL field are controlled when not active.
capt_measurement_delay_t mDelay
Set the time delay after entering step 3 (measure voltage state), before sampling the
YH port pin or analog comarator output.
capt_reset_delay_t rDelay
Set the number of divided FCLKs the module will remain in Reset or Draining Cap.

struct _ capt_ touch_ data
#include <fsl_capt.h> The structure for storing touch data.

Public Members

bool yesTimeOut
‘true’: if the measurement resulted in a time-out event, ‘false’: otherwise.

bool yesTouch

‘true’: if the trigger is due to a touch even, ‘false’: if the trigger is due to a no-touch
event.

2.1. CAPT: Capacitive Touch 107

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t XpinsIndex

Contains the index of the X pin for the current measurement, or lowest X for a multiple-

pin poll now measurement.

uint8_t sequenceNumber

Contains the 4-bit(0-7) sequence number, which increments at the end of each polling

round.

uint16_t count
Contains the count value reached at trigger or time-out.

2.2 Clock Driver

enum _ clock ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
Values:
enumerator kCLOCK_ IpInvalid
Invalid Ip Name.
enumerator kCLOCK__Rom
Clock gate name: Rom.
enumerator kCLOCK_Ram0_ 1
Clock gate name: Ram0_1.
enumerator kCLOCK__12¢0
Clock gate name: 12c0.
enumerator kCLOCK_ Gpio0
Clock gate name: GpioO.
enumerator kCLOCK_ Swm
Clock gate name: Swm.
enumerator kCLOCK _Sct
Clock gate name: Sct.
enumerator kCLOCK_ Wkt
Clock gate name: WKkt.
enumerator kCLOCK__Mrt
Clock gate name: Mrt.
enumerator kCLOCK__Spi0
Clock gate name: Spi0.
enumerator kCLOCK_ Spil
Clock gate name: Spil.
enumerator kCLOCK_Crc
Clock gate name: Crc.
enumerator kCLOCK_Uart0
Clock gate name: UartO.

enumerator kCLOCK_Uartl
Clock gate name: Uartl.

108

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK __ Uart2
Clock gate name: Uart2.

enumerator kCLOCK__ Wwdt
Clock gate name: Wwdt.
enumerator kCLOCK_ Iocon
Clock gate name: Iocon.
enumerator kCLOCK__Acmp
Clock gate name: Acmp.
enumerator kCLOCK__Gpiol
Clock gate name: Gpiol.
enumerator kCLOCK_ 12¢1
Clock gate name: 12c1.
enumerator kCLOCK__12¢2
Clock gate name: 12c2.
enumerator kCLOCK__12¢3
Clock gate name: 12c3.
enumerator kCLOCK__Adc
Clock gate name: Adc.
enumerator kCLOCK__Ctimer0
Clock gate name: Ctimero0.
enumerator kCLOCK__Mtb
Clock gate name: Mtb.
enumerator kCLOCK_ Dac0
Clock gate name: DacO.
enumerator kCLOCK_ Gpiolnt
Clock gate name: Gpiolnt.
enumerator kCLOCK_ Dma
Clock gate name: Dma.
enumerator kCLOCK_ Uart3
Clock gate name: Uart3.
enumerator kCLOCK_ Uart4
Clock gate name: Uart4.
enumerator kCLOCK__Capt
Clock gate name: Capt.
enumerator kCLOCK_ Dacl
Clock gate name: Dacl.
enum _clock name
Clock name used to get clock frequency.
Values:

enumerator kCLOCK__ CoreSysClk
Cpu/AHB/AHB matrix/Memories,etc

2.2. Clock Driver

109

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_MainClk
Main clock

enumerator kCLOCK_ Fro
FRO18/24/30
enumerator kCLOCK_FroDiv
FRO div clock
enumerator kCLOCK ExtClk
External Clock
enumerator kCLOCK_PllOut
PLL Output
enumerator kCLOCK WdtOsc
Watchdog Oscillator
enumerator kCLOCK__Frg0
fractional rate0
enumerator kCLOCK_ Frgl
fractional ratel

enum _clock select

Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux
is used to define the mux value.

Values:

enumerator kCAPT Clk From Fro
Mux CAPT_Clk from Fro.

enumerator kCAPT Clk From MainClk
Mux CAPT_Clk from MainCIk.

enumerator kCAPT_Clk_From_ SysPll
Mux CAPT_CIk from SysPIl.

enumerator kCAPT Clk From_ Fro Div
Mux CAPT_Clk from Fro_Div.

enumerator kCAPT Clk From_ WdtOsc
Mux CAPT_Clk from WdtOsc.

enumerator kADC_Clk From_Fro
Mux ADC_CIk from Fro.

enumerator kADC_ Clk_ From_ SysPll
Mux ADC_CIk from SysPIl.

enumerator kSCT _Clk From_ Fro
Mux SCT_Clk from Fro.

enumerator kSCT _Clk_From_ MainClk
Mux SCT_Clk from MainClIk.

enumerator kSCT _Clk_ From_ SysPll
Mux SCT_CIk from SysPIL

enumerator kEXT_Clk_From_SysOsc
Mux EXT_Clk from SysOsc.

110 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kEXT Clk From ClkIn
Mux EXT_CIk from ClKIn.

enumerator ktUARTO0 Clk_ From Fro
Mux UARTO_Clk from Fro.

enumerator kUARTO_Clk_ From_ MainClk
Mux UARTO_Clk from MainClk.
enumerator ktUARTO0_Clk_ From_ Frg0Clk
Mux UARTO_CIk from FrgOClk.
enumerator kUARTO_ Clk_ From_ Frgl1Clk
Mux UARTO_CIk from Frg1Clk.
enumerator kUARTO_Clk_From_Fro_Div
Mux UARTO_Clk from Fro_Div.
enumerator kUART1 Clk_ From_Fro
Mux UART1_Clk from Fro.
enumerator kUART1 Clk_From_ MainClk
Mux UART1_Clk from MainClk.
enumerator kUART1_ Clk_ From_ FrgOClk
Mux UART1_CIk from FrgOClk.
enumerator kUART1_ Clk_ From_ Frgl1Clk
Mux UART1_CIk from Frg1Clk.
enumerator kUART1 Clk_From_Fro_ Div
Mux UART1_Clk from Fro_Div.
enumerator kUART2_ Clk_From_ Fro
Mux UART2_Clk from Fro.
enumerator kUART2 Clk_From_MainClk
Mux UART2_Clk from MainClk.
enumerator kUART2_ Clk_ From_ FrgOClk
Mux UART2_CIk from FrgOClk.
enumerator kUART2_ Clk_ From_ Frgl1Clk
Mux UART2_CIk from Frg1Clk.
enumerator kUART2 Clk_From_Fro Div
Mux UART2_Clk from Fro_Div.
enumerator kUART3_Clk_From_Fro
Mux UART3_Clk from Fro.
enumerator kUART3_Clk_From_ MainClk
Mux UART3_Clk from MainClk.
enumerator kUART3_ Clk_ From_ FrgOClk
Mux UART3_CIk from FrgOClk.
enumerator kUART3_ Clk_ From_ Frgl1Clk
Mux UART3_CIk from FrgiClk.
enumerator kUART3_Clk_From_ Fro_ Div
Mux UART3_CIk from Fro_Div.

2.2. Clock Driver 111

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUART4 Clk_ From Fro
Mux UART4 _Clk from Fro.

enumerator kUART4 Clk_From MainClk
Mux UART4 _Clk from MainClk.

enumerator ktUART4_Clk_ From_ Frg0Clk
Mux UART4_CIk from FrgOClk.
enumerator ktUART4_Clk_ From_ FrglClk
Mux UART4_CIk from Frg1Clk.
enumerator kUART4 Clk_From_Fro_Div
Mux UART4_Clk from Fro_Div.
enumerator kI2C0_ Clk_From_ Fro
Mux I12C0_CIk from Fro.
enumerator kI2C0_ Clk_ From_MainClk
Mux I12C0_Clk from MainClk.
enumerator kI2C0_ Clk_ From_ Frg0Clk
Mux 12C0_CIk from FrgOClk.
enumerator kI2C0_ Clk_ From_ Frgl1Clk
Mux 12C0_CIk from Frgi1Clk.
enumerator kI2C0_ Clk_ From_ Fro_ Div
Mux I12C0_Clk from Fro_Div.
enumerator kI2C1_ Clk_ From_ Fro
Mux I12C1_CIk from Fro.
enumerator kI2C1_ Clk_ From_ MainClk
Mux I12C1_Clk from MainClk.
enumerator kI2C1_ Clk_ From_ Frg0Clk
Mux 12C1_CIk from FrgOClk.
enumerator kI2C1_ Clk_ From_ Frgl1Clk
Mux 12C1_CIk from FrgiClk.
enumerator kI2C1 Clk From Fro Div
Mux I12C1_Clk from Fro_Div.
enumerator kI2C2 Clk_From_ Fro
Mux I12C2_CIk from Fro.
enumerator kI2C2 Clk From MainClk
Mux I12C2_Clk from MainClk.
enumerator kI2C2_ Clk_ From_ Frg0Clk
Mux 12C2_CIk from FrgOCIk.
enumerator kI2C2_ Clk_ From_ Frgl1Clk
Mux 12C2_CIk from Frgi1Clk.
enumerator kI2C2 Clk From_ Fro Div
Mux 12C2_Clk from Fro_Div.

enumerator kI2C3_Clk_From Fro
Mux I2C3_CIk from Fro.

112

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C3_Clk From MainClk
Mux I12C3_Clk from MainClk.

enumerator kI2C3_ Clk_ From_ Frg0Clk
Mux 12C3_CIk from FrgOClk.
enumerator kI2C3_ Clk_ From_ FrglClk
Mux 12C3_CIk from Frg1Clk.
enumerator kI2C3_ Clk_ From_ Fro_ Div
Mux I12C3_Clk from Fro_Div.
enumerator kSPIO_ Clk_From_ Fro
Mux SPIO_CIk from Fro.
enumerator kSPIO_ Clk_From_MainClk
Mux SPIO_CIk from MainClk.
enumerator kSPIO_ Clk_ From_ Frg0Clk
Mux SPI0_CIk from Frg0Clk.
enumerator kSPI0O_ Clk_ From_ Frgl1Clk
Mux SPI0_CIk from FrglClk.
enumerator kSPI0_ Clk_From_ Fro_Div
Mux SPIO_CIk from Fro_Div.
enumerator kSPI1 Clk From Fro
Mux SPI1_CIk from Fro.
enumerator kSPI1_Clk_From_MainClk
Mux SPI1_CIk from MainClk.
enumerator kSPI1_ Clk_From_ Frg0Clk
Mux SPI1_CIk from FrgOClk.
enumerator kSPI1_ Clk_From_ Frgl1Clk
Mux SPI1_CIk from Frgl1Clk.
enumerator kSPI1 Clk From Fro Div
Mux SPI1_CIk from Fro_Div.
enumerator kFRGO_Clk_From_ Fro
Mux FRGO_Clk from Fro.
enumerator kKFRGO_Clk_ From_MainClk
Mux FRGO_Clk from MainClk.
enumerator kFRGO_ Clk_ From_ SysPll
Mux FRGO_CIk from SysPIl.
enumerator kFRG1_Clk_From_ Fro
Mux FRG1_Clk from Fro.
enumerator kFRG1_Clk_ From_ MainClk
Mux FRG1_Clk from MainCIk.
enumerator kFRG1_Clk_ From_ SysPll
Mux FRG1_CIk from SysPIl.

enumerator kCLKOUT _From Fro
Mux CLKOUT from Fro.

2.2. Clock Driver 113

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLKOUT _From_ MainClk
Mux CLKOUT from MainClk.

enumerator kCLKOUT_From_ SysPll
Mux CLKOUT from SysPIL.

enumerator kCLKOUT_From_ ExtClk
Mux CLKOUT from ExtClk.

enumerator kCLKOUT From WdtOsc
Mux CLKOUT from WdtOsc.

enum clock divider

Clock divider.
Values:

enumerator kCLOCK DivAdcClk
Adc Clock Divider.

enumerator kCLOCK DivSctClk
Sct Clock Divider.

enumerator kCLOCK DivClkOut
Clk Out Divider.

enumerator kCLOCK_TIOCONCLKDiv6
IOCON Clock Div6 Divider.

enumerator kCLOCK_ IOCONCLKDiv5
IOCON Clock Div5 Divider.

enumerator kCLOCK_ IOCONCLKDiv4
IOCON Clock Div4 Divider.

enumerator kCLOCK_ IOCONCLKDiv3
IOCON Clock Div3 Divider.

enumerator kCLOCK_ IOCONCLKDiv2
IOCON Clock Div2 Divider.

enumerator kCLOCK IOCONCLKDiv1
IOCON Clock Div1 Divider.

enumerator kCLOCK_TIOCONCLKDiv0
IOCON Clock Div0 Divider.

enum _ clock_ wdt_ analog_freq

watch dog analog output frequency
Values:

enumerator kCLOCK_ WdtAnaFreqOHZ

Watch dog analog output frequency is OHZ.
enumerator kCLOCK__ WdtAnaFreq600KHZ

Watch dog analog output frequency is 600KHZ.

enumerator kCLOCK__ WdtAnaFreql1050KHZ

Watch dog analog output frequency is 1050KHZ.

enumerator kCLOCK__WdtAnaFreq1400KHZ

Watch dog analog output frequency is 1400KHZ.

114

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ WdtAnaFreql750KHZ
Watch dog analog output frequency is 1750KHZ.

enumerator kCLOCK_ WdtAnaFreq2100KHZ

Watch dog analog output frequency is 2100KHZ.
enumerator kCLOCK__WdtAnaFreq2400KHZ

Watch dog analog output frequency is 2400KHZ.
enumerator kCLOCK_ WdtAnaFreq2700KHZ

Watch dog analog output frequency is 2700KHZ.
enumerator kCLOCK__WdtAnaFreq3000KHZ

Watch dog analog output frequency is 3000KHZ.
enumerator kCLOCK__ WdtAnaFreq3250KHZ

Watch dog analog output frequency is 3250KHZ.
enumerator kCLOCK__WdtAnaFreq3500KHZ

Watch dog analog output frequency is 3500KHZ.
enumerator kCLOCK__ WdtAnaFreq3750KHZ

Watch dog analog output frequency is 3750KHZ.
enumerator kCLOCK__ WdtAnaFreq4000KHZ

Watch dog analog output frequency is 4000KHZ.
enumerator kCLOCK__ WdtAnaFreq4200KHZ

Watch dog analog output frequency is 4200KHZ.
enumerator kCLOCK__WdtAnaFreq4400KHZ

Watch dog analog output frequency is 4400KHZ.

enumerator kCLOCK__ WdtAnaFreq4600KHZ
Watch dog analog output frequency is 4600KHZ.

enum _clock fro src

fro output frequency source definition
Values:
enumerator kCLOCK__FroSrcLpwrBootValue

fro source from the fro oscillator divided by low power boot value

enumerator kCLOCK __FroSrcFroOsc
fre source from the fro oscillator directly

enum _ clock fro osc_freq

fro oscillator output frequency value definition
Values:

enumerator kCLOCK FroOscOut18M
FRO oscillator output 18M

enumerator kCLOCK__FroOscOut24M
FRO oscillator output 24M

enumerator kCLOCK__FroOscOut30M
FRO oscillator output 30M

enum _ clock sys_pll_src

PLL clock definition.

Values:

2.2. Clock Driver

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCLOCK_ SysPlISrcFRO
system pll source from FRO

enumerator kCLOCK_ SysPlISrcExtClk
system pll source from external clock
enumerator kCLOCK_ SysPlISrcWdtOsc
system pll source from watchdog oscillator
enumerator kCLOCK_ SysPllSrcFroDiv
system pll source from FRO divided clock
enum clock main clk src
Main clock source definition.
Values:
enumerator kCLOCK _MainClkSrcFro
main clock source from FRO

enumerator kCLOCK__MainClkSrcExtClk
main clock source from Ext clock

enumerator kCLOCK_ _MainClkSrcWdtOsc

main clock source from watchdog oscillator
enumerator kCLOCK _MainClkSrcFroDiv

main clock source from FRO Div
enumerator kCLOCK_ MainClkSrcSysPIl

main clock source from system pll

typedef enum _clock_ip_name clock_ip_ name_t

Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

typedef enum _clock_name clock name_t
Clock name used to get clock frequency.

typedef enum _clock_select clock_ select_t

Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux

is used to define the mux value.

typedef enum _clock_divider clock_divider_t
Clock divider.

typedef enum _clock_wdt_analog freq clock_wdt_analog_freq t

watch dog analog output frequency

typedef enum _clock_fro_src clock_fro_src_t
fro output frequency source definition

typedef enum _clock_fro_osc_freq clock_fro_osc_freq t
fro oscillator output frequency value definition

typedef enum _clock_sys_pll src clock_sys_pll_src
PLL clock definition.

typedef enum _clock_main_clk_src clock_main_ clk_src_t

Main clock source definition.

typedef struct _clock_sys_pll clock_sys_pll_t
PLL configuration structure.

116

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

volatile uint32_t g Wdt_ Osc_ Freq
watchdog oscilltor clock frequency.

This variable is used to store the watchdog oscillator frequency which is set by
CLOCK_InitWdtOsc, and it is returned by CLOCK_GetWdtOscFreq.

volatile uint32_t g Ext_Clk_Freq
external clock frequency.

This variable is used to store the external clock frequency which is include external oscil-
lator clock and external clk in clock frequency value, it is set by CLOCK_InitExtClkin when
CLK IN is used as external clock or by CLOCK_InitSysOsc when external oscillator is used
as external clock ,and it is returned by CLOCK_GetExtClkFreq.

FSL CLOCK_ DRIVER_VERSION
CLOCK driver version 2.3.3.

SDK_DEVICE_MAXIMUM__CPU_CLOCK_FREQUENCY

CLOCK_FRO_SETTING_API_ROM__ADDRESS
FRO clock setting API address in ROM.

CLOCK_FAIM_BASE

FAIM base address.
ADC_CLOCKS

Clock ip name array for ADC.
ACMP__CLOCKS

Clock ip name array for ACMP.
DAC_CLOCKS

Clock ip name array for DAC.
SWM_ CLOCKS

Clock ip name array for SWM.
ROM_CLOCKS

Clock ip name array for ROM.
SRAM__CLOCKS

Clock ip name array for SRAM.
IOCON_CLOCKS

Clock ip name array for IOCON.
GPIO_CLOCKS

Clock ip name array for GPIO.
GPIO_INT_CLOCKS

Clock ip name array for GPIO_INT.
DMA__CLOCKS

Clock ip name array for DMA.
CRC_CLOCKS

Clock ip name array for CRC.
WWDT__CLOCKS

Clock ip name array for WWDT.

SCT_CLOCKS
Clock ip name array for SCTO.

2.2. Clock Driver 117

MCUXpresso SDK Documentation, Release 25.12.00

12C_CLOCKS
Clock ip name array for I2C.

USART CLOCKS
Clock ip name array for I2C.

SPI_CLOCKS
Clock ip name array for SPI.

CAPT_CLOCKS
Clock ip name array for CAPT.

CTIMER,_ CLOCKS
Clock ip name array for CTIMER.

MTB_CLOCKS
Clock ip name array for MTB.

MRT CLOCKS
Clock ip name array for MRT.

WKT CLOCKS
Clock ip name array for WKT.

CLK_GATE_DEFINE(reg, bit)
Internal used Clock definition only.

CLK_GATE_GET_REG(X)
CLK_GATE_GET_ BITS_SHIFT(X)
CLK_MUX_DEFINE(reg, mux)
CLK_MUX_GET_REG(X)

CLK_ MUX_ GET MUX(X)
CLK_MAIN_CLK_MUX_DEFINE(preMux, mux)
CLK_MAIN_CLK_MUX_GET_PRE_MUX(X)
CLK_MAIN_CLK_MUX_ GET_ MUX(X)
CLK_DIV_DEFINE(reg)

CLK DIV GET REG(X)
CLK_WDT_OSC_DEFINE(freq, regValue)
CLK_WDT_OSC_GET_FREQ(X)
CLK_WDT_OSC_GET_REG(X)
CLK_FRG_DIV_REG_MAP(base)
CLK_FRG_MUL_REG_ MAP(base)
CLK_FRG_SEL_REG_MAP(base)
SYS_AHB_CLK_CTRLO

SYS_AHB_CLK_CTRL1

static inline void CLOCK_ EnableClock(clock_ip_name_t clk)

118

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_ DisableClock(clock_ip_name_t clk)
static inline void CLOCK _ Select(clock_select _t sel)
static inline void CLOCK _ SetClkDivider(clock_divider_t name, uint32_t value)
static inline uint32_t CLOCK_ GetClkDivider(clock_divider_t name)
static inline void CLOCK_SetCoreSysClkDiv(uint32_t value)
void CLOCK_SetMainClkSrc(clock_main_clk_src_t src)
Set main clock reference source.
Parameters
* src — Refer to clock_main_clk_src_t to set the main clock source.

void CLOCK_SetFroOutClkSre(clock_fro_src_t src)
Set FRO clock source.

Parameters
* src — Please refer to _clock_fro_src definition.
static inline void CLOCK__SetFRGClkMul(uint32_t *base, uint32_t mul)
void CLOCK _SetFLASHAccessCyclesForFreq(uint32_t iFreq)
Set the flash wait states for the input freugency.
Parameters
* iFreq — : Input frequency
uint32_t CLOCK _GetFRGOCIkFreq(void)
Return Frequency of FRGO Clock.

Returns
Frequency of FRGO Clock.

uint32_t CLOCK__GetFRG1ClkFreq(void)
Return Frequency of FRG1 Clock.

Returns
Frequency of FRG1 Clock.

uint32_t CLOCK _GetMainClkFreq(void)
Return Frequency of Main Clock.

Returns
Frequency of Main Clock.

uint32_t CLOCK _ GetFroFreq(void)
Return Frequency of FRO.

Returns
Frequency of FRO.

static inline uint32_t CLOCK_ GetCoreSysClkFreq(void)
Return Frequency of core.

Returns
Frequency of core.

uint32_t CLOCK __GetClockOutClkFreq(void)
Return Frequency of ClockOut.

Returns
Frequency of ClockOut

2.2. Clock Driver 119

MCUXpresso SDK Documentation, Release 25.12.00

uint32_t CLOCK_ GetUart0ClkFreq(void)
Get UARTO frequency.

Return values
UARTO - frequency value.

uint32_t CLOCK__GetUart1ClkFreq(void)
Get UART1 frequency.

Return values
UART1 - frequency value.

uint32_t CLOCK_ GetUart2ClkFreq(void)
Get UART2 frequency.

Return values
UART?2 - frequency value.

uint32_t CLOCK__GetUart3ClkFreq(void)
Get UART3 frequency.

Return values
UARTS3 - frequency value.

uint32_t CLOCK__GetUart4ClkFreq(void)
Get UART4 frequency.

Return values
UART4 - frequency value.

uint32_t CLOCK__ GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

uint32_t CLOCK _ GetSystemPLLInClockRate(void)
Return System PLL input clock rate.

Returns
System PLL input clock rate

static inline uint32_t CLOCK __GetSystemPLLFreq(void)
Return Frequency of System PLL.

Returns
Frequency of PLL

static inline uint32_t CLOCK__GetWdtOscFreq(void)
Get watch dog OSC frequency.

Return values
watch — dog OSC frequency value.

static inline uint32_t CLOCK __GetExtClkFreq(void)
Get external clock frequency.

Return values
external — clock frequency value.

void CLOCK InitSystemPll(const clock_sys_pll t *config)
System PLL initialize.

Parameters

* config — System PLL configurations.

120

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CLOCK_ DenitSystemPll(void)
System PLL Deinitialize.

bool CLOCK_ SetFRGOCIkFreq(uint32_t freq)
Set FRGO output frequency.

Parameters

* freq — Target output frequency, freq < input and (input/ freq) < 2 should be
satisfy.

Return values
true — - successfully, false - input argument is invalid.

bool CLOCK_ SetFRG1ClkFreq(uint32_t freq)
Set FRG1 output frequency.
Parameters

* freq — Target output frequency, freq < input and (input / freq) < 2 should be
satisfy.

Return values
true — - successfully, false - input argument is invalid.

void CLOCK_InitExtClkin(uint32_t clkInFreq)
Init external CLK IN, select the CLKIN as the external clock source.
Parameters
* clkInFreq — external clock in frequency.
void CLOCK_ InitSysOsc(uint32_t oscFreq)
Init SYS OSC.
Parameters
* oscFreq — oscillator frequency value.

void CLOCK_ InitXtalin(uint32_t xtalInFreq)
XTALIN init function system oscillator is bypassed, sys_osc_clk is fed driectly from the
XTALIN.
Parameters
* xtallnFreq — XTALIN frequency value

Returns
Frequency of PLL

static inline void CLOCK _ DeinitSysOsc(void)
Deinit SYS OSC.

void CLOCK _InitWdtOsc(clock_wdt_analog freq t wdtOscFreq, uint32_t wdtOscDiv)

Init watch dog OSC Any setting of the FREQSEL bits will yield a Fclkana value within 40%
of the listed frequency value. The watchdog oscillator is the clock source with the low-
est power consumption. If accurate timing is required, use the FRO or system oscillator.
The frequency of the watchdog oscillator is undefined after reset. The watchdog oscillator
frequency must be programmed by writing to the WDTOSCCTRL register before using the
watchdog oscillator. Watchdog osc output frequency = wdtOscFreq / wdtOscDiv, should in
range 9.3KHZ to 2.3MHZ.

Parameters

* wdtOscFreq — watch dog analog part output frequency, reference
_wdt_analog_output_freq.

2.2. Clock Driver 121

MCUXpresso SDK Documentation, Release 25.12.00

* wdtOscDiv — watch dog analog part output frequency divider, shoule be a
value >= 2U and multiple of 2

static inline void CLOCK__ DeinitWdtOsc(void)
Deinit watch dog OSC.

static inline void CLOCK_SetFroOscFreq(clock_fro_osc_freq_t freq)

Set FRO oscillator output frequency. Initialize the FRO clock to given frequency (18, 24 or
30 MHz).

Parameters

* freq — Please refer to clock_fro_osc_freq_t definition, frequency must be
one of 18000, 24000 or 30000 KHz.

uint32_t targetFreq
System pll fclk output frequency, the output frequency should be lower than 100MHZ

clock_sys_pll_src src
System pll clock source

struct _ clock_sys_ pll
#include <fsl_clock.h> PLL configuration structure.

2.3 CRC: Cyclic Redundancy Check Driver

FSL CRC_DRIVER VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1
Change log:
* Version 2.0.0
— initial version

Version 2.0.1

— add explicit type cast when writing to WR_DATA
Version 2.0.2
— Fix MISRA issue
Version 2.1.0
— Add CRC_WriteSeed function
* Version 2.1.1
— Fix MISRA issue

enum _ crc_ polynomial
CRC polynomials to use.

Values:

enumerator kCRC_ Polynomial CRC__CCITT
XN16+xA12+xXA5+1

enumerator kCRC_ Polynomial CRC_ 16
XA16+xA15+xA2+1

122 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCRC_ Polynomial CRC_ 32
XAZ2+XA26+XA23+XNA22+XN16+XA12+XATT+XAT0+XAB+HXATHXAS+XA+XA2+X+]
typedef enum _crc_polynomial crc_ polynomial _t
CRC polynomials to use.

typedef struct _crc_config crc_ config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_ Init(CRC_Type *base, const crc_config_t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* config — CRC module configuration structure.
static inline void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.
This functions disables the CRC peripheral clock in the LPC SYSCON block.
Parameters
* base — CRC peripheral address.

void CRC_Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
* base — CRC peripheral address.

void CRC_ WriteSeed (CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters
* base — CRC peripheral address.
* seed — CRC Seed value.

void CRC_ GetDefaultConfig(crc_config t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_ Polynomial CRC_ CCITT;
config->reverseln = false;

config->complementIn = false;

config- >reverseOut = false;

config->complementOut = false;

config->seed = OxFFFFU;

Parameters
* config — CRC protocol configuration structure

void CRC_ GetConfig(CRC_Type *base, crc_config t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.

2.3. CRC: Cyclic Redundancy Check Driver 123

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — CRC peripheral address.
* config — CRC protocol configuration structure

void CRC_ WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.
Parameters
* base — CRC peripheral address.
* data — Input data stream, MSByte in data[0].
* dataSize — Size of the input data buffer in bytes.

static inline uint32_t CRC_ Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_ Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.

CRC_DRIVER_USE CRC16_CCITT FALSE AS DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _ crc_ config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members
crc_polynomial_t polynomial
CRC polynomial.

bool reverseln
Reverse bits on input.
bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

124 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.4 CTIMER: Standard counter/timers

void CTIMER_ Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
* base — Ctimer peripheral base address
* config — Pointer to the user configuration structure.

void CTIMER, Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
* base — Ctimer peripheral base address

void CTIMER_ GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_ TimerMode;
config->input = kKCTIMER,_ Capture_ 0;
config->prescale = 0;

Parameters
* config — Pointer to the user configuration structure.

status_t CTIMER_ SetupPwmPeriod(CTIMER_Type *base, const ctimer_match _t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enablelnt)

Configures the PWM signal parameters.

Enables PWM mode on the match channel passed in and will then setup the match value
and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
period

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
» matchChannel - Match pin to be used to output the PWM signal

2.4. CTIMER: Standard counter/timers 125

MCUXpresso SDK Documentation, Release 25.12.00

» pwmPeriod - PWM period match value
* pulsePeriod — Pulse width match value

* enablelnt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than OXFFFFFFFF.

status_t CTIMER_ SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,
ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enablelnt)

Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value

and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
» matchChannel — Match pin to be used to output the PWM signal
* dutyCyclePercent - PWM pulse width; the value should be between 0 to 100
* pwmFreq_Hz— PWM signal frequency in Hz
* srcClock__Hz — Timer counter clock in Hz

* enablelnt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

static inline void CTIMER, UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.
Parameters
* base — Ctimer peripheral base address
» matchChannel - Match pin to be used to output the PWM signal
* pulsePeriod —- New PWM pulse width match value

status_t CTIMER_ UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match_t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters

* base — Ctimer peripheral base address

126 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal

¢ dutyCyclePercent — New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than OXFFFFFFFF.

static inline void CTIMER_ Enablelnterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER_ Disablelnterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER _ GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
* base — Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

static inline uint32_t CTIMER_ GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
* base — Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER __ ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
* base — Ctimer peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_ StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters

* base — Ctimer peripheral base address

2.4. CTIMER: Standard counter/timers 127

MCUXpresso SDK Documentation, Release 25.12.00

static inline void CTIMER_ StopTimer(CTIMER_Type *base)
Stops the Timer counter.

Parameters
* base — Ctimer peripheral base address
FSL__CTIMER,_DRIVER,_VERSION
Version 2.3.4
enum _ ctimer_ capture channel
List of Timer capture channels.
Values:
enumerator kCTIMER, Capture_0
Timer capture channel 0
enumerator kCTIMER_ Capture_ 1
Timer capture channel 1
enumerator kCTIMER, Capture_3
Timer capture channel 3
enum _ ctimer_ capture_ edge
List of capture edge options.
Values:
enumerator kCTIMER, Capture_RiseEdge
Capture on rising edge
enumerator kCTIMER, Capture_ FallEdge
Capture on falling edge
enumerator kCTIMER, Capture_BothEdge
Capture on rising and falling edge
enum _ ctimer match
List of Timer match registers.
Values:
enumerator kCTIMER_Match 0
Timer match register 0
enumerator kCTIMER_Match 1
Timer match register 1
enumerator kCTIMER_Match_ 2
Timer match register 2
enumerator kCTIMER_Match 3
Timer match register 3
enum _ctimer external match
List of external match.
Values:
enumerator kCTIMER_ External_Match_ 0
External match 0

enumerator kCTIMER_External Match 1
External match 1

128

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCTIMER External Match 2
External match 2

enumerator kCTIMER External Match 3
External match 3

enum _ ctimer_ match_ output_ control
List of output control options.

Values:

enumerator kCTIMER.__Output_ NoAction
No action is taken

enumerator kCTIMER__Output_ Clear
Clear the EM bit/output to 0

enumerator kCTIMER_ Output_ Set
Set the EM bit/output to 1

enumerator kCTIMER_ Output_ Toggle
Toggle the EM bit/output

enum _ ctimer timer mode
List of Timer modes.

Values:
enumerator kCTIMER_ TimerMode

enumerator kCTIMER_ IncreaseOnRiseEdge

enumerator kCTIMER, IncreaseOnFallEdge

enumerator kCTIMER, IncreaseOnBothEdge
enum _ ctimer_interrupt_ enable

List of Timer interrupts.

