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Chapter 1

LPCXpresso802

1.1 Overview

LPC800 series boards and devices are fully supported by NXPs MCUXpresso suite of free soft-
ware and tools, which include an Eclipse-based IDE, configuration tools and extensive SDK
drivers/examples available at https://mcuxpresso.nxp.com. All boards in this series include an
on-board CMSIS-DAP debug probe based on the LPC11U35 debug probe, with the option for an
external debug probe such as those from SEGGER and PE Micro. Popular Arduino UNO shield
boards can be used on these boards, enabling quick and easy prototyping.The LPC800 series
is fully supported by NXPs ‘MCUXpresso suite <https://www.nxp.com/mcuxpresso>‘__ of free
software and tools, which include an Eclipse-based IDE, configuration tools and extensive SDK
drivers/examples available at https://mcuxpresso.nxp.com. MCUXpresso SDK includes project
files for use with IDEs from lead partners Keil and IAR, and these IDEs are also fully supported

MCU device and part on board is shown below:
* Device: LPC802
* PartNumber: LPC802M001JDH20

1.2 Getting Started with MCUXpresso SDK Package

1.2.1 Getting Started with MCUXpresso SDK Package

Starting with version 25.09.00, MCUXpresso SDK introduced two package versions for
offline development:

¢ Classic SDK Package: Traditional board-specific packages with pre-configured IDE
projects for MCUXpresso IDE, IAR, Keil, and other toolchains.

* Repository-Layout SDK Package: Board-specific packages that maintain the same
structure and build system as the GitHub Repository SDK, providing offline access to
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the repository SDK development experience. Available when selecting the ARMGCC
toolchain.

From version 25.12.00 onward:
* When you select ARMGCC, the SDK download will use the Repository-Layout version.
» Tor all other toolchains, the SDK download will remain in the Classic version.

Note: The Repository-Layout SDK package was first introduced in version 25.09.00, but initially
only for MCXW23x platforms.

Classic SDK Package

Overview The NXP MCUXpresso software and tools offer comprehensive development solu-
tions designed to optimize, ease, and help accelerate embedded system development of applica-
tions based on general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUX-
presso SDK includes a flexible set of peripheral drivers designed to speed up and simplify de-
velopment of embedded applications. Along with the peripheral drivers, the MCUXpresso SDK
provides an extensive and rich set of example applications covering everything from basic pe-
ripheral use case examples to full demo applications. The MCUXpresso SDK contains optional
RTOS integrations such as FreeRTOS and Azure RTOS, and various other middleware to support
rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes (document MCUXSDKRN).
For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security, Board Support
DA, Filesystem, etc,)

Peripheral Drivers

CMSIS-CORE and CMSIS-DSP

(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

MCUXpresso SDK board support package folders MCUXpresso SDK board support package
provides example applications for NXP development and evaluation boards for Arm Cortex-M
cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are
found inside the top-level boards folder and each supported board has its own folder (an MCUX-
presso SDK package can support multiple boards). Within each <board name> folder, there are
various subfolders to classify the type of examples it contains. These include (but are not limited
to):

* cmsis_driver__examples: Simple applications intended to show how to use CMSIS drivers.

* demo_ apps: Full-featured applications that highlight key functionality and use cases of the
target MCU. These applications typically use multiple MCU peripherals and may leverage
stacks and middleware.

4 Chapter 1. LPCXpresso802
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* driver__examples: Simple applications that show how to use the MCUXpresso SDK’s periph-
eral drivers for a single use case. These applications typically only use a single peripheral
but there are cases where multiple peripherals are used (for example, SPI conversion using
DMA).

* emwin_ examples: Applications that use the emWin GUI widgets.

* rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects
(semaphores, queues, and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

* usb_examples: Applications that use the USB host/device/OTG stack.

Example application structure This section describes how the various types of example ap-
plications interact with the other components in the MCUXpresso SDK. To get a comprehensive
understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK
API Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples
that are relevant to that specific piece of hardware. Although we use the hello world exam-
ple (part of the demo_ apps folder), the same general rules apply to any type of example in the
<board name> folder.

In the hello_world application folder you see the following contents:

armgec
iar —  Toolchain folders: project and linker files
mdk

R Board macro definitions (LEDs, buttons, etc)
board.h

clock_config.c

[?__ ['_-" [?__ ['_-'__

T —— Application-specific clock configuration

hello_world.bin » Pre-compiled application

&l hello_world.c » Application main source file

B8 hello_world.mex —» Application-specific MCUXpresso Config Tool configuration
hello_world.xml > Project definition file for MCUXpresso IDE and PG

:: z:::z: Application-specific pin configuration
readme. txt » Description and instructions for running

All files in the application folder are specific to that example, so it is easy to copy and paste an
existing example to start developing a custom application based on a project provided in the
MCUXpresso SDK.

Locating example application source files When opening an example application in any of
the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is
the central component to all example applications. It means that the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

* devices/<device name>: The device’s CMSIS header file, MCUXpresso SDK feature file, and
a few other files

* devices/<device name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

1.2. Getting Started with MCUXpresso SDK Package 5
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* devices/<device name>/drivers: All of the peripheral drivers for your specific MCU

* devices/<device_name>/<tool__name>: Toolchain-specific startup code, including vector ta-
ble definitions

* devices/<device_name> /utilities: Items such as the debug console that are used by many of
the example applications

* devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate
source code. Middleware source files are located in the middleware folder and RTOSes are in the
rtos folder. The core files of each of these are shared, so modifying one could have potential
impacts on other projects that depend on that file.

Run a demo using MCUXpresso IDE Note: Ensure that the MCUXpresso IDE toolchain is in-
cluded when generating the MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug
example applications. The hello_world demo application targeted for the hardware platform is
used as an example, though these steps can be applied to any example application in the MCUX-
presso SDK.

Select the workspace location Every time MCUXpresso IDE launches, it prompts the user to
select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace
to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recom-
mended that the workspace be located outside the MCUXpresso SDK tree.

Build an example application To build an example application, follow these steps.

1. Dragand drop the SDK zip file into the Installed SDKs view to install an SDK. In the window
that appears, click OK and wait until the import has finished.

(1 Installed 5DKs 52 [] Properties & Conscle |*| Problems [] Memory 3 Instruction”

i1 Installed SDKs

To install an 50K, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.

Mame Wersion Location

2. On the Quickstart Panel, click Import SDK example(s)....

6 Chapter 1. LPCXpresso802



MCUXpresso SDK Documentation, Release 25.12.00

U Quickstart Panel "= Global Variables =Variables % Breakpoints &5 Outline Sl

@ MCUXpresso IDE - Quickstart Panel

— Mo project selected

~ Create or import a project

ﬂ. Import SDK example(s)... I

¥ Import project(s) from file system.

~ Build your project
°\

)
1'
* Debug your project BE-E-HA~

~ Miscellaneous

& Quick Settings>>

" Build all projects []

3. Expand the demo_ apps folder and select hello_ world.
4. Click Next.

1.2. Getting Started with MCUXpresso SDK Package 7
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() SOKImport Wizard R

1, The source from the SDIC will be copied into the workspace.
If you want te use linked files, please unzip the '5DK_2.x_FRDM-KB4F' SDK.

. Import projects

Project name prefix: — i Project name suffic:

Use default location
CihUsersh b59906"\Documents\MCUXpressclDE_10.0.0_299_beta\workspacefrdmbGaf_

Project Type

@ C Project C++ Project C Static Library C++ Static Library

Examples

Browse...

Project Options

Copy sources

| £ M %=

=

Mame
p [[] S cmsis_driver_examples
4 = demo_apps

> O £ hwip

> O] £ mbedtls

» [0 S wifi_gea

> [0 £ wolfss|
[ = adclé_low_power
[[] = bubble
[[] = dac_adc
[[] = ecompass
[[] = ftm_pdb_adclé
[[] = ftrm quad_decoder

b /| = hello_world

]
]
o

=

- power_manager

= power_mode_switch
= rtc_func

= chell

Version

4

LI

m

m

@ < Back Net> [[ Ensh | [ cancel |

5. Ensure Redlib: Use floating-point version of printf is selected if the example prints
floating-point numbers on the terminalfor demo applications such as adc_ basic, adc__burst,
adc_dma, and adc_ interrupt. Otherwise, it is not necessary to select this option. Then, click
Finish.

Run an example application For more information on debug probe support in the MCUX-
presso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via a USB cable.
3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the

debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
2. No parity

8 Chapter 1. LPCXpresso802


https://community.nxp.com/message/630901

MCUXpresso SDK Documentation, Release 25.12.00

3. 8 data bits

PuTTY Configuration

Category:

= Session Basic options for your PuTTY session
- Logging _ .

= Terminal Specify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features ~ oy

= Window Onnecton type:
- Appearance (OJRaw () Telnet ()Rlogin ( )SSH | (@) Serial
Beha\ﬂoyr Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours

= Connection :
. Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin

[ SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About

4. 1stop bit

Open Cancel

4. On the Quickstart Panel, click Debug to launch the debug session.

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, show-
ing all supported probes that are attached to your computer. Select the probe through
which you want to debug and click OK. (For any future debug sessions, the stored probe
selection is automatically used, unless the probe cannot be found.)

1.2. Getting Started with MCUXpresso SDK Package 9
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-
. Probes discovered ==

Connect to target: MK64FN1IMMookl2
1 probe found. Select the probe to use:

Available attached probes

Marne Serial number/ID Type Manu... IDE Debug Mode

Eﬂ USEL - OpenSDA (JATI0E4D  TATI0E4D USB1 P&E M All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc, CM3IS-DAP) probes
P&E Micro probes

SEGGER J-Link probes i

Probe search options

-

Remember my selection (for this Launch configuration)
®

6. The application is downloaded to the target and automatically runs to main().

b

7. Start the application by clicking Resume.

Project peliies Window
din @l

The hello_world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

10 Chapter 1. LPCXpresso802
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Build a multicore example application This section describes the steps required to configure
MCUZXpresso IDE to build, run, and debug multicore example applications. The following steps
can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-
core version of hello_world example application targeted for the LPCXpresso54114 hardware
platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core ap-
plications, explained in Build an example application. When the SDK zip package for
LPCXpresso54114 is installed and available in the Installed SDKs view, click Import SDK
example(s)... on the Quickstart Panel. In the window that appears, expand the LPCxx
folder and select LPC54114]J256. Then, select Ipcxpresso54114 and click Next.

2. Expand the multicore_examples/hello_world folder and select cm4. The cmOplus counterpart
project is automatically imported with the cm4 project, because the multicore examples are
linked together and there is no need to select it explicitly. Click Finish.

1.2. Getting Started with MCUXpresso SDK Package 11
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- SDK Import Wizard O x

Y The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the ‘SDK_2.x_FRDM-K32L3A6' SDK. The advanced options page is disabled when either more than one

. Import projects
Project name prefix frdmk3213ab Project name suffix

i¥] Use default location

Project Type Project Options
SDK Debug Console (_) Semihost UART (®) Example default

~| Import other files

Examples = ¥ iy | &

Name Description Version -~
[[] & fatfs_examples
[[] & mbedtls_examples

~ [m] = multicore_examples

erpc_matrix_multiply_mu_cm0plus The Multicore eRPC Matrix Multiply project is a simple demonstration program that
4 i The Multicore eRPC Matrix Multiply project is a simple demonstration program that ..
erpc_matrix_multiply_mu_rtos_cmDplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t y t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra.
[ ] erpc_matrix_multiply_rpmsg_cm0Oplus The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
t I t The Multicore eRPC Matrix Multiply project is a simple demonstration program that ...
L ¥ erpc_matrix_multiply_rpmsg_rtos_cmOplus The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
t tiply rp t The Multicore eRPC Matrix Multiply RTOS project is a simple demonstration progra...
| = hello_world_cmOplus The Multicore Hello World demo application demonstrates how to set up projects f...
] A The Multicore Hello World demo application demaonstrates how to set up projects f...
[ multicore_manager_cm0Oplus The Multicore Manager example application demonstrates advanced features of the. v
L < Back Next Cancel

3. Now, two projects should be imported into the workspace. To start building the
multicore application, highlight the Ipcxpresso54114_ multicore examples_hello world_ c¢m4
project (multicore master project) in the Project Explorer. Then choose the appropriate
build target, Debug or Release, by clicking the downward facing arrow next to the ham-
mer icon, as shown in the figure. For this example, select Debug.

. workspace - Develop - Welcome page - MCUXpresso ]D_
File Edit Mavigate Search Project Run  FreeRTOS  Window Help
N B R 2 PR BN R FS
v 1 Debug (Debug build)
2 Release (Release build)

H"_‘, Project Explorer &3 bol Viewer

=l

. 25 Ipoxepresso54114_multicore_examples_helle_world_cmplus
» |25 Ipcxpresso54114 _multicore_examples_hello_world_cmd

The project starts building after the build target is selected. Because of the project reference
settings in multicore projects, triggering the build of the primary core application (cm4) also
causes the referenced auxiliary core application (cmOplus) to build.

Note: When the Release build is requested, it is necessary to change the build configuration of
both the primary and auxiliary core application projects first. To do this, select both projects in
the Project Explorer view and then right click which displays the context-sensitive menu. Select
Build Configurations -> Set Active -> Release. This alternate navigation using the menu item
is Project -> Build Configuration -> Set Active -> Release. After switching to the Release build
configuration, the build of the multicore example can be started by triggering the primary core
application (cm4) build.

12 Chapter 1. LPCXpresso802
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I wortpace - Deveop - Welione page“We Dz CENI

File Edit Mavigate Search Project Run FreeRTOS Window Help
Nl | @-Q-@in[pPUTEN2 2RISR ERRR S LI 09
[ Project Explorer 3% | 2, Peripherals+ [l Registers . Symbol Viewer = 0O @ Welcome 53
E| = W files S Cof mxp/MCUX pressal
(=3 Ipcxpresso54114_multicore_examples_hello_werld_cmOplus
s | Ipcxpresso54114_multicore_examples_hello_world_cmé
Mew 3
Go Into
E| Copy Ctrl+C
Paste Chrl+V
3 Delete Delete
Source »
Move...
Rename... F2
Ex Import.
g  Export...
Build Project
Clean Project
Refresh FS
Close Project
Close Unrelated Projects
Build Cenfigurations 4 Set Active 4
Build Targets » Manage... v 2 Release (Release build)
Index ' Build Al
Run As 4 Clean All
Debug As 4 Build Selected...
Profile As » [

Run a multicore example application The primary core debugger handles flashing of both
the primary and the auxiliary core applications into the SoC flash memory. To download and run
the multicore application, switch to the primary core application project and perform all steps
as described in Run an example application. These steps are common for both single-core
applications and the primary side of dual-core applications, ensuring both sides of the multicore
application are properly loaded and started. However, there is one additional dialogue that is
specific to multicore examples which requires selecting the target core. See the following figures
as reference.

o] MCUXpre:

J Cruackstart Panel ©° *=Variables *e Breakpoints . .
Help -> MCUXpresso IDE User Gu
A MCUXpresso IDE - Quickstart Panel

" Project: frdmk3213a6_hello_world_cmd [Release] .
Heip -> Help Contents

= Create or import a project

B e oroiect =T¢
[/ I
L] 4 CDT Build Console [frdmk3213a6_hello world_om
= Build your project make --no-print-directory post-buil
- Performing post-build steps
ﬂ arm-none-eabi-size "frdmk3213aé_hel
N Text data bss dec
Teee e 8488 15488
* Debug your project E~d-B~
® Debua ® Debug using LinkServer probes (CTRL+SHIFT+ALT+L)
Attach to a running target using LinkServer (CTRL+ALT+L)

Program flash action using LinkServer

- Miscellanecus
Erase flash action using LinkServer

1.2. Getting Started with MCUXpresso SDK Package 13
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-
B Probes discovered El@lg

Connect to target: LPC54114J256

{1y The following probes have been disabled in the preferences:
P&E Micro probes SEGGER J-Link probes

Available attached probes

Mame Serial number/ID Type Manufa... IDE Debug Mode
{ LPC-LIMNK2 CMSIS-DAP V5,134 ADODO00002 LinkServe MNXP Semi MNon-Stop

Supported Probes (tick/untick to enable/disable)
MCUKXpresso IDE LinkServer (inc, CMSIS-DAP) probes
[C] P&E Micro probes

[C] SEGGER J-Link probes

Probe search options

Rermember my selection (for this Launch configuration)

®
b
F'. Eg N

SWD Configuration

(1, 2 available SWD Devices detected.
Target 'Cortex-M4' has been selected, but it may be incompatible!

Bevicen| Name TAP Id Details

0 Corex-M4 0:2ball477  APID:24770011
|1 Cortex-MD+ 0:2bal1477  APID:24770011

®

14 Chapter 1. LPCXpresso802
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. wiorkspace - Develop - Ipc::pre55054114_muHicnre_euan'plgs_l;ello_world_cmtl_fmrcefhello_wnrld_mreﬂ.c - MCUXpresso [D_
File Edit 5Source Refactor Mavigate Search Project Bun  FreeRTOS  Window Help

SRR RS- AN R AR [ I ENCNCHP IR0 R Y
E %is Debug 3

rb 4 . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

?b 4 E;} Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

a f® Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel.c:85 1:98a
& s/ arm-none-eabi-gdb (7.12.0.20161204)

) [ hello_werld_corel.c 32

63 uint32_t corel image size;

72 #if defined(_ CC_ARM)

% 71 corel_image_size = (uint32_t)&Imagef$COREL_REGIONFFLength;

e 72 #elif defined(_ ICCARM_ )

73 #pragma section = "_ sec_core”

74 corel_image_size = (uint32_t)_ section_end("_ sec_core™) - (uint32_t)&corel_image_start;
75 #endif

76 return corel image size;

-

#endif

=

=]

* fibrief Main function
EYa

= in‘.t main(void)

/* Define the init structure for the switches*/
| gpio pin_config t sw_config = {kGPIO DigitalInput, @};

=l W W R ® WD

/* Init board hardware.*/

WolD 00 CO 0000 0O CO D00 CO DD

8 /* attach 12 MHz clock to FLEXCOMM@ (debug console) */

g CLOCK AttachClk{kFROIZM to FLEXCOMMA);

.

1 BOARD_InitPins_Core@();

92 BOARD_BootClockFROHFAEM();

93 BOARD_InitDebugConsole();

94

95 /* Init switches */

96 GPI0_PinInit(BOARD SW1_GPIO, BOARD SW1_GPIO_PORT, BOARD SW1 GPIO PIN, &sw_config);
97 GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO_PORT, BOARD SW2 GPIO PIN, &sw_config);
ag

After clicking the “Resume All Debug sessions” button, the hello_world multicore application
runs and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

File Edit Setup Control Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core, _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary
core has been released from the reset and running correctly. It is also possible to de-
bug both sides of the multicore application in parallel. After creating the debug ses-
sion for the primary core, perform same steps also for the auxiliary core application.
Highlight the lpcxpresso54114_multicore_examples_hello_world_cmOplus project (multicore
slave project) in the Project Explorer. On the Quickstart Panel, click “Debug ‘lpcx-
presso54114_multicore_examples_hello_world_cmOplus’ [Debug]” to launch the second debug
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MCUXpresso SDK Documentation, Release 25.12.00

session.

U Quickstart Pa... ®-Global Varia.. ®=Variables % Breakpoints 5= Qutline

5 MCUXpresso IDE - Quickstart Panel
12/ Project: Ipcxpresso54114_hello_world_cmOplus [Debug]

~ Create or import a project

. & New project..
. Import SDK example(s)...

2 Import project(s) from file system...
~ Build your project

R Build
& Clean

~ Debug your project L RARR S R

= 0

~

Fur
Installed SDKs [E Properties 22 E Consols
Property

3 Debug M Debug using LinkServer probes (CTRL+SHIFT+L)

i B Attach to a running target using LinkServer (CTRL+ALT+L)
B Program flash using LinkServer

» Micrallananic rase Tlash using LinKserver
B8 Erase flash using LinkS

e
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. workspace - Develop - Ipexpresso54114 multicore_examples_hello_world_cmd/source/hello_world_corel.c - MCUXprﬁsoID-
Eile Edit Scurce Refactor MNavigate Search Project Bun  FreeRTOS  Window Help

™ | B -/ -0 @D i @E 2R E LA -0

- %5 Debug 53

e 4 . Ipcxpresso54114_multicore_exarmples_hello_world_cmd Debug [C/C++ (NXP Semiconductors) MCU Application]

4 E Ipcxpressa54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-mOplus)]

T a4 f® Thread #1 1 (Stopped) (Suspended : Breakpaoint)

it = main(] at hello_world_corel.c:85 0:98a

& w | arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_helle_world_cm0plus Debug [C/C++ (NXP Semicenductors) MCU Application]

& 4 % lpcxpresso54114_multicore_examples_hello_world_crm0plus.axf [LPC54114)256 {cortex-m0Oplus)]

0! 4 o Thread #1 1 (Stopped) (Suspended : Signal : SIGSTOP:Stopped (signal])

- = Oxlec

= <signal handler called> () at Dxfffffffo

(e = 00

% w arm-none-eabi-gdb (7.12.0.20161204)

o=

[£] hello_world_cored.c &3

68 {

63 uint32 t corel_image_size;

72 #if defined(_ CC_ARM)

71 corel_image_size = (uint32 t)&Image$$COREL_REGION$SLength;

72 #elif defined(  ICCARM )

73 #pragma section = "_ sec_core”

74 corel image size = (uint32 t) section_end(" sec_core™) - (uint32_t)&corel_image start;
75 #endif

return corel _image size;

J
~] O

-

78 #endif

295 f*1

38 * @brief Main function

81 */

2= int main(void)

83

34 * Define the init structure for the switches*/

85 | gpio_pin_config t sw_config = {kGPIO DigitalInput, @};
86

87 * Init board hardware.*/

88 '* attach 12 MHz clock to FLEXCOMM@ (debug console) */
89 CLOCK_AttachClk({kFROI2M to FLEXCOMMB);

98

a1 BOARD_InitPins_Core@();

a2 BOARD BootClockFROHF48M();

a3 BOARD_InitDebugConsole();

o4

a5 * Init switches */

96 GPIO_PinInit({BOARD_SW1_GPIO, BOARD_SW1_GPIO_PORT, BOARD_SW1_GPIO_PIN, &sw_config);
a7

GPIO_PinInit(BOARD SW2 GPIO, BOARD SW2 GPIO PORT, BOARD SW2 GPIO PIN, &sw_config);

=]
a

Now, the two debug sessions should be opened, and the debug controls can be used for both
debug sessions depending on the debug session selection. Keep the primary core debug session
selected by clicking the “Resume” button. The hello_world multicore application then starts run-
ning. The primary core application starts the auxiliary core application during runtime, and the
auxiliary core application stops at the beginning of the main() function. The debug session of the
auxiliary core application is highlighted. After clicking the “Resume” button, it is applied to the
auxiliary core debug session. Therefore, the auxiliary core application continues its execution.
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. workspace - Develop - Ipexpresso54114_multicore_examples_hello_world_cmOplus/source/hello_world_corel.c - MCUXpresso ID
Eile Edit 5curce Refactor Mavigate 5Search Project Bun  FreeRTOS  Window Help

a2 | B~ R -Bin| B N eSS i biiEx Sl L0 Q-|
E # Debug &2 [ Step Return All Debug sessions l

r[\j a . Ipcxpresso54114_multicore_examples_hello_werld_cmd Debug [C/C++ [NXP Semiconductors) MCU Application]

?b 4 Ipcupresso54114_multicore_examples_helle_world_cmd.axf [LPC54114)256 (cortex-m0plus]]

32 Thread #1 1 (Stopped] (Running)
s arm-none-eabi-gdb (7.12.0.20161204)
X 4 . Ipcxpresso54114_multicore_examples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]
4 ;E Ipcxpresso54114_multicore_examples_helle_world_cm0plus.axf [LPC54114)256 (cortex-m0plus)]
= a o Thread #1 1 (Stopped) (Suspended : Breakpoint)
= main() at hello_world_corel .c:71 0x20010846

9 ,
e s | arm-none-eabi-gdb (7.12.0.20161204)
(x)=
%
=
o=
hello_world_corel.c | fel_mailbox.h @ hello_world_corel.c &3
6@ 1
61 }
62
632 /*!
64 * (ibrief Main function
85 */

66= int main{void)
68 uint32_t startupData, i;

7e /* Define the init structure for the cutput LED pin*/
71 gpioc_pin_config t led_config = {

72 kGPIO DigitalOutput, @,

73 Ti

75 /* Initialize MCMGR before calling its API */
76 MCMGR_Tnit();

78 /* @et the startup data */
79 MCMGR_GetStartupData(kMCMGR_Corel, RstartupData);

31 /* Make a ngoticable delay after the reset */

B2 /* Use startup parameter from the master core... */
33 for (i = @; 1 « startupData; i++)

34 delay();

At this point, it is possible to suspend and resume individual cores independently. It is also pos-
sible to make synchronous suspension and resumption of both the cores. This is done either
by selecting both opened debug sessions (multiple selections) and clicking the “Suspend” / “Re-
sume” control button, or just using the “Suspend All Debug sessions” and the “Resume All Debug
sessions” buttons.
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() workspace - Develop - Ipcxpresso54114 multicore_examples_hello_worid_cmOplus/source/hello_world_corel.c - MCUXpresso IDE NN

File Edit Source Refactor Mavigate Search Project Run  FreeRTOS  Window Help
ML B R @R Mo eS| plRBRDR S LI F0O

45 Debug &2

=
r[\:‘ 4 . Ipcxpresso54114_multicore_examples_helle_world_cmé Debug [C/C++ (MNXP Semicenductors) MCU Application]
4 {12 |poxpresso54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-m0plus)]
?‘5' |i-@' Thread #1 1 (Stopped) (Running]|
it o5 arm-none-eabi-gdb (7.12.0.20161204)
{ 4 . Ipcxpressa54114_multicore_examples_hello_world_cm0Oplus Debug [C/C++ (NXP Semiconductors) MCU Application]

— 4 Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-m0plus)]
= |s& Thread #1 1 (Stopped) (Running) |

s arm-none-eabi-gdb (7.12.0.20161204)

)
b=
(%)=
%
=
[ =N
.| hello_world_corel.c h| f=l_mailbox.h @ hello_world_carel.c &2 o | 0x190
o L
59 __asm("NOP"); /* delay */
&8 1
61 }
62
632 /*!
64 * (@brief Main function
65 */

G66= int main(void)

67 {

68 uint32_t startupData, 1i;

69

78 /* Define the init structure for the output LED pin*/
71 gpio pin config t led config = {

72 kGPIO DigitalOutput, @,

73 1

74

75 /* Initialize MCMGR before calling its API */

76 MCMGR_Init();

77

78 /* @et the startup data */

79 MCMGR_GetStartupData (BMCHMGR_Corel, &startupData);
88

81 /* Make a ngticable delay after the reset */

82 /* Use startup parameter from the master core... */
83 for (i1 =8@; 1 < startupData; i++)

84 delay();

AL
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. workspace - Develop - Ipcxpressoﬁ-dl14_mul|:icure_acan'fles_helIo_world_cmﬂplus.'snurce;‘hellu_mrid_corel.c - MCUXpresso ID'-
Eile Edit Scurce Refactor Mavigate Search Project Run  FreeRTOS Window Help

Al |- K[-EBiw|Dms 2R npuuii».uzv-wieg,ioﬂjéﬁsvﬁv

=

B 4 . lpcxpresso54114_multicore_examples_helle_world_cm4 Debug [C/C++ (MXP Semiconductors) MCU Application]
4 ,_':E Ipcxpresso54114_multicore_examples_hello_world_cmd.axf [LPC54114)256 (cortex-m0plus)]

i) a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

i = GPIO_ReadPinlnput() at fs|_gpio.h:146 0:85¢

main(} at hello_world_corel.c:134 Oxal0

w arm-none-eabi-gdb (7.12.0.20161204)

= 4 . Ipcxpresso54114_multicore_examples_hello_world_cm0plus Debug [C/C++ (NXP Semiconductors) MCU Application]

) 4 ,_':E Ipcxpressa54114_multicore_examples_hello_world_cmOplus.axf [LPC54114)256 (cortex-mOplus)]

a4 f® Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)

delay() at hello_world_corel.c:58 020010824

45 Debug i3

(=)=

(=)= = rmain{) at hello_world_corel.c:99 0x20010830
% w arm-none-eabi-gdb (7.12.0.20161204)

Oz

==

[£] helle_world_corel.c &3

__asm("NOP"); /* delay */

62

63 !

64 @brief Main function

65

66= int main(void)

&7 |

68 uint32_t startupData, i;

69

7@ * Define the init structure for the output LED pin®/
71 gpic pin_config t led config = {

72 kGPIO DigitalOutput, @,

73 I

75 /* Initialize MCMGR before calling its API */

76 MCMGR_TInit();

78 * Get the startup data */

79 MCMER_GetStartupData(kMCMGR_Corel, &startupData);

o]

* Make a ngticable delay after the reset */
'* Use startup parameter from the master core... */
for (i = @; 1 <« startupData; i++)

delay();

¥ CO 0l CaCo Cca
LEVI S
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Build a TrustZone example application This section describes the steps required to configure
MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone ver-
sion of the hello_ world example application targeted for the MIMXRT595-EVK hardware platform
is used as an example, though these steps can be applied to any TrustZone example application
in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core ap-
plications. When the SDK zip package for MIMXRT595-EVK is installed and available in
the Installed SDKs view, click Import SDK example(s)... on the Quickstart Panel. In the
window that appears, expand the MIMXRT500 folder and select MIMXRTS595S. Then, select
evkmimxrt595 and click Next.

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone exam-
ples are linked together, the non-secure project is automatically imported with the secure
project, and there is no need to select it explicitly. Then, click Finish.

20 Chapter 1. LPCXpresso802



MCUXpresso SDK Documentation, Release 25.12.00

3 sDK Import Wizard @] 'S
i\, The source from the SDK will be copied into the workspace. ; &
If you want to use linked files, please unzip the 'SDK_2.x_board_EVK-MIMXRT393 SDK. The advanced options page is disabled when either more than one project has

. Import projects =

Project name prefic | Evkmimurt393 L7 | Project name suffic

Use default location

C\Usersinxal3435\Documents\MCUXpressolDE_11.0.1_2363\workspace\evkmimxrt395 Browse
Project Type Project Options
CProject (1 C++ Project C Static Library () C++ Static Library SDK Debug Console () Semihost @UART ) Example default

Copy sources

[ Import other files

Examples | & VM %|EE
[typeto fitter |
Name Description Version Lt

[1 £ mbedtls_examples
os_examples
dmmc_examples

The Hello World deme application provides a sanity check for the new SDK build environments ...
The Helle Werld deme application provides a sanity check for the new SDK build environments ...

The Secure Faults demo application demonstrates handling of different secure faults, This appli...
The Secure Faults demo application demonstrates handling of different secure faults, This appli...
The Secure GPI0 demo application demonstrates using of secure GPIO peripheral and GPIQ mas..

The Secure GPIO deme application demonstrates using of secure GPIO peripheral and GPIO mas...

Gy
) <Back e [CE ] cn

3. Now, two projects should be imported into the workspace. To start building the TrustZone

application, highlight the evkmimxrt595_hello_world__s project (TrustZone master project)
in the Project Explorer. Then, choose the appropriate build target, Debug or Release, by
clicking the downward facing arrow next to the hammer icon, as shown in following figure.
For this example, select the Debug target.

nr@ waorkspace - Welcorne page - MCUXpresso IDE
File Edit Mavigate Search Project ConfigTools Run  Analysis

[ = | BRI I @riBin|
5 Project Bxpl... 53 |E + 1 Debug (Debug build) ’ = F

2 Releaze (Release build) . - G

E == evkmimxrt393_helle_world_ns

: == evkmimxrt393_hellc world s = Debug=

The project starts building after the build target is selected. It is requested to build the
application for the secure project first, because the non-secure project must know the se-
cure project since CMSE library when running the linker. It is not possible to finish the
non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configu-
ration of both the secure and non-secure application projects first. To do this, select both
projects in the Project Explorer view by clicking to select the first project, then using shift-
click or control-click to select the second project. Right click in the Project Explorer view to
display the context-sensitive menu and select Build Configurations > Set Active >Release.
This is also possible by using the menu item of Project > Build Configuration >Set Active
>Release. After switching to the Release build configuration. Build the application for the
secure project first.

1.2.
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=
.. workspace - Welcome page - MCUXpresso IDE
File Edit MNavigate Search Project ConfigTools FRun  Analysis  FreeRTOS  Window Help

AR | &~/ -BIOVI@-iBIN| D BN SR bERR RIS
[ty Project Bxpl... 22 |2, Peripherals+ [} Registers % Faults = O @ Welcome &3

I
I
I
I
i
i
\
I
|
1 & - = & T P
: =IE=| | & v [files/1/C:/mp/MCUXpressolDE_11.0.1_2563/ide
: =5 evkmimxrt395_helln wnrld ns <Nehnns
Uy 25 evkmimxrt595_ New L]
|
| Go Into
|
|
| Show in Lecal Terminal »
|
| .
! =] Copy Ctrl+C
! Paste Ctrl+V
|
H ¥ Delete Delete
|
| Source ¥
|
! Move...
! Rename... F2
|
|
1 [y Import. Welc
| 2]
|
H i Export. MCUXpresso IDE provides an easy-t
| Cortex®-M cores, including LPC and
i Build Projects compiling, and debugging features w
| h debugging, and integrated configurat
: Clean Project o i
ocumentation
| Refresh F5
| Cl Prai For information on how to get started
| ose Projects please consult the supplied MCUXpr
| Close Unrelated Project # Help - MCUXpresso IDE User (
|
|
1! Build Configurations b Set Active » '+ 1Debug (Debug build) ra
i
! Build Targets > Manage... 2 Release (Release build)
! tiol
| Inelex ’ Build Al _
! o Help us improve MCUXpresso IDE
| Run As ] Clean All
! i MCUXpresso IDE can send anonymi
! :ﬁ; Debug As > Build Selected... AL L RmARN TR e _m .
|
' () Quickstart Panel £ Profile As » E| nstalled SDKs || Properties Problems B Conscle 33

Run a TrustZone example application To download and run the application, perform all
steps as described in Run an example application. These steps are common for single core,
and TrustZone applications, ensuring <board_name>__hello_world_s is selected for debugging.

In the Quickstart Panel, click Debug to launch the second debug session.
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3 workspace - evkmimzrt395_hello_world_s/source/hello_world_s.c - MCUXpresso IDE

File Edit Source Refactor Mavigste Search Project Configlools Run Analysis FreeRTOS Window Help

if- [ B-|{-BIYL @-Bin|m U@ NI D 2 [l B D RIG-S L AU H-0- -~
PR e | (1€ 4

5P e P HR. FpF. T O  dFDebug 32 |i#+ = = 8 = outiine = g
= ﬁ)‘ ‘ . v 7 v evkmimxrt395_hello_world_s LinkServer Debug [C/C++ (MXP Semiconductors) MCU Application] -~ = 1az W \S o % v
5 evkmimxrt395_hello_world_ns A il evkmimuat595_hello_world_s.axf [MIMXRTS93S (cortex-m33)] - U fsl_device_registersh
v (25 evkmimxrt55_hello_world_s < Debug» o 0 Thrazd 21 1 (Qrnandad - Brasbnnint) 21 fsl_debug_console.h
& Project Settings (€] hello_world_s.c &2 = 8 o arm_cmseh
3%, Binaries R B S 2 beardh
) Includes (@brief Main function I veneer table.h
@ cMsis nt main(void) 2 tzm_config.h
2 board o pin_muxh
component uncptr_ns ResetHandler_ns; clock_config.
2 comp Funcptr_ dler_ 5 clock configh
@ device # NON_SECURE_START
8 drivers /* Init board hardware. */ @ funcpte_ns: void(*)(void
BOARD_InitPins(); - ;
(2 flash_config BOARD_BootCLockRUN( )5 & SysteminitHook{void) - void
(3 libs BOARD_InitDebugConsole(); @ main{void) : int
~ (2 source
[F) Tl el ooz v PRINTF("Hello from secure world!\r\n");
< >
. /* Set non-secure main stack (MSP_NS) */
O Quic... & B __TZ set_MSP_NS(*((uint32_t *)(NON_SECURE_START)));
/* Set non-secure vector table */ v
. ~ < >
- MCUXpresso IDE - Quicks
15 ) Project: evimimut393_hello_world_s B Comsole 12 & . =0 g Memoy i =o|
~ Create or import a project = | = BE B @@I‘ = Brs. =.|| E| ] <§‘)| - =

- B8 New project...
Import SDK example(s)...
® Import project(s) from file systel

evkmimurt595_hello_world_s LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] evkmimxrt595_hello v M
[MCUXpresso Semihosting Telnet console for 'evkmimxrt595_hello_world_s LinkServer Debug » =

~ Build your project
& Build
& Clean
~ Debug your project LSihg

< > < >

Writable SmartInsert | 25:8 () NXP MIMXRT5955* (evkmimur..world s)

Now, the TrustZone sessions should be opened. Click Resume. The hello_ world TrustZone appli-
cation then starts running, and the secure application starts the non-secure application during
runtime.

Run a demo application using IAR This section describes the steps required to build, run, and
debug example applications provided in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and

the IAR toolchain should correspond to the latest supported version, as described in the MCUX-
presso SDK Release Notes.

Build an example application Do the following steps to build the hello_world example appli-
cation.

1. Open the desired demo application workspace. Most example application workspace files
can be located using the following path:

<install dir>/boards/<board_name>/<example_type>/<application name> /iar
Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world — debug.
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Release
B (7 hello_world - Deb... v

(I board
[(Jdoc
(I drivers
([ source
(1 startup
[(Jutilities
(1 Output

3. To build the demo application, click Make, highlighted in red in following figure.

Debugy

Files = I
& @ hello_world - Debug v

i board

M doc

i drivers

M source

B startup

i utilities

B Qutput

4. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.
2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the
debug COM port (to determine the COM port number, see How to determine COM port).
Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG_ UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits
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PuTTY Configuration
g

Category:
= Session ‘ Basic options for your PuTTY session
= Terminal Specify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COM4 115200
- Features CoRmECTon Ty
= Window Onnecton type:
- Appearance (ORaw  (OTelnet (O Rlogin () SSH | (@ Serial
TBZ':?ST;;E" Load, save or delete a stored session
.- Selection Saved Sessions
- Colours
= Connection :
. Data Default Settings Load
- Proxy
- Telnet Save
- Rlogin
[ SSH Delete
- Serial
Close window on exit:
() Aways () Never (®) Only on clean exit
About Open Cancel

4. 1stop bit

4. In IAR, click the Download and Debug button to download the application to the target.

-

<Q>%5»=< U >0 BO-=|0

5. The application is then downloaded to the target and automatically runs to the main() func-

tion.
NMNEB@ = XEB0 9C »<Q>%(2< B[N0 BO-=EGCcO KA sl v @9~ dh;
Workspace v ax ‘hello_world.c x ‘
Debug » | |main()
41
Files & . LD [ JHeti s b b s ek R R R R AR AR A AR A AR AR AR R R R R R R AR E AR AR R AR AR R R AR AR SRR R R
=] ‘helluiwurld - Debug L4 43 T # Prototypes
5 board P R /
i doc 45
5 drivers L6 [ J# 5 +H R R bR Rk E AR SRR R R AR R AT R EFE R kb b kb kbR bR AR E AR A RE AR AR R E R R
M source 47 Cods
& s T P y
-:ummes ;3 T f(*rﬂ.‘nr*'ef Main function
 Output oy o
2 52 |int main(void)
53E {
54 char ch;
55
56 /% Init board hardvare. */
57 /* attach 12 MHz clock to FLEXCOMMO (debug console) */
£ CLOCK_AttachClk (BORRD DEBUG_UART_CLE_ATTACH):
59
&0 BORRD_InitPina():
1 BORRD_BootClockFROHF4EM()
&2 BOARD_InitDebugConsole () ;
6. Run the code by clicking the Go button.
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Q> &5=< 0> BO-=GcO_ inIrsdr]oa-_i&f;

= -

7. The hello_ world application is now running and a banner is displayed on the terminal. If it
does not appear, check your terminal settings and connections.

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board__name>/multicore_examples/<application name>/<core_ type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
IAR workspaces are located in this folder:

<install dir>/boards/lpcxpresso54114 /multicore examples/hello_ world /cmOplus/iar/hello_world cmOplus.
SeWW

<install_dir> /boards/Ipcxpresso54114 /multicore__examples/hello_world/cm4 /iar /hello_world _cm4.eww

Build both applications separately by clicking the Make button. Build the application for the
auxiliary core (cmOplus) first, because the primary core application project (cm4) must know
the auxiliary core application binary when running the linker. It is not possible to finish the
primary core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger handles flashing both pri-
mary and the auxiliary core applications into the SoC flash memory. To download and run the
multicore application, switch to the primary core application project and perform steps 1 -4 as
described in Run an example application. These steps are common for both single core and
dual-core applications in IAR.

After clicking the “Download and Debug” button, the auxiliary core project is opened in the sep-
arate EWARM instance. Both the primary and auxiliary images are loaded into the device flash
memory and the primary core application is executed. It stops at the default C language entry
point in the *main()*function.

Run both cores by clicking the “Start all cores” button to start the multicore application.

0: O - l:lilv

During the primary core code execution, the auxiliary core is released from the reset. The
hello_world multicore application is now running and a banner is displayed on the terminal.
If this does not appear, check the terminal settings and connections.
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~ COM25:115200baud - Tera Term C=aran N
File Edit Setup Contrel Window KanjiCode Help

N

Hello World from the Primary Core! P

Starting Secondary core. _
The secondary core application has been started.

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has
been released from the reset and is running correctly. When both cores are running, use the
“Stop all cores”, and “Start all cores” control buttons to stop or run both cores simultaneously.

ke v LiW~-| o o

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install dir>/boards/<board name> /trustzone examples/<application name>/[<core_type>]/iar/
—<application_name>_ns/iar

<install _dir>/boards/<board_name> /trustzone examples/<application name>/[<core_type>]/iar/
—»<application_ name>_ s/iar

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World IAR workspaces are located in this folder:

<install dir>/boards/<board_name> /trustzone_ examples/hello_ world/hello_world ns/iar/hello_world
< NS.eWW

<install _dir>/boards/<board_name> /trustzone_ examples/hello_ world /hello_ world__s/iar/hello_ world_s.
—CWW

<install dir>/boards/<board_name> /trustzone examples/hello_world/hello_world s/iar/hello_world.eww

This project hello_ world.eww contains both secure and non-secure projects in one workspace and
it allows the user to easily transition from one project to another. Build both applications sep-
arately by clicking Make. It is requested to build the application for the secure project first,
because the non-secure project must know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since
CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files, so debugging can be fully managed from the secure project.
To download and run the TrustZone application, switch to the secure application project and
perform steps 1 — 4 as described in Run an example application. These steps are common for
both single core, and TrustZone applications in IAR. After clicking Download and Debug, both
the secure and non-secure images are loaded into the device memory, and the secure application
is executed. It stops at the Reset_ Handler function.
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9 hello_world - I1AR Embedded Workbench IDE - Arm 832.1

File Edit View Project Debug Disassembly CMSIS-DAP Tools Window Help

B 1Nk - Q £ = < > RO = ©_in 3ol A - iEm s W,
Waorkspace w o X | startup LPC55569 cm33 corel.s X hello world ns.c

hella_world_s - debug v

" Vectors_End

Files o . — -

= [l hello_warld

@hello_world_s-de_. _ Vectors EQU _ wector_table

® hello_world_ns-debug  « _ Vectors Size EQU _ Vectors End - _ Vectors

2: Default interrupt handlers.

‘THUMB

PUBWEAK Reset_Handler
SECTION .text:CODE:REORDER:NOROOT (2)
Reset_Handler

E | CESID I ; Mask interrupts
LDR RO, =s3fb (CSTACK)
MSR MSPLIM, RO
LDR RO, =SystemlInit
BLX RO
CPSIE I s Ummask interrupts
LDR R0, =_ iar program start
BX RO

PUBWEAK NMI Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HMI_Handler

B .

PUBWEAK HardFault Handler

SECTION .text:CODE:REORDER:NOROOT (1)
HardFault_Handler

B .

Run the code by clicking Go to start the application.

The TrustZone hello_ world application is now running and a banner is displayed on the terminal.
If this is not true, check your terminal settings and connections.

COMST7 - PuTTY - O *

Note: If the application is running in RAM (debug/release build target), in Op-
tions**>**Debugger > Download tab, disable Use flash loader(s). This can avoid the _ns
download issue on i. MXRT500.
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File Edit View Project CMSIS-DAP Tools Window Help

DOEM@ = XK OC -LL Q> B s L >0 B®-= 0 » Cidh
x
Weispia =2 Options for node "hello_world_s" X
hello_world_s - debug ~ |
Files =
£ Ohello_world HE Factory Settings
L Jhello_world_s - debug - General Options
L1 @ hello_world_ns - debug v Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Extra Options Multicors  Plugins
Assembler .
Output Converter Verify download
Custom Build [[] Suppress download
Buldifctions [ Use flash loader(s)
Linker
Debugger Overmide default .board file
Simulator $TOOLKIT_DIR$\config\flashloader\NXP\FlashIMXRT
CADI
CMSIS DAP B
GDB Server
I-jet/ITAGjet Perform mass erase before flashing
J-Link/J-Trace
T1 Stellaris
Nu-Link
Owverview  hello_world_s | hello_world_ns PE micro
ST-LINK =
Debug Log Third-Party Driver
- TI MSP-FET o
Log TIXDS
Wed Jan 09, 2019 18:03:35: MultiCore: Sy B
& Wed Jan 09, 20719 18:03:35: There was 1
A\ Wed Jan 09, 2019 18:03:35: Could not go to frain'.

Run a demo using Keil MDK/uVision This section describes the steps required to build, run,
and debug example applications provided in the MCUXpresso SDK.

Install CMSIS device pack After the MDK tools are installed, Cortex Microcontroller Software
Interface Standard (CMSIS) device packs must be installed to fully support the device from a
debug perspective. These packs include things such as memory map information, register defi-
nitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS
pack.

1. Open the MDK IDE, which is called pVision. In the IDE, select the Pack Installer icon.

kA uvision
File Edit WView Project Flash Debug Peripherals Tools SVCS Window

| % | K| &2 ¢ ~[@)

2. After the installation finishes, close the Pack Installer window and return to the pVision
IDE.

Build an example application

1. Open the desired example application workspace in:

<install dir>/boards/<board name>/<example type>/<application name>/mdk

The workspace file is named as <demo_ name>.uvmpw. For this specific example, the actual
path is:
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2. To build the demo project, select Rebuild, highlighted in red.

(¥ ﬂl@‘: | "fﬂ hello_world Debug & £\|

3. The build completes without errors.

Run an example application To download and run the application, perform these steps:

1. Ensure the host driver for the debugger firmware has been installed. See On-board debug-
ger.

2. Connect the development platform to your PC via USB cable using USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm and connect to the
debug serial port number (to determine the COM port number, see How to determine COM
port. Configure the terminal with these settings:

1. 115200 or 9600 baud rate, depending on your board (reference
BOARD_ DEBUG UART BAUDRATE variable in the board.h file)

2. No parity
3. 8 data bits

Category:

—I Session Basic options for your PuTTY session
~ Loggng Specify the destinat t t

1 Terminal pecify the destination you want to connect to
- Keyboard Serial line Speed
- Bell COoM4 115200
- Features g onTy

= Window onnection type:
. Appearance (ORaw () Telnet ()Rlogin ( )SSH | (@) Serial
~Behaviour Load, save or delete a stored session
- Translation
.- Selection Saved Sessions
- Colours

= Connection -
- Data Default Settings Load
Proxy
- Telnet Save
- Rlogin

[+ SSH Delete
- Serial
Close window on exit:
(JAways ( )Never (@) Only on clean exit
About Open Cancel

4. 1stop bit

4. In uVision, after the application is built, click the Download button to download the appli-
cation to the target.

30 Chapter 1. LPCXpresso802



MCUXpresso SDK Documentation, Release 25.12.00

......

| LOAD

$4 ] hello_world Debug |E| gg
Project i |
=RE? WorkSpace

%8 Project: hello_world

[
|

5. After clicking the Download button, the application downloads to the target and is running.
To debug the application, click the Start/Stop Debug Session button, highlighted in red.

NEE@| 2 @9 o e |mnnn|EFE s o veumsoorre:] 2 »|[@)
#Bolneeu » DRERI-OI2-8-0- 8- x-

Registers n B Disassembly
Register |Value «| | Joxo0003802 4770 BX ir
=BG ml 57t BOARD InitPins():
! xDD003805 0x00003804 FT7FDFAC6é BL.W BOARD InitPins (0x00000D94)
g sa: BORRD BootCleckRUN () ;
!OxOOQDS&OS F7FDFAEBA BL.W BOARD BootClockRUN (0x00000D20)
59: BOARD InitDebugConsole();
A
<[
) hetlo.worid || ] startup MKG4Fi2s
52 int main (void)
53 [H{
54 char ch;
535
56 /* Init board hardware. */
57 BOARD InitPin=():
58 BOBRD_BrJot.ClockRUH (-
i - 59 BOARD InitDebugConsole():
! 00003804 &n -
R P S (61000000 61 PRINTF ("hello world.\r\n"):
Banked &2
' System 3 while (1)

6. Run the code by clicking the Run button to start the application.

ol ve oo

[

Registers n i3

Run (F5)
Register Start code execution
=l Core

R1 Ox1FFF044(

The hello_ world application is now running and a banner is displayed on the terminal. If
this does not appear, check your terminal settings and connections.

1.2. Getting Started with MCUXpresso SDK Package 31



MCUXpresso SDK Documentation, Release 25.12.00

hello world.

|

Build a multicore example application This section describes the steps to build and run a
dual-core application. The demo applications workspace files are located in this folder:

<install_dir> /boards/<board name>/multicore_examples/<application_name>/<core_ type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World
Keil MSDK/uVision workspaces are located in this folder:

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cmOplus/mdk /hello_ world__
—cmOplus.uvmpw

<install_dir> /boards/Ipcxpresso54114/multicore__examples/hello_world /cm4/mdk /hello_ world__cm4.uvmpw

Build both applications separately by clicking the Rebuild button. Build the application for the
auxiliary core (cmOplus) first because the primary core application project (cm4) must know the
auxiliary core application binary when running the linker. It is not possible to finish the primary
core linker when the auxiliary core application binary is not ready.

Run a multicore example application The primary core debugger flashes both the primary
and the auxiliary core applications into the SoC flash memory. To download and run the mul-
ticore application, switch to the primary core application project and perform steps 1 — 5 as
described in Run an example application. These steps are common for both single-core and
dual-core applications in pVision.

Both the primary and the auxiliary image is loaded into the device flash memory. After clicking
the “Run” button, the primary core application is executed. During the primary core code execu-
tion, the auxiliary core is released from the reset. The hello_world multicore application is now
running and a banner is displayed on the terminal. If this does not appear, check your terminal
settings and connections.

' COM25:115200baud - Tera Term VT | (5 S

|Ei|e Edit Setup Contrel Window KanjiCode Help

Hello World from the Primary Core!

Starting Secondary core. _
The secondary core application has been started.
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An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been
released from the reset and is running correctly.

Attach the running application of the auxiliary core by opening the auxiliary core project in
the second pVision instance and clicking the “Start/Stop Debug Session” button. After this, the
second debug session is opened and the auxiliary core application can be debugged.