Values:

enumerator kCTIMER__MatchOInterruptEnable
Match 0 interrupt

enumerator kCTIMER,_ MatchlInterruptEnable
Match 1 interrupt

enumerator kCTIMER,_ Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER__Match3InterruptEnable
Match 3 interrupt

enum _ ctimer_status_ flags
List of Timer flags.
Values:

enumerator kCTIMER_ MatchOFlag
Match 0 interrupt flag

enumerator kCTIMER_ Match1Flag
Match 1 interrupt flag

2.4. CTIMER: Standard counter/timers 129

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kCTIMER, Match2Flag
Match 2 interrupt flag

enumerator kCTIMER, Match3Flag
Match 3 interrupt flag

enum ctimer__callback type_t

Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER, SingleCallback

Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_ MultipleCallback

Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture

typedef enum _ctimer_capture_channel ctimer_ capture_ channel_t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer__capture_edge_t
List of capture edge options.

typedef enum _ctimer_match ctimer__match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer__external _match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer__match_output_ control_t
List of output control options.

typedef enum _ctimer_timer_mode ctimer__timer_mode_t
List of Timer modes.

typedef enum _ctimer_interrupt_enable ctimer__interrupt_ enable_t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_flags_t
List of Timer flags.

typedef void (*ctimer__callback_t)(uint32_t flags)
typedef struct _ctimer_match_config ctimer _match_ config_t
Match configuration.
This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_ config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

130 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void CTIMER,_ SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
* base — Ctimer peripheral base address
* matchChannel - Match register to configure
* config — Pointer to the match configuration structure

uint32_t CTIMER._ GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
* base — Ctimer peripheral base address

* matchChannel — EXternal match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER,_ SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enablelnt)

Setup the capture.
Parameters
* base — Ctimer peripheral base address
* capture — Capture channel to configure
* edge — Edge on the channel that will trigger a capture

* enableInt — Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER _ GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
* base — Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER,_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.
This function configures CTimer Callback in following modes:

» Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

2.4. CTIMER: Standard counter/timers 131

MCUXpresso SDK Documentation, Release 25.12.00

* Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_matchO_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
* base — Ctimer peripheral base address
* cb_func — Pointer to callback function pointer
* cb_type — callback function type, singular or multiple

static inline void CTIMER. Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.
Parameters
* base — Ctimer peripheral base address

static inline void CTIMER_ SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.
Parameters
* base — Ctimer peripheral base address
* prescale — Prescale value

static inline uint32_t CTIMER,_ GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel_t
capture)

Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
Parameters
* base — Ctimer peripheral base address
* capture — Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_ EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.
Set the specified match channel reset operation.
Parameters
* base — Ctimer peripheral base address
* match — match channel used
* enable — Enable match channel reset operation.

static inline void CTIMER._EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.

Set the specified match channel stop operation.

132 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* enable — Enable match channel stop operation.

static inline void CTIMER, EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.
Enable the specified match channel reload match shadow value.
Parameters
* base — Ctimer peripheral base address.
» match — match channel used.
* enable — Enable .

static inline void CTIMER_ EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
Parameters
* base — Ctimer peripheral base address.
* capture — capture channel used.
* enable — Enable rising edge capture.

static inline void CTIMER, EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.
Parameters
* base — Ctimer peripheral base address.
* capture — capture channel used.
* enable — Enable falling edge capture.

static inline void CTIMER,_ SetShadowValue(CTIMER_Type *base, ctimer_match_t match,
uint32_t matchvalue)

Set the specified match shadow channel.
Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* matchvalue — Reload the value of the corresponding match register.

struct _ ctimer match_ config
#include <fsl_ctimer.h> Match configuration.

This structure holds the configuration settings for each match register.

2.4. CTIMER: Standard counter/timers 133

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
uint32_t matchValue
This is stored in the match register

bool enableCounterReset
true: Match will reset the counter false: Match will not reser the counter

bool enableCounterStop
true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM hit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ ctimer_config
#include <fsl_ctimer.h> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members
ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input

Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value

2.5 DMA: Direct Memory Access Controller Driver

void DMA_ Init(DMA_Type *base)
Initializes DMA peripheral.

This function enable the DMA clock, set descriptor table and enable DMA peripheral.
Parameters
* base — DMA peripheral base address.

void DMA_ Deinit(DMA_Type *base)
Deinitializes DMA peripheral.

This function gates the DMA clock.
Parameters

* base — DMA peripheral base address.

134 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void DMA_ InstallDescriptorMemory(DMA_Type *base, void *addr)
Install DMA descriptor memory.

This function used to register DMA descriptor memory for linked transfer, a typical case
is ping pong transfer which will request more than one DMA descriptor memory space,
althrough current DMA driver has a default DMA descriptor buffer, but it support one DMA
descriptor for one channel only.

Parameters
* base — DMA base address.
* addr — DMA descriptor address

static inline bool DMA__ ChannellsActive(DMA_Type *base, uint32_t channel)
Return whether DMA channel is processing transfer.

Parameters
* base —- DMA peripheral base address.
* channel - DMA channel number.

Returns
True for active state, false otherwise.

static inline bool DMA_ ChannellsBusy(DMA_Type *base, uint32_t channel)
Return whether DMA channel is busy.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
True for busy state, false otherwise.

static inline void DMA_ EnableChannellnterrupts(DMA_Type *base, uint32_t channel)
Enables the interrupt source for the DMA transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannellnterrupts(DMA_Type *base, uint32_t channel)
Disables the interrupt source for the DMA transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ EnableChannel(DMA_Type *base, uint32_t channel)
Enable DMA channel.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannel(DMA_Type *base, uint32_t channel)
Disable DMA channel.

Parameters

* base — DMA peripheral base address.

2.5. DMA: Direct Memory Access Controller Driver 135

MCUXpresso SDK Documentation, Release 25.12.00

* channel — DMA channel number.

static inline void DMA_ EnableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Set PERIPHREQEN of channel configuration register.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DisableChannelPeriphRq(DMA_Type *base, uint32_t channel)
Get PERIPHREQEN value of channel configuration register.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
True for enabled PeriphRq, false for disabled.

void DMA_ConfigureChannel Trigger(DMA_Type *base, uint32_t channel, dma_channel_trigger._t
*trigger)

Set trigger settings of DMA channel.

Deprecated:
Do not use this function. It has been superceded by DMA_SetChannelConfig.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.
* trigger — trigger configuration.

void DMA_ SetChannelConfig(DMA_Type *base, uint32_t channel, dma_channel_trigger._t
*trigger, bool isPeriph)

set channel config.
This function provide a interface to configure channel configuration reisters.
Parameters
* base — DMA base address.
* channel - DMA channel number.
* trigger — channel configurations structure.
* isPeriph — true is periph request, false is not.

static inline uint32_t DMA_ SetChannelXferConfig(bool reload, bool clrTrig, bool intA, bool intB,
uint8_t width, uint8_t srcInc, uint8_t dstInc,
uint32_t bytes)

DMA channel xfer transfer configurations.
Parameters
* reload — true is reload link descriptor after current exhaust, false is not
* cIrTrig — true is clear trigger status, wait software trigger, false is not
* intA — enable interruptA

* intB — enable interruptB

136 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* width — transfer width

* srcInc — source address interleave size

* dstInc — destination address interleave size
* bytes — transfer bytes

Returns
The vaule of xfer config

uint32_t DMA_ GetRemainingBytes(DMA_Type *base, uint32_t channel)
Gets the remaining bytes of the current DMA descriptor transfer.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
The number of bytes which have not been transferred yet.

static inline void DMA_ SetChannelPriority(DMA_Type *base, uint32_t channel, dma_priority_t
priority)
Set priority of channel configuration register.
Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.
» priority — Channel priority value.

static inline dma_priority_t DMA_ GetChannelPriority(DMA_Type *base, uint32_t channel)
Get priority of channel configuration register.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

Returns
Channel priority value.

static inline void DMA_ SetChannelConfigValid(DMA_Type *base, uint32_t channel)
Set channel configuration valid.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ DoChannelSoftwareTrigger(DMA_Type *base, uint32_t channel)
Do software trigger for the channel.

Parameters
* base — DMA peripheral base address.
* channel - DMA channel number.

static inline void DMA_ LoadChannel TransferConfig(DMA_Type *base, uint32_t channel, uint32_t
xfer)

Load channel transfer configurations.
Parameters

* base — DMA peripheral base address.

2.5. DMA: Direct Memory Access Controller Driver 137

MCUXpresso SDK Documentation, Release 25.12.00

* channel — DMA channel number.
* xfer — transfer configurations.

void DMA_ CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void
*dstAddr, void *nextDesc)

Create application specific DMA descriptor to be used in a chain in transfer.

Deprecated:
Do not use this function. It has been superceded by DMA_SetupDescriptor.

Parameters
* desc — DMA descriptor address.
o xfercfg — Transfer configuration for DMA descriptor.
* srcAddr — Address of last item to transmit
¢ dstAddr — Address of last item to receive.
* nextDesc — Address of next descriptor in chain.

void DMA_ SetupDescriptor(dma_descriptor._t *desc, uint32_t xfercfg, void *srcStartAddr, void
*dstStartAddr, void *nextDesc)

setup dma descriptor
Note: This function do not support configure wrap descriptor.
Parameters
* desc — DMA descriptor address.

o xfercfg — Transfer configuration for DMA descriptor.

srcStartAddr — Start address of source address.

dstStartAddr — Start address of destination address.
* nextDesc — Address of next descriptor in chain.

void DMA__SetupChannelDescriptor(dma_descriptor_t *desc, uint32_t xfercfg, void *srcStartAddr,
void *dstStartAddr, void *nextDesc, dma_burst_wrap_t
wrapType, uint32_t burstSize)

setup dma channel descriptor
Note: This function support configure wrap descriptor.
Parameters

* desc — DMA descriptor address.
* xfercfg — Transfer configuration for DMA descriptor.
* srcStartAddr — Start address of source address.
* dstStartAddr — Start address of destination address.
* nextDesc — Address of next descriptor in chain.
» wrapType — burst wrap type.

* burstSize — burst size, reference _dma_burst_size.

138 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void DMA_ LoadChannelDescriptor(DMA_Type *base, uint32_t channel, dma_descriptor_t
*descriptor)

load channel transfer decriptor.

This function can be used to load desscriptor to driver internal channel descriptor that is
used to start DMA transfer, the head descriptor table is defined in DMA driver, it is useful
for the case:

a. for the polling transfer, application can allocate a local descriptor memory table to
prepare a descriptor firstly and then call this api to load the configured descriptor to
driver descriptor table.

DMA_ Init(DMAO);

DMA_ EnableChannel(DMAO, DEMO_DMA__CHANNEL);

DMA_ SetupDescriptor(desc, xferCfg, s_ srcBuffer, &s_ destBuffer[0], NULL);

DMA_ LoadChannelDescriptor(DMAO, DEMO_DMA__CHANNEL, (dma_ descriptor_t *)desc);
DMA_ DoChannelSoftwareTrigger(DMAO, DEMO_DMA_CHANNEL);
while(DMA__ChannellsBusy(DMAO, DEMO_DMA_CHANNEL))

{

Parameters
* base — DMA base address.
¢ channel - DMA channel.
* descriptor — configured DMA descriptor.

void DMA_ AbortTransfer(dma_handle_t *handle)
Abort running transfer by handle.

This function aborts DMA transfer specified by handle.
Parameters
* handle - DMA handle pointer.

void DMA_ CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
Creates the DMA handle.

This function is called if using transaction API for DMA. This function initializes the internal
state of DMA handle.

Parameters

* handle — DMA handle pointer. The DMA handle stores callback function
and parameters.

* base — DMA peripheral base address.
* channel - DMA channel number.

void DMA_ SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
Installs a callback function for the DMA transfer.

This callback is called in DMA IRQ handler. Use the callback to do something after the
current major loop transfer completes.

Parameters
* handle - DMA handle pointer.
* callback — DMA callback function pointer.

» userData — Parameter for callback function.

2.5. DMA: Direct Memory Access Controller Driver 139

MCUXpresso SDK Documentation, Release 25.12.00

void DMA_ PrepareTransfer(dma_transfer_config t *config, void *srcAddr, void *dstAddr,

uint32_t byteWidth, uint32_t transferBytes, dma_transfer_type_t
type, void *nextDesc)

Prepares the DMA transfer structure.

Deprecated:

Do not use this function. It has been superceded by DMA_PrepareChannelTransfer.
This function prepares the transfer configuration structure according to the user input.

Note: The data address and the data width must be consistent. For example, if the SRC is
4 bytes, so the source address must be 4 bytes aligned, or it shall result in source address
error(SAE).

Parameters
* config — The user configuration structure of type dma_transfer _t.
* srcAddr - DMA transfer source address.
* dstAddr - DMA transfer destination address.
* byteWidth — DMA transfer destination address width(bytes).
¢ transferBytes — DMA transfer bytes to be transferred.
* type — DMA transfer type.

* nextDesc — Chain custom descriptor to transfer.

void DMA_ PrepareChannel Transfer(dma_channel_config_t *config, void *srcStartAddr, void

*dstStartAddr, uint32_t xferCfg, dma_transfer_type_t type,
dma_channel trigger._t *trigger, void *nextDesc)

Prepare channel transfer configurations.
This function used to prepare channel transfer configurations.
Parameters
* config — Pointer to DMA channel transfer configuration structure.
* srcStartAddr — source start address.
* dstStartAddr — destination start address.

 xferCfg — xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

* type — transfer type.
* trigger - DMA channel trigger configurations.

* nextDesc — address of next descriptor.

status_t DMA_ SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)

Submits the DMA transfer request.

Deprecated:
Do not use this function. It has been superceded by DMA_SubmitChannelTransfer.
This function submits the DMA transfer request according to the transfer configuration

structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.

140

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* handle - DMA handle pointer.
* config — Pointer to DMA transfer configuration structure.
Return values
* kStatus_ DMA_ Success — It means submit transfer request succeed.

* kStatus_ DMA_ QueueFull — It means TCD queue is full. Submit transfer re-
quest is not allowed.

* kStatus. DMA_Busy — It means the given channel is busy, need to submit
request later.

void DMA_ SubmitChannel TransferParameter(dma_handle_t *handle, uint32_t xferCfg, void
*srcStartAddr, void *dstStartAddr, void *nextDesc)

Submit channel transfer paramter directly.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, it is useful for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA__ SetChannelConfig(base, channel, trigger, isPeriph);

DMA_ CreateHandle(handle, base, channel)

DMA__ SubmitChannelTransferParameter(handle, DMA__CHANNEL_XFER(reload, clrTrig,
—intA, intB, width, srclnc, dstlnc,
bytes), srcStartAddr, dstStartAddr, NULL);

DMA_ StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro, the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA__ALLOCATE_ LINK_DESCRIPTOR(nextDesc[3]);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
— srclne, dstInce, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
— srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_ SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
— srclne, dstInge, bytes),
srcStartAddr, dstStartAddr, NULL);

DMA_SetChannelConfig(base, channel, trigger, isPeriph);

DMA _CreateHandle(handle, base, channel)

DMA__ SubmitChannelTransferParameter (handle, DMA__CHANNEL_ XFER(reload, clrTrig,
—intA, intB, width, srcInc, dstlnc,
bytes), srcStartAddr, dstStartAddr, nextDesc0);

DMA _ StartTransfer(handle);

Parameters
* handle — Pointer to DMA handle.

 xferCfg — xfer configuration, user can reference DMA_CHANNEL_XFER
about to how to get xferCfg value.

* srcStartAddr — source start address.

* dstStartAddr — destination start address.

2.5. DMA: Direct Memory Access Controller Driver 141

MCUXpresso SDK Documentation, Release 25.12.00

* nextDesc — address of next descriptor.

void DMA_ SubmitChannelDescriptor(dma_handle_t *handle, dma_descriptor_t *descriptor)

Submit channel descriptor.

This function used to configue channel head descriptor that is used to start DMA transfer,
the head descriptor table is defined in DMA driver, this functiono is typical for the ping
pong case:

a. for the ping pong case, application should responsible for the descriptor, for example,
application should prepare two descriptor table with macro.

define link descriptor table in application with macro
DMA_ALLOCATE_LINK_ DESCRIPTOR (nextDesc|[2]);

DMA _ SetupDescriptor(nextDescO, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
< srclne, dstlne, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA _ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
< srclne, dstlne, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA _ SetChannelConfig(base, channel, trigger, isPeriph);

DMA_ CreateHandle(handle, base, channel)

DMA__ SubmitChannelDescriptor(handle, nextDesc0);

DMA _StartTransfer(handle);

Parameters
* handle — Pointer to DMA handle.

* descriptor — descriptor to submit.

status_t DMA_ SubmitChannel Transfer(dma_handle_t *handle, dma_channel_config_t *config)

Submits the DMA channel transfer request.

This function submits the DMA transfer request according to the transfer configuration
structure. If the user submits the transfer request repeatedly, this function packs an un-
processed request as a TCD and enables scatter/gather feature to process it in the next time.
It is used for the case:

a. for the single transfer, application doesn’t need to allocate descriptor table, the head
descriptor can be used for it.

DMA_ CreateHandle(handle, base, channel)

DMA__ PrepareChannel Transfer(config,srcStart Addr,dstStart Addr,xferCfg,type,trigger, NULL);
DMA_ SubmitChannelTransfer(handle, config)

DMA _ StartTransfer(handle)

b. for the linked transfer, application should responsible for link descriptor, for example,
if 4 transfer is required, then application should prepare three descriptor table with
macro , the head descriptor in driver can be used for the first transfer descriptor.

define link descriptor table in application with macro

DMA_ALLOCATE_LINK_ DESCRIPTOR (nextDesc);

DMA_ SetupDescriptor(nextDesc0, DMA_CHANNEL_ XFER(reload, clr'Trig, intA, intB, width,
— srclne, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA_ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
- srclne, dstInc, bytes),
srcStartAddr, dstStartAddr, nextDesc2);

DMA_ SetupDescriptor(nextDesc2, DMA_CHANNEL_XFER(reload, clr'Trig, intA, intB, width,
- srclne, dstInc, bytes),

(continues on next page)

142

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)
srcStartAddr, dstStartAddr, NULL);
DMA_ CreateHandle(handle, base, channel)
DMA_ PrepareChannel Transfer(config,srcStart Addr,dstStart Addr xferCfg, type,trigger,
—nextDesc0);
DMA _ SubmitChannel Transfer(handle, config)
DMA _ StartTransfer(handle)

c. for the ping pong case, application should responsible for link descriptor, for example,
application should prepare two descriptor table with macro , the head descriptor in
driver can be used for the first transfer descriptor.

define link descriptor table in application with macro
DMA__ALLOCATE_LINK_ DESCRIPTOR (nextDesc);

DMA _ SetupDescriptor(nextDescO, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
- srclne, dstIne, bytes),
srcStartAddr, dstStartAddr, nextDescl);

DMA _ SetupDescriptor(nextDescl, DMA_CHANNEL_XFER(reload, clrTrig, intA, intB, width,
< srclne, dstIne, bytes),
srcStartAddr, dstStartAddr, nextDesc0);

DMA_ CreateHandle(handle, base, channel)

DMA_ PrepareChannel Transfer(config,srcStart Addr,dstStart Addr xferCfg,type,trigger,
—nextDesc0);

DMA _ SubmitChannelTransfer(handle, config)

DMA _ StartTransfer(handle)

Parameters
* handle - DMA handle pointer.
* config — Pointer to DMA transfer configuration structure.
Return values
* kStatus. DMA _Success — It means submit transfer request succeed.

* kStatus_ DMA_ QueueFull — It means TCD queue is full. Submit transfer re-
quest is not allowed.

* kStatus_ DMA_ Busy — It means the given channel is busy, need to submit
request later.

void DMA_ StartTransfer(dma_handle_t *handle)
DMA start transfer.

This function enables the channel request. User can call this function after submitting the
transfer request It will trigger transfer start with software trigger only when hardware
trigger is not used.

Parameters
* handle - DMA handle pointer.

void DMA_TRQHandle(DMA_Type *bhase)
DMA IRQ handler for descriptor transfer complete.

This function clears the channel major interrupt flag and call the callback function if it is
not NULL.

Parameters
* base — DMA base address.

2.5. DMA: Direct Memory Access Controller Driver 143

MCUXpresso SDK Documentation, Release 25.12.00

FSL_DMA_DRIVER_VERSION

DMA driver version.
Version 2.5.4.

_dma_transfer_status DMA transfer status
Values:

enumerator kStatus. DMA_Busy

Channel is busy and can’t handle the transfer request.

_dma_addr_interleave_size dma address interleave size
Values:
enumerator kDMA_AddressInterleaveOxWidth

dma source/destination address no interleave
enumerator kDMA AddressInterleavelxWidth

dma source/destination address interleave 1xwidth
enumerator kDMA AddressInterleave2xWidth

dma source/destination address interleave 2xwidth

enumerator kDMA AddressInterleavedxWidth
dma source/destination address interleave 3xwidth

_dma_transfer_width dma transfer width
Values:
enumerator kDMA_ Transfer8BitWidth

dma channel transfer bit width is 8 bit
enumerator kDMA_ Transfer16BitWidth

dma channel transfer bit width is 16 bit

enumerator kDMA_Transfer32BitWidth
dma channel transfer bit width is 32 bit

enum _ dma_ priority

DMA channel priority.

Values:

enumerator kDMA ChannelPriority0
Highest channel priority - priority 0

enumerator kDMA ChannelPriority1
Channel priority 1

enumerator kDMA_ ChannelPriority2
Channel priority 2

enumerator kDMA_ChannelPriority3
Channel priority 3

enumerator kDMA _ChannelPriority4
Channel priority 4

144

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDMA_ ChannelPriority5
Channel priority 5

enumerator kDMA_ ChannelPriority6
Channel priority 6

enumerator kDMA_ ChannelPriority7
Lowest channel priority - priority 7

enum dma int
DMA interrupt flags.

Values:

enumerator kDMA_ IntA
DMA interrupt flag A

enumerator kDMA_ IntB
DMA interrupt flag B

enumerator kDMA _IntError
DMA interrupt flag error

enum _ dma_ trigger_type
DMA trigger type.

Values:

enumerator kDMA_NoTrigger
Trigger is disabled

enumerator kDMA _LowLevelTrigger
Low level active trigger

enumerator kDMA _HighLevel Trigger
High level active trigger

enumerator kDMA _FallingEdgeTrigger
Falling edge active trigger

enumerator kDMA_ RisingEdgeTrigger
Rising edge active trigger

_dma_burst_size DMA burst size
Values:

enumerator kDMA_BurstSizel
burst size 1 transfer

enumerator kDMA_BurstSize2
burst size 2 transfer

enumerator kDMA BurstSize4
burst size 4 transfer

enumerator kDMA _BurstSize8
burst size 8 transfer

enumerator kDMA BurstSizel6
burst size 16 transfer

2.5. DMA: Direct Memory Access Controller Driver

145

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDMA_BurstSize32
burst size 32 transfer

enumerator kDMA_BurstSize64
burst size 64 transfer

enumerator kDMA_BurstSizel28
burst size 128 transfer

enumerator kDMA_BurstSize256
burst size 256 transfer

enumerator kDMA BurstSize512
burst size 512 transfer

enumerator kDMA BurstSizel024
burst size 1024 transfer

enum _ dma_ trigger burst
DMA trigger burst.
Values:

enumerator kDMA_ SingleTransfer
Single transfer
enumerator kDMA LevelBurstTransfer
Burst transfer driven by level trigger
enumerator kDMA_ EdgeBurstTransferl
Perform 1 transfer by edge trigger
enumerator kDMA_ EdgeBurstTransfer2
Perform 2 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer4
Perform 4 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer8
Perform 8 transfers by edge trigger

enumerator kDMA_EdgeBurstTransfer16
Perform 16 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer32
Perform 32 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer64
Perform 64 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer128
Perform 128 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer256
Perform 256 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer512
Perform 512 transfers by edge trigger

enumerator kDMA_ EdgeBurstTransfer1024
Perform 1024 transfers by edge trigger

146

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enum _ dma_ burst_ wrap
DMA burst wrapping.

Values:

enumerator kDMA_NoWrap
Wrapping is disabled

enumerator kDMA _SrcWrap
Wrapping is enabled for source

enumerator kDMA_DstWrap
Wrapping is enabled for destination

enumerator kDMA_SrcAndDstWrap
Wrapping is enabled for source and destination

enum _ dma_ transfer_type
DMA transfer type.

Values:

enumerator kDMA_MemoryToMemory
Transfer from memory to memory (increment source and destination)

enumerator kDMA_ PeripheralToMemory

Transfer from peripheral to memory (increment only destination)
enumerator kDMA_MemoryToPeripheral

Transfer from memory to peripheral (increment only source)
enumerator kDMA StaticToStatic

Peripheral to static memory (do not increment source or destination)

typedef struct _dma_descriptor dma_ descriptor_t
DMA descriptor structure.

typedef struct _dma_xfercfg dma_ xfercfg t
DMA transfer configuration.

typedef enum _dma _priority dma_ priority_t
DMA channel priority.

typedef enum _dma_int dma_irq_t
DMA interrupt flags.

typedef enum _dma trigger_type dma_ trigger type_t
DMA trigger type.

typedef enum _dma_trigger_burst dma_ trigger burst_t
DMA trigger burst.

typedef enum _dma_burst_ wrap dma_ burst_ wrap_t
DMA burst wrapping.

typedef enum _dma_transfer_type dma_ transfer_type_t
DMA transfer type.

typedef struct _dma_channel trigger dma_ channel trigger_t
DMA channel trigger.

typedef struct _dma_channel config dma_ channel_config_t
DMA channel trigger.

2.5. DMA: Direct Memory Access Controller Driver 147

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _dma_transfer_config dma_ transfer_ config_t
DMA transfer configuration.

typedef void (*dma_ callback)(struct _dma_handle *handle, void *userData, bool transferDone,
uint32_t intmode)

Define Callback function for DMA.
typedef struct _dma_handle dma_ handle_t
DMA transfer handle structure.
DMA_MAX_ TRANSFER_COUNT
DMA max transfer size.
FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(X)
DMA channel numbers.
FSL_FEATURE_DMA_MAX_ CHANNELS
FSL_FEATURE_DMA__ALL_CHANNELS
FSL_FEATURE_DMA_LINK_DESCRIPTOR__ALIGN_ SIZE
DMA head link descriptor table align size.

DMA_ALLOCATE_HEAD_DESCRIPTORS(name, number)

DMA head descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
* name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_HEAD_DESCRIPTORS_AT_NONCACHEABLE(name, number)

DMA head descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
» name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_LINK_DESCRIPTORS(name, number)

DMA link descriptor table allocate macro To simplify user interface, this macro will help
allocate descriptor memory, user just need to provide the name and the number for the
allocate descriptor.

Parameters
» name — Allocate decriptor name.
* number — Number of descriptor to be allocated.

DMA_ALLOCATE_LINK DESCRIPTORS AT NONCACHEABLE(name, number)

DMA link descriptor table allocate macro at noncacheable section To simplify user inter-
face, this macro will help allocate descriptor memory at noncacheable section, user just
need to provide the name and the number for the allocate descriptor.

Parameters
* name — Allocate decriptor name.

* number — Number of descriptor to be allocated.

148 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

DMA_ALLOCATE_DATA_TRANSFER_BUFFER(name, width)
DMA transfer buffer address need to align with the transfer width.

DMA_ CHANNEL__GROUP(channel)
DMA_CHANNEL_INDEX(base, channel)
DMA_COMMON_REG_GET(base, channel, reg)

DMA linked descriptor address algin size.
DMA_COMMON_ CONST_ REG_GET(base, channel, reg)
DMA_COMMON_REG_SET(base, channel, reg, value)
DMA_DESCRIPTOR_END ADDRESS(start, inc, bytes, width)

DMA descriptor end address calculate.

Parameters
* start — start address
* inc — address interleave size
* bytes — transfer bytes
* width — transfer width
DMA__CHANNEL_XFER(reload, clrTrig, intA, intB, width, srcInc, dstInc, bytes)

struct _dma_ descriptor
#include <fsl_dma.h> DMA descriptor structure.

Public Members
volatile uint32_t xfercfg
Transfer configuration

void *srcEndAddr
Last source address of DMA transfer

void *dstEndAddr
Last destination address of DMA transfer

void *linkToNextDesc
Address of next DMA descriptor in chain

struct _dma_ xfercfg
#include <fsl_dma.h> DMA transfer configuration.

Public Members
bool valid
Descriptor is ready to transfer

bool reload
Reload channel configuration register after current descriptor is exhausted

bool swtrig
Perform software trigger. Transfer if fired when ‘valid’ is set

bool clrtrig
Clear trigger

2.5. DMA: Direct Memory Access Controller Driver 149

MCUXpresso SDK Documentation, Release 25.12.00

bool intA

Raises IRQ when transfer is done and set IRQA status register flag
bool intB

Raises IRQ when transfer is done and set IRQB status register flag
uint8_t byteWidth

Byte width of data to transfer
uint8_t srclnc

Increment source address by ‘srcInc’ x ‘bytewidth’
uint8_t dstInc

Increment destination address by ‘dstInc’ x ‘byteWidth’
uint16_t transferCount

Number of transfers

struct _dma_ channel_ trigger
#include <fsl_dma.h> DMA channel trigger.

Public Members
dma_trigger_type_t type
Select hardware trigger as edge triggered or level triggered.

dma_trigger_burst_t burst

Select whether hardware triggers cause a single or burst transfer.
dma_burst_wrap_t wrap

Select wrap type, source wrap or dest wrap, or both.

struct _dma_ channel config
#include <fsl_dma.h> DMA channel trigger.

Public Members
void *srcStartAddr
Source data address
void *dstStartAddr
Destination data address
void *nextDesc
Chain custom descriptor
uint32_t xferCfg
channel transfer configurations
dma_channel trigger_t *trigger
DMA trigger type
bool isPeriph
select the request type

struct _dma_ transfer_config
#include <fsl_dma.h> DMA transfer configuration.

150

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint8_t *srcAddr
Source data address

uint8_t *dstAddr
Destination data address

uint8_t *nextDesc
Chain custom descriptor

dma_xfercfg_t xfercfg
Transfer options

bool isPeriph

DMA transfer is driven by peripheral

struct dma handle

#include <fsl_dma.h> DMA transfer handle structure.

Public Members

dma_callback callback

Callback function. Invoked when transfer of descriptor with interrupt flag finishes

void *userData

Callback function parameter

DMA_Type *base

DMA peripheral base address

uint8_t channel
DMA channel number

2.6 I2C: Inter-Integrated Circuit Driver

2.7 12C Driver

FSL_I12C_DRIVER_VERSION

12C driver version.

I2C status return codes.
Values:

enumerator kStatus_12C_ Busy
The master is already performing a transfer.

enumerator kStatus 12C Idle
The slave driver is idle.

enumerator kStatus_ I12C_Nak
The slave device sent a NAK in response to a byte.

enumerator kStatus_ 12C_InvalidParameter
Unable to proceed due to invalid parameter.

2.6. I2C: Inter-Integrated Circuit Driver

151

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus 12C_BitError
Transferred bit was not seen on the bus.

enumerator kStatus_ 12C_ ArbitrationLost
Arbitration lost error.

enumerator kStatus_ I12C_ NoTransferInProgress
Attempt to abort a transfer when one is not in progress.

enumerator kStatus_ 12C_ DmaRequestFail
DMA request failed.

enumerator kStatus_ 12C_ StartStopError
Start and stop error.

enumerator kStatus_ 12C_ UnexpectedState
Unexpected state.

enumerator kStatus I12C_Addr Nak
NAK received during the address probe.

enumerator kStatus_12C_ Timeout
Timeout polling status flags.

12C_RETRY_TIMES
Retry times for waiting flag.

I12C_STAT MSTCODE_ IDLE
Master Idle State Code

12C_STAT_ MSTCODE_RXREADY
Master Receive Ready State Code

12C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code

12C_STAT MSTCODE_NACKADR
Master NACK by slave on address State Code

I12C_STAT MSTCODE_NACKDAT
Master NACK by slave on data State Code

12C_STAT SLVST ADDR
12C_STAT SLVST RX
12C_STAT SLVST TX

2.8 1I2C Master Driver

void 12C_ MasterGetDefaultConfig(i2¢c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the I2C master peripheral:

masterConfig->enableMaster = true;
masterConfig->baudRate_ Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with 12C_MasterInit().

152 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters

* masterConfig — [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void 12C_ MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the 12C master peripheral.

This function enables the peripheral clock and initializes the I12C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters

* base — The I2C peripheral base address.

* masterConfig — User provided peripheral configuration. Use
I12C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

* srcClock__Hz — Frequency in Hertz of the I12C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void 12C_ MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the 12C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters
* base — The I2C peripheral base address.

uint32_t 12C_ GetInstance(I12C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
* base — The I2C peripheral base address.

Returns
I2C instance number starting from 0.

static inline void I2C_ MasterReset(I2C_Type *base)
Performs a software reset.

Restores the 12C master peripheral to reset conditions.
Parameters
* base — The I2C peripheral base address.

static inline void 12C_ MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
* base — The I2C peripheral base address.

* enable — Pass true to enable or false to disable the specified I2C as master.

2.8. I12C Master Driver 153

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t 12C__ GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:

_i2c_master_flags

Parameters
* base — The I2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.

static inline void 12C_ MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

The following status register flags can be cleared:
* kI2C_MasterArbitrationLostFlag
» kI2C_MasterStartStopErrorFlag

Attempts to clear other flags has no effect.

See also:

_i2c_master_flags.

Parameters
* base — The I2C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_master_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void 12C__EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

* interruptMask — Bit mask of interrupts to enable. See _i2c_master_{flags for
the set of constants that should be OR’d together to form the bit mask.

static inline void 12C_ DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I2C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

* interruptMask — Bit mask of interrupts to disable. See _i2c_master_flags for
the set of constants that should be OR’d together to form the bit mask.

154 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t 12C_ GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

Returns
A bitmask composed of _i2c_master_flags enumerators OR’d together to indi-

cate the set of enabled interrupts.
void I2C_ MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)

Sets the I12C bus frequency for master transactions.
The I2C master is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
* base — The I2C peripheral base address.
* srcClock__Hz —I2C functional clock frequency in Hertz.
* baudRate_Bps — Requested bus frequency in bits per second.

static inline bool I2C_ MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.
Requires the master mode to be enabled.
Parameters
* base — The I2C peripheral base address.
Return values
* true — Bus is busy.
* false — Bus is idle.
status_t 12C_ MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)

Sends a START on the I2C bus.
This function is used to initiate a new master mode transfer by sending the START signal.

The slave address is sent following the I2C START signal.
Parameters
* base — I2C peripheral base pointer

* address — 7-bit slave device address.
* direction — Master transfer directions(transmit/receive).

Return values
* kStatus_ Success — Successfully send the start signal.
* kStatus_ I2C_ Busy — Current bus is busy.
status_t 12C_ MasterStop(I2C_Type *base)
Sends a STOP signal on the I2C bus.

Return values
* kStatus_ Success — Successfully send the stop signal.

* kStatus_ I2C_ Timeout — Send stop signal failed, timeout.

2.8. I12C Master Driver 155

MCUXpresso SDK Documentation, Release 25.12.00

static inline status_t 12C_ MasterRepeatedStart(I2C_Type *base, uint8_t address, i2¢_direction _t
direction)

Sends a REPEATED START on the I12C bus.
Parameters
* base — I2C peripheral base pointer
¢ address — 7-bit slave device address.
* direction — Master transfer directions(transmit/receive).
Return values
* kStatus_ Success — Successfully send the start signal.

* kStatus_I2C_Busy — Current bus is busy but not occupied by current 12C
master.

status_t 12C_ MasterWriteBlocking(I2C_Type *base, const void *txBuff, size_t txSize, uint32_t
flags)

Performs a polling send transfer on the I12C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was sent successfully.
* kStatus_ I2C_ Busy — Another master is currently utilizing the bus.
* kStatus_I2C_Nak — The slave device sent a NAK in response to a byte.
* kStatus I2C ArbitrationLost — Arbitration lost error.

status_t 12C_ MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I12C bus.

Parameters
* base — The I2C peripheral base address.
* rxBuff — The pointer to the data to be transferred.
* rxSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was received successfully.
* kStatus_ I2C_Busy — Another master is currently utilizing the bus.
* kStatus_I2C_Nak — The slave device sent a NAK in response to a byte.

* kStatus I2C ArbitrationLost — Arbitration lost error.

156 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

status_t 12C_ MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters

* base — I2C peripheral base address.

« xfer — Pointer to the transfer structure.
Return values

* kStatus_ Success — Successfully complete the data transmission.

kStatus_ I2C_ Busy — Previous transmission still not finished.

kStatus_ 12C_ Timeout — Transfer error, wait signal timeout.

kStatus I2C ArbitrationLost — Transfer error, arbitration lost.
* kStataus_I2C_ Nak — Transfer error, receive NAK during transfer.

void 12C_ MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
I12C_MasterTransferAbort() API shall be called.

Parameters
* base — The I2C peripheral base address.
* handle — [out] Pointer to the I2C master driver handle.
* callback — User provided pointer to the asynchronous callback function.
 userData — User provided pointer to the application callback data.

status_t 12C_ MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I2C bus.
Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.
» xfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_I2C_Busy — Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t 12C_ MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.
Parameters

* base — The I12C peripheral base address.

2.8. I12C Master Driver 157

MCUXpresso SDK Documentation, Release 25.12.00

* handle — Pointer to the I2C master driver handle.

* count — [out] Number of bytes transferred so far by the non-blocking trans-
action.

Return values
e kStatus_ Success —
* kStatus_ 12C_ Busy —

status_t 12C_ MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.
Return values
* kStatus_ Success — A transaction was successfully aborted.
* kStatus_I2C_Timeout — Abort failure due to flags polling timeout.

void I2C_ MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* base — The I2C peripheral base address.
* i2cHandle — Pointer to the I2C master driver handle i2c_master_handle_t.

enum _i2c_master flags
I2C master peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ MasterPendingFlag
The I12C module is waiting for software interaction.

enumerator kI2C_ MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus

enumerator kI2C_ MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction.

enum _i2c direction
Direction of master and slave transfers.

Values:

158 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C Write
Master transmit.

enumerator kI2C Read
Master receive.

enum _i2c_master transfer flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_ TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_ TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_ TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_ TransferNoStopFlag
Don’t send a stop condition.

enum i2c transfer states
States for the state machine used by transactional APIs.

Values:

enumerator kldleState

enumerator kTransmitSubaddrState
enumerator kTransmitDataState
enumerator kReceiveDataBeginState
enumerator kReceiveDataState
enumerator kReceiveLastDataState
enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState

typedef enum _i2c¢_direction i2c_ direction_ t
Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_ master config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the 12C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_ master transfer t
I2C master transfer typedef.

2.8. I12C Master Driver 159

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _i2c_master_handle i2c_master_handle_t

I12C master handle typedef.

typedef void (*i2c_master__transfer_ callback__t)(I2C_Type *base, i2c_master_handle_t *handle,
Status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config

#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool enableMaster
Whether to enable master mode.

uint32_t baudRate Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.

struct i2c_master transfer

#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This structure is used to pass transaction parameters to the
12C_MasterTransferNonBlocking() API.

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint16_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction
Either kI2C_Read or kI2C_Write.

uint32_t subaddress
Sub address. Transferred MSB first.

160

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

size t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data
Pointer to data to transfer.

size_t dataSize
Number of bytes to transfer.

struct i2c¢ master handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members

uint8_t state
Transfer state machine current state.

uint32_t transferCount
Indicates progress of the transfer

uint32_t remainingBytes
Remaining byte count in current state.

uint8_t *buf

Buffer pointer for current state.
i2c_master_transfer_t transfer

Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.

2.9 1I2C Slave Driver

void 12C_SlaveGetDefaultConfig(i2c_slave_config t *slaveConfig)
Provides a default configuration for the I12C slave peripheral.

This function provides the following default configuration for the I12C slave peripheral:

slaveConfig- >enableSlave = true;

slaveConfig- >address0.disable = false;

slaveConfig- >address0.address = Ou;

slaveConfig- >address1.disable = true;

slaveConfig- >address2.disable = true;

slaveConfig- >address3.disable = true;
slaveConfig->busSpeed = kI2C__SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_Slavelnit(). Be sure to override at least the ad-
dress0.address member of the configuration structure with the desired slave address.

Parameters

2.9. I2C Slave Driver 161

MCUXpresso SDK Documentation, Release 25.12.00

* slaveConfig — [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config_t.

status_t 12C_SlaveInit(I2C_Type *base, const i2¢_slave_config_t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I2C slave peripheral as de-
scribed by the user provided configuration.

Parameters
* base — The I2C peripheral base address.

* slaveConfig - User provided peripheral configuration. Use
12C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

* srcClock__Hz — Frequency in Hertz of the 12C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void 12C_ SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.
This function writes new value to Slave Address register.
Parameters
* base — The I2C peripheral base address.

* addressRegister — The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

* address — The slave address to be stored to the address register for match-
ing.

* addressDisable — Disable matching of the specified address register.

void 12C_ SlaveDeinit(I12C_Type *base)
Deinitializes the I12C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
* base — The I12C peripheral base address.

static inline void I2C_ SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
* base — The I12C peripheral base address.
* enable — True to enable or flase to disable.

static inline void 12C_ SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the 12C status flag state.

The following status register flags can be cleared:
* slave deselected flag

Attempts to clear other flags has no effect.

162 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

See also:

_i2c_slave_flags.

Parameters
* base — The I2C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t 12C__SlaveWriteBlocking(I12C_Type *base, const uint8_t *txBuff, size_t txSize)
Performs a polling send transfer on the I12C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns
kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

status_t 12C_ SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I12C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
* rxBuff — The pointer to the data to be transferred.
* rxSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.

Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void 12C_ SlaveTransferCreateHandle(I2C_Type *base, i2¢_slave_handle_t *handle,
i2¢_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
12C_SlaveTransferAbort() API shall be called.

Parameters
* base — The I2C peripheral base address.
* handle — [out] Pointer to the I2C slave driver handle.
* callback — User provided pointer to the asynchronous callback function.

* userData — User provided pointer to the application callback data.

2.9. I2C Slave Driver 163

MCUXpresso SDK Documentation, Release 25.12.00

status_t 12C_SlaveTransferNonBlocking(I2C_Type *base, i2¢_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling 12C_Slavelnit() and I12C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().

The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to

slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all

events.
Parameters
* base — The I2C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_ I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C__ SlaveSetSendBuffer(I2C_Type *base, volatile i2¢_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.

The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new

slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all

events.
Parameters
* base — The I12C peripheral base address.
* transfer — Pointer to i2c_slave_transfer_t structure.
* txData — Pointer to data to send to master.

* txSize — Size of txData in bytes.

164 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_ I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C__SlaveSetReceiveBuffer(12C_Type *base, volatile i2¢_slave_transfer_t *transfer, void

*rxData, size_t rxSize, uint32_t eventMask)
Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I12C peripheral base address.
* transfer — Pointer to i2c_slave_transfer_t structure.
» rxData — Pointer to data to store data from master.
* rxSize — Size of rxData in bytes.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

*» kStatus_ I2C_ Busy — Slave transfers have already been started on this han-
dle.

static inline uint32_t 12C_ SlaveGetReceived Address(I2C_Type *base, volatile i2¢_slave_transfer._t

*transfer)
Returns the slave address sent by the 12C master.

This function should only be called from the address match event callback
ki2C_SlaveAddressMatchEvent.

Parameters
* base — The I2C peripheral base address.
* transfer — The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.

2.9. I2C Slave Driver 165

MCUXpresso SDK Documentation, Release 25.12.00

void 12C_SlaveTransfer Abort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
* base — The I12C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
e kStatus_ Success —
e kStatus_I2C Idle —

status_t 12C_ SlaveTransferGetCount(I2C_Type *base, i2¢_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters

* base — I2C base pointer.

* handle — pointer to i2c_slave_handle_t structure.

* count — Number of bytes transferred so far by the non-blocking transaction.
Return values

* kStatus_InvalidArgument — count is Invalid.

* kStatus_ Success — Successfully return the count.

void 12C_ SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* base — The I2C peripheral base address.

* i2cHandle — Pointer to i2c_slave_handle_t structure which stores the trans-
fer state.

enum _i2c_slave flags
12C slave peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ SlavePendingFlag
The I12C module is waiting for software interaction.

enumerator kI2C_ SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no).

166 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C_ SlaveSelected
Indicates whether the slave is selected by an address match.

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, wlc).

enum _i2c_slave_address_ register
12C slave address register.

Values:

enumerator kI2C_ SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_ SlaveAddressRegisterl
Slave Address 1 register.

enumerator kI2C_ SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_ SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave address_qual mode
12C slave address match options.

Values:

enumerator kI2C_ QualModeMask
The SLVQUALO field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_ QualModeExtend

The SLVQUALO (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_ speed
12C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode
enumerator kI2C_ SlaveFastMode
enumerator kI2C__SlaveFastModePlus
enumerator kI2C_ SlaveHsMode

enum _i2c_slave transfer event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

2.9. I2C Slave Driver 167

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kI2C_SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C _SlaveReceiveEvent

Callbackis requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kI2C__SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c¢_slave fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C _SlaveFsmAddressMatch
enumerator kI2C__SlaveFsmReceive
enumerator kI2C SlaveFsmTransmit
typedef enum _i2¢_slave_address_register i2c_slave_address_ register__t

12C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_ mode i2¢_slave address_ qual_mode_t
12C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
12C slave bus speed options.

typedef struct _i2c_slave_config i2c_slave_config t
Structure with settings to initialize the I12C slave module.
This structure holds configuration settings for the I2C slave peripheral. To initialize this

structure to reasonable defaults, call the 12C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef enum _i2c_slave_transfer_event i2c_slave_ transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2¢c_ slave_handle_t
12C slave handle typedef.

168 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

typedef struct _i2c_slave_transfer i2c_slave_transfer_t
12C slave transfer structure.

typedef void (*i2c_slave_ transfer__callback_t)(I2C_Type *base, volatile i2c_slave_transfer._t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the 12C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2¢_slave fsmi2c_slave fsm_t
I2C slave software finite state machine states.

typedef void (*i2¢c_isr_t)(I2C_Type *base, void *i2cHandle)
Typedef for interrupt handler.

struct i2c_ slave address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members
uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.

struct _i2c_slave config
#include <fsl_i2c.h> Structure with settings to initialize the I12C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the 12C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
i2c_slave_address_t address0
Slave’s 7-bit address and disable.

i2c_slave_address_t address1

Alternate slave 7-bit address and disable.
i2c_slave_address_t address2

Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

2.9. I2C Slave Driver 169

MCUXpresso SDK Documentation, Release 25.12.00

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2¢_slave_bus_speed_t busSpeed

Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I12C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data

setup time kI2C_SlaveStandardMode (250 ns)

bool enableSlave

Enable slave mode.

struct i2c_slave transfer

#include <fsl_i2c.h> 12C slave transfer structure.

Public Members

i2c_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event
Reason the callback is being invoked.
uint8_t received Address
Matching address send by master. 7-bits plus R/nW bit0
uint32_t eventMask
Mask of enabled events.
uint8_t *rxData
Transfer buffer for receive data

const uint8_t *txData
Transfer buffer for transmit data

size_t txSize
Transfer size

size_t rxSize
Transfer size

size_t transferred Count
Number of bytes transferred during this transfer.

status_t completionStatus

Success or error code describing how the transfer completed.
kI2C_SlaveCompletionEvent.

struct i2c¢c slave handle

#include <fsl_i2c.h> 12C slave handle structure.

Only applies for

Note: The contents of this structure are private and subject to change.

170

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Public Members
volatile i2¢_slave_transfer._t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2¢_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.10 IAP:In Application Programming Driver

status_t TAP_ ReadPartID(uint32_t *partID)
Read part identification number.

This function is used to read the part identification number.
Parameters
* partID — Address to store the part identification number.

Return values
kStatus_TAP_ Success — Api has been executed successfully.

status_t TAP_ ReadBootCodeVersion(uint32_t *bootCodeVersion)
Read boot code version number.

This function is used to read the boot code version number.

note Boot code version is two 32-bit words. Word 0 is the major version, word 1 is the minor
version.

Parameters
* bootCodeVersion — Address to store the boot code version.

Return values
kStatus_TAP_ Success — Api has been executed successfully.

void TAP_ ReinvokeISP(uint8_t ispType, uint32_t *status)
Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and con-
figures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type se-
lection appears. The call won’t return unless an error occurs, so there can be no status
code.

Parameters
* ispType — ISP type selection.

* status — store the possible status.

2.10. IAP: In Application Programming Driver 171

MCUXpresso SDK Documentation, Release 25.12.00

Return values
kStatus TAP_ ReinvokeISPConfig — reinvoke configuration error.

status_t TAP_ ReadUniqueID(uint32_t *uniquelD)
Read unique identification.

This function is used to read the unique id.
Parameters
* uniquelD - store the uniquelD.

Return values
kStatus_TAP_ Success — Api has been executed successfully.

status_t TAP_ PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)
Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called
before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function.
The end sector number must be greater than or equal to the start sector number.

Parameters
* startSector — Start sector number.
* endSector — End sector number.
Return values
* kStatus_ TAP_ Success — Api has been executed successfully.
* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.

* kStatus_IAP_ InvalidSector — Sector number is invalid or end sector num-
ber is greater than start sector number.

* kStatus_ IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes,
uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via
IAP_PrepareSectorForWrite before calling this function.

Parameters

* dstAddr - Destination flash address where data bytes
are to be written, the address should be multiples of
FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.

* srcAddr — Source ram address from where data bytes are to be read.

* numOfBytes — Number of bytes to be written, it should be mul-
tiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and
ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to
FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.

* systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
* kStatus_ TAP_ Success — Api has been executed successfully.

* kStatus_ IAP_ NoPower — Flash memory block is powered down.

172 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* kStatus_ TAP_ NoClock — Flash memory block or controller is not clocked.
* kStatus_IAP_ SrcAddrError — Source address is not on word boundary.

* kStatus IAP DstAddrError — Destination address is not on a correct
boundary.

* kStatus_IAP_ SrcAddrNotMapped — Source address is not mapped in the
memory map.

* kStatus_ TAP_ DstAddrNotMapped — Destination address is not mapped in
the memory map.

* kStatus_ IAP_ CountError — Byte count is not multiple of 4 or is not a per-
mitted value.

* kStatus_ TAP_ NotPrepared — Command to prepare sector for write opera-
tion has not been executed.

* kStatus_ IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)
Erase sector.

This function erases sector(s). The end sector number must be greater than or equal to the
start sector number.

Parameters
* startSector — Start sector number.
* endSector — End sector number.

* systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
* kStatus_ IAP_ Success — Api has been executed successfully.
* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ TAP_ NoClock — Flash memory block or controller is not clocked.

e kStatus IAP InvalidSector — Sector number is invalid or end sector num-
ber is greater than start sector number.

* kStatus_ IAP_ NotPrepared — Command to prepare sector for write opera-
tion has not been executed.

* kStatus_ TAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ ErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)
Erase page.

This function erases page(s). The end page number must be greater than or equal to the
start page number.

Parameters
* startPage — Start page number.
* endPage — End page number.

* systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values

* kStatus_ TAP_ Success — Api has been executed successfully.

2.10. IAP: In Application Programming Driver 173

MCUXpresso SDK Documentation, Release 25.12.00

* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.

* kStatus_IAP_ InvalidSector — Page number is invalid or end page number
is greater than start page number.

* kStatus_ IAP_ NotPrepared — Command to prepare sector for write opera-
tion has not been executed.

* kStatus_IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ BlankCheckSector(uint32_t startSector, uint32_t endSector)
Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector number must be
greater than or equal to the start sector number. It can be used to verify the sector erasure
after IAP_FEraseSector call.

Parameters
* startSector — Start sector number.
* endSector — End sector number.
Return values
* kStatus IAP Success — One or more sectors are in erased state.
* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.
* kStatus_ TAP_ SectorNotblank — One or more sectors are not blank.

status_t TAP_ Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)
Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash
memory contents after IAP_CopyRamToFlash call.

Parameters
* dstAddr — Destination flash address.
* srcAddr — Source ram address.
* numOfBytes — Number of bytes to be compared.
Return values
* kStatus IAP Success — Contents of flash and ram match.
* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.
* kStatus_ IAP_ AddrError — Address is not on word boundary.

* kStatus_ IAP_ AddrNotMapped — Address is not mapped in the memory
map.

* kStatus_ IAP_ CountError — Byte count is not multiple of 4 or is not a per-
mitted value.

* kStatus_ IAP_ CompareError — Destination and source memory contents do
not match.

174 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

status_t TAP_ ExtendedFlashSignatureRead(uint32_t startPage, uint32_t endPage, uint32_t
numOfStates, uint32_t *signature)

Extended Read signature.
This function calculates the signature value for one or more pages of on-chip flash memory.
Parameters
* startPage — Start page number.
* endPage — End page number.
* numOfStates — Number of wait states.
* signature — Address to store the signature value.

Return values
kStatus_ IAP_Success — Api has been executed successfully.

status_t TAP_ ReadFlashSignature(uint32_t *signature)
Read flash signature.

This funtion is used to obtain a 32-bit signature value of the entire flash memory.
Parameters
* signature — Address to store the 32-bit generated signature value.

Return values
kStatus_TAP_ Success — Api has been executed successfully.

status_t TAP_ ReadFAIMPage(uint32_t pageNumber, uint32_t *dstAddr)
Read FAIM page.

This function is used to read given page of FAIM into the memory provided.
Parameters
* pageNumber — FAIM page number.
* dstAddr — Memory address to store the value read from FAIM.
Return values
* kStatus_ IAP_Success — Api has been executed successfully.

* kStatus_TAP_ DstAddrNotMapped — Destination address is not mapped in
the memory map.

status_t TAP_ WriteFAIMPage(uint32_t pageNumber, uint32_t *srcAddr)
Write FAIM page.

This function is used to write given data in the provided memory to a page of G.
Parameters
* pageNumber — FAIM page number.
¢ srcAddr — Memory address holding data to be stored on to FAIM page.
Return values
* kStatus_IAP_ Success — Api has been executed successfully.

* kStatus_IAP_ SrcAddrNotMapped — Source address is not mapped in the
memory map.

FSL_IAP DRIVER_ VERSION

2.10. IAP: In Application Programming Driver 175

MCUXpresso SDK Documentation, Release 25.12.00

iap status codes.
Values:

enumerator kStatus_IAP_Success
Api is executed successfully

enumerator kStatus_ IAP_ InvalidCommand
Invalid command

enumerator kStatus IAP SrcAddrError
Source address is not on word boundary

enumerator kStatus. AP DstAddrError
Destination address is not on a correct boundary

enumerator kStatus_ IAP_ SrcAddrNotMapped
Source address is not mapped in the memory map

enumerator kStatus_ IAP DstAddrNotMapped

Destination address is not mapped in the memory map
enumerator kStatus_ IAP_CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus IAP_ InvalidSector

Sector/page number is invalid or end sector/page number is greater than start sec-
tor/page number

enumerator kStatus_ IAP_SectorNotblank
One or more sectors are not blank

enumerator kStatus_ IAP_ NotPrepared
Command to prepare sector for write operation has not been executed

enumerator kStatus_ IAP_ CompareError
Destination and source memory contents do not match

enumerator kStatus_ IAP_ Busy
Flash programming hardware interface is busy

enumerator kStatus_ IAP_ ParamError
Insufficient number of parameters or invalid parameter

enumerator kStatus_ IAP_ AddrError
Address is not on word boundary

enumerator kStatus_ TAP_ AddrNotMapped
Address is not mapped in the memory map

enumerator kStatus_ IAP_ NoPower
Flash memory block is powered down

enumerator kStatus_ IAP_NoClock
Flash memory block or controller is not clocked

enumerator kStatus_ IAP_ ReinvokeISPConfig
Reinvoke configuration error

enum _ iap_ commands
iap command codes.

Values:

176 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator klapCmd_TAP_ReadFactorySettings
Read the factory settings

enumerator klapCmd_IAP_ PrepareSectorforWrite
Prepare Sector for write

enumerator klapCmd_TAP_ CopyRamToFlash
Copy RAM to flash

enumerator klapCmd_IAP_ EraseSector
Erase Sector

enumerator klapCmd_TAP_ BlankCheckSector
Blank check sector

enumerator klapCmd_TAP_ReadPartld
Read part id

enumerator klapCmd_TAP_Read_BootromVersion
Read bootrom version

enumerator klapCmd_ IAP_ Compare
Compare

enumerator klapCmd_TAP_ReinvokeISP
Reinvoke ISP

enumerator klapCmd_TAP_ReadUid
Read Uid

enumerator klapCmd_ITAP_ ErasePage
Erase Page

enumerator klapCmd_TAP_ReadSignature
Read Signature

enumerator klapCmd_ TAP_ ExtendedReadSignature
Extended Read Signature

enumerator klapCmd_IAP_ReadFAIMPage
Read FAIM page

enumerator klapCmd_TAP_ WriteFAIMPage
Write FAIM page

enum flash access time
Flash memory access time.

Values:

enumerator kFlash_ TAP_ OneSystemClockTime

enumerator kFlash TAP_ TwoSystemClockTime
1 system clock flash access time

enumerator kFlash TAP_ ThreeSystemClockTime
2 system clock flash access time

2.11 INPUTMUX: Input Multiplexing Driver

2.11. INPUTMUX: Input Multiplexing Driver 177

MCUXpresso SDK Documentation, Release 25.12.00

enum _ inputmux_ connection_ t

INPUTMUX connections type.
Values:

enumerator KINPUTMUX__DmaChannel0Trigout ToTriginChannels
DMA OTRIG.

enumerator KINPUTMUX__DmaChannel1Trigout ToTriginChannels
enumerator KINPUTMUX__ DmaChannel2Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel3Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel4Trigout ToTriginChannels
enumerator kINPUTMUX_DmaChannel5TrigoutToTriginChannels
enumerator KINPUTMUX__DmaChannel6Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel 7Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel80Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel9Trigout ToTriginChannels
enumerator KINPUTMUX_DmaChannel10Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel11Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel12Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel13Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel14Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel15Trigout ToTriginChannels
enumerator KINPUTMUX_DmaChannel16Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel17Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel18Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel19Trigout ToTriginChannels
enumerator kKINPUTMUX__DmaChannel20Trigout ToTriginChannels
enumerator KINPUTMUX_DmaChannel21Trigout ToTriginChannels
enumerator kINPUTMUX_DmaChannel22Trigout ToTriginChannels
enumerator KINPUTMUX__DmaChannel23Trigout ToTriginChannels

enumerator KINPUTMUX__DmaChannel24Trigout ToTriginChannels
SCT INMUX.

enumerator kKINPUTMUX _SctPin0ToSct0
enumerator KINPUTMUX _SctPin1ToSct0
enumerator kKINPUTMUX _SctPin2ToSct0

enumerator kKINPUTMUX SctPin3ToSct0

178

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kKINPUTMUX__AdcThemplrqToSctO
enumerator KINPUTMUX__AcmpOToSct0
enumerator kKINPUTMUX _TO0Mat2ToSct0
enumerator kINPUTMUX __GpiointBmatchToSct0
enumerator KINPUTMUX ArmTxevToSct0

enumerator kKINPUTMUX__DebugHaltedToSct0
DMA ITRIG.

enumerator kKINPUTMUX__AdcASeqalrqToDma
enumerator kKINPUTMUX__AdcBSegblrqToDma
enumerator kINPUTMUX _SctDma0ToDma
enumerator kKINPUTMUX _SctDmalToDma
enumerator KINPUTMUX__AcmpOToDma
enumerator KINPUTMUX_ PinInt4ToDma
enumerator kINPUTMUX_ PinInt5ToDma
enumerator KINPUTMUX PinInt6ToDma
enumerator kKINPUTMUX _PinInt7ToDma
enumerator kINPUTMUX_TODmareqM0ToDma
enumerator kKINPUTMUX_TODmareqM1ToDma
enumerator KINPUTMUX_ DmaTriggerMux0ToDma

enumerator kKINPUTMUX_ DmaTriggerMux1ToDma

typedef enum _inputmux_connection_t inputmux__connection_t

INPUTMUX connections type.

DMA_OTRIG_PMUX ID

Periphinmux IDs.

SCT0_PMUX_ID

DMA_TRIGO PMUX ID

PMUX__SHIFT

FSL_INPUTMUX_DRIVER_ VERSION

Group interrupt driver version for SDK.

void INPUTMUX _ Init(void *base)

Initialize INPUTMUX peripheral.
This function enables the INPUTMUX clock.

Parameters

* base — Base address of the INPUTMUX peripheral.

Return values
None. —

2.11.

INPUTMUX: Input Multiplexing Driver

179

MCUXpresso SDK Documentation, Release 25.12.00

void INPUTMUX _ AttachSignal(void *base, uint16_t index, inputmux_connection_t connection)
Attaches a signal.

This function attaches multiplexed signals from INPUTMUX to target signals. For example,
to attach GPIO PORTO Pin 5 to PINT peripheral, do the following:

INPUTMUX _ AttachSignal(INPUTMUX, 2, KINPUTMUX__GpioPortOPin5ToPintsel);
In this example, INTMUX has 8 registers for PINT, PINT_SELO~PINT_SEL7. With parameter
index specified as 2, this function configures register PINT_SEL2.
Parameters
* base — Base address of the INPUTMUX peripheral.

* index — The serial number of destination register in the group of INPUT-
MUX registers with same name.

* connection — Applies signal from source signals collection to target signal.

Return values
None. —

void INPUTMUX _ Deinit(void *base)
Deinitialize INPUTMUX peripheral.

This function disables the INPUTMUZX clock.
Parameters
* base — Base address of the INPUTMUX peripheral.

Return values
None. —

2.12 Common Driver

FSL. COMMON_ DRIVER VERSION
common driver version.

DEBUG__CONSOLE_DEVICE_TYPE_NONE
No debug console.
DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.
DEBUG_CONSOLE_DEVICE TYPE LPUART
Debug console based on LPUART.
DEBUG__CONSOLE_DEVICE_TYPE_LPSCI
Debug console based on LPSCI.
DEBUG_CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
DEBUG_CONSOLE_DEVICE_TYPE_ FLEXCOMM
Debug console based on FLEXCOMM.
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.

DEBUG CONSOLE DEVICE TYPE VUSART
Debug console based on LPC_VUSART.

180 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

DEBUG CONSOLE DEVICE TYPE MINI USART
Debug console based on LPC_USART.

DEBUG_CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.

DEBUG__CONSOLE_DEVICE_TYPE QSCI
Debug console based on QSCI.
MIN(a, b)
Computes the minimum of a and b.
MAX(a, b)
Computes the maximum of a and b.

UINT16 MAX
Max value of uint16_t type.

UINT32 MAX
Max value of uint32_t type.

SDK_ATOMIC_LOCAL_ADD(addr, val)
Add value val from the variable at address address.

SDK_ATOMIC_LOCAL_SUB(addr, val)
Subtract value val to the variable at address address.

SDK_ATOMIC_LOCAL_SET(addr, bits)
Set the bits specifiled by bits to the variable at address address.

SDK_ATOMIC_LOCAL_CLEAR(addr, bits)
Clear the bits specifiled by bits to the variable at address address.

SDK__ATOMIC_LOCAL_TOGGLE(addr, bits)
Toggle the bits specifiled by bits to the variable at address address.

SDK__ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK_ATOMIC_LOCAL COMPARE AND_ SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true, else return false .

SDK__ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.
USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value

COUNT_TO_USEC(count, clockFreqInHz)
Macro to convert a raw count value to microsecond

MSEC_TO_COUNT(ms, clockFreqInHz)
Macro to convert a millisecond period to raw count value

COUNT_TO_MSEC(count, clockFreqInHz)
Macro to convert a raw count value to millisecond

SDK_ISR_EXIT_ BARRIER

SDK_ALIGN(var, alignbytes)
Macro to define a variable with alignbytes alignment

2.12. Common Driver 181

MCUXpresso SDK Documentation, Release 25.12.00

SDK_ SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value (rounded up)

SDK_ SIZEALIGN__UP(var, alignbytes)

Macro to change a value to a given size aligned value (rounded up), the wrapper of
SDK_SIZEALIGN

SDK_ SIZEALIGN_DOWN(var, alignbytes)
Macro to change a value to a given size aligned value (rounded down)

SDK_IS_ALIGNED(var, alignbytes)
Macro to check if a value is aligned to a given size

AT NONCACHEABLE SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT NONCACHEABLE SECTION_ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

AT _NONCACHEABLE_SECTION_INIT(var)
Define a variable var with initial value, and place it in non-cacheable section.

AT NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

AT_CACHE_LINE_SECTION(var)

Define a variable var, which is cache line size aligned and be placed in CacheLineData sec-
tion.

AT CACHE_LINE SECTION_INIT(var)

Define a variable var with initial value, which is cache line size aligned and be placed in
CacheLineData.init section.

AT _QUICKACCESS_SECTION_CODE(func)

Place function in a section which can be accessed quickly by core.
AT _QUICKACCESS_SECTION_DATA (var)

Place data in a section which can be accessed quickly by core.

AT QUICKACCESS_SECTION_DATA_ALIGN(var, alignbytes)

Place data in a section which can be accessed quickly by core, and the variable address is
set to align with alignbytes.

MCUX_RAMFUNC

Function attribute to place function in RAM. For example, to place function my_funcin ram,
use like:

MCUX_RAMFUNC my_ func

RAMFUNCTIONisECTIONiCODE(func)
Place function in ram.

enum _ status_ groups
Status group numbers.

Values:

182 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ Generic

Group number for generic status codes.
enumerator kStatusGroup_ FLASH

Group number for FLASH status codes.
enumerator kStatusGroup_ LPSPI

Group number for LPSPI status codes.
enumerator kStatusGroup_ FLEXIO__SPI

Group number for FLEXIO SPI status codes.
enumerator kStatusGroup_ DSPI

Group number for DSPI status codes.
enumerator kStatusGroup_FLEXIO_UART

Group number for FLEXIO UART status codes.
enumerator kStatusGroup_ FLEXIO_I2C

Group number for FLEXIO I2C status codes.
enumerator kStatusGroup_ LPI2C

Group number for LPI2C status codes.
enumerator kStatusGroup_ UART

Group number for UART status codes.
enumerator kStatusGroup_ I12C

Group number for UART status codes.
enumerator kStatusGroup_ LPSCI

Group number for LPSCI status codes.
enumerator kStatusGroup_ LPUART

Group number for LPUART status codes.
enumerator kStatusGroup_ SPI

Group number for SPI status code.
enumerator kStatusGroup_ XRDC

Group number for XRDC status code.
enumerator kStatusGroup_ SEMA42

Group number for SEMA42 status code.
enumerator kStatusGroup_ SDHC

Group number for SDHC status code
enumerator kStatusGroup_ SDMMC

Group number for SDMMC status code
enumerator kStatusGroup_ SAI

Group number for SAI status code
enumerator kStatusGroup_ MCG

Group number for MCG status codes.
enumerator kStatusGroup_ SCG

Group number for SCG status codes.
enumerator kStatusGroup_ SDSPI

Group number for SDSPI status codes.

2.12. Common Driver 183

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ FLEXIO_ I2S

Group number for FLEXIO I2S status codes
enumerator kStatusGroup_ FLEXIO__MCULCD

Group number for FLEXIO LCD status codes
enumerator kStatusGroup_ FLASHIAP

Group number for FLASHIAP status codes
enumerator kStatusGroup_ FLEXCOMM_ 12C

Group number for FLEXCOMM I2C status codes
enumerator kStatusGroup_ I2S

Group number for I2S status codes
enumerator kStatusGroup_IUART

Group number for IUART status codes
enumerator kStatusGroup_ CSI

Group number for CSI status codes
enumerator kStatusGroup_ MIPI_DSI

Group number for MIPI DSI status codes
enumerator kStatusGroup_ SDRAMC

Group number for SDRAMC status codes.
enumerator kStatusGroup_ POWER

Group number for POWER status codes.
enumerator kStatusGroup_ ENET

Group number for ENET status codes.
enumerator kStatusGroup_ PHY

Group number for PHY status codes.
enumerator kStatusGroup_ TRGMUX

Group number for TRGMUX status codes.
enumerator kStatusGroup_ SMARTCARD

Group number for SMARTCARD status codes.
enumerator kStatusGroup_ LMEM

Group number for LMEM status codes.
enumerator kStatusGroup_ QSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ DMA

Group number for DMA status codes.
enumerator kStatusGroup_ EDMA

Group number for EDMA status codes.
enumerator kStatusGroup_ DMAMGR

Group number for DMAMGR status codes.
enumerator kStatusGroup_ FLEXCAN

Group number for FlexCAN status codes.
enumerator kStatusGroup_ LTC

Group number for LTC status codes.