File Edit View Project Flash Debug Peripherals Tools SVCS  Window Help

EH@| » @ |« | = | & e [@)
EBolwren v |[ORBEGR-(E)2-8- 2 8- -
Registers o @ Disassembly
Register [ Value | 51: for (i = 0; i < 1000000; ++i)
52: ]
—I Core :
— ——— 0x20010B52 9000 STR r0, [=p, $0x00]
0x20010B5C EOQO3 B 0x20010B66
A1 (<000F4240 = sam (MHOE") : fe deiay o/
R2 (20000000 54: — i o e
Ei Eigggginﬂg O0x20010BSE BFOO HCP
=4 Far i = N+ i « 10000AMN- +341)
R5 (00000001 |
R& bc20010C0C
R7 U<FFFFEFFE _] hello_world_corel.c
At QeFFFFFFFF T[] [ e e e e e e o ke ok o ek R o o ok o e e Rk ok kR
RS bFFFFFFFF 3g * Prototypes
R10 QeFFFFFFFF 40 o e e e e e e e e e o R R R
R11 (FFFFFFFF an
R12 QeFFFFFFFF GO ] [ r R AR AR R AR RN AR AN A AR RN A IR RA N AR ANAARRRA R RR A AR
RI3(SP) (20026770 s T . Code
R14 (LR} (c20010BSF P
RI5(C)  (x20010868 ...
* PSR (01000000 46T * @brief Function to create delay for Led blink.
+- Banked 47 ny
H System 48 void delay (void)
=l Intermal =l
Mode Thread 50 volatile wint32 © i = 0;
Privilege Privileged B> 51 for (i = 0; i < 1000000; +4+i)
Stack MSP 52 {
53 _ asm("NOP™); /% delay */
54 }
55
56

Arm describes multicore debugging using the NXP LPC54114 Cortex-M4/MO0+ dual-core processor
and Keil uVision IDE in Application Note 318 at www.keil.com/appnotes/docs/apnt_318.asp. The
associated video can be found here.

Build a TrustZone example application This section describes the particular steps that must
be done in order to build and run a TrustZone application. The demo applications workspace
files are located in this folder:

<install _dir>/boards/<board_name> /trustzone_examples/<application_name>/<application_name>_ ns/

<install dir>/boards/<board name>/trustzone examples/<application name>/<application name>_ s/
— mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello
World Keil MSDK/uVision workspaces are located in this folder:

<install _dir>/boards/<board_ name> /trustzone__examples/hello_world/hello_ world_ns/mdk/hello_ world__
<,NS.UVMPW

<install _dir> /boards/<board_name> /trustzone_examples/hello_ world /hello_ world_s/mdk/hello_ world_ s.
< UuUvmpw
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<install dir>/boards/<board name>/trustzone examples/hello_world/helloworld s/mdk/hello_world.
—uvmpw

This project hello_ world.uvmpw contains both secure and non-secure projects in one workspace
and it allows the user to easily transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application
for the secure project first, because the non-secure project must know the secure project since
CMSE library is running the linker. It is not possible to finish the non-secure project linker with
the secure project because CMSE library is not ready.

Run a TrustZone example application The secure project is configured to download both
secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and
perform steps as described in Run an example application. These steps are common for single
core, dual-core, and TrustZone applications in pVision. After clicking Download and Debug,
both the secure and non-secure images are loaded into the device flash memory, and the secure
application is executed. It stops at the main() function.

K2 C\nxp\EVK-MIMXRT 395\ boards\evimimzxrt393\demo_apps\hello_world\mdk\hello_werld uvprojx - pVision - [m] X 1
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Eda =% I == @ DEMO_NONSEC_ADDRESw 5} 9% | @) - | @ S &-a-| A |
HEO By DB EakE-8-3-R-8- 8- 8- |
Registers 2 E Disassembly n@f
Redister Value - 31z "~
[+ 32: char ch: '
33: F
34: /* Init board hardware. */
35: F
000082850 F7EDE BOARD_InitPins (0x000B073C) v
( , S N
0<0CO0F301 ] hello_worid.c v X
R7 (KE000EDOB I T
RE (R5ACICI5A 27 9/
R9 (xC33CC33C Z-ELT * @bri
R10 (x5AC3C3BA 29 ®
R11 (00000000 30 int main(void)
R12 40001010 =T |
R13(SP) 20300000 32
R14(LR) 0x00D3053D 33
R15(PC) 0x00D82250 34
Gl PSR (x69000000 35
- Banked 36
# - Secure L 37
- Non-Secure 38
= Intemal 38
Mode Secure Thr 40
Privilege Privieged 41 while (1) -
(=] Project | = Registers < 2
Command o E Call Stack = Locals n @
A | Name Location/Value Type
Setup(): // Setup for Running
= % main 0x00082850 int {0
g, main ¢ ch <nat in scope> auto - uchar
v
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess ‘},—‘J[a\lstack—mcals j em
CMSIS-DAP ARMYS-M Debugger | Debug: Secure  CPU: Secure  t1: 0.00009300 sec

Run the code by clicking Run to start the application.

The hello_ world application is now running and a banner is displayed on the terminal. If not,
check your terminal settings and connections.

E® COMST - PuTTY
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Run a demo using ARMGCC / VSCODE This section describes the steps to run an example
application from the SDK archive using the ARMGCC / VSCODE toolchain.

Refer to the running a demo using MCUXpresso VSC section for detailed instructions on setting
up and configuring your project in Visual Studio Code.

Refer to the CLI section for detailed instructions on building and running your project from the
command line.

MCUXpresso Config Tools MCUXpresso Config Tools can help configure the processor and gen-
erate initialization code for the on chip peripherals. The tools are able to modify any existing
example project, or create a new configuration for the selected board or processor. The gener-
ated code is designed to be used with MCUXpresso SDK version 24.12.00 or later.

Following table describes the tools included in the MCUXpresso Config Tools.

Config Tool Description

m —
Q 3
(] 1

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

als tools

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Peripher- For configuration of other peripherals @

Device Configures Device Configuration Data (DCD) contained in the program
Config- image that the Boot ROM code interprets to set up various on-chip pe-
uration ripherals prior to the program launch.

tool

MCUZXpresso Config Tools can be accessed in the following products:

* Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and de-
bugger which makes it the easiest way to begin the development.

« Standalone version available for download from www.nxp.com/mcuxpresso. Recom-
mended for customers using IAR Embedded Workbench, Keil MDK pVision, or Arm GCC.

* Online version available on mcuxpresso.nxp.com. Recommended doing a quick evalua-
tion of the processor or use the tool without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE
Config Tools installation folder that can help start your work.

How to determine COM port Thissection describes the steps necessary to determine the debug
COM port number of your NXP hardware development platform. All NXP hoards ship with a
factory programmed, onboard debug interface, whether it is based on MCU-Link or the legacy
OpenSDA, LPC-Link2, P&E Micro OSJTAG interface. To determine what your specific board ships
with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB
Serial is connected to the host:
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$ dmesg | grep "ttyUSB”
[503175.307873] usb 3-12: cp210x converter now attached to ttyUSBO
[503175.309372] usb 3-12: c¢p210x converter now attached to ttyUSB1
There are two ports, one is for core0 debug console and the other is for corel.

2. Windows: To determine the COM port open Device Manager in the Windows operating
system. Click the Start menu and type Device Manager in the search bar.

In the Device Manager, expand the Ports (COM & LPT) section to view the available ports.
The COM port names are different for all the NXP boards.

1. CMSIS-DAP/mbed/DAPLInk interface:
4 7% Ports (COM &L LPT)
v W Ports (COM & LPT) T %' mbed Serial Port (COM41)

ﬁ MCL-Link VCom Part (COMT)

2. P&E Micro:
473 Ports (COM & LPT)

3. J-Link:
4 77" Ports (COM & LPT)

4. P&E Micro OSJTAG:

475 Ports (COM & LPT)

5. MRB-KW01:
4 75" Ports (COM & LPT)

On-board Debugger This section describes the on-board debuggers used on NXP development
boards.

On-board debugger MCU-Link MCU-Link is a powerful and cost effective debug probe that can
be used seamlessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support
CMSIS-DAP protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be
used to provide a serial connection between the target MCU and a host computer. MCU-Link
features a high-speed USB interface for high performance debug. MCU-Link is compatible with
Windows, MacOS and Linux. A free utility from NXP provides an easy way to install firmware
updates.

On-board MCU-Link debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.
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* If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.

Updating MCU-Link firmware This firmware in this debug interface may be updated using
the host computer utility called MCU-Link. This typically used when switching between the de-
fault debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new
releases of these. This section contains the steps to reprogram the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
MCU-Link debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the MCU-Link utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto MCU-Link or NXP boards. The utility can be
downloaded from MCU-Link.

These steps show how to update the debugger firmware on your board for Windows operating
system.

1. Install the MCU-Link utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the MCU-Link installation
directory (<MCU-Link install dir>).

1. To program CMSIS-DAP debug firmware: <MCU-Link install dir>/scripts/
program__ CMSIS

2. To program J-Link debug firmware: <MCU-Link install dir> /scripts/program_ JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger LPC-Link LPC-Link 2 is an extensible debug probe that can be used seam-
lessly with MCUXpresso IDE, and is also compatible with 3rd party IDEs that support CMSIS-DAP
protocol. MCU-Link also includes a USB to UART bridge feature (VCOM) that can be used to pro-
vide a serial connection between the target MCU and a host computer. LPC-Link 2 is compati-
ble with Windows, MacOS and Linux. A free utility from NXP provides an easy way to install
firmware updates.

On-board LPC-Link 2 debugger supports CMSIS-DAP and J-Link firmware. See the table in Default
debug interfaces to determine the default debug interface that comes loaded on your specific
hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

¢ If using J-Link with either a standalone debug pod or MCU-Link, install the J-Link software
(drivers and utilities) from www.segger.com/jlink-software.html.
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Updating LPC-Link firmware The LPCXpresso hardware platform comes with a CMSIS-DAP-
compatible debug interface (known as LPC-Link2). This firmware in this debug interface may
be updated using the host computer utility called LPCScrypt. This typically used when switch-
ing between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this
firmware with new releases of these. This section contains the steps to reprogram the debug
probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5
on some boards, but consult the board user manual or schematic for specific jumper number),
LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the
CMSIS-DAP firmware to the probe before flash memory programming (after clicking Debug).
Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso
IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest
versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility
can be downloaded from LPCScrypt.

These steps show how to update the debugger firmware on your board for Windows operating
system. For Linux OS, follow the instructions described in LPCScrypt user guide (LPCScrypt,
select LPCScrypt, and then the documentation tab).

1. Install the LPCScript utility.

2. Unplug the board’s USB cable.

3. Make the DFU link (install the jumper labeled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).
5

. Open a command shell and call the appropriate script located in the LPCScrypt installation
directory (<LPCScrypt install dir>).

1. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/
program__CMSIS

2. To program J-Link debug firmware: <LPCScrypt install dir> /scripts/program_ JLINK
6. Remove DFU link (remove the jumper installed in Step 3).

7. Repower the board by removing the USB cable and plugging it in again.

On-board debugger OpenSDA OpenSDA/OpenSDAv2 is a serial and debug adapter that is built
into several NXP evaluation boards. It provides a bridge between your computer (or other USB
host) and the embedded target processor, which can be used for debugging, flash programming,
and serial communication, all over a simple USB cable.

The difference is the firmware implementation: OpenSDA: Programmed with the proprietary
P&E Micro developed bootloader. P&E Micro is the default debug interface app. OpenSDAv2:
Programmed with the open-sourced CMSIS-DAP/mbed bootloader. CMSIS-DAP is the default de-
bug interface app.

See the table in Default debug interfaces to determine the default debug interface that comes
loaded on your specific hardware platform.

The corresponding host driver must be installed before debugging.

* For boards with CMSIS-DAP firmware, visit developermbed.org/handbook/Windows-
serial-configuration and follow the instructions to install the Windows operating system
serial driver. If running on Linux OS, this step is not required.

* For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro
Hardware Interface Drivers package.
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Updating OpenSDA firmware Any NXP hardware platform that comes with an OpenSDA-
compatible debug interface has the ability to update the OpenSDA firmware. This typically
means to switch from the default application (either CMSIS-DAP or P&E Micro) to a SEGGER
J-Link. This section contains the steps to switch the OpenSDA firmware to a J-Link interface.
However, the steps can be applied to restoring the original image also. For reference, OpenSDA
firmware files can be found at the links below:

* J-Link: Download appropriate image from www.segger.com/opensda.html. Choose the ap-
propriate J-Link binary based on the table in Default debug interfaces. Any OpenSDA v1.0
interface should use the standard OpenSDA download (in other words, the one with no
version). For OpenSDA 2.0 or 2.1, select the corresponding binary.

» CMSIS-DAP: CMSIS-DAP OpenSDA firmware is available at www.nxp.com/opensda.

* P&E Micro: Downloading P&E Micro OpenSDA firmware images requires registration with
P&E Micro (www.pemicro.com).

Perform the following steps to update the OpenSDA firmware on your board for Windows and
Linux OS users:

1. Unplug the board’s USB cable.

2. Press the Reset button on the board. While still holding the button, plug the USB cable back
into the board.

3. When the board re-enumerates, it shows up as a disk drive called MAINTENANCE.

"M Computer

#‘ Primary (C:]
e MAINTENAMCE (E:)

4. Drag and drop the new firmware image onto the MAINTENANCE drive.

Note: If for any reason the firmware update fails, the board can always reenter mainte-
nance mode by holding down Reset button and power cycling.

These steps show how to update the OpenSDA firmware on your board for Mac OS users.
1. Unplug the board’s USB cable.

2. Press the Reset button of the board. While still holding the button, plug the USB cable back
into the board.

3. For boards with OpenSDA v2.0 or v2.1, it shows up as a disk drive called BOOTLOADER in
Finder. Boards with OpenSDA v1.0 may or may not show up depending on the bootloader
version. If you see the drive in Finder, proceed to the next step. If you do not see the drive
in Finder, use a PC with Windows OS 7 or an earlier version to either update the OpenSDA
firmware, or update the OpenSDA bootloader to version 1.11 or later. The bootloader up-
date instructions and image can be obtained from P&E Microcomputer website.

4. For OpenSDA v2.1 and OpenSDA v1.0 (with bootloader 1.11 or later) users, drag the new
firmware image onto the BOOTLOADER drive in Finder.

5. For OpenSDA v2.0 users, type these commands in a Terminal window:

> sudo mount -u -w -o sync /Volumes/BOOTLOADER
> ¢p -X <path to update file> /Volumes/BOOTLOADER

Note: If for any reason the firmware update fails, the board can always reenter bootloader
mode by holding down the Reset button and power cycling.

On-board debugger Multilink An on-board Multilink debug circuit provides a JTAG interface
and a power supply input through a single micro-USB connector. It is a hardware interface that
allows PC software to debug and program a target processor through its debug port.
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The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

On-board debugger OSJTAG An on-board OSJTAG debug circuit provides a JTAG interface and
a power supply input through a single micro-USB connector. Itis a hardware interface that allows
PC software to debug and program a target processor through its debug port.

The host driver must be installed before debugging.

* See PE micro to download and install the P&E Micro Hardware Interface Drivers package.

Default debug interfaces The MCUXpresso SDK supports various hardware platforms that
come loaded with various factory programmed debug interface configurations. The follow-
ing table lists the hardware platforms supported by the MCUXpresso SDK, their default debug
firmware, and any version information that helps differentiate a specific interface configuration.

Hardware platform Default debugger firmware On-board debugger probe

EVK-MCIMX7ULP N/A N/A
EVK-MIMX8MM N/A N/A
EVK-MIMX8MN N/A N/A
EVK-MIMX8MNDDR3L N/A N/A
EVK-MIMX8MP N/A N/A
EVK-MIMX8MQ N/A N/A
EVK-MIMX8ULP N/A N/A
EVK-MIMXRT1010 CMSIS-DAP LPC-Link2
EVK-MIMXRT1015 CMSIS-DAP LPC-Link2
EVK-MIMXRT1020 CMSIS-DAP LPC-Link2
EVK-MIMXRT1064 CMSIS-DAP LPC-Link2
EVK-MIMXRT595 CMSIS-DAP LPC-Link2
EVK-MIMXRT685 CMSIS-DAP LPC-Link2
EVK9-MIMX8ULP N/A N/A
EVKB-IMXRT1050 CMSIS-DAP LPC-Link2
FRDM-K22F CMSIS-DAP OpenSDA v2
FRDM-K32L2A4S CMSIS-DAP OpenSDA v2
FRDM-K32L2B CMSIS-DAP OpenSDA v2
FRDM-K32L3A6 CMSIS-DAP OpenSDA v2
FRDM-KE02Z40M P&E Micro OpenSDA v1
FRDM-KE15Z CMSIS-DAP OpenSDA v2
FRDM-KE16Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z CMSIS-DAP OpenSDA v2
FRDM-KE17Z512 CMSIS-DAP MCU-Link
FRDM-MCXA153 CMSIS-DAP MCU-Link
FRDM-MCXA156 CMSIS-DAP MCU-Link
FRDM-MCXA266 CMSIS-DAP MCU-Link
FRDM-MCXA344 CMSIS-DAP MCU-Link
FRDM-MCXA346 CMSIS-DAP MCU-Link
FRDM-MCXA366 CMSIS-DAP MCU-Link
FRDM-MCXC041 CMSIS-DAP MCU-Link
FRDM-MCXC242 CMSIS-DAP MCU-Link
FRDM-MCXC444 CMSIS-DAP MCU-Link
FRDM-MCXE247 CMSIS-DAP MCU-Link
FRDM-MCXE31B CMSIS-DAP MCU-Link
FRDM-MCXN236 CMSIS-DAP MCU-Link
FRDM-MCXN947 CMSIS-DAP MCU-Link
FRDM-MCXW23 CMSIS-DAP MCU-Link

continues on next page
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Table 1 - continued from previous page

Hardware platform

Default debugger firmware

On-board debugger probe

FRDM-MCXW71 CMSIS-DAP MCU-Link
FRDM-MCXW72 CMSIS-DAP MCU-Link
FRDM-RW612 CMSIS-DAP MCU-Link
IMX943-EVK N/A N/A
IMX95LP4XEVK-15 N/A N/A
IMX95LPD5EVK-19 N/A N/A
IMX95VERDINEVK N/A N/A
KW45B417Z-EVK CMSIS-DAP MCU-Link
KW45B417-1.0C CMSIS-DAP MCU-Link
KW47-EVK CMSIS-DAP MCU-Link
KW47-LOC CMSIS-DAP MCU-Link
LPC845BREAKOUT CMSIS-DAP LPC-Link2
LPCXpresso51U68 CMSIS-DAP LPC-Link2
LPCXpresso54628 CMSIS-DAP LPC-Link2
LPCXpresso54S018 CMSIS-DAP LPC-Link2
LPCXpresso54S018M CMSIS-DAP LPC-Link2
LPCXpresso55S06 CMSIS-DAP LPC-Link2
LPCXpresso55S16 CMSIS-DAP LPC-Link2
LPCXpresso55S28 CMSIS-DAP LPC-Link2
LPCXpresso55S36 CMSIS-DAP MCU-Link
LPCXpresso55S69 CMSIS-DAP LPC-Link2
LPCXpresso802 CMSIS-DAP LPC-Link2
LPCXpresso804 CMSIS-DAP LPC-Link2
LPCXpresso824MAX CMSIS-DAP LPC-Link2
LPCXpresso845MAX CMSIS-DAP LPC-Link2
LPCXpresso860MAX CMSIS-DAP LPC-Link2
MC56F80000-EVK P&E Micro Multilink
MC56F81000-EVK P&E Micro Multilink
MC56F83000-EVK P&E Micro OSJTAG
MCIMX93-EVK N/A N/A
MCIMX93-QSB N/A N/A
MCIMX93AUTO-EVK N/A N/A
MCX-N5XX-EVK CMSIS-DAP MCU-Link
MCX-N9XX-EVK CMSIS-DAP MCU-Link
MCX-W71-EVK CMSIS-DAP MCU-Link
MCX-W72-EVK CMSIS-DAP MCU-Link
MIMXRT1024-EVK CMSIS-DAP LPC-Link2
MIMXRT1040-EVK CMSIS-DAP LPC-Link2
MIMXRT1060-EVKB CMSIS-DAP LPC-Link2
MIMXRT1060-EVKC CMSIS-DAP MCU-Link
MIMXRT1160-EVK CMSIS-DAP LPC-Link2
MIMXRT1170-EVKB CMSIS-DAP MCU-Link
MIMXRT1180-EVK CMSIS-DAP MCU-Link
MIMXRT685-AUD-EVK  CMSIS-DAP LPC-Link2
MIMXRT700-EVK CMSIS-DAP MCU-Link
RD-RW612-BGA CMSIS-DAP MCU-Link
TWR-KM34Z50MV3 P&E Micro OpenSDA v1
TWR-KM34Z75M P&E Micro OpenSDA v1
TWR-KM35Z275M CMSIS-DAP OpenSDA v2
TWR-MC56F8200 P&E Micro OSJTAG
TWR-MC56F8400 P&E Micro OSJTAG

How to define IRQ handler in CPP files With MCUXpresso SDK, users could define their own
IRQ handler in application level to override the default IRQ handler. For example, to override
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the default PIT_IRQHandler define in startup_ DEVICE.s, application code like app.c can be im-
plement like:

/] ¢
void PIT TRQHandler(void)

{

// Your code

}

When application file is CPP file, like app.cpp, then extern "C” should be used to ensure the func-
tion prototype alignment.

// cpp
extern 7C” {
void PIT_TRQHandler(void);

void PIT TRQHandler(void)
{

// Your code

}

Repository-Layout SDK Package

Development Tools Installation This guide explains how to install the essential tools for de-
velopment with the MCUXpresso SDK.

Quick Start: Automated Installation (Recommended) The MCUXpresso Installer is the
fastest way to get started. It automatically installs all the basic tools you need.

1. Download the MCUXpresso Installer from: Dependency-Installation
2. Run the installer and select “MCUXpresso SDK Developer” from the menu

3. Click Install and let it handle everything automatically

Manual Installation If you prefer to install tools manually or need specific versions, follow
these steps:

Essential Tools

Git - Version Control What it does: Manages code versions and downloads SDK repositories
from GitHub.

Installation:

* Visit git-scm.com

* Download for your operating system

* Run installer with default settings

* Important: Make sure “Add Git to PATH” is selected during installation
Setup:

git config --global user.name ”Your Name”
git config --global user.email ”youremail@example.com”
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Python - Scripting Environment What it does: Runs build scripts and SDK tools.
Installation:

¢ Install Python 3.10 or newer from python.org

* Important: Check “Add Python to PATH” during installation

West - SDK Management Tool What it does: Manages SDK repositories and provides build
commands. The west tool is developed by the Zephyr project for managing multiple repositories.

Installation:

pip install -U west

Minimum version: 1.2.0 or newer

Build System Tools

CMake - Build Configuration What it does: Configures how your projects are built.
Recommended version: 3.30.0 or newer
Installation:

* Windows: Download .msi installer from cmake.org/download

* Linux: Use package manager or download from cmake.org

* macOS: Use Homebrew (brew install cmake) or download from cmake.org

Ninja - Fast Build System What it does: Compiles your code quickly.
Minimum version: 1.12.1 or newer
Installation:

* Windows: Usually included, or download from ninja-build.org

* Linux: sudo apt install ninja-build or download binary

* macOS: brew install ninja or download binary

Ruby - IDE Project Generation (Optional) What it does: Generates project files for IDEs like
IAR and Keil.

When needed: Only if you want to use traditional IDEs instead of VS Code.

Installation: Follow the Ruby environment setup guide

Compiler Toolchains Choose and install the compiler toolchain you want to use:

Toolchain Best For Download Link Environment Vari-
able
ARM GCC (Recom- Most users, free ARM GNU ARMGCC_DIR
mended) Toolchain
IAR EWARM Professional develop- IAR Systems TAR_DIR
ment
Keil MDK ARM ecosystem ARM Developer MDK_ DIR
ARM Compiler Advanced optimization ARM Developer ARMCLANG_ DIR
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Setting Up Environment Variables After toolchain installation, set an environment variable
so the build system locates it:

Windows:

# Example for ARM GCC installed in C:\armgcc
setx ARMGCC_DIR ”C:\armgcc”

Linux/macOS:

# Add to ~/.bashrc or ~/.zshrc
export ARMGCC_DIR="/usr” # or your installation path

Verify Your Installation After installation, verify everything works by opening a termi-
nal/command prompt and running these commands:

# Check each tool - you should see version numbers
git --version

python --version

west --version

cmake --version

ninja --version

arm-none-eabi-gcc --version # (if using ARM GCC)

Troubleshooting Installation Issues “Command not found” errors:

* The tool isn’t in your system PATH

* Solution: Add the installation directory to your PATH environment variable
Python/pip issues:

* Try using python3 and pip3 instead of python and pip

* On Windows, run the Command Prompt as an Administrator
Slow downloads:

* Add timeout option: pip install -U west --default-timeout=1000

* Use alternative mirror: pip install -U west -i https://pypi.tuna.tsinghua.edu.cn/simple

Building Your First Project This guide explains how to build and run your first SDK example
project using the west build system. This applies to both GitHub Repository SDK and Repository-
Layout SDK Package.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* Development board connected via USB

* Build tools installed per Installation Guide

Understanding Board Support Use the west extension to discover available examples for your
board:

west list__project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:
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west list__project -p examples/demo__apps/hello_ world -t armgcc

Basic Build Process

Simple Build Build the hello_world example with default settings:

west build -b your_ board examples/demo__apps/hello_ world

The default toolchain is armgcc, and the build system will select the first debug target as default
if no config is specified.

Specifying Configuration

# Release build
west build -b your_ board examples/demo_ apps/hello_ world --config release

# Debug build (default)
west build -b your_board examples/demo_ apps/hello_ world --config debug

Alternative Toolchains

# IAR toolchain
west build -b your_ board examples/demo__apps/hello_ world --toolchain iar

# Other toolchains as supported by the example

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world --toolchain iar -Dcore__id=cm7 --config
—flexspi_nor_ debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore__examples/hello_ world/primary -Dcore__
—id=cm?7 --config flexspi_nor_debug --toolchain=armgcc -p always

Flash an Application Flash the built application to your board:

west flash -r linkserver

Debug Start a debug session:

west debug -r linkserver

Common Build Options

Clean Build Force a complete rebuild:

west build -b your board examples/demo_apps/hello_ world -p always
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Dry Run See the commands that get executed without running them:

west build -b your_board examples/demo_ apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your_board examples/demo_ apps/hello_ world --device DEVICE_ PART _NUMBER --config,
—release

Project Configuration

CMake Configuration Only Run configuration without building:

west build -b your_ board examples/demo_ apps/hello_ world -Dcore_ id=cm?7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_ board examples/demo__apps/hello_ world -p always

Getting Help View the help information for west build:

west build -h

Check Supported Configurations To see available configuration options and board targets for
an example, refer to the below command:

west list__project -p examples/demo__apps/hello_ world

Next Steps
» Explore other examples in the SDK
* Learn about Command Line Development for advanced options
» Try VS Code Development for integrated development

» Refer Workspace Structure to understand the SDK layout

MCUXpresso for VS Code Development This guide covers using MCUXpresso for VS Code ex-
tension to build, debug, and develop SDK applications with an integrated development environ-
ment.
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Prerequisites
* SDK workspace initialized (GitHub Repository SDK or Repository-Layout SDK Package)
* Development tools installed per Installation Guide
* Visual Studio Code installed
* MCUZXpresso for VS Code extension installed

Extension Installation

Install MCUXpresso for VS Code The MCUXpresso for VS Code extension provides integrated
development capabilities for MCUXpresso SDK projects. Refer to the MCUXpresso for VS Code
Wiki for detailed installation and setup instructions.

SDK Import and Setup

Import Methods The SDK can be imported in several ways. The MCUXpresso for VS Code ex-
tension supports both GitHub Repository SDK and Repository-Layout SDK Package distributions.

Import GitHub Repository SDK Click Import Repository from the QUICKSTART PANEL

File Edit Selection View Go Run Terminal Help

MCUX V5 CODE

~ QUICKSTART PANEL @ @ [O £

~+ Import Repositary

% import Example from RepoMry  Import Local/Remote Repository
£+8 Import Project
3 New Projec
& Application
Installer

)pen Online Documentation

» IMPORTED REPOSITORIES

Note: You can import the SDK in several ways. Refer to MCUXpresso for VS Code Wiki for details.

Select Local if you've already obtained the SDK according to setting up the repo. Select your
location and click Import.

Import Repository X

Import Repository

Location: cA\Repos\mouxsdk

Import
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Import Repository-Layout SDK Package Click Import Repository from the QUICKSTART

File Edit Selection View Go Run Terminal Help

MCLIXP OR VS CODE

v QUICKSTART PANEL ® g
-+ Import Repository
% Import Example from Re LTy Import Local/Remote Repository
8+8 Import Project

T3 MNew Proj rd

@ application Code Hub

pen MCUX Installer
r? ) Open Online Documentation

PANEL ~ IMPORTED REPOSITORIES

Select Local if you’ve already unzipped the Repository-Layout SDK Package. Select your location
and click Import.

Import Repository X

Import Repository

Location: cA\Repos\mouxsdk

Import

Else if the SDK is ZIP archive, select Local Archive, browse to the downloaded SDK ZIP file, fill
the link of expect location, then click Import.

Import Repository

LOCAL ARCHIVE
Archive: c\nxp\SDK_25_09_00_MCXW23 zip

Name: SDK_25_09_00_MCXWwW23

Note: Path doesn't exist. Folder(s) will be created.

Location: c\nxp

/| Create Git repository

Import

Building Example Applications

Import Example Project
1. Click Import Example from Repository from the QUICKSTART PANEL
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O FOR VS CODE

~ QUICKSTART PAMNEL

~+ Import Repository

% Import Example from Repository h
8+8 Import Project
T3 MNew Project Wizard

2. Configure project settings:
* MCUXpresso SDK: Select your imported SDK

* Arm GNU Toolchain: Choose toolchain

Board: Select your target development board

* Template: Choose example category

* Application: Select specific example (e.g., hello_world)

* App type: Choose between Repository applications or Freestanding applications

3. Click Import
< Import Example from Repository X
Import Example from Repository
Repository: c\Repos\mcuxsdk
Toolchain: (Arm GNU Toolchain 13.2.rel1 (Build arm-13.7 .1 20231009 (©

Board: FRDM-MCXC444

FRDM-MCXC444

Template: demo_apps/hello_world

The Helloworld demo prints the "Hello World" string to the terminal using the SDK UART dnivers and repeat what user
input. The purpose of this demo is to show how to use the UART, and to provide a simple project for debugging and
further developmen

Please refer to README file for more details.

App type: Freestanding application

Name: frdmmcxc444_hello_world

Location: \nxp_examples

Note; Path doesn't exist. Folder(s) will be created.

Open readme file after project is imported

import

Application Types Repository Applications:
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* Located inside the MCUXpresso SDK

* Integrated with SDK workspace
Freestanding Applications:

* Imported to user-defined location

* Independent of SDK location

Trust Confirmation VS Code will prompt you to confirm if the imported files are trusted. Click
Yes to proceed.

Building Projects

Build Process
1. Navigate to PROJECTS view
2. Find your project
3. Click the Build Project icon

 PROJECTS M 8- U &
» frdmmcxcd44 hello_world MC o SDK 25.6.0 BT @

Build Project

The integrated terminal will display build output at the bottom of the VS Code window.

Running and Debugging

Serial Monitor Setup

1. Open Serial Monitor from VS Code’s integrated terminal

—+ Open an additional monitor

Monitor Mode = Serial V  View Mode Text  Port COM40 - MCU-Link VCom Port (COM40) v O Baudrate 115200 v

-

lineending €R | PStatMonitoring = ¥a & [ 0 & &

2. Configure serial settings:
* VCom Port: Select port for your device
* Baud Rate: Set to 115200
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Debug Session
1. Navigate to PROJECTS view

2. Click the play button to initiate a debug session

~ PROJECTS
> frdmmexcd44_hello world MCUX

The debug session will begin with debug controls initially at the top of the interface.

Debug Controls Use the debug controls to manage execution:
» Continue: Resume code execution

» Step controls: Navigate through code

hello worldc X

frdmmc

main{

ch;

BOARD InitHardware();
PRINTF("hello

while (1)
ch = GETCHAR
PUTCHAR(ch) ;

» Stop: Terminate debug session

Monitor Output Observe application output in the Serial Monitor to verify correct operation.
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SERIAL MOMIT]
—+ Open an additional monitor

Monitor Mode View Mode Text ' Port COMA40 - MCU-Link VCom Port (COM40)

OIstop Monitoring = #®a & @

---- Opened the serial port COM48 ----
hello world.

Debug Probe Support For comprehensive information on debug probe support and configu-
ration, refer to the MCUXpresso for VS Code Wiki DebugK section.

Project Configuration

Workspace Management The extension integrates with the MCUXpresso SDK workspace
structure, providing access to:

* Example applications
* Board configurations
* Middleware components

* Build system integration

Multi-Project Support The PROJECTS view allows management of multiple imported projects
within the same workspace.

Troubleshooting

Import Issues SDK not detected:
* Verify SDK workspace is properly initialized
* Ensure all required repositories are updated
* Check SDK manifest files are present
Project import failures:
* Confirm board support exists for selected example
* Verify toolchain installation

* Check example compatibility with selected board

Build Problems Build failures:
* Check integrated terminal for error messages
* Verify all dependencies are installed

» Ensure toolchain is properly configured
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Debug Issues Debug session fails:
* Verify board connection via USB
» Check debug probe drivers are installed
* Confirm build completed successfully
Serial monitor problems:
* Verify correct VCom port selection
* Check baud rate configuration (115200)

* Ensure board drivers are installed

Integration with Command Line MCUXpresso for VS Code integrates with the underlying west
build system, allowing seamless integration with command line workflows described in Com-
mand Line Development.

Advanced Features

Project Types The extension supports both repository-based and freestanding project types,
providing flexibility in project organization and SDK integration.

Build System Integration The extension leverages the MCUXpresso SDK build system, provid-
ing access to all build configurations and options available through command line tools.

Next Steps
» Explore additional examples in the SDK
* Review Command Line Development for advanced build options
* Refer MCUXpresso for VS Code Wiki for detailed documentation

* Learn about SDK Architecture for better understanding of the development environment

Command Line Development This guide covers developing with the MCUXpresso SDK using
command line tools and the west build system. This workflow applies to both GitHub Repository
SDK and Repository-Layout SDK Package distributions.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
» Development tools installed per Installation Guide

» Target board connected via USB

Understanding Board Support Use the west extension to discover available examples for your
board:

west list_ project -p examples/demo__apps/hello_ world

This shows all supported build configurations. You can filter by toolchain:
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west list__project -p examples/demo__apps/hello_ world -t armgcc

Basic Build Commands

Standard Build Process Build with default settings (armgcc toolchain, first debug config):

west build -b your_ board examples/demo__apps/hello_ world

Specifying Build Configuration

# Release build
west build -b your_board examples/demo_ apps/hello_world --config release

# Debug build with specific toolchain
west build -b your_board examples/demo__apps/hello_ world --toolchain iar --config debug

Multicore Applications For multicore devices, specify the core ID:

west build -b evkbmimxrt1170 examples/demo__apps/hello_world --toolchain iar -Dcore__id=cm?7 --config, |
—flexspi_nor_ debug

For multicore projects using sysbuild:

west build -b evkbmimxrt1170 --sysbuild ./examples/multicore examples/hello world/primary -Dcore
—id=cm?7 --config flexspi_nor__debug --toolchain=armgcc -p always

Shield Support For boards with shields:

west build -b mimxrt700evk --shield a8974 examples/issdk__examples/sensors/fx1s8974cf/fx1s8974cf poll -
—Dcore_id=cm33_core0

Advanced Build Options

Clean Builds Force a complete rebuild:

west build -b your_board examples/demo_ apps/hello_ world -p always

Dry Run See what commands would be executed:

west build -b your board examples/demo_apps/hello_ world --dry-run

Device Variants For boards supporting multiple device variants:

west build -b your board examples/demo_apps/hello_ world --device MK22F12810 --config release

Project Configuration
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CMake Configuration Only Run configuration without building:

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world -Dcore_id=cm7 --cmake-only -p

Interactive Configuration Launch the configuration GUI:

west build -t guiconfig

Flashing and Debugging

Flash Application Flash the built application to your board:

west flash -r linkserver

Debug Session Start a debugging session:

west debug -r linkserver

IDE Project Generation Generate IDE project files for traditional IDEs:
# Generate [AR project

west build -b evkbmimxrt1170 examples/demo_ apps/hello_ world --toolchain iar -Dcore__id=cm?7 --config, |
—flexspi_nor_ debug -p always -t guiproject

IDE project files are generated in mcuxsdk/build/<toolchain> folder.

Note: Ruby installation is required for IDE project generation. See Installation Guide for setup
instructions.

Troubleshooting

Build Failures Use pristine builds to resolve dependency issues:

west build -b your_board examples/demo__apps/hello_world -p always

Toolchain Issues Verify environment variables are set correctly:

# Check ARM GCC
echo SARMGCC__DIR
arm-none-eabi-gcc --version

# Check IAR (if using)
echo $IAR_DIR

Getting Help Display help information:

west build -h
west flash -h
west debug -h
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Check Supported Configurations If unsure about supported options for an example:

west list_ project -p examples/demo_ apps/hello_ world

Best Practices

Project Organization
* Keep custom projects outside the SDK tree
» Use version control for your application code

* Document any SDK modifications

Build Efficiency
* Use -p always for clean builds when troubleshooting
* Leverage --dry-run to understand build processes

* Use specific configs and toolchains to reduce build time

Development Workflow
1. Start with existing examples closest to your requirements
2. Copy and modify rather than building from scratch
3. Test with hello_world before moving to complex examples

4. Use configuration tools for pin muxing and clock setup

Next Steps
» Explore VS Code Development for integrated development experience
* Review Workspace Structure to understand SDK organization

* Refer build system documentation for advanced configurations

Workspace Structure After you initialize your SDK workspace, it creates a specific directory
structure that organizes all SDK components. This structure is identical for both GitHub Reposi-
tory SDK and Repository-Layout SDK Package.

Top-Level Organization

your-sdk-workspace/
manifests/ # West manifest repository
mcuxsdk/ # Main SDK content

The mcuxsdk/ directory serves as your primary working directory and contains all the SDK com-
ponents.
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SDK Component Layout Based on the actual SDK structure, the main directories include:

Di- Contents Purpose

rec-

tory

arch/ Architecture-specific files ARM CMSIS, build
configurations

cmake Build system modules CMake configura-
tion and build rules

compo Software components Reusable software li-
braries and utilities

devices Device support packages MCU-specific head-
ers, startup code,
linker scripts

drivers Peripheral drivers Hardware abstrac-
tion layer for MCU
peripherals

examp Sample applications Demonstration code
and reference im-
plementations

middle Optional software stacks Networking, graph-
ics, security, and
other libraries

rtos/ Operating system support FreeRTOS integra-
tion

scripts Build and utility scripts West extensions and
development tools

svd  Svd files for devices, this is optional because of large size. Cus-

tomers run west manifest config group.filter +optional and west
update mcux-soc-svd to get this folder.

Example Organization Examples follow a two-tier structure separating common code from
board-specific implementations:

Common Example Files

examples/demo__apps/hello_ world/

CMakeLists.txt
example.yml
hello  world.c
Kconfig
readme.md

# Build configuration
# Example metadata
# Application source code
# Configuration options
# General documentation

Board-Specific Files

examples/ boards/your_ board/demo_ apps/hello_ world/

app.h

# Board specific application header

example_board_readme.md # Board specific documentation

hardware init.c
pin__mux.c
pin__mux.h

hello world.bin
hello  world.mex
prj.conf
reconfig.cmake

# Board specific hardware initialization
# Pin multiplexing configuration
# Pin multiplexing header definitions
# Pre-built binary for quick testing
# MCUZXpresso Config Tools project file
# Board specific Kconfig configuration
# Board specific cmake configuration overrides
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Device Support Structure Device support is organized hierarchically by MCU family:

devices/
MCX/ # MCU portfolio
MCXW/ # MCU family
MCXW235/ # Specific device
MCXW235.h # Device register definitions
drivers/ # Device-specific drivers
gee/ # GNU toolchain files
iar/ # IAR toolchain files

mcuxpresso,/ # MCUXpresso IDE files
startup_ MCXW235.c # Startup and vector table
system_ MCXW235.c # System initialization

Middleware Organization Middleware components are categorized by functionality and
maintained in separate repositories. Based on the manifest files, common middleware categories
include:

* Connectivity: USB, TCP/IP, industrial protocols
 Security: Cryptographic libraries, secure boot

» Wireless: Bluetooth, IEEE 802.15.4, Wi-Fi

* Graphics: Display drivers, UI frameworks

* Audio: Processing libraries, voice recognition

* Machine Learning: Inference engines, neural networks
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Documentation Structure SDK documentation is distributed across multiple locations:
* docs/ - Core SDK documentation and build infrastructure
* Component repositories - API documentation and integration guides
* Board directories - Hardware-specific setup instructions

For complete documentation, refer to the online documentation.

Understanding Example Structure Each example has two README files:

1. General README: examples/demo_ apps/hello_ world /readme.md
* What the example does
* General functionality description

* Common usage information

2. Board-Specific README: examples/ boards/{board name}/demo_apps/hello_world/

example board readme.md
* Board-specific setup instructions
* Hardware connections required

* Board-specific behavior notes
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Tip: Always check both readme files - start with the general one, then read the board-specific
one for detailed setup.

1.3 Getting Started with MCUXpresso SDK GitHub

1.3.1 Getting Started with MCUXpresso SDK Repository

Welcome to the GitHub Repository SDK Guide. This documentation provides instructions for
setting up and working with the MCUXpresso SDK distributed in a multi-repository model. The
SDK s distributed across multiple GitHub repositories and managed using the Zephyr West tool,
enabling modular development and streamlined workflows.

Overview

The GitHub Repository SDK approach offers:
* Modular Structure: Multiple repositories for flexibility and scalability.
* Zephyr West Integration: Simplified repository management and synchronization.

* Cross-Platform Support: Designed for MCUXpresso SDK development environments.

Benefits of the Multi-Repository Approach

Scalability: Easily add or update components without impacting the entire SDK.
* Collaboration: Enables distributed development across teams and repositories.
* Version Control: Independent versioning for components ensures better stability.

* Automation: Zephyr West simplifies dependency handling and repository synchroniza-
tion.

Setup and Configuration

Follow these steps to prepare your development environment:

GitHub Repository Setup This guide explains how to initialize your MCUXpresso SDK
workspace from GitHub repositories using the west tool. The GitHub Repository SDK uses mul-
tiple repositories hosted on GitHub to provide modular, flexible development.

Prerequisites Verify the requirements:
System Requirements:

* Python 3.8 or later

* Git 2.25 or later

» CMake 3.20 or later

* Build tools for your target platform

Verification Commands:
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python --version  # Should show 3.8+

git --version # Should show 2.25+

cmake --version  # Should show 3.20-+

west --version # Should show west tool installation

Workspace Initialization The GitHub Repository SDK uses the Zephyr west tool to manage
multiple repositories containing different SDK components.

Step 1: Initialize Workspace Create and initialize your SDK workspace from GitHub:

Get the latest SDK from main branch:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk

Get SDK at specific revision:

west init -m https://github.com/nxp-mcuxpresso/mcuxsdk-manifests.git mcuxpresso-sdk --mr {revision}

Note: Replace {revision} with the desired release tag, such as v25.09.00

Step 2: Choose Your Repository Update Strategy Navigate to the SDK workspace:

cd mcuxpresso-sdk

The west tool manages multiple GitHub repositories containing different SDK components. You
have two options for downloading:

Option A: Download All Repositories (Complete SDK) Download all SDK repositories for
comprehensive development:

west update
This command downloads all the repositories defined in the manifest from GitHub. Initial down-
load takes several minutes and requires ~7 GB of disk space.
Best for:
» Exploring the complete SDK
* Multi-board development projects

* Comprehensive middleware evaluation

Option B: Targeted Repository Download (Recommended) Download only repositories
needed for your specific board or device to save time and disk space:

# For specific board development
west update_ board --set board your__board_name

# For specific device family development
west update_ board --set device your__device_name

# List available repositories before downloading
west update__board --set board your_ board_name --list-repo

Best for:

* Single board development
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 Faster setup and reduced disk usage
» Focused development workflows

Examples:

# Update only repositories for FRDM-MCXW23 board
west update__board --set board frdmmcxw23

# Update only repositories for MCXW23 device family
west update__board --set device mcxw23

Step 3: Verify Installation Confirm successful setup:

# Verify workspace structure
Is -la
# Should show: manifests/ and mcuxsdk/ directories

# Test build system
west list__project -p examples/demo__apps/hello_ world
# Should display available build configurations

Advanced Repository Management The west extension command update_board provides ad-
vanced repository management capabilities for optimized workspace setup with GitHub repos-
itories.

Board-Specific Setup Update only repositories required for a specific board:

# Update only repositories for specific board, e.g., frdmmcxw23
west update__board --set board frdmmcxw23

# List available repositories for the board before updating
west update_ board --set board frdmmcxw23 --list-repo

Device-Specific Setup Update only repositories required for a specific device family:

# Update only repositories for specific device, e.g., MCXW235
west update__board --set device mcxw23

# List available repositories for the device family
west update__board --set device mcxw23 --list-repo

Custom Configuration For advanced users who want to create custom repository combina-
tions:

# Use custom configuration file
west update_ board --set custom path/to/custom-config.yml

# Generate custom configuration template
cp manifests/boards/custom.yml.template my-custom-config.yml

Benefits of Targeted Setup Reduced Download Size
* Download only components needed for your target board or device

+ Significantly faster initial setup for focused development
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» Typical reduction from 7 GB to 2GB
Optimized Workspace
* Cleaner workspace with relevant components only
* Reduced disk space usage
 Faster repository operations
Flexible Development
» Switch between different board configurations easily
* Maintain separate workspaces for different projects

* Include optional components as needed

Repository Information Before setting up your workspace, you can explore what repositories
are available:

# Display repository information in console
west update__board --set board frdmmecxw?23 --list-repo

# Export repository information to YAML file for reference
west update_ board --set board frdmmcxw?23 --list-repo -o board-repos.yml

This command lists all the available repositories with descriptions and outlines the included
components in the workspace.

Package Generation (Optional) The update_board command can also generate ZIP packages
for offline distribution:

# Generate board-specific SDK package

west update_board --set board frdmmecxw23 -o frdmmcexw23-sdk.zip

Note: Package generation is primarily intended for creating custom SDK distributions. For reg-
ular development, use the workspace update commands without the -o option.

Workspace Management

Updating Your Workspace Keep your SDK current with latest updates from GitHub:
For Complete SDK Workspace:

# Update manifest repository
cd manifests
git pull

# Update all component repositories
cd ..
west update

For Targeted Workspace:

# Update manifest repository
cd manifests
git pull

# Update board-specific repositories
cd ..
west update__board --set board your_ board_ name
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Workspace Status Check workspace synchronization status:

# Show status of all repositories
west status

# Show detailed information about repositories
west list

Troubleshooting Network Issues:

* Use west update --keep-descendants for partial failures

* Configure Git credentials for private repositories

» Check firewall settings for Git protocol access
Permission Issues:

» Ensure write permissions in workspace directory

* Run commands without sudo/administrator privileges

* Verify Git SSH key configuration for authenticated access
Disk Space:

» Full SDK workspace requires approximately 7-8 GB

» Targeted workspace typically requires 1-2 GB

» Use board-specific setup to reduce workspace size
Repository Management Issues:

* Verify board/device names match available configurations

* Check that custom YAML files follow the correct template format

» Use --list-repo to verify available repositories before setup

Next Steps With your workspace initialized:
1. Review Workspace Structure to understand the layout
2. Build your first project with First Build Guide

3. Explore Development Workflows MCUXPresso VSCode or Development Workflows Command
Line for the details on project setup and execution

For advanced repository management, see the west tool documentation.

Explore SDK Structure and Content

Learn about the organization of the SDK and its components:

SDK Architecture Overview The MCUXpresso SDK uses a modular architecture where soft-
ware components are distributed across multiple repositories hosted on GitHub and managed
through the west tool. This approach provides flexibility, maintainability, and enables selective
component inclusion.

Repository Organization Based on the manifest structure, the SDK consists of four main repos-
itory categories:
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Manifest Repository The manifest repo (mcuxsdk-manifests) contains the west.yml manifest
file that tracks all other repositories in the SDK.

Base Repositories Recorded in submanifests/base.yml and loaded in the root west.yml manifest
file. These are the foundational repositories that build the SDK:

* Devices: MCU-specific support packages
* Examples: Demonstration applications and code samples

* Boards: Board support packages

Middleware Repositories Recorded in the submanifests/middleware subdirectory, categorized
according to functionality:

* Connectivity: Networking stacks, USB, and communication protocols
* Security: Cryptographic libraries and secure boot components
* Wireless: Bluetooth, IEEE 802.15.4, and other wireless protocols

» Graphics: Display drivers and UI frameworks

Audio: Audio processing and voice recognition libraries
* Machine Learning: Al inference engines and neural network libraries
Safety: IEC60730B safety libraries

* Motor Control: Motor control and real-time control libraries

Internal Repositories Recorded in submanifests/internal.yml and grouped into the “bifrost”
group. These are only visible to NXP internal developers and hosted on NXP internal git servers.

Repository Hosting Public repositories are hosted on GitHub under these organizations:
* NXP-MCUXpPresso
* NXP
* nxp-zephyr

Internal repositories are hosted on NXP’s private Git infrastructure.

Benefits of This Architecture Selective Integration: Projects include only required compo-
nents, reducing memory footprint and build complexity.

Independent Versioning: Each component maintains its own release cycle and version control.

Community Collaboration: Public repositories accept community contributions through stan-
dard Git workflows.

Scalable Maintenance: Component owners can update their repositories without affecting the
entire SDK.

Workspace Management The west tool manages repository synchronization, version track-
ing, and workspace updates. All repositories are checked out under the mcuxsdk/ directory with
their designated paths defined in the manifest files.
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Development Workflows

Get started with building and running projects:

Using MCUXpresso Config Tools MCUXpresso Config tools provide a user-friendly way to con-
figure hardware initialization of your projects. This guide explains the basic workflow with the
MCUXpresso SDK west build system and the Config Tools.

Prerequisites
* GitHub Repository SDK workspace initialized OR Repository-Layout SDK Package extracted
* MCUXpresso Config Tools standalone installed (version 25.09 or above)

* MCUXpresso SDK Project that can be successfully built

Board Files MCUXpresso Config Tools generate source files for the board. These files include
pin_mux.c/h and clock_config.c/h. The files contain initialization code functions that reflect the
hardware configuration in the Config Tools. Within the SDK codebase, these files are specific for
the board and either shared by multiple example projects or specific for one example. Open or
import the configuration from the SDK project in the Config Tools and customize the settings to
match the custom board or specific project use case and regenerate the code. See User Guide for
MCUXpresso Config Tools (Desktop) (document GSMCUXCTUG ) for details.

Note: When opening the configuration for SDK example projects, the board files may be shared
across multiple examples. To ensure a separate copy of the board configuration files exists, create
a freestanding project with copied board files.

Visual Studio Code To open the configuration in Visual Studio Code, use the context menu for
the project to access Config Tools. See MCUXpresso Extension Documentation for details.
Otherwise, use the manual workflow described in detail in the following section.

Manual Workflow Use the following steps:

1. Before using Config Tools, run the west command to get the project information for Config
Tools from the SDK project files, for example:

west cfg_project__info -b Ipcxpresso55s69 ...mcuxsdk/examples/demo__apps/hello_world/ -Dcore__
—id=cm33_ core0

This results in the creation of the project information json file that is searched by the config
tools when the configuration is created. The parameters of the command should match the
build parameters that will be used for the project.

2. Launch the MCUXpresso Config Tools and in the Start development wizard, select Cre-
ate a new configuration based on the existing IDE/Toolchain project. Select the cre-
ated “cfg_tools” subfolder as a project folder (for example: ...mcuxsdk/examples/demo_ apps/
hello_ world/cfg_ tools/).

Updating the SDK West project Note: Updating project is supported with Config Tools V25.12
or newer only.

Changes in the Config tools generated source code modules may require adjustments to the
toolchain project to ensure a successful build. These changes may mean, for example, adding
the newly generated files, adding include paths, required drivers, or other SDK components.
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This section describes how to manually resolve the changes needed in the project within the
toolchain projects based on the SDK project managed by the West tool.