184 Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ FLEXIO_CAMERA

Group number for FLEXIO CAMERA status codes.
enumerator kStatusGroup_ LPC_ SPI

Group number for LPC_SPI status codes.
enumerator kStatusGroup_ LPC_USART

Group number for LPC_USART status codes.
enumerator kStatusGroup_ DMIC

Group number for DMIC status codes.
enumerator kStatusGroup_ SDIF

Group number for SDIF status codes.
enumerator kStatusGroup_ SPIFI

Group number for SPIFI status codes.
enumerator kStatusGroup_ OTP

Group number for OTP status codes.
enumerator kStatusGroup_ MCAN

Group number for MCAN status codes.
enumerator kStatusGroup_ CAAM

Group number for CAAM status codes.
enumerator kStatusGroup_ ECSPI

Group number for ECSPI status codes.
enumerator kStatusGroup_ USDHC

Group number for USDHC status codes.
enumerator kStatusGroup_LPC_12C

Group number for LPC_I2C status codes.
enumerator kStatusGroup_ DCP

Group number for DCP status codes.
enumerator kStatusGroup_ MSCAN

Group number for MSCAN status codes.
enumerator kStatusGroup_ ESAIT

Group number for ESAI status codes.
enumerator kStatusGroup_ FLEXSPI

Group number for FLEXSPI status codes.
enumerator kStatusGroup_ MMDC

Group number for MMDC status codes.
enumerator kStatusGroup_ PDM

Group number for MIC status codes.
enumerator kStatusGroup_ SDMA

Group number for SDMA status codes.
enumerator kStatusGroup_ ICS

Group number for ICS status codes.
enumerator kStatusGroup_ SPDIF

Group number for SPDIF status codes.

2.12. Common Driver 185

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ LPC_ MINISPI
Group number for LPC_MINISPI status codes.

enumerator kStatusGroup_ HASHCRYPT

Group number for Hashcrypt status codes
enumerator kStatusGroup_ LPC_SPI_SSP

Group number for LPC_SPI_SSP status codes.
enumerator kStatusGroup_ I3C

Group number for I3C status codes
enumerator kStatusGroup_LPC_I12C 1

Group number for LPC_I2C_1 status codes.
enumerator kStatusGroup_ NOTIFIER

Group number for NOTIFIER status codes.
enumerator kStatusGroup_ DebugConsole

Group number for debug console status codes.
enumerator kStatusGroup_ SEMC

Group number for SEMC status codes.
enumerator kStatusGroup__ApplicationRangeStart

Starting number for application groups.
enumerator kStatusGroup_ IAP

Group number for IAP status codes
enumerator kStatusGroup_ SFA

Group number for SFA status codes
enumerator kStatusGroup_ SPC

Group number for SPC status codes.
enumerator kStatusGroup_ PUF

Group number for PUF status codes.
enumerator kStatusGroup_ TOUCH__PANEL

Group number for touch panel status codes
enumerator kStatusGroup_ VBAT

Group number for VBAT status codes
enumerator kStatusGroup_ XSPI

Group number for XSPI status codes
enumerator kStatusGroup_ PNGDEC

Group number for PNGDEC status codes
enumerator kStatusGroup_ JPEGDEC

Group number for JPEGDEC status codes
enumerator kStatusGroup_ AUDMIX

Group number for AUDMIX status codes
enumerator kStatusGroup_ HAL GPIO

Group number for HAL GPIO status codes.

enumerator kStatusGroup_ HAL UART
Group number for HAL UART status codes.

186 Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ HAL_TIMER
Group number for HAL TIMER status codes.

enumerator kStatusGroup_ HAL_SPI

Group number for HAL SPI status codes.
enumerator kStatusGroup_ HAL_ 12C

Group number for HAL I2C status codes.
enumerator kStatusGroup_ HAL_FLASH

Group number for HAL FLASH status codes.
enumerator kStatusGroup_ HAL PWM

Group number for HAL PWM status codes.
enumerator kStatusGroup_ HAL RNG

Group number for HAL RNG status codes.
enumerator kStatusGroup_HAL_12S

Group number for HAL I2S status codes.
enumerator kStatusGroup_ HAL ADC_SENSOR

Group number for HAL ADC SENSOR status codes.
enumerator kStatusGroup_ TIMERMANAGER

Group number for TIMER MANAGER status codes.
enumerator kStatusGroup_ SERIALMANAGER

Group number for SERIAL MANAGER status codes.
enumerator kStatusGroup_ LED

Group number for LED status codes.
enumerator kStatusGroup_ BUTTON

Group number for BUTTON status codes.
enumerator kStatusGroup_ EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.
enumerator kStatusGroup_ SHELL

Group number for SHELL status codes.
enumerator kStatusGroup_ MEM__MANAGER

Group number for MEM MANAGER status codes.
enumerator kStatusGroup_ LIST

Group number for List status codes.
enumerator kStatusGroup_ OSA

Group number for OSA status codes.
enumerator kStatusGroup_ COMMON__ TASK

Group number for Common task status codes.
enumerator kStatusGroup_ MSG

Group number for messaging status codes.
enumerator kStatusGroup_ SDK__OCOTP

Group number for OCOTP status codes.

enumerator kStatusGroup_ SDK_FLEXSPINOR
Group number for FLEXSPINOR status codes.

2.12. Common Driver 187

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ CODEC
Group number for codec status codes.

enumerator kStatusGroup_ ASRC

Group number for codec status ASRC.
enumerator kStatusGroup_ OTFAD

Group number for codec status codes.
enumerator kStatusGroup_ SDIOSLV

Group number for SDIOSLV status codes.
enumerator kStatusGroup_ MECC

Group number for MECC status codes.
enumerator kStatusGroup_ ENET__QOS

Group number for ENET_QOS status codes.
enumerator kStatusGroup_ LOG

Group number for LOG status codes.
enumerator kStatusGroup_ I3CBUS

Group number for I3CBUS status codes.
enumerator kStatusGroup_ QSCI

Group number for QSCI status codes.
enumerator kStatusGroup_ ELEMU

Group number for ELEMU status codes.
enumerator kStatusGroup_ QUEUEDSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ POWER__MANAGER

Group number for POWER_MANAGER status codes.
enumerator kStatusGroup_ IPED

Group number for IPED status codes.
enumerator kStatusGroup_ ELS PKC

Group number for ELS PKC status codes.
enumerator kStatusGroup_ CSS_PKC

Group number for CSS PKC status codes.
enumerator kStatusGroup_ HOSTIF

Group number for HOSTIF status codes.
enumerator kStatusGroup_ CLIF

Group number for CLIF status codes.
enumerator kStatusGroup_ BMA

Group number for BMA status codes.
enumerator kStatusGroup_ NETC

Group number for NETC status codes.
enumerator kStatusGroup_ ELE

Group number for ELE status codes.

enumerator kStatusGroup_ GLIKEY
Group number for GLIKEY status codes.

188 Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatusGroup_ AON__POWER
Group number for AON_POWER status codes.

enumerator kStatusGroup_ AON_COMMON

Group number for AON_COMMON status codes.
enumerator kStatusGroup_ ENDAT3

Group number for ENDAT3 status codes.
enumerator kStatusGroup_ HIPERFACE

Group number for HIPERFACE status codes.
enumerator kStatusGroup_ NPX

Group number for NPX status codes.
enumerator kStatusGroup_ELA_CSEC

Group number for ELA_CSEC status codes.
enumerator kStatusGroup_ FLEXIO_T FORMAT

Group number for T-format status codes.
enumerator kStatusGroup_ FLEXIO_A_ FORMAT

Group number for A-format status codes.

enumerator kStatusGroup_ LPC__ QSPI
Group number for LPC QSPI status codes.

Generic status return codes.
Values:

enumerator kStatus_ Success
Generic status for Success.

enumerator kStatus Fail
Generic status for Fail.

enumerator kStatus_ ReadOnly
Generic status for read only failure.

enumerator kStatus_ OutOfRange
Generic status for out of range access.

enumerator kStatus_ Invalid Argument
Generic status for invalid argument check.

enumerator kStatus_ Timeout
Generic status for timeout.

enumerator kStatus_ NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_ Busy
Generic status for module is busy.

enumerator kStatus_NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

2.12. Common Driver 189

MCUXpresso SDK Documentation, Release 25.12.00

void *SDK_ Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.
Parameters
* size — The length required to malloc.
* alignbytes — The alignment size.

Return values
The — allocated memory.

void SDK_ Free(void *ptr)
Free memory.

Parameters
» ptr — The memory to be release.

void SDK_DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
* delayTime_us — Delay time in unit of microsecond.
¢ coreClock__Hz — Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters
* interrupt — The IRQ number.

Return values
* kStatus_ Success — Interrupt enabled successfully
* kStatus_Fail — Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters
* interrupt — The IRQ number.

Return values

190 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* kStatus_ Success — Interrupt disabled successfully
* kStatus_ Fail — Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters

* interrupt — The IRQ to Enable.

¢ priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

* kStatus_ Fail — Failed to set the interrupt priority.

static inline status_t IRQ_ SetPriority (IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters

* interrupt — The IRQ to set.

¢ priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

* kStatus_ Fail — Failed to set the interrupt priority.

static inline status_t IRQ_ ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
¢ interrupt — The flag which IRQ to clear.
Return values
* kStatus_ Success — Interrupt priority set successfully

* kStatus_ Fail — Failed to set the interrupt priority.

2.12. Common Driver 191

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t DisableGloballRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGloballRQ().

Returns
Current primask value.

static inline void EnableGloballRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management

mechanism of primask. User is required to use the EnableGloballIRQ() and DisableGlob-
allRQ() in pair.

Parameters

* primask — value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)
Enable specific interrupt for wake-up from deep-sleep mode.
Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleep mode only and will not occur during deep-sleep mode because relevant clocks

are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters
* interrupt — The IRQ number.

void DisableDeepSleepIRQ(IRQn_Type interrupt)
Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleep mode only and will not occur during deep-sleep mode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also disables the interrupt in the NVIC (DisableIRQ() is called inter-
naly).

Parameters
¢ interrupt — The IRQ number.
static inline bool _ SDK__ AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)
static inline uint32_t SDK_ AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_ TRANSFER_DOUBLE_WEAK_TRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_ STATUS(group, code)
Construct a status code value from a group and code number.

192 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

MAKE_ VERSION (major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit

platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY _SIZE(X)

Computes the number of elements in an array.
UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value
UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value

SUPPRESS_FALL_THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”’statement.

MSDK_REG_SECURE_ADDR(X)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE__ADDR(X)
Convert the register address to the one used in non-secure mode.

MSDK_HAS_DWT_CYCCNT
The chip supports DWT CYCCNT or not.

MSDK_ INVALID IRQ HANDLER
Invalid IRQ handler address.

2.13 LPC_ACOMP: Analog comparator Driver

void ACOMP_ Init(ACOMP_Type *base, const acomp_config_t *config)
Initialize the ACOMP module.

Parameters
* base — ACOMP peripheral base address.
* config — Pointer to “acomp_config_t” structure.

void ACOMP_ Deinit(ACOMP_Type *base)
De-initialize the ACOMP module.

Parameters
* base — ACOMP peripheral base address.

void ACOMP_ GetDefaultConfig(acomp_config_t *config)
Gets an available pre-defined settings for the ACOMP’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are:

config->enableSyncToBusClk = false;
config->hysteresisSelection = KACOMP__hysteresisNoneSelection;

2.13. LPC_ACOMP: Analog comparator Driver 193

MCUXpresso SDK Documentation, Release 25.12.00

In default configuration, the ACOMP’s output would be used directly and switch as the volt-
ages Cross.

Parameters
* config — Pointer to the configuration structure.

void ACOMP__EnableInterrupts(ACOMP_Type *base, acomp_interrupt_enable_t enable)
Enable ACOMP interrupts.

Parameters
* base — ACOMP peripheral base address.
* enable — Enable/Disable interrupt feature.

static inline bool ACOMP__ GetInterruptsStatusFlags(ACOMP_Type *base)
Get interrupts status flags.

Parameters
* base — ACOMP peripheral base address.

Returns
Reflect the state ACOMP edge-detect status, true or false.

static inline void ACOMP__ ClearInterruptsStatusFlags(ACOMP_Type *base)
Clear the ACOMP interrupts status flags.

Parameters
* base — ACOMP peripheral base address.

static inline bool ACOMP__GetOutputStatusFlags(ACOMP_Type *base)
Get ACOMP output status flags.

Parameters
* base — ACOMP peripheral base address.

Returns
Reflect the state of the comparator output, true or false.

static inline void ACOMP_ SetInputChannel ACOMP_Type *base, uint32_t postiveInputChannel,
uint32_t negativeInputChannel)

Set the ACOMP postive and negative input channel.
Parameters
* base — ACOMP peripheral base address.
* postiveInputChannel — The index of postive input channel.
* negativeInputChannel — The index of negative input channel.

void ACOMP_ SetLadderConfig(ACOMP_Type *base, const acomp_ladder_config_t *config)
Set the voltage ladder configuration.

Parameters
* base — ACOMP peripheral base address.

* config — The structure for voltage ladder. If the config is NULL, voltage lad-
der would be diasbled, otherwise the voltage ladder would be configured
and enabled.

FSL_ACOMP_DRIVER VERSION
ACOMP driver version 2.1.0.

194 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enum _acomp_ ladder_reference_voltage
The ACOMP ladder reference voltage.

Values:

enumerator kACOMP_ LadderRefVoltagePinVDD
Supply from pin VDD.

enumerator kACOMP__LadderRefVoltagePinVDDCMP
Supply from pin VDDCMP.

enum _ acomp_ interrupt_ enable
The ACOMP interrupts enable.

Values:

enumerator kACOMP__InterruptsFallingEdgeEnable
Enable the falling edge interrupts.

enumerator kACOMP_ InterruptsRisingEdgeEnable
Enable the rising edge interrupts.

enumerator kACOMP__InterruptsBothEdgesEnable
Enable the both edges interrupts.

enumerator kACOMP__InterruptsDisable
Disable the interrupts.

enum _ acomp_ hysteresis_ selection
The ACOMP hysteresis selection.

Values:

enumerator kACOMP__ HysteresisNoneSelection
None (the output will switch as the voltages cross).

enumerator kACOMP_ HysteresisbMV Selection
5mV.

enumerator kACOMP__Hysteresis10MV Selection
10mV.

enumerator kACOMP__Hysteresis20MV Selection
20mV.

typedef enum _acomp_ladder._reference_voltage acomp_ ladder_reference_ voltage_ t
The ACOMP ladder reference voltage.

typedef enum _acomp_interrupt_enable acomp__interrupt__enable_t
The ACOMP interrupts enable.

typedef enum _acomp_hysteresis_selection acomp__hysteresis_ selection_ t
The ACOMP hysteresis selection.

typedef struct _acomp_config acomp_ config_t
The structure for ACOMP basic configuration.

typedef struct _acomp_ladder_config acomp_ ladder config t
The structure for ACOMP voltage ladder.

struct _acomp_ config
#include <fsl_acomp.h> The structure for ACOMP basic configuration.

2.13. LPC_ACOMP: Analog comparator Driver 195

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableSyncToBusClk

If true, Comparator output is synchronized to the bus clock for output to other modules.
If false, Comparator output is used directly.

acomp_hysteresis_selection_t hysteresisSelection
Controls the hysteresis of the comparator.

struct _acomp_ ladder_config
#include <fsl_acomp.h> The structure for ACOMP voltage ladder.

Public Members
uint8_t ladderValue
Voltage ladder value. 00000 = Vss, 00001 = 1*Vref/31, ..., 11111 = Vref.

acomp_ladder_reference_voltage_t referenceVoltage
Selects the reference voltage(Vref) for the voltage ladder.

2.14 ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_ Init(ADC_Type *base, const adc_config_t *config)
Initialize the ADC module.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure, see to adc_config_t.
void ADC_ Deinit(ADC_Type *base)
Deinitialize the ADC module.
Parameters
* base — ADC peripheral base address.

void ADC _GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->clockMode = kADC__ClockSynchronousMode;
config->clockDividerNumber = 0U;

config->resolution = kADC_ Resolution12bit;
config->enableBypassCalibration = false;

config->sampleTimeNumber = 0U;

config->extendSampleTimeNumber = kADC__ ExtendSampleTimeNotUsed;

Parameters
* config — Pointer to configuration structure.

bool ADC_ DoSelfCalibration(ADC_Type *base)
Do the hardware self-calibration.

196 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Deprecated:
Do not use this function. It has been superceded by ADC_DoOffsetCalibration.

To calibrate the ADC, set the ADC clock to 500 kHz. In order to achieve the specified ADC
accuracy, the A/D converter must be recalibrated, at a minimum, following every chip reset
before initiating normal ADC operation.

Parameters

* base — ADC peripheral base address.
Return values

* true — Calibration succeed.

* false — Calibration failed.

bool ADC_ DoOffsetCalibration(ADC_Type *base, uint32_t frequency)
Do the hardware offset-calibration.

To calibrate the ADC, set the ADC clock to no more then 30 MHz. In order to achieve the
specified ADC accuracy, the A/D converter must be recalibrated, at a minimum, following
every chip reset before initiating normal ADC operation.

Parameters

* base — ADC peripheral base address.

* frequency — The clock frequency that ADC operates at.
Return values

* true — Calibration succeed.

* false — Calibration failed.

static inline void ADC_ EnableConvSeqA (ADC_Type *base, bool enable)
Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-

ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable the feature or not.

void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config t *config)
Configure the conversion sequence A.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_ DoSoftwareTriggerConvSeqA (ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters

* base — ADC peripheral base address.

2.14. ADC: 12-bit SAR Analog-to-Digital Converter Driver 197

MCUXpresso SDK Documentation, Release 25.12.00

static inline void ADC_ EnableConvSeqABurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable this feature.

static inline void ADC_ SetConvSeqAHighPriority(ADC_Type *base)
Set the high priority for conversion sequence A.

Parameters
* base — ADC peripheral bass address.

static inline void ADC_ EnableConvSeqB(ADC_Type *base, bool enable)
Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable the feature or not.

void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence B.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure, see to adc_conv_seq_config_t.

static inline void ADC_ DoSoftwareTriggerConvSeqB(ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
* base — ADC peripheral base address.

static inline void ADC_ EnableConvSeqBBurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
* base — ADC peripheral base address.

* enable — Switcher to enable this feature.

198 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline void ADC_ SetConvSeqBHighPriority(ADC_Type *base)
Set the high priority for conversion sequence B.

Parameters
* base — ADC peripheral bass address.

bool ADC_ GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence A.

Parameters

* base — ADC peripheral base address.

* info — Pointer to information structure, see to adc_result_info_t;
Return values

* true — The conversion result is ready.

» false — The conversion result is not ready yet.

bool ADC_ GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence B.

Parameters

* base — ADC peripheral base address.

* info — Pointer to information structure, see to adc_result_info t;
Return values

* true — The conversion result is ready.

* false — The conversion result is not ready yet.

bool ADC_ GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t
*info)

Get the channel’s ADC conversion completed under each conversion sequence.

Parameters

* base — ADC peripheral base address.

¢ channel — The indicated channel number.

* info — Pointer to information structure, see to adc_result_info t;
Return values

* true — The conversion result is ready.

* false — The conversion result is not ready yet.

static inline void ADC_ SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 0 with low and high value.
Parameters
* base — ADC peripheral base address.
* lowValue — LOW threshold value.
* highValue — HIGH threshold value.

static inline void ADC_ SetThresholdPairl(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 1 with low and high value.

Parameters

2.14. ADC: 12-bit SAR Analog-to-Digital Converter Driver 199

MCUXpresso SDK Documentation, Release 25.12.00

* base — ADC peripheral base address.
* lowValue — LOW threshold value. The available value is with 12-bit.
* highValue - HIGH threshold value. The available value is with 12-bit.

static inline void ADC_ SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 0.

Parameters
* base — ADC peripheral base address.
* channelMask — Indicated channels’ mask.

static inline void ADC_ SetChannel WithThresholdPair1 (ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 1.

Parameters
* base — ADC peripheral base address.
* channelMask — Indicated channels’ mask.

static inline void ADC_ EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts for conversion sequences.

Parameters
* base — ADC peripheral base address.

* mask — Mask of interrupt mask value for global block except each channal,
see to _adc_interrupt_enable.

static inline void ADC_ Disablelnterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts for conversion sequence.

Parameters
* base — ADC peripheral base address.

* mask — Mask of interrupt mask value for global block except each channel,
see to _adc_interrupt_enable.

static inline void ADC_ EnableThresholdComparelnterrupt(ADC_Type *base, uint32_t channel,
adc_threshold_interrupt_mode_t mode)

Enable the interrupt of threshold compare event for each channel.
Parameters
* base — ADC peripheral base address.
* channel — Channel number.

* mode — Interrupt mode for threshold compare event, see to
adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_ GetStatusFlags(ADC_Type *base)
Get status flags of ADC module.

Parameters
* base — ADC peripheral base address.

Returns
Mask of status flags of module, see to _adc_status_flags.

200 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline void ADC__ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags of ADC module.
Parameters
* base — ADC peripheral base address.
» mask — Mask of status flags of module, see to _adc_status_flags.
FSL_ADC_DRIVER_ VERSION
ADC driver version 2.6.0.
enum _ adc_status_ flags
Flags.
Values:
enumerator kADC_ ThresholdCompareFlagOnChn0
Threshold comparison event on Channel 0.
enumerator kADC_ ThresholdCompareFlagOnChnl
Threshold comparison event on Channel 1.
enumerator kADC_ ThresholdCompareFlagOnChn2
Threshold comparison event on Channel 2.
enumerator kADC_ ThresholdCompareFlagOnChn3
Threshold comparison event on Channel 3.
enumerator kADC_ ThresholdCompareFlagOnChn4
Threshold comparison event on Channel 4.
enumerator kADC_ ThresholdCompareFlagOnChnb
Threshold comparison event on Channel 5.
enumerator kADC_ ThresholdCompareFlagOnChn6
Threshold comparison event on Channel 6.
enumerator kADC_ ThresholdCompareFlagOnChn7
Threshold comparison event on Channel 7.
enumerator kADC_ ThresholdCompareFlagOnChn8
Threshold comparison event on Channel 8.
enumerator kADC_ ThresholdCompareFlagOnChn9
Threshold comparison event on Channel 9.
enumerator kADC_ ThresholdCompareFlagOnChn10
Threshold comparison event on Channel 10.
enumerator kADC_ ThresholdCompareFlagOnChn11
Threshold comparison event on Channel 11.
enumerator kADC_ OverrunFlagForChn0
Mirror the OVERRUN status flag from the result register for ADC channel 0.
enumerator kADC_ OverrunFlagForChnl
Mirror the OVERRUN status flag from the result register for ADC channel 1.
enumerator kADC_ OverrunFlagForChn2
Mirror the OVERRUN status flag from the result register for ADC channel 2.

enumerator kADC_ OverrunFlagForChn3
Mirror the OVERRUN status flag from the result register for ADC channel 3.

2.14. ADC: 12-bit SAR Analog-to-Digital Converter Driver 201

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC_ OverrunFlagForChn4
Mirror the OVERRUN status flag from the result register for ADC channel 4.

enumerator kADC_ OverrunFlagForChnb

Mirror the OVERRUN status flag from the result register for ADC channel 5.
enumerator kADC_ OverrunFlagForChn6

Mirror the OVERRUN status flag from the result register for ADC channel 6.
enumerator kADC_ OverrunFlagForChn7

Mirror the OVERRUN status flag from the result register for ADC channel 7.
enumerator kADC_ OverrunFlagForChn8

Mirror the OVERRUN status flag from the result register for ADC channel 8.
enumerator kADC_ OverrunFlagForChn9

Mirror the OVERRUN status flag from the result register for ADC channel 9.
enumerator kADC_ OverrunFlagForChn10

Mirror the OVERRUN status flag from the result register for ADC channel 10.
enumerator kADC_ OverrunFlagForChnl1

Mirror the OVERRUN status flag from the result register for ADC channel 11.
enumerator kADC_ GlobalOverrunFlagForSeqA

Mirror the glabal OVERRUN status flag for conversion sequence A.
enumerator kADC__ GlobalOverrunFlagForSeqB

Mirror the global OVERRUN status flag for conversion sequence B.
enumerator kADC_ ConvSeqAlnterruptFlag

Sequence A interrupt/DMA trigger.
enumerator kADC_ ConvSeqBlInterruptFlag

Sequence B interrupt/DMA trigger.
enumerator kADC_ ThresholdComparelnterruptFlag

Threshold comparision interrupt flag.
enumerator kADC_ OverrunlnterruptFlag

Overrun interrupt flag.

enum _ adc_ interrupt_ enable

Interrupts.

Note: Not all the interrupt options are listed here

Values:

enumerator kKADC_ ConvSeqAlInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence A, or
entire sequence.

enumerator kADC_ ConvSeqBInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence B, or en-
tire sequence.

enumerator kADC_ OverrunInterruptEnable

Enable the detection of an overrun condition on any of the channel data registers will
cause an overrun interrupt/DMA trigger.

202 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enum _adc_clock mode
Define selection of clock mode.

Values:

enumerator kADC_ ClockSynchronousMode

The ADC clock would be derived from the system clock based on “clockDividerNum-

ber”.

enumerator kADC_ ClockAsynchronousMode
The ADC clock would be based on the SYSCON block’s divider.

enum _ adc_ resolution
Define selection of resolution.

Values:

enumerator kADC Resolution6bit
6-bit resolution.

enumerator kADC Resolution8bit
8-bit resolution.

enumerator kADC Resolution10bit
10-bit resolution.

enumerator kADC Resolution12bit
12-bit resolution.

enum _ adc_ voltage range
Definfe range of the analog supply voltage VDDA.

Values:

enumerator kADC_ HighVoltageRange
enumerator kADC_ LowVoltageRange

enum _ adc_ trigger polarity

Define selection of polarity of selected input trigger for conversion sequence.

Values:

enumerator kADC_ TriggerPolarityNegativeEdge
A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_ TriggerPolarityPositiveEdge
A positive edge launches the conversion sequence on the trigger(s).

enum _ adc_ priority
Define selection of conversion sequence’s priority.

Values:

enumerator kADC_ PriorityLow

This sequence would be preempted when another sequence is started.

enumerator kADC_ PriorityHigh
This sequence would preempt other sequence even when it is started.

enum _ adc_seq interrupt_mode
Define selection of conversion sequence’s interrupt.

Values:

2.14. ADC: 12-bit SAR Analog-to-Digital Converter Driver

203

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC_ InterruptForEachConversion

The sequence interrupt/DMA trigger will be set at the end of each individual
version inside this conversion sequence.

enumerator kKADC_ InterruptForEachSequence

The sequence interrupt/DMA trigger will be set when the entire set of this
conversions completes.

enum _ adc_ threshold_compare_ status
Define status of threshold compare result.

Values:

enumerator kADC_ ThresholdComparelnRange
LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ ThresholdCompareBelowRange
conversion value < LOW threshold.

enumerator kADC_ ThresholdCompareAboveRange
conversion value > HIGH threshold.

enum _ adc_ threshold_ crossing status
Define status of threshold crossing detection result.

Values:

enumerator kADC_ ThresholdCrossingNoDetected
No threshold Crossing detected.

enumerator kADC_ ThresholdCrossingDownward
Downward Threshold Crossing detected.

enumerator kADC_ ThresholdCrossingUpward
Upward Threshold Crossing Detected.

enum _ adc_ threshold_interrupt_mode
Define interrupt mode for threshold compare event.

Values:

enumerator kKADC_ ThresholdInterruptDisabled
Threshold comparison interrupt is disabled.

enumerator kKADC_ ThresholdInterruptOnQOutside
Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ ThresholdInterruptOnCrossing
Threshold comparison interrupt is enabled on crossing threshold.

enum _adc__inforesultshift
Define the info result mode of different resolution.

Values:

enumerator kADC_ Resolution12bitInfoResultShift
Info result shift of Resolution12bit.

enumerator kADC_ Resolution10bitInfoResultShift
Info result shift of Resolution10bit.

enumerator kADC_ Resolution8bitInfoResultShift
Info result shift of Resolution8bit.

ADC con-

sequence

204 Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kADC Resolution6bitInfoResultShift
Info result shift of Resolution6bit.

enum _ adc_ tempsensor__common_ mode
Define common modes for Temerature sensor.
Values:
enumerator kADC_ HighNegativeOffset Added
Temperature sensor common mode: high negative offset added.
enumerator kADC_ IntermediateNegativeOffset Added
Temperature sensor common mode: intermediate negative offset added.
enumerator kADC_NoOffsetAdded
Temperature sensor common mode: no offset added.
enumerator kADC_LowPositiveOffset Added
Temperature sensor common mode: low positive offset added.
enum _adc_second__control
Define source impedance modes for GPADC control.
Values:
enumerator kADC_ Impedance6210hm
Extand ADC sampling time according to source impedance 1: 0.621 kOhm.
enumerator kADC_ Impedance55kOhm
Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.
enumerator kADC_ Impedance87kOhm
Extand ADC sampling time according to source impedance 31: 87 kOhm.
enumerator kADC_NormalFunctionalMode
TEST mode: Normal functional mode.
enumerator kADC_ MultiplexeTestMode
TEST mode: Multiplexer test mode.
enumerator kADC__ ADCInUnityGainMode
TEST mode: ADC in unity gain mode.
typedef enum _adc_clock_mode adc_ clock__mode_t
Define selection of clock mode.
typedef enum _adc_resolution adc_resolution_t
Define selection of resolution.
typedef enum _adc_voltage_range adc_ vdda_range_t
Definfe range of the analog supply voltage VDDA.
typedef enum _adc_trigger_polarity adc_ trigger_ polarity_t
Define selection of polarity of selected input trigger for conversion sequence.
typedef enum _adc_priority adc_ priority_t
Define selection of conversion sequence’s priority.
typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_ mode_t
Define selection of conversion sequence’s interrupt.

typedef enum _adc_threshold_compare_status adc_ threshold__compare_status_ t
Define status of threshold compare result.

2.14. ADC: 12-bit SAR Analog-to-Digital Converter Driver 205

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _adc_threshold_crossing _status adc__threshold_ crossing_ status_ t
Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc_ threshold_ interrupt_ mode_t
Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_ inforesult_t
Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc__tempsensor__common_ mode_t
Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_ second_ control t
Define source impedance modes for GPADC control.

typedef struct _adc_config adc_ config_t
Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq config_t
Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_ result_info_t
Define structure of keeping conversion result information.

struct _adc_ config
#include <fsl_adc.h> Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode
Select the clock mode for ADC converter.

uint32_t clockDividerNumber

This field is only available when using KADC_ClockSynchronousMode for “clockMode”
field. The divider would be plused by 1 based on the value in this field. The available
range is in 8 bits.

adc_resolution_t resolution
Select the conversion bits.

bool enableBypassCalibration

By default, a calibration cycle must be performed each time the chip is powered-up.
Re-calibration may be warranted periodically - especially if operating conditions have
changed. To enable this option would avoid the need to calibrate if offset error is not
a concern in the application.

uint32_t sampleTimeNumber
By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to
plus the “sampleTimeNumber” value here. The available value range is in 3 bhits.
bool enableLowPowerMode

If disable low-power mode, ADC remains activated even when no conversions are re-
quested. If enable low-power mode, The ADC is automatically powered-down when
no conversions are taking place.

adc_vdda_range_t voltageRange

Configure the ADC for the appropriate operating range of the analog supply voltage
VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion
results.

struct _adc_conv_seq_ config
#include <fsl_adc.h> Define structure for configuring conversion sequence.

206 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

uint32_t channelMask
Selects which one or more of the ADC channels will be sampled and converted when
this sequence is launched. The masked channels would be involved in current conver-
sion sequence, beginning with the lowest-order. The available range is in 12-bit.
uint32_t triggerMask
Selects which one or more of the available hardware trigger sources will cause this
conversion sequence to be initiated. The available range is 6-bit.
adc_trigger_polarity_t triggerPolarity
Select the trigger to launch conversion sequence.

bool enableSyncBypass

To enable this feature allows the hardware trigger input to bypass synchronization
flip-flop stages and therefore shorten the time between the trigger input signal and
the start of a conversion.

bool enableSingleStep

When enabling this feature, a trigger will launch a single conversion on the next chan-
nel in the sequence instead of the default response of launching an entire sequence of
conversions.

adc_seq_interrupt_mode_t interruptMode
Select the interrpt/DMA trigger mode.

struct adc_result_info
#include <fsl_adc.h> Define structure of keeping conversion result information.

Public Members
uint32_t result
Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus
Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus
Keep the threshold crossing status.

uint32_t channelNumber
Keep the channel number for this conversion.

bool overrunFlag
Keep the status whether the conversion is overrun or not.

2.15 DAC: 10-bit Digital To Analog Converter Driver

LPC_DAC_ DRIVER VERSION
DAC driver version 2.0.2.

enum _ dac_ settling_ time
The DAC settling time.

Values:

2.15. DAC: 10-bit Digital To Analog Converter Driver 207

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kDAC_SettlingTimelslus

The settling time of the DAC is 1us max, and the maximum current is 700 mA. This

allows a maximum update rate of 1 MHz.

enumerator kDAC_ SettlingTimels25us

The settling time of the DAC is 2.5us and the maximum current is 350uA. This allows a

maximum update rate of 400 kHz.

typedef enum _dac_settling time dac_ settling time_t
The DAC settling time.

typedef struct _dac_config dac_ config_t
The configuration of DAC.

void DAC_Init(DAC_Type *base, const dac_config_t *config)
Initialize the DAC module.

Parameters

* base — DAC peripheral base address.

* config — The pointer to configuration structure.

“dac_config_t” structure.

void DAC_ Deinit(DAC_Type *base)
De-Initialize the DAC module.

Parameters
* base — DAC peripheral base address.

void DAC_ GetDefaultConfig(dac_config t *config)
Initializes the DAC user configuration structure.

Please refer to

This function initializes the user configuration structure to a default value. The default

values are as follows.

config->settlingTime = kDAC__SettlingTimelslus;

Parameters

* config — Pointer to the configuration structure. See “dac_config_t”.

void DAC_ EnableDoubleBuffering(DAC_Type *base, bool enable)

Enable/Diable double-buffering feature. Notice: Disabling the double-buffering feature will
disable counter opreation. If double-buffering feature is disabled, any writes to the CR
address will go directly to the CR register. If double-buffering feature is enabled, any write
to the CR register will only load the pre-buffer, which shares its register address with the
CR register. The CR itself will be loaded from the pre-buffer whenever the counter reaches

zero and the DMA request is set.
Parameters
* base — DAC peripheral base address.
* enable — Enable or disable the feature.
void DAC_ SetBufferValue(DAC_Type *base, uint32_t value)

Write DAC output value into CR register or pre-buffer. The DAC output voltage is

VALUE*((VREFP)/1024).
Parameters

* base — DAC peripheral base address.

* value — Setting the value for items in the buffer. 10-bits are available.

208

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void DAC_ SetCounterValue(DAC_Type *base, uint32_t value)

Write DAC counter value into CNTVAL register. When the counter is enabled bit, the 16-bit
counter will begin counting down, at the rate selected by PCLK, from the value programmed
into the DACCNTVAL register. The counter is decremented Each time the counter reaches
zero, the counter will be reloaded by the value of DACCNTVAL and the DMA request bit
INT_DMA_REQ will be set in hardware.

Parameters
* base — DAC peripheral basic address.
* value — Setting the value for items in the counter. 16-bits are available.

static inline void DAC_ EnableDMA (DAC_Type *base, bool enable)
Enable/Disable the DMA access.

Parameters
* base — DAC peripheral base address.
* enable — Enable or disable the feature.

static inline void DAC_ EnableCounter(DAC_Type *base, bool enable)
Enable/Disable the counter operation.

Parameters
* base — DAC peripheral base address.
* enable — Enable or disable the feature.

static inline bool DAC__ GetDMAlInterruptRequestFlag(DAC_Type *base)
Get the status flag of DMA or interrupt request.

Parameters
* base — DAC peripheral base address.

Returns

If return ‘true’, it means DMA request or interrupt occurs. If return ‘false’, it
means DMA request or interrupt doesn’t occur.

struct _ dac_ config
#include <fsl_dac.h> The configuration of DAC.

Public Members

dac_settling time_t settlingTime

The settling times are valid for a capacitance load on the DAC_OUT pin not exceeding
100 pF. A load impedance value greater than that value will cause settling time longer
than the specified time. One or more graphs of load impedance vs. settling time will
be included in the final data sheet.

2.16 GPIO: General Purpose I/O

void GPIO PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.
Parameters

* base — GPIO peripheral base pointer.

2.16. GPIO: General Purpose I/0 209

MCUXpresso SDK Documentation, Release 25.12.00

* port — GPIO port number.

void GPIO_ PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_ pin_ config t config =

{
kGPIO_ Digitallnput,

0,

}

Define a digital output pin configuration,
gpio_ pin_ config t config =

kGPIO_ DigitalOutput,
0,

}

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
¢ port — GPIO port number
* pin — GPIO pin number
* config — GPIO pin configuration pointer

static inline void GPIO_ PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* pin — GPIO pin number
* output — GPIO pin output logic level.
— 0: corresponding pin output low-logic level.
— 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_ PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* pin — GPIO pin number

Return values
GPIO - port input value

* 0: corresponding pin input low-logic level.

* 1: corresponding pin input high-logic level.

210 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

FSL GPIO_DRIVER. VERSION
LPC GPIO driver version.

enum _ gpio_ pin_ direction
LPC GPIO direction definition.

Values:

enumerator kGPIO_ Digitallnput
Set current pin as digital input

enumerator kGPIO_ DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_pin_ direction_ t
LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_ pin_ config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_ PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
¢ port — GPIO port number
* mask — GPIO pin number macro

static inline void GPIO_ PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
¢ port — GPIO port number
* mask — GPIO pin number macro

static inline void GPIO_ PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* mask — GPIO pin number macro

struct _ gpio_ pin_ config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

2.16. GPIO: General Purpose I/0 211

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t outputLogic
Set default output logic, no use in input

2.17 IOCON: I/O pin configuration

LPC _IOCON_DRIVER VERSION
IOCON driver version 2.0.2.

typedef struct _iocon_group iocon_ group_t
Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__ STATIC_INLINE void IOCON_ PinMuxSet (IOCON_ Type *base, uint8 t ionumber,
uint32_t modefunc)

IOCON function and mode selection definitions.

Sets I/O Control pin mux

Note: See the User Manual for specific modes and functions supported by the various pins.

Parameters
* base —: The base of IOCON peripheral on the chip
* ionumber —: GPIO number to mux
* modefunc — : OR’ed values of type IOCON_*

Returns
Nothing

__ STATIC_INLINE void IOCON_ SetPinMuxing (IOCON_ Type *base,
const iocon__group_ t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.
Parameters
* base —: The base of IOCON peripheral on the chip
* pinArray — : Pointer to array of pin mux selections
* arrayLength —: Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID

struct _iocon_ group
#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

2.18 MRT: Multi-Rate Timer

212 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void MRT_ Init(MRT_Type *base, const mrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
* base — Multi-Rate timer peripheral base address

* config — Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

void MRT_ Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
* base — Multi-Rate timer peripheral base address

static inline void MRT__GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters
* config — Pointer to user’s MRT config structure.

static inline void MRT_ SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const
mrt_timer_mode_t mode)

Sets up an MRT channel mode.
Parameters
* base — Multi-Rate timer peripheral base address
* channel — Channel that is being configured.
* mode — Timer mode to use for the channel.

static inline void MRT _ Enablelnterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline void MRT_ DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number

» mask — The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

2.18. MRT: Multi-Rate Timer 213

MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t MRT__GetEnabledInterrupts(MRT_Type *base, mrt_chnl_t channel)
Gets the enabled MRT interrupts.

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_t MRT _GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

Returns

The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline void MRT_ ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number

» mask — The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

void MRT UpdateTimerPeriod(MRT_Type *base, mrt_chnl_t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number
* count — Timer period in units of ticks

* immediateLoad — true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_t MRT_GetCurrentTimerCount(MRT_Type *base, mrt_chnl t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

214 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

Returns
Current timer counting value in ticks

static inline void MRT_ StartTimer(MRT_Type *base, mrt_chnl_t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number.

* count — Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

static inline void MRT_ StopTimer(MRT_Type *base, mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.
Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number.

static inline uint32_t MRT_GetlIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.
Parameters
* base — Multi-Rate timer peripheral base address
FSL__MRT_ DRIVER_VERSION
enum mrt_chnl
List of MRT channels.
Values:

enumerator kMRT Channel 0
MRT channel number 0

enumerator kMRT Channel 1
MRT channel number 1

enumerator kMRT Channel 2
MRT channel number 2

enumerator kMRT Channel 3
MRT channel number 3

2.18. MRT: Multi-Rate Timer 215

MCUXpresso SDK Documentation, Release 25.12.00

enum mrt timer mode
List of MRT timer modes.

Values:

enumerator kMRT _RepeatMode
Repeat Interrupt mode

enumerator kMRT OneShotMode
One-shot Interrupt mode

enumerator kMRT OneShotStallMode
One-shot stall mode

enum _mrt_ interrupt_ enable
List of MRT interrupts.

Values:

enumerator kMRT TimerInterruptEnable
Timer interrupt enable

enum _mrt_ status_ flags
List of MRT status flags.

Values:

enumerator kMRT _TimerInterruptFlag
Timer interrupt flag

enumerator kMRT _TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_ chnl_t
List of MRT channels.

typedef enum _mrt_timer_mode mrt__timer_mode_t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt__interrupt_ enable_t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_status_flags_t
List of MRT status flags.

typedef struct _mrt_config mrt_ config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

struct _mrt_ config
#include <fsl_mrt.h> MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

216 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.19 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_DRIVER_ VERSION
enum _ pint_ pin_ enable
PINT Pin Interrupt enable type.
Values:

enumerator kPINT_ PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT_ PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT_ PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT_ PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT PinIlntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT_ PinIntEnableHighLevel
Generate Pin Interrupt on high level

enum _ pint__int

PINT Pin Interrupt type.

Values:

enumerator kPINT _PinInt0
Pin Interrupt 0

enum _ pint_ pmatch_ input_ src

PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT _PatternMatchInpOSrc
Input source 0

enumerator kPINT_PatternMatchInp1Src
Input source 1

enumerator kPINT_ PatternMatchInp2Src
Input source 2

enumerator kPINT_ PatternMatchInp3Src
Input source 3

enumerator kPINT__PatternMatchInp4Src
Input source 4

2.19. PINT: Pin Interrupt and Pattern Match Driver 217

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPINT_ PatternMatchInp5Src
Input source 5

enumerator kPINT_PatternMatchInp6Src
Input source 6

enumerator kPINT_ PatternMatchInp7Src
Input source 7

enumerator kPINT_SecPatternMatchInp0Src
Input source 0

enumerator kPINT_ SecPatternMatchInp1Src
Input source 1

enum _ pint_ pmatch_ bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT PatternMatchBSliceO
Bit slice 0

enum _ pint_ pmatch_ bslice_ cfg
PINT Pattern Match configuration type.
Values:

enumerator kPINT_PatternMatchAlways
Always Contributes to product term match

enumerator kPINT_PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT _PatternMatchStickyFall
Sticky Falling edge

enumerator kPINT_ PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT__PatternMatchHigh
High level

enumerator kPINT PatternMatchLow
Low level

enumerator kPINT PatternMatchNever
Never contributes to product term match

enumerator kPINT__PatternMatchBothEdges
Either rising or falling edge
typedef enum _pint_pin_enable pint_ pin__enable_t
PINT Pin Interrupt enable type.
typedef enum _pint_int pint_ pin_int_t
PINT Pin Interrupt type.
typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint_ pmatch_ bslice_t
PINT Pattern Match bit slice type.

218 Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _pint_pmatch_bslice_cfg pint_pmatch_ bslice_ cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_ status_t
PINT event status.

typedef void (*pint__cb_ t)(pint_pin_int_t pintry, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_ pmatch_ cfg_t
void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.
This function initializes the PINT peripheral and enables the clock.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT_ SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.
Parameters
* base — Base address of the PINT peripheral.
* callback — Callback.

Return values
None. —

void PINT_PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.
Parameters
* base — Base address of the PINT peripheral.
* intr — Pin interrupt.
* enable — Selects detection logic.

Return values
None. —

void PINT _PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.
This function returns the configuration of a given pin interrupt.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.
* enable — Pointer to store the detection logic.

Return values
None. —

2.19. PINT: Pin Interrupt and Pattern Match Driver 219

MCUXpresso SDK Documentation, Release 25.12.00

void PINT_ PinInterruptClrStatus(PINT_Type *base, pint_pin int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
status — = 0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_ PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline uint32_t PINT _PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
status — Each bit position indicates the status of corresponding pin interrupt.
=0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_ PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.

220 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
flag— =0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_ PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetFallFlagAll(PINT_Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
flags — Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

static inline void PINT_ PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
None. —

static inline uint32_t PINT _PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
flag — = 0 Rising edge has not been detected. = 1 Rising edge has been detected.

static inline void PINT_ PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.
Parameters

* base — Base address of the PINT peripheral.

2.19. PINT: Pin Interrupt and Pattern Match Driver 221

MCUXpresso SDK Documentation, Release 25.12.00

Return values
None. —

static inline uint32_t PINT _PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
flags — Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT _PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch_cfg_t
*cfg)

Configure PINT pattern match.
This function configures a given pattern match bit slice.
Parameters
* base — Base address of the PINT peripheral.
* bslice — Pattern match bit slice number.
* cfg — Pointer to bit slice configuration.

Return values
None. —

void PINT_PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg_t *cfg)

Get PINT pattern match configuration.
This function returns the configuration of a given pattern match bit slice.
Parameters
* base — Base address of the PINT peripheral.
* bslice — Pattern match bit slice number.
* cfg — Pointer to bit slice configuration.

Return values
None. —

static inline uint32_t PINT_ PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.
This function returns the status of selected bit slice.
Parameters
* base — Base address of the PINT peripheral.
* bslice — Pattern match bit slice number.

Return values
status — = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT_ PatternMatchGetStatusAll(PINT_Type *base)
Get status of all pattern match bit slices.

This function returns the status of all bit slices.

222 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — Base address of the PINT peripheral.

Return values
status — Each bit position indicates the match status of corresponding bit slice.
=0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_ PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the pattern match detection logic if any of the product term is matching.
Parameters
* base — Base address of the PINT peripheral.

Return values
pmstatus — Each bit position indicates the match status of corresponding bit
slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_ PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchDisableRXEV (PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

2.19. PINT: Pin Interrupt and Pattern Match Driver 223

MCUXpresso SDK Documentation, Release 25.12.00

void PINT__EnableCallback(PINT_Type *base)
Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT DisableCallback(PINT Type *base)
Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
* base — Base address of the peripheral.

Return values
None. —

void PINT _Deinit(PINT_Type *base)
Deinitialize PINT peripheral.

This function disables the PINT clock.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT_EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintldx)
enable callback by pin index.

This function enables callback by pin index instead of enabling all pins.
Parameters
* base — Base address of the peripheral.
* pintldx — pin index.

Return values
None. —

void PINT _EnableInterruptByIndex(PINT_Type *base, pint_pin_int_t pintldx)
enable interrupt in NVIC by pin index.

This function enables the interrupt in the NVIC. The difference with
PINT EnableCallbackByIndex() is that PINT_EnableCallbackByIndex() not only enables
the interrupt in the NVIC but also clears pending interrupts. Use this function together
with PINT_DisableInterruptByIndex() to temporarily disable/enable the pin interrupt. Use
PINT_EnableCallbackByIndex() to enable the interrupt after installing the callback.

Parameters
* base — Base address of the peripheral.
* pinldx — pin index.

Return values
None. —

224 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void PINT_ DisableInterruptByIndex(PINT_Type *base, pint_pin int_t pintldx)

disable interrupt in NVIC by pin index.

This function disables the interrupt in the NVIC. The difference with
PINT DisableCallbackByIndex() is that PINT_DisableCallbackByIndex() not only disables
the interrupt in the NVIC but also clears pending interrupts. Use this function together
with PINT_EnableInterruptByIndex() to temporarily disable/enable the pin interrupt. Use
PINT_DisableCallbackByIndex() to disable the interrupt in a de-init function.

Parameters
* base — Base address of the peripheral.
¢ pinldx — pin index.

Return values
None. —

void PINT _DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintldx)

disable callback by pin index.

This function disables callback by pin index instead of disabling all pins.

Parameters
* base — Base address of the peripheral.
* pintldx — pin index.

Return values
None. —

PINT USE_LEGACY_CALLBACK
PININT BITSLICE_SRC_START
PININT_BITSLICE_SRC_MASK
PININT_BITSLICE_CFG_START
PININT_BITSLICE_ CFG_MASK
PININT_BITSLICE_ENDP_ MASK
PINT PIN_INT LEVEL

PINT PIN_INT_EDGE
PINT_PIN_INT_ FALL OR_HIGH_ LEVEL
PINT_PIN_INT_RISE
PINT_PIN_RISE_EDGE

PINT PIN_FALL EDGE

PINT PIN_BOTH_EDGE
PINT_PIN_LOW_LEVEL
PINT_PIN_HIGH_LEVEL

struct _ pint_ status

#include <fsl_pint.h> PINT event status.
struct _ pint_ pmatch_ cfg

#include <fsl_pint.h>

2.19. PINT: Pin Interrupt and Pattern Match Driver

225

MCUXpresso SDK Documentation, Release 25.12.00

2.20 Power Driver

enum pd_ bits

power down configurations mask
Values:
enumerator kPDRUNCFG_PD_FRO_OUT

enumerator kPDRUNCFG_PD_FRO
enumerator kPDRUNCFG_PD_FLASH
enumerator kPDRUNCFG__PD_BOD
enumerator kPDRUNCFG_PD__ADCO
enumerator kPDRUNCFG_PD_ SYSOSC
enumerator kPDRUNCFG_PD_WDT 0OSC
enumerator kPDRUNCFG_PD_ SYSPLL
enumerator kPDRUNCFG_PD_DACO
enumerator kPDRUNCFG__PD_DACI1
enumerator kPDRUNCFG__PD_ ACMP

enumerator kPDRUNCFG__ForceUnsigned

enum _ power_ wakeup

Deep sleep and power down mode wake up configurations.

Values:
enumerator kPDAWAKECFG_ Wakeup_ FRO_ OUT

enumerator kPDAWAKECFG_ Wakeup_ FRO
enumerator kPDAWAKECFG_ Wakeup_ FLASH
enumerator kPDAWAKECFG_ Wakeup_ BOD
enumerator kPDAWAKECFG_ Wakeup_ ADC
enumerator kPDAWAKECFG__Wakeup_ SYSOSC
enumerator kPDAWAKECFG_ Wakeup WDT__OSC
enumerator kPDAWAKECFG_ Wakeup_ SYSPLL
enumerator kPDAWAKECFG_ Wakeup_ VREFF?2
enumerator kPDAWAKECFG_ Wakeup_ DACO
enumerator kPDAWAKECFG_ Wakeup_ DAC1

enumerator kPDAWAKECFG_ Wakeup_ ACMP

enum _ power_ deep_ sleep_ active

Deep sleep/power down mode active part.

Values:

226

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPDSLEEPCFG__DeepSleepBODActive

enumerator kPDSLEEPCFG __DeepSleepWDT OscActive
enum _ power_gen_reg

pmu general purpose register index

Values:

enumerator kPmu_ GenReg0
general purpose register0

enumerator kPmu_ GenRegl
general purpose registerl

enumerator kPmu GenReg2
general purpose register2

enumerator kPmu_ GenReg3
general purpose register3

enumerator kPmu_ GenReg4
DPDCTRL bit 31-8

enum _ power_mode_ config
Values:

enumerator kPmu_ Sleep
enumerator kPmu_ Deep_ Sleep
enumerator kPmu_ PowerDown
enumerator kPmu_ Deep_ PowerDown
enum _ power_bod_ reset_ level
BOD reset level, if VDD below reset level value, the reset will be asserted.
Values:

enumerator kBod_ResetLevelReserved
BOD Reset Level reserved.

enumerator kBod ResetLevell
BOD Reset Levell: 2.05V

enumerator kBod ResetLevel2
BOD Reset Level2: 2.35V

enumerator kBod ResetLevel3
BOD Reset Level3: 2.63V

enum _ power_ bod__interrupt_ level
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

Values:

enumerator kBod_ InterruptLevelReserved
BOD interrupt level reserved.

enumerator kBod_ InterruptLevell
BOD interrupt levell: 2.25V.

enumerator kBod_ InterruptLevel2
BOD interrupt level2: 2.55V.

2.20. Power Driver 227

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kBod_ InterruptLevel3
BOD interrupt level3: 2.84V.

typedef enum pd_bits pd_ bit_t
power down configurations mask

typedef enum_power_gen_reg power gen reg t
pmu general purpose register index

typedef enum _power_mode_config power_mode_ cfg_t
typedef enum _power_bod_reset_level power_bod_reset_level _t
BOD reset level, if VDD below reset level value, the reset will be asserted.

typedef enum _power_bod_interrupt_level power__bod__interrupt_level _t
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

FSL_POWER_DRIVER_VERSION
power driver version 2.1.0.

PMUC_PCON_RESERVED MASK
PMU PCON reserved mask, used to clear reserved field which should not write 1.

POWER,_ EnbaleLPO
POWER,__EnbaleLPOInDeepPowerDownMode

static inline void POWER,_EnablePD(pd_bit_t en)

API to enable PDRUNCEFG bit in the Syscon. Note that enabling the bit powers down the
peripheral.

Parameters
* en — peripheral for which to enable the PDRUNCFG bit

Returns
none

static inline void POWER_ DisablePD(pd_bit_t en)

API to disable PDRUNCFG bit in the Syscon. Note that disabling the bit powers up the pe-
ripheral.

Parameters
* en — peripheral for which to disable the PDRUNCFG bit

Returns
none

static inline void POWER,_ WakeUpConfig(uint32_t mask, bool powerDown)
API to config wakeup configurations for deep sleep mode and power down mode.

Parameters

* mask — wake up configurations for deep sleep mode and power down
mode, reference _power_wakeup.

» powerDown — true is power down the mask part, false is powered part.

static inline void POWER _ DeepSleepConfig(uint32_t mask, bool powerDown)
API to config active part for deep sleep mode and power down mode.

Parameters

* mask — active part configurations for deep sleep mode and power down
mode, reference _power_deep_sleep_active.

228 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

» powerDown — true is power down the mask part, false is powered part.
static inline void POWER__EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.

Returns
none

static inline void POWER_ DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.

Returns
none

void POWER_ EnterSleep(void)
API to enter sleep power mode.

Returns
none

void POWER,_ EnterDeepSleep(uint32_t activePart)
API to enter deep sleep power mode.

Parameters
* activePart — should be a single or combine value of
_power_deep_sleep_active .
Returns
none

void POWER_ EnterPowerDown(uint32_t activePart)
API to enter power down mode.

Parameters
o activePart — should be a single or combine value of
_power_deep_sleep_active .
Returns
none

void POWER_ EnterDeepPowerDownMode(void)
API to enter deep power down mode.

Returns
none

static inline uint32_t POWER.__ GetSleepModeFlag(void)
API to get sleep mode flag.

Returns
sleep mode flag: 0 is active mode, 1 is sleep mode entered.

static inline void POWER__ClrSleepModeFlag(void)
API to clear sleep mode flag.

static inline uint32_t POWER,_ GetDeepPowerDownModeFlag(void)
API to get deep power down mode flag.

Returns
sleep mode flag: 0 not deep power down, 1 is deep power down mode entered.

static inline void POWER__ ClrDeepPowerDownModeFlag(void)
API to clear deep power down mode flag.

2.20. Power Driver 229

MCUXpresso SDK Documentation, Release 25.12.00

static inline void POWER,__EnableNonDpd(bool enable)
API to enable non deep power down mode.

Parameters
* enable — true is enable non deep power down, otherwise disable.

static inline void POWER__ EnableLPO(bool enable)
API to enable LPO.

Parameters
* enable — true to enable LPO, false to disable LPO.

static inline void POWER,__EnableLPOInDeepPowerDownMode(bool enable)
API to enable LPO in deep power down mode.

Parameters
* enable — true to enable LPO, false to disable LPO.

static inline void POWER,_ SetRetainData(power_gen_reg_t index, uint32_t data)

API toretore data to general purpose register which can be retain during deep power down
mode. Note the kPMU_GenReg4 can retore 3 byte data only, so the general purpose register
can store 19bytes data.

Parameters
* index — general purpose data register index.
* data — data to restore.

static inline uint32_t POWER,_ GetRetainData(power_gen_reg t index)

API to get data from general purpose register which retain during deep power down mode.
Note the KPMU_GenReg4 can retore 3 byte data only, so the general purpose register can
store 19bytes data.

Parameters
* index — general purpose data register index.

Returns
data stored in the general purpose register.

static inline void POWER_ EnableWktClkIn(bool enable, bool enHysteresis)
API to enable external clock input for self wake up timer.

Parameters

* enable — true is enable external clock input for self-wake-up timer, other-
wise disable.

* enHysteresis — true is enable Hysteresis for the pin, otherwise disable.

static inline void POWER, EnableWakeupPinForDeepPowerDown(bool enable, bool enHysteresis)
API to enable wake up pin for deep power down mode.

Parameters
* enable — true is enable, otherwise disable.
* enHysteresis — true is enable Hysteresis for the pin, otherwise disable.

static inline void POWER__EnableResetPinForDeepPowerDown(bool enable, bool enHysteresis)
API to enable external clock input for self wake up timer.

Parameters

* enable —true is enable , otherwise disable.

230 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* enHysteresis — true is enable Hysteresis for the pin, otherwise disable.

static inline void POWER,_ SetBodLevel(power_bod_reset_level t resetLevel,
power_bod._interrupt_level t interruptLevel, bool
enable)

Set Bod interrupt level and reset level.
Parameters

* resetLevel — BOD reset threshold level, please refer to
power_bod_reset_level _t.

* interruptLevel — BOD interrupt threshold level, please refer to
power_bod_interrupt_level t.

* enable — Used to enable/disable the BOD interrupt and BOD reset.

2.21 Reset Driver

enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

Values:

enumerator kFLASH_RST_N_SHIFT_RSTn
Flash controller reset control

enumerator kI2CO_RST_N_ SHIFT_RSTn
12CO0 reset control

enumerator kGPIO0_RST_N_SHIFT RSTn
GPIOO reset control

enumerator kSWM__RST_N_SHIFT RSTn
SWM reset control

enumerator kSCT RST N _SHIFT RSTn
SCT reset control

enumerator kWKT_RST_ N_SHIFT RSTn
Self-wake-up timer(WKT) reset control

enumerator kMRT RST N_SHIFT_ RSTn
Multi-rate timer(MRT) reset control

enumerator kSPI0_ RST_N_SHIFT_RSTn
SPIO reset control.

enumerator kSPI1__RST N _ SHIFT RSTn
SPI1 reset control

enumerator kCRC_RST_ SHIFT RSTn
CRC reset control

enumerator kUARTO_RST_N_SHIFT RSTn
UARTO reset control

enumerator ktUART1 RST N_SHIFT RSTn
UART1 reset control

2.21. Reset Driver 231

MCUXpresso SDK Documentation, Release 25.12.00

enumerator ktUART2 RST N SHIFT RSTn
UART?2 reset control

enumerator kIOCON_RST_N_SHIFT RSTn
IOCON reset control

enumerator kKACMP_RST N_SHIFT_ RSTn
Analog comparator reset control

enumerator kGPIO1_RST_N_SHIFT RSTn
GPIO1 reset control

enumerator kI2C1_RST N_SHIFT RSTn
I12C1 reset control

enumerator kI2C2_RST N_SHIFT RSTn
I12C2 reset control

enumerator kI2C3_RST_ N_SHIFT RSTn
I12C3 reset control

enumerator kADC_RST_N_SHIFT RSTn
ADC reset control

enumerator kCTIMERO_RST_N_SHIFT RSTn
CTIMERO reset control

enumerator kDACO_RST N_SHIFT_ RSTn
DACO reset control

enumerator kGPIOINT_RST N_SHIFT_ RSTn
GPIOINT reset control

enumerator kDMA_ RST N_SHIFT RSTn
DMA reset control

enumerator kUART3_RST_N_SHIFT RSTn
UART3 reset control

enumerator kUART4 RST_ N_SHIFT RSTn
UART4 reset control

enumerator kCAPT_RST N_SHIFT_ RSTn
Capacitive Touch reset control

enumerator kDAC1_RST N_SHIFT_ RSTn
DACI1 reset control

enumerator kFRGO_RST_ N_SHIFT RSTn
Fractional baud rate generator 0 reset control

enumerator kFRG1_RST_ N_SHIFT RSTn
Fractional baud rate generator 1 reset control

typedef enum _SYSCON_RSTn SYSCON_RSTn_ t
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t

232 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void RESET_ SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.

Asserts reset signal to specified peripheral module.
Parameters

* peripheral — Assert reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_ ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.
Parameters

* peripheral — Clear reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_ PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.

Reset peripheral module.
Parameters

* peripheral — Peripheral to reset. The enum argument contains encoding of
reset register and reset bit position in the reset register.

static inline void RESET_ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.

Release peripheral module.
Parameters

* peripheral — Peripheral to release. The enum argument contains encoding
of reset register and reset bit position in the reset register.

FSL RESET DRIVER_ VERSION
reset driver version 2.4.0

FLASH_RSTS_N
Array initializers with peripheral reset hits

I2C_RSTS_ N
GPIO_RSTS_N
SWM_RSTS N
SCT_RSTS N
WKT_ RSTS N
MRT RSTS N
SPI_RSTS N
CRC_RSTS_N
UART RSTS N
IOCON_RSTS N

ACMP_RSTS N

2.21. Reset Driver 233

MCUXpresso SDK Documentation, Release 25.12.00

ADC_RSTS_N
CTIMER_RSTS N
DAC_RSTS_ N
GPIOINT RSTS N
DMA_RSTS N
CAPT_RSTS_N

FRG_RSTS N

2.22 SCTimer: SCTimer/PWM (SCT)

status_t SCTIMER_ Init(SCT_Type *base, const sctimer_config_t *config)
Ungates the SCTimer clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the SCTimer

driver.
Parameters
* base — SCTimer peripheral base address
* config — Pointer to the user configuration structure.
Returns

kStatus_Success indicates success; Else indicates failure.

void SCTIMER, Deinit(SCT_Type *base)
Gates the SCTimer clock.

Parameters
* base — SCTimer peripheral base address

void SCTIMER, GetDefaultConfig(sctimer_config t *config)
Fills in the SCTimer configuration structure with the default settings.

The default values are:

config->enableCounterUnify = true;

config->clockMode = kSCTIMER_ System__ClockMode;
config->clockSelect = kSCTIMER_ Clock_ On__Rise_ Input_ 0;
config->enableBidirection_ | = false;
config->enableBidirection h = false;

config->prescale_1 = 0U;

config->prescale_h = 0U;

config->outlnitState = 0U;

config->inputsync = 0xFU;

Parameters

* config — Pointer to the user configuration structure.

234 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

status_t SCTIMER,_SetupPwm (SCT_Type *base, const sctimer_pwm_signal param_t
*pwmParams, sctimer_pwm_mode_t mode, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, uint32_t *event)

Configures the PWM signal parameters.

Call this function to configure the PWM signal period, mode, duty cycle, and edge. This
function will create 2 events; one of the events will trigger on match with the pulse value
and the other will trigger when the counter matches the PWM period. The PWM period
event is also used as a limit event to reset the counter or change direction. Both events
are enabled for the same state. The state number can be retrieved by calling the function
SCTIMER_GetCurrentStateNumber(). The counter is set to operate as one 32-bit counter
(unify bitis set to 1). The counter operates in bi-directional mode when generating a center-
aligned PWM.

Note: When setting PWM output from multiple output pins, they all should use the same
PWM mode i.e all PWM’s should be either edge-aligned or center-aligned. When using this
API, the PWM signal frequency of all the initialized channels must be the same. Other-
wise all the initialized channels’ PWM signal frequency is equal to the last call to the API’s
pwmFreq_Hz.

Parameters
* base — SCTimer peripheral base address
* pwmParams — PWM parameters to configure the output

* mode — PWM operation mode, options available in enumeration sc-
timer_pwm_mode_t

* pwmFreq Hz - PWM signal frequency in Hz
* srcClock_Hz — SCTimer counter clock in Hz
* event — Pointer to a variable where the PWM period event number is stored

Returns
kStatus_Success on success kStatus_Fail If we have hit the limit in terms of
number of events created or if an incorrect PWM dutycylce is passed in.

void SCTIMER_ UpdatePwmDutycycle(SCT_Type *base, sctimer_out_t output, uint8_t
dutyCyclePercent, uint32_t event)

Updates the duty cycle of an active PWM signal.

Before calling this function, the counter is set to operate as one 32-bit counter (unify bit is
setto 1).

Parameters
* base — SCTimer peripheral base address
* output — The output to configure

* dutyCyclePercent - New PWM pulse width; the value should be between 1
to 100

* event — Event number associated with this PWM signal. This was returned
to the user by the function SCTIMER_SetupPwmy().

static inline void SCTIMER_ EnableInterrupts(SCT_Type *base, uint32_t mask)
Enables the selected SCTimer interrupts.

Parameters

* base — SCTimer peripheral base address

2.22. SCTimer: SCTimer/PWM (SCT) 235

MCUXpresso SDK Documentation, Release 25.12.00

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline void SCTIMER_ DisableInterrupts(SCT_Type *base, uint32_t mask)
Disables the selected SCTimer interrupts.

Parameters
* base — SCTimer peripheral base address

* mask — The interrupts to enable. This is a logical OR of members of the
enumeration sctimer_interrupt_enable_t

static inline uint32_t SCTIMER,__ GetEnabledInterrupts(SCT_Type *base)
Gets the enabled SCTimer interrupts.

Parameters
* base — SCTimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
sctimer_interrupt_enable_t

static inline uint32_t SCTIMER,__ GetStatusFlags(SCT_Type *base)
Gets the SCTimer status flags.

Parameters
* base — SCTimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration sc-
timer_status_flags_t

static inline void SCTIMER,_ClearStatusFlags(SCT_Type *base, uint32_t mask)
Clears the SCTimer status flags.

Parameters
* base — SCTimer peripheral base address

* mask — The status flags to clear. This is a logical OR of members of the
enumeration sctimer_status_flags_t

static inline void SCTIMER, StartTimer(SCT_Type *base, uint32_t countertoStart)
Starts the SCTimer counter.

Note: In 16-bit mode, we can enable both Counter_L and Counter_H, In 32-bit mode, we
only can select Counter_U.

Parameters
* base — SCTimer peripheral base address

* countertoStart — The SCTimer counters to enable. This is a logical OR of
members of the enumeration sctimer_counter _t.

static inline void SCTIMER,_ StopTimer(SCT_Type *base, uint32_t countertoStop)
Halts the SCTimer counter.

Parameters
* base — SCTimer peripheral base address

* countertoStop — The SCTimer counters to stop. This is a logical OR of mem-
bers of the enumeration sctimer_counter_t.