After the configuration in the Config Tools is finished, write updated files to the disk using the
‘Update Code’ command. The written files include a json file with the required changes for the
toolchain project.

To resolve the changes in the project in the terminal, launch the west command that updates the
project. For example:

west cfg_resolve -b Ipcxpresso55s69 ...mcuxsdk/examples/demo_apps/hello_world/ -Dcore__id=cm33__core0

This command updates the appropriate cmake and kconfig files to address the changes. After
this, the application can be built.

Note: The cfg_resolve command supports additional arguments. Launch the west cfg resolve -h
command to get the list and description.

1.4 Release Notes

1.4.1 MCUXpresso SDK Release Notes
Overview

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify
and accelerate application development with Arm Cortex-M-based devices from NXP, including
its general purpose, crossover and Bluetooth-enabled MCUs. MCUXpresso SW and Tools for DSC
further extends the SDK support to current 32-bit Digital Signal Controllers. The MCUXpresso
SDK includes production-grade software with integrated RTOS (optional), integrated enabling
software technologies (stacks and middleware), reference software, and more.

In addition to working seamlessly with the MCUXpresso IDE, the MCUXpresso SDK also supports
and provides example projects for various toolchains. The Development tools chapter in the
associated Release Notes provides details about toolchain support for your board. Support for
the MCUXpresso Config Tools allows easy cloning of existing SDK examples and demos, allowing
users to leverage the existing software examples provided by the SDK for their own projects.

Underscoring our commitment to high quality, the MCUXpresso SDK is MISRA compliant and
checked with Coverity static analysis tools. For details on MCUXpresso SDK, see MCUXpresso-
SDK: Software Development Kit for MCUXpresso.

MCUXpresso SDK

As part of the MCUXpresso software and tools, MCUXpresso SDK is the evolution of Kinetis SDK,
includes support for LPC, DSC,PN76, and i.MX System-on-Chip (SoC). The same drivers, APIs, and
middleware are still available with support for Kinetis, LPC, DSC, and i.MX silicon. The MCUX-
presso SDK adds support for the MCUXpresso IDE, an Eclipse-based toolchain that works with
all MCUXpresso SDKs. Easily import your SDK into the new toolchain to access to all of the avail-
able components, examples, and demos for your target silicon. In addition to the MCUXpresso
IDE, support for the MCUXpresso Config Tools allows easy cloning of existing SDK examples and
demos, allowing users to leverage the existing software examples provided by the SDK for their
own projects.

In order to maintain compatibility with legacy Freescale code, the filenames and source code in
MCUXpresso SDK containing the legacy Freescale prefix FSL has been left as is. The FSL prefix
has been redefined as the NXP Foundation Software Library.
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Development tools

The MCUXpresso SDK was tested with following development tools. Same versions or above are
recommended.

* MCUZXpresso IDE, Rev. 25.06.xx

IAR Embedded Workbench for Arm, version is 9.60.4
Keil MDK, version is 5.42

MCUXpresso for VS Code v25.09

GCC Arm Embedded Toolchain 14.2.x

Supported development systems

This release supports board and devices listed in following table. The board and devices in bold
were tested in this release.

Development MCU devices
boards
LPCXpresso802 LPC802MO001JDH16, LPC802M001JDH20, LPC802MO001JHI33,

LPC802M011JDH20, LPC802UK

MCUXpresso SDK release package

The MCUXpresso SDK release package content is aligned with the silicon subfamily it supports.
This includes the boards, CMSIS, devices, middleware, and RTOS support.

Device support The device folder contains the whole software enablement available for the
specific System-on-Chip (SoC) subfamily. This folder includes clock-specific implementation,
device register header files, device register feature header files, and the system configuration
source files. Included with the standard SoC support are folders containing peripheral drivers,
toolchain support, and a standard debug console. The device-specific header files provide a di-
rect access to the microcontroller peripheral registers. The device header file provides an overall
SoC memory mapped register definition. The folder also includes the feature header file for each
peripheral on the microcontroller. The toolchain folder contains the startup code and linker files
for each supported toolchain. The startup code efficiently transfers the code execution to the
main() function.

Board support The boards folder provides the board-specific demo applications, driver exam-
ples, and middleware examples.

Demo application and other examples The demo applications demonstrate the usage of the
peripheral drivers to achieve a system level solution. Each demo application contains a readme
file that describes the operation of the demo and required setup steps. The driver examples
demonstrate the capabilities of the peripheral drivers. Each example implements a common
use case to help demonstrate the driver functionality.
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Middleware

CMSIS DSP Library The MCUXpresso SDK is shipped with the standard CMSIS development

pack, including the prebuilt libraries.

FreeMASTER FreeMASTER communication driver for 32-bit platforms.

Release contents

Provides an overview of the MCUXpresso SDK release package contents and locations.

Deliverable

Location

Boards

Demo Applications

Driver Examples

elQ examples

Board Project Template for MCUXpresso IDE NPW
Driver, SoC header files, extension header files and
feature header files, utilities

CMSIS drivers

Peripheral drivers

Toolchain linker files and startup code

Utilities such as debug console

Device Project Template for MCUXpresso IDE NPW
CMSIS Arm Cortex-M header files, DSP library source
Components and board device drivers

RTOS

Release Notes, Getting Started Document and other
documents

Tools such as shared cmake files

Middleware

INSTALL_DIR/boards
INSTALL_DIR/boards/<board_name>/demo_apps
INSTALL_DIR/boards/<board_name>/driver_examples
INSTALL_DIR/boards/<board_name>/eiq_examples
INSTALL_DIR/boards/<board_name>/project_template
INSTALL_DIR/devices/<device_name>

INSTALL_DIR/devices/<device_name>/cmsis_drivers
INSTALL_DIR/devices/<device_name>/drivers
INSTALL_DIR/devices/<device_name>/<toolchain_nam
INSTALL_DIR/devices/<device_name>/utilities
INSTALL_DIR/devices/<device_name>/project_templat
INSTALL_DIR/CMSIS

INSTALL_DIR/components

INSTALL_DIR/rtos

INSTALL_DIR/docs

INSTALL_DIR/tools
INSTALL_DIR/middleware

Known issues

This section lists the known issues, limitations, and/or workarounds.

Cannot add SDK components into FreeRTOS projects

It is not possible to add any SDK components into FreeRTOS project using the MCUXpresso IDE

New Project wizard.

1.5 Changelog

1.5.1 MCUXpresso SDK Changelog
Board Support Files

board
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[25.06.00]

 Initial version

clock_config

[25.06.00]

 Initial version

pin_mux

[25.06.00]

 Initial version

LPC_ACOMP

[2.1.0]

* Bug Fixes

— Fixed one wrong enum value for the hysteresis.
— Fixed the violations of MISRA C-2012 rules:

% Rule 10.1, 17.7.

[2.0.2]

* Bug Fixes

— Fixed the out-of-bounds error of Coverity caused by missing an assert sentence to avoid
the return value of ACOMP_GetInstance() exceeding the array bounds.

[2.0.1]

* New Features

— Added a control macro to enable/disable the CLOCK code in current driver.

[2.0.0]

* Initial version.
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LPC_ADC

[2.6.0]
* New Features

— Added new feature macro to distinguish whether the GPADC_CTRLO_GPADC_TSAMP
control bit is on the device.

— Added new variable extendSampleTimeNumber to indicate the ADC extend sample
time.

* Bugfix

— Fixed the bug that incorrectly sets the PASS_ENABLE bit based on the sample time
setting.

[2.5.3]
* Improvements

— Release peripheral from reset if necessary in init function.

[2.5.2]
* Improvements
— Integrated different sequence’s sample time numbers into one variable.
* Bug Fixes
- Fixed violation of MISRA C-2012 rule 20.9.

[2.5.1]
* Bug Fixes

— Fixed ADC conversion sequence priority misconfiguration issue in the
ADC_SetConvSeqAHighPriority() and ADC_SetConvSeqBHighPriority() APIs.

* Improvements

— Supported configuration ADC conversion sequence sampling time.

[2.5.0]
* Improvements
— Add missing parameter tag of ADC_DoOffsetCalibration().
* Bug Fixes

— Removed a duplicated API with typo in name: ADC_EnableShresholdComparelInterrupt().

[2.4.1]
* Bug Fixes

— Enabled self-calibration after clock divider be changed to make sure the frequency
update be taken.
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[2.4.0]
* New Features

— Added new API ADC_DoOffsetCalibration() which supports a specific operation fre-
quency.

* Other Changes
— Marked the ADC_DoSelfCalibration(ADC_Type *base) as deprecated.
* Bug Fixes
— Fixed the violations of MISRA C-2012 rules:
* Rule 10.1 10.310.4 10.7 10.8 17.7.

[2.3.2]
* Improvements

— Added delay after enabling using the ADC GPADC_CTRLO LDO_POWER_EN bit for
JN5189/QN9090.

* New Features

— Added support for platforms which have only one ADC sequence control/result regis-

ter.
[2.3.1]
* Bug Fixes
— Avoided writing ADC STARTUP register in ADC_Init().
— Fixed Coverity zero divider error in ADC_DoSelfCalibration().
[2.3.0]

* Improvements

— Updated “ADC_Init()*”’ADC_GetChannelConversionResult()” API and “adc_resolution_t”
structure to match QN9090.

— Added “ADC_EnableTemperatureSensor” API.

[2.2.1]
* Improvements

— Added a brief delay in uSec after ADC calibration start.

[2.2.0]
¢ Improvements
— Updated “ADC_DoSelfCalibration” API and “adc_config_t” structure to match LPC845.

[2.1.0]
* Improvements

— Renamed “ADC_EnableShresholdComparelnterrupt” to “ADC_EnableThresholdCompareInterrupt”.
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[2.0.0]

 Initial version.

CLOCK
[2.3.4]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 11.3.
[2.3.3]

* Improvements

— Added lost comments for some enumerations.

[2.3.2]
* Improvements

— Used “offsetof” macro to get the offset of the structure element from the beginning of
the structure.

[2.3.1]
* Bug Fixes
— Fixed MISRA C-2012 rule 10.1, rule 10.3, rule 15.5 and so on.
[2.3.0]

* New feature:

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.2.0]
» Replace the delay function

[2.1.0]
* New feature

— Adding new API CLOCK_DelayAtLeastUs() to implemente a delay fucntion which allow
users set delay in unit of microsecond.

[2.0.3]
* add api to get uart clock frequency.

* add api to set fractional multiplier value.

[2.0.2]

* some minor fixes.
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[2.0.0]

« initial version.

COMMON

[2.6.3]
* Bug Fixes
— Fixed build issue of CMSIS PACK BSP example caused by CMSIS 6.1 issue.

[2.6.2]
* Bug Fixes
- Fixed violations of MISRA C-2012 rule for implicit conversions in boolean contexts
[2.6.1]
* Improvements
— Support Cortex M23.
[2.6.0]
* Bug Fixes
— Fix CERT-C violations.
[2.5.0]

* New Features

— Added new APIs InitCriticalSectionMeasurementContext, DisableGlobalIRQEx and En-
ableGloballRQEX so that user can measure the execution time of the protected sections.

[2.4.3]
e Improvements

— Enable irgs that mount under irgsteer interrupt extender.

[2.4.2]
* Improvements

— Add the macros to convert peripheral address to secure address or non-secure address.

[2.4.1]
* Improvements

— Improve for the macro redefinition error when integrated with zephyr.
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[2.4.0]
* New Features
— Added EnableIRQWithPriority, IRQ_SetPriority, and IRQ_ClearPendingIRQ for ARM.
— Added MSDK_EnableCpuCycleCounter, MSDK_GetCpuCycleCount for ARM.

[2.3.3]
* New Features
— Added NETC into status group.

[2.3.2]
* Improvements

— Make driver aarch64 compatible

[2.3.1]
* Bug Fixes
— Fixed MAKE_VERSION overflow on 16-bit platforms.
[2.3.0]

* Improvements

— Split the driver to common part and CPU architecture related part.

[2.2.10]
* Bug Fixes

— Fixed the ATOMIC macros build error in cpp files.

[2.2.9]
* Bug Fixes
- Fixed MISRA C-2012 issue, 5.6, 5.8, 8.4, 8.5, 8.6, 10.1, 10.4, 17.7, 21.3.

— Fixed SDK_Malloc issue that not allocate memory with required size.

[2.2.8]
* Improvements
— Included stddef.h header file for MDK tool chain.
* New Features:

— Added atomic modification macros.

[2.2.7]
* Other Change
— Added MECC status group definition.
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[2.2.6]
* Other Change
— Added more status group definition.
* Bug Fixes
— Undef _ VECTOR_TABLE to avoid duplicate definition in cmsis_clang.h

[2.2.5]
* Bug Fixes
- Fixed MISRA C-2012 rule-15.5.

[2.2.4]
* Bug Fixes
— Fixed MISRA C-2012 rule-10.4.

[2.2.3]
* New Features

— Provided better accuracy of SDK_DelayAtLeastUs with DWT, wuse macro
SDK_DELAY USE_DWT to enable this feature.

— Modified the Cortex-M7 delay count divisor based on latest tests on RT series boards,
this setting lets result be closer to actual delay time.

[2.2.2]
* New Features
— Added include RTE_Components.h for CMSIS pack RTE.

[2.2.1]
* Bug Fixes
- Fixed violation of MISRA C-2012 Rule 3.1, 10.1, 10.3, 10.4, 11.6, 11.9.
[2.2.0]

* New Features

— Moved SDK_DelayAtLeastUs function from clock driver to common driver.

[2.1.4]
* New Features
— Added OTFAD into status group.

1.5. ChangeLog 75



MCUXpresso SDK Documentation, Release 25.12.00

[2.1.3]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.3.
[2.1.2]

* Improvements

— Add SUPPRESS_FALL_THROUGH_WARNING() macro for the usage of suppressing
fallthrough warning.

[2.1.1]
* Bug Fixes
— Deleted and optimized repeated macro.
[2.1.0]

* New Features
— Added IRQ operation for XCC toolchain.
— Added group IDs for newly supported drivers.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed.
* Fixed the rule: rule-10.4.
[2.0.1]

* Improvements
— Removed the implementation of LPC8XX Enable/DisableDeepSleepIRQ() function.

- Added new feature macro switch “FSL_FEATURE_HAS_NO_NONCACHEABLE_SECTION”
for specific SoCs which have no noncacheable sections, that helps avoid an unneces-
sary complex in link file and the startup file.

— Updated the align(x) to attribute(aligned(x)) to support MDK v6 armclang compiler.

[2.0.0]

« Initial version.

CRC

[2.1.1]
» Fix MISRA issue.
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[2.1.0]
* Add CRC_WriteSeed function.

[2.0.2]
» Fix MISRA issue.

[2.0.1]

* Fixed KPSDK-13362. MDK compiler issue when writing to WR_DATA with -O3 optimize for
time.

[2.0.0]

 Initial version.

CTIMER
[2.3.4]
* Bug Fixes
— Fixed ERRATA ERR053024 CTIMER will enter interrupt twice when function clock
much slower than bus clock.
[2.3.3]
* Bug Fixes
— Fix CERT INT30-C INT31-C issue.
— Make API CTIMER_SetupPwm and CTIMER_UpdatePwmDutycycle return fail if pulse
width register overflow.
[2.3.2]
* Bug Fixes
— Clear unexpected DMA request generated by RESET PeripheralReset in API
CTIMER_Init to avoid trigger DMA by mistake.
[2.3.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.7 and 12.2.
[2.3.0]
* Improvements
— Added the CTIMER_SetPrescale(), CTIMER_GetCaptureValue(),
CTIMER_EnableResetMatchChannel(), CTIMER_EnableStopMatchChannel(),
CTIMER_EnableRisingEdgeCapture(), CTIMER_EnableFallingEdgeCapture(),

CTIMER_SetShadowValue(),APIs Interface to reduce code complexity.
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[2.2.2]
* Bug Fixes

— Fixed SetupPwm() API only can use match 3 as period channel issue.

[2.2.1]
* Bug Fixes
— Fixed use specified channel to setting the PWM period in SetupPwmPeriod() API.
- Fixed Coverity Out-of-bounds issue.

[2.2.0]
* Improvements

— Updated three API Interface to support Users to flexibly configure the PWM period and
PWM output.

* Bug Fixes
— MISRA C-2012 issue fixed: rule 8.4.

[2.1.0]
* Improvements
— Added the CTIMER_GetOutputMatchStatus() API Interface.

— Added feature macro for FSL_FEATURE_CTIMER HAS NO_CCR_CAP2 and
FSL_FEATURE_CTIMER_HAS_NO_IR_CRZINT.

[2.0.3]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.3, 10.4, 10.6, 10.7 and 11.9.
[2.0.2]

* New Features
— Added new API “CTIMER_GetTimerCountValue” to get the current timer count value.
— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

— Added a new feature macro to update the API of CTimer driver for Ipc8n04.

[2.0.1]
* Improvements
— API Interface Change

% Changed API interface by adding CTIMER_SetupPwmPeriod API and
CTIMER_UpdatePwmPulsePeriod API, which both can set up the right PWM
with high resolution.
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[2.0.0]

 Initial version.

GPIO

[2.1.7]
* Improvements

— Enhanced GPIO_PinlInit to enable clock internally.

[2.1.6]
* Bug Fixes
— Clear bit before set it within GPIO_SetPinInterruptConfig() APL

[2.1.5]
* Bug Fixes
— Fixed violations of the MISRA C-2012 rules 3.1, 10.6, 10.7, 17.7.

[2.1.4]
* Improvements
— Added API GPIO_PortGetInterruptStatus to retrieve interrupt status for whole port.
— Corrected typos in header file.

[2.1.3]
* Improvements

— Updated “GPIO_PinInit” APL If it has DIRCLR and DIRSET registers, use them at set 1
or clean 0.

[2.1.2]
* Improvements

— Removed deprecated APIs.

[2.1.1]
* Improvements
— APl interface changes:

* Refined naming of APIs while keeping all original APIs, marking them as depre-
cated. Original APIs will be removed in next release. The mainin change is updat-
ing APIs with prefix of _PinXXX() and _PorortXXX
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[2.1.0]
* New Features
— Added GPIO initialize API.

[2.0.0]

¢ Initial version.

12C
[2.2.1]
* Bug Fixes
— Fixed coverity issues.
[2.2.0]

* Removed Ipc_i2c_dma driver.

[2.1.0]
* Bug Fixes
— Fixed MISRA 8.6 violations.

[2.0.4]
* Bug Fixes
— Fixed wrong assignment for datasize in 12C_InitTransferStateMachineDMA.

- Fixed wrong working flow in I2C_RunTransferStateMachineDMA to ensure master can
work in no start flag and no stop flag mode.

— Fixed wrong working flow in I2C_RunTransferStateMachine and added kReceive-
DataBeginState in _i2c_transfer_states to ensure master can work in no start flag and
no stop flag mode.

— Fixed wrong handle state in I2C_MasterTransferDMAHandleIRQ. After all the data has
been transfered or nak is returned, handle state should be changed to idle.

— Eliminated IAR Pa082 warning in I12C_SlaveTransferHandleIRQ by assigning volatile
variable to local variable and using local variable instead.

— Fixed MISRA issues.
# Fixed rules 4.7,10.1, 10.3, 10.4, 11.1, 11.8, 14.4, 17.7.
* Improvements
— Rounded up the calculated divider value in I2C_MasterSetBaudRate.
— Updated the I2C_WAIT_TIMEOUT macro to unified name I2C_RETRY_TIMES.

[2.0.3]
* Bug Fixes

— Fixed Coverity issue of unchecked return value in I2C_RTOS_Transfer.
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[2.0.2]
* New Features

- Added macro gate “FSL_SDK_ENABLE_I2C_DRIVER TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs which will help reduce the code size when no non-
blocking transfer is used. Default configuration is enabled.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
* Improvements

— Added I2C_WATI_TIMEOUT macro to allow the user to specify the timeout times for
waiting flags in functional API and blocking transfer API.

[2.0.0]

 Initial version.

IAP
[2.0.7]
* Bug Fixes
— Fixed IAP_ReinvokelSP bug that can’t support UART ISP auto baud detection.
[2.0.6]
* Bug Fixes
— Fixed IAP_ReinvokelISP wrong parameter setting.
[2.0.5]

* New Feature

— Added support config flash memory access time.

[2.0.4]
* Bug Fixes
— Fixed the violations of MISRA 2012 rules 9.1
[2.0.3]

* New Features
— Added support for LPC 845’s FAIM operation.
— Added support for LPC 80x’s fixed reference clock for flash controller.
— Added support for LPC 5411x’s Read UID command useless situation.
* Improvements

— Improved the document and code structure.
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* Bug Fixes
— Fixed the violations of MISRA 2012 rules:
% Rule 10.1 10.3 10.4 17.7

[2.0.2]
* New Features
— Added an API to read generated signature.
* Bug Fixes
— Fixed the incorrect board support of IAP_ExtendedFlashSignatureRead().

[2.0.1]
* New Features
— Added an API to read factory settings for some calibration registers.
* Improvements

— Updated the size of result array in part APIs.

[2.0.0]

 Initial version.

IOCON
[2.0.2]
* Bug Fixes
- Fixed MISRA-C 2012 violations.
[2.0.1]
* Bug Fixes
— Fixed out-of-range issue of the IOCON mode function when enabling DAC.
[2.0.0]

 Initial version.

MRT

[2.0.5]
* Bug Fixes
— Fixed CERT INT31-C violations.
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[2.0.4]
* Improvements

— Don’t reset MRT when there is not system level MRT reset functions.

[2.0.3]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.1 and 10.4.

— Fixed the wrong count value assertion in MRT_StartTimer APIL

[2.0.2]
* Bug Fixes
— Fixed violations of MISRA C-2012 rule 10.4.

[2.0.1]
* Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

¢ Initial version.

PINT

[2.3.0]
* Improvements

— Add API PINT_EnableInterruptByIndex and PINT_DisableInterruptByIndex to provide
more granular interrupt control.

[2.2.0]
* Fixed
— Fixed the issue that clear interrupt flag when it’s not handled. This causes events to be
lost.
* Changed
— Used one callback for one PINT instance. It’s unnecessary to provide different callbacks
for all PINT events.
[2.1.13]

* Improvements
— Added instance array for PINT to adapt more devices.

— Used release reset instead of reset PINT which may clear other related registers out of
PINT.
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[2.1.12]
* Bug Fixes

— Fixed coverity issue.

[2.1.11]
* Bug Fixes
— Fixed MISRA C-2012 rule 10.7 violation.

[2.1.10]
* New Features

— Added the driver support for MCXN10 platform with combined interrupt handler.

[2.1.9]
* Bug Fixes
— Fixed MISRA-2012 rule 8.4.

[2.1.8]
* Bug Fixes
— Fixed MISRA-2012 rule 10.1 rule 10.4 rule 10.8 rule 18.1 rule 20.9.

[2.1.7]
* Improvements
— Added fully support for the SECPINT, making it can be used just like PINT.

[2.1.6]
* Bug Fixes

— Fixed the bug of not enabling common pint clock when enabling security pint clock.

[2.1.5]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule 10.1 rule 10.3 rule 10.4 rule 10.8 rule 14.4.

— Changed interrupt init order to make pin interrupt configuration more reasonable.
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[2.1.4]
* Improvements

— Added feature to control distinguish PINT/SECPINT relevant interrupt/clock configura-
tions for PINT Init and PINT Deinit API.

— Swapped the order of clearing PIN interrupt status flag and clearing pending NVIC
interrupt in PINT_EnableCallback and PINT_EnableCallbackByIndex function.

— Bug Fixes

* Fixed build issue caused by incorrect macro definitions.

[2.1.3]
* Bug fix:

— Updated PINT_PinInterruptClrStatus to clear PINT interrupt status when the bit is as-
serted and check whether was triggered by edge-sensitive mode.

— Write 1 to IST corresponding bit will clear interrupt status only in edge-sensitive mode
and will switch the active level for this pin in level-sensitive mode.

— Fixed MISRA c-2012 rule 10.1, rule 10.6, rule 10.7.

- Added FSL_FEATURE_SECPINT NUMBER_OF_CONNECTED_OUTPUTS to distinguish
IRQ relevant array definitions for SECPINT/PINT on lpc55s69 board.

— Fixed PINT driver c++ build error and remove index offset operation.

[2.1.2]
e Improvement:
— Improved way of initialization for SECPINT/PINT in PINT _Init APIL.

[2.1.1]
* Improvement:

— Enabled secure pint interrupt and add secure interrupt handle.

[2.1.0]

* Added PINT_EnableCallbackByIndex/PINT_DisableCallbackByIndex APIs to enable/disable
callback by index.

[2.0.2]
* Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.1]
* Bug fix:

— Updated PINT driver to clear interrupt only in Edge sensitive.
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[2.0.0]

 Initial version.

POWER

[2.1.0]
* New features
— Added BOD control APIs.

[2.0.4]
* Bug Fixes

— Fixed the typo “Enbale”, correcting it as “Enable”.

[2.0.3]
* Bug Fixes

— Fixed doxygen warnings(remove wrong character in annotation).

[2.0.2]
* New Features
— Added the Enable/DisableDeepSleepIRQ() to enable/disable pin wake up.

[2.0.1]
* Improvements

— Updated power drive to support PMU.

[2.0.0]

« initial version.

RESET

[2.4.0]
* Improvements
— Add RESET_ReleasePeripheralReset API.

[2.0.1]

* Update component full name to “Reset Driver”.
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[2.0.0]

« initial version.

SPI

[2.0.8]
* Bug Fixes

— Fixed coverity issue.

[2.0.7]
* Bug Fixes

— Fixed the txData from void * to const void * in transmit API.

[2.0.6]
* Improvements
— Changed SPI_DUMMYDATA to 0x00.

[2.0.5]
* Bug Fixes

- Fixed bug that the transfer configuration does not take effect after the first transfer.

[2.0.4]
* Bug Fixes

— Fixed the issue that when transfer finish callback is invoked TX data is not sent to bus
yet.

[2.0.3]
* Improvements
— Added timeout mechanism when waiting certain states in transfer driver.
— Fixed MISRA 10.4 issue.

[2.0.2]
* Bug Fixes
- Fixed Coverity issue of incrementing null pointer in SPI_MasterTransferNonBlocking.
— Fixed MISRA issues.
* Fixed rules 10.1, 10.3, 10.4, 10.6, 14.4.
* New Features
— Added enumeration for dataWidth.
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[2.0.1]
* Bug Fixes

— Added wait mechanism in SPI_MasterTransferBlocking() API, which checks if master
SPI becomes IDLE when the EOT bit is set before returning. This confirms that all data
will be sent out by SPI master.

— Fixed the bug that the EOT bit couldn’t be set when only one frame was sent in polling
mode and interrupt transfer mode.

* New Features

- Added macro gate “FSL_SDK _ENABLE_SPI DRIVER TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

SWM
[2.1.2]
* Improvements
— Reduce RAM footprint.
[2.1.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1 and 10.3.
[2.1.0]

* New Features

— Supported Flextimer function pin assign.

[2.0.2]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 14.3.

[2.0.1]
* Bug Fixes
— MISRA C-2012 issue fixed: rule 10.1, 10.3, and 10.4.
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[2.0.0]
 Initial version.

* The API SWM_SetFixedMovablePinSelect() is targeted at the device that has PINASSIGN-
FIXEDO register, such as LPC804.

SYSCON

[2.0.2]
* Bug Fixes
— Fixed CERT-C violations.

[2.0.1]
* Bug Fixes
— Fixed issue for MISRA-2012 check.
* Fixed rule 10.4.

[2.0.0]

 Initial version.

USART

[2.5.2]
* Improvements

— Fixed coverity issues.

[2.5.1]
* Improvements

- Fixed doxygen warning in USART_SetRxIdleTimeout.

[2.5.0]
* New Features

— Supported new feature of rx idle timeout.

[2.4.0]
* Improvements
— Used separate data for TX and RX in usart_transfer_t.
* Bug Fixes

— Fixed bug that when ring buffer is used, if some data is received in ring buffer first
before calling USART_TransferReceiveNonBlocking, the received data count returned
by USART_TransferGetReceiveCount is wrong.
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[2.3.0]
* New Features

— Modified usart_config_t, USART_Init and USART_GetDefaultConfig APIs so that the
hardware flow control can be enabled during module initialization.

[2.2.0]
* Improvements
— Added timeout mechanism when waiting for certain states in transfer driver.
— Fixed MISRA 10.4 issues.

[2.1.1]
* Bug Fixes

— Fixed the bug that in USART_SetBaudRate best_diff rather than diff should be used to
compare with calculated baudrate.

— Eliminated IAR pa082 warnings from USART_TransferGetRxRingBufferLength and US-
ART_TransferHandleIRQ.

— Fixed MISRA issues.
* Improvements

— Rounded up the calculated sbr value in USART_SetBaudRate to achieve more acurate
baudrate setting.

— Modified USART_ReadBlocking so that if more than one receiver errors occur, all status
flags will be cleared and the most severe error status will be returned.

[2.1.0]
* New Features

— Added new APIs to allow users to configure the USART continuous SCLK feature in
synchronous mode transfer.

[2.0.1]
* Bug Fixes

— Fixed the repeated reading issue of the STAT register while dealing with the IRQ rou-
tine.

* New Features

— Added macro gate “FSL_SDK_ENABLE_USART DRIVER_TRANSACTIONAL_APIS” to en-
able/disable the transactional APIs, which helps reduce the code size when no non-
blocking transfer is used. Enabled default configuration.

— Added a control macro to enable/disable the RESET and CLOCK code in current driver.

— Added macro switch gate “FSL_SDK_USART _DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE”
to enable/disable the baud rate to generate automatically. Disabling this feature will
help reduce the code size to a certain degree. Default configuration enables auto
generating of baud rate.

— Added the check of baud rate while initializing the USART. If the baud rate calculated
is not precise, the software assertion will be triggered.
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— Added a new API to allow users to enable the CTS, which determines whether CTS is
used for flow control.

[2.0.0]

« Initial version.

WKT
[2.0.2]
* Bug Fixes
— Fixed violation of MISRA C-2012 rule 10.3.
[2.0.1]

* New Features
— Added control macro to enable/disable the RESET and CLOCK code in current driver.

[2.0.0]

 Initial version.

WWDT

[2.1.10]
* Bug Fixes

— Chek WWDT_RSTS instead of FSL_FEATURE_WWDT_HAS_NO_RESET to determine
whether the peripheral can be reset.

[2.1.9]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rule 10.4.

[2.1.8]
* Improvements

— Updated the “WWDT_Init” API to add wait operation. Which can avoid the TV value
read by CPU still be 0XFF (reset value) after WWDT _Init function returns.
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[2.1.7]
* Bug Fixes
— Fixed the issue that the watchdog reset event affected the system from PMC.
— Fixed the issue of setting watchdog WDPROTECT field without considering the back-
wards compatibility.
— Fixed the issue of clearing bit fields by mistake in the function of
WWDT_ClearStatusFlags.
[2.1.5]
* Bug Fixes
— deprecated a unusable API in WWWDT driver.
* WWDT_Disable
[2.1.4]
* Bug Fixes
— Fixed violation of the MISRA C-2012 rules Rule 10.1, 10.3, 10.4 and 11.9.
- Fixed the issue of the inseparable process interrupted by other interrupt source.
* WWDT_Init
[2.1.3]
* Bug Fixes
— Fixed legacy issue when initializing the MOD register.
[2.1.2]

* Improvements

— Updated the “WWDT _ClearStatusFlags” API and “WWDT_GetStatusFlags” API to match
QN9090. WDTOF is not set in case of WD reset. Get info from PMC instead.

[2.1.1]
* New Features

— Added new feature definition macro for devices which have no LCOK control bit in
MOD register.

— Implemented delay/retry in WWDT driver.

[2.1.0]
* Improvements

— Added new parameter in configuration when initializing WWDT module. This param-
eter, which must be set, allows the user to deliver the WWDT clock frequency.
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[2.0.0]

 Initial version.

1.6 Driver API Reference Manual

This section provides a link to the Driver API RM, detailing available drivers and their usage to
help you integrate hardware efficiently.

LPC802

1.7 Middleware Documentation

Find links to detailed middleware documentation for key components. While not all onboard
middleware is covered, this serves as a useful reference for configuration and development.

1.7.1 FreeMASTER

freemaster
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Chapter 2

LPC802

2.1 Clock Driver

enum _ clock ip_name
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.

Values:
enumerator kCLOCK_ IpInvalid
Invalid Ip Name.
enumerator kCLOCK_Rom
Clock gate name: Rom.
enumerator kCLOCK Ram0
Clock gate name: Ram0.
enumerator kCLOCK _Flash
Clock gate name: Flash.
enumerator kCLOCK_ I2c0
Clock gate name: 12c0.
enumerator kCLOCK_ Gpio0
Clock gate name: GpioO.
enumerator kCLOCK__Swm
Clock gate name: Swm.
enumerator kCLOCK_ Wkt
Clock gate name: WKkt.
enumerator kCLOCK__Mrt
Clock gate name: Mrt.
enumerator kCLOCK__Spi0
Clock gate name: Spi0.
enumerator kCLOCK_ Crc
Clock gate name: Crc.

enumerator kCLOCK_Uart0
Clock gate name: UartO.
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enumerator kCLOCK_ Uartl
Clock gate name: Uartl.

enumerator kCLOCK Wwdt
Clock gate name: Wwdt.

enumerator kCLOCK_ Iocon
Clock gate name: Iocon.

enumerator kCLOCK Acmp
Clock gate name: Acmp.

enumerator kCLOCK__Adc
Clock gate name: Adc.

enumerator kCLOCK__Ctimer0
Clock gate name: CtimeroO.

enumerator kCLOCK __Gpiolnt
Clock gate name: Gpiolnt.

enum _ clock name

Clock name used to get clock frequency.
Values:

enumerator kCLOCK_ CoreSysClk
Cpu/AHB/AHB matrix/Memories,etc

enumerator kCLOCK MainClk
Main clock

enumerator kCLOCK_ Fro
FRO18/24/30

enumerator kCLOCK _FroDiv
FRO div clock

enumerator kCLOCK__ExtClk
External Clock

enumerator kCLOCK_LPOsc
Low power Oscillator

enumerator kCLOCK_ Frg
fractional rate0

enum _clock select
Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux

is used to define the mux value.
Values:

enumerator kADC Clk_ From Fro
Mux ADC_Clk from Fro.

enumerator kADC Clk From ClkIn
Mux ADC_Clk from CIKIn.

enumerator ktUARTO0 Clk From Fro
Mux UARTO_Clk from Fro.

enumerator kUARTO Clk From MainClk

Mux UARTO_Clk from MainClk.
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enumerator ktUARTO0_Clk_ From_ Frg0Clk
Mux UARTO_Clk from FrgOClk.

enumerator kUARTO Clk_ From Fro Div
Mux UARTO_Clk from Fro_Div.

enumerator kUART1 Clk From_ Fro
Mux UART1_Clk from Fro.

enumerator ktUART1 Clk From MainClk
Mux UART1_Clk from MainClk.

enumerator ktUART1_Clk_From_ Frg0Clk
Mux UART1_Clk from FrgOClk.

enumerator kUART1 Clk From Fro Div
Mux UART1_Clk from Fro_Div.

enumerator kI2C Clk From Fro
Mux I2C_CIk from Fro.

enumerator kI2C Clk_From MainClk
Mux I2C_CIk from MainClk.

enumerator kI2C_ Clk_ From_ Frg0Clk
Mux I2C_CIk from Frg0Clk.

enumerator kI2C_Clk_ From_ Fro Div
Mux I2C_CIk from Fro_Div.

enumerator kSPI Clk From Fro
Mux SPI_Clk from Fro.

enumerator kSPI Clk From MainClk
Mux SPI_Clk from MainCIKk.

enumerator kSPI_ Clk_ From_ Frg0Clk
Mux SPI_CIk from FrgOClk.

enumerator kSPI Clk From Fro Div
Mux SPI_CIk from Fro_Div.

enumerator kFRGO_Clk From_ Fro
Mux FRGO_Clk from Fro.

enumerator kFRGO_ Clk_ From MainClk
Mux FRGO_CIk from MainClk.

enumerator kCLKOUT _From_Fro
Mux CLKOUT from Fro.

enumerator kCLKOUT From MainClk
Mux CLKOUT from MainClk.

enumerator kCLKOUT From ExtClk
Mux CLKOUT from ExtClk.

enumerator kCLKOUT _From_ WdtOsc
Mux clock out from WdtOsc.

enum _clock divider
Clock divider.

Values:
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enumerator kCLOCK_DivAdcClk
Adc Clock Divider.

enumerator kCLOCK_ DivClkOut
Clock out divider.
enum _clock fro_ src
fro output frequency source definition
Values:
enumerator kCLOCK__FroSrcLpwrBootValue
fro source from the fro oscillator divided by low power boot value
enum _ clock fro osc_freq
fro oscillator output frequency value definition
Values:
enumerator kCLOCK__FroOscOut18M
FRO oscillator output 18M
enumerator kCLOCK__FroOscOut24M
FRO oscillator output 24M
enumerator kCLOCK_ FroOscOut30M
FRO oscillator output 30M
enum _clock main_ clk src
Main clock source definition.
Values:
enumerator kCLOCK__MainClkSrcFro
main clock source from FRO
enumerator kCLOCK_ MainClkSrcExtClk
main clock source from Ext clock
enumerator kCLOCK_ MainClkSrcLPOsc
main clock source from watchdog oscillator
enumerator kCLOCK_ MainClkSrcFroDiv
main clock source from FRO Div
typedef enum _clock_ip_name clock__ip_name_t
Clock gate name used for CLOCK_EnableClock/CLOCK_DisableClock.
typedef enum _clock_name clock_name_ t
Clock name used to get clock frequency.

typedef enum _clock_select clock_ select_t
Clock Mux Switches CLK_MUX_DEFINE(reg, mux) reg is used to define the mux register mux
is used to define the mux value.

typedef enum _clock_divider clock_ divider_ t
Clock divider.

typedef enum _clock_fro_src clock_fro_src_t
fro output frequency source definition

typedef enum _clock_fro_osc_freq clock fro_osc_freq t
fro oscillator output frequency value definition

98 Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _clock_main_clk_src clock_main_ clk_src_t
Main clock source definition.

volatile uint32_t g Wdt_ Osc_ Freq
watchdog oscilltor clock frequency.

This variable is used to store the watchdog oscillator frequency which is set by
CLOCK_InitWdtOsc, and it is returned by CLOCK_GetWdtOscFreq.

volatile uint32_t g Ext_ Clk_Freq
external clock frequency.

This variable is used to store the external clock frequency which is include external oscil-
lator clock and external clk in clock frequency value, it is set by CLOCK_InitExtClkin when
CLK IN is used as external clock or by CLOCK_InitSysOsc when external oscillator is used
as external clock ,and it is returned by CLOCK_GetExtClkFreq.

FSL CLOCK_DRIVER_ VERSION
CLOCK driver version 2.3.4.

SDK_DEVICE_MAXIMUM__CPU_CLOCK_FREQUENCY

CLOCK_FRO_SETTING API ROM_ ADDRESS

FRO clock setting API address in ROM.
CLOCK_FAIM BASE

FAIM base address.
ADC CLOCKS

Clock ip name array for ADC.
ACMP_ CLOCKS

Clock ip name array for ACMP.
DAC CLOCKS

Clock ip name array for DAC.
SWM CLOCKS

Clock ip name array for SWM.
ROM CLOCKS

Clock ip name array for ROM.
SRAM CLOCKS

Clock ip name array for SRAM.
IOCON CLOCKS

Clock ip name array for IOCON.
GPIO CLOCKS

Clock ip name array for GPIO.
GPIO _INT CLOCKS

Clock ip name array for GPIO_INT.
DMA CLOCKS

Clock ip name array for DMA.

CRC__CLOCKS
Clock ip name array for CRC.

WWDT__CLOCKS
Clock ip name array for WWDT.

2.1. Clock Driver 99



MCUXpresso SDK Documentation, Release 25.12.00

SCT _CLOCKS
Clock ip name array for SCTO.

12C_CLOCKS
Clock ip name array for I2C.

USART CLOCKS
Clock ip name array for I2C.

SPI_CLOCKS
Clock ip name array for SPI.

CAPT CLOCKS
Clock ip name array for CAPT.

CTIMER,_ CLOCKS
Clock ip name array for CTIMER.

MTB_ CLOCKS
Clock ip name array for MTB.

MRT CLOCKS
Clock ip name array for MRT.

WKT_ CLOCKS
Clock ip name array for WKT.

CLK_GATE_DEFINE(reg, bit)
Internal used Clock definition only.

CLK_GATE_GET_REG(X)
CLK_GATE_GET_ BITS_SHIFT(X)
CLK_MUX_DEFINE(reg, mux)
CLK_MUX_GET_REG(X)

CLK MUX_ GET MUX(X)
CLK_MAIN_CLK_MUX_DEFINE(preMux, mux)
CLK_MAIN_CLK_MUX_GET_PRE_MUX(X)
CLK_MAIN_CLK_MUX_ GET_ MUX(X)
CLK_DIV_DEFINE(reg)

CLK DIV_GET REG(X)
CLK_WDT_OSC_DEFINE(freq, regValue)
CLK_WDT_OSC_GET_FREQ(X)
CLK_WDT_OSC_GET_REG(X)
CLK_FRG_DIV_REG_MAP(base)
CLK_FRG_MUL_REG_MAP(base)
CLK_FRG_SEL_REG_MAP(base)

SYS AHB CLK CTRLO
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static inline void CLOCK_ EnableClock(clock_ip_name_t clk)
static inline void CLOCK_ DisableClock(clock_ip_name_t clk)
static inline void CLOCK _ Select(clock_select _t sel)
static inline void CLOCK _ SetClkDivider(clock_divider_t name, uint32_t value)
static inline uint32_t CLOCK_GetClkDivider(clock_divider_t name)
static inline void CLOCK_ SetCoreSysClkDiv(uint32_t value)
void CLOCK_SetMainClkSrc(clock_main_clk_src_t src)

Set main clock reference source.

Parameters
* src — Reference clock_main_clk_src_t to set the main clock source.

static inline void CLOCK_ SetFRGClkMul(uint32_t *base, uint32_t mul)
uint32_t CLOCK__GetFRGClkFreq(void)

Return Frequency of FRGO Clock.

Returns
Frequency of FRGO Clock.

uint32_t CLOCK _GetMainClkFreq(void)
Return Frequency of Main Clock.

Returns
Frequency of Main Clock.

uint32_t CLOCK _GetFroFreq(void)
Return Frequency of FRO.

Returns
Frequency of FRO.

static inline uint32_t CLOCK __GetCoreSysClkFreq(void)
Return Frequency of core.

Returns
Frequency of core.

uint32_t CLOCK__GetClockOutClkFreq(void)
Return Frequency of ClockOut.

Returns
Frequency of ClockOut

uint32_t CLOCK__GetUartOClkFreq(void)
Get UARTO frequency.

Return values
UARTO - frequency value.

uint32_t CLOCK_ GetUart1ClkFreq(void)
Get UART1 frequency.

Return values
UART1 - frequency value.
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uint32_t CLOCK_ GetFreq(clock_name_t clockName)
Return Frequency of selected clock.

Returns
Frequency of selected clock

static inline uint32_t CLOCK_ GetLPOscFreq(void)
Get watch dog OSC frequency.

Return values
watch — dog OSC frequency value.

static inline uint32_t CLOCK_ GetExtClkFreq(void)
Get external clock frequency.

Return values
external — clock frequency value.

bool CLOCK__SetFRGClkFreq(uint32_t freq)
Set FRGO output frequency.

Parameters

* target (freq,) — output frequency,freq < input and (input / freq) < 2 should
be satisfy.

Return values
true — - successfully, false - input argument is invalid.

void CLOCK_ InitExtClkin(uint32_t clkInFreq)
Init external CLK IN, select the CLKIN as the external clock source.

Parameters
¢ clkInFreq — external clock in frequency.

static inline void CLOCK_ DeinitLPOsc(void)
Deinit watch dog OSC.

Parameters
* config — oscillator configuration.

void CLOCK _SetFroOscFreq(clock_fro_osc_freq_t freq)

Set FRO oscillator output frequency. Initialize the FRO clock to given frequency (18, 24 or
30 MHz).

Parameters

* please (freq,) —reference clock_fro_osc_freq_t definition, frequency must be
one of 18000, 24000 or 30000 KHz.

2.2 CRC: Cyclic Redundancy Check Driver

FSL CRC_DRIVER VERSION
CRC driver version. Version 2.1.1.

Current version: 2.1.1
Change log:
* Version 2.0.0
— initial version

* Version 2.0.1

102 Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

- add explicit type cast when writing to WR_DATA
* Version 2.0.2

- Fix MISRA issue
* Version 2.1.0

— Add CRC_WriteSeed function
* Version 2.1.1

— Fix MISRA issue

enum _ crc_ polynomial
CRC polynomials to use.

Values:

enumerator kCRC_ Polynomial CRC__CCITT
XA16+XA12+xXA5+1

enumerator kCRC_ Polynomial CRC_ 16
XA16+XA15+xA2+1

enumerator kCRC_ Polynomial CRC_ 32
XAZ2+XNA26+XA23+XNA22+XN16+XA 1 2+XAT1+XAT0+XA+XAT+XAS+XAL+XA2+X+1

typedef enum _crc_polynomial crc_ polynomial_t
CRC polynomials to use.

typedef struct _crc_config crc_ config_t
CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

void CRC_Init(CRC_Type *base, const crc_config t *config)
Enables and configures the CRC peripheral module.

This functions enables the CRC peripheral clock in the LPC SYSCON block. It also configures
the CRC engine and starts checksum computation by writing the seed.

Parameters
* base — CRC peripheral address.
* config — CRC module configuration structure.

static inline void CRC_ Deinit(CRC_Type *base)
Disables the CRC peripheral module.

This functions disables the CRC peripheral clock in the LPC SYSCON block.
Parameters
* base — CRC peripheral address.

void CRC_ Reset(CRC_Type *base)
resets CRC peripheral module.

Parameters
* base — CRC peripheral address.

void CRC_ WriteSeed (CRC_Type *base, uint32_t seed)
Write seed to CRC peripheral module.

Parameters

* base — CRC peripheral address.
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* seed — CRC Seed value.

void CRC_ GetDefaultConfig(crc_config_t *config)
Loads default values to CRC protocol configuration structure.

Loads default values to CRC protocol configuration structure. The default values are:

config->polynomial = kCRC_ Polynomial CRC_CCITT;
config->reverseln = false;

config->complementIn = false;

config->reverseOut = false;

config->complementOut = false;

config->seed = OxFFFEU,

Parameters
* config — CRC protocol configuration structure

void CRC_ GetConfig(CRC_Type *base, crc_config_t *config)
Loads actual values configured in CRC peripheral to CRC protocol configuration structure.

The values, including seed, can be used to resume CRC calculation later.
Parameters
* base — CRC peripheral address.
* config — CRC protocol configuration structure

void CRC_ WriteData(CRC_Type *base, const uint8_t *data, size_t dataSize)
Writes data to the CRC module.

Writes input data buffer bytes to CRC data register.
Parameters
* base — CRC peripheral address.
* data — Input data stream, MSByte in data[0].
* dataSize — Size of the input data buffer in bytes.

static inline uint32_t CRC_ Get32bitResult(CRC_Type *base)
Reads 32-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 32-bit checksum, after configured bit reverse and complement opera-
tions.

static inline uint16_t CRC_ Get16bitResult(CRC_Type *base)
Reads 16-bit checksum from the CRC module.

Reads CRC data register.
Parameters
* base — CRC peripheral address.

Returns
final 16-bit checksum, after configured bit reverse and complement opera-
tions.
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CRC_DRIVER_USE_CRC16_CCITT_FALSE AS DEFAULT

Default configuration structure filled by CRC_GetDefaultConfig(). Uses CRC-16/CCITT-FALSE
as default.

struct _ crc_ config
#include <fsl_crc.h> CRC protocol configuration.

This structure holds the configuration for the CRC protocol.

Public Members
crc_polynomial_t polynomial
CRC polynomial.

bool reverseln
Reverse bits on input.

bool complementIn
Perform 1’s complement on input.

bool reverseOut
Reverse bits on output.

bool complementOut
Perform 1’s complement on output.

uint32_t seed
Starting checksum value.

2.3 CTIMER: Standard counter/timers

void CTIMER_ Init(CTIMER_Type *base, const ctimer_config_t *config)
Ungates the clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application before using the driver.

Parameters
* base — Ctimer peripheral base address
* config — Pointer to the user configuration structure.

void CTIMER,_ Deinit(CTIMER_Type *base)
Gates the timer clock.

Parameters
* base — Ctimer peripheral base address

void CTIMER,_ GetDefaultConfig(ctimer_config_t *config)
Fills in the timers configuration structure with the default settings.

The default values are:

config->mode = kCTIMER_ TimerMode;
config->input = kKCTIMER, Capture_ 0;
config->prescale = 0;
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Parameters

* config — Pointer to the user configuration structure.

status_t CTIMER._SetupPwmPeriod(CTIMER_Type *base, const ctimer_match_t

pwmPeriodChannel, ctimer_match_t matchChannel,
uint32_t pwmPeriod, uint32_t pulsePeriod, bool enablelnt)

Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value

and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
period

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal
* pwmPeriod — PWM period match value
¢ pulsePeriod — Pulse width match value

* enableInt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.

Returns
kStatus_Success on success kStatus_Fail If matchChannel is equal to pwmPeri-
odChannel; this channel is reserved to set the PWM cycle If PWM pulse width
register value is larger than OXFFFFFFFF.

status_t CTIMER,_ SetupPwm(CTIMER_Type *base, const ctimer_match_t pwmPeriodChannel,

ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t
pwmFreq_Hz, uint32_t srcClock_Hz, bool enablelnt)

Configures the PWM signal parameters.
Enables PWM mode on the match channel passed in and will then setup the match value

and other match parameters to generate a PWM signal. This function can manually assign
the specified channel to set the PWM cycle.

Note: When setting PWM output from multiple output pins, all should use the same PWM
frequency. Please use CTIMER_SetupPwmPeriod to set up the PWM with high resolution.

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal
* dutyCyclePercent — PWM pulse width; the value should be between 0 to 100
* pwmFreq Hz - PWM signal frequency in Hz
* srcClock_Hz — Timer counter clock in Hz

* enablelnt — Enable interrupt when the timer value reaches the match value
of the PWM pulse, if it is 0 then no interrupt will be generated.
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static inline void CTIMER_ UpdatePwmPulsePeriod(CTIMER_Type *base, ctimer_match_t
matchChannel, uint32_t pulsePeriod)

Updates the pulse period of an active PWM signal.
Parameters
* base — Ctimer peripheral base address
» matchChannel - Match pin to be used to output the PWM signal
* pulsePeriod — New PWM pulse width match value

status_t CTIMER_ UpdatePwmDutycycle(CTIMER_Type *base, const ctimer_match _t
pwmPeriodChannel, ctimer_match_t matchChannel,
uint8_t dutyCyclePercent)

Updates the duty cycle of an active PWM signal.

Note: Please use CTIMER_SetupPwmPeriod to update the PWM with high resolution. This
function can manually assign the specified channel to set the PWM cycle.

Parameters
* base — Ctimer peripheral base address
» pwmPeriodChannel — Specify the channel to control the PWM period
* matchChannel — Match pin to be used to output the PWM signal

¢ dutyCyclePercent — New PWM pulse width; the value should be between 0
to 100

Returns
kStatus_Success on success kStatus_Fail If PWM pulse width register value is
larger than OXFFFFFFFF.

static inline void CTIMER._ Enablelnterrupts(CTIMER_Type *base, uint32_t mask)
Enables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline void CTIMER._ DisableInterrupts(CTIMER_Type *base, uint32_t mask)
Disables the selected Timer interrupts.

Parameters
* base — Ctimer peripheral base address

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration ctimer_interrupt_enable_t

static inline uint32_t CTIMER_ GetEnabledInterrupts(CTIMER_Type *base)
Gets the enabled Timer interrupts.

Parameters
* base — Ctimer peripheral base address

Returns
The enabled interrupts. This is the logical OR of members of the enumeration
ctimer_interrupt_enable_t

2.3. CTIMER: Standard counter/timers 107



MCUXpresso SDK Documentation, Release 25.12.00

static inline uint32_t CTIMER_ GetStatusFlags(CTIMER_Type *base)
Gets the Timer status flags.

Parameters
* base — Ctimer peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
ctimer_status_flags_t

static inline void CTIMER,__ ClearStatusFlags(CTIMER_Type *base, uint32_t mask)
Clears the Timer status flags.

Parameters
* base — Ctimer peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration ctimer_status_flags_t

static inline void CTIMER_ StartTimer(CTIMER_Type *base)
Starts the Timer counter.

Parameters
* base — Ctimer peripheral base address

static inline void CTIMER_ StopTimer(CTIMER Type *base)
Stops the Timer counter.

Parameters
* base — Ctimer peripheral base address
FSL__CTIMER,_ DRIVER_ VERSION
Version 2.3.4
enum _ ctimer_ capture channel
List of Timer capture channels.
Values:
enumerator kCTIMER,_ Capture_0
Timer capture channel 0
enumerator kCTIMER, Capture_ 1
Timer capture channel 1
enumerator kCTIMER,_ Capture_ 3
Timer capture channel 3
enum _ ctimer_ capture_edge
List of capture edge options.
Values:
enumerator kCTIMER, Capture_RiseEdge
Capture on rising edge
enumerator kCTIMER, Capture_FallEdge
Capture on falling edge

enumerator kCTIMER, Capture_BothEdge
Capture on rising and falling edge
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enum _ctimer match
List of Timer match registers.

Values:

enumerator kCTIMER_ Match_ 0
Timer match register 0

enumerator kCTIMER,_ Match_ 1
Timer match register 1

enumerator kCTIMER, Match_ 2
Timer match register 2

enumerator kCTIMER_ Match_ 3
Timer match register 3

enum _ ctimer external match
List of external match.

Values:

enumerator kCTIMER_ External Match_ 0
External match 0

enumerator kCTIMER _External Match_ 1
External match 1

enumerator kCTIMER_External Match_2
External match 2

enumerator kCTIMER External Match 3
External match 3

enum _ ctimer_match_output_ control
List of output control options.

Values:

enumerator kCTIMER,_ Output_ NoAction
No action is taken

enumerator kCTIMER, Output_ Clear
Clear the EM bit/output to 0

enumerator kCTIMER, Output_ Set
Set the EM bit/output to 1

enumerator kCTIMER,_ Output_ Toggle
Toggle the EM bit/output

enum _ctimer timer mode
List of Timer modes.

Values:
enumerator kCTIMER _TimerMode

enumerator kCTIMER, IncreaseOnRiseEdge
enumerator kCTIMER, IncreaseOnFallEdge

enumerator kCTIMER, IncreaseOnBothEdge
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enum _ ctimer_interrupt_ enable
List of Timer interrupts.

Values:

enumerator kCTIMER__MatchOInterruptEnable
Match 0 interrupt

enumerator kCTIMER,_ MatchlInterruptEnable
Match 1 interrupt

enumerator kCTIMER, Match2InterruptEnable
Match 2 interrupt

enumerator kCTIMER__Match3InterruptEnable
Match 3 interrupt

enum _ ctimer_ status_ flags

List of Timer flags.

Values:

enumerator kCTIMER_ MatchOFlag
Match 0 interrupt flag

enumerator kCTIMER_ Match1Flag
Match 1 interrupt flag

enumerator kCTIMER_ Match2Flag
Match 2 interrupt flag

enumerator kCTIMER_Match3Flag
Match 3 interrupt flag

enum ctimer_callback type t

Callback type when registering for a callback. When registering a callback an array of
function pointers is passed the size could be 1 or 8, the callback type will tell that.

Values:

enumerator kCTIMER_ SingleCallback

Single Callback type where there is only one callback for the timer. based on the status
flags different channels needs to be handled differently

enumerator kCTIMER_ MultipleCallback
Multiple Callback type where there can be 8 valid callbacks, one per channel. for both
match/capture
typedef enum _ctimer_capture_channel ctimer_ capture_ channel t
List of Timer capture channels.

typedef enum _ctimer_capture_edge ctimer capture_edge t
List of capture edge options.

typedef enum _ctimer_match ctimer_match_t
List of Timer match registers.

typedef enum _ctimer_external_match ctimer_external _match_t
List of external match.

typedef enum _ctimer_match_output_control ctimer__match_output_ control_t
List of output control options.
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typedef enum _ctimer_timer_mode ctimer__timer_mode_t
List of Timer modes.

typedef enum _ctimer._interrupt_enable ctimer__interrupt_enable__t
List of Timer interrupts.

typedef enum _ctimer_status_flags ctimer_status_ flags_t
List of Timer flags.

typedef void (*ctimer_ callback_ t)(uint32_t flags)
typedef struct _ctimer_match_config ctimer__match_ config_t
Match configuration.
This structure holds the configuration settings for each match register.

typedef struct _ctimer_config ctimer_ config_t
Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

void CTIMER,_ SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const
ctimer_match_config_t *config)

Setup the match register.

User configuration is used to setup the match value and action to be taken when a match
occurs.

Parameters
* base — Ctimer peripheral base address
* matchChannel - Match register to configure
* config — Pointer to the match configuration structure

uint32_t CTIMER_ GetOutputMatchStatus(CTIMER_Type *base, uint32_t matchChannel)
Get the status of output match.

This function gets the status of output MAT, whether or not this output is connected to a
pin. This status is driven to the MAT pins if the match function is selected via IOCON. 0 =
LOW. 1 = HIGH.

Parameters
* base — Ctimer peripheral base address

* matchChannel — External match channel, user can obtain the status of mul-
tiple match channels at the same time by using the logic of “|” enumera-
tion ctimer_external_match_t

Returns
The mask of external match channel status flags. Users need to use the
_ctimer_external_match type to decode the return variables.

void CTIMER,_ SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture,
ctimer_capture_edge_t edge, bool enablelnt)

Setup the capture.
Parameters
* base — Ctimer peripheral base address

* capture — Capture channel to configure

2.3. CTIMER: Standard counter/timers 111



MCUXpresso SDK Documentation, Release 25.12.00

* edge — Edge on the channel that will trigger a capture

* enableInt — Flag to enable channel interrupts, if enabled then the registered
call back is called upon capture

static inline uint32_t CTIMER_ GetTimerCountValue(CTIMER_Type *base)
Get the timer count value from TC register.

Parameters
* base — Ctimer peripheral base address.

Returns
return the timer count value.

void CTIMER, RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func,
ctimer_callback_type_t cb_type)

Register callback.
This function configures CTimer Callback in following modes:

» Single Callback: cb_func should be pointer to callback function pointer
For example: ctimer_callback_t ctimer_callback = pwm_match_callback;
CTIMER_RegisterCallBack(CTIMER, &ctimer_callback, kCTIMER_SingleCallback);

o Multiple Callback: cb_func should be pointer to array of callback func-
tion pointers Each element corresponds to Interrupt Flag in IR reg-
ister. For example: ctimer_callback_t ctimer_callback_table[] = {
ctimer_matchO_callback, NULL, NULL, ctimer_match3_callback, NULL, NULL,
NULL, NULL}; CTIMER_RegisterCallBack(CTIMER, &ctimer_callback_table[0], kC-
TIMER_MultipleCallback);

Parameters
* base — Ctimer peripheral base address
* ¢b_ func — Pointer to callback function pointer
* cb_type — callback function type, singular or multiple

static inline void CTIMER_ Reset(CTIMER_Type *base)
Reset the counter.

The timer counter and prescale counter are reset on the next positive edge of the APB clock.
Parameters
* base — Ctimer peripheral base address

static inline void CTIMER_ SetPrescale(CTIMER_Type *base, uint32_t prescale)
Setup the timer prescale value.

Specifies the maximum value for the Prescale Counter.
Parameters
* base — Ctimer peripheral base address
* prescale — Prescale value

static inline uint32_t CTIMER_ GetCaptureValue(CTIMER_Type *base, ctimer_capture_channel t
capture)

Get capture channel value.
Get the counter/timer value on the corresponding capture channel.
Parameters

* base — Ctimer peripheral base address
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* capture — Select capture channel

Returns
The timer count capture value.

static inline void CTIMER_ EnableResetMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reset match channel.
Set the specified match channel reset operation.
Parameters
* base — Ctimer peripheral base address
* match — match channel used
* enable — Enable match channel reset operation.

static inline void CTIMER, EnableStopMatchChannel(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable stop match channel.
Set the specified match channel stop operation.
Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* enable — Enable match channel stop operation.

static inline void CTIMER, EnableMatchChannelReload(CTIMER_Type *base, ctimer_match_t
match, bool enable)

Enable reload channel falling edge.
Enable the specified match channel reload match shadow value.
Parameters
* base — Ctimer peripheral base address.
* match — match channel used.
* enable — Enable .

static inline void CTIMER_ EnableRisingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel rising edge.
Sets the specified capture channel for rising edge capture.
Parameters
* base — Ctimer peripheral base address.
* capture — capture channel used.
* enable — Enable rising edge capture.

static inline void CTIMER_ EnableFallingEdgeCapture(CTIMER_Type *base,
ctimer_capture_channel_t capture, bool
enable)

Enable capture channel falling edge.
Sets the specified capture channel for falling edge capture.

Parameters
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* base — Ctimer peripheral base address.
* capture — capture channel used.

* enable — Enable falling edge capture.

static inline void CTIMER,_ SetShadowValue(CTIMER_Type *base, ctimer_match_t match,

uint32_t matchvalue)
Set the specified match shadow channel.

Parameters
* base — Ctimer peripheral base address.
e match — match channel used.

* matchvalue — Reload the value of the corresponding match register.

struct _ ctimer match_ config

#include <fsl_ctimer.h> Match configuration.

This structure holds the configuration settings for each match register.

Public Members
uint32_t matchValue
This is stored in the match register

bool enableCounterReset

true: Match will reset the counter false: Match will not reser the counter
bool enableCounterStop

true: Match will stop the counter false: Match will not stop the counter

ctimer_match_output_control_t outControl
Action to be taken on a match on the EM bit/output

bool outPinInitState
Initial value of the EM bit/output

bool enableInterrupt
true: Generate interrupt upon match false: Do not generate interrupt on match

struct _ ctimer_config

#include <fsl_ctimerh> Timer configuration structure.

This structure holds the configuration settings for the Timer peripheral. To initialize this
structure to reasonable defaults, call the CTIMER_GetDefaultConfig() function and pass a
pointer to the configuration structure instance.

The configuration structure can be made constant so as to reside in flash.

Public Members

ctimer_timer_mode_t mode
Timer mode

ctimer_capture_channel_t input
Input channel to increment the timer, used only in timer modes that rely on this input
signal to increment TC

uint32_t prescale
Prescale value
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2.4 12C: Inter-Integrated Circuit Driver

2.5 12C Driver

FSL_12C_DRIVER_VERSION
I12C driver version.

12C status return codes.
Values:
enumerator kStatus_ 12C_ Busy
The master is already performing a transfer.
enumerator kStatus_12C__Idle
The slave driver is idle.
enumerator kStatus_ 12C_ Nak
The slave device sent a NAK in response to a byte.
enumerator kStatus_ 12C_InvalidParameter
Unable to proceed due to invalid parameter.
enumerator kStatus_ 12C_ BitError
Transferred bit was not seen on the bus.
enumerator kStatus_ 12C_ArbitrationLost
Arbitration lost error.
enumerator kStatus_ 12C_ NoTransferInProgress
Attempt to abort a transfer when one is not in progress.
enumerator kStatus_ 12C_DmaRequestFail
DMA request failed.
enumerator kStatus_ 12C_ StartStopError
Start and stop error.
enumerator kStatus_ 12C_ UnexpectedState
Unexpected state.
enumerator kStatus_12C__Addr_ Nak
NAK received during the address probe.
enumerator kStatus_12C__Timeout
Timeout polling status flags.
12C_RETRY_TIMES
Retry times for waiting flag.
12C_STAT MSTCODE_IDLE
Master Idle State Code
12C_STAT MSTCODE_RXREADY
Master Receive Ready State Code

12C_STAT_MSTCODE_TXREADY
Master Transmit Ready State Code
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12C_STAT MSTCODE_NACKADR
Master NACK by slave on address State Code

12C_STAT MSTCODE_NACKDAT
Master NACK by slave on data State Code

I2C_STAT SLVST ADDR
12C_STAT SLVST RX
I12C_STAT SLVST TX

2.6 I2C Master Driver

void I2C_ MasterGetDefaultConfig(i2c_master_config_t *masterConfig)
Provides a default configuration for the I2C master peripheral.

This function provides the following default configuration for the 12C master peripheral:

masterConfig->enableMaster = true;
masterConfig- >baudRate_ Bps = 100000U;
masterConfig->enableTimeout = false;

After calling this function, you can override any settings in order to customize the configu-
ration, prior to initializing the master driver with 12C_MasterInit().

Parameters

» masterConfig — [out] User provided configuration structure for default val-
ues. Refer to i2c_master_config_t.

void 12C_ MasterInit(I2C_Type *base, const i2c_master._config_t *masterConfig, uint32_t
srcClock_Hz)

Initializes the I12C master peripheral.

This function enables the peripheral clock and initializes the I2C master peripheral as de-
scribed by the user provided configuration. A software reset is performed prior to config-
uration.

Parameters

* base — The I12C peripheral base address.

* masterConfig - User provided peripheral configuration. Use
I12C_MasterGetDefaultConfig() to get a set of defaults that you can
override.

* srcClock__Hz — Frequency in Hertz of the I12C functional clock. Used to cal-
culate the baud rate divisors, filter widths, and timeout periods.

void 12C_ MasterDeinit(I2C_Type *base)
Deinitializes the I2C master peripheral.

This function disables the I2C master peripheral and gates the clock. It also performs a
software reset to restore the peripheral to reset conditions.

Parameters

* base — The I2C peripheral base address.
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uint32_t 12C_ GetInstance(I12C_Type *base)
Returns an instance number given a base address.

If an invalid base address is passed, debug builds will assert. Release builds will just return
instance number 0.

Parameters
* base — The I2C peripheral base address.

Returns
12C instance number starting from 0.

static inline void 12C_ MasterReset(I2C_Type *base)
Performs a software reset.

Restores the 12C master peripheral to reset conditions.
Parameters
* base — The I2C peripheral base address.

static inline void 12C_ MasterEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as master.

Parameters
* base — The I2C peripheral base address.
* enable — Pass true to enable or false to disable the specified I12C as master.

static inline uint32_t 12C_ GetStatusFlags(I2C_Type *base)
Gets the I2C status flags.

A bit mask with the state of all I2C status flags is returned. For each flag, the corresponding
bit in the return value is set if the flag is asserted.

See also:

_i2c_master_flags

Parameters
* base — The I2C peripheral base address.

Returns
State of the status flags:

* 1: related status flag is set.
* 0: related status flag is not set.

static inline void 12C_ MasterClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C master status flag state.

The following status register flags can be cleared:
o kI2C_MasterArbitrationLostFlag
» kI2C_MasterStartStopErrorFlag

Attempts to clear other flags has no effect.

See also:

_i2c_master_flags.
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Parameters
* base — The I2C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_master_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_GetStatusFlags().

static inline void 12C_ EnableInterrupts(I2C_Type *base, uint32_t interruptMask)
Enables the I2C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

* interruptMask — Bit mask of interrupts to enable. See _i2c_master_{flags for
the set of constants that should be OR’d together to form the bit mask.

static inline void 12C_ DisableInterrupts(I2C_Type *base, uint32_t interruptMask)
Disables the I12C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

* interruptMask — Bit mask of interrupts to disable. See _i2c_master_flags for
the set of constants that should be OR’d together to form the bit mask.

static inline uint32_t 12C_ GetEnabledInterrupts(I2C_Type *base)
Returns the set of currently enabled I2C master interrupt requests.

Parameters
* base — The I2C peripheral base address.

Returns

A bitmask composed of _i2c_master_flags enumerators OR’d together to indi-
cate the set of enabled interrupts.

void 12C_ MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
Sets the I2C bus frequency for master transactions.

The I2C master is automatically disabled and re-enabled as necessary to configure the baud
rate. Do not call this function during a transfer, or the transfer is aborted.

Parameters
* base — The I2C peripheral base address.
* srcClock__Hz —I12C functional clock frequency in Hertz.
* baudRate_Bps — Requested bus frequency in bits per second.

static inline bool 12C_ MasterGetBusIdleState(I2C_Type *base)
Returns whether the bus is idle.

Requires the master mode to be enabled.
Parameters
* base — The I2C peripheral base address.
Return values
* true — Bus is busy.

* false — Bus is idle.
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status_t 12C_ MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction)
Sends a START on the I2C bus.

This function is used to initiate a new master mode transfer by sending the START signal.
The slave address is sent following the I12C START signal.

Parameters

* base — I2C peripheral base pointer

* address — 7-bit slave device address.

¢ direction — Master transfer directions(transmit/receive).
Return values

* kStatus_ Success — Successfully send the start signal.

* kStatus_I2C_ Busy — Current bus is busy.

status_t 12C_MasterStop(I2C_Type *base)
Sends a STOP signal on the I12C bus.

Return values
* kStatus_ Success — Successfully send the stop signal.
* kStatus_I2C_Timeout — Send stop signal failed, timeout.

static inline status_t 12C_ MasterRepeatedStart(I2C_Type *base, uint8_t address, i2¢_direction_t
direction)

Sends a REPEATED START on the I12C bus.
Parameters
* base — I2C peripheral base pointer
* address — 7-bit slave device address.
* direction — Master transfer directions(transmit/receive).
Return values
* kStatus_ Success — Successfully send the start signal.

* kStatus_I2C_ Busy — Current bus is busy but not occupied by current 12C
master.

status_t 12C_ MasterWriteBlocking(I2C_Type *base, const void *txBulff, size_t txSize, uint32_t
flags)
Performs a polling send transfer on the I12C bus.

Sends up to txSize number of bytes to the previously addressed slave device. The slave may
reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
function returns kStatus_I2C_Nak.

Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.
* txSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was sent successfully.

* kStatus_I2C_ Busy — Another master is currently utilizing the bus.
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* kStatus_I2C_ Nak — The slave device sent a NAK in response to a byte.
* kStatus_I2C_ ArbitrationLost — Arbitration lost error.

status_t 12C_ MasterReadBlocking(I2C_Type *base, void *rxBuff, size_t rxSize, uint32_t flags)
Performs a polling receive transfer on the I12C bus.

Parameters
* base — The I2C peripheral base address.
* rxBuff — The pointer to the data to be transferred.
* rxSize — The length in bytes of the data to be transferred.

* flags — Transfer control flag to control special behavior like suppressing
start or stop, for normal transfers use kI2C_TransferDefaultFlag

Return values
* kStatus_ Success — Data was received successfully.
* kStatus_I2C_ Busy — Another master is currently utilizing the bus.
* kStatus_I2C_ Nak — The slave device sent a NAK in response to a byte.
*» kStatus_I2C_ ArbitrationLost — Arbitration lost error.

status_t 12C_ MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer)
Performs a master polling transfer on the I2C bus.

Note: The API does not return until the transfer succeeds or fails due to arbitration lost or
receiving a NAK.

Parameters
* base — I2C peripheral base address.
* xfer — Pointer to the transfer structure.
Return values
* kStatus_ Success — Successfully complete the data transmission.
* kStatus_I2C_ Busy — Previous transmission still not finished.
* kStatus_ I2C_ Timeout — Transfer error, wait signal timeout.
* kStatus_I2C_ ArbitrationLost — Transfer error, arbitration lost.
* kStataus_I2C_ Nak — Transfer error, receive NAK during transfer.

void I12C_ MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C master non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
12C_MasterTransferAbort() API shall be called.

Parameters
* base — The I2C peripheral base address.
* handle — [out] Pointer to the I2C master driver handle.
* callback — User provided pointer to the asynchronous callback function.

» userData — User provided pointer to the application callback data.
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status_t 12C_ MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle,
i2c_master_transfer_t *xfer)

Performs a non-blocking transaction on the I12C bus.
Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.
* xfer — The pointer to the transfer descriptor.
Return values
* kStatus_ Success — The transaction was started successfully.

* kStatus_I2C_ Busy — Either another master is currently utilizing the bus,
or a non-blocking transaction is already in progress.

status_t 12C_ MasterTransferGet Count(I2C_Type *base, i2¢_master_handle_t *handle, size_t
*count)

Returns number of bytes transferred so far.
Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the 12C master driver handle.

¢ count — [out] Number of bytes transferred so far by the non-blocking trans-
action.

Return values
e kStatus Success —
* kStatus_12C_ Busy —

status_t 12C_ MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle)
Terminates a non-blocking I2C master transmission early.

Note: Itisnot safe to call this function from an IRQ handler that has a higher priority than
the I2C peripheral’s IRQ priority.

Parameters
* base — The I2C peripheral base address.
* handle — Pointer to the I2C master driver handle.
Return values
* kStatus_ Success — A transaction was successfully aborted.
* kStatus_I2C_ Timeout — Abort failure due to flags polling timeout.

void 12C_ MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle master interrupts.

Note: This function does not need to be called unless you are reimplementing the non-
blocking APT’s interrupt handler routines to add special functionality.

Parameters

* base — The I2C peripheral base address.
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* i2cHandle — Pointer to the I2C master driver handle i2c_master_handle_t.

enum _i2c_master_flags
12C master peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_ MasterPendingFlag
The I12C module is waiting for software interaction.

enumerator kI2C_ MasterArbitrationLostFlag
The arbitration of the bus was lost. There was collision on the bus

enumerator kI2C_ MasterStartStopErrorFlag
There was an error during start or stop phase of the transaction.

enum _i2¢_direction
Direction of master and slave transfers.

Values:

enumerator kI2C__ Write
Master transmit.

enumerator kI2C_ Read
Master receive.

enum _i2c_master transfer flags
Transfer option flags.

Note: These enumerations are intended to be OR’d together to form a bit mask of options
for the _i2c_master_transfer::flags field.

Values:

enumerator kI2C_ TransferDefaultFlag
Transfer starts with a start signal, stops with a stop signal.

enumerator kI2C_ TransferNoStartFlag
Don’t send a start condition, address, and sub address

enumerator kI2C_ TransferRepeatedStartFlag
Send a repeated start condition

enumerator kI2C_ TransferNoStopFlag
Don’t send a stop condition.

enum _i2c¢ transfer states
States for the state machine used by transactional APIs.

Values:

enumerator kldleState
enumerator kTransmitSubaddrState
enumerator kTransmitDataState

enumerator kReceiveDataBeginState
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enumerator kReceiveDataState

enumerator kReceiveLastDataState

enumerator kStartState

enumerator kStopState

enumerator kWaitForCompletionState
typedef enum _i2¢_direction i2¢_ direction_t

Direction of master and slave transfers.

typedef struct _i2c_master_config i2c_ master config_t
Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the I2C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

typedef struct _i2c_master_transfer i2c_ master transfer t
I2C master transfer typedef.

typedef struct _i2c_master_handle i2c_ master_handle_t
I12C master handle typedef.

typedef void (*i2c_ master_transfer_callback t)(I2C_Type *base, i2c_master_handle_t *handle,
Status_t completionStatus, void *userData)

Master completion callback function pointer type.

This callback is used only for the non-blocking master transfer API. Specify the callback you
wish to use in the call to I2C_MasterTransferCreateHandle().

Param base
The I2C peripheral base address.

Param completionStatus
Either kStatus_Success or an error code describing how the transfer com-
pleted.

Param userData
Arbitrary pointer-sized value passed from the application.

struct _i2c_master_config
#include <fsl_i2c.h> Structure with settings to initialize the I2C master module.

This structure holds configuration settings for the I2C peripheral. To initialize this structure
to reasonable defaults, call the 12C_MasterGetDefaultConfig() function and pass a pointer
to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

Public Members
bool enableMaster
Whether to enable master mode.

uint32_t baudRate_ Bps
Desired baud rate in bits per second.

bool enableTimeout
Enable internal timeout function.
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struct i2c_master transfer
#include <fsl_i2c.h> Non-blocking transfer descriptor structure.

This  structure is used to pass transaction parameters to the
12C_MasterTransferNonBlocking() APIL

Public Members

uint32_t flags
Bit mask of options for the transfer. See enumeration _i2c_master_transfer_flags for
available options. Set to 0 or kI2C_TransferDefaultFlag for normal transfers.

uint16_t slaveAddress
The 7-bit slave address.

i2c_direction_t direction

Either kI2C_Read or kI2C_Write.
uint32_t subaddress

Sub address. Transferred MSB first.

size_t subaddressSize
Length of sub address to send in bytes. Maximum size is 4 bytes.

void *data

Pointer to data to transfer.
size_t dataSize

Number of bytes to transfer.

struct i2c_master handle
#include <fsl_i2c.h> Driver handle for master non-blocking APIs.

Note: The contents of this structure are private and subject to change.

Public Members
uint8_t state

Transfer state machine current state.
uint32_t transferCount

Indicates progress of the transfer
uint32_t remainingBytes

Remaining byte count in current state.
uint8_t *buf

Buffer pointer for current state.

i2¢c_master_transfer._t transfer
Copy of the current transfer info.

i2c_master_transfer_callback_t completionCallback
Callback function pointer.

void *userData
Application data passed to callback.
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2.7 12C Slave Driver

void 12C_SlaveGetDefaultConfig(i2c_slave_config t *slaveConfig)
Provides a default configuration for the I12C slave peripheral.

This function provides the following default configuration for the I12C slave peripheral:

slaveConfig- >enableSlave = true;

slaveConfig- >address0.disable = false;

slaveConfig- >address0.address = Ou;

slaveConfig- >addressl.disable = true;

slaveConfig- >address2.disable = true;

slaveConfig- >address3.disable = true;
slaveConfig->busSpeed = kI2C__SlaveStandardMode;

After calling this function, override any settings to customize the configuration, prior to
initializing the master driver with I2C_Slavelnit(). Be sure to override at least the ad-
dress0.address member of the configuration structure with the desired slave address.

Parameters

* slaveConfig — [out] User provided configuration structure that is set to de-
fault values. Refer to i2c_slave_config_t.

status_t 12C_ Slavelnit(I2C_Type *base, const i2¢_slave_config t *slaveConfig, uint32_t
srcClock_Hz)

Initializes the I2C slave peripheral.

This function enables the peripheral clock and initializes the I12C slave peripheral as de-
scribed by the user provided configuration.

Parameters
* base — The I2C peripheral base address.

* slaveConfig — User provided peripheral configuration. Use
12C_SlaveGetDefaultConfig() to get a set of defaults that you can override.

* srcClock Hz — Frequency in Hertz of the I12C functional clock. Used to cal-
culate CLKDIV value to provide enough data setup time for master when
slave stretches the clock.

void 12C_ SlaveSetAddress(I2C_Type *base, i2c_slave_address_register_t addressRegister, uint8_t
address, bool addressDisable)

Configures Slave Address n register.
This function writes new value to Slave Address register.
Parameters
* base — The I2C peripheral base address.

* addressRegister — The module supports multiple address registers. The pa-
rameter determines which one shall be changed.

* address — The slave address to be stored to the address register for match-
ing.

* addressDisable — Disable matching of the specified address register.

void 12C_ SlaveDeinit(I12C_Type *base)
Deinitializes the I2C slave peripheral.

This function disables the I2C slave peripheral and gates the clock. It also performs a soft-
ware reset to restore the peripheral to reset conditions.

Parameters
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* base — The I2C peripheral base address.

static inline void I2C_ SlaveEnable(I2C_Type *base, bool enable)
Enables or disables the I2C module as slave.

Parameters
* base — The I2C peripheral base address.
* enable — True to enable or flase to disable.

static inline void 12C__ SlaveClearStatusFlags(I2C_Type *base, uint32_t statusMask)
Clears the I2C status flag state.

The following status register flags can be cleared:
* slave deselected flag

Attempts to clear other flags has no effect.

See also:

_i2c_slave_flags.

Parameters
* base — The I2C peripheral base address.

* statusMask — A bitmask of status flags that are to be cleared. The mask is
composed of _i2c_slave_flags enumerators OR’d together. You may pass
the result of a previous call to I2C_SlaveGetStatusFlags().

status_t 12C__SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBulff, size_t txSize)
Performs a polling send transfer on the I2C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
* txBuff — The pointer to the data to be transferred.

* txSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been sent.

Returns

kStatus_Fail Unexpected slave state (master data write while master read
from slave is expected).

status_t 12C_ SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize)
Performs a polling receive transfer on the I12C bus.

The function executes blocking address phase and blocking data phase.
Parameters
* base — The I2C peripheral base address.
 rxBuff — The pointer to the data to be transferred.

» rxSize — The length in bytes of the data to be transferred.

Returns
kStatus_Success Data has been received.
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Returns
kStatus_Fail Unexpected slave state (master data read while master write to
slave is expected).

void 12C_ SlaveTransferCreateHandle(I2C_Type *base, i2¢_slave_handle_t *handle,
i2¢_slave_transfer_callback_t callback, void *userData)

Creates a new handle for the I2C slave non-blocking APIs.

The creation of a handle is for use with the non-blocking APIs. Once a handle is created,
there is not a corresponding destroy handle. If the user wants to terminate a transfer, the
12C_SlaveTransferAbort() API shall be called.

Parameters
* base — The I2C peripheral base address.
* handle — [out] Pointer to the I12C slave driver handle.
* callback — User provided pointer to the asynchronous callback function.
» userData — User provided pointer to the application callback data.

status_t 12C_SlaveTransferNonBlocking(I2C_Type *base, i2¢_slave_handle_t *handle, uint32_t
eventMask)

Starts accepting slave transfers.

Call this API after calling I2C_Slavelnit() and 12C_SlaveTransferCreateHandle() to start pro-
cessing transactions driven by an I2C master. The slave monitors the I2C bus and pass
events to the callback that was passed into the call to I2C_SlaveTransferCreateHandle().
The callback is always invoked from the interrupt context.

If no slave Tx transfer is busy, a master read from slave request invokes
kI2C_SlaveTransmitEvent callback. If no slave Rx transfer is busy, a master write to
slave request invokes kI2C_SlaveReceiveEvent callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I2C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C_ SlaveSetSendBuffer(I2C_Type *base, volatile i2¢_slave_transfer_t *transfer, const
void *txData, size_t txSize, uint32_t eventMask)

Starts accepting master read from slave requests.
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The function can be called in response to kI2C_SlaveTransmitEvent callback to start a new
slave Tx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I12C peripheral base address.
* transfer — Pointer to i2c_slave_transfer_t structure.
* txData — Pointer to data to send to master.
* txSize — Size of txData in bytes.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_I2C_ Busy — Slave transfers have already been started on this han-
dle.

status_t 12C__SlaveSetReceiveBuffer(I2C_Type *base, volatile i2c_slave_transfer_t *transfer, void

*rxData, size_t rxSize, uint32_t eventMask)
Starts accepting master write to slave requests.

The function can be called in response to kI2C_SlaveReceiveEvent callback to start a new
slave Rx transfer from within the transfer callback.

The set of events received by the callback is customizable. To do so, set the eventMask pa-
rameter to the OR’d combination of i2c_slave_transfer_event_t enumerators for the events
you wish to receive. The kI2C_SlaveTransmitEvent and kI2C_SlaveReceiveEvent events are
always enabled and do not need to be included in the mask. Alternatively, you can pass
0 to get a default set of only the transmit and receive events that are always enabled. In
addition, the kI2C_SlaveAllEvents constant is provided as a convenient way to enable all
events.

Parameters
* base — The I2C peripheral base address.
 transfer — Pointer to i2c_slave_transfer_t structure.
* rxData — Pointer to data to store data from master.
* rxSize — Size of rxData in bytes.

* eventMask — Bit mask formed by OR’ing together i2c_slave_transfer_event_t
enumerators to specify which events to send to the callback. Other ac-
cepted values are 0 to get a default set of only the transmit and receive
events, and kKI2C_SlaveAllEvents to enable all events.

Return values
* kStatus_ Success — Slave transfers were successfully started.

* kStatus_I2C_ Busy — Slave transfers have already been started on this han-
dle.
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static inline uint32_t 12C__SlaveGetReceived Address(I2C_Type *base, volatile i2c_slave_transfer_t
*transfer)

Returns the slave address sent by the 12C master.

This function should only be called from the address match event callback
kI2C_SlaveAddressMatchEvent.

Parameters
* base — The I2C peripheral base address.
* transfer — The I2C slave transfer.

Returns
The 8-bit address matched by the I2C slave. Bit 0 contains the R/w direction
bit, and the 7-bit slave address is in the upper 7 bits.
void I2C_ SlaveTransfer Abort(I2C_Type *base, i2c_slave_handle_t *handle)
Aborts the slave non-blocking transfers.

Note: This API could be called at any time to stop slave for handling the bus events.

Parameters
* base — The I12C peripheral base address.

* handle — Pointer to i2c_slave_handle_t structure which stores the transfer
state.

Return values
* kStatus_ Success —
e kStatus_I2C Idle —

status_t 12C_ SlaveTransferGetCount(I2C_Type *base, i2¢_slave_handle_t *handle, size_t *count)
Gets the slave transfer remaining bytes during a interrupt non-blocking transfer.

Parameters

* base — I2C base pointer.

* handle — pointer to i2c_slave_handle_t structure.

* count — Number of bytes transferred so far by the non-blocking transaction.
Return values

* kStatus_InvalidArgument — count is Invalid.

* kStatus_ Success — Successfully return the count.

void 12C__ SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle)
Reusable routine to handle slave interrupts.

Note: This function does not need to be called unless you are reimplementing the non
blocking APT’s interrupt handler routines to add special functionality.

Parameters
* base — The I2C peripheral base address.

* i2cHandle — Pointer to i2c_slave_handle_t structure which stores the trans-
fer state.
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enum _i2c_slave_ flags
12C slave peripheral flags.

Note: These enums are meant to be OR’d together to form a bit mask.

Values:

enumerator kI2C_SlavePendingFlag
The I12C module is waiting for software interaction.

enumerator kI2C_ SlaveNotStretching
Indicates whether the slave is currently stretching clock (0 = yes, 1 = no).

enumerator kI2C_ SlaveSelected
Indicates whether the slave is selected by an address match.

enumerator kI2C_SaveDeselected
Indicates that slave was previously deselected (deselect event took place, wilc).

enum _ i2c_slave_address_ register
12C slave address register.

Values:

enumerator kI2C_ SlaveAddressRegister0
Slave Address 0 register.

enumerator kI2C_ SlaveAddressRegisterl
Slave Address 1 register.

enumerator kI2C_ SlaveAddressRegister2
Slave Address 2 register.

enumerator kI2C_ SlaveAddressRegister3
Slave Address 3 register.

enum _i2c_slave address_qual mode
12C slave address match options.

Values:

enumerator kI2C_QualModeMask
The SLVQUALO field (qualAddress) is used as a logical mask for matching address0.

enumerator kI2C_ QualModeExtend

The SLVQUALO (qualAddress) field is used to extend address 0 matching in a range of
addresses.

enum _i2c_slave_bus_ speed
12C slave bus speed options.

Values:

enumerator kI2C_SlaveStandardMode
enumerator kI2C SlaveFastMode
enumerator kI2C SlaveFastModePlus

enumerator kI2C_ SlaveHsMode
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enum _i2c_ slave transfer event
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

Values:

enumerator kI2C_SlaveAddressMatchEvent
Received the slave address after a start or repeated start.

enumerator kI2C SlaveTransmitEvent
Callback is requested to provide data to transmit (slave-transmitter role).

enumerator kI2C SlaveReceiveEvent

Callbackis requested to provide a buffer in which to place received data (slave-receiver
role).

enumerator kI2C_ SlaveCompletionEvent
All data in the active transfer have been consumed.

enumerator kI2C_SlaveDeselectedEvent
The slave function has become deselected (SLVSEL flag changing from 1 to 0.

enumerator kI2C_SlaveAllEvents
Bit mask of all available events.

enum _i2c¢_ slave fsm
I2C slave software finite state machine states.

Values:

enumerator kI2C__SlaveFsmAddressMatch
enumerator kI2C_SlaveFsmReceive
enumerator kI2C_ SlaveFsmTransmit
typedef enum _i2c_slave_address_register i2c_slave__address_ register_t

12C slave address register.

typedef struct _i2c_slave_address i2c_slave_address_t
Data structure with 7-bit Slave address and Slave address disable.

typedef enum _i2c_slave_address_qual_mode i2¢_slave_address_qual_mode_t
12C slave address match options.

typedef enum _i2c_slave_bus_speed i2c_slave_bus_speed_t
12C slave bus speed options.

typedef struct _i2c_slave_config i2¢c_slave__config_t
Structure with settings to initialize the I12C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the 12C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.

2.7. 12C Slave Driver 131



MCUXpresso SDK Documentation, Release 25.12.00

typedef enum _i2¢_slave_transfer_event i2c_slave_transfer_event_t
Set of events sent to the callback for non blocking slave transfers.

These event enumerations are used for two related purposes. First, a bit mask created
by OR’ing together events is passed to I2C_SlaveTransferNonBlocking() in order to specify
which events to enable. Then, when the slave callback is invoked, it is passed the current
event through its transfer parameter.

Note: These enumerations are meant to be OR’d together to form a bit mask of events.

typedef struct _i2c_slave_handle i2¢c_ slave_handle_t
12C slave handle typedef.

typedef struct _i2c_slave_transfer i2c_ slave_transfer t
I2C slave transfer structure.

typedef void (*i2c_ slave_transfer callback_t)(I2C_Type *base, volatile i2c_slave_transfer._t
*transfer, void *userData)

Slave event callback function pointer type.

This callback is used only for the slave non-blocking transfer API. To install a callback, use
the I2C_SlaveSetCallback() function after you have created a handle.

Param base
Base address for the I2C instance on which the event occurred.

Param transfer
Pointer to transfer descriptor containing values passed to and/or from the call-
back.

Param userData
Arbitrary pointer-sized value passed from the application.

typedef enum _i2c_slave_fsmi2c_slave fsm_t
I2C slave software finite state machine states.

typedef void (*i2¢_isr_ t)(I2C_Type *base, void *i2cHandle)
Typedef for interrupt handler.

struct i2c_slave address
#include <fsl_i2c.h> Data structure with 7-bit Slave address and Slave address disable.

Public Members
uint8_t address
7-bit Slave address SLVADR.

bool addressDisable
Slave address disable SADISABLE.
struct _i2c_slave_config
#include <fsl_i2c.h> Structure with settings to initialize the I12C slave module.

This structure holds configuration settings for the I2C slave peripheral. To initialize this
structure to reasonable defaults, call the 12C_SlaveGetDefaultConfig() function and pass a
pointer to your configuration structure instance.

The configuration structure can be made constant so it resides in flash.
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Public Members

i2c_slave_address_t address0
Slave’s 7-bit address and disable.

i2c_slave_address_t address1
Alternate slave 7-bit address and disable.

i2c_slave_address_t address2
Alternate slave 7-bit address and disable.

i2c_slave_address_t address3
Alternate slave 7-bit address and disable.

i2c_slave_address_qual_mode_t qualMode
Qualify mode for slave address 0.

uint8_t qualAddress
Slave address qualifier for address 0.

i2¢_slave_bus_speed_t busSpeed

Slave bus speed mode. If the slave function stretches SCL to allow for software re-
sponse, it must provide sufficient data setup time to the master before releasing the
stretched clock. This is accomplished by inserting one clock time of CLKDIV at that
point. The busSpeed value is used to configure CLKDIV such that one clock time is
greater than the tSU;DAT value noted in the I12C bus specification for the I2C mode that
is being used. If the busSpeed mode is unknown at compile time, use the longest data
setup time kI2C_SlaveStandardMode (250 ns)
bool enableSlave

Enable slave mode.

struct i2c_slave transfer
#include <fsl_i2c.h> 12C slave transfer structure.

Public Members
i2¢_slave_handle_t *handle
Pointer to handle that contains this transfer.

i2c_slave_transfer_event_t event

Reason the callback is being invoked.
uint8_t received Address

Matching address send by master. 7-bits plus R/nW bit0
uint32_t eventMask

Mask of enabled events.
uint8_t *rxData

Transfer buffer for receive data
const uint8_t *txData

Transfer buffer for transmit data
size_t txSize

Transfer size

size_t rxSize
Transfer size

2.7. 12C Slave Driver 133



MCUXpresso SDK Documentation, Release 25.12.00

size t transferredCount
Number of bytes transferred during this transfer.

status_t completionStatus
Success or error code describing how the transfer completed. Only applies for
kI2C_SlaveCompletionEvent.
struct i2c¢_slave handle
#include <fsl_i2c.h> 12C slave handle structure.

Note: The contents of this structure are private and subject to change.

Public Members
volatile i2¢_slave_transfer_t transfer
I2C slave transfer.

volatile bool isBusy
Whether transfer is busy.

volatile i2¢_slave_fsm_t slaveFsm
slave transfer state machine.

i2c_slave_transfer_callback_t callback
Callback function called at transfer event.

void *userData
Callback parameter passed to callback.

2.8 IAP: In Application Programming Driver

status_t TAP_ ReadPartID(uint32_t *partID)
Read part identification number.

This function is used to read the part identification number.
Parameters
* partID — Address to store the part identification number.

Return values
kStatus_ IAP_Success — Api has been executed successfully.

status_t IAP_ReadBootCodeVersion(uint32_t *bootCodeVersion)
Read boot code version number.

This function is used to read the boot code version number.

note Boot code version is two 32-bit words. Word 0 is the major version, word 1 is the minor
version.

Parameters
* bootCodeVersion — Address to store the boot code version.

Return values
kStatus_ TAP_ Success — Api has been executed successfully.
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void TAP_ ReinvokeISP(uint8_t ispType, uint32_t *status)
Reinvoke ISP.

This function is used to invoke the boot loader in ISP mode. It maps boot vectors and con-
figures the peripherals for ISP.

note The error response will be returned when IAP is disabled or an invalid ISP type se-
lection appears. The call won’t return unless an error occurs, so there can be no status

code.
Parameters
* ispType — ISP type selection.
* status — store the possible status.

Return values
kStatus IAP ReinvokeISPConfig — reinvoke configuration error.

status_t TAP__ReadUniqueID(uint32_t *uniquelD)
Read unique identification.
This function is used to read the unique id.
Parameters
* uniquelD — store the uniquelD.

Return values
kStatus_TAP_ Success — Api has been executed successfully.

status_t TAP_ PrepareSectorForWrite(uint32_t startSector, uint32_t endSector)
Prepare sector for write operation.

This function prepares sector(s) for write/erase operation. This function must be called
before calling the IAP_CopyRamToFlash() or IAP_EraseSector() or IAP_ErasePage() function.
The end sector number must be greater than or equal to the start sector number.

Parameters
* startSector — Start sector number.
* endSector — End sector number.
Return values
* kStatus_IAP_ Success — Api has been executed successfully.
* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus IAP_NoClock — Flash memory block or controller is not clocked.

e kStatus IAP InvalidSector — Sector number is invalid or end sector num-
ber is greater than start sector number.

* kStatus_ IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ CopyRamToFlash(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numO{fBytes,
uint32_t systemCoreClock)

Copy RAM to flash.

This function programs the flash memory. Corresponding sectors must be prepared via
IAP_PrepareSectorForWrite before calling this function.

Parameters

* dstAddr - Destination flash address where data bytes
are to be  written, the address should be multiples of
FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES boundary.
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srcAddr — Source ram address from where data bytes are to be read.

numOfBytes — Number of bytes to be written, it should be mul-
tiples of FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES, and
ranges from FSL_FEATURE_SYSCON_FLASH_PAGE_SIZE_BYTES to
FSL_FEATURE_SYSCON_FLASH_SECTOR_SIZE_BYTES.

systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values

kStatus_ TAP_ Success — Api has been executed successfully.
kStatus_ TAP_ NoPower — Flash memory block is powered down.
kStatus_ TAP_ NoClock — Flash memory block or controller is not clocked.
kStatus_ IAP _SrcAddrError — Source address is not on word boundary.

kStatus TAP DstAddrError — Destination address is not on a correct
boundary.

kStatus_ TAP_ SrcAddrNotMapped — Source address is not mapped in the
memory map.

kStatus_TAP_ DstAddrNotMapped — Destination address is not mapped in
the memory map.

kStatus_IAP_ CountError — Byte count is not multiple of 4 or is not a per-
mitted value.

kStatus_ IAP_ NotPrepared — Command to prepare sector for write opera-
tion has not been executed.

kStatus_IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ EraseSector(uint32_t startSector, uint32_t endSector, uint32_t systemCoreClock)
Erase sector.

This function erases sector(s). The end sector number must be greater than or equal to the
start sector number.

Parameters

startSector — Start sector number.
endSector — End sector number.

systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values

* kStatus_ TAP_ Success — Api has been executed successfully.

* kStatus_ IAP_ NoPower — Flash memory block is powered down.

* kStatus_ TAP_ NoClock — Flash memory block or controller is not clocked.

* kStatus IAP_InvalidSector — Sector number is invalid or end sector num-

ber is greater than start sector number.

* kStatus_ TAP_ NotPrepared — Command to prepare sector for write opera-

tion has not been executed.

* kStatus_ IAP_Busy — Flash programming hardware interface is busy.
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status_t TAP_ FErasePage(uint32_t startPage, uint32_t endPage, uint32_t systemCoreClock)
Erase page.

This function erases page(s). The end page number must be greater than or equal to the
start page number.

Parameters
* startPage — Start page number.
* endPage — End page number.

¢ systemCoreClock — SystemCoreClock in Hz. It is converted to KHz before
calling the rom IAP function. When the flash controller has a fixed refer-
ence clock, this parameter is bypassed.

Return values
* kStatus_ IAP_ Success — Api has been executed successfully.
* kStatus_ TAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.

* kStatus_IAP_ InvalidSector — Page number is invalid or end page number
is greater than start page number.

* kStatus_ IAP_ NotPrepared — Command to prepare sector for write opera-
tion has not been executed.

* kStatus_IAP_ Busy — Flash programming hardware interface is busy.

status_t TAP_ BlankCheckSector(uint32_t startSector, uint32_t endSector)
Blank check sector(s)

Blank check single or multiples sectors of flash memory. The end sector number must be
greater than or equal to the start sector number. It can be used to verify the sector erasure
after IAP_EraseSector call.

Parameters
* startSector — Start sector number.
* endSector — End sector number.
Return values
* kStatus_ TAP_ Success — One or more sectors are in erased state.
* kStatus_IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.
* kStatus_ TAP_SectorNotblank — One or more sectors are not blank.

status_t TAP_ Compare(uint32_t dstAddr, uint32_t *srcAddr, uint32_t numOfBytes)
Compare memory contents of flash with ram.

This function compares the contents of flash and ram. It can be used to verify the flash
memory contents after IAP_CopyRamToFlash call.

Parameters

* dstAddr - Destination flash address.

* srcAddr — Source ram address.

* numOfBytes — Number of bytes to be compared.
Return values

* kStatus IAP Success — Contents of flash and ram match.
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* kStatus_ IAP_ NoPower — Flash memory block is powered down.
* kStatus_ IAP_ NoClock — Flash memory block or controller is not clocked.
* kStatus_ TAP_ AddrError — Address is not on word boundary.

* kStatus_ IAP_ AddrNotMapped — Address is not mapped in the memory
map.

* kStatus_ IAP_ CountError — Byte count is not multiple of 4 or is not a per-
mitted value.

* kStatus_ IAP_ CompareError — Destination and source memory contents do
not match.

FSL_IAP_ DRIVER VERSION

iap status codes.
Values:

enumerator kStatus_IAP_Success

Api is executed successfully
enumerator kStatus_IAP_InvalidCommand

Invalid command
enumerator kStatus_ IAP_ SrcAddrError

Source address is not on word boundary
enumerator kStatus_ IAP_DstAddrError

Destination address is not on a correct boundary
enumerator kStatus_ TAP_ SrcAddrNotMapped

Source address is not mapped in the memory map
enumerator kStatus_ IAP_ DstAddrNotMapped

Destination address is not mapped in the memory map
enumerator kStatus_ IAP_ CountError

Byte count is not multiple of 4 or is not a permitted value

enumerator kStatus IAP_InvalidSector

Sector/page number is invalid or end sector/page number is greater than start sec-
tor/page number

enumerator kStatus_ IAP_ SectorNotblank
One or more sectors are not blank
enumerator kStatus_ IAP_ NotPrepared
Command to prepare sector for write operation has not been executed
enumerator kStatus_ IAP_ CompareError
Destination and source memory contents do not match
enumerator kStatus_ IAP_ Busy
Flash programming hardware interface is busy
enumerator kStatus  IAP_ParamError
Insufficient number of parameters or invalid parameter

enumerator kStatus_ IAP_ AddrError
Address is not on word boundary
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enumerator kStatus_ TAP_ AddrNotMapped
Address is not mapped in the memory map

enumerator kStatus_ IAP_ NoPower
Flash memory block is powered down

enumerator kStatus_ IAP_ NoClock
Flash memory block or controller is not clocked

enumerator kStatus_ IAP_ ReinvokeISPConfig
Reinvoke configuration error

enum _ iap_ commands

iap command codes.

Values:

enumerator klapCmd_ TAP_ ReadFactorySettings
Read the factory settings

enumerator klapCmd_IAP_PrepareSectorforWrite
Prepare Sector for write

enumerator klapCmd_IAP_ CopyRamToFlash
Copy RAM to flash

enumerator klapCmd_IAP_EraseSector
Erase Sector

enumerator klapCmd_ IAP_ BlankCheckSector
Blank check sector

enumerator klapCmd_ IAP_ ReadPartId
Read part id

enumerator klapCmd_IAP Read BootromVersion
Read bootrom version

enumerator klapCmd_ IAP_ Compare
Compare

enumerator klapCmd_IAP ReinvokeISP
Reinvoke ISP

enumerator klapCmd_ IAP_ ReadUid
Read Uid

enumerator klapCmd_ TAP_ ErasePage
Erase Page

enumerator klapCmd_ IAP_ ReadSignature
Read Signature

enumerator klapCmd_ IAP_ ExtendedReadSignature
Extended Read Signature

enumerator klapCmd_ IAP_ ReadEEPROMPage
Read EEPROM page

enumerator klapCmd_ IAP_ WriteEEPROMPage
Write EEPROM page
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enum flash access time
Flash memory access time.
Values:

enumerator kFlash_ TAP_ OneSystemClockTime

enumerator kFlash  TAP_ TwoSystemClockTime
1 system clock flash access time

enumerator kFlash  TAP_ ThreeSystemClockTime
2 system clock flash access time

2.9 Common Driver

FSL _COMMON_DRIVER_ VERSION
common driver version.

DEBUG__CONSOLE_DEVICE_TYPE_NONE
No debug console.

DEBUG_CONSOLE_DEVICE_TYPE_UART
Debug console based on UART.

DEBUG_CONSOLE_DEVICE_TYPE_LPUART
Debug console based on LPUART.
DEBUG__CONSOLE_DEVICE_TYPE_ LPSCI
Debug console based on LPSCI.
DEBUG__CONSOLE_DEVICE_TYPE_USBCDC
Debug console based on USBCDC.
DEBUG_CONSOLE_DEVICE_TYPE FLEXCOMM
Debug console based on FLEXCOMM.
DEBUG_CONSOLE_DEVICE_TYPE_IUART
Debug console based on i.MX UART.
DEBUG_CONSOLE_DEVICE_TYPE_ VUSART
Debug console based on LPC_VUSART.
DEBUG_CONSOLE_DEVICE_TYPE_MINI_USART
Debug console based on LPC_USART.
DEBUG__CONSOLE_DEVICE_TYPE_SWO
Debug console based on SWO.
DEBUG__CONSOLE_DEVICE_TYPE_ QSCI
Debug console based on QSCI.
MIN(a, b)
Computes the minimum of a and b.
MAX(a, b)
Computes the maximum of a and b.

UINT16_MAX
Max value of uint16_t type.
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UINT32 MAX
Max value of uint32_t type.