236 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

status_t SCTIMER,_ CreateAndScheduleEvent(SCT_Type *base, sctimer_event_t howToMonitor,
uint32_t matchValue, uint32_t whichlO,
sctimer_counter_t whichCounter, uint32_t *event)

Create an event that is triggered on a match or I0 and schedule in current state.

This function will configure an event using the options provided by the user. If the event
type uses the counter match, then the function will set the user provided match value into
a match register and put this match register number into the event control register. The
event is enabled for the current state and the event number is increased by one at the end.
The function returns the event number; this event number can be used to configure actions
to be done when this event is triggered.

Parameters
* base — SCTimer peripheral base address

» howToMonitor — Event type; options are available in the enumeration sc-
timer_interrupt_enable_t

» matchValue — The match value that will be programmed to a match register

» whichIO — The input or output that will be involved in event triggering.
This field is ignored if the event type is “match only”

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* event — Pointer to a variable where the new event number is stored

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of events created or if we have reached the limit in terms of number
of match registers

void SCTIMER_ ScheduleEvent(SCT_Type *base, uint32_t event)
Enable an event in the current state.

This function will allow the event passed in to trigger in the current state. The event
must be created earlier by either calling the function SCTIMER_SetupPwm() or function
SCTIMER_CreateAndScheduleEvent() .

Parameters
* base — SCTimer peripheral base address
* event — Event number to enable in the current state

status_t SCTIMER, IncreaseState(SCT_Type *base)
Increase the state by 1.

All future events created by calling the function SCTIMER_ScheduleEvent() will be enabled
in this new state.

Parameters
* base — SCTimer peripheral base address

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
states used

uint32_t SCTIMER_ GetCurrentState(SCT_Type *base)
Provides the current state.

User can use this to set the next state by calling the function SC-
TIMER_SetupNextStateAction().

Parameters

2.22. SCTimer: SCTimer/PWM (SCT) 237

MCUXpresso SDK Documentation, Release 25.12.00

* base — SCTimer peripheral base address

Returns
The current state

static inline void SCTIMER, _SetCounterState(SCT_Type *base, sctimer_counter_t whichCounter;
uint32_t state)

Set the counter current state.

The function is to set the state variable bit field of STATE register. Writing to the STATE_L,
STATE_H, or unified register is only allowed when the corresponding counter is halted
(HALT bits are set to 1 in the CTRL register).

Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* state — The counter current state number (only support range from 0~31).

static inline uint16_t SCTIMER,_GetCounterState(SCT_Type *base, sctimer_counter._t
whichCounter)

Get the counter current state value.
The function is to get the state variable bit field of STATE register.
Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The the counter current state value.

status_t SCTIMER, SetupCaptureAction(SCT_Type *base, sctimer._counter_t whichCounter,
uint32_t *captureRegister, uint32_t event)

Setup capture of the counter value on trigger of a selected event.
Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* captureRegister — Pointer to a variable where the capture register number
will be returned. User can read the captured value from this register when
the specified event is triggered.

* event — Event number that will trigger the capture

Returns
kStatus_Success on success kStatus_Error if we have hit the limit in terms of
number of match/capture registers available

void SCTIMER,SetCallback(SCT_Type *base, sctimer_event_callback_t callback, uint32_t event)
Receive noticification when the event trigger an interrupt.

If the interrupt for the event is enabled by the user, then a callback can be registered which
will be invoked when the event is triggered

Parameters

* base — SCTimer peripheral base address

238 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* event — Event number that will trigger the interrupt
* callback — Function to invoke when the event is triggered

static inline void SCTIMER, SetupStateL.dMethodAction(SCT_Type *base, uint32_t event, bool
fgload)

Change the load method of transition to the specified state.

Change theload method of transition, it will be triggered by the event number that is passed
in by the user.

Parameters
* base — SCTimer peripheral base address
* event — Event number that will change the method to trigger the state tran-
sition
¢ fgload — The method to load highest-numbered event occurring for that
state to the STATE register.

— true: Load the STATEV value to STATE when the event occurs to be the
next state.

— false: Add the STATEV value to STATE when the event occurs to be the
next state.

static inline void SCTIMER, _SetupNextStateActionwithL.dMethod(SCT_Type *base, uint32_t
nextState, uint32_t event, bool
fgload)

Transition to the specified state with Load method.

This transition will be triggered by the event number that is passed in by the user, the
method decide how to load the highest-numbered event occurring for that state to the
STATE register.

Parameters
* base — SCTimer peripheral base address
* nextState — The next state SCTimer will transition to
* event — Event number that will trigger the state transition

¢ fgload —The method toload the highest-numbered event occurring for that
state to the STATE register.

— true: Load the STATEV value to STATE when the event occurs to be the

next state.
— false: Add the STATEV value to STATE when the event occurs to be the
next state.
static inline void SCTIMER,_ SetupNextStateAction(SCT_Type *base, uint32_t nextState, uint32_t
event)
Transition to the specified state.
Deprecated:
Do not wuse this function. It has been superceded by SC-

TIMER_SetupNextStateActionwithLdMethod
This transition will be triggered by the event number that is passed in by the user.
Parameters

* base — SCTimer peripheral base address

2.22. SCTimer: SCTimer/PWM (SCT) 239

MCUXpresso SDK Documentation, Release 25.12.00

* nextState — The next state SCTimer will transition to
* event — Event number that will trigger the state transition

static inline void SCTIMER, SetupEventActiveDirection(SCT_Type *base,
sctimer_event_active_direction _t
activeDirection, uint32_t event)

Setup event active direction when the counters are operating in BIDIR mode.
Parameters
* base — SCTimer peripheral base address

* activeDirection - Event generation active direction, see sc-
timer_event_active_direction_t.

* event — Event number that need setup the active direction.

static inline void SCTIMER._ SetupOutputSetAction(SCT_Type *base, uint32_t whichIO, uint32_t
event)

Set the Output.
This output will be set when the event number that is passed in by the user is triggered.
Parameters
* base — SCTimer peripheral base address
* whichIO - The output to set
* event — Event number that will trigger the output change

static inline void SCTIMER, SetupOutputClearAction(SCT_Type *base, uint32_t whichlO,
uint32_t event)

Clear the Output.
This output will be cleared when the event number that is passed in by the user is triggered.
Parameters
* base — SCTimer peripheral base address
* whichIO - The output to clear
* event — Event number that will trigger the output change

void SCTIMER_ SetupOutputToggleAction(SCT_Type *base, uint32_t whichIO, uint32_t event)
Toggle the output level.

This change in the output level is triggered by the event number that is passed in by the
user.

Parameters
* base — SCTimer peripheral base address
* whichIO - The output to toggle
* event — Event number that will trigger the output change

static inline void SCTIMER, _SetupCounterLimitAction(SCT_Type *base, sctimer._counter._t
whichCounter, uint32_t event)

Limit the running counter.
The counter is limited when the event number that is passed in by the user is triggered.
Parameters

* base — SCTimer peripheral base address

240 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* event — Event number that will trigger the counter to be limited

static inline void SCTIMER, _SetupCounterStopAction(SCT_Type *base, sctimer_counter._t
whichCounter, uint32_t event)

Stop the running counter.
The counter is stopped when the event number that is passed in by the user is triggered.
Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* event — Event number that will trigger the counter to be stopped

static inline void SCTIMER, SetupCounterStartAction(SCT_Type *base, sctimer_counter._t
whichCounter, uint32_t event)

Re-start the stopped counter.
The counter will re-start when the event number that is passed in by the user is triggered.
Parameters
* base — SCTimer peripheral base address

e whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* event — Event number that will trigger the counter to re-start

static inline void SCTIMER,_ SetupCounterHaltAction(SCT_Type *base, sctimer_counter._t
whichCounter, uint32_t event)

Halt the running counter.

The counter is disabled (halted) when the event number that is passed in by the user is
triggered. When the counter is halted, all further events are disabled. The HALT condition
can only be removed by calling the SCTIMER_StartTimer() function.

Parameters
* base — SCTimer peripheral base address

e whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* event — Event number that will trigger the counter to be halted

static inline void SCTIMER,_SetupDmaTrigger Action(SCT_Type *base, uint32_t dmaNumber,
uint32_t event)

Generate a DMA request.
DMA request will be triggered by the event number that is passed in by the user.
Parameters
* base — SCTimer peripheral base address
* dmaNumber — The DMA request to generate

* event — Event number that will trigger the DMA request

2.22. SCTimer: SCTimer/PWM (SCT) 241

MCUXpresso SDK Documentation, Release 25.12.00

static inline void SCTIMER,_ SetCOUNT Value(SCT_Type *base, sctimer_counter_t whichCounter,
uint32_t value)

Set the value of counter.

The function is to set the value of Count register, Writing to the COUNT_L, COUNT_H, or
unified register is only allowed when the corresponding counter is halted (HALT bits are
set to 1 in the CTRL register).

Parameters
* base — SCTimer peripheral base address

e whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* value — the counter value update to the COUNT register.

static inline uint32_t SCTIMER,_ GetCOUNTValue(SCT_Type *base, sctimer_counter._t
whichCounter)

Get the value of counter.

The function is to read the value of Count register, software can read the counter registers
at any time..

Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

Returns
The value of counter selected.

static inline void SCTIMER,_ SetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Set the state mask bit field of EV_STATE register.

Parameters
* base — SCTimer peripheral base address
* event — The EV_STATE register be set.
* state — The state value in which the event is enabled to occur.

static inline void SCTIMER.__ ClearEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Clear the state mask bit field of EV_STATE register.

Parameters
* base — SCTimer peripheral base address
* event — The EV_STATE register be clear.
* state — The state value in which the event is disabled to occur.

static inline bool SCTIMER._ GetEventInState(SCT_Type *base, uint32_t event, uint32_t state)
Get the state mask bit field of EV_STATE register.

Note: This function is to check whether the event is enabled in a specific state.

Parameters
* base — SCTimer peripheral base address
* event — The EV_STATE register be read.

* state — The state value.

242 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Returns
The the state mask bit field of EV_STATE register.

* true: The event is enable in state.
» false: The event is disable in state.

static inline uint32_t SCTIMER,_ GetCaptureValue(SCT_Type *base, sctimer_counter._t
whichCounter, uint8_t capChannel)

Get the value of capture register.

This function returns the captured value upon occurrence of the events selected by the
corresponding Capture Control registers occurred.

Parameters
* base — SCTimer peripheral base address

* whichCounter — SCTimer counter to use. In 16-bit mode, we can select
Counter_L and Counter_H, In 32-bit mode, we can select Counter_U.

* capChannel — SCTimer capture register of capture channel.

Returns
The SCTimer counter value at which this register was last captured.

void SCTIMER, EventHandleIRQ(SCT_Type *base)
SCTimer interrupt handler.

Parameters
* base — SCTimer peripheral base address.

FSL SCTIMER_DRIVER_ VERSION
Version

enum _ sctimer_pwm_ mode
SCTimer PWM operation modes.

Values:

enumerator kSCTIMER_ EdgeAlignedPwm
Edge-aligned PWM

enumerator kSCTIMER_ CenterAlignedPwm
Center-aligned PWM

enum _sctimer counter
SCTimer counters type.

Values:

enumerator kSCTIMER_Counter_ L
16-bit Low counter.

enumerator kSCTIMER_Counter H
16-bit High counter.

enumerator kSCTIMER _Counter U
32-bit Unified counter.

enum _ sctimer__input
List of SCTimer input pins.

Values:

2.22. SCTimer: SCTimer/PWM (SCT) 243

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER, Input_0
SCTIMER input 0

enumerator kSCTIMER, Input_ 1
SCTIMER input 1

enumerator kSCTIMER, Input_ 2
SCTIMER input 2

enumerator kSCTIMER, Input_ 3
SCTIMER input 3

enumerator kSCTIMER_ Input_4
SCTIMER input 4

enumerator kSCTIMER, Input_5
SCTIMER input 5

enumerator kSCTIMER, Input_ 6
SCTIMER input 6

enumerator kSCTIMER, Input_7
SCTIMER input 7

enum _sctimer out
List of SCTimer output pins.

Values:

enumerator kSCTIMER_ Out_0
SCTIMER output 0

enumerator kSCTIMER_ Out__1
SCTIMER output 1

enumerator kSCTIMER_ Out_ 2
SCTIMER output 2

enumerator kSCTIMER_ Out__3
SCTIMER output 3

enumerator kSCTIMER Out_4
SCTIMER output 4

enumerator kSCTIMER _Out_5
SCTIMER output 5

enumerator kSCTIMER_ Out_ 6
SCTIMER output 6

enumerator kSCTIMER_ Out_ 7
SCTIMER output 7

enumerator kSCTIMER_Out_ 8
SCTIMER output 8

enumerator kSCTIMER_ Out_ 9
SCTIMER output 9

enum _ sctimer pwm_ level select
SCTimer PWM output pulse mode: high-true, low-true or no output.

Values:

244 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER,_LowTrue
Low true pulses

enumerator kSCTIMER, HighTrue

High true pulses
enum _sctimer clock mode

SCTimer clock mode options.

Values:

enumerator kSCTIMER, System_ ClockMode
System Clock Mode

enumerator kSCTIMER, Sampled ClockMode
Sampled System Clock Mode

enumerator kSCTIMER, Input_ ClockMode
SCT Input Clock Mode

enumerator kSCTIMER, Asynchronous_ ClockMode
Asynchronous Mode

enum _ sctimer_clock_ select

SCTimer clock select options.

Values:

enumerator kSCTIMER, Clock_On_ Rise_Input_0
Rising edges on input 0

enumerator kSCTIMER, Clock On_ Fall Input_0
Falling edges on input 0

enumerator kSCTIMER, Clock_ On_ Rise Input_ 1
Rising edges on input 1

enumerator k<SCTIMER,_ Clock On_ Fall Input_1
Falling edges on input 1

enumerator kSCTIMER_ Clock_On_ Rise Input_ 2
Rising edges on input 2

enumerator kSCTIMER,_ Clock_ On_ Fall Input_ 2
Falling edges on input 2

enumerator kSCTIMER,_ Clock_On_ Rise Input_ 3
Rising edges on input 3

enumerator kSCTIMER,_ Clock_ On_ Fall Input_3
Falling edges on input 3

enumerator kSCTIMER,_ Clock_ On_ Rise Input_4
Rising edges on input 4

enumerator kSCTIMER,_ Clock_ On_ Fall Input_4
Falling edges on input 4

enumerator kSCTIMER,_ Clock On_ Rise Input_5
Rising edges on input 5

enumerator kSCTIMER,_ Clock On_ Fall Input_5
Falling edges on input 5

2.22. SCTimer: SCTimer/PWM (SCT)

245

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER,_ Clock_On_ Rise Input_6
Rising edges on input 6
enumerator kSCTIMER, Clock_On_ Fall Input_6
Falling edges on input 6
enumerator kSCTIMER,_ Clock_On_ Rise Input_7
Rising edges on input 7
enumerator kSCTIMER, Clock_On_ Fall Input_7
Falling edges on input 7
enum _sctimer conflict resolution

SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time

Values:

enumerator k<SCTIMER_ResolveNone
No change

enumerator kSCTIMER ResolveSet
Set output

enumerator kSCTIMER ResolveClear
Clear output

enumerator kSCTIMER_ ResolveToggle
Toggle output

enum _sctimer event active direction

List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

Values:

enumerator kSCTIMER, ActiveIndependent
This event is triggered regardless of the count direction.

enumerator kSCTIMER, _ActiveInCountUp
This event is triggered only during up-counting when BIDIR = 1.

enumerator kSCTIMER _ActiveInCountDown
This event is triggered only during down-counting when BIDIR = 1.

enum _sctimer event
List of SCTimer event types.

Values:
enumerator kSCTIMER, InputLowOrMatchEvent

enumerator kSCTIMER, InputRiseOrMatchEvent
enumerator kSCTIMER, InputFallOrMatchEvent
enumerator kSCTIMER, InputHighOrMatchEvent
enumerator kSCTIMER,_ MatchEventOnly

enumerator kSCTIMER,_ InputLowEvent

246 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER, InputRiseEvent
enumerator kSCTIMER,_ InputFallEvent
enumerator kSCTIMER, InputHighEvent
enumerator kSCTIMER_ InputLowAndMatchEvent
enumerator k<SCTIMER _InputRiseAndMatchEvent
enumerator kSCTIMER, InputFallAndMatchEvent
enumerator kSCTIMER, InputHighAndMatchEvent
enumerator kSCTIMER_ OutputLowOrMatchEvent
enumerator kSCTIMER, OutputRiseOrMatchEvent
enumerator kSCTIMER, OutputFallOrMatchEvent
enumerator kSCTIMER, OutputHighOrMatchEvent
enumerator kSCTIMER, OutputLowEvent
enumerator kSCTIMER_ OutputRiseEvent
enumerator kSCTIMER,_ OutputFallEvent
enumerator kSCTIMER, OutputHighEvent
enumerator k<SCTIMER__ OutputLowAndMatchEvent
enumerator kSCTIMER,_ OutputRiseAndMatchEvent
enumerator kSCTIMER, OutputFallAndMatchEvent
enumerator kSCTIMER_ OutputHighAndMatchEvent

enum _ sctimer_interrupt_ enable
List of SCTimer interrupts.
Values:

enumerator kSCTIMER, EventOInterruptEnable
Event 0 interrupt

enumerator kSCTIMER, EventlInterruptEnable
Event 1 interrupt

enumerator kSCTIMER, Event2InterruptEnable
Event 2 interrupt

enumerator kSCTIMER, Event3InterruptEnable
Event 3 interrupt

enumerator kSCTIMER, Event4InterruptEnable
Event 4 interrupt

enumerator kSCTIMER_ Event5InterruptEnable
Event 5 interrupt

enumerator kSCTIMER_ Event6InterruptEnable
Event 6 interrupt

2.22. SCTimer: SCTimer/PWM (SCT) 247

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER, Event7InterruptEnable
Event 7 interrupt

enumerator kSCTIMER, Event8InterruptEnable
Event 8 interrupt

enumerator kSCTIMER, Event9InterruptEnable
Event 9 interrupt

enumerator kSCTIMER, Event10InterruptEnable
Event 10 interrupt

enumerator kSCTIMER, Eventl1InterruptEnable
Event 11 interrupt

enumerator kSCTIMER, Event12InterruptEnable
Event 12 interrupt

enum _ sctimer_status_ flags

List of SCTimer flags.

Values:

enumerator kSCTIMER, EventOFlag
Event 0 Flag

enumerator kSCTIMER, Event1Flag
Event 1 Flag

enumerator kSCTIMER, Event2Flag
Event 2 Flag

enumerator kSCTIMER, Event3Flag
Event 3 Flag

enumerator kSCTIMER, Event4Flag
Event 4 Flag

enumerator kSCTIMER, Event5Flag
Event 5 Flag

enumerator kSCTIMER_ Event6Flag
Event 6 Flag

enumerator kSCTIMER, Event7Flag
Event 7 Flag

enumerator kSCTIMER, Event8Flag
Event 8 Flag

enumerator kSCTIMER, Event9Flag
Event 9 Flag

enumerator kSCTIMER, Event10Flag
Event 10 Flag

enumerator kSCTIMER, Eventl1Flag
Event 11 Flag

enumerator kSCTIMER, Event12Flag
Event 12 Flag

248

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSCTIMER, BusErrorLFlag
Bus error due to write when L counter was not halted

enumerator kSCTIMER_ BusErrorHFlag
Bus error due to write when H counter was not halted
typedef enum _sctimer_pwm_mode sctimer _pwm_ mode_t
SCTimer PWM operation modes.
typedef enum _sctimer_counter sctimer__counter_t
SCTimer counters type.
typedef enum _sctimer._input sctimer__input__t
List of SCTimer input pins.
typedef enum _sctimer._out sctimer out_ t
List of SCTimer output pins.
typedef enum _sctimer_pwm_level_select sctimer pwm_ level select_t
SCTimer PWM output pulse mode: high-true, low-true or no output.
typedef struct _sctimer_pwm_signal param sctimer pwm_ signal param_t
Options to configure a SCTimer PWM signal.
typedef enum _sctimer_clock_mode sctimer__clock__mode_t
SCTimer clock mode options.
typedef enum _sctimer._clock_select sctimer__clock_select_t
SCTimer clock select options.
typedef enum _sctimer._conflict_resolution sctimer_ conflict_ resolution_ t
SCTimer output conflict resolution options.

Specifies what action should be taken if multiple events dictate that a given output should
be both set and cleared at the same time
typedef enum _sctimer._event_active_direction sctimer__event_ active_ direction__t

List of SCTimer event generation active direction when the counters are operating in BIDIR
mode.

typedef enum _sctimer_event sctimer_event_ t
List of SCTimer event types.

typedef void (*sctimer__event_ callback_t)(void)
SCTimer callback typedef.

typedef enum _sctimer._interrupt_enable sctimer__interrupt_ enable_t
List of SCTimer interrupts.

typedef enum _sctimer._status_flags sctimer_status_flags _t
List of SCTimer flags.

typedef struct _sctimer_config sctimer_config_t
SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.
SCT EV_STATE STATEMSKn(X)

struct _sctimer_pwm_ signal_param
#include <fsl_sctimer.h> Options to configure a SCTimer PWM signal.

2.22. SCTimer: SCTimer/PWM (SCT) 249

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

sctimer_out_t output
The output pin to use to generate the PWM signal

sctimer_pwm_level_select_t level
PWM output active level select.

uint8_t dutyCyclePercent

PWM pulse width, value should be between 0 to 100 0 = always inactive signal (0% duty
cycle) 100 = always active signal (100% duty cycle).

struct _ sctimer_ config

#include <fsl_sctimerh> SCTimer configuration structure.

This structure holds the configuration settings for the SCTimer peripheral. To initialize this
structure to reasonable defaults, call the SCTMR_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

bool enableCounterUnify

true: SCT operates as a unified 32-bit counter; false: SCT operates as two 16-bit coun-
ters. User can use the 16-bit low counter and the 16-bit high counters at the same time;
for Hardware limit, user can not use unified 32-bit counter and any 16-bit low/high
counter at the same time.

sctimer_clock_mode_t clockMode

SCT clock mode value

sctimer_clock_select_t clockSelect
SCT clock select value

bool enableBidirection 1
true: Up-down count mode for the L or unified counter false: Up count mode only for
the L or unified counter
bool enableBidirection h
true: Up-down count mode for the H or unified counter false: Up count mode only for
the H or unified counter. This field is used only if the enableCounterUnify is set to false
uint8_t prescale_ 1
Prescale value to produce the L or unified counter clock

uint8_t prescale_h

Prescale value to produce the H counter clock. This field is used only if the enable-
CounterUnify is set to false

uint8_t outInitState
Defines the initial output value

uint8_t inputsync

SCT INSYNC value, INSYNC field in the CONFIG register, from bit9 to bit 16. it is used to
define synchronization for input N: bit 9 = input 0 bit 10 = input 1 bit 11 = input 2 bit 12
=input 3 All other bits are reserved (bit13 ~bit 16). How User to set the the value for the
member inputsync. IE: delay for input0, and input 1, bypasses for input 2 and input
3 MACRO definition in user level. #define INPUTSYNCO (0U) #define INPUTSYNC1 (1U)
#define INPUTSYNC2 (2U) #define INPUTSYNC3 (3U) User Code. sctimerInfo.inputsync
= (1 « INPUTSYNC2) | (1 « INPUTSYNC3);

250

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

2.23 SPI: Serial Peripheral Interface Driver

2.24 SPI Driver

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)
Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or
modify some fields of the structure before calling SPI_MasterInit(). After calling this API,
the master is ready to transfer. Example:

spi__master_ config_t config;
SPI_MasterGetDefaultConfig(&config);

Parameters
* config — pointer to master config structure

status_t SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)
Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spl_master_config t config = {
.baudRate_ Bps = 500000,

b
SPI_MasterInit(SPIO, &config);
Parameters
* base — SPI base pointer
* config — pointer to master configuration structure
* srcClock_Hz — Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)
Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_Slavelnit(). Modify some fields of the structure before calling SPI_Slavelnit(). Exam-
ple:

spi_slave_ config t config;
SPI_SlaveGetDefaultConfig(&config);

Parameters
* config — pointer to slave configuration structure

status_t SPI_ Slavelnit(SPI_Type *base, const spi_slave_config t *config)
Initializes the SPI with slave configuration.
The configuration structure can be filled by user from scratch or be set with default val-

ues by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

2.23. SPI: Serial Peripheral Interface Driver 251

MCUXpresso SDK Documentation, Release 25.12.00

spi_slave_ config_t config = {

.polarity = kSPI_ ClockPolarity ActiveHigh;
.phase = kSPI_ ClockPhaseFirstEdge;
.direction = kSPI_ MsbFirst;

b
SPI_Slavelnit(SPIO0, &config);
Parameters
* base — SPI base pointer
* config — pointer to slave configuration structure

void SPI_ Deinit(SPI_Type *base)
De-initializes the SPI.

Calling this API resets the SPI module, gates the SPI clock. Disable the fifo if enabled. The
SPI module can’t work unless calling the SPI_MasterInit/SPI_Slavelnit to initialize module.

Parameters
* base — SPI base pointer

static inline void SPI_ Enable(SPI_Type *base, bool enable)
Enable or disable the SPI Master or Slave.

Parameters
* base — SPI base pointer
* enable — or disable (true = enable, false = disable)

static inline uint32_t SPI_ GetStatusFlags(SPI_Type *base)
Gets the status flag.

Parameters
* base — SPI base pointer

Returns
SPI Status, use status flag to AND _spi_status_flags could get the related status.

static inline void SPI_ ClearStatusFlags(SPI_Type *base, uint32_t mask)
Clear the status flag.

Parameters
* base — SPI base pointer

» mask — SPI Status, use status flag to AND _spi_status_flags could get the re-
lated status.

static inline void SPI_ Enablelnterrupts(SPI_Type *base, uint32_t irqs)
Enables the interrupt for the SPI.

Parameters
* base — SPI base pointer

* irgs — SPI interrupt source. The parameter can be any combination of the
following values:

— kSPI_RxReadyInterruptEnable
— kSPI_TxReadyInterruptEnable

252 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

static inline void SPI_ DisableInterrupts(SPI_Type *base, uint32_t irqs)
Disables the interrupt for the SPI.

Parameters

* base — SPI base pointer

* irgs — SPI interrupt source. The parameter can be any combination of the

following values:
— kSPI_RxReadyInterruptEnable
— kSPI_TxReadyInterruptEnable

static inline bool SPI_ IsMaster(SPI_Type *base)
Returns whether the SPI module is in master mode.

Parameters
* base — SPI peripheral address.

Returns

Returns true if the module is in master mode or false if the module is in slave

mode.

status_t SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)

Sets the baud rate for SPI transfer. This is only used in master.
Parameters
* base — SPI base pointer
* baudrate Bps —baud rate needed in Hz.
* srcClock_Hz — SPI source clock frequency in Hz.

static inline void SPI_ WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register directly.

Parameters
* base — SPI base pointer
* data — needs to be write.

static inline void SPI WriteConfigFlags(SPI_Type *base, uint32_t configFlags)
Writes a data into the SPI TXCTL register directly.

Parameters
* base — SPI base pointer
* configFlags — control command needs to be written.

void SPI_ WriteDataWithConfigFlags(SPI_Type *base, uint16_t data, uint32_t configFlags)
Writes a data control info and data into the SPI TX register directly.

Parameters
* base — SPI base pointer
* data — value needs to be written.
* configFlags — control command needs to be written.

static inline uint32_t SPI _ReadData(SPI_Type *base)
Gets a data from the SPI data register.

Parameters

* base — SPI base pointer

2.24. SPI Driver

253

MCUXpresso SDK Documentation, Release 25.12.00

Returns
Data in the register.

void SPI_SetTransferDelay(SPI_Type *base, const spi_delay_config_t *config)
Set delay time for transfer. the delay uint is SPI clock time, maximum value is OXF.

Parameters
* base — SPI base pointer
* config — configuration for delay option spi_delay_config_t.

void SPI_SetDummyData(SPI_Type *base, uint16_t dummyData)
Set up the dummy data. This API can change the default data to be transferred when users
set the tx buffer to NULL.

Parameters
* base — SPI peripheral address.
¢ dummyData — Data to be transferred when tx buffer is NULL.
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer._t *xfer)
Transfers a block of data using a polling method.
Parameters
* base — SPI base pointer
* xfer — pointer to spi_xfer_config_t structure
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Timeout — The transfer timed out and was aborted.

status_t SPT_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle,
spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPI master handle which can be used for other SPI master trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized

handle.
Parameters
* base — SPI peripheral base address.
* handle — SPI handle pointer.
* callback — Callback function.
 userData — User data.

status_t SP1_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.
Parameters
* base — SPI peripheral base address.

* handle—pointer to spi_master_handle_t structure which stores the transfer
state

* xfer — pointer to spi_xfer_config_t structure

Return values

254 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Busy — SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t
*count)

Gets the master transfer count.
This function gets the master transfer count.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

* count — The number of bytes transferred by using the non-blocking trans-
action.

Returns
status of status_t.

void SPI_ MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
SPI master aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

void SPI_ MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.

Parameters
* base — SPI peripheral base address.

* handle - pointer to spi_master_handle_t structure which stores the transfer
state.

status_t SPI1_ SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle,
spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
* base — SPI peripheral base address.
* handle — SPI handle pointer.
* callback — Callback function.
 userData — User data.

status_t SPI1_ SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.

2.24. SPI Driver 255

MCUXpresso SDK Documentation, Release 25.12.00

Note: The API returns immediately after the transfer initialization is finished.

Parameters
* base — SPI peripheral base address.

* handle - pointer to spi_master_handle_t structure which stores the transfer
state

* xfer — pointer to spi_xfer_config_t structure
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Busy — SPI is not idle, is running another transfer.

static inline status_t SPI_ SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle,
size_t *count)

Gets the slave transfer count.
This function gets the slave transfer count.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

* count — The number of bytes transferred by using the non-blocking trans-
action.

Returns
status of status_t.

static inline void SPI_ SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
SPI slave aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.
Parameters
* base — SPI peripheral base address.

* handle - Pointer to the spi_slave_handle_t structure which stores the trans-
fer state.

void SPI_ SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.

Parameters
* base — SPI peripheral base address.

* handle — pointer to spi_slave_handle_t structure which stores the transfer
state

FSL SPI DRIVER VERSION
SPI driver version.

enum _spi_xfer option
SPI transfer option.

Values:

256 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPI_EndOfFrame
Add delay at the end of each frame(the last clk edge).

enumerator kSPI_EndOfTransfer
Re-assert the CS signal after transfer finishes to deselect slave.

enumerator kSPI_ Receivelgnore
Ignore the receive data.

enum _ spi_ shift_ direction
SPI data shifter direction options.

Values:

enumerator kSPI_ MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_ LsbFirst
Data transfers start with least significant bit.

enum _ spi_ clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ ClockPolarity ActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ ClockPolarity ActiveLow
Active-low SPI clock (idles high).

enum _ spi_ clock phase
SPI clock phase configuration.

Values:

enumerator kSPI_ ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _ spi_ ssel
Slave select.

Values:

enumerator kSPI Ssel0Assert
Slave select 0

enumerator kSPI SselDeAssertAll

enum _ spi_ spol
ssel polarity
Values:

enumerator kSPI_SpolOActiveHigh
enumerator kSPI_ SpollActiveHigh
enumerator kSPI_ Spol2ActiveHigh

enumerator kSPI_ Spol3ActiveHigh

2.24. SPI Driver 257

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSPI_ SpolActiveAllHigh

enumerator kSPI_ SpolActiveAllLow
enum _spi_data_ width

Transfer data width.

Values:

enumerator kSPI Data4Bits
4 bits data width

enumerator kSPI DatabBits
5 bits data width

enumerator kSPI Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_DatalOBits
10 bits data width

enumerator kSPI_DatallBits
11 bits data width

enumerator kSPI_Datal2Bits
12 bits data width

enumerator kSPI_Datal3Bits
13 bits data width

enumerator kSPI_Datal4Bits
14 bits data width

enumerator kSPI_Datal5Bits
15 bits data width

enumerator kSPI_Datal6Bits
16 bits data width

SPI transfer status.
Values:

enumerator kStatus_ SPI_ Busy
SPI bus is busy

enumerator kStatus SPI Idle
SPI is idle

enumerator kStatus SPI FError
SPI error

enumerator kStatus_ SPI BaudrateNotSupport
Baudrate is not support in current clock source

258

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus_ SPI Timeout
SPI Timeout polling status flags.

enum _ spi_ interrupt__enable
SPI interrupt sources.

Values:

enumerator kSPI_RxReadyInterruptEnable
Rx ready interrupt

enumerator kSPI_TxReadyInterruptEnable
Tx ready interrupt

enumerator kSPI_RxOverrunlnterruptEnable
Rx overrun interrupt

enumerator kSPI_ TxUnderrunInterruptEnable
Tx underrun interrupt

enumerator kSPI_SlaveSelect AssertInterrupt Enable
Slave select assert interrupt

enumerator kSPI_SlaveSelectDeassertInterruptEnable
Slave select deassert interrupt

enumerator kSPI_ AlllnterruptEnable
enum _spi_status_ flags

SPI status flags.

Values:

enumerator kSPI_ RxReadyFlag
Receive ready flag.

enumerator kSPI_TxReadyFlag
Transmit ready flag.

enumerator kSPI_ RxOverrunFlag
Receive overrun flag.

enumerator kSPI_TxUnderrunFlag
Transmit underrun flag.

enumerator kSPI_ SlaveSelect AssertFlag
Slave select assert flag.

enumerator kSPI_SlaveSelectDeassertFlag
slave select deassert flag.

enumerator kSPI_ StallFlag
Stall flag.

enumerator kSPI_EndTransferFlag
End transfer bit.
enumerator kSPI_ MasterldleFlag
Master in idle status flag.
typedef enum _spi_shift_direction spi_ shift_ direction_t
SPI data shifter direction options.