SDK__ATOMIC_LOCAL__ADD(addr, val)
Add value val from the variable at address address.

SDK__ATOMIC_LOCAL_SUB(addr, val)

Subtract value val to the variable at address address.
SDK__ATOMIC_LOCAL_SET(addr, bits)

Set the bits specifiled by bits to the variable at address address.
SDK_ATOMIC LOCAL_CLEAR(addr, bits)

Clear the bits specifiled by bits to the variable at address address.
SDK_ATOMIC LOCAL_TOGGLE(addr, bits)

Toggle the bits specifiled by bits to the variable at address address.
SDK__ATOMIC_LOCAL_CLEAR_AND_SET(addr, clearBits, setBits)

For the variable at address address, clear the bits specifiled by clearBits and set the bits
specifiled by setBits.

SDK__ATOMIC_LOCAL_COMPARE_AND_SET(addr, expected, newValue)

For the variable at address address, check whether the value equal to expected. If value
same as expected then update newValue to address and return true, else return false .

SDK__ATOMIC_LOCAL_TEST_AND_SET(addr, newValue)

For the variable at address address, set as newValue value and return old value.
USEC_TO_COUNT(us, clockFreqInHz)

Macro to convert a microsecond period to raw count value
COUNT_TO_USEC(count, clockFreqInHz)

Macro to convert a raw count value to microsecond
MSEC_TO_COUNT(ms, clockFreqInHz)

Macro to convert a millisecond period to raw count value
COUNT_TO_MSEC(count, clockFreqInHz)

Macro to convert a raw count value to millisecond
SDK_ISR_EXIT_ BARRIER
SDK_ALIGN(var, alignbytes)
Macro to define a variable with alignbytes alignment
SDK_ SIZEALIGN(var, alignbytes)
Macro to define a variable with L1 d-cache line size alignment
Macro to define a variable with L2 cache line size alignment
Macro to change a value to a given size aligned value (rounded up)

SDK_ SIZEALIGN__ UP(var, alignbytes)

Macro to change a value to a given size aligned value (rounded up), the wrapper of
SDK_SIZEALIGN

SDK_ SIZEALIGN_DOWN(var, alignbytes)

Macro to change a value to a given size aligned value (rounded down)
SDK_IS_ALIGNED(var, alignbytes)

Macro to check if a value is aligned to a given size
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AT NONCACHEABLE_SECTION(var)
Define a variable var, and place it in non-cacheable section.

AT _NONCACHEABLE_SECTION__ALIGN(var, alignbytes)

Define a variable var, and place it in non-cacheable section, the start address of the variable
is aligned to alignbytes.

ATiNONCACHEABLEiSECTIONilNIT(Var)
Define a variable var with initial value, and place it in non-cacheable section.

AT _NONCACHEABLE_SECTION_ALIGN_INIT(var, alignbytes)

Define a variable var with initial value, and place it in non-cacheable section, the start
address of the variable is aligned to alignbytes.

AT CACHE LINE SECTION(var)

Define a variable var, which is cache line size aligned and be placed in CacheLineData sec-
tion.

AT_CACHE_LINE_SECTION_ INIT(var)

Define a variable var with initial value, which is cache line size aligned and be placed in
CacheLineData.init section.

AT QUICKACCESS_SECTION_CODE(func)

Place function in a section which can be accessed quickly by core.
AT QUICKACCESS_SECTION_DATA(var)

Place data in a section which can be accessed quickly by core.

AT QUICKACCESS_SECTION_DATA ALIGN(var, alignbytes)

Place data in a section which can be accessed quickly by core, and the variable address is
set to align with alignbytes.

MCUX_RAMFUNC

Function attribute to place function in RAM. For example, to place function my_funcin ram,
use like:

MCUX_RAMFUNC my_ func

RAMFUNCTIONiSECTIONiCODE(func)
Place function in ram.

enum _ status_ groups
Status group numbers.

Values:

enumerator kStatusGroup_ Generic

Group number for generic status codes.
enumerator kStatusGroup_ FLASH

Group number for FLASH status codes.
enumerator kStatusGroup_ LPSPI

Group number for LPSPI status codes.
enumerator kStatusGroup_ FLEXIO_ SPI

Group number for FLEXIO SPI status codes.

enumerator kStatusGroup_ DSPI
Group number for DSPI status codes.
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enumerator kStatusGroup_ FLEXIO__UART

Group number for FLEXIO UART status codes.
enumerator kStatusGroup_ FLEXIO_I2C

Group number for FLEXIO I2C status codes.
enumerator kStatusGroup_ LPI2C

Group number for LPI2C status codes.
enumerator kStatusGroup_ UART

Group number for UART status codes.
enumerator kStatusGroup_I12C

Group number for UART status codes.
enumerator kStatusGroup_ LPSCI

Group number for LPSCI status codes.
enumerator kStatusGroup_LPUART

Group number for LPUART status codes.
enumerator kStatusGroup_ SPI

Group number for SPI status code.
enumerator kStatusGroup_ XRDC

Group number for XRDC status code.
enumerator kStatusGroup_ SEMA42

Group number for SEMA42 status code.
enumerator kStatusGroup_ SDHC

Group number for SDHC status code
enumerator kStatusGroup_ SDMMC

Group number for SDMMC status code
enumerator kStatusGroup_ SAI

Group number for SAI status code
enumerator kStatusGroup_ MCG

Group number for MCG status codes.
enumerator kStatusGroup_ SCG

Group number for SCG status codes.
enumerator kStatusGroup_ SDSPI

Group number for SDSPI status codes.
enumerator kStatusGroup_ FLEXIO_ 128

Group number for FLEXIO I2S status codes
enumerator kStatusGroup_ FLEXIO__MCULCD

Group number for FLEXIO LCD status codes
enumerator kStatusGroup_ FLASHIAP

Group number for FLASHIAP status codes
enumerator kStatusGroup_ FLEXCOMM_ 12C

Group number for FLEXCOMM I2C status codes
enumerator kStatusGroup_ 125

Group number for I2S status codes
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enumerator kStatusGroup_ IUART
Group number for IUART status codes

enumerator kStatusGroup_ CSI

Group number for CSI status codes
enumerator kStatusGroup_ MIPI__DSI

Group number for MIPI DSI status codes
enumerator kStatusGroup_ SDRAMC

Group number for SDRAMC status codes.
enumerator kStatusGroup_ POWER

Group number for POWER status codes.
enumerator kStatusGroup_ENET

Group number for ENET status codes.
enumerator kStatusGroup_ PHY

Group number for PHY status codes.
enumerator kStatusGroup_ TRGMUX

Group number for TRGMUX status codes.
enumerator kStatusGroup_ SMARTCARD

Group number for SMARTCARD status codes.
enumerator kStatusGroup_ LMEM

Group number for LMEM status codes.
enumerator kStatusGroup_ QSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ DMA

Group number for DMA status codes.
enumerator kStatusGroup_ EDMA

Group number for EDMA status codes.
enumerator kStatusGroup_ DMAMGR

Group number for DMAMGR status codes.
enumerator kStatusGroup_ FLEXCAN

Group number for FlexCAN status codes.
enumerator kStatusGroup_LTC

Group number for LTC status codes.
enumerator kStatusGroup_ FLEXIO _CAMERA

Group number for FLEXIO CAMERA status codes.
enumerator kStatusGroup_ LPC__SPI

Group number for LPC_SPI status codes.
enumerator kStatusGroup_ LPC__USART

Group number for LPC_USART status codes.
enumerator kStatusGroup_ DMIC

Group number for DMIC status codes.

enumerator kStatusGroup_ SDIF
Group number for SDIF status codes.
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enumerator kStatusGroup_ SPIFI
Group number for SPIFI status codes.

enumerator kStatusGroup_ OTP

Group number for OTP status codes.
enumerator kStatusGroup_ MCAN

Group number for MCAN status codes.
enumerator kStatusGroup_ CAAM

Group number for CAAM status codes.
enumerator kStatusGroup_ ECSPI

Group number for ECSPI status codes.
enumerator kStatusGroup_ USDHC

Group number for USDHC status codes.
enumerator kStatusGroup_LPC_12C

Group number for LPC_I2C status codes.
enumerator kStatusGroup_DCP

Group number for DCP status codes.
enumerator kStatusGroup_ MSCAN

Group number for MSCAN status codes.
enumerator kStatusGroup_ ESAIT

Group number for ESAI status codes.
enumerator kStatusGroup_ FLEXSPI

Group number for FLEXSPI status codes.
enumerator kStatusGroup_ MMDC

Group number for MMDC status codes.
enumerator kStatusGroup_ PDM

Group number for MIC status codes.
enumerator kStatusGroup_ SDMA

Group number for SDMA status codes.
enumerator kStatusGroup_ ICS

Group number for ICS status codes.
enumerator kStatusGroup_ SPDIF

Group number for SPDIF status codes.
enumerator kStatusGroup_ LPC_MINISPI

Group number for LPC_MINISPI status codes.
enumerator kStatusGroup_ HASHCRYPT

Group number for Hashcrypt status codes
enumerator kStatusGroup_ LPC__SPI__SSP

Group number for LPC_SPI_SSP status codes.
enumerator kStatusGroup_ I3C

Group number for I3C status codes

enumerator kStatusGroup_ LPC_12C_1
Group number for LPC_I2C_1 status codes.
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enumerator kStatusGroup_ NOTIFIER
Group number for NOTIFIER status codes.

enumerator kStatusGroup_ DebugConsole

Group number for debug console status codes.
enumerator kStatusGroup_ SEMC

Group number for SEMC status codes.
enumerator kStatusGroup__ ApplicationRangeStart

Starting number for application groups.
enumerator kStatusGroup_ TAP

Group number for IAP status codes
enumerator kStatusGroup_ SFA

Group number for SFA status codes
enumerator kStatusGroup_SPC

Group number for SPC status codes.
enumerator kStatusGroup_ PUF

Group number for PUF status codes.
enumerator kStatusGroup_ TOUCH__PANEL

Group number for touch panel status codes
enumerator kStatusGroup_ VBAT

Group number for VBAT status codes
enumerator kStatusGroup_ XSPI

Group number for XSPI status codes
enumerator kStatusGroup_ PNGDEC

Group number for PNGDEC status codes
enumerator kStatusGroup_ JPEGDEC

Group number for JPEGDEC status codes
enumerator kStatusGroup_ AUDMIX

Group number for AUDMIX status codes
enumerator kStatusGroup_ HAL GPIO

Group number for HAL GPIO status codes.
enumerator kStatusGroup_ HAL_ UART

Group number for HAL UART status codes.
enumerator kStatusGroup_ HAL TIMER

Group number for HAL TIMER status codes.
enumerator kStatusGroup_ HAL_SPI

Group number for HAL SPI status codes.
enumerator kStatusGroup_ HAL_12C

Group number for HAL I2C status codes.
enumerator kStatusGroup_ HAL_FLASH

Group number for HAL FLASH status codes.

enumerator kStatusGroup_ HAL PWM
Group number for HAL PWM status codes.
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enumerator kStatusGroup_ HAL RNG
Group number for HAL RNG status codes.

enumerator kStatusGroup_ HAL_ 12S

Group number for HAL I2S status codes.
enumerator kStatusGroup_ HAL_ADC_SENSOR

Group number for HAL ADC SENSOR status codes.
enumerator kStatusGroup_ TIMERMANAGER

Group number for TIMER MANAGER status codes.
enumerator kStatusGroup_ SERTALMANAGER

Group number for SERIAL MANAGER status codes.
enumerator kStatusGroup_ LED

Group number for LED status codes.
enumerator kStatusGroup_ BUTTON

Group number for BUTTON status codes.
enumerator kStatusGroup_ EXTERN_EEPROM

Group number for EXTERN EEPROM status codes.
enumerator kStatusGroup_ SHELL

Group number for SHELL status codes.
enumerator kStatusGroup_ MEM__MANAGER

Group number for MEM MANAGER status codes.
enumerator kStatusGroup_ LIST

Group number for List status codes.
enumerator kStatusGroup_ OSA

Group number for OSA status codes.
enumerator kStatusGroup_ COMMON__ TASK

Group number for Common task status codes.
enumerator kStatusGroup_ MSG

Group number for messaging status codes.
enumerator kStatusGroup_SDK_OCOTP

Group number for OCOTP status codes.
enumerator kStatusGroup_ SDK_FLEXSPINOR

Group number for FLEXSPINOR status codes.
enumerator kStatusGroup_ CODEC

Group number for codec status codes.
enumerator kStatusGroup_ ASRC

Group number for codec status ASRC.
enumerator kStatusGroup_ OTFAD

Group number for codec status codes.
enumerator kStatusGroup_ SDIOSLV

Group number for SDIOSLV status codes.

enumerator kStatusGroup_ MECC
Group number for MECC status codes.
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enumerator kStatusGroup_ ENET__QOS
Group number for ENET_QOS status codes.

enumerator kStatusGroup_ LOG

Group number for LOG status codes.
enumerator kStatusGroup_ I3CBUS

Group number for I3CBUS status codes.
enumerator kStatusGroup_ QSCI

Group number for QSCI status codes.
enumerator kStatusGroup_ ELEMU

Group number for ELEMU status codes.
enumerator kStatusGroup_ QUEUEDSPI

Group number for QSPI status codes.
enumerator kStatusGroup_ POWER_MANAGER

Group number for POWER_MANAGER status codes.
enumerator kStatusGroup_ IPED

Group number for IPED status codes.
enumerator kStatusGroup_ ELS PKC

Group number for ELS PKC status codes.
enumerator kStatusGroup_ CSS_PKC

Group number for CSS PKC status codes.
enumerator kStatusGroup_ HOSTIF

Group number for HOSTIF status codes.
enumerator kStatusGroup_ CLIF

Group number for CLIF status codes.
enumerator kStatusGroup_ BMA

Group number for BMA status codes.
enumerator kStatusGroup_ NETC

Group number for NETC status codes.
enumerator kStatusGroup_ ELE

Group number for ELE status codes.
enumerator kStatusGroup_ GLIKEY

Group number for GLIKEY status codes.
enumerator kStatusGroup_ AON__POWER

Group number for AON_POWER status codes.
enumerator kStatusGroup_ AON__COMMON

Group number for AON_COMMON status codes.
enumerator kStatusGroup_ ENDAT3

Group number for ENDAT3 status codes.
enumerator kStatusGroup_ HIPERFACE

Group number for HIPERFACE status codes.

enumerator kStatusGroup_ NPX
Group number for NPX status codes.
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enumerator kStatusGroup_ELA_CSEC
Group number for ELA_CSEC status codes.

enumerator kStatusGroup_ FLEXIO_T FORMAT
Group number for T-format status codes.

enumerator kStatusGroup_ FLEXIO_A_FORMAT
Group number for A-format status codes.

enumerator kStatusGroup_ LPC__ QSPI
Group number for LPC QSPI status codes.

Generic status return codes.
Values:

enumerator kStatus_ Success
Generic status for Success.

enumerator kStatus_Fail
Generic status for Fail.

enumerator kStatus_ ReadOnly
Generic status for read only failure.

enumerator kStatus_ OutOfRange
Generic status for out of range access.

enumerator kStatus_ Invalid Argument
Generic status for invalid argument check.

enumerator kStatus_ Timeout
Generic status for timeout.

enumerator kStatus_ NoTransferInProgress
Generic status for no transfer in progress.

enumerator kStatus_ Busy
Generic status for module is busy.

enumerator kStatus_ NoData
Generic status for no data is found for the operation.

typedef int32_t status_t
Type used for all status and error return values.

void *SDK_ Malloc(size_t size, size_t alignbytes)
Allocate memory with given alignment and aligned size.

This is provided to support the dynamically allocated memory used in cache-able region.
Parameters
* size — The length required to malloc.
* alignbytes — The alignment size.

Return values
The — allocated memory.

void SDK_ Free(void *ptr)
Free memory.

Parameters
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» ptr — The memory to be release.

void SDK _DelayAtLeastUs(uint32_t delayTime_us, uint32_t coreClock_Hz)

Delay at least for some time. Please note that, this API uses while loop for delay, different
run-time environments make the time not precise, if precise delay count was needed, please
implement a new delay function with hardware timer.

Parameters
¢ delayTime_us — Delay time in unit of microsecond.
* coreClock__Hz — Core clock frequency with Hz.

static inline status_t EnableIRQ(IRQn_Type interrupt)
Enable specific interrupt.

Enable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only enables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL._FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
* interrupt — The IRQ number.

Return values
* kStatus_ Success — Interrupt enabled successfully
* kStatus_ Fail — Failed to enable the interrupt

static inline status_t DisableIRQ(IRQn_Type interrupt)
Disable specific interrupt.

Disable LEVEL1 interrupt. For some devices, there might be multiple interrupt levels. For
example, there are NVIC and intmux. Here the interrupts connected to NVIC are the LEVEL1
interrupts, because they are routed to the core directly. The interrupts connected to intmux
are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only disables the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters
* interrupt — The IRQ number.

Return values
* kStatus_ Success — Interrupt disabled successfully
* kStatus_ Fail — Failed to disable the interrupt

static inline status_t EnableIRQWithPriority(IRQn_Type interrupt, uint8_t priNum)
Enable the IRQ, and also set the interrupt priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT_VECTORS.

Parameters
¢ interrupt — The IRQ to Enable.
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* priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

* kStatus_Fail - Failed to set the interrupt priority.

static inline status_t TRQ_ SetPriority(IRQn_Type interrupt, uint8_t priNum)
Set the IRQ priority.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters

* interrupt — The IRQ to set.

* priNum — Priority number set to interrupt controller register.
Return values

* kStatus_ Success — Interrupt priority set successfully

* kStatus_Fail - Failed to set the interrupt priority.

static inline status_t TRQ_ ClearPendingIRQ(IRQn_Type interrupt)
Clear the pending IRQ flag.

Only handle LEVEL1 interrupt. For some devices, there might be multiple interrupt levels.
For example, there are NVIC and intmux. Here the interrupts connected to NVIC are the
LEVEL1 interrupts, because they are routed to the core directly. The interrupts connected
to intmux are the LEVEL2 interrupts, they are routed to NVIC first then routed to core.

This function only handles the LEVEL1 interrupts. The number of LEVEL1 interrupts is
indicated by the feature macro FSL_FEATURE_NUMBER_OF_LEVEL1_INT VECTORS.

Parameters
¢ interrupt — The flag which IRQ to clear.

Return values
* kStatus_ Success — Interrupt priority set successfully
* kStatus_ Fail — Failed to set the interrupt priority.

static inline uint32_t DisableGlobalIRQ(void)
Disable the global IRQ.

Disable the global interrupt and return the current primask register. User is required to
provided the primask register for the EnableGlobalIRQ().

Returns
Current primask value.

static inline void EnableGloballRQ(uint32_t primask)
Enable the global IRQ.
Set the primask register with the provided primask value but not just enable the primask.
The idea is for the convenience of integration of RTOS. some RTOS get its own management

mechanism of primask. User is required to use the EnableGlobalIRQ() and DisableGlob-
alIRQQ) in pair.

Parameters
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* primask — value of primask register to be restored. The primask value is
supposed to be provided by the DisableGlobalIRQ().

void EnableDeepSleepIRQ(IRQn_Type interrupt)
Enable specific interrupt for wake-up from deep-sleep mode.
Enable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleep mode only and will not occur during deep-sleep mode because relevant clocks

are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also enables the interrupt in the NVIC (EnableIRQ() is called internaly).

Parameters
* interrupt — The IRQ number.
void DisableDeepSleepIRQ(IRQn_Type interrupt)
Disable specific interrupt for wake-up from deep-sleep mode.

Disable the interrupt for wake-up from deep sleep mode. Some interrupts are typically
used in sleep mode only and will not occur during deep-sleep mode because relevant clocks
are stopped. However, it is possible to enable those clocks (significantly increasing power
consumption in the reduced power mode), making these wake-ups possible.

Note: This function also disables the interrupt in the NVIC (DisableIRQ() is called inter-
naly).

Parameters
¢ interrupt — The IRQ number.
static inline bool _ SDK__ AtomicLocalCompareAndSet(uint32_t *addr, uint32_t expected, uint32_t
newValue)
static inline uint32_t _ SDK__AtomicTestAndSet(uint32_t *addr, uint32_t newValue)
FSL_DRIVER_TRANSFER_DOUBLE WEAK_ IRQ
Macro to use the default weak IRQ handler in drivers.

MAKE_ STATUS(group, code)
Construct a status code value from a group and code number.

MAKE_ VERSION(major, minor, bugfix)
Construct the version number for drivers.

The driver version is a 32-bit number, for both 32-bit platforms(such as Cortex M) and 16-bit

platforms(such as DSC).
| Unused || Major Version || Minor Version || Bug Fix |
31 25 24 17 16 9 8 0

ARRAY _SIZE(X)

Computes the number of elements in an array.
UINT64_H(X)

Macro to get upper 32 bits of a 64-bit value
UINT64_L(X)

Macro to get lower 32 bits of a 64-bit value
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SUPPRESS_FALL_ THROUGH_WARNING()

For switch case code block, if case section ends without “break;” statement, there wil be
fallthrough warning with compiler flag -Wextra or -Wimplicit-fallthrough=n when using
armgcc. To suppress this warning, “SUPPRESS_FALL_THROUGH_WARNING();” need to be
added at the end of each case section which misses “break;”statement.

MSDK_REG_SECURE_ADDR(X)
Convert the register address to the one used in secure mode.

MSDK_REG_NONSECURE__ADDR(X)
Convert the register address to the one used in non-secure mode.

MSDK_HAS DWT_CYCCNT
The chip supports DWT CYCCNT or not.

MSDK_INVALID IRQ_HANDLER
Invalid IRQ handler address.

2.10 LPC_ACOMP: Analog comparator Driver

void ACOMP _ Init(ACOMP_Type *base, const acomp_config_t *config)
Initialize the ACOMP module.

Parameters
* base — ACOMP peripheral base address.
* config — Pointer to “acomp_config_t” structure.

void ACOMP_ Deinit(ACOMP_Type *base)
De-initialize the ACOMP module.

Parameters
* base — ACOMP peripheral base address.

void ACOMP_ GetDefaultConfig(acomp_config_t *config)
Gets an available pre-defined settings for the ACOMP’s configuration.

This function initializes the converter configuration structure with available settings. The
default values are:

config->enableSyncToBusClk = false;
config- >hysteresisSelection = kKACOMP__hysteresisNoneSelection;

In default configuration, the ACOMP’s output would be used directly and switch as the volt-
ages Cross.
Parameters
* config — Pointer to the configuration structure.

void ACOMP__EnableInterrupts(ACOMP_Type *base, acomp_interrupt_enable_t enable)
Enable ACOMP interrupts.

Parameters
* base — ACOMP peripheral base address.

* enable — Enable/Disable interrupt feature.
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static inline bool ACOMP__ GetInterruptsStatusFlags(ACOMP_Type *base)
Get interrupts status flags.

Parameters
* base — ACOMP peripheral base address.

Returns
Reflect the state ACOMP edge-detect status, true or false.

static inline void ACOMP__ClearInterruptsStatusFlags(ACOMP_Type *base)
Clear the ACOMP interrupts status flags.

Parameters
* base — ACOMP peripheral base address.

static inline bool ACOMP__GetOutputStatusFlags(ACOMP_Type *base)
Get ACOMP output status flags.

Parameters
* base — ACOMP peripheral base address.

Returns
Reflect the state of the comparator output, true or false.

static inline void ACOMP_ SetInputChannel ACOMP_Type *base, uint32_t postiveInputChannel,
uint32_t negativeInputChannel)

Set the ACOMP postive and negative input channel.
Parameters
* base — ACOMP peripheral base address.
* postiveInputChannel — The index of postive input channel.
* negativeInputChannel — The index of negative input channel.

void ACOMP _ SetLadderConfig(ACOMP_Type *base, const acomp_ladder_config t *config)
Set the voltage ladder configuration.

Parameters
* base — ACOMP peripheral base address.

* config — The structure for voltage ladder. If the config is NULL, voltage lad-
der would be diasbled, otherwise the voltage ladder would be configured
and enabled.

FSL ACOMP_DRIVER_ VERSION
ACOMP driver version 2.1.0.

enum _acomp_ ladder_reference voltage
The ACOMP ladder reference voltage.

Values:

enumerator kACOMP_ LadderRefVoltagePinVDD
Supply from pin VDD.

enumerator kACOMP__LadderRefVoltagePinVDDCMP
Supply from pin VDDCMP.

enum _ acomp__interrupt__enable
The ACOMP interrupts enable.

Values:
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enumerator kACOMP_ InterruptsFallingEdgeEnable
Enable the falling edge interrupts.

enumerator kACOMP__InterruptsRisingEdgeEnable
Enable the rising edge interrupts.

enumerator kACOMP__InterruptsBothEdgesEnable
Enable the both edges interrupts.

enumerator kACOMP__ InterruptsDisable
Disable the interrupts.

enum _ acomp_ hysteresis_ selection
The ACOMP hysteresis selection.

Values:

enumerator kACOMP__HysteresisNoneSelection
None (the output will switch as the voltages cross).
enumerator kACOMP_ HysteresisbMVSelection
smV.
enumerator kACOMP_ Hysteresis10MV Selection
10mV.
enumerator kACOMP_ Hysteresis20MV Selection
20mV.
typedef enum _acomp_ladder_reference_voltage acomp_ ladder_reference_voltage t
The ACOMP ladder reference voltage.
typedef enum _acomp_interrupt_enable acomp__interrupt_ enable_ t
The ACOMP interrupts enable.
typedef enum _acomp_hysteresis_selection acomp_ hysteresis_selection_ t
The ACOMP hysteresis selection.

typedef struct _acomp_config acomp_ config_t
The structure for ACOMP basic configuration.

typedef struct _acomp_ladder_config acomp_ ladder config t
The structure for ACOMP voltage ladder.

struct _acomp_ config
#include <fsl_acomp.h> The structure for ACOMP basic configuration.

Public Members

bool enableSyncToBusClk

If true, Comparator output is synchronized to the bus clock for output to other modules.
If false, Comparator output is used directly.

acomp_hysteresis_selection_t hysteresisSelection
Controls the hysteresis of the comparator.

struct _acomp_ ladder_config
#include <fsl_acomp.h> The structure for ACOMP voltage ladder.
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Public Members
uint8_t ladderValue
Voltage ladder value. 00000 = Vss, 00001 = 1*Vref/31, ..., 11111 = Vref.

acomp_ladder_reference_voltage_t referenceVoltage
Selects the reference voltage(Vref) for the voltage ladder.

2.11 ADC: 12-bit SAR Analog-to-Digital Converter Driver

void ADC_ Init(ADC_Type *base, const adc_config_t *config)
Initialize the ADC module.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure, see to adc_config_t.

void ADC_ Deinit(ADC_Type *base)
Deinitialize the ADC module.

Parameters
* base — ADC peripheral base address.

void ADC_ GetDefaultConfig(adc_config_t *config)
Gets an available pre-defined settings for initial configuration.

This function initializes the initial configuration structure with an available settings. The
default values are:

config->clockMode = kADC__ClockSynchronousMode;
config->clockDividerNumber = 0U;

config->resolution = kADC_ Resolution12bit;
config->enableBypassCalibration = false;

config->sampleTimeNumber = 0U;

config->extendSampleTimeNumber = kADC__ExtendSampleTimeNotUsed;

Parameters
* config — Pointer to configuration structure.

static inline void ADC_ EnableConvSeqA(ADC_Type *base, bool enable)
Enable the conversion sequence A.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable the feature or not.

void ADC_ SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
Configure the conversion sequence A.

Parameters
* base — ADC peripheral base address.

* config — Pointer to configuration structure, see to adc_conv_seq_config_t.
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static inline void ADC_ DoSoftwareTriggerConvSeqA (ADC_Type *base)
Do trigger the sequence’s conversion by software.

Parameters
* base — ADC peripheral base address.

static inline void ADC_ EnableConvSeqABurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence A.

Enable the burst mode would cause the conversion sequence to be cntinuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable this feature.

static inline void ADC_ SetConvSeqAHighPriority(ADC_Type *base)
Set the high priority for conversion sequence A.

Parameters
* base — ADC peripheral bass address.

static inline void ADC_ EnableConvSeqB(ADC_Type *base, bool enable)
Enable the conversion sequence B.

In order to avoid spuriously triggering the sequence, the trigger to conversion sequence
should be ready before the sequence is ready. when the sequence is disabled, the trig-
ger would be ignored. Also, it is suggested to disable the sequence during changing the
sequence’s setting.

Parameters
* base — ADC peripheral base address.
* enable — Switcher to enable the feature or not.

void ADC_ SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config t *config)
Configure the conversion sequence B.

Parameters
* base — ADC peripheral base address.
* config — Pointer to configuration structure, see to adc_conv_seq_config_t.
static inline void ADC_ DoSoftwareTriggerConvSeqB(ADC_Type *base)
Do trigger the sequence’s conversion by software.
Parameters
* base — ADC peripheral base address.
static inline void ADC_ EnableConvSeqBBurstMode(ADC_Type *base, bool enable)
Enable the burst conversion of sequence B.

Enable the burst mode would cause the conversion sequence to be continuously cycled
through. Other triggers would be ignored while this mode is enabled. Repeated conver-
sions could be halted by disabling this mode. And the sequence currently in process will
be completed before cnversions are terminated. Note that a new sequence could begin just
before the burst mode is disabled.

Parameters
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* base — ADC peripheral base address.
* ecnable — Switcher to enable this feature.

static inline void ADC_ SetConvSeqBHighPriority(ADC_Type *base)
Set the high priority for conversion sequence B.

Parameters
* base — ADC peripheral bass address.

bool ADC__GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence A.

Parameters

* base — ADC peripheral base address.

 info — Pointer to information structure, see to adc_result_info t;
Return values

* true — The conversion result is ready.

* false — The conversion result is not ready yet.

bool ADC__GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
Get the global ADC conversion infomation of sequence B.

Parameters
* base — ADC peripheral base address.
* info — Pointer to information structure, see to adc_result_info_t;
Return values
* true — The conversion result is ready.
* false — The conversion result is not ready yet.
bool ADC_ GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t
*info)
Get the channel’s ADC conversion completed under each conversion sequence.
Parameters
* base — ADC peripheral base address.
* channel — The indicated channel number.
* info — Pointer to information structure, see to adc_result_info_t;
Return values
* true — The conversion result is ready.
* false — The conversion result is not ready yet.

static inline void ADC_ SetThresholdPair0(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 0 with low and high value.
Parameters
* base — ADC peripheral base address.
* lowValue — LOW threshold value.
* highValue — HIGH threshold value.

158 Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

static inline void ADC_ SetThresholdPairl(ADC_Type *base, uint32_t lowValue, uint32_t
highValue)

Set the threshhold pair 1 with low and high value.
Parameters
* base — ADC peripheral base address.
* lowValue — LOW threshold value. The available value is with 12-bit.
* highValue — HIGH threshold value. The available value is with 12-bit.

static inline void ADC_ SetChannelWithThresholdPair0(ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 0.

Parameters
* base — ADC peripheral base address.
* channelMask — Indicated channels’ mask.

static inline void ADC_ SetChannelWithThresholdPair1 (ADC_Type *base, uint32_t channelMask)
Set given channels to apply the threshold pare 1.

Parameters
* base — ADC peripheral base address.
* channelMask — Indicated channels’ mask.

static inline void ADC_ EnableInterrupts(ADC_Type *base, uint32_t mask)
Enable interrupts for conversion sequences.

Parameters
* base — ADC peripheral base address.

» mask — Mask of interrupt mask value for global block except each channal,
see to _adc_interrupt_enable.

static inline void ADC_ DisableInterrupts(ADC_Type *base, uint32_t mask)
Disable interrupts for conversion sequence.

Parameters
* base — ADC peripheral base address.

» mask — Mask of interrupt mask value for global block except each channel,
see to _adc_interrupt_enable.

static inline void ADC_ EnableThreshold Comparelnterrupt(ADC_Type *base, uint32_t channel,
adc_threshold_interrupt_mode_t mode)

Enable the interrupt of threshold compare event for each channel.
Parameters
* base — ADC peripheral base address.
* channel — Channel number.

* mode — Interrupt mode for threshold compare event, see to
adc_threshold_interrupt_mode_t.

static inline uint32_t ADC_ GetStatusFlags(ADC_Type *base)
Get status flags of ADC module.

Parameters

* base — ADC peripheral base address.
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Returns
Mask of status flags of module, see to _adc_status_flags.

static inline void ADC_ ClearStatusFlags(ADC_Type *base, uint32_t mask)
Clear status flags of ADC module.
Parameters
* base — ADC peripheral base address.
» mask — Mask of status flags of module, see to _adc_status_flags.
FSL__ADC_DRIVER_VERSION
ADC driver version 2.6.0.
enum _adc_status_ flags
Flags.
Values:
enumerator kADC_ ThresholdCompareFlagOnChn0
Threshold comparison event on Channel 0.
enumerator kADC_ ThresholdCompareFlagOnChnl
Threshold comparison event on Channel 1.
enumerator kADC_ ThresholdCompareFlagOnChn2
Threshold comparison event on Channel 2.
enumerator kADC_ ThresholdCompareFlagOnChn3
Threshold comparison event on Channel 3.
enumerator kADC_ ThresholdCompareFlagOnChn4
Threshold comparison event on Channel 4.
enumerator kADC_ ThresholdCompareFlagOnChn5
Threshold comparison event on Channel 5.
enumerator kADC_ ThresholdCompareFlagOnChn6
Threshold comparison event on Channel 6.
enumerator kADC_ ThresholdCompareFlagOnChn7
Threshold comparison event on Channel 7.
enumerator kADC_ ThresholdCompareFlagOnChn8
Threshold comparison event on Channel 8.
enumerator kADC_ ThresholdCompareFlagOnChn9
Threshold comparison event on Channel 9.
enumerator kADC_ ThresholdCompareFlagOnChn10
Threshold comparison event on Channel 10.
enumerator kADC_ ThresholdCompareFlagOnChn11
Threshold comparison event on Channel 11.
enumerator kADC_ OverrunFlagForChn0
Mirror the OVERRUN status flag from the result register for ADC channel 0.
enumerator kADC_ OverrunFlagForChnl
Mirror the OVERRUN status flag from the result register for ADC channel 1.

enumerator kADC_ OverrunFlagForChn2
Mirror the OVERRUN status flag from the result register for ADC channel 2.
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enumerator kADC_ OverrunFlagForChn3
Mirror the OVERRUN status flag from the result register for ADC channel 3.

enumerator kADC_ OverrunFlagForChn4

Mirror the OVERRUN status flag from the result register for ADC channel 4.
enumerator kADC_ OverrunFlagForChnb

Mirror the OVERRUN status flag from the result register for ADC channel 5.
enumerator kADC_ OverrunFlagForChn6

Mirror the OVERRUN status flag from the result register for ADC channel 6.
enumerator kADC_ OverrunFlagForChn7

Mirror the OVERRUN status flag from the result register for ADC channel 7.
enumerator kADC_ OverrunFlagForChn8

Mirror the OVERRUN status flag from the result register for ADC channel 8.
enumerator kADC_ OverrunFlagForChn9

Mirror the OVERRUN status flag from the result register for ADC channel 9.
enumerator kADC_ OverrunFlagForChn10

Mirror the OVERRUN status flag from the result register for ADC channel 10.
enumerator kADC_ OverrunFlagForChnl1

Mirror the OVERRUN status flag from the result register for ADC channel 11.
enumerator kADC_ GlobalOverrunFlagForSeqA

Mirror the glabal OVERRUN status flag for conversion sequence A.
enumerator kADC_ GlobalOverrunFlagForSeqB

Mirror the global OVERRUN status flag for conversion sequence B.
enumerator kADC_ ConvSeqAlnterruptFlag

Sequence A interrupt/DMA trigger.
enumerator kADC_ ConvSeqBlInterruptFlag

Sequence B interrupt/DMA trigger.
enumerator kADC_ ThresholdComparelnterruptFlag

Threshold comparision interrupt flag.
enumerator kADC_ OverrunlnterruptFlag

Overrun interrupt flag.

enum _ adc_ interrupt_ enable

Interrupts.

Note: Not all the interrupt options are listed here

Values:

enumerator kKADC_ ConvSeqAlInterruptEnable
Enable interrupt upon completion of each individual conversion in sequence A, or
entire sequence.

enumerator kADC_ ConvSeqBInterruptEnable

Enable interrupt upon completion of each individual conversion in sequence B, or en-
tire sequence.
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enumerator kADC_ OverrunlnterruptEnable

Enable the detection of an overrun condition on any of the channel data registers will
cause an overrun interrupt/DMA trigger.

enum _adc_clock mode
Define selection of clock mode.

Values:

enumerator kADC_ ClockSynchronousMode

The ADC clock would be derived from the system clock based on “clockDividerNum-
ber”.

enumerator kADC_ ClockAsynchronousMode
The ADC clock would be based on the SYSCON block’s divider.

enum adc_ resolution
Define selection of resolution.

Values:

enumerator kADC Resolution6bit
6-bit resolution.

enumerator kADC Resolution8bit
8-bit resolution.

enumerator kADC Resolutionl0bit
10-bit resolution.

enumerator kADC Resolutionl2bit
12-bit resolution.

enum _ adc_ voltage range
Definfe range of the analog supply voltage VDDA.

Values:
enumerator kADC_ HighVoltageRange
enumerator kADC_ LowVoltageRange
enum _ adc_ trigger_polarity
Define selection of polarity of selected input trigger for conversion sequence.
Values:
enumerator kADC_ TriggerPolarityNegativeEdge
A negative edge launches the conversion sequence on the trigger(s).

enumerator kADC_ TriggerPolarityPositiveEdge
A positive edge launches the conversion sequence on the trigger(s).

enum _ adc_ priority
Define selection of conversion sequence’s priority.

Values:

enumerator kADC_ PriorityLow

This sequence would be preempted when another sequence is started.
enumerator kADC_ PriorityHigh

This sequence would preempt other sequence even when it is started.
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enum _ adc_seq interrupt_mode
Define selection of conversion sequence’s interrupt.

Values:

enumerator kADC_ InterruptForEachConversion

The sequence interrupt/DMA trigger will be set at the end of each individual ADC con-

version inside this conversion sequence.

enumerator kADC_ InterruptForEachSequence

The sequence interrupt/DMA trigger will be set when the entire set of this sequence

conversions completes.

enum _ adc_ threshold compare status
Define status of threshold compare result.

Values:

enumerator kADC_ ThresholdComparelnRange
LOW threshold <= conversion value <= HIGH threshold.

enumerator kADC_ ThresholdCompareBelowRange
conversion value < LOW threshold.

enumerator kADC_ ThresholdCompareAboveRange
conversion value > HIGH threshold.

enum _ adc_ threshold_ crossing status
Define status of threshold crossing detection result.

Values:

enumerator kADC_ ThresholdCrossingNoDetected
No threshold Crossing detected.

enumerator kADC_ ThresholdCrossingDownward
Downward Threshold Crossing detected.

enumerator kADC_ ThresholdCrossingUpward
Upward Threshold Crossing Detected.

enum _ adc_ threshold_interrupt_mode
Define interrupt mode for threshold compare event.

Values:

enumerator kKADC_ ThresholdInterruptDisabled
Threshold comparison interrupt is disabled.

enumerator kADC_ ThresholdInterruptOnQOutside
Threshold comparison interrupt is enabled on outside threshold.

enumerator kADC_ ThresholdInterruptOnCrossing

Threshold comparison interrupt is enabled on crossing threshold.

enum _adc_inforesultshift
Define the info result mode of different resolution.

Values:

enumerator kADC_ Resolution12bitInfoResultShift
Info result shift of Resolution12bit.

enumerator kADC Resolutionl0bitInfoResultShift
Info result shift of Resolution10bit.
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enumerator kADC Resolution8bitInfoResultShift
Info result shift of Resolution8bit.

enumerator kADC Resolution6bitInfoResultShift
Info result shift of Resolution6bit.
enum _ adc_ tempsensor__common_ mode
Define common modes for Temerature sensor.
Values:
enumerator kADC_ HighNegativeOffset Added
Temperature sensor common mode: high negative offset added.
enumerator kADC_ IntermediateNegativeOffset Added
Temperature sensor common mode: intermediate negative offset added.
enumerator kADC_NoOffsetAdded
Temperature sensor common mode: no offset added.
enumerator kADC_LowPositiveOffset Added
Temperature sensor common mode: low positive offset added.
enum _adc_second__control
Define source impedance modes for GPADC control.
Values:
enumerator kADC_ Impedance621Ohm
Extand ADC sampling time according to source impedance 1: 0.621 kOhm.
enumerator kADC_ Impedance55kOhm
Extand ADC sampling time according to source impedance 20 (default): 55 kOhm.
enumerator kADC_ Impedance87kOhm
Extand ADC sampling time according to source impedance 31: 87 kOhm.
enumerator kADC_NormalFunctionalMode
TEST mode: Normal functional mode.
enumerator kADC_ MultiplexeTestMode
TEST mode: Multiplexer test mode.
enumerator kADC__ ADCInUnityGainMode
TEST mode: ADC in unity gain mode.
typedef enum _adc_clock_mode adc_ clock__mode_t
Define selection of clock mode.
typedef enum _adc_resolution adc_resolution_t
Define selection of resolution.
typedef enum _adc_voltage_range adc_ vdda_range_t
Definfe range of the analog supply voltage VDDA.
typedef enum _adc_trigger_polarity adc_ trigger_ polarity_t
Define selection of polarity of selected input trigger for conversion sequence.
typedef enum _adc_priority adc_ priority_t
Define selection of conversion sequence’s priority.

typedef enum _adc_seq_interrupt_mode adc_seq_interrupt_ mode_t
Define selection of conversion sequence’s interrupt.
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typedef enum _adc_threshold_compare_status adc_threshold__compare_ status_t

Define status of threshold compare result.

typedef enum _adc_threshold_crossing_status adc_threshold_ crossing_status_t

Define status of threshold crossing detection result.

typedef enum _adc_threshold_interrupt_mode adc__threshold__interrupt_mode_t

Define interrupt mode for threshold compare event.

typedef enum _adc_inforesultshift adc_ inforesult_t

Define the info result mode of different resolution.

typedef enum _adc_tempsensor_common_mode adc_tempsensor__common_ mode_ t

Define common modes for Temerature sensor.

typedef enum _adc_second_control adc_second_ control t

Define source impedance modes for GPADC control.

typedef struct _adc_config adc_ config t

Define structure for configuring the block.

typedef struct _adc_conv_seq_config adc_conv_seq config t

Define structure for configuring conversion sequence.

typedef struct _adc_result_info adc_ result_info_t

Define structure of keeping conversion result information.

struct _adc_ config

#include <fsl_adc.h> Define structure for configuring the block.

Public Members

adc_clock_mode_t clockMode
Select the clock mode for ADC converter.

uint32_t clockDividerNumber
This field is only available when using kKADC_ClockSynchronousMode for “clockMode”
field. The divider would be plused by 1 based on the value in this field. The available
range is in 8 bits.

adc_resolution_t resolution
Select the conversion bits.

bool enableBypassCalibration

By default, a calibration cycle must be performed each time the chip is powered-up.
Re-calibration may be warranted periodically - especially if operating conditions have
changed. To enable this option would avoid the need to calibrate if offset error is not
a concern in the application.

uint32_t sampleTimeNumber
By default, with value as “0U”, the sample period would be 2.5 ADC clocks. Then, to
plus the “sampleTimeNumber” value here. The available value range is in 3 bits.
bool enableLowPowerMode

If disable low-power mode, ADC remains activated even when no conversions are re-
quested. If enable low-power mode, The ADC is automatically powered-down when
no conversions are taking place.
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adc_vdda_range_t voltageRange
Configure the ADC for the appropriate operating range of the analog supply voltage
VDDA. Failure to set the area correctly causes the ADC to return incorrect conversion
results.
struct _adc_ conv_seq_config
#include <fsl_adc.h> Define structure for configuring conversion sequence.

Public Members

uint32_t channelMask
Selects which one or more of the ADC channels will be sampled and converted when
this sequence is launched. The masked channels would be involved in current conver-
sion sequence, beginning with the lowest-order. The available range is in 12-bit.
uint32_t triggerMask
Selects which one or more of the available hardware trigger sources will cause this
conversion sequence to be initiated. The available range is 6-bit.
adc_trigger_polarity_t triggerPolarity
Select the trigger to launch conversion sequence.

bool enableSyncBypass
To enable this feature allows the hardware trigger input to bypass synchronization
flip-flop stages and therefore shorten the time between the trigger input signal and
the start of a conversion.

bool enableSingleStep

When enabling this feature, a trigger will launch a single conversion on the next chan-
nel in the sequence instead of the default response of launching an entire sequence of
conversions.

adc_seq_interrupt_mode_t interruptMode
Select the interrpt/DMA trigger mode.

struct adc_result_info
#include <fsl_adc.h> Define structure of keeping conversion result information.

Public Members
uint32_t result
Keep the conversion data value.

adc_threshold_compare_status_t thresholdCompareStatus
Keep the threshold compare status.

adc_threshold_crossing_status_t thresholdCorssingStatus
Keep the threshold crossing status.

uint32_t channelNumber
Keep the channel number for this conversion.

bool overrunFlag
Keep the status whether the conversion is overrun or not.
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2.12 GPIO: General Purpose I/O

void GPIO_ PortInit(GPIO_Type *base, uint32_t port)
Initializes the GPIO peripheral.

This function ungates the GPIO clock.
Parameters
* base — GPIO peripheral base pointer.
* port — GPIO port number.

void GPIO_ PinInit(GPIO_Type *base, uint32_t port, uint32_t pin, const gpio_pin_config_t
*config)

Initializes a GPIO pin used by the board.

To initialize the GPIO, define a pin configuration, either input or output, in the user file.
Then, call the GPIO_PinInit() function.

This is an example to define an input pin or output pin configuration:

Define a digital input pin configuration,
gpio_ pin_ config t config =

{

kGPIO_ Digitallnput,
0,

}

Define a digital output pin configuration,
gpio_ pin_ config t config =

{
kGPIO_ DigitalOutput,

0,

}

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* pin — GPIO pin number
* config — GPIO pin configuration pointer

static inline void GPIO_ PinWrite(GPIO_Type *base, uint32_t port, uint32_t pin, uint8_t output)
Sets the output level of the one GPIO pin to the logic 1 or 0.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* pin — GPIO pin number
* output — GPIO pin output logic level.
— 0: corresponding pin output low-logic level.
- 1: corresponding pin output high-logic level.

static inline uint32_t GPIO_ PinRead(GPIO_Type *base, uint32_t port, uint32_t pin)
Reads the current input value of the GPIO PIN.

Parameters

* base — GPIO peripheral base pointer(Typically GPIO)
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* port — GPIO port number
* pin — GPIO pin number

Return values
GPIO - port input value

* 0: corresponding pin input low-logic level.
* 1: corresponding pin input high-logic level.

FSL GPIO_DRIVER_VERSION
LPC GPIO driver version.

enum _ gpio_ pin_ direction
LPC GPIO direction definition.
Values:

enumerator kGPIO_ Digitallnput
Set current pin as digital input

enumerator kGPIO_ DigitalOutput
Set current pin as digital output

typedef enum _gpio_pin_direction gpio_ pin_ direction_t
LPC GPIO direction definition.

typedef struct _gpio_pin_config gpio_pin_ config_t
The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured
as a input pin, then leave the outputConfig unused.

static inline void GPIO_ PortSet(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 1.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* mask — GPIO pin number macro

static inline void GPIO_ PortClear(GPIO_Type *base, uint32_t port, uint32_t mask)
Sets the output level of the multiple GPIO pins to the logic 0.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number
* mask — GPIO pin number macro

static inline void GPIO_ PortToggle(GPIO_Type *base, uint32_t port, uint32_t mask)
Reverses current output logic of the multiple GPIO pins.

Parameters
* base — GPIO peripheral base pointer(Typically GPIO)
* port — GPIO port number

* mask — GPIO pin number macro
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struct _ gpio_ pin_ config
#include <fsl_gpio.h> The GPIO pin configuration structure.

Every pin can only be configured as either output pin or input pin at a time. If configured

as a input pin, then leave the outputConfig unused.

Public Members

gpio_pin_direction_t pinDirection
GPIO direction, input or output

uint8_t outputLogic
Set default output logic, no use in input

2.13 IOCON: I/O pin configuration

LPC _IOCON_DRIVER VERSION
IOCON driver version 2.0.2.

typedef struct _iocon_group iocon_ group_t

Array of IOCON pin definitions passed to IOCON_SetPinMuxing() must be in this format.

__ STATIC_INLINE void IOCON_ PinMuxSet (IOCON_ Type *base, uint8 t ionumber,

uint32_t modefunc)

IOCON function and mode selection definitions.

Sets I/O Control pin mux

Note: See the User Manual for specific modes and functions supported by the various pins.

Parameters
* base —: The base of IOCON peripheral on the chip
* ionumber —: GPIO number to mux
* modefunc — : OR’ed values of type IOCON_*

Returns
Nothing

__ STATIC_INLINE void IOCON_ SetPinMuxing (IOCON_ Type *base,
const iocon__group_ t *pinArray, uint32_t arrayLength)

Set all I/O Control pin muxing.
Parameters
* base —: The base of IOCON peripheral on the chip
* pinArray — : Pointer to array of pin mux selections
* arrayLength —: Number of entries in pinArray

Returns
Nothing

FSL_COMPONENT_ID
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struct _iocon_ group

#include <fsl_iocon.h> Array of IOCON pin definitions passed to IOCON_SetPinMuxing()
must be in this format.

2.14 MRT: Multi-Rate Timer

void MRT__Init(MRT_Type *base, const mrt_config_t *config)
Ungates the MRT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the MRT driver.

Parameters
* base — Multi-Rate timer peripheral base address

* config — Pointer to user’s MRT config structure. If MRT has MULTITASK bit
field in MODCFG reigster, param config is useless.

void MRT_ Deinit(MRT_Type *base)
Gate the MRT clock.

Parameters
* base — Multi-Rate timer peripheral base address

static inline void MRT _GetDefaultConfig(mrt_config_t *config)
Fill in the MRT config struct with the default settings.

The default values are:

config->enableMultiTask = false;

Parameters
* config — Pointer to user’s MRT config structure.

static inline void MRT_ SetupChannelMode(MRT_Type *base, mrt_chnl_t channel, const
mrt_timer_mode_t mode)

Sets up an MRT channel mode.
Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Channel that is being configured.
* mode — Timer mode to use for the channel.

static inline void MRT_ EnableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Enables the MRT interrupt.

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

» mask — The interrupts to enable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t
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static inline void MRT_ DisableInterrupts(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Disables the selected MRT interrupt.

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

» mask — The interrupts to disable. This is a logical OR of members of the
enumeration mrt_interrupt_enable_t

static inline uint32_t MRT__ GetEnabledInterrupts(MRT_Type *base, mrt_chnl t channel)
Gets the enabled MRT interrupts.

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number

Returns

The enabled interrupts. This is the logical OR of members of the enumeration
mrt_interrupt_enable_t

static inline uint32_t MRT _GetStatusFlags(MRT_Type *base, mrt_chnl_t channel)
Gets the MRT status flags.

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number

Returns

The status flags. This is the logical OR of members of the enumeration
mrt_status_flags_t

static inline void MRT_ ClearStatusFlags(MRT_Type *base, mrt_chnl_t channel, uint32_t mask)
Clears the MRT status flags.

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number

» mask — The status flags to clear. This is a logical OR of members of the
enumeration mrt_status_flags_t

void MRT_UpdateTimerPeriod(MRT_Type *base, mrt_chnl t channel, uint32_t count, bool
immediateLoad)

Used to update the timer period in units of count.

The new value will be immediately loaded or will be loaded at the end of the current time
interval. For one-shot interrupt mode the new value will be immediately loaded.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

* count — Timer period in units of ticks
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» immediateLoad — true: Load the new value immediately into the TIMER reg-
ister; false: Load the new value at the end of current timer interval

static inline uint32_t MRT__GetCurrent TimerCount(MRT_Type *base, mrt_chnl_t channel)
Reads the current timer counting value.