2.24. SPI Driver

259

MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _spi_clock_polarity spi_ clock__polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_ clock_phase_t
SPI clock phase configuration.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef enum _spi_data_width spi_data_ width_t
Transfer data width.

typedef struct _spi_delay_config spi_ delay config_t
SPI delay time configure structure.

typedef struct _spi_master_config spi_ master config t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_ transfer_t
SPI transfer structure.

typedef struct _spi master_handle spi_ master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_ master_ callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t

status, void *userData)
SPI master callback for finished transmit.

typedef void (*spi_slave_ callback t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,

void *userData)
SPI slave callback for finished transmit.

volatile uint16_t s dummyData[]

uint32_t SPI_ GetInstance(SPI_Type *base)

Returns instance number for SPI peripheral base address.

SPI_ DUMMYDATA

SPI dummy transfer data, the data is sent while txBuff is NULL.
FSL SDK ENABLE SPI DRIVER_ TRANSACTIONAL APIS

SPI_RETRY_ TIMES
Retry times for waiting flag.

struct _spi_delay config

#include <fsl_spi.h> SPI delay time configure structure.

Public Members

uint8_t preDelay

Delay between SSEL assertion and the beginning of transfer.

260

Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t postDelay
Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_ master_config
#include <fsl_spi.h> SPI master user configure structure.

Public Members
bool enableLoopback
Enable loopback for test purpose

bool enableMaster
Enable SPI at initialization time

uint32_t baudRate Bps
Baud Rate for SPI in Hz

spi_clock_polarity_t clockPolarity
Clock polarity

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint8_t dataWidth
Width of the data

spi_ssel_t sselNumber
Slave select number

Spi_spol_t sselPolarity
Configure active CS polarity

spi_delay_config t delayConfig
Configure for delay time.

struct _spi_slave_config
#include <fsl_spi.h> SPI slave user configure structure.

Public Members
bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t clockPolarity
Clock polarity

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

2.24. SPI Driver 261

MCUXpresso SDK Documentation, Release 25.12.00

uint8_t dataWidth
Width of the data
Spi_spol_t sselPolarity
Configure active CS polarity

struct _spi_ transfer

#include <fsl_spi.h> SPI transfer structure.

Public Members

const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

uint32_t configFlags

Additional option to control transfer _spi_xfer_option.

struct _spi_master_handle

#include <fsl_spi.h> SPI transfer handle structure.

Public Members
const uint8_t *volatile txData
Transfer buffer
uint8_t *volatile rxData
Receive buffer
volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]
volatile size_t rxRemainingBytes
Number of data to be received [in bytes]
size_t totalByteCount
A number of transfer bytes
volatile uint32_t state
SPI internal state
spi_master_callback_t callback
SPI callback
void *userData
Callback parameter
uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint32_t lastCommand
Last command for transfer.

262

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

2.25 SWM: Switch Matrix Module

enum _swm_ port_ pin_ type_t
SWM port_pin number.
Values:
enumerator kSWM__ PortPin_ P0_0
port_pin number P0_0.
enumerator kSWM_ PortPin_ P0_ 1
port_pin number PO_1.
enumerator kSWM__ PortPin_ P0_ 2
port_pin number PO_2.
enumerator kSWM_ PortPin_ P0_ 3
port_pin number PO_3.
enumerator kSWM_ PortPin_ P0_4
port_pin number P0_4.
enumerator kSWM__ PortPin_ P0_5
port_pin number P0O_5.
enumerator kSWM__ PortPin_ P0_6
port_pin number P0O_6.
enumerator kSWM__ PortPin_ P0_7
port_pin number P0_7.
enumerator kSWM__ PortPin_ P0_8
port_pin number P0O_8.
enumerator kSWM_ PortPin_ P0_9
port_pin number P0_9.
enumerator kSWM__ PortPin_ P0_10
port_pin number P0_10.
enumerator kSWM__ PortPin_ P0_ 11
port_pin number PO_11.
enumerator kSWM__PortPin_ P0_ 12
port_pin number P0_12.
enumerator kSWM_ PortPin_ P0O_ 13
port_pin number P0_13.
enumerator kSWM_ PortPin_ P0O_ 14
port_pin number P0_14.
enumerator kSWM_ PortPin_ P0O_ 15
port_pin number P0_15.
enumerator kSWM_ PortPin_ P0O_ 16
port_pin number P0_16.

enumerator kSWM_ PortPin PO 17
port_pin number P0_17.

2.25. SWM: Switch Matrix Module 263

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSWM_ PortPin PO 18
port_pin number P0_18.

enumerator kSWM_ PortPin_ P0O_ 19
port_pin number P0_19.
enumerator kSWM_ PortPin_ P0O_ 20
port_pin number P0_20.
enumerator kSWM_ PortPin_ P0O_ 21
port_pin number P0_21.
enumerator kSWM_ PortPin_ PO 22
port_pin number P0_22.
enumerator kSWM_ PortPin_ P0O_ 23
port_pin number P0_23.
enumerator kSWM_ PortPin_ P0_ 24
port_pin number P0_24.
enumerator kSWM_ PortPin_ P0_ 25
port_pin number P0_25.
enumerator kSWM_ PortPin_ P0_ 26
port_pin number P0_26.
enumerator kSWM_ PortPin_ P0_ 27
port_pin number P0_27.
enumerator kSWM_ PortPin_ P0_ 28
port_pin number P0_28.
enumerator kSWM_ PortPin_ P0_ 29
port_pin number P0_29.
enumerator kSWM_ PortPin_ P0_ 30
port_pin number P0_30.
enumerator kSWM_ PortPin_ P0_ 31
port_pin number P0_31.
enumerator kSWM_ PortPin P1 0
port_pin number P1_0.
enumerator kSWM_ PortPin P1 1
port_pin number P1_1.
enumerator kSWM_ PortPin P1 2
port_pin number P1_2.
enumerator kSWM_ PortPin P1 3
port_pin number P1_3.
enumerator kSWM_ PortPin P1 4
port_pin number P1_4.
enumerator kSWM_PortPin P1 5
port_pin number P1_5.

enumerator kSWM_PortPin P1 6
port_pin number P1_6.

264

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator k<SWM_ PortPin P1 7
port_pin number P1_7.

enumerator kSWM_ PortPin_ P1_8
port_pin number P1_8.
enumerator kSWM_ PortPin_ P1_9
port_pin number P1_9.
enumerator kSWM_ PortPin_ P1_10
port_pin number P1_10.
enumerator kSWM_ PortPin_ P1_11
port_pin number P1_11.
enumerator kSWM_ PortPin_ P1_ 12
port_pin number P1_12.
enumerator kSWM_ PortPin_ P1_ 13
port_pin number P1_13.
enumerator kSWM_ PortPin_ P1_ 14
port_pin number P1_14.
enumerator kSWM_ PortPin_ P1_ 15
port_pin number P1_15.
enumerator kSWM_ PortPin_ P1_ 16
port_pin number P1_16.
enumerator kSWM_ PortPin_ P1_ 17
port_pin number P1_17.
enumerator kSWM_ PortPin_ P1_ 18
port_pin number P1_18.
enumerator kSWM_ PortPin P1 19
port_pin number P1_19.
enumerator kSWM_ PortPin P1 20
port_pin number P1_20.
enumerator kSWM_ PortPin P1 21
port_pin number P1_21.

enumerator kSWM_ PortPin Reset
port_pin reset number.

enum _swm_ select _movable t

SWM movable selection.
Values:
enumerator kSWM__USART0 TXD

Movable function as USARTO0_TXD.

enumerator kSWM__USART0 RXD

Movable function as USART0O_RXD.

enumerator kSWM__USARTO0 RTS

Movable function as USARTO_RTS.

2.25. SWM: Switch Matrix Module

265

MCUXpresso SDK Documentation, Release 25.12.00

enumerator k<SWM_USARTO0 CTS
Movable function as USARTO_CTS.

enumerator k<SWM_USART0 SCLK
Movable function as USARTO_SCLK.

enumerator kSWM_USART1 TXD
Movable function as USART1_TXD.
enumerator k<SWM_USART1 RXD
Movable function as USART1_RXD.
enumerator kSWM_USART1 RTS
Movable function as USART1_RTS.
enumerator k<SWM_USART1 CTS
Movable function as USART1_CTS.
enumerator kSWM_USART1 SCLK
Movable function as USART1_SCLK.
enumerator kSWM_USART2 TXD
Movable function as USART2_TXD.
enumerator kSWM_USART2 RXD
Movable function as USART2_RXD.
enumerator kSWM_USART2 RTS
Movable function as USART2_RTS.
enumerator k<SWM_USART2 CTS
Movable function as USART2_CTS.
enumerator kSWM_USART2 SCLK
Movable function as USART2_SCLK.
enumerator kSWM_SPI0 SCK
Movable function as SPI0_SCK.
enumerator k<SWM_SPI0 MOSI
Movable function as SPI0_MOSI.
enumerator kSWM_SPI0O MISO
Movable function as SPI0_MISO.
enumerator kSWM_SPI0 SSELO
Movable function as SPI0O_SSELO.
enumerator kSWM_SPI0O SSEL1
Movable function as SPIO_SSEL1.
enumerator kSWM_SPI0 SSEL2
Movable function as SPI0O_SSEL2.
enumerator kSWM_SPI0 SSEL3
Movable function as SPI0O_SSEL3.
enumerator kSWM_SPI1 SCK
Movable function as SPI1_SCK.

enumerator kSWM_ SPI1 MOSI
Movable function as SPI1_MOSI.

266

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSWM_ SPI1_MISO
Movable function as SPI1_MISO.

enumerator k<SWM_ SPI1 SSELO
Movable function as SPI1_SSELO.

enumerator kSWM_SPI1 SSEL1
Movable function as SPI1_SSEL1.
enumerator kSWM_SCT PINO
Movable function as SCT_PINO.
enumerator kSWM_SCT PIN1
Movable function as SCT_PIN1.
enumerator kSWM_SCT PIN2
Movable function as SCT_PIN2.
enumerator kSWM_SCT PIN3
Movable function as SCT_PIN3.
enumerator k<SWM_SCT OUTO
Movable function as SCT_OUTO.
enumerator kSWM_SCT OUT1
Movable function as SCT_OUT1.
enumerator kSWM_SCT OUT2
Movable function as SCT_OUT2.
enumerator k<SWM_SCT OUT3
Movable function as SCT_OUTS3.
enumerator k<SWM_SCT OUT4
Movable function as SCT_OUT4.
enumerator k<SWM_SCT OUT5
Movable function as SCT_OUTS5.
enumerator k<SWM_SCT OUT®6
Movable function as SCT_OUTS6.
enumerator kSWM_I12C1 SDA
Movable function as I2C1_SDA.
enumerator kSWM_12C1 SCL
Movable function as I12C1_SCL.
enumerator kSWM_12C2 SDA
Movable function as I2C2_SDA.
enumerator kSWM_12C2 SCL
Movable function as I12C2_SCL.
enumerator kSWM_12C3 SDA
Movable function as I2C3_SDA.
enumerator kSWM_12C3 SCL
Movable function as I2C3_SCL.

enumerator k<SWM__ACMP_OUT
Movable function as ACMP_OUT.

2.25. SWM: Switch Matrix Module 267

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSWM_CLKOUT
Movable function as CLKOUT.

enumerator k<SWM_GPIO INT BMAT

Movable function as GPIO_INT BMAT.
enumerator kSWM_USART3 TXD

Movable function as USART3_TXD.
enumerator k<SWM_USART3 RXD

Movable function as USART3_RXD.
enumerator kSWM_USART3 SCLK

Movable function as USART3_SCLK.
enumerator kSWM_USART4 TXD

Movable function as USART4_TXD.
enumerator kSWM_USART4 RXD

Movable function as USART4_RXD.
enumerator kSWM_USART4 SCLK

Movable function as USART4_SCLK.
enumerator k<SWM_T0 MAT CHNO

Movable function as Timer Match Channel 0.
enumerator kSWM_T0 MAT CHNI1

Movable function as Timer Match Channel 1.
enumerator kSWM_T0 MAT CHN2

Movable function as Timer Match Channel 2.
enumerator kSWM_T0 MAT CHN3

Movable function as Timer Match Channel 3.

enumerator kSWM_T0 CAP_CHNO

Movable function as Timer Capture Channel 0.

enumerator k<SWM_T0 CAP_CHNI1

Movable function as Timer Capture Channel 1.

enumerator k<SWM_T0 CAP_CHN2

Movable function as Timer Capture Channel 2.

enumerator k<SSWM_MOVABLE NUM_ FUNCS
Movable function number.

enum _swm_ select_ fixed pin_t

SWM fixed pin selection.
Values:

enumerator kSWM__ACMP_INPUT1
Fixed-pin function as ACMP_INPUT1.

enumerator kSWM__ACMP_INPUT?2
Fixed-pin function as ACMP_INPUT2.

enumerator kSWM__ACMP_ INPUT3
Fixed-pin function as ACMP_INPUTS3.

268

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSWM_ACMP_INPUT4
Fixed-pin function as ACMP_INPUT4.

enumerator kSWM_ACMP_INPUT5
Fixed-pin function as ACMP_INPUTS.
enumerator kSWM_SWCLK
Fixed-pin function as SWCLK.
enumerator k<SWM_SWDIO
Fixed-pin function as SWDIO.
enumerator kSWM_XTALIN
Fixed-pin function as XTALIN.
enumerator kSWM_XTALOUT
Fixed-pin function as XTALOUT.
enumerator kSWM_RESETN
Fixed-pin function as RESETN.
enumerator k<SWM_CLKIN
Fixed-pin function as CLKIN.
enumerator k<SWM_VDDCMP
Fixed-pin function as VDDCMP.
enumerator kSWM_12C0_ SDA
Fixed-pin function as I2CO_SDA.
enumerator kSWM_12C0_ SCL
Fixed-pin function as 12C0_SCL.
enumerator kSWM_ADC CHNO
Fixed-pin function as ADC_CHNO.
enumerator kSWM_ADC CHNI1
Fixed-pin function as ADC_CHNT1.
enumerator kSWM_ADC CHN2
Fixed-pin function as ADC_CHN2.
enumerator kSWM_ ADC CHN3
Fixed-pin function as ADC_CHNS3.
enumerator kSWM_ ADC CHN4
Fixed-pin function as ADC_CHN4.
enumerator kSWM_ADC CHNb5
Fixed-pin function as ADC_CHNS5.
enumerator kSWM_ADC CHNG6
Fixed-pin function as ADC_CHNS®.
enumerator k<SWM_ADC CHN7
Fixed-pin function as ADC_CHN?7.
enumerator kSWM_ ADC CHNS8
Fixed-pin function as ADC_CHNS.

enumerator kSWM__ADC_CHN9
Fixed-pin function as ADC_CHNO.

2.25. SWM: Switch Matrix Module 269

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSWM_ADC_ CHN10
Fixed-pin function as ADC_CHN10.

enumerator k<SWM_ADC_ CHNI11
Fixed-pin function as ADC_CHN11.

enumerator kSWM__DAC__OUTO0
Fixed-pin function as DACOUTO.

enumerator kSWM_DAC_OUT1
Fixed-pin function as DACOUT1.

enumerator kSWM_CAPT X0

Fixed-pin function as CAPT_XO0, an X capacitor(a mutual capacitance touch
sensor) .
enumerator kSWM__ CAPT_ X1
Fixed-pin function as CAPT_X1.
enumerator kSWM__ CAPT_ X2
Fixed-pin function as CAPT_X2.
enumerator kSWM__ CAPT_ X3
Fixed-pin function as CAPT_X3.
enumerator kSWM__CAPT X4
Fixed-pin function as CAPT_XA4.
enumerator kSWM__ CAPT_X5
Fixed-pin function as CAPT_X5.
enumerator kSWM__ CAPT_ X6
Fixed-pin function as CAPT_X6.
enumerator kSWM__CAPT_X7
Fixed-pin function as CAPT_X7.
enumerator kSWM__ CAPT_ X8
Fixed-pin function as CAPT_X8.
enumerator kSWM_CAPT YL
Fixed-pin function as CAPT_YL, an Y capacitor(the measurement capacitor) .
enumerator kSWM_CAPT YH
Fixed-pin function as CAPT_YH.
enumerator kSWM__ FIXEDPIN_NUM__FUNCS
Fixed-pin function number.
typedef enum _swm_port_pin_type_t swm_ port_pin_ type t
SWM port_pin number.
typedef enum _swm_select_movable_t swm_ select__movable_t
SWM movable selection.
typedef enum _swm_select_fixed pin_t swm_ select_ fixed_ pin_t
SWM fixed pin selection.

FSL SWM_DRIVER_ VERSION
LPC SWM driver version.

270 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void SWM__SetMovablePinSelect(SWM_Type *base, swm_select_movable_t func,
swm_port_pin_type_t swm_port_pin)

Assignment of digital peripheral functions to pins.
This function will selects a pin (designated by its GPIO port and bit numbers) to a function.
Parameters
* base — SWM peripheral base address.
* func — any function name that is movable.
* swm_ port_ pin — any pin which has a GPIO port number and bit number.

void SWM_ SetFixedPinSelect(SWM_Type *base, swm_select_fixed_pin_t func, bool enable)
Enable the fixed-pin function.

This function will enables a fixed-pin function in PINENABLEO or PINENABLE1.
Parameters
* base —- SWM peripheral base address.
* func — any function name that is fixed pin.

* enable — enable or disable.

2.26 SYSCON: System Configuration

enum _ syscon_ connection_t
SYSCON connections type.

Values:

enumerator kSYSCON__ GpioPortOPin0ToPintsel
Pin Interrupt.

enumerator kSYSCON__ GpioPortOPin1ToPintsel
enumerator kSYSCON__ GpioPortOPin2ToPintsel
enumerator kSYSCON__GpioPort0Pin3ToPintsel
enumerator kSYSCON__ GpioPortOPin4ToPintsel
enumerator kSYSCON__ GpioPortOPin5ToPintsel
enumerator kSYSCON__ GpioPortOPin6ToPintsel
enumerator kSYSCON__ GpioPortOPin7ToPintsel
enumerator kSYSCON__GpioPortOPin8ToPintsel
enumerator kSYSCON__ GpioPort0Pin9ToPintsel
enumerator kSYSCON__ GpioPortOPin10ToPintsel
enumerator kSYSCON_ GpioPortOPin11ToPintsel
enumerator kSYSCON__ GpioPortOPin12ToPintsel
enumerator kSYSCON_ GpioPortOPin13ToPintsel

enumerator kSYSCON_ GpioPortOPin14ToPintsel

2.26. SYSCON: System Configuration 271

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSYSCON__ GpioPortOPin15ToPintsel
enumerator kSYSCON__ GpioPortOPin16ToPintsel
enumerator kSYSCON_ GpioPortOPin17ToPintsel
enumerator kSYSCON_ GpioPortOPin18ToPintsel
enumerator kSYSCON__ GpioPortOPin19ToPintsel
enumerator kSYSCON_ GpioPortOPin20ToPintsel
enumerator kSYSCON__ GpioPortOPin21ToPintsel
enumerator kSYSCON_ GpioPort0Pin22ToPintsel
enumerator kSYSCON_ GpioPortOPin23ToPintsel
enumerator kSYSCON__ GpioPortOPin24ToPintsel
enumerator kSYSCON_ GpioPortOPin25ToPintsel
enumerator kSYSCON__GpioPort0Pin26ToPintsel
enumerator kSYSCON__ GpioPortOPin27ToPintsel
enumerator kSYSCON_ GpioPort0Pin28 ToPintsel
enumerator kSYSCON__ GpioPortOPin29ToPintsel
enumerator kSYSCON_ GpioPortOPin30ToPintsel
enumerator kSYSCON_ GpioPortOPin31ToPintsel
enumerator kSYSCON__ GpioPort1Pin0ToPintsel
enumerator kSYSCON__ GpioPort1Pin1ToPintsel
enumerator kSYSCON_ GpioPort1Pin2ToPintsel
enumerator kSYSCON__ GpioPort1Pin3ToPintsel
enumerator kSYSCON_ GpioPort1Pin4ToPintsel
enumerator kSYSCON__GpioPort1Pin5ToPintsel
enumerator kSYSCON__ GpioPort1Pin6ToPintsel
enumerator kSYSCON__GpioPort1Pin7ToPintsel
enumerator kSYSCON_ GpioPort1Pin8ToPintsel
enumerator kSYSCON__ GpioPort1Pin9ToPintsel
enumerator kSYSCON__ GpioPort1Pin10ToPintsel
enumerator kSYSCON_ GpioPort1Pinl11ToPintsel
enumerator kSYSCON__ GpioPort1Pin12ToPintsel
enumerator kSYSCON_ GpioPort1Pin13ToPintsel
enumerator kSYSCON_ GpioPort1Pin14ToPintsel

enumerator kSYSCON__ GpioPort1Pin15ToPintsel

272

Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kSYSCON__ GpioPort1Pin16ToPintsel
enumerator kSYSCON__ GpioPort1Pin17ToPintsel
enumerator kSYSCON_ GpioPort1Pin18ToPintsel
enumerator kSYSCON_ GpioPort1Pin19ToPintsel
enumerator kSYSCON__ GpioPort1Pin20ToPintsel
enumerator kSYSCON_ GpioPort1Pin21ToPintsel
enumerator kSYSCON__ GpioPort1Pin22ToPintsel
enumerator kSYSCON_ GpioPort1Pin23ToPintsel
enumerator kSYSCON_ GpioPort1Pin24ToPintsel
enumerator kSYSCON__ GpioPort1Pin25ToPintsel
enumerator kSYSCON_ GpioPort1Pin26ToPintsel
enumerator kSYSCON__ GpioPort1Pin27ToPintsel
enumerator kSYSCON__ GpioPort1Pin28ToPintsel
enumerator kSYSCON_ GpioPort1Pin29ToPintsel
enumerator kSYSCON__ GpioPort1Pin30ToPintsel

enumerator kSYSCON_ GpioPort1Pin31ToPintsel

typedef enum _syscon_connection_t syscon__connection_ t

SYSCON connections type.

PINTSEL_ID

Periphinmux IDs.

SYSCON__ SHIFT

FSL_SYSON_DRIVER _VERSION

Group syscon driver version for SDK.

void SYSCON__AttachSignal(SYSCON_Type *base, uint16_t index, syscon_connection_t

connection)
Attaches a signal.

This function gates the SYSCON clock.

Parameters

* base — Base address of the SYSCON peripheral.

* index — Destination peripheral to attach the signal to.

* connection — Selects connection.

Return values
None. —

2.26. SYSCON: System Configuration

273

MCUXpresso SDK Documentation, Release 25.12.00

2.27 USART: Universal Asynchronous Receiver/Transmitter
Driver

2.28 USART Driver

uint32_t USART_ GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

status_t USART__Init(USART_Type *base, const usart_config t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.

This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the
USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart__config_t usartConfig;
usartConfig.baudRate_ Bps = 115200U;
usartConfig.parityMode = kUSART _ParityDisabled;
usartConfig.stopBitCount = kUSART__OneStopBit;
USART_ Init(USART1, &usartConfig, 20000000U);

Parameters
* base — USART peripheral base address.
* config — Pointer to user-defined configuration structure.
* srcClock__Hz — USART clock source frequency in HZ.
Return values

* kStatus. USART_BaudrateNotSupport — Baudrate is not support in current
clock source.

* kStatus_InvalidArgument — USART base address is not valid
* kStatus Success — Status USART initialize succeed

void USART Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables the USART clock.
Parameters
* base — USART peripheral base address.

void USART _GetDefaultConfig(usart_config t *config)
Gets the default configuration structure.
This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 9600U; usartConfig->parityMode =
KkUSART _ParityDisabled; usartConfig->stopBitCount = KUSART_OneStopBit; usartConfig-

>bitCountPerChar = KUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false; ...

Parameters

* config — Pointer to configuration structure.

274 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

status_t USART_ SetBaudRate(USART _Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART _Init.

USART_ SetBaudRate(USART1, 115200U, 20000000U);

Parameters

* base — USART peripheral base address.

* baudrate Bps — USART baudrate to be set.

* srcClock__Hz — USART clock source frequency in HZ.
Return values

* kStatus. USART BaudrateNotSupport — Baudrate is not support in current
clock source.

* kStatus Success — Set baudrate succeed.
* kStatus_ InvalidArgument — One or more arguments are invalid.

static inline uint32_t USART_ GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the RX is ready:

if (kUSART_RxReady & USART GetStatusFlags(USART1))

Parameters
* base — USART peripheral base address.

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags For example:

USART_ ClearStatusFlags(USART1, kUSART HardwareOverrunFlag)

Parameters
* base — USART peripheral base address.
» mask — status flags to be cleared.

static inline void USART_ Enablelnterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.
This function enables the USART interrupts according to the provided mask. The mask is a

logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX ready interrupt and RX ready interrupt:

USART__EnableInterrupts(USART1, kUSART _RxReadyInterruptEnable | KUSART
—TxReadyInterruptEnable);

2.28. USART Driver 275

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — USART peripheral base address.
* mask — The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_ Disablelnterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX ready interrupt and RX ready interrupt:

USART_ Disablelnterrupts(USART1, kUSART _TxReadylInterruptEnable | ktUSART _
—RxReadyInterruptEnable);

Parameters
* base — USART peripheral base address.
* mask — The interrupts to disable. Logical OR of _usart_interrupt_enable.

static inline uint32_t USART _GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.

This function returns the enabled USART interrupts.
Parameters
* base — USART peripheral base address.

static inline void USART_ EnableContinuousSCLK(USART_Type *base, bool enable)

Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).

Parameters
* base — USART peripheral base address.

* enable — Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_EnableAutoClearSCLK(USART_Type *base, bool enable)

Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
* base — USART peripheral base address.
* enable — Enable auto clear or not, true for enable and false for disable.

static inline void USART_EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
* base — USART peripheral base address.
* enable — Enable CTS or not, true for enable and false for disable.

static inline void USART__EnableTx(USART_Type *base, bool enable)
Enable the USART transmit.

This function will enable or disable the USART transmit.

276 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — USART peripheral base address.
* enable — true for enable and false for disable.

static inline void USART EnableRx(USART_Type *base, bool enable)
Enable the USART receive.

This function will enable or disable the USART receive. Note: if the transmit is enabled, the
receive will not be disabled.

Parameters
* base — USART peripheral base address.
* enable — true for enable and false for disable.

static inline void USART_ WriteByte(USART_Type *base, uint8_t data)
Writes to the TXDAT register.

This function will writes data to the TXDAT automatly.The upper layer must ensure that
TXDATA has space for data to write before calling this function.

Parameters
* base — USART peripheral base address.
* data — The byte to write.

static inline uint8_t USART ReadByte(USART_Type *base)
Reads the RXDAT directly.

This function reads data from the RXDAT automatly. The upper layer must ensure that the
RXDAT is not empty before calling this function.

Parameters
* base — USART peripheral base address.

Returns
The byte read from USART data register.

status_t USART_ WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty.
Parameters
* base — USART peripheral base address.
* data — Start address of the data to write.
* length — Size of the data to write.
Return values
* kStatus USART Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully wrote all data.

status_t USART_ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full.
Parameters
* base — USART peripheral base address.

* data — Start address of the buffer to store the received data.

2.28. USART Driver 277

MCUXpresso SDK Documentation, Release 25.12.00

* length — Size of the buffer.
Return values

* kStatus_ USART _FramingError — Receiver overrun happened while receiv-
ing data.

* kStatus_ USART_ParityError — Noise error happened while receiving data.

* kStatus_ USART_NoiseError — Framing error happened while receiving
data.

* kStatus_ USART_RxError — Overflow or underflow happened.
* kStatus USART Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully received all data.

status_t USART_ TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handle which can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
* callback — The callback function.
¢ userData — The parameter of the callback function.

status_t USART_ TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Note: The kStatus_USART_TxIdle is passed to the upper layer when all data is written to
the TX register. However it does not ensure that all data are sent out. Before disabling the
TX, check the KUSART TransmissionCompleteFlag to ensure that the TX is finished.

Parameters

* base — USART peripheral base address.

* handle — USART handle pointer.

* xfer — USART transfer structure. See usart_transfer_t.
Return values

* kStatus_Success — Successfully start the data transmission.

* kStatus. USART TxBusy — Previous transmission still not finished, data
not all written to TX register yet.

* kStatus_ InvalidArgument — Invalid argument.

278 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

void USART_ TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART _TransferReceiveNonBlocking() APL. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

* ringBuffer — Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

¢ ringBufferSize — size of the ring buffer.

void USART TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.
Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

size_t USART _TransferGetRxRingBufferLength(usart_handle_t *handle)
Get the length of received data in RX ring buffer.

Parameters
* handle — USART handle pointer.

Returns
Length of received data in RX ring buffer.

void USART _TransferAbortSend(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

status_t USART_ TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been written to USART TX register.

This function gets the number of bytes that have been written to USART TX register by
interrupt method.

Parameters
* base — USART peripheral base address.

2.28. USART Driver 279

MCUXpresso SDK Documentation, Release 25.12.00

* handle — USART handle pointer.
* count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.
* kStatus_ InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter count;

status_t USART_ TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer, size_t *receivedBytes)

Receives a huffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new
data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
» xfer — USART transfer structure, see usart_transfer t.
* receivedBytes — Bytes received from the ring buffer directly.
Return values
* kStatus_Success — Successfully queue the transfer into transmit queue.
* kStatus. USART RxBusy — Previous receive request is not finished.
* kStatus_InvalidArgument — Invalid argument.

void USART _TransferAbortReceive(USART_Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.

This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

status_t USART TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* base — USART peripheral base address.

280 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

* handle — USART handle pointer.
* count — Receive bytes count.
Return values
* kStatus_ NoTransferInProgress — No receive in progress.
* kStatus_ InvalidArgument — Parameter is invalid.

* kStatus_ Success — Get successfully through the parameter count;

void USART TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)

USART IRQ handle function.
This function handles the USART transmit and receive IRQ request.
Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

FSL_USART_ DRIVER VERSION

USART driver version.

Error codes for the USART driver.
Values:

enumerator kStatus_ USART_TxBusy
Transmitter is busy.

enumerator kStatus_ USART _RxBusy
Receiver is busy.

enumerator kStatus USART TxIdle
USART transmitter is idle.

enumerator kStatus USART RxIdle
USART receiver is idle.

enumerator kStatus USART TxError
Error happens on tx.

enumerator kStatus USART RxError
Error happens on rx.

enumerator kStatus_ USART__RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus USART NoiseError
USART noise error.

enumerator kStatus_ USART_ FramingError
USART framing error.

enumerator kStatus_ USART_ ParityError
USART parity error.

enumerator kStatus. USART HardwareOverrun
USART hardware over flow.

enumerator kStatus_ USART BaudrateNotSupport
Baudrate is not support in current clock source

2.28. USART Driver

281

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kStatus USART Timeout
USART times out.

enum _ usart_ parity__mode
USART parity mode.
Values:
enumerator kUSART_ ParityDisabled
Parity disabled
enumerator kUSART _ParityEven
Parity enabled, type even, bit setting: PARITYSEL = 10
enumerator kUSART _ParityOdd
Parity enabled, type odd, bit setting: PARITYSEL = 11
enum _ usart_ sync_ mode
USART synchronous mode.
Values:
enumerator kUSART__SyncModeDisabled
Asynchronous mode.
enumerator kUSART _SyncModeSlave
Synchronous slave mode.
enumerator kUSART _SyncModeMaster
Synchronous master mode.
enum _ usart_ stop_ bit_ count
USART stop bit count.
Values:
enumerator kUSART__OneStopBit
One stop bit
enumerator kUSART_TwoStopBit
Two stop bits

enum _usart_data_len
USART data size.

Values:
enumerator kUSART _7BitsPerChar
Seven bit mode
enumerator kUSART 8BitsPerChar
Eight bit mode
enum _ usart_ clock polarity
USART clock polarity configuration, used in sync mode.
Values:
enumerator kUSART RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

282

Chapter 2

. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

enum _ usart_ interrupt_ enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART_RxReadyInterruptEnable
Receive ready interrupt.

enumerator kUSART_TxReadyInterruptEnable
Transmit ready interrupt.

enumerator kUSART TxIdleInterruptEnable
Transmit idle interrupt.

enumerator kUSART _DeltaCtsInterruptEnable
Cts pin change interrupt.

enumerator kUSART _TxDisableInterruptEnable
Transmit disable interrupt.

enumerator kUSART HardwareOverRunInterruptEnable
hardware ove run interrupt.

enumerator kUSART RxBreakInterruptEnable
Receive break interrupt.

enumerator kUSART _RxStartInterruptEnable
Receive ready interrupt.

enumerator kUSART _FramErrorInterruptEnable
Receive start interrupt.

enumerator kUSART _ParityErrorInterruptEnable
Receive frame error interrupt.

enumerator kUSART RxNoiselnterruptEnable
Receive noise error interrupt.

enumerator kUSART AutoBaudErrorInterruptEnable
Receive auto baud error interrupt.

enumerator kUSART AlllnterruptEnable
All interrupt.

enum _ usart_ flags

USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator ktUSART_RxReady
Receive ready flag.

enumerator kUSART RxIdleFlag
Receive IDLE flag.

enumerator kUSART _TxReady
Transmit ready flag.

enumerator kUSART TxIdleFlag
Transmit idle flag.