This function returns the real-time timer counting value, in a range from 0 to a timer period.

Note: User can call the utility macros provided in fsl_common.h to convert ticks to usec or
msec

Parameters
* base — Multi-Rate timer peripheral base address
¢ channel — Timer channel number

Returns
Current timer counting value in ticks

static inline void MRT_ StartTimer(MRT_Type *base, mrt_chnl t channel, uint32_t count)
Starts the timer counting.

After calling this function, timers load period value, counts down to 0 and depending on
the timer mode it will either load the respective start value again or stop.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks

Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number.

* count — Timer period in units of ticks. Count can contain the LOAD bit,
which control the force load feature.

static inline void MRT _StopTimer(MRT_Type *base, mrt_chnl_t channel)
Stops the timer counting.

This function stops the timer from counting.
Parameters
* base — Multi-Rate timer peripheral base address
* channel — Timer channel number.

static inline uint32_t MRT _ GetlIdleChannel(MRT_Type *base)
Find the available channel.

This function returns the lowest available channel number.
Parameters
* base — Multi-Rate timer peripheral base address
FSL_MRT_ DRIVER_VERSION
enum _mrt_chnl
List of MRT channels.

Values:
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enumerator kMRT Channel 0
MRT channel number 0

enumerator kMRT Channel 1
MRT channel number 1

enumerator kMRT _Channel 2
MRT channel number 2

enumerator kMRT Channel 3
MRT channel number 3

enum mrt_timer mode
List of MRT timer modes.

Values:

enumerator kMRT RepeatMode
Repeat Interrupt mode

enumerator kMRT OneShotMode
One-shot Interrupt mode

enumerator kMRT OneShotStallMode
One-shot stall mode

enum _ mrt_ interrupt_ enable
List of MRT interrupts.

Values:

enumerator kMRT_TimerInterruptEnable
Timer interrupt enable

enum _mrt_ status_ flags
List of MRT status flags.

Values:

enumerator kKMRT _TimerInterruptFlag
Timer interrupt flag

enumerator kMRT _TimerRunFlag
Indicates state of the timer

typedef enum _mrt_chnl mrt_ chnl ¢
List of MRT channels.

typedef enum _mrt_timer_mode mrt_ timer_mode_ t
List of MRT timer modes.

typedef enum _mrt_interrupt_enable mrt__interrupt_ enable_ t
List of MRT interrupts.

typedef enum _mrt_status_flags mrt_ status flags t
List of MRT status flags.

typedef struct _mrt_config mrt_ config_t
MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash
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struct _mrt_ config
#include <fsl_mrt.h> MRT configuration structure.

This structure holds the configuration settings for the MRT peripheral. To initialize this
structure to reasonable defaults, call the MRT_GetDefaultConfig() function and pass a
pointer to your config structure instance.

The config struct can be made const so it resides in flash

Public Members

bool enableMultiTask
true: Timers run in multi-task mode; false: Timers run in hardware status mode

2.15 PINT: Pin Interrupt and Pattern Match Driver

FSL_PINT_ DRIVER_VERSION
enum _ pint_ pin_ enable
PINT Pin Interrupt enable type.
Values:

enumerator kPINT PinIntEnableNone
Do not generate Pin Interrupt

enumerator kPINT__PinIntEnableRiseEdge
Generate Pin Interrupt on rising edge

enumerator kPINT__PinIntEnableFallEdge
Generate Pin Interrupt on falling edge

enumerator kPINT__PinIntEnableBothEdges
Generate Pin Interrupt on both edges

enumerator kPINT PinIntEnableLowLevel
Generate Pin Interrupt on low level

enumerator kPINT__PinIntEnableHighLevel
Generate Pin Interrupt on high level

enum _ pint_ int

PINT Pin Interrupt type.

Values:

enumerator kPINT PinInt0
Pin Interrupt 0

enum _ pint_ pmatch_input_ src

PINT Pattern Match bit slice input source type.

Values:

enumerator kPINT _PatternMatchInpOSrc
Input source 0

enumerator kPINT__PatternMatchInplSrc
Input source 1

174 Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

enumerator kPINT_ PatternMatchInp2Src
Input source 2

enumerator kPINT_PatternMatchInp3Src
Input source 3

enumerator kPINT_ PatternMatchInp4Src
Input source 4

enumerator kPINT_PatternMatchInp5Src
Input source 5

enumerator kPINT_ PatternMatchInp6Src
Input source 6

enumerator kPINT_ PatternMatchInp7Src
Input source 7

enumerator kPINT__SecPatternMatchInpOSrc
Input source 0

enumerator kPINT _SecPatternMatchInplSrc
Input source 1

enum _ pint_ pmatch_ bslice
PINT Pattern Match bit slice type.

Values:

enumerator kPINT PatternMatchBSliceO
Bit slice 0

enum _ pint_ pmatch_ bslice_ cfg
PINT Pattern Match configuration type.
Values:

enumerator kPINT _PatternMatchAlways
Always Contributes to product term match

enumerator kPINT_ PatternMatchStickyRise
Sticky Rising edge

enumerator kPINT__PatternMatchStickyFall
Sticky Falling edge

enumerator kPINT_ PatternMatchStickyBothEdges
Sticky Rising or Falling edge

enumerator kPINT__PatternMatchHigh
High level

enumerator kPINT PatternMatchLow
Low level

enumerator kPINT PatternMatchNever
Never contributes to product term match

enumerator kPINT__PatternMatchBothEdges
Either rising or falling edge
typedef enum _pint_pin_enable pint_ pin_enable_t
PINT Pin Interrupt enable type.
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typedef enum _pint_int pint_ pin_int_t
PINT Pin Interrupt type.

typedef enum _pint_pmatch_input_src pint_pmatch_input_src_t
PINT Pattern Match bit slice input source type.

typedef enum _pint_pmatch_bslice pint__pmatch_ bslice_t
PINT Pattern Match bit slice type.

typedef enum _pint_pmatch_bslice_cfg pint_ pmatch_ bslice_ cfg_t
PINT Pattern Match configuration type.

typedef struct _pint_status pint_ status_t
PINT event status.

typedef void (*pint_ cb_ t)(pint_pin_int_t pinty, pint_status_t *status)
PINT Callback function.

typedef struct _pint_pmatch_cfg pint_ pmatch_ cfg_t
void PINT_Init(PINT_Type *base)
Initialize PINT peripheral.
This function initializes the PINT peripheral and enables the clock.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT _SetCallback(PINT_Type *base, pint_cb_t callback)
Set PINT callback.

This function set the callback for PINT interupt handler.
Parameters
* base — Base address of the PINT peripheral.
* callback — Callback.

Return values
None. —

void PINT _PinInterruptConfig(PINT_Type *base, pint_pin_int_t intr, pint_pin_enable_t enable)
Configure PINT peripheral pin interrupt.

This function configures a given pin interrupt.
Parameters
* base — Base address of the PINT peripheral.
* intr — Pin interrupt.
* enable — Selects detection logic.

Return values
None. —

void PINT _PinInterruptGetConfig(PINT_Type *base, pint_pin_int_t pintr, pint_pin_enable_t
*enable)

Get PINT peripheral pin interrupt configuration.
This function returns the configuration of a given pin interrupt.

Parameters
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* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.
* enable — Pointer to store the detection logic.

Return values
None. —

void PINT _PinInterruptClrStatus(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt status only when the pin was triggered by edge-sensitive.

This function clears the selected pin interrupt status.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetStatus(PINT_Type *base, pint_pin_int_t pintr)
Get Selected pin interrupt status.

This function returns the selected pin interrupt status.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
status — =0 No pin interrupt request. = 1 Selected Pin interrupt request active.

void PINT_ PinInterruptClrStatusAll(PINT_Type *base)
Clear all pin interrupts status only when pins were triggered by edge-sensitive.

This function clears the status of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline uint32_t PINT PinInterruptGetStatusAll(PINT_Type *base)
Get all pin interrupts status.

This function returns the status of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
status — Each bit position indicates the status of corresponding pin interrupt.
=0 No pin interrupt request. = 1 Pin interrupt request active.

static inline void PINT_ PinInterruptClrFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt fall flag.

This function clears the selected pin interrupt fall flag.
Parameters
* base — Base address of the PINT peripheral.

* pintr — Pin interrupt.
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Return values
None. —

static inline uint32_t PINT_ PinInterruptGetFallFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt fall flag.

This function returns the selected pin interrupt fall flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
flag—=0 Falling edge has not been detected. = 1 Falling edge has been detected.

static inline void PINT_ PinInterruptClrFallFlagAll(PINT_Type *base)
Clear all pin interrupt fall flags.

This function clears the fall flag for all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline uint32_t PINT _ PinInterruptGetFallFlagAll(PINT Type *base)
Get all pin interrupt fall flags.

This function returns the fall flag of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
flags — Each bit position indicates the falling edge detection of the correspond-
ing pin interrupt. 0 Falling edge has not been detected. = 1 Falling edge has
been detected.

static inline void PINT_ PinInterruptClrRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Clear Selected pin interrupt rise flag.

This function clears the selected pin interrupt rise flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetRiseFlag(PINT_Type *base, pint_pin_int_t pintr)
Get selected pin interrupt rise flag.

This function returns the selected pin interrupt rise flag.
Parameters
* base — Base address of the PINT peripheral.
* pintr — Pin interrupt.

Return values
flag — = 0 Rising edge has not been detected. = 1 Rising edge has been detected.
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static inline void PINT_ PinInterruptClrRiseFlagAll(PINT_Type *base)
Clear all pin interrupt rise flags.

This function clears the rise flag for all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline uint32_t PINT_ PinInterruptGetRiseFlagAll(PINT_Type *base)
Get all pin interrupt rise flags.

This function returns the rise flag of all pin interrupts.
Parameters
* base — Base address of the PINT peripheral.

Return values
flags — Each bit position indicates the rising edge detection of the correspond-
ing pin interrupt. 0 Rising edge has not been detected. = 1 Rising edge has
been detected.

void PINT_ PatternMatchConfig(PINT_Type *base, pint_pmatch_bslice_t bslice, pint_pmatch _cfg t
*cfg)

Configure PINT pattern match.
This function configures a given pattern match bit slice.
Parameters
* base — Base address of the PINT peripheral.
* bslice — Pattern match bit slice number.
* cfg — Pointer to bit slice configuration.

Return values
None. —

void PINT _PatternMatchGetConfig(PINT_Type *base, pint_pmatch_bslice_t bslice,
pint_pmatch_cfg t *cfg)

Get PINT pattern match configuration.
This function returns the configuration of a given pattern match bit slice.
Parameters
* base — Base address of the PINT peripheral.
* bslice — Pattern match bit slice number.
* cfg — Pointer to bit slice configuration.

Return values
None. —

static inline uint32_t PINT_ PatternMatchGetStatus(PINT_Type *base, pint_pmatch_bslice_t
bslice)

Get pattern match bit slice status.
This function returns the status of selected bit slice.
Parameters
* base — Base address of the PINT peripheral.

* bslice — Pattern match bit slice number.
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Return values

status — = 0 Match has not been detected. = 1 Match has been detected.

static inline uint32_t PINT _PatternMatchGetStatusAll(PINT_Type *base)

Get status of all pattern match bit slices.
This function returns the status of all bit slices.
Parameters
* base — Base address of the PINT peripheral.

Return values

status — Each bit position indicates the match status of corresponding bit slice.
=0 Match has not been detected. = 1 Match has been detected.

uint32_t PINT_ PatternMatchResetDetectLogic(PINT_Type *base)
Reset pattern match detection logic.

This function resets the pattern match detection logic if any of the product term is matching.

Parameters
* base — Base address of the PINT peripheral.

Return values

pmstatus — Each bit position indicates the match status of corresponding bit

slice. = 0 Match was detected. = 1 Match was not detected.

static inline void PINT_ PatternMatchEnable(PINT_Type *base)
Enable pattern match function.

This function enables the pattern match function.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchDisable(PINT_Type *base)
Disable pattern match function.

This function disables the pattern match function.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchEnableRXEV(PINT_Type *base)
Enable RXEV output.

This function enables the pattern match RXEV output.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

static inline void PINT_ PatternMatchDisableRXEV (PINT_Type *base)
Disable RXEV output.

This function disables the pattern match RXEV output.

Parameters
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* base — Base address of the PINT peripheral.

Return values
None. —

void PINT _EnableCallback(PINT Type *base)

Enable callback.

This function enables the interrupt for the selected PINT peripheral. Although the pin(s)
are monitored as soon as they are enabled, the callback function is not enabled until this
function is called.

Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT DisableCallback(PINT_Type *base)

Disable callback.

This function disables the interrupt for the selected PINT peripheral. Although the pins are
still being monitored but the callback function is not called.

Parameters
* base — Base address of the peripheral.

Return values
None. —

void PINT_Deinit(PINT_Type *base)

Deinitialize PINT peripheral.
This function disables the PINT clock.
Parameters
* base — Base address of the PINT peripheral.

Return values
None. —

void PINT _EnableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintldx)

enable callback by pin index.
This function enables callback by pin index instead of enabling all pins.
Parameters
* base — Base address of the peripheral.
* pintldx — pin index.

Return values
None. —

void PINT_EnableInterruptByIndex(PINT_Type *base, pint_pin_int_t pintldx)

enable interrupt in NVIC by pin index.

This function enables the interrupt in the NVIC. The difference with
PINT EnableCallbackByIndex() is that PINT_EnableCallbackByIndex() not only enables
the interrupt in the NVIC but also clears pending interrupts. Use this function together
with PINT_DisableInterruptByIndex() to temporarily disable/enable the pin interrupt. Use
PINT_EnableCallbackByIndex() to enable the interrupt after installing the callback.

Parameters

* base — Base address of the peripheral.

2.15. PINT: Pin Interrupt and Pattern Match Driver 181



MCUXpresso SDK Documentation, Release 25.12.00

* pinldx — pin index.

Return values
None. —

void PINT_ DisableInterruptByIndex(PINT_Type *base, pint_pin_int_t pintldx)

disable interrupt in NVIC by pin index.

This function disables the interrupt in the NVIC. The difference with
PINT_DisableCallbackByIndex() is that PINT_DisableCallbackByIndex() not only disables
the interrupt in the NVIC but also clears pending interrupts. Use this function together
with PINT_EnableInterruptByIndex() to temporarily disable/enable the pin interrupt. Use
PINT_DisableCallbackByIndex() to disable the interrupt in a de-init function.

Parameters
* base — Base address of the peripheral.
* pinldx — pin index.

Return values
None. —

void PINT_ DisableCallbackByIndex(PINT_Type *base, pint_pin_int_t pintldx)

disable callback by pin index.
This function disables callback by pin index instead of disabling all pins.
Parameters
* base — Base address of the peripheral.
* pintldx — pin index.

Return values
None. —

PINT USE LEGACY_ CALLBACK

PININT_BITSLICE_SRC_START

PININT_BITSLICE_SRC_MASK

PININT_BITSLICE_CFG_START

PININT_BITSLICE_CFG_MASK

PININT _BITSLICE_ENDP_MASK

PINT_PIN_INT_ LEVEL

PINT_PIN_INT_ EDGE

PINT_PIN_INT_FALL_ OR_HIGH_LEVEL

PINT_PIN_INT_RISE

PINT PIN_RISE_EDGE

PINT PIN_FALL_ EDGE

PINT_PIN_BOTH_EDGE

PINT_PIN_LOW_LEVEL

PINT_PIN_HIGH_LEVEL
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struct _ pint_ status
#include <fsl_pint.h> PINT event status.

struct _ pint_ pmatch_ cfg
#include <fsl_pint.h>

2.16 Power Driver

enum pd_ bits
Values:

enumerator kPDRUNCFG_PD_FRO_OUT
enumerator kPDRUNCFG_PD_FRO
enumerator kPDRUNCFG_PD_FLASH
enumerator kPDRUNCFG_PD__BOD
enumerator kPDRUNCFG__PD__ADCO
enumerator kPDRUNCFG__PD_ LPOSC
enumerator kPDRUNCFG__PD__ ACMP
enumerator kPDRUNCFG__ForceUnsigned

enum _ power_ wakeup
Deep sleep and power down mode wake up configurations.

Values:
enumerator kPDAWAKECFG_ Wakeup_ FRO_OUT

enumerator kPDAWAKECFG_ Wakeup_ FRO
enumerator kPDAWAKECFG_ Wakeup_ FLASH
enumerator kPDAWAKECFG_ Wakeup_ BOD
enumerator kPDAWAKECFG_ Wakeup_ ADC
enumerator kPDAWAKECFG_ Wakeup_ LPOSC
enumerator kPDAWAKECFG_ Wakeup_ ACMP

enum _ power_ dpd_ wakeup_ pin
Deep power down mode wake up pins.

Values:

enumerator kPmu_Dpd_En_ Pio0_ 15
enumerator kPmu_Dpd_En_Pio0_9
enumerator kPmu_ Dpd_En_ Pio0_ 8
enumerator kPmu_Dpd_En_ Pio0_ 17
enumerator kPmu_Dpd_En_ Pio0_ 13

enumerator kPmu_Dpd_En_ Pio0_4
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enumerator kPmu_ Dpd_En_ Pio0_ 11

enumerator kPmu_Dpd_En_Pio0_10
enum _ power_ deep_ sleep_ active

Deep sleep/power down mode active part.

Values:

enumerator kPDSLEEPCFG__DeepSleepBODActive

enumerator kPDSLEEPCFG__DeepSleepLPOscActive
enum _ power__gen_ reg

pmu general purpose register index

Values:

enumerator kPmu_ GenReg0
general purpose register0

enumerator kPmu GenRegl
general purpose registerl

enumerator kPmu_ GenReg2
general purpose register2

enumerator kPmu_ GenReg3
general purpose register3

enumerator kPmu_ GenReg4
general purpose reguster4

enum _ power__mode_ config
Values:

enumerator kPmu_ Sleep
enumerator kPmu_ Deep_ Sleep
enumerator kPmu PowerDown
enumerator kPmu_ Deep_ PowerDown
enum _ power_ bod_ reset_ level
BOD reset level, if VDD below reset level value, the reset will be asserted.

Values:

enumerator kBod_ResetLevelO
BOD Reset LevelO: 1.51V.

enum _ power_ bod__interrupt_ level
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

Values:

enumerator kBod_ InterruptLevelReserved
BOD interrupt level reserved.

enumerator kBod_ InterruptLevell
BOD interrupt levell: 2.24V.

enumerator kBod_ InterruptLevel2
BOD interrupt level2: 2.52V.
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enumerator kBod_ InterruptLevel3
BOD interrupt level3: 2.81V.

typedef enum pd_bits pd_ bit_t
typedef enum _power_gen_reg power_gen_reg_t
pmu general purpose register index
typedef enum _power_mode_config power_mode_ cfg_t
typedef enum _power_bod_reset_level power_bod_ reset_level t
BOD reset level, if VDD below reset level value, the reset will be asserted.

typedef enum _power_bod_interrupt_level power bod__interrupt_level _t
BOD interrupt level, if VDD below interrupt level value, the BOD interrupt will be asserted.

FSL_ POWER_DRIVER_VERSION
power driver version 2.1.0.

PMUC_PCON_RESERVED MASK
PMU PCON reserved mask, used to clear reserved field which should not write 1.

POWER,__EnbaleLPO

static inline void POWER,_EnablePD(pd_bit_t en)

API to enable PDRUNCEFG bit in the Syscon. Note that enabling the bit powers down the
peripheral.

Parameters
* en — peripheral for which to enable the PDRUNCFG bit

Returns
none

static inline void POWER,_ DisablePD(pd_bit_t en)

API to disable PDRUNCEFG bit in the Syscon. Note that disabling the bit powers up the pe-
ripheral.

Parameters
* en — peripheral for which to disable the PDRUNCFG bit

Returns
none

static inline void POWER,__EnableLPO(bool enable)
API to enable LPO.

Parameters
* enable — true to enable LPO, false to disable LPO.

static inline void POWER,_ WakeUpConfig(uint32_t mask, bool powerDown)
API to config wakeup configurations for deep sleep mode and power down mode.

Parameters

* mask — wake up configurations for deep sleep mode and power down
mode, reference _power_wakeup.

* powerDown — true is power down the mask part, false is powered part.

static inline void POWER,_DeepSleepConfig(uint32_t mask, bool powerDown)
API to config active part for deep sleep mode and power down mode.

Parameters
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* mask — active part configurations for deep sleep mode and power down
mode, reference _power_deep_sleep_active.

* powerDown — true is power down the mask part, false is powered part.

static inline void POWER_ EnableDeepSleep(void)
API to enable deep sleep bit in the ARM Core.

Returns
none

static inline void POWER,_ DisableDeepSleep(void)
API to disable deep sleep bit in the ARM Core.

Returns
none

void POWER,_ EnterSleep(void)
API to enter sleep power mode.

Returns
none

void POWER_ EnterDeepSleep(uint32_t activePart)
API to enter deep sleep power mode.

Parameters
e activePart - should be a
_power_deep_sleep_active .
Returns
none

void POWER_ EnterPowerDown(uint32_t activePart)
API to enter power down mode.

Parameters
* activePart - should be a
_power_deep_sleep_active .
Returns
none

void POWER_ EnterDeepPowerDownMode(void)
API to enter deep power down mode.

Returns
none

static inline uint32_t POWER__GetSleepModeFlag(void)

API to get sleep mode flag.

Returns

single or

single or

combine value

combine value

sleep mode flag: 0 is active mode, 1 is sleep mode entered.

static inline void POWER__ClrSleepModeFlag(void)
API to clear sleep mode flag.

static inline uint32_t POWER,_ GetDeepPowerDownModeFlag(void)

API to get deep power down mode flag.

Returns

of

of

sleep mode flag: 0 not deep power down, 1 is deep power down mode entered.

186

Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

static inline void POWER,__ClrDeepPowerDownModeFlag(void)
API to clear deep power down mode flag.

static inline void POWER,__ ClrWakeupPinFlag(void)
API to clear wake up pin status flag.

static inline void POWER,_ DeepPowerDownWakeupSourceSelect(uint32_t wakeup_pin)
static inline void POWER _ EnableNonDpd(bool enable)
API to enable non deep power down mode.
Parameters
* enable — true is enable non deep power down, otherwise disable.

static inline void POWER,_SetRetainData(power_gen_reg._t index, uint32_t data)

API to retore data to general purpose register which can be retain during deep power down
mode.

Parameters
* index — general purpose data register index.
* data — data to restore.

static inline uint32_t POWER_ GetRetainData(power_gen_reg t index)
API to get data from general purpose register which retain during deep power down mode.

Parameters
* index — general purpose data register index.

Returns
data stored in the general purpose register.

static inline void POWER,_SetBodLevel(power_bod_reset_level t resetLevel,
power_bod_interrupt_level t interruptLevel, bool
enable)

Set Bod interrupt level and reset level.
Parameters

* resetLevel - BOD reset threshold level, please refer to
power_bod_reset_level t.

* interruptLevel — BOD interrupt threshold level, please refer to
power_bod_interrupt_level t.

* enable — Used to enable/disable the BOD interrupt and BOD reset.

2.17 Reset Driver

enum _SYSCON_RSTn
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

Values:

enumerator kFLASH RST N SHIFT RSTn
Flash controller reset control
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enumerator kI2C0_RST N SHIFT RSTn
I12CO0 reset control

enumerator kGPIO0_RST N _ SHIFT RSTn
GPIOO reset control

enumerator kSWM_RST N SHIFT RSTn
SWM reset control

enumerator kWKT RST N SHIFT RSTn
Self-wake-up timer(WKT) reset control

enumerator kMRT RST N SHIFT RSTn
Multi-rate timer(MRT) reset control

enumerator k<SPI0 RST N SHIFT RSTn
SPIO reset control.

enumerator kCRC_RST_ SHIFT RSTn
CRC reset control

enumerator kUARTO_ RST N _SHIFT RSTn
UARTO reset control

enumerator kUART1 RST N _ SHIFT RSTn
UART1 reset control

enumerator kIOCON_RST N SHIFT RSTn
IOCON reset control

enumerator kACMP_RST N_SHIFT RSTn
Analog comparator reset control

enumerator kADC_RST N _ SHIFT RSTn
ADC reset control

enumerator kCTIMERO RST N SHIFT RSTn
CTIMERO reset control

enumerator kGPIOINT RST N SHIFT RSTn
GPIOINT reset control

enumerator kFRGO_RST N _SHIFT RSTn
Fractional baud rate generator 0 reset control

enumerator kOTHER, RST N SHIFT RSTn
Some functions don’t need reset

typedef enum _SYSCON_RSTn SYSCON_RSTn_ t
Enumeration for peripheral reset control bits.

Defines the enumeration for peripheral reset control bits in PRESETC-
TRL/ASYNCPRESETCTRL registers

typedef SYSCON_RSTn_t reset_ip_name_t
void RESET _ SetPeripheralReset(reset_ip_name_t peripheral)
Assert reset to peripheral.
Asserts reset signal to specified peripheral module.
Parameters

* peripheral — Assert reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.
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void RESET_ ClearPeripheralReset(reset_ip_name_t peripheral)
Clear reset to peripheral.

Clears reset signal to specified peripheral module, allows it to operate.
Parameters

* peripheral — Clear reset to this peripheral. The enum argument contains
encoding of reset register and reset bit position in the reset register.

void RESET_ PeripheralReset(reset_ip_name_t peripheral)
Reset peripheral module.

Reset peripheral module.
Parameters

* peripheral — Peripheral to reset. The enum argument contains encoding of
reset register and reset bit position in the reset register.

static inline void RESET _ReleasePeripheralReset(reset_ip_name_t peripheral)
Release peripheral module.

Release peripheral module.
Parameters

* peripheral — Peripheral to release. The enum argument contains encoding
of reset register and reset bit position in the reset register.

FSL RESET DRIVER_VERSION
reset driver version 2.4.0

FLASH_RSTS_N
Array initializers with peripheral reset hits

I2C_RSTS_N
GPIO_RSTS_N
SWM_RSTS N
WKT_ RSTS N
MRT RSTS N
SPI_RSTS N
CRC_RSTS_N
UART_RSTS N
IOCON_RSTS_N
ACMP_RSTS N
ADC_RSTS_N
CTIMER,_RSTS N
GPIOINT RSTS N
FRG_RSTS_N
WWDT_ RSTS N
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2.18 SPI: Serial Peripheral Interface Driver

2.19 SPI Driver

void SPI_MasterGetDefaultConfig(spi_master_config_t *config)

Sets the SPI master configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_MasterInit(). User may use the initialized structure unchanged in SPI_MasterInit(), or
modify some fields of the structure before calling SPI_MasterInit(). After calling this API,
the master is ready to transfer. Example:

spi__master_ config_t config;

SPI_MasterGetDefaultConfig(&config);

Parameters

* config — pointer to master config structure

status_t SPI_MasterInit(SPI_Type *base, const spi_master_config_t *config, uint32_t srcClock_Hz)

Initializes the SPI with master configuration.

The configuration structure can be filled by user from scratch, or be set with default val-
ues by SPI_MasterGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example

spl_master_config t config = {
.baudRate_ Bps = 500000,

b
SPI_MasterInit(SPIO, &config);
Parameters
* base — SPI base pointer
* config — pointer to master configuration structure

* srcClock_Hz — Source clock frequency.

void SPI_SlaveGetDefaultConfig(spi_slave_config_t *config)

Sets the SPI slave configuration structure to default values.

The purpose of this API is to get the configuration structure initialized for use in
SPI_Slavelnit(). Modify some fields of the structure before calling SPI_Slavelnit(). Exam-
ple:

spi_slave_ config t config;

SPI_SlaveGetDefaultConfig(&config);

Parameters

* config — pointer to slave configuration structure

status_t SPI_ Slavelnit(SPI_Type *base, const spi_slave_config t *config)

Initializes the SPI with slave configuration.

The configuration structure can be filled by user from scratch or be set with default val-
ues by SPI_SlaveGetDefaultConfig(). After calling this API, the slave is ready to transfer.
Example
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spi_slave_ config_t config = {

.polarity = kSPI_ ClockPolarity ActiveHigh;
.phase = kSPI_ ClockPhaseFirstEdge;
.direction = kSPI_ MsbFirst;

b
SPI_Slavelnit(SPIO0, &config);
Parameters
* base — SPI base pointer
* config — pointer to slave configuration structure

void SPI_ Deinit(SPI_Type *base)
De-initializes the SPI.

Calling this API resets the SPI module, gates the SPI clock. Disable the fifo if enabled. The
SPI module can’t work unless calling the SPI_MasterInit/SPI_Slavelnit to initialize module.

Parameters
* base — SPI base pointer

static inline void SPI_ Enable(SPI_Type *base, bool enable)
Enable or disable the SPI Master or Slave.

Parameters
* base — SPI base pointer
* enable — or disable ( true = enable, false = disable)

static inline uint32_t SPI_ GetStatusFlags(SPI_Type *base)
Gets the status flag.

Parameters
* base — SPI base pointer

Returns
SPI Status, use status flag to AND _spi_status_flags could get the related status.

static inline void SPI_ ClearStatusFlags(SPI_Type *base, uint32_t mask)
Clear the status flag.

Parameters
* base — SPI base pointer

» mask — SPI Status, use status flag to AND _spi_status_flags could get the re-
lated status.

static inline void SPI_ Enablelnterrupts(SPI_Type *base, uint32_t irqs)
Enables the interrupt for the SPI.

Parameters
* base — SPI base pointer

* irgs — SPI interrupt source. The parameter can be any combination of the
following values:

— kSPI_RxReadyInterruptEnable
— kSPI_TxReadyInterruptEnable
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static inline void SPI_ DisableInterrupts(SPI_Type *base, uint32_t irqs)
Disables the interrupt for the SPI.

Parameters
* base — SPI base pointer

* irgs — SPI interrupt source. The parameter can be any combination of the
following values:

— kSPI_RxReadyInterruptEnable
— kSPI_TxReadyInterruptEnable

static inline bool SPI_ IsMaster(SPI_Type *base)
Returns whether the SPI module is in master mode.

Parameters
* base — SPI peripheral address.

Returns
Returns true if the module is in master mode or false if the module is in slave
mode.

status_t SPI_MasterSetBaudRate(SPI_Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the baud rate for SPI transfer. This is only used in master.

Parameters
* base — SPI base pointer
* baudrate Bps —baud rate needed in Hz.
* srcClock_Hz — SPI source clock frequency in Hz.

static inline void SPI_ WriteData(SPI_Type *base, uint16_t data)
Writes a data into the SPI data register directly.

Parameters
* base — SPI base pointer
* data — needs to be write.

static inline void SPI WriteConfigFlags(SPI_Type *base, uint32_t configFlags)
Writes a data into the SPI TXCTL register directly.

Parameters
* base — SPI base pointer
* configFlags — control command needs to be written.

void SPI_ WriteDataWithConfigFlags(SPI_Type *base, uint16_t data, uint32_t configFlags)
Writes a data control info and data into the SPI TX register directly.

Parameters
* base — SPI base pointer
* data — value needs to be written.
* configFlags — control command needs to be written.

static inline uint32_t SPI _ReadData(SPI_Type *base)
Gets a data from the SPI data register.

Parameters

* base — SPI base pointer
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Returns
Data in the register.

void SPI_SetTransferDelay(SPI_Type *base, const spi_delay_config_t *config)
Set delay time for transfer. the delay uint is SPI clock time, maximum value is OXF.
Parameters
* base — SPI base pointer
* config — configuration for delay option spi_delay_config_t.

void SPI_SetDummyData(SPI_Type *base, uint16_t dummyData)
Set up the dummy data. This API can change the default data to be transferred when users
set the tx buffer to NULL.

Parameters
* base — SPI peripheral address.
¢ dummyData — Data to be transferred when tx buffer is NULL.
status_t SPI_MasterTransferBlocking(SPI_Type *base, spi_transfer._t *xfer)
Transfers a block of data using a polling method.
Parameters
* base — SPI base pointer
* xfer — pointer to spi_xfer_config_t structure
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Timeout — The transfer timed out and was aborted.

status_t SPT_MasterTransferCreateHandle(SPI_Type *base, spi_master_handle_t *handle,
spi_master_callback_t callback, void *userData)

Initializes the SPI master handle.

This function initializes the SPI master handle which can be used for other SPI master trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized

handle.
Parameters
* base — SPI peripheral base address.
* handle — SPI handle pointer.
* callback — Callback function.
 userData — User data.

status_t SP1_MasterTransferNonBlocking(SPI_Type *base, spi_master_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI interrupt transfer.
Parameters
* base — SPI peripheral base address.

* handle—pointer to spi_master_handle_t structure which stores the transfer
state

* xfer — pointer to spi_xfer_config_t structure

Return values
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* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Busy — SPI is not idle, is running another transfer.

status_t SPI_MasterTransferGetCount(SPI_Type *base, spi_master_handle_t *handle, size_t
*count)

Gets the master transfer count.
This function gets the master transfer count.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

* count — The number of bytes transferred by using the non-blocking trans-
action.

Returns
status of status_t.

void SPI_ MasterTransferAbort(SPI_Type *base, spi_master_handle_t *handle)
SPI master aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

void SPI_ MasterTransferHandleIRQ(SPI_Type *base, spi_master_handle_t *handle)
Interrupts the handler for the SPI.

Parameters
* base — SPI peripheral base address.

* handle - pointer to spi_master_handle_t structure which stores the transfer
state.

status_t SPI1_ SlaveTransferCreateHandle(SPI_Type *base, spi_slave_handle_t *handle,
spi_slave_callback_t callback, void *userData)

Initializes the SPI slave handle.

This function initializes the SPI slave handle which can be used for other SPI slave trans-
actional APIs. Usually, for a specified SPI instance, call this API once to get the initialized
handle.

Parameters
* base — SPI peripheral base address.
* handle — SPI handle pointer.
* callback — Callback function.
 userData — User data.

status_t SPI1_ SlaveTransferNonBlocking(SPI_Type *base, spi_slave_handle_t *handle,
spi_transfer_t *xfer)

Performs a non-blocking SPI slave interrupt transfer.
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Note: The API returns immediately after the transfer initialization is finished.

Parameters
* base — SPI peripheral base address.

* handle - pointer to spi_master_handle_t structure which stores the transfer
state

* xfer — pointer to spi_xfer_config_t structure
Return values
* kStatus_ Success — Successfully start a transfer.
* kStatus_ InvalidArgument — Input argument is invalid.
* kStatus_ SPI_Busy — SPI is not idle, is running another transfer.

static inline status_t SPI_ SlaveTransferGetCount(SPI_Type *base, spi_slave_handle_t *handle,
size_t *count)

Gets the slave transfer count.
This function gets the slave transfer count.
Parameters
* base — SPI peripheral base address.

* handle — Pointer to the spi_master_handle_t structure which stores the
transfer state.

* count — The number of bytes transferred by using the non-blocking trans-
action.

Returns
status of status_t.

static inline void SPI_ SlaveTransferAbort(SPI_Type *base, spi_slave_handle_t *handle)
SPI slave aborts a transfer using an interrupt.

This function aborts a transfer using an interrupt.
Parameters
* base — SPI peripheral base address.

* handle - Pointer to the spi_slave_handle_t structure which stores the trans-
fer state.

void SPI_ SlaveTransferHandleIRQ(SPI_Type *base, spi_slave_handle_t *handle)
Interrupts a handler for the SPI slave.

Parameters
* base — SPI peripheral base address.

* handle — pointer to spi_slave_handle_t structure which stores the transfer
state

FSL SPI DRIVER VERSION
SPI driver version.

enum _spi_xfer option
SPI transfer option.

Values:
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enumerator kSPI_EndOfFrame
Add delay at the end of each frame(the last clk edge).

enumerator kSPI_EndOfTransfer
Re-assert the CS signal after transfer finishes to deselect slave.

enumerator kSPI_ Receivelgnore
Ignore the receive data.

enum _ spi_ shift_ direction
SPI data shifter direction options.

Values:

enumerator kSPI_ MsbFirst
Data transfers start with most significant bit.

enumerator kSPI_ LsbFirst
Data transfers start with least significant bit.

enum _ spi_ clock_polarity
SPI clock polarity configuration.

Values:

enumerator kSPI_ ClockPolarity ActiveHigh
Active-high SPI clock (idles low).

enumerator kSPI_ ClockPolarity ActiveLow
Active-low SPI clock (idles high).

enum _ spi_ clock phase
SPI clock phase configuration.

Values:

enumerator kSPI_ ClockPhaseFirstEdge
First edge on SCK occurs at the middle of the first cycle of a data transfer.

enumerator kSPI_ ClockPhaseSecondEdge
First edge on SCK occurs at the start of the first cycle of a data transfer.

enum _ spi_ ssel
Slave select.

Values:

enumerator kSPI Ssel0Assert
Slave select 0

enumerator kSPI SselDeAssertAll

enum _ spi_ spol
ssel polarity
Values:

enumerator kSPI_SpolOActiveHigh
enumerator kSPI_ SpollActiveHigh
enumerator kSPI_ Spol2ActiveHigh

enumerator kSPI_ Spol3ActiveHigh
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enumerator kSPI_ SpolActiveAllHigh

enumerator kSPI_ SpolActiveAllLow
enum _spi_data_ width

Transfer data width.

Values:

enumerator kSPI Data4Bits
4 bits data width

enumerator kSPI DatabBits
5 bits data width

enumerator kSPI Data6Bits
6 bits data width

enumerator kSPI_Data7Bits
7 bits data width

enumerator kSPI_Data8Bits
8 bits data width

enumerator kSPI_Data9Bits
9 bits data width

enumerator kSPI_DatalOBits
10 bits data width

enumerator kSPI_DatallBits
11 bits data width

enumerator kSPI_Datal2Bits
12 bits data width

enumerator kSPI_Datal3Bits
13 bits data width

enumerator kSPI_Datal4Bits
14 bits data width

enumerator kSPI_Datal5Bits
15 bits data width

enumerator kSPI_Datal6Bits
16 bits data width

SPI transfer status.
Values:

enumerator kStatus_ SPI_ Busy
SPI bus is busy

enumerator kStatus SPI Idle
SPI is idle

enumerator kStatus SPI FError
SPI error

enumerator kStatus_ SPI BaudrateNotSupport
Baudrate is not support in current clock source
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enumerator kStatus_ SPI Timeout
SPI Timeout polling status flags.

enum _ spi_ interrupt__enable
SPI interrupt sources.

Values:

enumerator kSPI_RxReadyInterruptEnable
Rx ready interrupt

enumerator kSPI_TxReadyInterruptEnable
Tx ready interrupt

enumerator kSPI_RxOverrunlnterruptEnable
Rx overrun interrupt

enumerator kSPI_ TxUnderrunInterruptEnable
Tx underrun interrupt

enumerator kSPI_SlaveSelect AssertInterrupt Enable
Slave select assert interrupt

enumerator kSPI_SlaveSelectDeassertInterruptEnable
Slave select deassert interrupt

enumerator kSPI_ AlllnterruptEnable
enum _spi_status_ flags

SPI status flags.

Values:

enumerator kSPI_ RxReadyFlag
Receive ready flag.

enumerator kSPI_TxReadyFlag
Transmit ready flag.

enumerator kSPI_ RxOverrunFlag
Receive overrun flag.

enumerator kSPI_TxUnderrunFlag
Transmit underrun flag.

enumerator kSPI_ SlaveSelect AssertFlag
Slave select assert flag.

enumerator kSPI_SlaveSelectDeassertFlag
slave select deassert flag.

enumerator kSPI_ StallFlag
Stall flag.

enumerator kSPI_EndTransferFlag
End transfer bit.
enumerator kSPI_ MasterldleFlag
Master in idle status flag.
typedef enum _spi_shift_direction spi_ shift_ direction_t
SPI data shifter direction options.
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typedef enum _spi_clock_polarity spi_ clock__polarity_t
SPI clock polarity configuration.

typedef enum _spi_clock_phase spi_ clock_phase_t
SPI clock phase configuration.

typedef enum _spi_ssel spi_ssel_t
Slave select.

typedef enum _spi_spol spi_spol_t
ssel polarity

typedef enum _spi_data_width spi_data_ width_t
Transfer data width.

typedef struct _spi_delay_config spi_ delay config_t
SPI delay time configure structure.

typedef struct _spi_master_config spi_ master config t
SPI master user configure structure.

typedef struct _spi_slave_config spi_slave_config_t
SPI slave user configure structure.

typedef struct _spi_transfer spi_ transfer_t
SPI transfer structure.

typedef struct _spi master_handle spi_ master_handle_t
Master handle type.

typedef spi_master_handle_t spi_slave_handle_t
Slave handle type.

typedef void (*spi_ master_ callback_t)(SPI_Type *base, spi_master_handle_t *handle, status_t
status, void *userData)

SPI master callback for finished transmit.

typedef void (*spi_slave_ callback t)(SPI_Type *base, spi_slave_handle_t *handle, status_t status,
void *userData)

SPI slave callback for finished transmit.
volatile uint16_t s dummyData[]
uint32_t SPI_ GetInstance(SPI_Type *base)
Returns instance number for SPI peripheral base address.

SPI DUMMYDATA
SPI dummy transfer data, the data is sent while txBuff is NULL.

FSL_SDK_ENABLE_SPI_DRIVER_TRANSACTIONAL_ APIS
SPI_RETRY_ TIMES
Retry times for waiting flag.

struct _spi_delay config
#include <fsl_spi.h> SPI delay time configure structure.

Public Members

uint8_t preDelay
Delay between SSEL assertion and the beginning of transfer.
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uint8_t postDelay

Delay between the end of transfer and SSEL deassertion.

uint8_t frameDelay
Delay between frame to frame.

uint8_t transferDelay
Delay between transfer to transfer.

struct _spi_ master_config

#include <fsl_spi.h> SPI master user configure structure.

Public Members
bool enableLoopback
Enable loopback for test purpose

bool enableMaster
Enable SPI at initialization time

uint32_t baudRate Bps
Baud Rate for SPI in Hz

spi_clock_polarity_t clockPolarity
Clock polarity

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

uint8_t dataWidth
Width of the data

spi_ssel_t sselNumber
Slave select number

Spi_spol_t sselPolarity
Configure active CS polarity

spi_delay_config t delayConfig
Configure for delay time.

struct _spi_slave_config

#include <fsl_spi.h> SPI slave user configure structure.

Public Members
bool enableSlave
Enable SPI at initialization time

spi_clock_polarity_t clockPolarity
Clock polarity

spi_clock_phase_t clockPhase
Clock phase

spi_shift_direction_t direction
MSB or LSB

200

Chapter 2. LPC802



MCUXpresso SDK Documentation, Release 25.12.00

uint8_t dataWidth
Width of the data

Spi_spol_t sselPolarity
Configure active CS polarity

struct _spi_ transfer
#include <fsl_spi.h> SPI transfer structure.

Public Members
const uint8_t *txData
Send buffer

uint8_t *rxData
Receive buffer

size_t dataSize
Transfer bytes

uint32_t configFlags
Additional option to control transfer _spi_xfer_option.

struct _spi_master_handle
#include <fsl_spi.h> SPI transfer handle structure.

Public Members
const uint8_t *volatile txData
Transfer buffer
uint8_t *volatile rxData
Receive buffer
volatile size_t txRemainingBytes
Number of data to be transmitted [in bytes]
volatile size_t rxRemainingBytes
Number of data to be received [in bytes]
size_t totalByteCount
A number of transfer bytes
volatile uint32_t state
SPI internal state
spi_master_callback_t callback
SPI callback
void *userData
Callback parameter
uint8_t dataWidth
Width of the data [Valid values: 1 to 16]

uint32_t lastCommand
Last command for transfer.
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2.20 SWM: Switch Matrix Module

enum _swm_ port_ pin_ type_t

SWM port_pin number.
Values:
enumerator kSWM__ PortPin_ P0_0
port_pin number P0_0.
enumerator kSWM_ PortPin_ P0_ 1
port_pin number PO_1.
enumerator kSWM__ PortPin_ P0_ 2
port_pin number PO_2.
enumerator kSWM_ PortPin_ P0_ 3
port_pin number PO_3.
enumerator kSWM_ PortPin_ P0_4
port_pin number P0_4.
enumerator kSWM__ PortPin_ P0_5
port_pin number P0O_5.
enumerator kSWM__ PortPin_ P0_6
port_pin number P0O_6.
enumerator kSWM__ PortPin_ P0_7
port_pin number P0_7.
enumerator kSWM__ PortPin_ P0_8
port_pin number P0O_8.
enumerator kSWM_ PortPin_ P0_9
port_pin number P0_9.
enumerator kSWM__ PortPin_ P0_10
port_pin number P0_10.
enumerator kSWM__ PortPin_ P0_ 11
port_pin number PO_11.
enumerator kSWM__PortPin_ P0_ 12
port_pin number P0_12.
enumerator kSWM_ PortPin_ P0O_ 13
port_pin number P0_13.
enumerator kSWM_ PortPin_ P0O_ 14
port_pin number P0_14.
enumerator kSWM_ PortPin_ P0O_ 15
port_pin number P0_15.
enumerator kSWM_ PortPin_ P0O_ 16
port_pin number P0_16.

enumerator kSWM_ PortPin PO 17
port_pin number P0_17.
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enumerator kSWM_ PortPin_ Reset
port_pin reset number.

enum _swm_ select _movable t
SWM movable selection.

Values:

enumerator kSWM_USARTO0 TXD
Movable function as USART0_TXD.

enumerator kSWM_ USART0 RXD
Movable function as USART0_RXD.

enumerator kSWM__USARTO_RTS
Movable function as USARTO_RTS.

enumerator kSWM_USARTO0 CTS
Movable function as USARTO_CTS.

enumerator kSWM_ USARTO0_ SCLK
Movable function as USARTO_SCLK.

enumerator kSWM_USART1 TXD
Movable function as USART1_TXD.

enumerator kSWM__USART1 RXD
Movable function as USART1_RXD.

enumerator kSWM_ USART1 SCLK
Movable function as USART1_SCLK.

enumerator kSWM_SPI0 SCK
Movable function as SPI0_SCK.

enumerator kSWM SPI0 MOSI
Movable function as SPI0_MOSI.

enumerator kSWM SPI0 MISO
Movable function as SPI0_MISO.

enumerator kSWM_ SPI0_SSELO
Movable function as SPIO_SSELO.

enumerator kSWM_SPI0O_ SSEL1
Movable function as SPI0O_SSELI1.

enumerator k<SWM_T0_ CAP_CHNO

Movable function as Timer Capture Channel 0.

enumerator kSWM__T0 CAP_CHNI1

Movable function as Timer Capture Channel 1.

enumerator kSWM_T0 CAP_CHN2

Movable function as Timer Capture Channel 2.

enumerator k<SWM__T0 MAT CHNO
Movable function as Timer Match Channel 0.

enumerator kSWM_T0 MAT CHN1
Movable function as Timer Match Channel 1.
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enumerator k<SWM_T0 MAT CHN2
Movable function as Timer Match Channel 2.

enumerator kSWM_ T0_MAT__CHN3
Movable function as Timer Match Channel 3.
enumerator kSWM__12C0_SDA
Movable function as I2C1_SDA.
enumerator kSWM_ 12C0__SCL
Movable function as I12C1_SCL.
enumerator kSWM__ ACMP_OUT
Movable function as ACMP_OUT.
enumerator kSWM__ CLKOUT
Movable function as CLKOUT.
enumerator kSWM__ GPIO_INT_BMAT
Movable function as GPIO_INT BMAT.
enumerator kSWM__ LVLSHFT_INO
Movable function as LVLSHFT_INO.
enumerator kSWM__ LVLSHFT_IN1
Movable function as LVLSHFT _IN1.
enumerator kSWM__ LVLSHFT _OUTO0
Movable function as LVLSHFT_OUTO.
enumerator kSWM__ LVLSHFT OUT1
Movable function as LVLSHFT OUT1.
enumerator kSWM__MOVABLE_NUM_FUNCS
Movable function number.
enum _swm_ select_ fixed pin_t
SWM fixed pin selection.
Values:
enumerator kSWM__ ACMP_INPUT1
Fixed-pin function as ACMP_INPUT1.
enumerator kSWM__ACMP_INPUT?2
Fixed-pin function as ACMP_INPUT2.
enumerator kSWM__ ACMP__INPUT3
Fixed-pin function as ACMP_INPUTS3.
enumerator kSWM__ACMP_INPUT4
Fixed-pin function as ACMP_INPUT4.
enumerator kSWM_ SWCLK
Fixed-pin function as SWCLK.
enumerator kSWM_ SWDIO
Fixed-pin function as SWDIO.

enumerator kSWM_RESETN
Fixed-pin function as RESETN.
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enumerator kSWM__ CLKIN
Fixed-pin function as CLKIN.

enumerator kSWM_ WKCLKIN
Fixed-pin function as CLKIN.

enumerator kSWM__ VDDCMP
Fixed-pin function as VDDCMP.

enumerator kSWM_ADC CHNO
Fixed-pin function as ADC_CHNO.

enumerator kSWM_ADC CHNI1
Fixed-pin function as ADC_CHNT1.

enumerator kSWM_ADC CHN2
Fixed-pin function as ADC_CHN2.

enumerator kSWM_ADC CHN3
Fixed-pin function as ADC_CHNS3.

enumerator kSWM_ADC CHN4
Fixed-pin function as ADC_CHNA4.

enumerator kSWM_ADC CHN5
Fixed-pin function as ADC_CHNS5.

enumerator kSWM_ADC CHNG6
Fixed-pin function as ADC_CHNS6.

enumerator k<SWM_ADC CHN7
Fixed-pin function as ADC_CHN?7.

enumerator kSWM_ADC CHNS8
Fixed-pin function as ADC_CHNS.

enumerator kSWM_ADC CHN9
Fixed-pin function as ADC_CHNO.

enumerator kSWM__ADC_ CHN10

Fixed-pin function as ADC_CHN10.

enumerator k<SWM_ADC_ CHN11

Fixed-pin function as ADC_CHN11.
enumerator kSWM_FIXEDPIN NUM FUNCS

Fixed-pin function number.

typedef enum _swm_port_pin_type_t swm_ port_pin_ type_t

SWM port_pin number.

typedef enum _swm_select_movable_t swm_ select__movable_ t

SWM movable selection.

typedef enum _swm_select_fixed pin_t swm_ select_ fixed pin_t

SWM fixed pin selection.

FSL_SWM_DRIVER VERSION

LPC SWM driver version.

2.20. SWM: Switch Matrix Module
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void SWM__SetMovablePinSelect(SWM_Type *base, swm_select_movable_t func,
swm_port_pin_type_t swm_port_pin)

Assignment of digital peripheral functions to pins.
This function will selects a pin (designated by its GPIO port and bit numbers) to a function.
Parameters
* base — SWM peripheral base address.
* func — any function name that is movable.
* swm_ port_ pin — any pin which has a GPIO port number and bit number.

void SWM_ SetFixedPinSelect(SWM_Type *base, swm_select_fixed_pin_t func, bool enable)
Enable the fixed-pin function.

This function will enables a fixed-pin function in PINENABLEO or PINENABLE1.
Parameters
* base —- SWM peripheral base address.
* func — any function name that is fixed pin.

* enable — enable or disable.

2.21 SYSCON: System Configuration

enum _ syscon_ connection_t
SYSCON connections type.

Values:

enumerator kSYSCON__ GpioPortOPin0ToPintsel
Pin Interrupt.

enumerator kSYSCON__ GpioPortOPin1ToPintsel
enumerator kSYSCON__ GpioPortOPin2ToPintsel
enumerator kSYSCON__GpioPort0Pin3ToPintsel
enumerator kSYSCON__ GpioPortOPin4ToPintsel
enumerator kSYSCON__ GpioPortOPin5ToPintsel
enumerator kSYSCON__ GpioPortOPin7ToPintsel
enumerator kSYSCON__ GpioPortOPin8ToPintsel
enumerator kSYSCON__GpioPortOPin9ToPintsel
enumerator kSYSCON_ GpioPortOPin10ToPintsel
enumerator kSYSCON__ GpioPortOPin11ToPintsel
enumerator kSYSCON_ GpioPort0Pin12ToPintsel
enumerator kSYSCON__ GpioPortOPin13ToPintsel
enumerator kSYSCON_ GpioPortOPin14ToPintsel

enumerator kSYSCON__ GpioPortOPin15ToPintsel
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enumerator kSYSCON__ GpioPortOPin16ToPintsel
enumerator kSYSCON__ GpioPortOPin17ToPintsel

typedef enum _syscon_connection_t syscon__connection_ t
SYSCON connections type.

PINTSEL_ID
Periphinmux IDs.

SYSCON__SHIFT
FSL_SYSON_DRIVER_ VERSION
Group syscon driver version for SDK.

void SYSCON__ AttachSignal(SYSCON_Type *base, uint16_t index, syscon_connection_t
connection)

Attaches a signal.
This function gates the SYSCON clock.
Parameters
* base — Base address of the SYSCON peripheral.
* index — Destination peripheral to attach the signal to.
* connection — Selects connection.

Return values
None. —

2.22 USART: Universal Asynchronous Receiver/Transmitter
Driver

2.23 USART Driver

uint32_t USART_ GetInstance(USART_Type *base)
Returns instance number for USART peripheral base address.

status_t USART _ Init(USART_Type *base, const usart_config_t *config, uint32_t srcClock_Hz)
Initializes a USART instance with user configuration structure and peripheral clock.
This function configures the USART module with the user-defined settings. The user can
configure the configuration structure and also get the default configuration by using the

USART_GetDefaultConfig() function. Example below shows how to use this API to configure
USART.

usart__config_t usartConfig;
usartConfig.baudRate_ Bps = 115200U;
usartConfig.parityMode = kUSART_ ParityDisabled;
usartConfig.stopBitCount = kUSART__OneStopBit;
USART_ Init(USART1, &usartConfig, 20000000U);

Parameters
* base — USART peripheral base address.
* config — Pointer to user-defined configuration structure.

* srcClock__Hz — USART clock source frequency in HZ.
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Return values

* kStatus_ USART_BaudrateNotSupport — Baudrate is not support in current
clock source.

e kStatus_InvalidArgument — USART base address is not valid
* kStatus Success — Status USART initialize succeed

void USART _Deinit(USART_Type *base)
Deinitializes a USART instance.

This function waits for TX complete, disables the USART clock.
Parameters
* base — USART peripheral base address.

void USART__GetDefaultConfig(usart_config_t *config)
Gets the default configuration structure.

This function initializes the USART configuration structure to a default value. The
default values are: usartConfig->baudRate_Bps = 9600U; usartConfig->parityMode =
KkUSART _ParityDisabled; usartConfig->stopBitCount = kUSART_OneStopBit; usartConfig-
>bitCountPerChar = KUSART_8BitsPerChar; usartConfig->loopback = false; usartConfig-
>enableTx = false; usartConfig->enableRx = false; ...

Parameters
* config — Pointer to configuration structure.

status_t USART_SetBaudRate(USART _Type *base, uint32_t baudrate_Bps, uint32_t srcClock_Hz)
Sets the USART instance baud rate.

This function configures the USART module baud rate. This function is used to update the
USART module baud rate after the USART module is initialized by the USART _Init.

USART_ SetBaudRate(USART1, 115200U, 20000000U);

Parameters

* base — USART peripheral base address.

* baudrate_Bps — USART baudrate to be set.

* srcClock__Hz — USART clock source frequency in HZ.
Return values

* kStatus. USART_BaudrateNotSupport — Baudrate is not support in current
clock source.

* kStatus Success — Set baudrate succeed.
* kStatus_ Invalid Argument — One or more arguments are invalid.

static inline uint32_t USART _GetStatusFlags(USART_Type *base)
Get USART status flags.

This function get all USART status flags, the flags are returned as the logical OR value of
the enumerators _usart_flags. To check a specific status, compare the return value with
enumerators in _usart_flags. For example, to check whether the RX is ready:

if (KUSART_RxReady & USART_ GetStatusFlags(USART1))
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Parameters
* base — USART peripheral base address.

Returns
USART status flags which are ORed by the enumerators in the _usart_flags.

static inline void USART_ ClearStatusFlags(USART_Type *base, uint32_t mask)
Clear USART status flags.

This function clear supported USART status flags For example:

USART_ ClearStatusFlags(USART1, kUSART _HardwareOverrunFlag)

Parameters
* base — USART peripheral base address.
* mask — status flags to be cleared.

static inline void USART__ Enablelnterrupts(USART_Type *base, uint32_t mask)
Enables USART interrupts according to the provided mask.

This function enables the USART interrupts according to the provided mask. The mask is a
logical OR of enumeration members. See _usart_interrupt_enable. For example, to enable
TX ready interrupt and RX ready interrupt:

USART__EnableInterrupts(USART1, kUSART _RxReadyInterruptEnable | KUSART _
—TxReadyInterruptEnable);

Parameters
* base — USART peripheral base address.
* mask — The interrupts to enable. Logical OR of _usart_interrupt_enable.

static inline void USART_ DisableInterrupts(USART_Type *base, uint32_t mask)
Disables USART interrupts according to a provided mask.

This function disables the USART interrupts according to a provided mask. The mask is
a logical OR of enumeration members. See _usart_interrupt_enable. This example shows
how to disable the TX ready interrupt and RX ready interrupt:

USART_ DisableInterrupts(USART1, kUSART TxReadyInterruptEnable | kKUSART _
—RxReadyInterruptEnable);

Parameters
* base — USART peripheral base address.
* mask — The interrupts to disable. Logical OR of _usart_interrupt_enable.
static inline uint32_t USART _GetEnabledInterrupts(USART_Type *base)
Returns enabled USART interrupts.
This function returns the enabled USART interrupts.
Parameters
* base — USART peripheral base address.

static inline void USART EnableContinuousSCLK(USART_Type *base, bool enable)

Continuous Clock generation. By default, SCLK is only output while data is being transmit-
ted in synchronous mode. Enable this funciton, SCLK will run continuously in synchronous
mode, allowing characters to be received on Un_RxD independently from transmission on
Un_TXD).
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Parameters
* base — USART peripheral base address.

* enable — Enable Continuous Clock generation mode or not, true for enable
and false for disable.

static inline void USART_ EnableAutoClearSCLK(USART_Type *base, bool enable)

Enable Continuous Clock generation bit auto clear. While enable this cuntion, the Contin-
uous Clock bit is automatically cleared when a complete character has been received. This
bit is cleared at the same time.

Parameters
* base — USART peripheral base address.
* enable — Enable auto clear or not, true for enable and false for disable.

static inline void USART_ EnableCTS(USART_Type *base, bool enable)
Enable CTS. This function will determine whether CTS is used for flow control.

Parameters
* base — USART peripheral base address.
* enable — Enable CTS or not, true for enable and false for disable.

static inline void USART_EnableTx(USART_Type *base, bool enable)
Enable the USART transmit.

This function will enable or disable the USART transmit.
Parameters
* base — USART peripheral base address.
* enable — true for enable and false for disable.

static inline void USART__ EnableRx(USART_Type *base, bool enable)
Enable the USART receive.

This function will enable or disable the USART receive. Note: if the transmit is enabled, the
receive will not be disabled.

Parameters
* base — USART peripheral base address.
* enable — true for enable and false for disable.

static inline void USART _WriteByte(USART_Type *base, uint8_t data)
Writes to the TXDAT register.

This function will writes data to the TXDAT automatly.The upper layer must ensure that
TXDATA has space for data to write before calling this function.

Parameters
* base — USART peripheral base address.
* data — The byte to write.

static inline uint8_t USART _ReadByte(USART_Type *base)
Reads the RXDAT directly.

This function reads data from the RXDAT automatly. The upper layer must ensure that the
RXDAT is not empty before calling this function.

Parameters

* base — USART peripheral base address.
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Returns
The byte read from USART data register.

status_t USART_WriteBlocking(USART_Type *base, const uint8_t *data, size_t length)
Writes to the TX register using a blocking method.

This function polls the TX register, waits for the TX register to be empty.
Parameters
* base — USART peripheral base address.
* data — Start address of the data to write.
* length — Size of the data to write.
Return values
* kStatus_ USART_Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully wrote all data.

status_t USART_ ReadBlocking(USART_Type *base, uint8_t *data, size_t length)
Read RX data register using a blocking method.

This function polls the RX register, waits for the RX register to be full.
Parameters
* base — USART peripheral base address.
* data — Start address of the buffer to store the received data.
* length — Size of the buffer.
Return values

* kStatus_ USART_ FramingError — Receiver overrun happened while receiv-
ing data.

kStatus_ USART _ParityError — Noise error happened while receiving data.

kStatus_ USART_ NoiseError — Framing error happened while receiving
data.

* kStatus_ USART _RxError — Overflow or underflow happened.
e kStatus USART Timeout — Transmission timed out and was aborted.
* kStatus_ Success — Successfully received all data.

status_t USART_ TransferCreateHandle(USART_Type *base, usart_handle_t *handle,
usart_transfer_callback_t callback, void *userData)

Initializes the USART handle.

This function initializes the USART handle which can be used for other USART transactional
APIs. Usually, for a specified USART instance, call this API once to get the initialized handle.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
callback — The callback function.

¢ userData — The parameter of the callback function.
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status_t USART_ TransferSendNonBlocking(USART_Type *base, usart_handle_t *handle,
usart_transfer_t *xfer)

Transmits a buffer of data using the interrupt method.

This function sends data using an interrupt method. This is a non-blocking function, which
returns directly without waiting for all data to be written to the TX register. When all data
is written to the TX register in the IRQ handler, the USART driver calls the callback function
and passes the kStatus_USART_TxIdle as status parameter.

Note: The kStatus_USART_TxIdle is passed to the upper layer when all data is written to
the TX register. However it does not ensure that all data are sent out. Before disabling the
TX, check the kUSART TransmissionCompleteFlag to ensure that the TX is finished.

Parameters

* base — USART peripheral base address.

* handle — USART handle pointer.

* xfer — USART transfer structure. See usart_transfer_t.
Return values

* kStatus_ Success — Successfully start the data transmission.

* kStatus. USART TxBusy — Previous transmission still not finished, data
not all written to TX register yet.

* kStatus_Invalid Argument — Invalid argument.

void USART _TransferStartRingBuffer(USART_Type *base, usart_handle_t *handle, uint8_t
*ringBuffer, size_t ringBufferSize)

Sets up the RX ring buffer.
This function sets up the RX ring buffer to a specific USART handle.

When the RX ring buffer is used, data received are stored into the ring buffer even when
the user doesn’t call the USART _TransferReceiveNonBlocking() APL. If there is already data
received in the ring buffer, the user can get the received data from the ring buffer directly.

Note: When using the RX ring buffer, one byte is reserved for internal use. In other words,
if ringBufferSize is 32, then only 31 bytes are used for saving data.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

* ringBuffer — Start address of the ring buffer for background receiving. Pass
NULL to disable the ring buffer.

¢ ringBufferSize — size of the ring buffer.

void USART TransferStopRingBuffer(USART_Type *base, usart_handle_t *handle)
Aborts the background transfer and uninstalls the ring buffer.

This function aborts the background transfer and uninstalls the ring buffer.
Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
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size_t USART_ TransferGetRxRingBufferLength(usart_handle_t *handle)

Get the length of received data in RX ring buffer.
Parameters
* handle — USART handle pointer.

Returns
Length of received data in RX ring buffer.

void USART_ TransferAbortSend(USART_Type *base, usart_handle_t *handle)

Aborts the interrupt-driven data transmit.

This function aborts the interrupt driven data sending. The user can get the remainBtyes
to find out how many bytes are still not sent out.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

status_t USART _TransferGetSendCount(USART_Type *base, usart_handle_t *handle, uint32_t

*count)
Get the number of bytes that have been written to USART TX register.

This function gets the number of bytes that have been written to USART TX register by
interrupt method.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
* count — Send bytes count.
Return values
* kStatus_ NoTransferInProgress — No send in progress.
* kStatus_ InvalidArgument — Parameter is invalid.

* kStatus_ Success — Get successfully through the parameter count;

status_t USART_ TransferReceiveNonBlocking(USART_Type *base, usart_handle_t *handle,

usart_transfer_t *xfer, size_t *receivedBytes)
Receives a buffer of data using an interrupt method.

This function receives data using an interrupt method. This is a non-blocking function,
which returns without waiting for all data to be received. If the RX ring buffer is used and
not empty, the data in the ring buffer is copied and the parameter receivedBytes shows how
many bytes are copied from the ring buffer. After copying, if the data in the ring buffer
is not enough to read, the receive request is saved by the USART driver. When the new
data arrives, the receive request is serviced first. When all data is received, the USART
driver notifies the upper layer through a callback function and passes the status parameter
kStatus_USART_RxIdle. For example, the upper layer needs 10 bytes but there are only 5
bytes in the ring buffer. The 5 bytes are copied to the xfer->data and this function returns
with the parameter receivedBytes set to 5. For the left 5 bytes, newly arrived data is saved
from the xfer->data[5]. When 5 bytes are received, the USART driver notifies the upper
layer. If the RX ring buffer is not enabled, this function enables the RX and RX interrupt to
receive data to the xfer->data. When all data is received, the upper layer is notified.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
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» xfer — USART transfer structure, see usart_transfer t.
* receivedBytes — Bytes received from the ring buffer directly.
Return values
* kStatus_ Success — Successfully queue the transfer into transmit queue.
* kStatus_ USART RxBusy — Previous receive request is not finished.
* kStatus_InvalidArgument — Invalid argument.

void USART _TransferAbortReceive(USART Type *base, usart_handle_t *handle)
Aborts the interrupt-driven data receiving.
This function aborts the interrupt-driven data receiving. The user can get the remainBytes
to find out how many bytes not received yet.

Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

status_t USART_ TransferGetReceiveCount(USART_Type *base, usart_handle_t *handle, uint32_t
*count)

Get the number of bytes that have been received.
This function gets the number of bytes that have been received.
Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.
* count — Receive bytes count.
Return values
* kStatus_ NoTransferInProgress — No receive in progress.
* kStatus_InvalidArgument — Parameter is invalid.
* kStatus_ Success — Get successfully through the parameter count;
void USART TransferHandleIRQ(USART_Type *base, usart_handle_t *handle)
USART IRQ handle function.
This function handles the USART transmit and receive IRQ request.
Parameters
* base — USART peripheral base address.
* handle — USART handle pointer.

FSL USART DRIVER VERSION
USART driver version.

Error codes for the USART driver.

Values:

enumerator kStatus_ USART_TxBusy
Transmitter is busy.

enumerator kStatus_ USART RxBusy
Receiver is busy.
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enumerator kStatus USART TxIdle
USART transmitter is idle.

enumerator kStatus. USART RxIdle
USART receiver is idle.

enumerator kStatus  USART TxError
Error happens on tx.

enumerator kStatus. USART RxError
Error happens on rx.

enumerator kStatus. USART RxRingBufferOverrun
Error happens on rx ring buffer

enumerator kStatus. USART NoiseError
USART noise error.

enumerator kStatus_ USART_ FramingError
USART framing error.

enumerator kStatus_ USART _ParityError
USART parity error.

enumerator kStatus. USART HardwareOverrun
USART hardware over flow.

enumerator kStatus_ USART__BaudrateNotSupport
Baudrate is not support in current clock source

enumerator kStatus  USART Timeout
USART times out.

enum _ usart_ parity mode

USART parity mode.
Values:

enumerator kUSART_ ParityDisabled
Parity disabled

enumerator kUSART _ParityEven

Parity enabled, type even, bit setting: PARITYSEL = 10

enumerator kUSART_ ParityOdd

Parity enabled, type odd, bit setting: PARITYSEL =11

enum _ usart_sync_mode

USART synchronous mode.
Values:

enumerator kUSART__SyncModeDisabled
Asynchronous mode.

enumerator kUSART SyncModeSlave
Synchronous slave mode.

enumerator kUSART_SyncModeMaster
Synchronous master mode.

enum _ usart_ stop_ bit_ count

USART stop bit count.

Values:
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enumerator kUSART__OneStopBit
One stop bit

enumerator kUSART_TwoStopBit
Two stop bits

enum _usart data_len
USART data size.

Values:

enumerator kUSART 7BitsPerChar
Seven bit mode

enumerator kUSART 8BitsPerChar
Eight bit mode

enum _ usart_ clock_polarity
USART clock polarity configuration, used in sync mode.

Values:

enumerator kUSART RxSampleOnFallingEdge
Un_RXD is sampled on the falling edge of SCLK.

enumerator kUSART RxSampleOnRisingEdge
Un_RXD is sampled on the rising edge of SCLK.

enum _ usart_ interrupt_ enable
USART interrupt configuration structure, default settings all disabled.

Values:

enumerator kUSART _RxReadyInterruptEnable
Receive ready interrupt.

enumerator kUSART_TxReadyInterruptEnable
Transmit ready interrupt.

enumerator kUSART_TxIdleInterruptEnable
Transmit idle interrupt.

enumerator kUSART_ DeltaCtsInterruptEnable
Cts pin change interrupt.

enumerator kUSART_TxDisablelnterruptEnable
Transmit disable interrupt.

enumerator kUSART _HardwareOverRunInterruptEnable
hardware ove run interrupt.

enumerator kUSART_RxBreakInterruptEnable
Receive break interrupt.

enumerator kUSART _RxStartInterruptEnable
Receive ready interrupt.

enumerator kUSART _FramErrorInterruptEnable
Receive start interrupt.

enumerator kUSART _ParityErrorInterruptEnable
Receive frame error interrupt.
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enumerator kUSART__RxNoiselnterruptEnable
Receive noise error interrupt.

enumerator kUSART__AutoBaudErrorInterruptEnable
Receive auto baud error interrupt.

enumerator kUSART__AlllnterruptEnable
All interrupt.

enum _ usart_ flags

USART status flags.

This provides constants for the USART status flags for use in the USART functions.

Values:

enumerator kUSART _RxReady
Receive ready flag.

enumerator kUSART_RxIdleFlag
Receive IDLE flag.

enumerator kUSART_TxReady
Transmit ready flag.

enumerator kUSART _TxIdleFlag
Transmit idle flag.

enumerator kUSART CtsState
Cts pin status.

enumerator kUSART _DeltaCtsFlag
Cts pin change flag.

enumerator kUSART TxDisableFlag
Transmit disable flag.

enumerator kUSART HardwareOverrunFlag
Hardware over run flag.

enumerator ktUSART _RxBreakFlag
Receive break flag.

enumerator kUSART_RxStartFlag
receive start flag.

enumerator kUSART FramFErrorFlag
Frame error flag.

enumerator kUSART ParityErrorFlag
Parity error flag.

enumerator kUSART_RxNoiseFlag
Receive noise flag.

enumerator kUSART AutoBaudErrorFlag
Auto baud error flag.

typedef enum _usart_parity_mode usart_ parity__mode_t
USART parity mode.

typedef enum _usart_sync_mode usart_sync_mode_t
USART synchronous mode.
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typedef enum _usart_stop_bit_count usart_stop_ bit_ count_t
USART stop bit count.

typedef enum _usart _data _len usart_data_len_t
USART data size.

typedef enum _usart_clock_polarity usart__clock__polarity_t
USART clock polarity configuration, used in sync mode.

typedef struct _usart_config usart_ config_t
USART configuration structure.

typedef struct _usart_transfer usart_ transfer_t

USART transfer structure.
typedef struct _usart_handle usart_handle_t
typedef void (*usart_ transfer_ callback_t)(USART_Type *base, usart_handle_t *handle, status_t
status, void *userData)

USART transfer callback function.
FSL_SDK_ENABLE_USART_DRIVER_TRANSACTIONAL__APIS

Macro gate for enable transaction API. 1 for enable, 0 for disable.
FSL_SDK_USART DRIVER_ENABLE_BAUDRATE_AUTO_GENERATE

USART baud rate auto generate switch gate. 1 for enable, 0 for disable.
UART_RETRY_ TIMES

Retry times for waiting flag.

Defining to zero means to keep waiting for the flag until it is assert/deassert.

struct _usart_ config
#include <fsl_usart.h> USART configuration structure.

Public Members
uint32_t baudRate_ Bps
USART baud rate

bool enableRx
USART receive enable.

bool enableTx
USART transmit enable.

bool loopback
Enable peripheral loopback

bool enableContinuousSCLK

USART continuous Clock generation enable in synchronous master mode.
bool enableHardwareFlowControl

Enable hardware control RTS/CTS
usart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

usart_stop_bit_count_t stopBitCount
Number of stop bits, 1 stop bit (default) or 2 stop bits
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usart_data_len_t bitCountPerChar
Data length - 7 hit, 8 hit

usart_sync_mode_t syncMode
Transfer mode - asynchronous, synchronous master, synchronous slave.

usart_clock_polarity_t clockPolarity
Selects the clock polarity and sampling edge in sync mode.

struct usart_ transfer
#include <fsl_usart.h> USART transfer structure.

Public Members
size_t dataSize
The byte count to be transfer.

struct usart_handle
#include <fsl_usart.h> USART handle structure.

Public Members
const uint8_t *volatile txData

Address of remaining data to send.
volatile size_t txDataSize

Size of the remaining data to send.
size t txDataSizeAll

Size of the data to send out.
uint8_t *volatile rxData

Address of remaining data to receive.
volatile size_t rxDataSize

Size of the remaining data to receive.
size_t rxDataSizeAll

Size of the data to receive.
uint8_t *rxRingBuffer

Start address of the receiver ring buffer.
size_t rxRingBufferSize

Size of the ring buffer.
volatile uint16_t rxRingBufferHead

Index for the driver to store received data into ring buffer.

volatile uint16_t rxRingBufferTail
Index for the user to get data from the ring buffer.

usart_transfer_callback_t callback
Callback function.

void *userData
USART callback function parameter.

volatile uint8_t txState
TX transfer state.
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volatile uint8_t rxState
RX transfer state

union unnamed6

Public Members
uint8_t *data
The buffer of data to be transfer.

uint8_t *rxData
The buffer to receive data.

const uint8_t *txData
The buffer of data to be sent.

2.24 WKT: Self-wake-up Timer

void WKT__Init(WKT_Type *base, const wkt_config_t *config)
Ungates the WKT clock and configures the peripheral for basic operation.

Note: This API should be called at the beginning of the application using the WKT driver.

Parameters
* base — WKT peripheral base address
* config — Pointer to user’s WKT config structure.

void WKT _Deinit(WKT_Type *base)
Gate the WKT clock.

Parameters
* base — WKT peripheral base address

static inline void WKT_ GetDefaultConfig(wkt_config _t *config)
Initializes the WKT configuration structure.

This function initializes the WKT configuration structure to default values. The default
values are as follows.

config->clockSource = kWKT DividedFROClockSource;

See also:

wkt_config t

Parameters
* config — Pointer to the WKT configuration structure.

static inline uint32_t WKT_ GetCounterValue(WKT_Type *base)
Read actual WKT counter value.

Parameters

* base — WKT peripheral base address
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static inline uint32_t WKT_ GetStatusFlags(WKT_Type *base)
Gets the WKT status flags.

Parameters
* base — WKT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
wkt_status_flags_t

static inline void WKT_ ClearStatusFlags(WKT_Type *base, uint32_t mask)
Clears the WKT status flags.

Parameters
* base — WKT peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration wkt_status_flags_t

static inline void WKT_ StartTimer(WKT_Type *base, uint32_t count)
Starts the timer counting.

After calling this function, timer loads a count value, counts down to 0, then stops.

Note: User can call the utility macros provided in fsl_common.h to convert to ticks Do not
write to Counter register while the counting is in progress

Parameters
* base — WKT peripheral base address.
* count — The value to be loaded into the WKT Count register
static inline void WKT_StopTimer(WKT_Type *base)
Stops the timer counting.
This function Clears the counter and stops the timer from counting.
Parameters
* base — WKT peripheral base address
FSL_WKT_DRIVER_VERSION
Version 2.0.2

enum wkt clock source
Describes WKT clock source.

Values:

enumerator kWKT DividedFROClockSource
WKT clock sourced from the divided FRO clock

enumerator kWKT LowPowerClockSource

WHKT clock sourced from the Low power clock Use this clock, LPOSCEN bit of DPDCTRL
register must be enabled

enumerator kWKT ExternalClockSource

WHKT clock sourced from the Low power clock Use this clock, WAKECLKPAD_DISABLE
bit of DPDCTRL register must be enabled
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enum _ wkt_ status_ flags
List of WKT flags.

Values:

enumerator kWKT__AlarmFlag
Alarm flag

typedef enum _wkt_clock_source wkt_ clock source_ t
Describes WKT clock source.

typedef struct _wkt_config wkt_ config_t
Describes WKT configuration structure.

typedef enum _wkt_status_flags wkt_status_flags_t
List of WKT flags.

struct _ wkt_ config

#include <fsl_ wkt.h> Describes WKT configuration structure.

Public Members

wkt_clock_source_t clockSource
External or internal clock source select

2.25 WWDT: Windowed Watchdog Timer Driver

void WWDT _ GetDefaultConfig(wwdt_config_t *config)
Initializes WWDT configure structure.

This function initializes the WWDT configure structure to default value. The default value

are:

config->enableWwdt = true;
config->enableWatchdogReset = false;
config->enableWatchdogProtect = false;
config->enableLockOscillator = false;
config->window Value = OxFFFFFEU;
config->timeoutValue = OxFFFFFEU;
config->warningValue = 0;

See also:

wwdt_config_t

Parameters

* config — Pointer to WWDT config structure.
void WWDT__Init(WWDT_Type *base, const wwdt_config t *config)

Initializes the WWDT.

This function initializes the WWDT. When called, the WWDT runs according to the config-

uration.

Example:
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wwdt__config_t config;
WWDT__GetDefaultConfig(&config);
config.timeoutValue = 0x7{fU;
WWDT _ Init(wwdt_ base,&config);

Parameters
* base - WWDT peripheral base address
* config — The configuration of WWDT

void WWDT_ Deinit(WWDT_Type *base)
Shuts down the WWDT.

This function shuts down the WWDT.
Parameters
* base - WWDT peripheral base address

static inline void WWDT _Enable(WWDT_Type *base)
Enables the WWDT module.

This function write value into WWDT_MOD register to enable the WWDT, it is a write-once
bit; once this bit is set to one and a watchdog feed is performed, the watchdog timer will
run permanently.

Parameters
* base - WWDT peripheral base address

static inline void WWDT_ Disable(WWDT_Type *base)
Disables the WWDT module.

Deprecated:

Do not use this function. It will be deleted in next release version, for once the bit field
of WDEN written with a 1, it can not be re-written with a 0.

This function write value into WWDT_MOD register to disable the WWDT.
Parameters
* base — WWDT peripheral base address

static inline uint32_t WWDT_ GetStatusFlags(WWDT_Type *base)
Gets all WWDT status flags.

This function gets all status flags.

Example for getting Timeout Flag:

uint32_t status;
status = WWDT_GetStatusFlags(wwdt_ base) & kWWDT_TimeoutFlag;

Parameters
* base - WWDT peripheral base address

Returns
The status flags. This is the logical OR of members of the enumeration
_wwdt_status_flags_t
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void WWDT__ClearStatusFlags(WWDT_Type *base, uint32_t mask)
Clear WWDT flag.

This function clears WWDT status flag.

Example for clearing warning flag:

WWDT__ClearStatusFlags(wwdt__base, KWWDT_WarningFlag);

Parameters
* base - WWDT peripheral base address

» mask — The status flags to clear. This is a logical OR of members of the
enumeration _wwdt_status_flags_t

static inline void WWDT__SetWarningValue(WWDT_Type *base, uint32_t warningValue)
Set the WWDT warning value.

The WDWARNINT register determines the watchdog timer counter value that will generate
awatchdog interrupt. When the watchdog timer counter is no longer greater than the value
defined by WARNINT, an interrupt will be generated after the subsequent WDCLK.

Parameters
* base — WWDT peripheral base address
* warningValue - WWDT warning value.

static inline void WWDT__SetTimeoutValue(WWDT_Type *base, uint32_t timeoutCount)
Set the WWDT timeout value.

This function sets the timeout value. Every time a feed sequence occurs the value in the TC
register is loaded into the Watchdog timer. Writing a value below 0XFF will cause OXFF to be
loaded into the TC register. Thus the minimum time-out interval is TWDCLK*256*4. If en-
ableWatchdogProtect flag is true in wwdt_config_t config structure, any attempt to change
the timeout value before the watchdog counter is below the warning and window values
will cause a watchdog reset and set the WDTOF flag.

Parameters
* base - WWDT peripheral base address
* timeoutCount — WWDT timeout value, count of WWDT clock tick.

static inline void WWDT _ SetWindow Value(WWDT_Type *base, uint32_t windowValue)
Sets the WWDT window value.

The WINDOW register determines the highest TV value allowed when a watchdog feed is
performed. If a feed sequence occurs when timer value is greater than the value in WIN-
DOW, a watchdog event will occur. To disable windowing, set windowValue to OXFFFFFF
(maximum possible timer value) so windowing is not in effect.

Parameters
* base — WWDT peripheral base address
» windowValue - WWDT window value.

void WWDT__Refresh(WWDT_Type *base)
Refreshes the WWDT timer.

This function feeds the WWDT. This function should be called before WWDT timer is in
timeout. Otherwise, a reset is asserted.

Parameters

* base - WWDT peripheral base address
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FSL. WWDT_ DRIVER_ VERSION
Defines WWDT driver version.

WWDT_FIRST WORD_OF_ REFRESH
First word of refresh sequence

WWDT_SECOND_WORD_ OF REFRESH
Second word of refresh sequence

enum _wwdt_ status_flags t
WWDT status flags.

This structure contains the WWDT status flags for use in the WWDT functions.
Values:

enumerator kKWWDT __TimeoutFlag
Time-out flag, set when the timer times out

enumerator kWWDT__ WarningFlag
Warning interrupt flag, set when timer is below the value WDWARNINT
typedef struct _wwdt_config wwdt_ config_t
Describes WWDT configuration structure.

struct _ wwdt_ config
#include <fsl wwdt.h> Describes WWDT configuration structure.

Public Members

bool enableWwdt
Enables or disables WWDT

bool enableWatchdogReset
true: Watchdog timeout will cause a chip reset false: Watchdog timeout will not cause
a chip reset

bool enableWatchdogProtect
true: Enable watchdog protect i.e timeout value can only be changed after counter is
below warning & window values false: Disable watchdog protect; timeout value can
be changed at any time

bool enableLockOscillator
true: Disabling or powering down the watchdog oscillator is prevented Once set, this
bit can only be cleared by a reset false: Do not lock oscillator

uint32_t windowValue
Window value, set this to OXFFFFFF if windowing is not in effect

uint32_t timeoutValue
Timeout value

uint32_t warningValue

Watchdog time counter value that will generate a warning interrupt. Set this to 0 for
no warning

uint32_t clockFreq Hz
Watchdog clock source frequency.
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Chapter 3

Middleware

3.1 Motor Control

3.1.1 FreeMASTER

Communication Driver User Guide

Introduction

What is FreeMASTER? FreeMASTER is a PC-based application developed by NXP for NXP cus-
tomers. It is a versatile tool usable as a real-time monitor, visualization tool, and a graphical
control panel of embedded applications based on the NXP processing units.

This document describes the embedded-side software driver which implements an interface be-
tween the application and the host PC. The interface covers the following communication:

 Serial UART communication either over plain RS232 interface or more typically over a
USB-to-Serial either external or built in a debugger probe.

» USB direct connection to target microcontroller
* CAN bus

TCP/IP network wired or WiFi

» Segger J-Link RTT

JTAG debug port communication

* ...and all of the above also using a Zephyr generic drivers.

The driver also supports so-called “packet-driven BDM” interface which enables a protocol-based
communication over a debugging port. The BDM stands for Background Debugging Module
and its physical implementation is different on each platform. Some platforms leverage a semi-
standard JTAG interface, other platforms provide a custom implementation called BDM. Regard-
less of the name, this debugging interface enables non-intrusive access to the memory space
while the target CPU is running. For basic memory read and write operations, there is no com-
munication driver required on the target when communicating with the host PC. Use this driver
to get more advanced FreeMASTER protocol features over the BDM interface. The driver must be
configured for the packet-driven BDM mode, in which the host PC uses the debugging interface
to write serial command frames directly to the target memory buffer. The same method is then
used to read response frames from that memory buffer.
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Similar to “packet-driven BDM”, the FreeMASTER also supports a communication over
[J-Link RTT]((https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-
transfer/) interface defined by SEGGER Microcontroller GmbH for ARM CortexM-based micro-
controllers. This method also uses JTAG physical interface and enables high-speed real time
communication to run over the same channel as used for application debugging.

Driver version 3 This document describes version 3 of the FreeMASTER Communication
Driver. This version features the implementation of the new Serial Protocol, which significantly
extends the features and security of its predecessor. The new protocol internal number is v4 and
its specification is available in the documentation accompanying the driver code.

Driver V3 is deployed to modern 32-bit MCU platforms first, so the portfolio of supported plat-
forms is smaller than for the previous V2 versions. It is recommended to keep using the V2 driver
for legacy platforms, such as S08, S12, ColdFire, or Power Architecture. Reach out to FreeMAS-
TER community or to the local NXP representative with requests for more information or to port
the V3 driver to legacy MCU devices.

Thanks to a layered approach, the new driver simplifies the porting of the driver to new UART,
CAN or networking communication interfaces significantly. Users are encouraged to port the
driver to more NXP MCU platforms and contribute the code back to NXP for integration into
future releases. Existing code and low-level driver layers may be used as an example when
porting to new targets.

Note: Using the FreeMASTER tool and FreeMASTER Communication Driver is only allowed in
systems based on NXP microcontroller or microprocessor unit. Use with non-NXP MCU platforms
is not permitted by the license terms.

Target platforms The driver implementation uses the following abstraction mechanisms
which simplify driver porting and supporting new communication modules:

* General CPU Platform (see source code in the src/platforms directory). The code in
this layer is only specific to native data type sizes and CPU architectures (for example;
alignment-aware memory copy routines). This driver version brings two generic imple-
mentations of 32-bit platforms supporting both little-endian and big-endian architectures.
There are also implementations customized for the 56F800E family of digital signal con-
trollers and S12Z MCUs. Zephyr is treated as a specific CPU platform as it brings unified
user configuration (Kconfig) and generic hardware device drivers. With Zephyr, the trans-
port layer and low-level communication layers described below are configured automati-
cally using Kconfig and Device Tree technologies.

» Transport Communication Layer - The Serial, CAN, Networking, PD-BDM, and other meth-
ods of transport logic are implemented as a driver layer called FMSTR_TRANSPORT with a
uniform API. A support of the Network transport also extends single-client modes of oper-
ation which are native for Serial, USB and CAN by a concept of multiple client sessions.

* Low-level Communication Driver - Each type of transport further defines a low-level
API used to access the physical communication module. For example, the Serial trans-
port defines a character-oriented API implemented by different serial communication mod-
ules like UART, LPUART, USART, and also USB-CDC. Similarly, the CAN transport defines a
message-oriented API implemented by the FlexCAN or MCAN modules. Moreover, there
are multiple different implementations for the same kind of communication peripherals.
The difference between the implementation is in the way the low-level hardware regis-
ters are accessed. The mcuxsdk folder contains implementations which use MCUXpresso
SDK drivers. These drivers should be used in applications based on the NXP MCUXpresso
SDK. The “ampsdk” drivers target automotive-specific MCUs and their respective SDKs.
The “dreg” implementations use a plain C-language access to hardware register addresses
which makes it a universal and the most portable solution. In this case, users are encour-
aged to add more drivers for other communication modules or other respective SDKs and
contribute the code back to NXP for integration.
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The low-level drivers defined for the Networking transport enable datagram-oriented UDP
and stream TCP communication. This implementation is demonstrated using the IwIP soft-
ware stack but shall be portable to other TCP/IP stacks. It may sound surprisingly, but also
the Segger J-Link RTT communication driver is linked to the Networking transport (RTT is
stream oriented communication handled similarly to TCP).

Replacing existing drivers For all supported platforms, the driver described in this document
replaces the V2 implementation and also older driver implementations that were available sep-
arately for individual platforms (PC Master SCI drivers).

Clocks, pins, and peripheral initialization The FreeMASTER communication driver is only
responsible for runtime processing of the communication and must be integrated with an user
application code to function properly. The user application code is responsible for general initial-
ization of clock sources, pin multiplexers, and peripheral registers related to the communication
speed. Such initialization should be done before calling the FMSTR_ Init function.

It is recommended to develop the user application using one of the Software Development Kits
(SDKs) available from third parties or directly from NXP, such as MCUXpresso SDK, MCUXpresso
IDE, and related tools. This approach simplifies the general configuration process significantly.

MCUXpresso SDK The MCUXpresso SDK is a software package provided by NXP which contains
the device initialization code, linker files, and software drivers with example applications for the
NXP family of MCUs. The MCUXpresso Config Tools may be used to generate the clock-setup and
pin-multiplexer setup code suitable for the selected processor.

The MCUXpresso SDK also contains this FreeMASTER communication driver as a “middle-
ware” component which may be downloaded along with the example applications from https:
//mcuxpresso.nxp.com/en/welcome.

MCUXpresso SDK on GitHub The FreeMASTER communication driver is also released as one
of the middleware components of the MCUXpresso SDK on the GitHub. This release enables
direct integration of the FreeMASTER source code Git repository into a target applications in-
cluding Zephyr applications.

Related links:
* The official FreeMASTER middleware repository.

* Online version of this document

FreeMASTER in Zephyr The FreeMASTER middleware repository can be used with MCUX-
presso SDK as well as a Zephyr module. Zephyr-specific samples which include examples of
Kconfig and Device Tree configurations for Serial, USB and Network communications are avail-
able in separate repository. West manifest in this sample repository fetches the full Zephyr pack-
age including the FreeMASTER middleware repository used as a Zephyr module.

Example applications

MCUX SDK Example applications There are several example applications available for each
supported MCU platform.

» fmstr_uart demonstrates a plain serial transmission, typically connecting to a computer’s
physical or virtual COM port. The typical transmission speed is 115200 bps.
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* fmstr_can demonstrates CAN bus communication. This requires a suitable CAN interface
connected to the computer and interconnected with the target MCU using a properly ter-
minated CAN bus. The typical transmission speed is 500 kbps. A FreeMASTER-over-CAN
communication plug-in must be used.

* fmstr_usb_cdc uses an on-chip USB controller to implement a CDC communication class.
It is connected directly to a computer’s USB port and creates a virtual COM port device. The
typical transmission speed is above 1 Mbps.

* fmstr_net demonstrates the Network communication over UDP or TCP protocol. Existing
examples use IwIP stack to implement the communication, but in general, it shall be possi-
ble to use any other TCP/IP stack to achieve the same functionality.

» fmstr_wifi is the fmstr_net application modified to use a WiFi network interface instead of
a wired Ethernet connection.

* fmstr_rtt demonstrates the communication over SEGGER J-Link RTT interface. Both fm-
str_net and fmstr_rtt examples require the FreeMASTER TCP/UDP communication plug-in
to be used on the PC host side.

» fmstr_eonce uses the real-time data unit on the JTAG EOnCE module of the 56F800E family
to implement pseudo-serial communication over the JTAG port. The typical transmission
speed is around 10 kbps. This communication requires FreeMASTER JTAG/EOnCE commu-
nication plug-in.

* fmstr_pdbdm uses JTAG or BDM debugging interface to access the target RAM directly
while the CPU is running. Note that such approach can be used with any MCU applica-
tion, even without any special driver code. The computer reads from and writes into the
RAM directly without CPU intervention. The Packet-Driven BDM (PD-BDM) communication
uses the same memory access to exchange command and response frames. With PD-BDM,
the FreeMASTER tool is able to go beyond basic memory read/write operations and ac-
cesses also advanced features like Recorder, TSA, or Pipes. The typical transmission speed
is around 10 kbps. A PD-BDM communication plug-in must be used in FreeMASTER and
configured properly for the selected debugging interface. Note that this communication
cannot be used while a debugging interface is used by a debugger session.

» fmstr_any is a special example application which demonstrates how the NXP MCUXpresso
Config Tools can be used to configure pins, clocks, peripherals, interrupts, and even the
FreeMASTER “middleware” driver features in a graphical and user friendly way. The user
can switch between the Serial, CAN, and other ways of communication and generate the
required initialization code automatically.

Zephyr sample spplications Zephyr sample applications demonstrate Kconfig and Device
Tree configuration which configure the FreeMASTER middleware module for a selected com-
munication option (Serial, CAN, Network or RTT).

Refer to readme.md files in each sample directory for description of configuration options re-
quired to implement FreeMASTER connectivity.

Description

This section shows how to add the FreeMASTER Communication Driver into application and how
to configure the connection to the FreeMASTER visualization tool.

Features The FreeMASTER driver implements the FreeMASTER protocol V4 and provides the
following features which may be accessed using the FreeMASTER visualization tool:

* Read/write access to any memory location on the target.

* Optional password protection of the read, read/write, and read/write/flash access levels.
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Atomic bit manipulation on the target memory (bit-wise write access).

Optimal size-aligned access to memory which is also suitable to access the peripheral reg-
ister space.

Oscilloscope access—real-time access to target variables. The sample rate may be limited
by the communication speed.

Recorder— access to the fast transient recorder running on the board as a part of the
FreeMASTER driver. The sample rate is only limited by the MCU CPU speed. The length
of the data recorded depends on the amount of available memory.

Multiple instances of Oscilloscopes and Recorders without the limitation of maximum num-
ber of variables.

Application commands—high-level message delivery from the PC to the application.

TSA tables—describing the data types, variables, files, or hyperlinks exported by the target
application. The TSA newly supports also non-memory mapped resources like external
EEPROM or SD Card files.

Pipes—enabling the buffered stream-oriented data exchange for a general-purpose
terminal-like communication, diagnostic data streaming, or other data exchange.

The FreeMASTER driver features:

Full FreeMASTER protocol V4 implementation with a new V4 style of CRC used.
Layered approach supporting Serial, CAN, Network, PD-BDM, and other transports.

Layered low-level Serial transport driver architecture enabling to select UART, LPUART,
USART, and other physical implementations of serial interfaces, including USB-CDC.

Layered low-level CAN transport driver architecture enabling to select FlexCAN, msCAN,
MCAN, and other physical implementations of the CAN interface.

Layered low-level Networking transport enabling to select TCP, UDP or J-Link RTT commu-
nication.

TSA support to write-protect memory regions or individual variables and to deny the access
to the unsafe memory.

The pipe callback handlers are invoked whenever new data is available for reading from
the pipe.

Two Serial Single-Wire modes of operation are enabled. The “external” mode has the RX
and TX shorted on-board. The “true” single-wire mode interconnects internally when the
MCU or UART modules support it.

The following sections briefly describe all FreeMASTER features implemented by the driver. See
the PC-based FreeMASTER User Manual for more details on how to use the features to monitor,
tune, or control an embedded application.

Board Detection The FreeMASTER protocol V4 defines the standard set of configuration values
which the host PC tool reads to identify the target and to access other target resources properly.
The configuration includes the following parameters:

Version of the driver and the version of the protocol implemented.

MTU as the Maximum size of the Transmission Unit (for example; communication buffer
size).

Application name, description, and version strings.
Application build date and time as a string.
Target processor byte ordering (little/big endian).

Protection level that requires password authentication.
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* Number of the Recorder and Oscilloscope instances.

* RAM Base Address for optimized memory access commands.

Memory Read This basic feature enables the host PC to read any data memory location by
specifying the address and size of the required memory area. The device response frame must
be shorter than the MTU to fit into the outgoing communication buffer. To read a device memory
of any size, the host uses the information retrieved during the Board Detection and splits the
large-block request to multiple partial requests.

The driver uses size-aligned operations to read the target memory (for example; uses proper
read-word instruction when an address is aligned to 4 bytes).

Memory Write Similarly to the Memory Read operation, the Memory Write feature enables to
write to any RAM memory location on the target device. A single write command frame must be
shorter than the MTU to fit into the target communication buffer. Larger requests must be split
into smaller ones.

The driver uses size-aligned operations to write to the target memory (for example; uses proper
write-word instruction when an address is aligned to 4 bytes).

Masked Memory Write Toimplement the write access to a single bit or a group of bits of target
variables, the Masked Memory Write feature is available in the FreeMASTER protocol and it is
supported by the driver using the Read-Modify-Write approach.

Be careful when writing to bit fields of volatile variables that are also modified in an application
interrupt. The interrupt may be serviced in the middle of a read-modify-write operation and it
may cause data corruption.

Oscilloscope The protocol and driver enables any number of variables to be read at once with
a single request from the host. This feature is called Oscilloscope and the FreeMASTER tool uses
it to display a real-time graph of variable values.

The driver can be configured to support any number of Oscilloscope instances and enable simul-
taneously running graphs to be displayed on the host computer screen.

Recorder The protocol enables the hostto select target variables whose values are then period-
ically recorded into a dedicated on-board memory buffer. After such data sampling stops (either
on a host request or by evaluating a threshold-crossing condition), the data buffer is downloaded
to the host and displayed as a graph. The data sampling rate is not limited by the speed of the
communication line, so it enables displaying the variable transitions in a very high resolution.

The driver can be configured to support multiple Recorder instances and enable multiple
recorder graphs to be displayed on the host screen. Having multiple recorders also enables set-
ting the recording point differently for each instance. For example; one instance may be record-
ing data in a general timer interrupt while another instance may record at a specific control
algorithm time in the PWM interrupt.

TSA With the TSA feature, data types and variables can be described directly in the application
source code. Such information is later provided to the FreeMASTER tool which may use it instead
of reading symbol data from the application ELF executable file.

The information is encoded as so-called TSA tables which become direct part of the application
code. The TSA tables contain descriptors of variables that shall be visible to the host tool. The
descriptors can describe the memory areas by specifying the address and size of the memory
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block or more conveniently using the C variable names directly. Different set of TSA descriptors
can be used to encode information about the structure types, unions, enumerations, or arrays.

The driver also supports special types of TSA table entries to describe user resources like external
EEPROM and SD Card files, memory-mapped files, virtual directories, web URL hyperlinks, and
constant enumerations.

TSA Safety When the TSA is enabled in the application, the TSA Safety can be enabled and
validate the memory accesses directly by the embedded-side driver. When the TSA Safety is
turned on, any memory request received from the host is validated and accepted only if it belongs
to a TSA-described object. The TSA entries can be declared as Read-Write or Read-Only so that
the driver can actively deny the write access to the Read-Only objects.

Application commands The Application Commands are high-level messages that can be de-
livered from the PC Host to the embedded application for further processing. The embedded
application can either poll the status, or be called back when a new Application Command ar-
rives to be processed. After the embedded application acknowledges that the command is han-
dled, the host receives the Result Code and reads the other return data from memory. Both the
Application Commands and the Result Codes are specific to a given application and it is user’s
responsibility to define them. The FreeMASTER protocol and the FreeMASTER driver only imple-
ment the delivery channel and a set of API calls to enable the Application Command processing
in general.

Pipes The Pipes enable buffered and stream-oriented data exchange between the PC Host and
the target application. Any pipe can be written to and read from at both ends (either on the
PC or the MCU). The data transmission is acknowledged using the special FreeMASTER protocol
commands. It is guaranteed that the data bytes are delivered from the writer to the reader in a
proper order and without losses.

Serial single-wire operation The MCU Serial Communication Driver natively supports normal
dual-wire operation. Because the protocol is half-duplex only, the driver can also operate in two
single-wire modes:

» “External” single-wire operation where the Receiver and Transmitter pins are shorted on
the board. This mode is supported by default in the MCU driver because the Receiver and
Transmitter units are enabled or disabled whenever needed. It is also easy to extend this
operation for the RS485 communication.

* “True” single-wire mode which uses only a single pin and the direction switching is made
by the UART module. This mode of operation must be enabled by defining the FM-
STR_SERIAL_SINGLEWIRE configuration option.

Multi-session support With networking interface it is possible for multiple clients to access
the target MCU simultaneously. Reading and writing of target memory is processed atomically
so there is no risk of data corruption. The state-full resources such as Recorders or Oscilloscopes
are locked to a client session upon first use and access is denied to other clients until lock is
released..

Zephyr-specific
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Dedicated communication task FreeMASTER communication may run isolated in a dedicated
task. The task automates the FMSTR_Init and FMSTR_Poll calls together with periodic activities
enabling the FreeMASTER UI to fetch information about tasks and CPU utilization. The task can
be started automatically or manually, and it must be assigned a priority to be able to react on
interrupts and other communication events. Refer to Zephyr FreeMASTER sample applications
which all use this communication task.

Zephyr shell and logging over FreeMASTER pipe FreeMASTER implements a shell backend
which may use FreeMASTER pipe as a I/O terminal and logging output. Refer to Zephyr FreeMAS-
TER sample applications which all use this feature.

Automatic TSA tables TSA tables can be declared as “automatic” in Zephyr which make them
automatically registered in the table list. This may be very useful when there are many TSA
tables or when the tables are defined in different (often unrelated) libraries linked together. In
this case user does not need to build a list of all tables manually.

Driver files The driver source files can be found in a top-level src folder, further divided into
the sub-folders:

* src/platforms platform-specific folder—one folder exists for each supported processor
platform (for example; 32-bit Little Endian platform). Each such folder contains a platform
header file with data types and a code which implements the potentially platform-specific
operations, such as aligned memory access.

» src/common folder—contains the common driver source files shared by the driver for all
supported platforms. All the .c files must be added to the project, compiled, and linked
together with the application.

— freemasterh - master driver header file, which declares the common data types,
macros, and prototypes of the FreeMASTER driver API functions.

— freemaster_cfg.h.example - this file can serve as an example of the FreeMASTER driver
configuration file. Save this file into a project source code folder and rename it to
freemaster_cfg.h. The FreeMASTER driver code includes this file to get the project-
specific configuration options and to optimize the compilation of the driver.

— freemaster_defcfg.h - defines the default values for each FreeMASTER configuration
option if the option is not set in the freemaster_cfg.h file.

— freemaster_protocol.h - defines the FreeMASTER protocol constants used internally by
the driver.

— freemaster_protocol.c - implements the FreeMASTER protocol decoder and handles the
basic Get Configuration Value, Memory Read, and Memory Write commands.

— freemaster_rec.c - handles the Recorder-specific commands and implements the
Recorder sampling and triggering routines. When the Recorder is disabled by the
FreeMASTER driver configuration file, this file only compiles to empty API functions.

— freemaster_scope.c - handles the Oscilloscope-specific commands. If the Oscilloscope is
disabled by the FreeMASTER driver configuration file, this file compiles as void.

— freemaster_pipes.c - implements the Pipes functionality when the Pipes feature is en-
abled.

— freemaster_appcmd.c - handles the communication commands used to deliver and exe-
cute the Application Commands within the context of the embedded application. When
the Application Commands are disabled by the FreeMASTER driver configuration file,
this file only compiles to empty API functions.
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— freemaster_tsa.c - handles the commands specific to the TSA feature. This feature en-
ables the FreeMASTER host tool to obtain the TSA memory descriptors declared in the
embedded application. If the TSA is disabled by the FreeMASTER driver configuration
file, this file compiles as void.

— freemaster_tsa.h - contains the declaration of the macros used to define the TSA mem-
ory descriptors. This file is indirectly included into the user application code (via
freemaster.h).

— freemaster_sha.c - implements the SHA-1 hash code used in the password authentica-
tion algorithm.

— freemaster_private.h - contains the declarations of functions and data types used in-
ternally in the driver. It also contains the C pre-processor statements to perform the
compile-time verification of the user configuration provided in the freemaster_cfg.h
file.

— freemaster_serial.c - implements the serial protocol logic including the CRC, FIFO queu-
ing, and other communication-related operations. This code calls the functions of the
low-level communication driver indirectly via a character-oriented API exported by
the specific low-level driver.

— freemaster_serial.h - defines the low-level character-oriented Serial APIL

— freemaster_can.c - implements the CAN protocol logic including the CAN message
preparation, signalling using the first data byte in the CAN frame, and other
communication-related operations. This code calls the functions of the low-level com-
munication driver indirectly via a message-oriented API exported by the specific low-
level driver.

— freemaster_can.h - defines the low-level message-oriented CAN APIL.