2.28. USART Driver 283

MCUXpresso SDK Documentation, Release 25.12.00

enumerator kUSART CtsState
Cts pin status.

enumerator kUSART_ DeltaCtsFlag
Cts pin change flag.
enumerator kUSART_TxDisableFlag
Transmit disable flag.
enumerator kUSART _HardwareOverrunFlag
Hardware over run flag.
enumerator kUSART RxBreakFlag
Receive break flag.
enumerator kUSART RxStartFlag
receive start flag.
enumerator kUSART _FramErrorFlag
Frame error flag.
enumerator kUSART _ParityErrorFlag
Parity error flag.
enumerator kUSART_RxNoiseFlag
Receive noise flag.
enumerator kUSART _AutoBaudErrorFlag
Auto baud error flag.
typedef enum _usart_parity_mode usart_ parity__mode_ t
USART parity mode.
typedef enum _usart_sync_mode usart_sync_ mode_ t
USART synchronous mode.
typedef enum _usart_stop_bit_count usart_stop_ bit_ count_t
USART stop bit count.
typedef enum _usart_data_len usart_data_len_t
USART data size.
typedef enum _usart_clock_polarity usart_clock polarity t
USART clock polarity configuration, used in sync mode.
typedef struct _usart_config usart_ config_t
USART configuration structure.
typedef struct _usart_transfer usart_ transfer_t
USART transfer structure.

typedef struct _usart_handle usart_handle_t
typedef void (*usart_ transfer callback t)(USART Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.
FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL_ APIS

Macro gate for enable transaction API. 1 for enable, 0 for disable.
FSL_SDK_USART_ DRIVER_ENABLE BAUDRATE_AUTO__GENERATE

USART baud rate auto generate switch gate. 1 for enable, 0 for disable.

284 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

UART_ RETRY_TIMES
Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert.

struct _usart_ config
#include <fsl_usart.h> USART configuration structure.

Public Members
uint32_t baudRate_Bps
USART baud rate

bool enableRx
USART receive enable.

bool enableTx
USART transmit enable.

bool loopback
Enable peripheral loopback

bool enableContinuousSCLK
USART continuous Clock generation enable in synchronous master mode.

bool enableHardwareFlowControl
Enable hardware control RTS/CTS

usart_parity_mode_t parityMode
Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits

usart_data_len_t bitCountPerChar
Data length - 7 hit, 8 hit

usart_sync_mode_t syncMode
Transfer mode - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in sync mode.

struct usart_transfer
#include <fsl_usart.h> USART transfer structure.

Public Members

size_t dataSize
The byte count to be transfer.

struct _usart__handle
#include <fsl_usart.h> USART handle structure.

Public Members

const uint8_t *volatile txData
Address of remaining data to send.

2.28. USART Driver 285

MCUXpresso SDK Documentation, Release 25.12.00

volatile size_t txDataSize
Size of the remaining data to send.

size_t txDataSizeAll
Size of the data to send out.

uint8_t *volatile rxData
Address of remaining data to receive.

volatile size_t rxDataSize
Size of the remaining data to receive.

size_t rxDataSizeAll
Size of the data to receive.

uint8_t *rxRingBuffer
Start address of the receiver ring buffer.

size_t rxRingBufferSize
Size of the ring buffer.

volatile uint16_t rxRingBufferHead
Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.

volatile uint8_t rxState
RX transfer state

union unnamed10

Public Members
uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.29 WKT: Self-wake-up Timer

void WKT_Init(WKT_Type *base, const wkt_config_t *config)
Ungates the WKT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the WKT driver.

286 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — WKT peripheral base address
* config — Pointer to user’s WKT config structure.

void WKT Deinit(WKT_Type *base)
Gate the WKT clock.

Parameters
* base — WKT peripheral base address

static inline void WKT_ GetDefaultConfig(wkt_config_t *config)
Initializes the WKT configuration structure.

This function initializes the WKT configuration structure to default values. The default
values are as follows.

config->clockSource = kWKT__DividedFROClockSource;

See also:

wkt_config_t

Parameters
* config — Pointer to the WKT configuration structure.

static inline uint32_t WKT_ GetCounterValue(WKT_Type *base)
Read actual WKT counter value.

Parameters
* base — WKT peripheral base address

static inline uint32_t WKT_ GetStatusFlags(WKT_Type *base)
Gets the WKT status flags.

Parameters
* base — WKT peripheral base address

Returns

The status flags. This is the logical OR of members of the enumeration
wkt_status_flags_t

static inline void WKT_ ClearStatusFlags(WKT_Type *base, uint32_t mask)
Clears the WKT status flags.

Parameters
* base — WKT peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration wkt_status_flags_t

static inline void WKT_ StartTimer(WKT_Type *base, uint32_t count)
Starts the timer counting.

After calling this function, timer loads a count value, counts down to 0, then stops.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks Do not
write to Counter register while the counting is in progress

2.29. WKT: Self-wake-up Timer 287

MCUXpresso SDK Documentation, Release 25.12.00

Parameters
* base — WKT peripheral base address.
¢ count — The value to be loaded into the WKT Count register

static inline void WKT_ StopTimer(WKT_Type *base)
Stops the timer counting.

This function Clears the counter and stops the timer from counting.
Parameters
* base — WKT peripheral base address

FSL WKT DRIVER VERSION
Version 2.0.2

enum wkt clock source
Describes WKT clock source.

Values:

enumerator kWKT DividedFROClockSource
WKT clock sourced from the divided FRO clock

enumerator kWKT TLowPowerClockSource

WHKT clock sourced from the Low power clock Use this clock, LPOSCEN bit of DPDCTRL
register must be enabled

enumerator kWKT ExternalClockSource

WHKT clock sourced from the Low power clock Use this clock, WAKECLKPAD_DISABLE
bit of DPDCTRL register must be enabled

enum _ wkt_ status_ flags
List of WKT flags.

Values:

enumerator kWKT AlarmFlag
Alarm flag

typedef enum _wkt_clock_source wkt_ clock__source_ t
Describes WKT clock source.

typedef struct _wkt_config wkt_ config_t
Describes WKT configuration structure.

typedef enum _wkt_status_flags wkt_status_ flags_t
List of WKT flags.

struct _ wkt_ config
#include <fsl_wkt.h> Describes WKT configuration structure.

Public Members

wkt_clock_source_t clockSource
External or internal clock source select

288 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

2.30 WWDT: Windowed Watchdog Timer Driver

void WWDT__GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value
are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->windowValue = OxFFFFFEFU;

config->timeoutValue = OxFFFFFEFU;
config->warningValue = 0;

See also:

wwdt_config_t

Parameters
* config — Pointer to WWDT config structure.

void WWDT__Init(WWDT_Type *base, const wwdt_config t *config)
Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-
uration.

Example:

wwdt__config_t config;

WWDT _GetDefaultConfig(&config);
config.timeoutValue = 0x7{fU;
WWDT_ Init(wwdt_ base,&config);

Parameters
* base - WWDT peripheral base address
* config — The configuration of WWDT

void WWDT_ Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.
Parameters
* base - WWDT peripheral base address

static inline void WWDT__Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters

* base - WWDT peripheral base address

2.30. WWDT: Windowed Watchdog Timer Driver 289

MCUXpresso SDK Documentation, Release 25.12.00

static inline void WWDT_ Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:

Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.
Parameters
* base — WWDT peripheral base address

static inline uint32_t WWDT __ GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.
Example for getting Timeout Flag:

uint32_ t status;
status = WWDT __GetStatusFlags(wwdt_ base) & kWWDT_TimeoutFlag;

Parameters
* base — WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t

void WWDT __ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT {flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT _ClearStatusFlags(wwdt__base, kWWDT__WarningFlag);

Parameters
* base — WWDT peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline void WWDT _SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

The WDWARNINT register determines the watchdog timer counter value that will generate
awatchdog interrupt. When the watchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
* base - WWDT peripheral base address
*» warningValue - WWDT warning value.

static inline void WWDT _ SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register isloaded into the Watchdog timer. Writing a value below 0XFF will cause OXFF to be

290 Chapter 2. LPC845

MCUXpresso SDK Documentation, Release 25.12.00

loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
* base - WWDT peripheral base address
* timeoutCount — WWDT timeout value, count of WWDT clock tick.

static inline void WWDT _SetWindowValue(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to OXFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
* base — WWDT peripheral base address
* windowValue —- WWDT window value.

void WWDT_ Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters
* base — WWDT peripheral base address

FSL WWDT_ DRIVER_VERSION
Defines WWDT driver version.

WWDT_FIRST_ WORD__OF REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_ OF _REFRESH
Second word of refresh sequence

enum _wwdt_status_flags t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.
Values:

enumerator KWWDT __TimeoutFlag
Time-out flag, set when the timer times out
enumerator KWWDT__WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT
typedef struct_wwdt_config wwdt_ config_t
Describes WWDT configuration structure.
struct _wwdt_ config
#include <fsl wwdt.h> Describes WWDT configuration structure.

2.30. WWDT: Windowed Watchdog Timer Driver 291

MCUXpresso SDK Documentation, Release 25.12.00

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this
bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue
Window value, set this to OXFFFFFF if windowing is not in effect

uint32_t timeoutValue

Timeout value

uint32_t warningValue

Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq Hz
Watchdog clock source frequency.

292

Chapter 2. LPC845

Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

 Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

» USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

* ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.

293

https://www.nxp.com/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

» Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.

294 Chapter 3. Middleware

https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster
https://community.nxp.com/t5/FreeMASTER/bd-p/freemaster

MCUXpresso SDK Documentation, Release 25.12.00

The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:
* The official FreeMASTER middleware repository.

* Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

» fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.

3.1. Motor Control 295

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/user_guide/user_guide.html#multi-session-support

MCUXpresso SDK Documentation, Release 25.12.00

* fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

* fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

* fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

» fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

* fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

» fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

* fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

» fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

* Read/write access to any memory location on the target.

* Optional password protection of the read, read/write, and read/write/flash access levels.

296 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

Version of the driver and the version of the protocol implemented.

MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

Application name, description, and version strings.
Application build date and time as a string.
Target processor byte ordering (little/big endian).

Protection level that requires password authentication.

3.1. Motor Control 297

MCUXpresso SDK Documentation, Release 25.12.00

* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the hostto select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory

298 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

» “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific

3.1. Motor Control 299

MCUXpresso SDK Documentation, Release 25.12.00

Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

— freemasterh - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

— freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

— freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.

300 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial APIL

— freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APIL.

— freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger._rtt.c - implementation of network transport using Segger J-Link
RTT interface

3.1. Motor Control 301

MCUXpresso SDK Documentation, Release 25.12.00

Driver configuration The driver is configured using a single header file (freemaster._cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR. LONG_INTR [0[1]
#define FMSTR,_SHORT _INTR. [0|1]
#define FMSTR._ POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT INTR — short interrupt mode
* FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_ TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol

302 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR__SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR, SERIAL_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR,_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER _SIZE
#define FMSTR__ COMM_BUFFER_ SIZE [number]

Value Type O or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.

3.1. Motor Control 303

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,_ COMM__ RQUEUE_ SIZE [number]

Value Type Value in range 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR,_ SERIAL_SINGLEWIRE [0]1]

Value Type BooleanOor 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_ TRANSPORT FMSTR,__CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver
FMSTR_CAN_MCUX_MCAN - MCAN driver
FMSTR_CAN_MCUX_MSCAN - msCAN driver
FMSTR_CAN_MCUX DSCFLEXCAN - DSC FlexCAN driver
FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE

304 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR,_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR,_ CAN__RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bhit. Note that both CMDID and RSPID values may be the same. Default value
is 0X7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

3.1. Motor Control 305

MCUXpresso SDK Documentation, Release 25.12.00

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR,_ NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

« FMSTR_NET_LWIP_TCP - TCP communication using IwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IwIP stack
* FMSTR_NET _SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET BLOCKING_TIMEOUT
#define FMSTR,_ NET_BLOCKING__TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.

306 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_NET AUTODISCOVERY
#define FMSTR_NET AUTODISCOVERY [0]1]

Value Type BooleanOor 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR._DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR. DEBUG_ TX [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR _APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access

3.1. Motor Control 307

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_READMEM
#define FMSTR_USE READMEM [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR.__USE_ WRITEMEM [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR _USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR, MAX_ SCOPE_ VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE RECORDER [number]

308 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF _SIZE
#define FMSTR,_ REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
* FMSTR_REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
* FMSTR_REC_BASE MICROSEC(x)
« FMSTR_REC_BASE NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_ REC_FLOAT _TRIG [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options

3.1. Motor Control 309

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_USE_APPCMD
#define FMSTR_ USE_APPCMD [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF _SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX APPCMD CALLS
#define FMSTR, MAX_ APPCMD_ CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._ USE_ TSA [0]1]

Value Type BooleanOor 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR__USE_TSA_SAFETY [0[1]

Value Type Boolean O or 1.

310 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_ USE_TSA_INROM [0[1]

Value Type BooleanOor 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR._USE_TSA_DYNAMIC [0]1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_ SetUpTsaBuff() and FMSTR_ TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR, MAX_PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.

3.1. Motor Control 311

MCUXpresso SDK Documentation, Release 25.12.00

Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR__LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_ INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr;, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR _Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR Seriallsr or FM-
STR_Canlsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR,_ POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT _INTR and FMSTR_POLI_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the

312 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR _Seriallsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module hit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.

3.1. Motor Control 313

MCUXpresso SDK Documentation, Release 25.12.00

Follow these steps to enable the basic FreeMASTER connectivity in the application:

» Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemasterh file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR _SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

e Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

* For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the hit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR Init
Prototype
FMSTR, BOOL FMSTR, Init(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c

314 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR,_ Poll(void);

 Declaration: freemaster.h

» Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar
where:

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

* Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_Seriallsr /| FMSTR_Canlsr

Prototype

void FMSTR,_ Seriallsr(void);
void FMSTR,__ Canlsr(void);

* Declaration: freemaster.h

* Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.

3.1. Motor Control 315

MCUXpresso SDK Documentation, Release 25.12.00

Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR,_BOOL FMSTR_ RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC BUFF _SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR,_ Recorder(FMSTR_INDEX recIndex);

* Declaration: freemasterh

 Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger
Prototype
void FMSTR,_RecorderTrigger(FMSTR,_INDEX recIndex);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

316 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA TABLE BEGIN(table id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA RW_ VAR(name, type) /* read/write variable entry */
FMSTR,_TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_ MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_ MEM(name, type, address, size) /* read/write memory block */
FMSTR,_ TSA_RO_ MEM (name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR._TSA_TABLE_ END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references
it.

* type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

e struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.

3.1. Motor Control 317

MCUXpresso SDK Documentation, Release 25.12.00

*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description

FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).

FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM- Structure or union type declared with FMSTR_TSA_STRUCT

STR_TSA_USERTYPE(name) record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_ TABLE_LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._ TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR,_ TSA_TABLE_LIST END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_ TSA_TABLE_BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR, TSA_DIRECTORY(”/text_files”) /* entering a new virtual directory */

(continues on next page)

318 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

(continued from previous page)

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE("readme.txt”, readme__txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_ MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_ pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR,_ TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR,_ TSA_HREF("FreeMASTER Home Page”, "http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ?/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, "http://mycompany.com/prj/demo.pmp”)

FMSTR._ TSA_TABLE_ END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR,_ BOOL FMSTR,_ SetUpTsaBuff(FMSTR__ADDR buffAddr, FMSTR_ SIZE buffSize);

* Declaration: freemasterh

 Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

FMSTR_BOOL FMSTR,_ TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR,,
—tsaType,

FMSTR_ TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,

FMSTR_ SIZE flags);

* Declaration: freemaster.h

3.1. Motor Control 319

MCUXpresso SDK Documentation, Release 25.12.00

* Implementation: freemaster_tsa.c

Arguments

* tsaName [in] - name of the object

* tsaType [in] - name of the object type

* varAddr [in] - address of the object

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR,_ APPCMD__ CODE FMSTR_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData

320 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* datalen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_ AppCmdAck(FMSTR_APPCMD_ RESULT resultCode);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT NOCMD.

FMSTR_AppCmdSetResponseData
Prototype
void FMSTR__ AppCmdSetResponseData(FMSTR,_ADDR resultDataAddr, FMSTR,_SIZE resultDataLen);

* Declaration: freemaster.h

* Implementation: freemaster_appcmd.c

3.1. Motor Control 321

MCUXpresso SDK Documentation, Release 25.12.00

Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

 resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR,_ BOOL FMSTR,_ RegisterAppCmdCall(FMSTR,_ APPCMD__ CODE appCmdCode, FMSTR,__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD_ RESULT HandlerFunction(FMSTR__ APPCMD_ CODE nAppcmd,
FMSTR_APPCMD_ PDATA pData, FMSTR,_ SIZE nDatalLen);
Where:
* nAppcmd -Application Command code
» pData —points to the Application Command data received (if any)

* nDatalL.en —information about the Application Command data length

322 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,

FMSTR_ ADDR pipeRxBuff, FMSTR,_ PIPE_SIZE pipeRxSize,
FMSTR_ ADDR pipeTxBuff, FMSTR_ PIPE_ SIZE pipeTxSize,
FMSTR_ U8 type, const FMSTR,__ CHAR *name);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.

3.1. Motor Control 323

MCUXpresso SDK Documentation, Release 25.12.00

void PipeHandler(FMSTR,_ HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR,_PipeClose(FMSTR,_ HPIPE pipeHandle);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_ PipeWrite(FMSTR, HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster._pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead

324 Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Prototype
FMSTR, PIPE_SIZE FMSTR_ PipeRead(FMSTR_ HPIPE pipeHandle, FMSTR,__ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_SIZE readGranularity);
* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

» readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platform:s.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.

3.1. Motor Control 325

MCUXpresso SDK Documentation, Release 25.12.00

Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-

o

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

TR-_APPCM:
nerally,
this is an
unsigned
8-bit value.

Chapter 3. Middleware

MCUXpresso SDK Documentation, Release 25.12.00

Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.

3.1. Motor Control 327

MCUXpresso SDK Documentation, Release 25.12.00

FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html

328

Chapter 3. Middleware

https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html
https://mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/freemaster/doc/index.html

MCUXpresso SDK Documentation, Release 25.12.00

FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.

3.1. Motor Control 329

https://www.nxp.com/freemaster
https://community.nxp.com/community/freemaster
https://github.com/nxp-mcuxpresso/mcux-freemaster
https://www.nxp.com/mcuxpresso
https://mcuxpresso.nxp.com/en
http://www.nxp.com/doc/AN4752
http://www.nxp.com/doc/AN4771
http://www.nxp.com/doc/AN4860

MCUXpresso SDK Documentation, Release 25.12.00

Revi- Date Description

sion

1.0 03/2006 Limited initial release

2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-
ument template used.

2.1 12/2007 Added description of the new Fast Recorder feature and
its APL

2.2 04/2010 Added support for MPC56xx platform, Added new API
for use CAN interface.

2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-
ating system.

24 06/2011 Serial driver update, adds support for USB CDC inter-
face.

2.5 08/2011 Added Packet Driven BDM interface.

2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

2.8 06/2014 Removed obsolete license text, see the software pack-
age content for up-to-date license.

2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-
TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

41 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

44 04/2025 Added Zephyr-specific information. Accompanying the
MCUZXpresso SDK version 25.06.00.

330 Chapter 3. Middleware

Chapter 4

RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme
FreeRTOS kernel for MCUXpresso SDK ChangeLog
FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.

331

MCUXpresso SDK Documentation, Release 25.12.00

Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 corepkesll

PKCS #11 key management library.

Readme

4.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme

332 Chapter 4. RTOS

	LPC845BREAKOUT
	Overview
	Getting Started with MCUXpresso SDK Package
	Getting Started with MCUXpresso SDK Package
	Classic SDK Package
	Overview
	MCUXpresso SDK board support package folders
	Example application structure
	Locating example application source files

	Run a demo using MCUXpresso IDE
	Select the workspace location
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo application using IAR
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using Keil MDK/μVision
	Install CMSIS device pack
	Build an example application
	Run an example application
	Build a multicore example application
	Run a multicore example application
	Build a TrustZone example application
	Run a TrustZone example application

	Run a demo using ARMGCC / VSCODE
	MCUXpresso Config Tools
	How to determine COM port
	On-board Debugger
	On-board debugger MCU-Link
	Updating MCU-Link firmware
	On-board debugger LPC-Link
	Updating LPC-Link firmware
	On-board debugger OpenSDA
	Updating OpenSDA firmware
	On-board debugger Multilink
	On-board debugger OSJTAG

	Default debug interfaces
	How to define IRQ handler in CPP files

	Repository-Layout SDK Package
	Development Tools Installation
	Quick Start: Automated Installation (Recommended)
	Manual Installation
	Essential Tools
	Git - Version Control
	Python - Scripting Environment
	West - SDK Management Tool
	Build System Tools
	CMake - Build Configuration
	Ninja - Fast Build System
	Ruby - IDE Project Generation (Optional)
	Compiler Toolchains
	Setting Up Environment Variables
	Verify Your Installation
	Troubleshooting Installation Issues

	Building Your First Project
	Prerequisites
	Understanding Board Support
	Basic Build Process
	Simple Build
	Specifying Configuration
	Alternative Toolchains
	Multicore Applications
	Flash an Application
	Debug
	Common Build Options
	Clean Build
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Troubleshooting
	Build Failures
	Getting Help
	Check Supported Configurations
	Next Steps

	MCUXpresso for VS Code Development
	Prerequisites
	Extension Installation
	Install MCUXpresso for VS Code
	SDK Import and Setup
	Import Methods
	Import GitHub Repository SDK
	Import Repository-Layout SDK Package
	Building Example Applications
	Import Example Project
	Application Types
	Trust Confirmation
	Building Projects
	Build Process
	Running and Debugging
	Serial Monitor Setup
	Debug Session
	Debug Controls
	Monitor Output
	Debug Probe Support
	Project Configuration
	Workspace Management
	Multi-Project Support
	Troubleshooting
	Import Issues
	Build Problems
	Debug Issues
	Integration with Command Line
	Advanced Features
	Project Types
	Build System Integration
	Next Steps

	Command Line Development
	Prerequisites
	Understanding Board Support
	Basic Build Commands
	Standard Build Process
	Specifying Build Configuration
	Multicore Applications
	Shield Support
	Advanced Build Options
	Clean Builds
	Dry Run
	Device Variants
	Project Configuration
	CMake Configuration Only
	Interactive Configuration
	Flashing and Debugging
	Flash Application
	Debug Session
	IDE Project Generation
	Troubleshooting
	Build Failures
	Toolchain Issues
	Getting Help
	Check Supported Configurations
	Best Practices
	Project Organization
	Build Efficiency
	Development Workflow
	Next Steps

	Workspace Structure
	Top-Level Organization
	SDK Component Layout
	Example Organization
	Common Example Files
	Board-Specific Files
	Device Support Structure
	Middleware Organization
	Documentation Structure
	Understanding Example Structure
	1. General README: examples/demo_apps/hello_world/readme.md
	2. Board-Specific README: examples/_boards/{board_name}/demo_apps/hello_world/example_board_readme.md

	Getting Started with MCUXpresso SDK GitHub
	Getting Started with MCUXpresso SDK Repository
	Overview
	Benefits of the Multi-Repository Approach
	Setup and Configuration
	GitHub Repository Setup
	Prerequisites
	Workspace Initialization
	Step 1: Initialize Workspace
	Step 2: Choose Your Repository Update Strategy
	Option A: Download All Repositories (Complete SDK)
	Option B: Targeted Repository Download (Recommended)
	Step 3: Verify Installation
	Advanced Repository Management
	Board-Specific Setup
	Device-Specific Setup
	Custom Configuration
	Benefits of Targeted Setup
	Repository Information
	Package Generation (Optional)
	Workspace Management
	Updating Your Workspace
	Workspace Status
	Troubleshooting
	Next Steps

	Explore SDK Structure and Content
	SDK Architecture Overview
	Repository Organization
	Manifest Repository
	Base Repositories
	Middleware Repositories
	Internal Repositories
	Repository Hosting
	Benefits of This Architecture
	Workspace Management

	Development Workflows
	Using MCUXpresso Config Tools
	Prerequisites
	Board Files
	Visual Studio Code
	Manual Workflow
	Updating the SDK West project

	Release Notes
	MCUXpresso SDK Release Notes
	Overview
	MCUXpresso SDK
	Development tools
	Supported development systems
	MCUXpresso SDK release package
	Device support
	Board support
	Demo application and other examples

	Middleware
	CMSIS DSP Library
	FreeMASTER

	Release contents
	Known issues
	Cannot add SDK components into FreeRTOS projects
	The spi_transfer_interrupt examples don’t work

	ChangeLog
	MCUXpresso SDK Changelog
	Board Support Files
	board
	[25.06.00]

	clock_config
	[25.06.00]

	pin_mux
	[25.06.00]

	LPC_ACOMP
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_ADC
	[2.6.0]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.1]
	[2.4.0]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.0]

	CAPT
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CLOCK
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.0]

	COMMON
	[2.6.3]
	[2.6.2]
	[2.6.1]
	[2.6.0]
	[2.5.0]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.10]
	[2.2.9]
	[2.2.8]
	[2.2.7]
	[2.2.6]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CRC
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	CTIMER
	[2.3.4]
	[2.3.3]
	[2.3.2]
	[2.3.1]
	[2.3.0]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_DAC
	[2.0.2]
	[2.0.1]
	[2.0.0]

	LPC_DMA
	[2.5.4]
	[2.5.3]
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.5]
	[2.2.4]
	[2.2.3]
	[2.2.2]
	[2.2.1]
	[2.2.0]
	[2.0.1]
	[2.0.0]

	GPIO
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	I2C
	[2.2.1]
	[2.2.0]
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IAP
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	INPUTMUX
	[2.0.10]
	[2.0.9]
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	IOCON
	[2.0.2]
	[2.0.1]
	[2.0.0]

	MRT
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	PINT
	[2.3.0]
	[2.2.0]
	[2.1.13]
	[2.1.12]
	[2.1.11]
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.6]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	POWER
	[2.1.0]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	RESET
	[2.4.0]
	[2.0.1]
	[2.0.0]

	SCTIMER
	[2.5.1]
	[2.5.0]
	[2.4.9]
	[2.4.8]
	[2.4.7]
	[2.4.6]
	[2.4.5]
	[2.4.4]
	[2.4.3]
	[2.4.2]
	[2.4.1]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	SPI
	[2.0.8]
	[2.0.7]
	[2.0.6]
	[2.0.5]
	[2.0.4]
	[2.0.3]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SWM
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.2]
	[2.0.1]
	[2.0.0]

	SYSCON
	[2.0.2]
	[2.0.1]
	[2.0.0]

	USART
	[2.5.2]
	[2.5.1]
	[2.5.0]
	[2.4.0]
	[2.3.0]
	[2.2.0]
	[2.1.1]
	[2.1.0]
	[2.0.1]
	[2.0.0]

	WKT
	[2.0.2]
	[2.0.1]
	[2.0.0]

	WWDT
	[2.1.10]
	[2.1.9]
	[2.1.8]
	[2.1.7]
	[2.1.5]
	[2.1.4]
	[2.1.3]
	[2.1.2]
	[2.1.1]
	[2.1.0]
	[2.0.0]

	Driver API Reference Manual
	Middleware Documentation
	FreeMASTER

	LPC845
	CAPT: Capacitive Touch
	Clock Driver
	CRC: Cyclic Redundancy Check Driver
	CTIMER: Standard counter/timers
	DMA: Direct Memory Access Controller Driver
	I2C: Inter-Integrated Circuit Driver
	I2C Driver
	I2C Master Driver
	I2C Slave Driver
	IAP: In Application Programming Driver
	INPUTMUX: Input Multiplexing Driver
	Common Driver
	LPC_ACOMP: Analog comparator Driver
	ADC: 12-bit SAR Analog-to-Digital Converter Driver
	DAC: 10-bit Digital To Analog Converter Driver
	GPIO: General Purpose I/O
	IOCON: I/O pin configuration
	MRT: Multi-Rate Timer
	PINT: Pin Interrupt and Pattern Match Driver
	Power Driver
	Reset Driver
	SCTimer: SCTimer/PWM (SCT)
	SPI: Serial Peripheral Interface Driver
	SPI Driver
	SWM: Switch Matrix Module
	SYSCON: System Configuration
	USART: Universal Asynchronous Receiver/Transmitter Driver
	USART Driver
	WKT: Self-wake-up Timer
	WWDT: Windowed Watchdog Timer Driver

	Middleware
	Motor Control
	FreeMASTER
	Introduction
	What is FreeMASTER?
	Driver version 3
	Target platforms
	Replacing existing drivers
	Clocks, pins, and peripheral initialization
	MCUXpresso SDK
	MCUXpresso SDK on GitHub
	FreeMASTER in Zephyr

	Example applications
	MCUX SDK Example applications
	Zephyr sample spplications

	Description
	Features
	Board Detection
	Memory Read
	Memory Write
	Masked Memory Write
	Oscilloscope
	Recorder
	TSA
	TSA Safety
	Application commands
	Pipes
	Serial single-wire operation
	Multi-session support
	Zephyr-specific
	Dedicated communication task
	Zephyr shell and logging over FreeMASTER pipe
	Automatic TSA tables

	Driver files
	Driver configuration
	Configurable items
	Interrupt modes
	Value Type
	Description
	Protocol transport
	Value Type
	Description
	Serial transport
	FMSTR_SERIAL_DRV
	Value Type
	Description
	FMSTR_SERIAL_BASE
	Value Type
	Description
	FMSTR_COMM_BUFFER_SIZE
	Value Type
	Description
	FMSTR_COMM_RQUEUE_SIZE
	Value Type
	Description
	FMSTR_SERIAL_SINGLEWIRE
	Value Type
	Description
	CAN Bus transport
	FMSTR_CAN_DRV
	Value Type
	Description
	FMSTR_CAN_BASE
	Value Type
	Description
	FMSTR_CAN_CMDID
	Value Type
	Description
	FMSTR_CAN_RSPID
	Value Type
	Description
	FMSTR_FLEXCAN_TXMB
	Value Type
	Description
	FMSTR_FLEXCAN_RXMB
	Value Type
	Description
	Network transport
	FMSTR_NET_DRV
	Value Type
	Description
	FMSTR_NET_PORT
	Value Type
	Description
	FMSTR_NET_BLOCKING_TIMEOUT
	Value Type
	Description
	FMSTR_NET_AUTODISCOVERY
	Value Type
	Description
	Debugging options
	FMSTR_DISABLE
	Value Type
	Description
	FMSTR_DEBUG_TX
	Value Type
	Description
	FMSTR_APPLICATION_STR
	Value Type
	Description
	Memory access
	FMSTR_USE_READMEM
	Value Type
	Description
	FMSTR_USE_WRITEMEM
	Value Type
	Description
	Oscilloscope options
	FMSTR_USE_SCOPE
	Value Type
	Description
	FMSTR_MAX_SCOPE_VARS
	Value Type
	Description
	Recorder options
	FMSTR_USE_RECORDER
	Value Type
	Description
	FMSTR_REC_BUFF_SIZE
	Value Type
	Description
	FMSTR_REC_TIMEBASE
	Value Type
	Description
	FMSTR_REC_FLOAT_TRIG
	Value Type
	Description
	Application Commands options
	FMSTR_USE_APPCMD
	Value Type
	Description
	FMSTR_APPCMD_BUFF_SIZE
	Value Type
	Description
	FMSTR_MAX_APPCMD_CALLS
	Value Type
	Description
	TSA options
	FMSTR_USE_TSA
	Value Type
	Description
	FMSTR_USE_TSA_SAFETY
	Value Type
	Description
	FMSTR_USE_TSA_INROM
	Value Type
	Description
	FMSTR_USE_TSA_DYNAMIC
	Value Type
	Description
	Pipes options
	FMSTR_USE_PIPES
	Value Type
	Description
	FMSTR_MAX_PIPES_COUNT
	Value Type
	Description

	Driver interrupt modes
	Completely Interrupt-Driven operation
	Mixed Interrupt and Polling Modes
	Completely Poll-driven

	Data types
	Communication interface initialization
	FreeMASTER Recorder calls
	Driver usage
	Communication troubleshooting

	Driver API
	Control API
	FMSTR_Init
	Prototype
	Description
	FMSTR_Poll
	Prototype
	Description
	FMSTR_SerialIsr / FMSTR_CanIsr
	Prototype
	Description

	Recorder API
	FMSTR_RecorderCreate
	Prototype
	Description
	FMSTR_Recorder
	Prototype
	Description
	FMSTR_RecorderTrigger
	Prototype
	Description

	Fast Recorder API
	TSA Tables
	TSA table definition
	TSA descriptor parameters
	TSA variable types
	TSA table list
	TSA Active Content entries

	TSA API
	FMSTR_SetUpTsaBuff
	Prototype
	Arguments
	Description
	FMSTR_TsaAddVar
	Prototype
	Arguments
	Description

	Application Commands API
	FMSTR_GetAppCmd
	Prototype
	Description
	FMSTR_GetAppCmdData
	Prototype
	Arguments
	Description
	FMSTR_AppCmdAck
	Prototype
	Arguments
	Description
	FMSTR_AppCmdSetResponseData
	Prototype
	Arguments
	Description
	FMSTR_RegisterAppCmdCall
	Prototype
	Arguments
	Return value
	Description

	Pipes API
	FMSTR_PipeOpen
	Prototype
	Arguments
	Description
	FMSTR_PipeClose
	Prototype
	Arguments
	Description
	FMSTR_PipeWrite
	Prototype
	Arguments
	Description
	FMSTR_PipeRead
	Prototype
	Arguments
	Description

	API data types
	Public common types
	Public TSA types
	Public Pipes types
	Internal types

	Document references
	Links
	Documents
	Revision history

	RTOS
	FreeRTOS
	FreeRTOS kernel
	FreeRTOS kernel for MCUXpresso SDK Readme
	FreeRTOS kernel for MCUXpresso SDK ChangeLog
	FreeRTOS kernel Readme

	FreeRTOS drivers
	backoffalgorithm
	Readme

	corehttp
	corejson
	Readme

	coremqtt
	corepkcs11
	Readme

	freertos-plus-tcp
	Readme