— freemaster_net.c - implements the Network protocol transport logic including multiple
session management code.

— freemaster_net.h - definitions related to the Network transport.

— freemaster_pdbdm.c - implements the packet-driven BDM communication buffer and
other communication-related operations.

— freemaster_utils.c - aligned memory copy routines, circular buffer management and
other utility functions

— freemaster_utils.h - definitions related to utility code.

* src/drivers/[sdk]/serial - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_serial XXX.c and .h - implement low-level access to the communication pe-
ripheral registers. Different files exist for the UART, LPUART, USART, and other kinds
of Serial communication modules.

* src/drivers/[sdk]/can - contains the code related to the serial communication imple-
mented using one of the supported SDK frameworks.

— freemaster_XXX.c and .h - implement low-level access to the communication peripheral
registers. Different files exist for the FlexCAN, msCAN, MCAN, and other kinds of CAN
communication modules.

* src/drivers/[sdk]/network - contains low-level code adapting the FreeMASTER Network
transport to an underlying TCP/IP or RTT stack.

— freemaster_net_lwip_tcp.c and _udp.c - default networking implementation of TCP and
UDP transports using IwIP stack.

— freemaster_net_segger._rtt.c - implementation of network transport using Segger J-Link
RTT interface
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Driver configuration The driver is configured using a single header file (freemaster._cfg.h).
Create this file and save it together with other project source files before compiling the driver
code. All FreeMASTER driver source files include the freemaster_cfg.h file and use the macros
defined here for the conditional and parameterized compilation. The C compiler must locate the
configuration file when compiling the driver files. Typically, it can be achieved by putting this
file into a folder where the other project-specific included files are stored.

As a starting point to create the configuration file, get the freemaster_cfg.h.example file, rename
it to freemaster_cfg.h, and save it into the project area.

Note: It is NOT recommended to leave the freemaster_cfg.h file in the FreeMASTER driver source
code folder. The configuration file must be placed at a project-specific location, so that it does not
affect the other applications that use the same driver.

Configurable items This section describes the configuration options which can be defined in
freemaster_cfg.h.

Interrupt modes

#define FMSTR. LONG_INTR  [0[1]
#define FMSTR,_SHORT _INTR. [0|1]
#define FMSTR._ POLL_DRIVEN [0|1]

Value Type boolean (0 or 1)

Description Exactly one of the three macros must be defined to non-zero. The others must be
defined to zero or left undefined. The non-zero-defined constant selects the interrupt mode of
the driver. See Driver interrupt modes.

* FMSTR_LONG_INTR — long interrupt mode
* FMSTR_SHORT INTR — short interrupt mode
* FMSTR_POLL_DRIVEN — poll-driven mode

Note: Some options may not be supported by all communication interfaces. For example, the
FMSTR_SHORT_INTR option is not supported by the USB_CDC interface.

Protocol transport
#define FMSTR_ TRANSPORT [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER source
code. Specify one of existing instances to make use of the protocol transport.

Description Use one of the pre-defined constants, as implemented by the FreeMASTER code.
The current driver supports the following transports:

* FMSTR_SERIAL - serial communication protocol

* FMSTR_CAN - using CAN communication

* FMSTR_PDBDM - using packet-driven BDM communication

* FMSTR_NET - network communication using TCP or UDP protocol
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Serial transport This section describes configuration parameters used when serial transport
is used:

#define FMSTR_TRANSPORT FMSTR__SERIAL

FMSTR_SERIAL_DRV Select what low-level driver interface will be used when implementing
the Serial communication.

#define FMSTR, SERIAL_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing serial driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/serial implementation):

* FMSTR_SERIAL_MCUX_UART - UART driver
FMSTR_SERIAL_MCUX_LPUART - LPUART driver
FMSTR_SERIAL_MCUX_USART - USART driver
FMSTR_SERIAL_MCUX_MINIUSART - miniUSART driver
FMSTR_SERIAL_MCUX_QSCI - DSC QSCI driver

FMSTR_SERIAL_MCUX USB - USB/CDC class driver (also see code in the /sup-
port/mcuxsdk_usb folder)

* FMSTR_SERIAL_56F800E_EONCE - DSC JTAG EOnCE driver

Other SDKs or BSPs may define custom low-level driver interface structure which may be used
as FMSTR_SERIAL_DRV. For example:

* FMSTR_SERIAL_DREG_UART - demonstrates the low-level interface implemented without
the MCUXpresso SDK and using direct access to peripheral registers.

FMSTR_SERIAL_BASE
#define FMSTR_SERIAL BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the UART, LPUART, USART, or other serial peripheral
module to be used for the communication. This value is not defined by default. User application
should call FMSTR,_SetSerialBaseAddress() to select the peripheral module.

FMSTR_COMM_BUFFER _SIZE
#define FMSTR__ COMM_BUFFER_ SIZE [number]

Value Type O or a value in range 32...255

Description Specify the size of the communication buffer to be allocated by the driver.
Default value, which suits all driver features, is used when this option is defined as 0.
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FMSTR_COMM_RQUEUE_SIZE
#define FMSTR,_ COMM__ RQUEUE_ SIZE [number]

Value Type Value in range 0...255

Description Specify the size of the FIFO receiver queue used to quickly receive and store char-
acters in the FMSTR_SHORT_INTR interrupt mode.
The default value is 32 B.

FMSTR_SERIAL_SINGLEWIRE
#define FMSTR,_ SERIAL_SINGLEWIRE [0]1]

Value Type BooleanOor 1.

Description Set to non-zero to enable the “True” single-wire mode which uses a single MCU
pin to communicate. The low-level driver enables the pin direction switching when the MCU
peripheral supports it.

CAN Bus transport This section describes configuration parameters used when CAN transport
is used:

#define FMSTR_ TRANSPORT FMSTR,__CAN

FMSTR_CAN_DRV Select what low-level driver interface will be used when implementing the
CAN communication.

#define FMSTR_CAN_ DRV [identifier]

Value Type Driver identifiers are structure instance names defined in FreeMASTER drivers
code. Specify one of existing CAN driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/can implementation):

* FMSTR_CAN_MCUX_FLEXCAN - FlexCAN driver
FMSTR_CAN_MCUX_MCAN - MCAN driver
FMSTR_CAN_MCUX_MSCAN - msCAN driver
FMSTR_CAN_MCUX DSCFLEXCAN - DSC FlexCAN driver
FMSTR_CAN_MCUX_DSCMSCAN - DSC msCAN driver

Other SDKs or BSPs may define the custom low-level driver interface structure which may be
used as FMSTR_CAN_DRV.

FMSTR_CAN_BASE
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#define FMSTR_CAN_BASE [address|symbol]

Value Type Optional address value (numeric or symbolic)

Description Specify the base address of the FlexCAN, msCAN, or other CAN peripheral module
to be used for the communication. This value is not defined by default. User application should
call FMSTR,_SetCanBaseAddress() to select the peripheral module.

FMSTR_CAN_CMDID
#define FMSTR_CAN_CMDID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for FreeMASTER commands (direction from PC Host
tool to target application). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bit. Default value is 0x7AA.

FMSTR_CAN_RSPID
#define FMSTR,_ CAN__RSPID [number]

Value Type CAN identifier (11-bit or 29-bit number)

Description CAN message identifier used for responding messages (direction from target ap-
plication to PC Host tool). When declaring 29-bit identifier, combine the numeric value with
FMSTR_CAN_EXTID bhit. Note that both CMDID and RSPID values may be the same. Default value
is 0X7AA.

FMSTR_FLEXCAN_TXMB
#define FMSTR_FLEXCAN TXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.

Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN message
buffer for CAN frame transmission. Default value is 0.

FMSTR_FLEXCAN_RXMB
#define FMSTR_FLEXCAN RXMB [number]

Value Type Number in range of 0..N where N is number of CAN message-buffers supported by
HW module.
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Description Only used when the FlexCAN low-level driver is used. Define the FlexCAN mes-
sage buffer for CAN frame reception. Note that the FreeMASTER driver may also operate with a
common message buffer used by both TX and RX directions. Default value is 1.

Network transport This section describes configuration parameters used when Network
transport is used:

#define FMSTR_TRANSPORT FMSTR_NET

FMSTR_NET_DRV Select network interface implementation.

#define FMSTR,_ NET_DRV [identifier]

Value Type Identifiers are structure instance names defined in FreeMASTER drivers code.
Specify one of existing NET driver instances.

Description When using MCUXpresso SDK, use one of the following constants (see
/drivers/mcuxsdk/network implementation):

« FMSTR_NET_LWIP_TCP - TCP communication using IwIP stack
* FMSTR_NET_LWIP_UDP - UDP communication using IwIP stack
* FMSTR_NET _SEGGER_RTT - Communication using SEGGER J-Link RTT interface

Other SDKs or BSPs may define the custom networking interface which may be used as FM-
STR_CAN_DRV.

Add another row below:

FMSTR_NET_PORT
#define FMSTR_NET PORT [number]

Value Type TCP or UDP port number (short integer)

Description Specifies the server port number used by TCP or UDP protocols.

FMSTR_NET BLOCKING_TIMEOUT
#define FMSTR,_ NET_BLOCKING__TIMEOUT [number]

Value Type Timeout as number of milliseconds

Description This value specifies a timeout in milliseconds for which the network socket op-
erations may block the execution inside FMSTR Poll. This may be set high (e.g. 250) when a
dedicated RTOS task is used to handle FreeMASTER protocol polling. Set to a lower value when
the polling task is also responsible for other operations. Set to 0 to attempt to use non-blocking
socket operations.
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FMSTR_NET AUTODISCOVERY
#define FMSTR_NET AUTODISCOVERY [0]1]

Value Type BooleanOor 1.

Description This option enables the FreeMASTER driver to use a separate UDP socket to broad-
cast auto-discovery messages to network. This helps the FreeMASTER tool to discover the target
device address, port and protocol options.

Debugging options

FMSTR_DISABLE
#define FMSTR._DISABLE [0[1]

Value Type boolean (0 or 1)

Description Define as non-zero to disable all FreeMASTER features, exclude the driver code
from build, and compile all its API functions empty. This may be useful to remove FreeMASTER
without modifying any application source code. Default value is 0 (false).

FMSTR_DEBUG_TX
#define FMSTR. DEBUG_ TX [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to enable the driver to periodically transmit test frames out on
the selected communication interface (SCI or CAN). With the debug transmission enabled, it is
simpler to detect problems in the baudrate or other communication configuration settings.

The test frames are transmitted until the first valid command frame is received from the PC Host
tool. The test frame is a valid error status frame, as defined by the protocol format. On the serial
line, the test frame consists of three printable characters (+©W) which are easy to capture using
the serial terminal tools.

This feature requires the FMSTR_Poll() function to be called periodically. Default value is 0 (false).

FMSTR_APPLICATION_STR
#define FMSTR _APPLICATION STR

Value Type String.

Description Name of the application visible in FreeMASTER host application.

Memory access
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FMSTR_USE_READMEM
#define FMSTR_USE READMEM [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Memory Read command and enable
FreeMASTER to have read access to memory and variables. The access can be further restricted
by using a TSA feature.

Default value is 1 (true).

FMSTR_USE_WRITEMEM
#define FMSTR.__USE_ WRITEMEM [0|1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the Memory Write command.
The default value is 1 (true).

Oscilloscope options

FMSTR_USE_SCOPE
#define FMSTR _USE_SCOPE [number]

Value Type Integer number.

Description Number of Oscilloscope instances to be supported. Set to 0 to disable the Oscillo-
scope feature.
Default value is 0.

FMSTR_MAX_SCOPE_VARS
#define FMSTR, MAX_ SCOPE_ VARS [number]

Value Type Integer number larger than 2.

Description Number of variables to be supported by each Oscilloscope instance.
Default value is 8.

Recorder options

FMSTR_USE_RECORDER
#define FMSTR_USE RECORDER [number]
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Value Type Integer number.

Description Number of Recorder instances to be supported. Set to 0 to disable the Recorder
feature.
Default value is 0.

FMSTR_REC_BUFF _SIZE
#define FMSTR,_ REC_BUFF_SIZE [number]

Value Type Integer number larger than 2.

Description Defines the size of the memory buffer used by the Recorder instance #0.
Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_TIMEBASE
#define FMSTR_REC TIMEBASE [time specification]

Value Type Number (nanoseconds time).

Description Defines the base sampling rate in nanoseconds (sampling speed) Recorder in-
stance #0.

Use one of the following macros:
* FMSTR_REC_BASE_SECONDS(x)
* FMSTR_REC_BASE_MILLISEC(x)
* FMSTR_REC_BASE MICROSEC(x)
« FMSTR_REC_BASE NANOSEC(x)

Default: not defined, user shall call ‘FMSTR_RecorderCreate()“ API function to specify this pa-
rameter in run time.

FMSTR_REC_FLOAT_TRIG
#define FMSTR_ REC_FLOAT _TRIG [0[1]

Value Type Boolean O or 1.

Description Define as non-zero to implement the floating-point triggering. Be aware that
floating-point triggering may grow the code size by linking the floating-point standard library.

Default value is 0 (false).

Application Commands options
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FMSTR_USE_APPCMD
#define FMSTR_ USE_APPCMD [0|1]

Value Type BooleanOor 1.

Description Define as non-zero to implement the Application Commands feature.
Default value is 0 (false).

FMSTR_APPCMD_BUFF_SIZE
#define FMSTR_APPCMD_BUFF _SIZE [size]

Value Type Numeric buffer size in range 1..255

Description The size of the Application Command data buffer allocated by the driver. The
buffer stores the (optional) parameters of the Application Command which waits to be processed.

FMSTR_MAX APPCMD CALLS
#define FMSTR, MAX_ APPCMD_ CALLS [number]

Value Type Number in range 0..255

Description The number of different Application Commands that can be assigned a callback
handler function using FMSTR_ RegisterAppCmdCall(). Default value is 0.

TSA options

FMSTR_USE_TSA
#define FMSTR._ USE_ TSA [0]1]

Value Type BooleanOor 1.

Description Enable the FreeMASTER TSA feature to be used. With this option enabled, the TSA
tables defined in the applications are made available to the FreeMASTER host tool.
Default value is 0 (false).

FMSTR_USE_TSA_SAFETY
#define FMSTR__USE_TSA_SAFETY [0[1]

Value Type Boolean O or 1.
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Description Enable the memory access validation in the FreeMASTER driver. With this option,
the host tool is not able to access the memory which is not described by at least one TSA descrip-
tor. Also a write access is denied for objects defined as read-only in TSA tables.

Default value is 0 (false).

FMSTR_USE_TSA_INROM
#define FMSTR_ USE_TSA_INROM [0[1]

Value Type BooleanOor 1.

Description Declare all TSA descriptors as const, which enables the linker to put the data into
the flash memory. The actual result depends on linker settings or the linker commands used in
the project.

Default value is 0 (false).

FMSTR_USE_TSA_DYNAMIC
#define FMSTR._USE_TSA_DYNAMIC [0]1]

Value Type Boolean O or 1.

Description Enable runtime-defined TSA entries to be added to the TSA table by the FM-
STR_ SetUpTsaBuff() and FMSTR_ TsaAddVar() functions.
Default value is 0 (false).

Pipes options

FMSTR_USE_PIPES
#define FMSTR_USE_PIPES [0|1]

Value Type Boolean O or 1.

Description Enable the FreeMASTER Pipes feature to be used.
Default value is 0 (false).

FMSTR_MAX_PIPES_COUNT
#define FMSTR, MAX_PIPES COUNT [number]

Value Type Number in range 1..63.

Description The number of simultaneous pipe connections to support.
The default value is 1.
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Driver interrupt modes To implement the communication, the FreeMASTER driver handles
the Serial or CAN module’s receive and transmit requests. Use the freemaster_cfg.h configuration
file to select whether the driver processes the communication automatically in the interrupt
service routine handler or if it only polls the status of the module (typically during the application
idle time).

This section describes each of the interrupt mode in more details.

Completely Interrupt-Driven operation Activated using:

#define FMSTR__LONG_INTR 1

In this mode, both the communication and the FreeMASTER protocol decoding is done in the
FMSTR_Seriallsr, FMSTR_Canlsr, or other interrupt service routine. Because the protocol execu-
tion may be a lengthy task (especially with the TSA-Safety enabled) it is recommended to use this
mode only if the interrupt prioritization scheme is possible in the application and the FreeMAS-
TER interrupt is assigned to a lower (the lowest) priority.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR_Seriallsr or FM-
STR_CanlIsr functions from that handler.

Mixed Interrupt and Polling Modes Activated using:

#define FMSTR_SHORT_ INTR 1

In this mode, the communication processing time is split between the interrupt routine and the
main application loop or task. The raw communication is handled by the FMSTR_Seriallsr;, FM-
STR_Canlsr, or other interrupt service routine, while the protocol decoding and execution is han-
dled by the FMSTR Poll routine. Call FMSTR _Poll during the idle time in the application main
loop.

The interrupt processing in this mode is relatively fast and deterministic. Upon a serial-receive
event, the received character is only placed into a FIFO-like queue and it is not further processed.
Upon a CAN receive event, the received frame is stored into a receive buffer. When transmitting,
the characters are fetched from the prepared transmit buffer.

In this mode, the application code must register its own interrupt handler for all interrupt
vectors related to the selected communication interface and call the FMSTR Seriallsr or FM-
STR_Canlsr functions from that handler.

When the serial interface is used as the serial communication interface, ensure that the FM-
STR_Poll function is called at least once per N character time periods. N is the length of the
FreeMASTER FIFO queue (FMSTR_COMM_RQUEUE_SIZE) and the character time is the time
needed to transmit or receive a single byte over the SCI line.

Completely Poll-driven
#define FMSTR,_ POLL_DRIVEN 1

In this mode, both the communication and the FreeMASTER protocol decoding are done in the
FMSTR_Pollroutine. No interrupts are needed and the FMSTR_Seriallsr, FMSTR_Canlsr, and sim-
ilar handlers compile to an empty code.

When using this mode, ensure that the FMSTR_Poll function is called by the application at least
once per the serial “character time” which is the time needed to transmit or receive a single
character.

In the latter two modes (FMSTR_SHORT _INTR and FMSTR_POLI_DRIVEN), the protocol handling
takes place in the FMSTR_Poll routine. An application interrupt can occur in the middle of the
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Read Memory or Write Memory commands’ execution and corrupt the variable being accessed
by the FreeMASTER driver. In these two modes, some issues or glitches may occur when using
FreeMASTER to visualize or monitor volatile variables modified in interrupt servicing code.

The same issue may appear even in the full interrupt mode (FMSTR_LONG_INTR), if volatile vari-
ables are modified in the interrupt code with a priority higher than the priority of the commu-
nication interrupt.

Data types Simple portability was one of the main requirements when writing the FreeMAS-
TER driver. This is why the driver code uses the privately-declared data types and the vast ma-
jority of the platform-dependent code is separated in the platform-dependent source files. The
data types used in the driver API are all defined in the platform-specific header file.

To prevent name conflicts with the symbols used in the application, all data types, macros, and
functions have the FMSTR_ prefix. The only global variables used in the driver are the transport
and low-level API structures exported from the driver-implementation layer to upper layers.
Other than that, all private variables are declared as static and named using the fmstr_ prefix.

Communication interface initialization The FreeMASTER driver does not perform neither
the initialization nor the configuration of the peripheral module that it uses to communicate. It
is the application startup code responsibility to configure the communication module before the
FreeMASTER driver is initialized by the FMSTR_Init call.

When the Serial communication module is used as the FreeMASTER communication interface,
configure the UART receive and transmit pins, the serial communication baud rate, parity (no-
parity), the character length (eight bits), and the number of stop bits (one) before initializing the
FreeMASTER driver. For either the long or the short interrupt modes of the driver (see Driver
interrupt modes), configure the interrupt controller and register an application-specific inter-
rupt handler for all interrupt sources related to the selected serial peripheral module. Call the
FMSTR _Seriallsr function from the application handler.

When a CAN module is used as the FreeMASTER communication interface, configure the CAN re-
ceive and transmit pins and the CAN module hit rate before initializing the FreeMASTER driver.
For either the long or the short interrupt modes of the driver (see Driver interrupt modes), con-
figure the interrupt controller and register an application-specific interrupt handler for all in-
terrupt sources related to the selected CAN peripheral module. Call the FMSTR_Canlsr function
from the application handler.

Note: Itis not necessary to enable or unmask the serial nor the CAN interrupts before initializing
the FreeMASTER driver. The driver enables or disables the interrupts and communication lines,
as required during runtime.

FreeMASTER Recorder calls When using the FreeMASTER Recorder in the application (FM-
STR_USE_RECORDER > 0), call the FMSTR_RecorderCreate function early after FMSTR_Init to set
up each recorder instance to be used in the application. Then call the FMSTR_Recorder func-
tion periodically in the code where the data recording should occur. A typical place to call the
Recorder routine is at the timer or PWM interrupts, but it can be anywhere else. The exam-
ple applications provided together with the driver code call the FMSTR_Recorder in the main
application loop.

In applications where FMSTR_Recorder is called periodically with a constant period, specify the
period in the Recorder configuration structure before calling FMSTR_RecorderCreate. This set-
ting enables the PC Host FreeMASTER tool to display the X-axis of the Recorder graph properly
scaled for the time domain.

Driver usage Start using or evaluating FreeMASTER by opening some of the example applica-
tions available in the driver setup package.
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Follow these steps to enable the basic FreeMASTER connectivity in the application:

» Make sure that all *c files of the FreeMASTER driver from the
src/commony/platforms/[your_platform] folder are a part of the project. See Driver files
for more details.

* Configure the FreeMASTER driver by creating or editing the freemaster_cfg.h file and by
saving it into the application project directory. See Driver configuration for more details.

* Include the freemasterh file into any application source file that makes the FreeMASTER
API calls.

* Initialize the Serial or CAN modules. Set the baud rate, parity, and other parameters of
the communication. Do not enable the communication interrupts in the interrupt mask
registers.

* For the FMSTR_LONG_INTR and FMSTR _SHORT_INTR modes, install the application-
specific interrupt routine and call the FMSTR_Seriallsr or FMSTR_Canlsr functions from
this handler.

* Call the FMSTR_Init function early on in the application initialization code.

e Call the FMSTR_RecorderCreate functions for each Recorder instance to enable the
Recorder feature.

* In the main application loop, call the FMSTR_Poll API function periodically when the appli-
cation is idle.

* For the FMSTR_SHORT_INTR and FMSTR_LONG_INTR modes, enable the interrupts globally
so that the interrupts can be handled by the CPU.

Communication troubleshooting The most common problem that causes communication is-
sues is a wrong baud rate setting or a wrong pin multiplexer setting of the target MCU. When
a communication between the PC Host running FreeMASTER and the target MCU cannot be es-
tablished, try enabling the FMSTR_DEBUG_TX option in the freemaster_cfg.h file and call the FM-
STR_Poll function periodically in the main application task loop.

With this feature enabled, the FreeMASTER driver periodically transmits a test frame through
the Serial or CAN lines. Use a logic analyzer or an oscilloscope to monitor the signals at the
communication pins of the CPU device to examine whether the hit rate and signal polarity are
configured properly.

Driver API

This section describes the driver Application Programmers’ Interface (API) needed to initialize
and use the FreeMASTER serial communication driver.

Control API There are three key functions to initialize and use the driver.

FMSTR Init
Prototype
FMSTR, BOOL FMSTR, Init(void);

* Declaration: freemasterh

* Implementation: freemaster_protocol.c
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Description This function initializes the internal variables of the FreeMASTER driver and en-
ables the communication interface. This function does not change the configuration of the se-
lected communication module. The hardware module must be initialized before the FMSTR_Init
function is called.

A call to this function must occur before calling any other FreeMASTER driver API functions.

FMSTR_Poll

Prototype
void FMSTR,_ Poll(void);

 Declaration: freemaster.h

» Implementation: freemaster_protocol.c

Description In the poll-driven or short interrupt modes, this function handles the protocol
decoding and execution (see Driver interrupt modes). In the poll-driven mode, this function also
handles the communication interface with the PC. Typically, the FMSTR_Poll function is called
during the “idle” time in the main application task loop.

To prevent the receive data overflow (loss) on a serial interface, make sure that the FMSTR_Poll
function is called at least once per the time calculated as:

N * Tchar
where:

* N is equal to the length of the receive FIFO queue (configured by the FM-
STR_COMM_RQUEUE_SIZE macro). N is 1 for the poll-driven mode.

* Tchar is the character time, which is the time needed to transmit or receive a single byte
over the SCI line.

Note: In the long interrupt mode, this function typically compiles as an empty function and can
still be called. It is worthwhile to call this function regardless of the interrupt mode used in
the application. This approach enables a convenient switching between the different interrupt
modes only by changing the configuration macros in the freemaster_cfg.h file.

FMSTR_Seriallsr /| FMSTR_Canlsr

Prototype

void FMSTR,_ Seriallsr(void);
void FMSTR,__ Canlsr(void);

* Declaration: freemaster.h

* Implementation: hw-specific low-level driver C file

Description This function contains the interrupt-processing code of the FreeMASTER driver.
In long or short interrupt modes (see Driver interrupt modes), this function must be called from
the application interrupt service routine registered for the communication interrupt vector. On
platforms where the communication module uses multiple interrupt vectors, the application
should register a handler for all vectors and call this function at each interrupt.

Note: In a poll-driven mode, this function is compiled as an empty function and does not have
to be used.
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Recorder API

FMSTR_RecorderCreate

Prototype
FMSTR,_BOOL FMSTR_ RecorderCreate(FMSTR_INDEX recIndex, FMSTR_REC_BUFF* buffCfg);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c

Description This function registers a recorder instance and enables it to be used by the PC
Host tool. Call this function for all recorder instances from 0 to the maximum number de-
fined by the FMSTR_USE_RECORDER configuration option (minus one). An exception to this
requirement is the recorder of instance 0 which may be automatically configured by FM-
STR_Init when the freemaster_cfg.h configuration file defines the FMSTR_REC BUFF _SIZE and
FMSTR_REC_TIMEBASE options.

For more information, see Configurable items.

FMSTR_Recorder

Prototype
void FMSTR,_ Recorder(FMSTR_INDEX recIndex);

* Declaration: freemasterh

 Implementation: freemaster_rec.c

Description This function takes a sample of the variables being recorded using the FreeMAS-
TER Recorder instance recIndex. If the selected Recorder is not active when the FMSTR_Recorder
function is being called, the function returns immediately. When the Recorder is active, the val-
ues of the variables being recorded are copied into the recorder buffer and the trigger conditions
are evaluated.

If a trigger condition is satisfied, the Recorder enters the post-trigger mode, where it counts down
the follow-up samples (number of FMSTR_Recorder function calls) and de-activates the Recorder
when the required post-trigger samples are finished.

The FMSTR_Recorder function is typically called in the timer or PWM interrupt service routines.
This function can also be called in the application main loop (for testing purposes).

FMSTR_RecorderTrigger
Prototype
void FMSTR,_RecorderTrigger(FMSTR,_INDEX recIndex);

* Declaration: freemaster.h

* Implementation: freemaster._rec.c
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Description This function forces the Recorder trigger condition to happen, which causes the
Recorder to be automatically deactivated after the post-trigger samples are sampled. Use this
function in the application code for programmatic control over the Recorder triggering. This
can be useful when a more complex triggering conditions need to be used.

Fast Recorder API The Fast Recorder feature is not available in the FreeMASTER driver version
3. This feature was heavily dependent on the target platform and it was only available for the
56F8xxxx DSCs.

TSA Tables When the TSA is enabled in the FreeMASTER driver configuration file (by setting
the FMSTR_USE_TSA macro to a non-zero value), it defines the so-called TSA tables in the appli-
cation. This section describes the macros that must to be used to define the TSA tables.

There can be any number of TSA tables spread across the application source files. There must
be always exactly one TSA Table List defined, which informs the FreeMASTER driver about the
active TSA tables.

When there is at least one TSA table and one TSA Table List defined in the application, the TSA
information automatically appears in the FreeMASTER symbols list. The symbols can then be
used to create FreeMASTER variables for visualization or control.

TSA table definition The TSA table describes the static or global variables together with their
address, size, type, and access-protection information. If the TSA-described variables are of a
structure type, the TSA table may also describe this type and provide an access to the individual
structure members of the variable.

The TSA table definition begins with the FMSTR_TSA_TABLE_BEGIN macro with a table_id iden-
tifying the table. The table_id shall be a valid C-langiage symbol.

FMSTR_TSA TABLE BEGIN(table id)

After this opening macro, the TSA descriptors are placed using these macros:

/* Adding variable descriptors */
FMSTR_TSA RW_ VAR(name, type) /* read/write variable entry */
FMSTR,_TSA_RO_ VAR(name, type) /* read-only variable entry */

/* Description of complex data types */
FMSTR_TSA STRUCT(struct_name) /* structure or union type entry */
FMSTR_TSA_ MEMBER(struct_name, member_name, type) /* structure member entry */

/* Memory blocks */
FMSTR_TSA_RW_ MEM(name, type, address, size) /* read/write memory block */
FMSTR,_ TSA_RO_ MEM (name, type, address, size) /* read-only memory block */

The table is closed using the FMSTR_TSA_TABLE_END macro:

FMSTR._TSA_TABLE_ END()

TSA descriptor parameters The TSA descriptor macros accept these parameters:

* name — variable name. The variable must be defined before the TSA descriptor references
it.

* type — variable or member type. Only one of the pre-defined type constants may be used
(see below).

e struct_name — structure type name. The type must be defined (typedef) before the TSA
descriptor references it.
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*» member_name — structure member name.

Note: The structure member descriptors (FMSTR_TSA_MEMBER) must immediately follow the
parent structure descriptor (FMSTR_TSA_STRUCT) in the table.

Note: To write-protect the variables in the FreeMASTER driver (FMSTR_TSA_RO_VAR), enable
the TSA-Safety feature in the configuration file.

TSA variable types The table lists type identifiers which can be used in TSA descriptors:

Constant Description

FMSTR_TSA_UINTn Unsigned integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_SINTn Signed integer type of size n bits (n=8,16,32,64)
FMSTR_TSA_FRACn Fractional number of size n bits (n=16,32,64).

FMSTR_TSA_FRAC_Q(m,n) Signed fractional number in general Q form (m+n+1 total bits)
FMSTR_TSA_FRAC UQ(m,n) Unsigned fractional number in general UQ form (m+n total

bits)
FMSTR_TSA_FLOAT 4-byte standard IEEE floating-point type
FMSTR_TSA_DOUBLE 8-byte standard IEEE floating-point type
FMSTR_TSA_POINTER Generic pointer type defined (platform-specific 16 or 32 bit)
FM- Structure or union type declared with FMSTR_TSA_STRUCT

STR_TSA_USERTYPE(name) record

TSA table list There shall be exactly one TSA Table List in the application. The list contains
one entry for each TSA table defined anywhere in the application.

The TSA Table List begins with the FMSTR_TSA_TABLE_LIST_BEGIN macro and continues with
the TSA table entries for each table.

FMSTR_TSA_ TABLE_LIST BEGIN()

FMSTR_TSA_TABLE(table_id)
FMSTR._ TSA_TABLE(table_id2)
FMSTR_TSA_TABLE(table_id3)

The list is closed with the FMSTR_TSA_TABLE_LIST END macro:

FMSTR,_ TSA_TABLE_LIST END()

TSA Active Content entries FreeMASTER v2.0 and higher supports TSA Active Content, en-
abling the TSA tables to describe the memory-mapped files, virtual directories, and URL hyper-
links. FreeMASTER can access such objects similarly to accessing the files and folders on the
local hard drive.

With this set of TSA entries, the FreeMASTER pages can be embedded directly into the target
MCU flash and accessed by FreeMASTER directly over the communication line. The HTML-coded
pages rendered inside the FreeMASTER window can access the TSA Active Content resources
using a special URL referencing the fmstr: protocol.

This example provides an overview of the supported TSA Active Content entries:

FMSTR,_ TSA_TABLE_BEGIN(files_and_ links)

/* Directory entry applies to all subsequent MEMFILE entries */
FMSTR, TSA_DIRECTORY(”/text_files”)  /* entering a new virtual directory */

(continues on next page)
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(continued from previous page)

/* The readme.txt file will be accessible at the fmstr://text_files/readme.txt URL */
FMSTR_TSA_MEMFILE("readme.txt”, readme__txt, sizeof(readme_ txt)) /* memory-mapped file */

/* Files can also be specified with a full path so the DIRECTORY entry does not apply */
FMSTR_TSA_ MEMFILE(”/index.htm”, index, sizeof(index)) /* memory-mapped file */
FMSTR,_ TSA_MEMFILE(”/prj/demo.pmp”, demo_ pmp, sizeof(demo_ pmp)) /* memory-mapped file */

/* Hyperlinks can point to a local MEMFILE object or to the Internet */
FMSTR,_ TSA_HREF(”Board's Built-in Welcome Page”, ”/index.htm”)
FMSTR,_ TSA_HREF("FreeMASTER Home Page”, "http://www.nxp.com/freemaster”)

/* Project file links simplify opening the projects from any URLs */
FMSTR_TSA_PROJECT(”Demonstration Project (embedded)”, ?/prj/demo.pmp”)
FMSTR_TSA_PROJECT(”Full Project (online)”, "http://mycompany.com/prj/demo.pmp”)

FMSTR._ TSA_TABLE_ END()

TSA API

FMSTR_SetUpTsaBuff

Prototype
FMSTR,_ BOOL FMSTR,_ SetUpTsaBuff(FMSTR__ADDR buffAddr, FMSTR_ SIZE buffSize);

* Declaration: freemasterh

 Implementation: freemaster_tsa.c

Arguments
* buffAddr [in] - address of the memory buffer for the dynamic TSA table

* buffSize [in] - size of the memory buffer which determines the maximum number of TSA
entries to be added in the runtime

Description This function must be used to assign the RAM memory buffer to the TSA subsystem
when FMSTR_USE_TSA_DYNAMIC is enabled. The memory buffer is then used to store the TSA
entries added dynamically to the runtime TSA table using the FMSTR_TsaAddVar function call.
The runtime TSA table is processed by the FreeMASTER PC Host tool along with all static tables
as soon as the communication port is open.

The size of the memory buffer determines the number of TSA entries that can be added dynam-
ically. Depending on the MCU platform, one TSA entry takes either 8 or 16 bytes.

FMSTR_TsaAddVar

Prototype

FMSTR_BOOL FMSTR,_ TsaAddVar(FMSTR_TSATBL_STRPTR tsaName, FMSTR_TSATBL_STRPTR,,
—tsaType,

FMSTR_ TSATBL_VOIDPTR varAddr, FMSTR_ SIZE32 varSize,

FMSTR_ SIZE flags);

* Declaration: freemaster.h
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* Implementation: freemaster_tsa.c

Arguments

* tsaName [in] - name of the object

* tsaType [in] - name of the object type

* varAddr [in] - address of the object

* varSize [in] - size of the object

* flags [in] - access flags; a combination of these values:
— FMSTR_TSA_INFO_RO_VAR — read-only memory-mapped object (typically a variable)
— FMSTR_TSA INFO_RW_VAR — read/write memory-mapped object

— FMSTR_TSA INFO_NON_VAR — other entry, describing structure types, structure
members, enumerations, and other types

Description This function can be called only when the dynamic TSA table is enabled by the
FMSTR_USE_TSA_DYNAMIC configuration option and when the FMSTR_SetUpTsaBuff function
call is made to assign the dynamic TSA table memory. This function adds an entry into the dy-
namic TSA table. It can be used to register a read-only or read/write memory object or describe
an item of the user-defined type.

See TSA table definition for more details about the TSA table entries.

Application Commands API

FMSTR_GetAppCmd

Prototype
FMSTR,_ APPCMD__ CODE FMSTR_ GetAppCmd(void);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Description This function can be used to detect if there is an Application Command waiting
to be processed by the application. If no command is pending, this function returns the FM-
STR_APPCMDRESULT NOCMD constant. Otherwise, this function returns the code of the Appli-
cation Command that must be processed. Use the FMSTR_AppCmdAck call to acknowledge the
Application Command after it is processed and to return the appropriate result code to the host.

The FMSTR_GetAppCmd function does not report the commands for which a callback handler
function exists. If the FMSTR_GetAppCmd function is called when a callback-registered com-
mand is pending (and before it is actually processed by the callback function), this function re-
turns FMSTR_APPCMDRESULT_NOCMD.

FMSTR_GetAppCmdData
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Prototype
FMSTR,_ APPCMD_ PDATA FMSTR,_ GetAppCmdData(FMSTR_ SIZE* datalen);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

* dataLen [out] - pointer to the variable that receives the length of the data available in the
buffer. It can be NULL when this information is not needed.

Description This function can be used to retrieve the Application Command data when the
application determines that an Application Command is pending (see FMSTR_GetAppCmd).

There is just a single buffer to hold the Application Command data (the buffer length is FM-
STR_APPCMD_BUFF_SIZE bytes). If the data are to be used in the application after the command
is processed by the FMSTR_AppCmdAck call, copy the data out to a private buffer.

FMSTR_AppCmdAck

Prototype
void FMSTR,_ AppCmdAck(FMSTR_APPCMD_ RESULT resultCode);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments

» resultCode [in] - the result code which is to be returned to FreeMASTER

Description This function is used when the Application Command processing finishes in the
application. The resultCode passed to this function is returned back to the host and the driver is
re-initialized to expect the next Application Command.

After this function is called and before the next Application Command arrives, the return value
of the FMSTR_GetAppCmd function is FMSTR_APPCMDRESULT NOCMD.

FMSTR_AppCmdSetResponseData
Prototype
void FMSTR__ AppCmdSetResponseData(FMSTR,_ADDR resultDataAddr, FMSTR,_SIZE resultDataLen);

* Declaration: freemaster.h

* Implementation: freemaster_appcmd.c
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Arguments

* resultDataAddr [in] - pointer to the data buffer that is to be copied to the Application Com-
mand data buffer

 resultDataLen [in] - length of the data to be copied. It must not exceed the FM-
STR_APPCMD_BUFF_SIZE value.

Description This function can be used before the Application Command processing finishes,
when there are data to be returned back to the PC.

The response data buffer is copied into the Application Command data buffer, from where it is
accessed when the host requires it. Do not use FMSTR_GetAppCmdData and the data buffer after
FMSTR_AppCmdSetResponseData is called.

Note: The current version of FreeMASTER does not support the Application Command response
data.

FMSTR_RegisterAppCmdCall

Prototype
FMSTR,_ BOOL FMSTR,_ RegisterAppCmdCall(FMSTR,_ APPCMD__ CODE appCmdCode, FMSTR,__
—PAPPCMDFUNC callbackFunc);

* Declaration: freemasterh

* Implementation: freemaster_appcmd.c

Arguments
* appCmdCode [in] - the Application Command code for which the callback is to be registered

* callbackFunc [in] - pointer to the callback function that is to be registered. Use NULL to
unregister a callback registered previously with this Application Command.

Return value This function returns a non-zero value when the callback function was success-
fully registered or unregistered. It can return zero when trying to register a callback function
for more than FMSTR_MAX_APPCMD_CALLS different Application Commands.

Description This function can be used to register the given function as a callback handler for
the Application Command. The Application Command is identified using single-byte code. The
callback function is invoked automatically by the FreeMASTER driver when the protocol decoder
obtains a request to get the application command result code.

The prototype of the callback function is

FMSTR__APPCMD_ RESULT HandlerFunction(FMSTR__ APPCMD_ CODE nAppcmd,
FMSTR_APPCMD_ PDATA pData, FMSTR,_ SIZE nDatalLen);
Where:
* nAppcmd -Application Command code
» pData —points to the Application Command data received (if any)

* nDatalL.en —information about the Application Command data length
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The return value of the callback function is used as the Application Command Result Code and
returned to FreeMASTER.

Note: The FMSTR_MAX APPCMD_CALLS configuration macro defines how many different Appli-
cation Commands may be handled by a callback function. When FMSTR_MAX_APPCMD_CALLS
is undefined or defined as zero, the FMSTR_RegisterAppCmdCall function always fails.

Pipes API

FMSTR_PipeOpen

Prototype
FMSTR_HPIPE FMSTR_PipeOpen(FMSTR_PIPE PORT pipePort, FMSTR_PPIPEFUNC pipeCallback,

FMSTR_ ADDR pipeRxBuff, FMSTR,_ PIPE_SIZE pipeRxSize,
FMSTR_ ADDR pipeTxBuff, FMSTR_ PIPE_ SIZE pipeTxSize,
FMSTR_ U8 type, const FMSTR,__ CHAR *name);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments
* pipePort [in] - port number that identifies the pipe for the client

* pipeCallback [in] - pointer to the callback function that is called whenever a pipe data status
changes

* pipeRxBuff [in] - address of the receive memory buffer
* pipeRxSize [in] - size of the receive memory buffer

* pipeTxBuff [in] - address of the transmit memory buffer
* pipeTxSize [in] - size of the transmit memory buffer

* type [in] - a combination of FMSTR_PIPE_MODE_xxx and FMSTR_PIPE_SIZE_xxx constants
describing primary pipe data format and usage. This type helps FreeMASTER decide how
to access the pipe by default. Optional, use 0 when undetermined.

* name [in] - user name of the pipe port. This name is visible to the FreeMASTER user when
creating the graphical pipe interface.

Description This function initializes a new pipe and makes it ready to accept or send the data
to the PC Host client. The receive memory buffer is used to store the received data before they are
read out by the FMSTR_PipeRead call. When this buffer gets full, the PC Host client denies the
data transmission into this pipe until there is enough free space again. The transmit memory
buffer is used to store the data transmitted by the application to the PC Host client using the
FMSTR_PipeWrite call. The transmit buffer can get full when the PC Host is disconnected or
when it is slow in receiving and reading out the pipe data.

The function returns the pipe handle which must be stored and used in the subsequent calls to
manage the pipe object.

The callback function (if specified) is called whenever new data are received through the pipe
and available for reading. This callback is also called when the data waiting in the transmit
buffer are successfully pushed to the PC Host and the transmit buffer free space increases. The
prototype of the callback function provided by the user application must be as follows. The
PipeHandler name is only a placeholder and must be defined by the application.
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void PipeHandler(FMSTR,_ HPIPE pipeHandle);

FMSTR_PipeClose

Prototype
void FMSTR,_PipeClose(FMSTR,_ HPIPE pipeHandle);

* Declaration: freemasterh

* Implementation: freemaster_pipes.c

Arguments

* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call

Description This function de-initializes the pipe object. No data can be received or sent on the
pipe after this call.

FMSTR_PipeWrite

Prototype
FMSTR_PIPE_SIZE FMSTR_ PipeWrite(FMSTR, HPIPE pipeHandle, FMSTR,_ ADDR pipeData,
FMSTR_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_ SIZE writeGranularity);
* Declaration: freemasterh

* Implementation: freemaster._pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data to be written
* pipeDataLen [in] - length of the data to be written

» writeGranularity [in] - size of the minimum unit of data which is to be written

Description This function puts the user-specified data into the pipe’s transmit memory buffer
and schedules it for transmission. This function returns the number of bytes that were success-
fully written into the buffer. This number may be smaller than the number of the requested
bytes if there is not enough free space in the transmit buffer.

The writeGranularity argument can be used to split the data into smaller chunks, each of the
size given by the writeGranularity value. The FMSTR_PipeWrite function writes as many data
chunks as possible into the transmit buffer and does not attempt to write an incomplete chunk.
This feature can prove to be useful to avoid the intermediate caching when writing an array of
integer values or other multi-byte data items. When making the nGranularity value equal to the
nLength value, all data are considered as one chunk which is either written successfully as a
whole or not at all. The nGranularity value of 0 or 1 disables the data-chunk approach.

FMSTR_PipeRead
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Prototype
FMSTR, PIPE_SIZE FMSTR_ PipeRead(FMSTR_ HPIPE pipeHandle, FMSTR,__ ADDR pipeData,
FMSTR,_ PIPE_ SIZE pipeDataLen, FMSTR_ PIPE_SIZE readGranularity);
* Declaration: freemaster.h

* Implementation: freemaster_pipes.c

Arguments
* pipeHandle [in] - pipe handle returned from the FMSTR_PipeOpen function call
* pipeData [in] - address of the data buffer to be filled with the received data
* pipeDataLen [in] - length of the data to be read

» readGranularity [in] - size of the minimum unit of data which is to be read

Description This function copies the data received from the pipe from its receive buffer to the
user buffer for further processing. The function returns the number of bytes that were success-
fully copied to the buffer. This number may be smaller than the number of the requested bytes
if there is not enough data bytes available in the receive buffer.

The readGranularity argument can be used to copy the data in larger chunks in the same way as
described in the FMSTR_PipeWrite function.

API data types This section describes the data types used in the FreeMASTER driver. The infor-
mation provided here can be useful when modifying or porting the FreeMASTER Communication
Driver to new NXP platform:s.

Note: The licensing conditions prohibit use of FreeMASTER and the FreeMASTER Communica-
tion Driver with non-NXP MPU or MCU products.

Public common types The table below describes the public data types used in the FreeMASTER
driver API calls. The data types are declared in the freemaster.h header file.
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Type name

Description

FM-
STR_ADDR
For exam-
ple, this
type is
defined as
long inte-
ger on the
56F8xxx
platform
where
the 24-bit
addresses
must be
supported,
but the
C-pointer
may be
only 16
bits wide
in some
compiler
configura-
tions.
FM-

STR SIZE
It is re-
quired
that this
type is un-
signed and
at least 16
bits wide
integer.
FM-
STR_BOOL
This type
is used
only in
zero/non-
Zero con-
ditions in
the driver
code.
FM-

STR_APPCM.

Generally,
this is an
unsigned
8-bit value.
FM-
STR_APPCM.
Generally,
this is an
unsigned
8-bit value.
FM-

o

Data type used to hold the memory address. On most platforms, this is normally
a C-pointer, but it may also be a pure integer type.

Data type used to hold the memory block size.

Data type used as a general boolean type.

Data type used to hold the Application Command code.

Data type used to create the Application Command data buffer.

Data type used to hold the Application Command result code.

TR_APPCM:
nerally,
this is an
unsigned
8-bit value.
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Public TSA types The table describes the TSA-specific public data types. These types are de-
clared in the freemaster_tsa.h header file, which is included in the user application indirectly by
the freemaster:h file.

FM- Data type used to hold a descriptor index in the TSA table or a table index in the
STR_TSA_TII list of TSA tables.

By default,

this is

defined

as FM-

STR_SIZE.

EM- Data type used to hold a memory block size, as used in the TSA descriptors.
STR TSA_TS.

By default,

this is

defined

as FM-

STR_SIZE.

Public Pipes types The table describes the data types used by the FreeMASTER Pipes API:

EFM- Pipe handle that identifies the open-pipe object.
STR_HPIPE

Generally,

this is a

pointer

to a void

type.

FM- Integer type required to hold at least 7 bits of data.
STR_PIPE_P(

Generally,

this is an

unsigned

8-bit or

16-hit type.

FM- Integer type required to hold at least 16 bits of data.
STR_PIPE_SI

This is

used to

store the

data buffer

sizes.

FM- Pointer to the pipe handler function.
STR_PPIPEFi

See  FM-

STR_PipeOpen

for more

details.

Internal types The table describes the data types used internally by the FreeMASTER driver.
The data types are declared in the platform-specific header file and they are not available in the
application code.
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FMSTR_US8
On the vast
majority of
platforms,
this is an
unsigned
8-bit inte-
ger.

On the
56F8xx
DSP plat-
form, this
is defined
as an un-
signed
16-bit inte-
ger.

FM-

STR U16
FM-

STR U32
FMSTR_S8
FM-

STR S16
FM-
STR_S32
FM-
STR_FLOAT
FM-
STR_FLAGS
FM-
STR_SIZES8
FM-
STR_INDEX
FM-
STR_BCHR
Typically,
this is
an 8-bit
unsigned
integer,
except for
the DSP
platforms
where it
is a 16-bit
integer.
FM-

STR BPTR

The smallest memory entity.

Unsigned 16-bit integer.
Unsigned 32-bit integer.

Signed 8-bit integer.
Signed 16-bit integer.

Signed 32-bit integer.

4-byte standard IEEE floating-point type.

Data type forming a union with a structure of flag bit-fields.
Data type holding a general size value, at least 8 bits wide.
General for-loop index. Must be signed, at least 16 bits wide.

A single character in the communication buffer.

A pointer to the communication buffer (an array of FMSTR_BCHR).

Document references

Links

* This document online: https:/mcuxpresso.nxp.com/mcuxsdk/latest/html/middleware/
freemaster/doc/index.html
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FreeMASTER tool home: www.nxp.com/freemaster

* FreeMASTER community area: community.nxp.com/community/freemaster

FreeMASTER GitHub code repo: https://github.com/nxp-mcuxpresso/mcux-freemaster
* MCUXpresso SDK home: www.nxp.com/mcuxpresso

* MCUXpresso SDK builder: mcuxpresso.nxp.com/en

Documents
» FreeMASTER Usage Serial Driver Implementation (document AN4752)

o Integrating FreeMASTER Time Debugging Tool With CodeWarrior For Microcontrollers v10.X
Project (document AN4771)

* Flash Driver Library For MC56F847xx And MC56F827xx DSC Family (document AN4860)

Revision history This Table summarizes the changes done to this document since the initial
release.
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Revi- Date Description

sion

1.0 03/2006 Limited initial release

2.0 09/2007 Updated for FreeMASTER version. New Freescale doc-
ument template used.

2.1 12/2007 Added description of the new Fast Recorder feature and
its APL

2.2 04/2010 Added support for MPC56xx platform, Added new API
for use CAN interface.

2.3 04/2011 Added support for Kxx Kinetis platform and MQX oper-
ating system.

24 06/2011 Serial driver update, adds support for USB CDC inter-
face.

2.5 08/2011 Added Packet Driven BDM interface.

2.7 12/2013 Added FLEXCAN32 interface, byte access and isr call-
back configuration option.

2.8 06/2014 Removed obsolete license text, see the software pack-
age content for up-to-date license.

2.9 03/2015 Update for driver version 1.8.2 and 1.9: FreeMAS-
TER Pipes, TSA Active Content, LIN Transport Layer
support, DEBUG-TX communication troubleshooting,
Kinetis SDK support.

3.0 08/2016 Update for driver version 2.0: Added support for
MPC56xx, MPC57xx, KEAxx and S32Kxx platforms.
New NXP document template as well as new license
agreement used. added MCAN interface. Folders struc-
ture at the installation destination was rearranged.

4.0 04/2019 Update for driver released as part of FreeMASTER v3.0
and MCUXpresso SDK 2.6. Updated to match new V4
serial communication protocol and new configuration
options. This version of the document removes sub-
stantial portion of outdated information related to S08,
S12, ColdFire, Power and other legacy platforms.

41 04/2020 Minor update for FreeMASTER driver included in
MCUXpresso SDK 2.8.

4.2 09/2020 Added example applications description and informa-
tion about the MCUXpresso Config Tools. Fixed the
pipe-related API description.

4.3 10/2024 Added description of Network and Segger J-Link RTT in-
terface configuration. Accompanying the MCUXpresso
SDK version 24.12.00.

44 04/2025 Added Zephyr-specific information. Accompanying the
MCUZXpresso SDK version 25.06.00.
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RTOS

4.1 FreeRTOS

4.1.1 FreeRTOS kernel

Open source RTOS kernel for small devices.

FreeRTOS kernel for MCUXpresso SDK Readme
FreeRTOS kernel for MCUXpresso SDK ChangeLog
FreeRTOS kernel Readme

4.1.2 FreeRTOS drivers

This is set of NXP provided FreeRTOS reentrant bus drivers.

4.1.3 backoffalgorithm

Algorithm for calculating exponential backoff with jitter for network retry attempts.

Readme

4.1.4 corehttp

Clanguage HTTP client library designed for embedded platforms.

4.1.5 corejson

JSON parser.
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Readme

4.1.6 coremqtt

MQTT publish/subscribe messaging library.

4.1.7 corepkesll

PKCS #11 key management library.

Readme

4.1.8 freertos-plus-tcp

Open source RTOS FreeRTOS Plus TCP.

Readme
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